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Higher ramification and the local
Langlands correspondence

By Colin J. Bushnell and Guy Henniart

Abstract

Let F be a non-Archimedean locally compact field. We show that the lo-

cal Langlands correspondence over F has a property generalizing the higher

ramification theorem of local class field theory. If π is an irreducible cuspi-

dal representation of a general linear group GLn(F ) and σ the correspond-

ing irreducible representation of the Weil group WF of F , the restriction

of σ to a ramification subgroup of WF is determined by a truncation of

the simple character θπ contained in π, and conversely. Numerical aspects

of the relation are governed by an Herbrand-like function ΨΘ depending

on the endo-class Θ of θπ. We give a method for calculating ΨΘ directly

from Θ. Consequently, the ramification-theoretic structure of σ can be

predicted from the simple character θπ alone.

1. We examine the local Langlands correspondence [16], [19], [21], [23]

for general linear groups over a non-Archimedean locally compact field F . We

obtain striking new results connecting the fine structure of cuspidal represen-

tations of GLn(F ), as in the classification scheme of [11], and the ramification-

theoretic structure of Galois representations.

Our main theorem generalizes the higher ramification theorem of local

class field theory. It gives rise to a function analogous to the classical Her-

brand function of a field extension. Our second theorem is an algorithm for

calculating that function. Taken together, the results offer an unprecedented

opportunity to transmit detailed structure across the correspondence, pointing

a new direction for the subject. Here, we only indicate very first steps.

2. Let WF be the Weil group of a separable algebraic closure F̄ /F . Let

ŴF be the set of equivalence classes of irreducible, smooth, complex repre-

sentations of the locally profinite group WF . (From now on, when speak-

ing of a representation of a locally profinite group, we will always assume

it to be smooth and complex.) For each integer n > 1, let A0
n(F ) be the

set of equivalence classes of irreducible cuspidal representations of the general
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linear group GLn(F ). To work in a dimension-free manner, we set ĜLF =⋃
n>1A0

n(F ): given π ∈ ĜLF , there is a unique integer gr(π) = m > 1 such

that π ∈ A0
m(F ).

The local Langlands correspondence for F provides a canonical bijection

ĜLF −→ ŴF ,

π 7−→ Lπ,
(1)

such that dim Lπ = gr(π). The correspondence truly embodies a vast gener-

alization of local class field theory. However, there is more to local class field

theory than the existence of the Artin reciprocity map aF : WF → F×. A

mere existence statement falls short of revealing many useful properties and

applications. So too for the Langlands correspondence: knowledge of its ex-

istence, or even a construction, does not automatically yield significant new

insight.

3. An instance suggests itself. If ε is a real parameter, ε > 0, let Wε
F

be the corresponding ramification subgroup of WF in the upper numbering

convention of [24]. In particular, W0
F is the inertia subgroup IF of WF . Let

Wε+
F be the closure of the subgroup

⋃
δ>εWδ

F . Thus W0+
F is the wild inertia

subgroup PF of WF .

The first ramification theorem of local class field theory asserts that aF (PF )

is the group U1
F = 1+pF of principal units in F . More generally, let k > 1 be

an integer and write UkF = 1+pkF . The higher ramification theorem asserts that

aF (Wk
F ) = UkF and aF (Wk+

F ) = U1+k
F . It therefore yields an isomorphism be-

tween the group of characters of UkF and the group of characters of Wk
F trivial

on Wk
F ∩Wder

F , where Wder
F = KeraF is the (closed) derived subgroup of WF .

Consequently, the fine structure of characters of UkF is reflected in characters

of Wk
F . Of course, Wk

F admits characters that are not trivial on Wk
F ∩Wder

F .

4. The Ramification Theorem of [5, 8.2 Theorem], [9, 6.1] provides a gen-

eralization of the first ramification theorem of local class field theory. It is

written in terms of endo-classes of simple characters in GLn(F ), in the sense

of [11] (and the background notes below). Simple characters are very special

characters of specific compact open subgroups of GLn(F ), with a multitude of

extraordinary properties. Not least is the ability to transfer simple characters

between general linear groups of differing dimensions in a way that preserves

relations of intertwining and conjugacy. This leads to the notion of endo-

equivalence of simple characters, developed in [2]. It provides an equivalence

relation on the class of all simple characters in all general linear groups over F ,

the equivalence classes being called endo-classes.

A representation π ∈ A0
n(F ) contains a unique conjugacy class of simple

characters (Corollary 1 of [7]). These necessarily lie in the same endo-class Θπ.
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If σ = Lπ, the Ramification Theorem asserts that the restriction σ | PF of σ

to PF depends only on Θπ, and conversely. More precisely, if σ ∈ ŴF , then

σ | PF is a direct sum of irreducible representations of PF , all of which are

WF -conjugate and occur with the same multiplicity. So, writing “PF for the set

of equivalence classes of irreducible representations of the profinite group PF ,

the representation σ yields a unique element of WF \“PF that we choose to

denote [σ; 0]+. On the other hand, let E(F ) be the set of endo-classes of

simple characters over F . Given Θ ∈ E(F ), there exists π ∈ ĜLF so that

Θ = Θπ. If σ = Lπ, the orbit [σ; 0]+ depends only on Θ rather than the choice

of π. We therefore denote it LΘ. The map

E(F ) −→WF \“PF ,
Θ 7−→ LΘ,

(2)

is then a bijection. Results of [9], [3] show that the Langlands correspondence

can, in essence, be re-constructed from the bijection (2) via an explicit process.

5. Our main result here shows how (2) may be refined into a family of bi-

jections generalizing the higher ramification theorem of local class field theory.

It is based on the fact that the Langlands correspondence preserves conductors

of pairs.

If σ is a finite-dimensional, semisimple representation ofWF , let sw(σ) be

the Swan conductor of σ and write ς(σ) = sw(σ)/ dimσ. For π1, π2 ∈ ĜLF ,

let sw(π1 × π2) be the Swan conductor of the pair (π1, π2). This is defined via

the local constant ε(π1 × π2, s, ψ) of [20], [25]. Setting

ς(π1 × π2) =
sw(π1 × π2)
gr(π1) gr(π2)

,

the correspondence (1) has the property

(3) ς(π1 × π2) = ς(Lπ1 ⊗ Lπ2), πi ∈ ĜLF .

6. We exploit parallel structures carried by the sets E(F ) and WF \“PF .

On the Galois side, one defines a pairing ∆ on ŴF by

∆(σ, τ) = inf {ε > 0 : HomWε
F

(σ, τ) 6= 0}, σ, τ ∈ ŴF .

This is symmetric and satisfies an ultrametric inequality, but does not separate

points. The value ∆(σ, τ) depends only on the orbits [σ; 0]+, [τ ; 0]+ ∈ WF \“PF ,

so ∆ induces a pairing, again denoted ∆, onWF \“PF . The second version of ∆

separates points and is an ultrametric onWF \“PF . The following result derives

from [17].

Proposition A. Let σ ∈ ŴF . There exists a unique continuous function

Σσ(x), x > 0, such that ς(σ̌ ⊗ τ) = Σσ
Ä
∆(σ, τ)

ä
for all τ ∈ ŴF .
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Here, σ̌ is the contragredient of σ. The decomposition function Σσ(x) is

given by a formula (3.1.2) expressing the way σ decomposes when restricted

to the ramification subgroups Wx
F , x > 0. Consequently, one needs detailed

knowledge of the inner workings of σ in order to write it down. It depends

only on [σ; 0]+, so we sometimes write Σσ = Σ[σ;0]+ .

This material is covered in Sections 1–3 and is mostly familiar, but we

have taken care to ensure that the narrative is complete. A couple of deeper

results have exact analogues on the GL-side. We have chosen to prove the

GL-versions, in the appropriate place, and then deduce the Galois versions via

the Langlands correspondence.

7. Rather more surprising is the existence of exact analogues on the

GL-side, developed in Sections 4 and 5. That E(F ) carries a canonical ul-

trametric (Θ, Υ ) 7→ A(Θ, Υ ) is already implicit in [2]. It is given by an explicit

formula (5.1.1) in terms of transfers of simple characters. However, the con-

ductor formula of [10] can be reformulated in terms of A to yield

Proposition B. Let Θ ∈ E(F ). There exists a unique continuous func-

tion ΦΘ(x), x > 0, such that ς(π̌ × ρ) = ΦΘ
Ä
A(Θ,Θρ)

ä
for any π ∈ ĜLF

satisfying Θπ = Θ and any ρ ∈ ĜLF .

Again, π̌ is the contragredient of π. The structure function ΦΘ can be

written down completely in terms of Θ (4.4.1). Throughout Sections 4 and 5,

we have to pay attention to the behavior of A and ΦΘ relative to tamely

ramified extensions of the base field F . This prepares the way for later results.

Propositions A and B are results of rather different kinds. Proposition A,

while not trivial, has no claim to great depth. Proposition B, on the other hand,

emerges on combining two deep and highly developed theories, the complete

account of the smooth dual of GLn(F ) from [11], [14], [15], [2], and Shahidi’s

analysis of the Rankin–Selberg local constant in terms of intertwining operators

and Plancherel measure [25]. This comparison is an instance of a common

phenomenon: it is usually easier to access matters of depth via the GL-side.

8. In Section 6, we use (3) to combine the propositions and get the first

of our main results.

Higher Ramification Theorem. Let Θ ∈ E(F ). For ε > 0, define

δ > 0 by

(4) ΦΘ(δ) = ΣLΘ(ε).

If Υ ∈ E(F ), then A(Θ, Υ ) < δ if and only if ∆(LΘ, LΥ ) < ε.

The result holds equally with nonstrict inequalities. This form is easy to

prove and contains everything of substance. However, working back through
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the definitions, one finds a more concrete version (6.5 Corollary). For represen-

tations σ, τ ∈ ŴF , the condition ∆(σ, τ) < ε is equivalent to σ and τ having a

common irreducible component on restriction to Wε
F . On the other side, take

π, ρ ∈ ĜLF . The condition A(Θπ, Θρ) < δ is equivalent to π, ρ each containing

a representative of the same endo-class of truncated simple characters, in the

more general sense of [2] and 5.2 below. The severity of the truncation is mea-

sured by δ. The theorem thus implies a parametrization of conjugacy classes

of representations of ramification groups by endo-classes of truncated simple

characters, the Langlands correspondence inducing a bijection between the set

of π ∈ ĜLF containing a given truncated endo-class and the set of σ ∈ ŴF

containing the corresponding representation of a ramification subgroup.

Example. Let k > 1 be an integer, and let φ be a character of Wk
F trivial

on commutators: equivalently, φ = φ̃ | Wk
F for some character φ̃ of WF . Thus

φ̃ = χ ◦ aF for a character χ of F×. The restriction χ1 = χ | U1
F is a simple

character in GL1(F ). The restriction χk = χ | UkF is a truncation of χ1 and

gives the endo-class corresponding to φ under the main theorem.

9. Our second main result concerns the change of scale ε 7→ δ in the Higher

Ramification Theorem. Define a function ΨΘ(x), x > 0, Θ ∈ E(F ), by ΨΘ =

Φ−1Θ ◦ΣLΘ. Thus, in the theorem, δ = ΨΘ(ε). The function ΨΘ is continuous,

positive, strictly increasing, piecewise linear and smooth outside of a finite set.

It plays a role analogous to the classical Herbrand functions, so we appropriate

the name. Our second result, the Interpolation Theorem of Section 7, gives

a procedure for calculating ΨΘ directly from Θ, without the recourse to the

Langlands correspondence implicit in its definition. Since Θ determines ΦΘ
explicitly, the theorem yields the Galois-theoretic decomposition function ΣLΘ,

with no reference to Galois theory !

The Herbrand function ΨΘ has simple behavior relative to tamely ramified

base field extension (7.1). Using this, we show that ΨΘ can be calculated from

the values of A(Θ,χΘ), as χ ranges over a certain set of characters of F×, along

with the corresponding result relative to tame base field extensions. The final

statement 7.5 is very simple, but the extraction of explicit formulas promises to

be a challenging task. Here we examine only the easiest example of essentially

tame representations 7.7.

For our concluding Section 8, we change to the Galois side to broach a

related question: if we are given a decomposition function Σσ, what does it

tell us about σ? We show that the first discontinuity of the derivative Σ′σ
gives a canonical family of presentations of σ as an induced representation

in a manner respecting ramification structures. Recent work suggests this

approach provides a useful complement to the Interpolation Theorem. We
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finish Section 8 with a few specific examples, without full proofs, to give the

reader some perspective on phenomena beyond the scope of this paper.

Background and notation. Throughout, F is a non-Archimedean local field

with finite residue field of characteristic p. The symbols oF , pF , kF = oF /pF ,

UF = o×F , UkF = 1+pkF , k > 1, and υF : F× � Z all have their customary

meaning.

Let F̄ /F be a separable algebraic closure of F and WF = W(F̄ /F ) the

Weil group of F̄ /F . Let E/F be a finite separable extension of F . When

working in the Galois-theoretic context, we generally assume E to be a subfield

of F̄ and writeWE for the Weil groupW(F̄ /E) of F̄ /E. We identifyWE with

the open subgroup of WF that fixes all elements of E under the natural action

of WF on F̄ .

We make extensive use of the theory of simple characters [11], along with

endo-classes and tame lifting [2]. An overview, containing what we need, can

be found in [1]: we give the barest summary here.

Let a be a hereditary oF -order in A = EndF (V ), where V is an F -vector

space of finite dimension. We set Ua = a×. If p is the Jacobson radical rad a

of a, then Uka = 1+pk, k > 1. We define the positive integer ea by pF a = pea :

this is the oF -period of a. If E/F is a subfield of A, we say a is E-pure if

xax−1 = a for all x ∈ E×.

Let [a, n, 0, β] be a simple stratum in A ([11, 1.5.5]): in particular, the

algebra E = F [β] is a field and a is E-pure. As in [11, 3.1], one attaches to this

stratum an open subgroup H1(β, a) of U1
a and writes Hk(β, a) = H1(β, a)∩Uka ,

k > 1.

Take a character ψF of F of level one (to use the terminology of [11]).

This means that ψF is trivial on pF , but not trivial on oF . Following Chap-

ter 3 of [11], one attaches to [a, n, 0, β] and ψF a specific nonempty, finite set

C(a, β, ψF ) of characters of the compact group H1(β, a). These are the sim-

ple characters in AutF (V ) defined by [a, n, 0, β]. The dependence on ψF is

rather trivial, so we usually regard it as permanently fixed and omit it from

the notation: thus C(a, β, ψF ) = C(a, β).

In the same situation, let m be an integer, 0 6 m < n. The symbol

C(a,m, β) means the set of characters of Hm+1(β, a) obtained by restricting

the characters in C(a, β): thus C(a, 0, β) = C(a, β). We refer to the elements

of sets C(a,m, β) as truncated simple characters. The general theory of endo-

equivalence in [2] applies equally to truncated simple characters.

1. Ramification groups

We start with a sequence of three sections on the Weil group and its

representations. This one provides a brief aide mémoire for basic ramification

theory and introduces some nonstandard notation.
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1.1. Let IF be the inertia subgroup of WF and PF the wild inertia sub-

group. Attached to a real number ε > −1 is the ramification subgroup Wε
F

of WF . We use the upper numbering convention of [24, Chap. IV], so that

W−1F =WF andW0
F = IF . This traditional notation is typographically incon-

venient so, from now on, we use

(1.1.1) RF (ε) =Wε
F , ε > 0.

The definition of the ramification sequence gives the semi-continuity property

RF (ε) =
⋂
δ<ε

RF (δ), ε > 0.

One also forms the subgroup
⋃
δ>εRF (δ) and its closure

R+
F (ε) = cl

Ä⋃
δ>ε

RF (δ)
ä

in WF . This need not equal RF (ε): one says that ε is a jump of F̄ /F if

R+
F (ε) 6= RF (ε). In particular,

RF (0) = IF , R+
F (0) = PF .

Each of the groupsRF (x), R+
F (x), x > 0, is profinite, closed and normal inWF .

We summarize the main properties of the ramification groups, relative to finite

quotients of WF , in the form we shall use them. We use the conventions of

[24] for numbering the ramification subgroups of a finite Galois group.

Lemma. Let x > 0. Let E/F be a finite Galois extension with Γ =

Gal(E/F ).

(1) The canonical image of RF (x) in Γ is the ramification group Γ x.

(2) Suppose x is not a jump in the ramification sequence for E/F , that is,

Γ x = Γ x+ε for some ε > 0. The image of R+
F (x) in Γ is then Γ x.

(3) Suppose x is a jump in the ramification sequence for E/F , that is, Γ x 6=
Γ x+ε, ε > 0.

(a) If x is the largest jump for E/F , then the image of R+
F (x) in Γ is

trivial.

(b) Otherwise, the image of R+
F (x) in Γ is Γ y , where y is the least jump

such that y > x.

In the context of the lemma, it is often useful to have the notation Γ x+ =⋃
y>x Γ

y. Thus x is a jump for E/F if Γ x 6= Γ x+. In all cases, Γ x+ is the

image of R+
F (x).
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1.2. We make frequent use of the following facts.

Lemma 1. If K/F is a finite, tamely ramified field extension with e =

e(K|F ), then PK = PF and

RF (x) = RK(ex), x > 0,

R+
F (x) = R+

K(ex), x > 0.

Proof. This follows from the definition of the upper numbering of ramifi-

cation groups. �

Lemma 2. If 0 < x 6 y, the commutator group [RF (x),RF (y)] is con-

tained in R+
F (y). Moreover,

[R+
F (0),RF (x)] ⊂ R+

F (x), x > 0.

In particular, the group RF (x)/R+
F (x), x > 0, is central in R+

F (0)/R+
F (x).

Proof. The first assertion is implied by IV, Section 2, Proposition 10 of

[24]. The second then follows from the definition of R+
F (x). �

2. Representations and ramification

Let ŴF be the set of isomorphism classes of irreducible representations

of WF . Let Ŵss
F be the set of isomorphism classes of finite-dimensional semi-

simple representations of WF (cf. [6, 28.7 Proposition]).

Let “RF (ε) be the set of isomorphism classes of irreducible representations

of the profinite group RF (ε), ε > 0, and define “R+
F (ε), ε > 0, analogously. The

group WF acts on both “RF (ε) and “R+
F (ε) by conjugation.

We investigate interactions between representations of WF and the filtra-

tion by ramification groups. We identify the jumps in the ramification sequence

for F̄ /F and define a canonical pairing on ŴF .

2.1. We start at a general level.

Proposition 1. Let H be an open subgroup of PF . There exists ε > 0

such that H contains RF (ε). For any such ε, there exists ε′ < ε such that H

contains RF (ε′).

Proof. The group H is of the form PF ∩WK for a finite extension K/F .

Since RF (ε) is normal in WF , we may replace H by the intersection of its

WF -conjugates and assume K/F is a Galois extension. Enlarging K if neces-

sary, we may further assume that K/F is not tamely ramified.

Let δ be the largest ramification jump for K/F . Thus δ > 0 and H

contains R+
F (δ). Thus H contains RF (ε) if and only if ε > δ, and the result

follows. �
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Proposition 2. Let ξ ∈ “RF (ε), ε > 0.

(1) The kernel of ξ contains RF (δ) for some δ > ε.

(2) There exists σ ∈ ŴF such that ξ is equivalent to an irreducible component

of the restriction σ | RF (ε).

Proof. Since RF (ε) is profinite, the kernel of ξ is open, hence of the form

H ∩RF (ε) for an open subgroup H of WF . Part (1) now follows from Propo-

sition 1.

If E/F is a finite extension, set GE = Gal(F̄ /E). In part (2), it is enough

to find an irreducible representation of GF containing ξ on restriction to RF (ε).

We form the representation I = IndGFRF (ε) ξ of GF smoothly induced from ξ.

Thus I is the union
⋃
E/F I

GE of its spaces of GE-fixed points, as E/F ranges

over finite Galois extensions contained in F̄ . The space IGE provides a rep-

resentation of the finite group Gal(E/F ). Consequently, I has an irreducible

GF -subspace σ, and any such σ has the desired property. �

Complement. Proposition 2 holds, with the same proof, on replacing “RF (ε),

ε > 0 with “R+
F (ε), ε > 0.

Apology. Proposition 2, applied to PF = R+
F (0), replaces the incorrect

proof of [9, 1.2 Proposition]. It also plugs a gap inadvertently left in the proof

of [5, 8.2 Theorem]: we thank A. Kılıç for drawing our attention to the problem.

2.2. Let σ ∈ ŴF and ε > 0. The restriction σ | RF (ε) of σ to RF (ε)

is semisimple. Its irreducible components are all WF -conjugate and occur

with the same multiplicity. Thus σ determines a unique conjugacy class

[σ; ε] ∈ WF \“RF (ε). Similarly, for ε > 0, σ determines a unique conjugacy

class [σ; ε]+ ∈ WF \“R+
F (ε).

Proposition. The orbit maps

ŴF −→WF \“RF (ε),

σ 7−→ [σ; ε],
ε > 0

and

ŴF −→WF \“R+
F (ε),

σ 7−→ [σ; ε]+,
ε > 0

are surjective.

Proof. The assertion re-states 2.1 Proposition 2 and its complement. �
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2.3. Let σ ∈ ŴF . By 2.1 Proposition 1, Kerσ contains RF (ε) for ε

sufficiently large. One defines the slope sl(σ) of σ by

(2.3.1) sl(σ) = inf {ε > 0 : RF (ε) ⊂ Kerσ}.

Thus sl(σ) = 0 if and only if σ is trivial on PF : one says that σ is tamely

ramified.

Proposition. Let σ ∈ ŴF and suppose that sl(σ) = s > 0. The group

R+
F (s) is then contained in Kerσ while σ | RF (s) is a direct sum of nontrivial

characters of RF (s).

Proof. The first assertion follows from the definition of R+
F (s). The group

RF (s)/R+
F (s) is abelian by 1.2 Lemma 2, so σ | RF (s) is a direct sum of

WF -conjugate characters. If these characters were trivial, RF (s) would be

contained in Kerσ. Since Kerσ ∩ PF is open in PF , it would contain RF (t)

for some t < s, by 2.1 Proposition 1, contrary to the definition of s. �

Corollary.

(1) If s > 0 is the slope of a representation σ ∈ ŴF , then RF (s) 6= R+
F (s). In

particular, s is a jump in the ramification sequence for F̄ /F .

(2) If s > 0 is a jump in the ramification sequence for F̄ /F , there exists

σ ∈ ŴF with slope s.

Proof. Assertion (1) follows directly from the proposition. The profinite

groupRF (s) admits a nontrivial smooth character ξ that is trivial on the closed

subgroup R+
F (s). Assertion (2) is therefore given by 2.2 Proposition. �

2.4. We can now identify the jumps in the ramification sequence, knowing

that they all arise as slopes of irreducible representations.

If ρ ∈ Ŵss
F , let sw(ρ) denote the exponential Swan conductor of ρ. Thus

sw(ρ) is a nonnegative integer and, if we write ρ =
⊕r

i=1 τi, with τi ∈ ŴF ,

then sw(ρ) =
∑r
i=1 sw(τi).

Basic connection. If σ ∈ ŴF , then sl(σ) = sw(σ)/ dimσ. In particu-

lar, sl(σ) ∈ Q.

Proof. See Théorème 3.5 of [18]. �

We complete the argument with a sharp result, which seems to lie rather

deep.

Proposition. Let x > 0, x ∈ Q, and write x = a/b for relatively prime,

positive integers a, b. There exists σ ∈ ŴF such that sw(σ) = a and dimσ = b.

We defer the proof to 6.3 below. We deduce
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Corollary. If x ∈ R, x > 0, then RF (x) 6= R+
F (x) if and only if x ∈ Q.

2.5. The orbit maps ŴF → WF \“RF (ε) and ŴF → WF \“R+
F (ε) of 2.2

factor through the orbit map ŴF → WF \“PF . We use the same notation for

the implied maps WF \“PF →WF \“RF (ε) and WF \“PF →WF \“R+
F (ε). We set

(2.5.1) ∆(ξ, ζ) = inf
¶
ε > 0 : [ξ; ε] = [ζ; ε]

©
, ξ, ζ ∈ WF \“PF .

The pairing ∆ is clearly symmetric: ∆(ξ, ζ) = ∆(ζ, ξ). Its values are nonneg-

ative rational numbers (2.4 Corollary).

Proposition.

(1) If ξ, ζ ∈ WF \“PF , then ∆(ξ, ζ) = 0 if and only if ξ = ζ .

(2) If ξ, ζ ∈ WF \“PF and δ = ∆(ξ, ζ) > 0, then [ξ; δ]+ = [ζ; δ]+ while [ξ; δ] 6=
[ζ; δ].

(3) If ξ, ζ, ψ ∈ WF \“PF , then

(2.5.2) ∆(ξ, ζ) 6 max
¶

∆(ξ, ψ),∆(ψ, ζ)
©
.

The pairing ∆ is an ultrametric on WF \“PF .

Proof. In part (1), one implication is trivial, so suppose ξ 6= ζ. As in 2.2,

there exists an irreducible representation ξ̃ of Gal(F̄ /F ) containing ξ on re-

striction to PF . Choose ζ̃ similarly. There exists a finite Galois extension K/F

such that both ξ̃ and ζ̃ are inflated from representations of Γ = Gal(K/F ).

The extension K/F is not tamely ramified: otherwise, ξ and ζ would be the

orbit of the trivial character of PF . So, K/F has a least positive ramifica-

tion jump φ. If 0 < ε < φ, then Γ ε = Γ whence [ξ; ε] 6= [ζ; ε]. This implies

∆(ξ, ζ) > ε > 0, contrary to hypothesis.

In part (2), write ξ = {ξi : i ∈ I}, where ξi ∈ “PF and I is a finite

set. Likewise set ζ = {ζj : j ∈ J}. For ε > 0, the condition ∆(ξ, ζ) 6 ε is

equivalent to HomRF (ε)(ξi, ζj) being nonzero for some choice of i and j. This,

in turn, is equivalent to ξ̌i⊗ζj containing the trivial character of RF (ε). When

this condition holds, 2.1 Proposition 1 implies that ξ̌i ⊗ ζj contains the trivial

character of RF (ε′) for some ε′ < ε. Applying this observation to the case

ε = δ, the assertion follows.

Part (3) follows directly from the definition. �

It is often more convenient to view ∆ as a pairing on ŴF , setting

∆(σ, τ) = ∆
Ä
[σ; 0]+, [τ ; 0]+

ä
, σ, τ ∈ ŴF .

This version is again symmetric and has the ultrametric property (2.5.2), but

it does not separate points. In this form,

(2.5.3) ∆(σ, τ) = inf
¶
ε > 0 : HomRF (ε)(σ, τ) 6= 0

©
.
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2.6. We consider the behavior of ∆ under tamely ramified base field

extension. Temporarily write ∆F for the pairing (2.5.1). Let K/F be a finite

tame extension, and let ∆K be the analogue of ∆F relative to the base field K.

Thus PK = PF and RK(ε) = RF (ε/e), where e = e(K|F ) (1.2 Lemma 1).

Consequently,

Proposition. If ξ, ζ ∈ “PF = “PK , then

e∆F (WF ξ,WF ζ) = min
¶

∆K(WKξ,WKgζ) : g ∈ WK\WF

©
.

3. Ultrametric and conductors

We link the ultrametric ∆ on WF \“PF to conductors of tensor products of

representations of WF . The basic ideas come from Heiermann’s note [17].

3.1. Set

ς(σ) = sw(σ)/ dimσ, σ ∈ Ŵss
F .

If σ ∈ ŴF , this reduces to ς(σ) = sl(σ), as in 2.4.

Let σ ∈ ŴF , say σ : WF → AutC(V ), for a finite dimensional complex

vector space V . The semisimple representation σ̌ ⊗ σ thus acts on the space

Xσ = V̌ ⊗ V . Write

Xσ(δ) = X
R+
F (δ)

σ =
⋂
ε>δ

XRF (ε)σ , δ > 0

for the space of R+
F (δ)-fixed points in Xσ. Let X ′σ(δ) be the unique R+

F (δ)-

complement of Xσ(δ) in Xσ. Since R+
F (δ) is a normal subgroup of WF , the

spaces Xσ(δ), X ′σ(δ) are WF -stable and provide semisimple representations

of WF .

Lemma. Let σ, τ ∈ ŴF . If δ = ∆(σ, τ), then

(3.1.1) ς(σ̌ ⊗ τ) = (dimσ)−2
Ä
δ dimXσ(δ) + swX ′σ(δ)

ä
.

This formulation is to be found on p. 572 of [17]; cf. (3.1.3) below. We

need a slightly different emphasis.

Proposition. For σ ∈ ŴF and δ > 0, define

(3.1.2) Σσ(δ) = (dimσ)−2
Ä
δ dimXσ(δ) + swX ′σ(δ)

ä
.

The function Σσ is continuous, strictly increasing, piecewise linear and convex.

Its derivative Σ′σ is continuous outside of a finite set.

Proof. Write σ̌ ⊗ σ =
∑
i ψi, where the ψi are irreducible. We prove that

(3.1.3) δ dimXσ(δ) + swX ′σ(δ) =
∑
i

max {δ dimψi, swψi}.



HIGHER RAMIFICATION AND THE LOCAL LANGLANDS CORRESPONDENCE 931

Let ψ be an irreducible component of σ̌⊗ σ. If δ dimψ > swψ, then δ > ς(ψ),

by the basic connection of 2.4. Thus ψ is trivial on R+
F (δ) (2.3 Proposition),

whence ψ is a subspace of Xσ(δ). If, on the other hand, δ dimψ < swψ then

δ < ς(ψ) and ψ is a subspace of X ′σ(δ). The desired relation now follows.

Each term in the sum (3.1.3) is a continuous, nondecreasing, function. One

factor ψi is the trivial representation, and that contributes a strictly increasing

term. All assertions are now immediate. �

Comparing with (3.1.1), we have

(3.1.4) Σσ
Ä
∆(σ, τ)

ä
= ς(σ̌ ⊗ τ), σ, τ ∈ ŴF .

There is a consequence, useful in more general applications, although we do

not need it here.

Corollary. The pairing (σ, τ) 7→ ς(σ̌ ⊗ τ) of (3.1.4) satisfies the ultra-

metric inequality

ς(σ̌1 ⊗ σ2) 6 max {ς(σ̌1 ⊗ σ3), ς(σ̌3 ⊗ σ2)}, σi ∈ ŴF .

Proof. The proof is identical to that of 5.4 Corollary below. We choose to

give the details there. �

Notation. The function Σσ, as defined in (3.1.2), depends only on the class

[σ; 0]+ ∈ WF \“PF . It is sometimes necessary to reflect this via the notation

(3.1.5) Σσ(x) = Σ[σ;0]+(x).

3.2. Say that σ ∈ ŴF is totally wild if the restriction σ | PF is irreducible.

If σ is such a representation, and if K/F is a finite, tamely ramified field

extension, the restriction σK = σ | WK is irreducible and totally wild.

Proposition. If σ ∈ ŴF is totally wild and K/F is a finite tame exten-

sion, then

Σσ(x) = e−1ΣσK (ex), x > 0,

where e = e(K|F ).

Proof. This follows from 1.2 Lemma 1. �

3.3. The function Σσ has a strong uniqueness property, although we do

not need it at this stage.

Proposition. The function Σσ , defined by (3.1.2), is the unique contin-

uous function satisfying (3.1.4).

The proposition is an immediate consequence of the following, proved

in 6.3 below.
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Density Lemma. Let σ ∈ ŴF . The set {∆(σ, τ) : τ ∈ ŴF } is dense on

the half-line x > 0, x ∈ R.

3.4. We record a continuity property of the function σ 7→ Σσ.

Proposition. If σ, τ ∈ ŴF and δ = ∆(σ, τ), then Σσ(x) = Στ (x), x > δ.

Proof. By definition, the condition δ = ∆(σ, τ) is equivalent to [σ; ε] =

[τ ; ε] for all ε > δ. If dimσ = a, dim τ = b, this condition is equivalent to

bσ | RF (ε) ∼= aτ | RF (ε) for ε > δ. Comparing first trivial components and

then nontrivial ones, we get

b2Xσ(ε) ∼= a2Xτ (ε), b2X ′σ(ε) ∼= a2X ′τ (ε).

The assertion now follows from the definition (3.1.2). �

4. Invariants of simple characters

We pass to the GL-side. In this section, we recall and develop some

features of the theory of simple characters using mainly [11] and [2].

4.1. We start with a detail from [10, 6.4]. Let E/F be a finite field

extension, and let A = EndF (E). Let a be the unique E-pure hereditary

oF -order in A. Let β ∈ E× satisfy E = F [β] and m = −υE(β) > 0. We assume

that the quadruple [a,m, 0, β] is a simple stratum, in the sense of [11, (1.5.5)].

Let aβ denote the adjoint map A→ A, x 7→ βx−xβ, and sE/F : A→ E a

tame corestriction relative to E/F , [11, 1.3]. The sequence

0→ E −→ A
aβ−−→ A

sE/F−−−→ E → 0

is then exact. There exist oF -lattices l, l′ in E and m, m′ in A such that the

sequence

0→ l −→ m
aβ−→ m′

sE/F−−−→ l′ → 0

is exact. For Haar measures µE , µA on E and A respectively, the quantity

C(β) =
µE(l)µA(m′)

µE(l′)µA(m)

is independent of all these choices. If q = |kF |, there is an integer c(β) such

that

(4.1.1) C(β) = qc(β).

As an example, consider the case where β is minimal over F . In concrete

terms, this means that m = −υE(β) is relatively prime to e = e(E|F ) and,

for a prime element $ of F , the coset βe$m+pE generates the residue field

extension kE/kF .
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Proposition. Set e = e(E|F ), f = f(E|F ). If β is minimal over F ,

then c(β) = mf(ef−1).

Proof. In this situation, the sequence

0→ oE −→ a
aβ−→ βa

sE/F−−−→ βoE → 0

is exact [11, (1.4.15)]. The result then follows from a short calculation. �

4.2. Let E(F ) be the set of endo-classes of simple characters over F ,

including the trivial element 0. Let Θ ∈ E(F ), Θ 6= 0. There is a finite-

dimensional F -vector space V , a simple stratum [a,m, 0, β] in EndF (V ) and a

simple character θ ∈ C(a, β, ψF ) such that θ has endo-class Θ. One says that

θ is a realization of Θ (on a, relative to ψF ). Let ea be the oF -period of a. We

recall [2, (8.11)] that the quantities

degΘ = [F [β]:F ], mΘ = m/ea,(4.2.1)

eΘ = e(F [β]|F ), fΘ = f(F [β]|F )

depend only on Θ and not on the choices of θ, a, ψF or β. The same applies

to

(4.2.2) k0(Θ) = k0(β, a)/ea,

where k0(β, a) is the “critical exponent” of [11, (1.4.5)]. Recall that k0(Θ) =

−∞ when degΘ = 1. Otherwise, k0(Θ) is a negative rational number satisfying

−k0(Θ) 6 mΘ.

If a is a hereditary order in A = EndF (V ), the realization of the trivial

element 0 of E(F ) on a is the trivial character of the group U1
a = 1+p, where

p = rad a. We set

deg 0 = e0 = f0 = 1,

m0 = 0.
(4.2.3)

The following observation will be useful later.

Proposition. Let x be a positive rational number, say x = a/b, for rel-

atively prime positive integers a, b. There exists Θ ∈ E(F ) such that mΘ = x

and eΘ = degΘ = b.

Proof. Let E/F be a totally ramified field extension of degree b, and choose

α ∈ E of valuation−a. The element α is then minimal over F . If a is the unique

E-pure hereditary oF -order in EndF (E), the quadruple [a, a, 0, α] is a simple

stratum. The endo-class Θ of any θ ∈ C(a, α) has the required properties. �
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4.3. Let Θ ∈ E(F ), Θ 6= 0. We attach to Θ a finite set SΘ of positive

rational numbers, to be called the normalized jumps of Θ. We choose a real-

ization θ ∈ C(a, β) of Θ, as in 4.2. We first attach to [a,m, 0, β] a finite set

S[a,β] of positive integers t, such that −k0(β, a) 6 t 6 m.

We proceed by induction on the degree [F [β]:F ]. If β is minimal over F ,

in particular if β ∈ F×, we put S[a,β] = {m}. If β is not minimal over F , we

set r = −k0(β, a). Thus 0 < r < m. We choose a simple stratum [a,m, r, γ]

equivalent to [a,m, r, β] [11, (2.4.1)]. Thus [a,m, 0, γ] is simple and [F [γ]:F ] <

[F [β]:F ]. The set S[a,γ] has been defined inductively, and its least element

is either m or −k0(γ, a). In either case, the least element is strictly greater

than r. We define

S[a,β] = S[a,γ] ∪ {r}.

Remark. If we have another simple stratum [a′,m′, 0, β] in EndF (V ′) for

some V ′, then S[a′,β] = {xea/ea′ : x ∈ S[a,β]}, as follows from [11, (1.4.13)].

We define

(4.3.1) SΘ = {s/ea : s ∈ S[a,β]}.

The least element of SΘ is thus either mΘ or −k0(Θ).

Lemma. The set SΘ depends only on Θ, and not on any of the choices θ,

ψF , [a,m, 0, β].

Proof. This follows from [11, (3.5.4)]. �

Definition. Let x ∈ R, x > 0, x /∈ SΘ.

(1) If x < minSΘ, set γx = β.

(2) If x > mΘ = maxSΘ, set γx = 0.

(3) Otherwise, let y = t/ea be the least element of SΘ such that y > x, and

let [a,m, t−1, γx] be a simple stratum equivalent to [a,m, t−1, β].

Set Ex = F [γx], and define

dΘ(x) = [Ex:F ],

eΘ(x) = e(Ex|F ),

cΘ(x) = c(γx).

(4.3.2)

Proposition. The quantities (4.3.2) depend only on x and Θ. If y1 < y2
are successive elements of the set {0,∞}∪SΘ, the functions (4.3.2) are constant

in the region y1 < x < y2.

Proof. This follows, via an inductive argument, from the properties re-

called in 4.2. �
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Observation. The proposition notwithstanding, all the invariants (4.3.2)

of Θ are defined purely in terms of an element β giving rise to a realization

of Θ.

4.4. Let Θ ∈ E(F ), Θ 6= 0, be as 4.3. We define a function ΦΘ(x), x > 0.

To start with, assume x /∈ SΘ and set

(4.4.1) ΦΘ(x) =

x, x > mΘ,
cΘ(x)
dΘ(x)2

+ x
dΘ(x) , 0 < x < mΘ.

Proposition.

(1) The function ΦΘ(x) of (4.4.1) extends uniquely to a continuous function

on the half-line x > 0, that is,

lim
x→y−

ΦΘ(x) = lim
x→y+

ΦΘ(x), y ∈ SΘ.

(2) The function ΦΘ is piecewise linear, convex and strictly increasing.

(3) If x /∈ SΘ, then Φ′Θ(y) = dΘ(x)−1 for y ranging over some open neigh-

borhood of x.

(4) The discontinuities of the derivative Φ′Θ are the elements x of SΘ except

when EmΘ−ε = F for some ε > 0. In that case, Φ′Θ is continuous at mΘ.

Proof. Assertion (1) is given by 4.1 Proposition above together with 3.1

Proposition of [5]. Part (2) then follows from (4.4.1) and 4.3 Proposition.

Part (3) follows from the definition and 4.3 Proposition, part (4) from the

definition. �

The trivial element 0 of E(F ) is dealt with via the explicit formula

(4.4.2) Φ0(x) = x, x > 0.

In all cases, we call ΦΘ the structure function of Θ ∈ E(F ).

Complements. Let [a,m, 0, β] be a simple stratum.

(1) For i = 1, 2, let θi ∈ C(a, β). If Θi is the endo-class of θi, then ΦΘ1 = ΦΘ2 .

(2) Let θ ∈ C(a, β) have endo-class Θ. The character θ̌ = θ−1 of H1(β, a) lies

in C(a,−β) and its endo-class Θ∨ satisfies ΦΘ∨ = ΦΘ.

Proof. Both assertions follow directly from the observation concluding 4.3.

�

4.5. The functions ΦΘ reflect the approximation properties intrinsic to

the concept of endo-class.

Proposition. For i=1, 2, let [a,mi, 0, βi] be a simple stratum in EndF (V )

for a finite-dimensional F -vector space V . Let θi ∈ C(a, βi), and let Θi be the
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endo-class of θi. If t > 0 is an integer such that the restrictions θi | H1+t(βi, a)

intertwine in AutF (V ), then

ΦΘ1(x) = ΦΘ2(x), x > t/ea.

Proof. Choose a simple stratum [a,mi, t, γi] equivalent to [a,mi, t, βi]. In

particular, H1+t(βi, a) = H1+t(γi, a) and the character θti = θi | H1+t(βi, a)

lies in C(a, t, γi). The truncated simple characters θti intertwine and and so

are conjugate in AutF (V ) [11, (3.5.11)]. From [11, (3.5.1)] we know that

[F [γ1] : F ] = F [γ2] : F ], e(F [γ1]|F ) = e(F [γ2]|F ) and k0(γ1, a) = k0(γ2, a).

The proposition now follows from the definition (4.4.1), the observation of 4.3

and induction along the stratum [a,m1, 0, β1]. �

4.6. Let Θ ∈ E(F ), and let K/F be a finite, tamely ramified field exten-

sion. Let ΘKi ∈ E(K), 1 6 i 6 r, be the set of K/F -lifts of Θ [2]. If θ ∈ C(a, β)

is a realization of Θ, the ΘKi are in bijection with the simple components of the

semisimple K-algebra K ⊗F F [β]. The relation between ΦΘ and the functions

ΦΘKi
is, in general, quite intricate but we shall only need a special case.

Say that Θ ∈ E(F ) is totally wild if eΘ = degΘ = pr for an integer r > 0.

If θ ∈ C(a, β) is a realization of Θ, then Θ is totally wild if and only if the field

extension F [β]/F is totally wildly ramified.

Proposition. Let Θ ∈ E(F ) be totally wild. If K/F is a finite, tamely

ramified field extension, then Θ has a unique K/F -lift ΘK . If e = e(K|F ),

then

ΦΘK (x) = eΦΘ(x/e), x > 0.

Proof. Let degΘ = pa, a > 0. If V is an F -vector space of dimension pa,

there is a simple stratum [a0,m, 0, β] in EndF (V ) such that C(a0, β) contains

a character θ0 of endo-class Θ. If E = F [β], then E/F is totally ramified of

degree pa = degΘ = eΘ.

The algebra K ⊗F E is a field, which we denote KE. In particular, Θ

admits a unique K/F -lift ΘK . Let A = EndF (KE), and let a be the unique

KE-pure hereditary oF -order in A. The quadruple [a, em, 0, β] is a simple

stratum in A, and there is a simple character θ ∈ C(a, β) of endo-class Θ. As

ea = epa, so

SΘ = {x/epa : x ∈ S[a,β]},

in the notation of 4.3.

Let B = EndK(KE) be the A-centralizer of K and b = a ∩ B. Thus b

is the unique KE-pure hereditary oK-order in B. The stratum [b, em, 0, β]

is simple [2, (2.4)]. Further, H1(β, b) = H1(β, a) ∩ B×, and the character

θK = θ | H1(β, b) lies in C(b, β, ψK), where ψK = ψF ◦ TrK/F [2, (7.7)]. The

endo-class of θK over K is then ΘK .
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Lemma. The sets S[b,β], S[a,β] are equal.

Proof. We proceed by induction along β, in the manner of many proofs

in [11]. Suppose first that β is minimal over F . It is then minimal over K

[2, (2.4)], and the field extensions F [β]/F , K[β]/K are totally ramified of the

same degree pa. The lemma holds in this case.

We therefore assume r = −k0(β, a) < em. Let s = −k0(β, b). Accord-

ing to [2] (2.4), we have s > r. We show that s = r in this case: assume

for a contradiction that s > r. We choose a simple stratum [b, em, s−1, γ]

in B, equivalent to [b, em, s−1, β], such that [a, em, s−1, γ] is simple: this we

may do by [2, (3.8)]. Certainly [a, em, s−1, γ] is equivalent to [a, em, s−1, β],

which is not simple. It follows from [11, (2.4.1)] that F [γ]/F is totally wildly

ramified and [F [γ]:F ] < [F [β]:F ]. Thus [K[γ]:K] < [K[β]:K], implying that

[b, em, s−1, β] is not simple. This eliminates the possibility s > r.

We conclude that the sets S[a,β], S[b,β] have the same least element r =

−k0(β, a). We choose a simple stratum [b, em, r, γ], equivalent to [b, em, r, β],

such that [a, em, r, γ] is simple. By definition, S[a,β] = {r} ∪ S[a,γ] and S[b,β] =

{r} ∪ S[b,γ]. Inductively, S[a,γ] = S[b,γ], and the lemma is proved. �

We deduce that

(4.6.1) SΘK = {ey : y ∈ SΘ}.

The proof of the lemma also shows that, if x > 0 and x /∈ SΘ, then

(4.6.2) (KE)ex = KEx whence dΘ(x) = dΘK (ex),

in the notation of 4.3.

Set φ(x) = eΦΘ(x/e). The functions φ and ΦΘK are continuous, and

smooth outside of SΘK . Also, by (4.6.2), φ′(x) = Φ′Θ(x) for x /∈ SΘK . In other

words, φ(x) = ΦΘK (x)+c for a constant c. However, for x sufficiently large,

φ(x) = ΦΘK (x) = x, so c = 0 as required to prove the proposition. �

5. Ultrametric on simple characters

We re-examine the conductor formula of [10], interpreting it in terms of

the structure functions ΦΘ of 4.4 and a canonical ultrametric on the set E(F )

of endo-classes of simple characters over F .

5.1. Let Θ1, Θ2 ∈ E(F ), Θi 6= 0. There is an F -vector space V of finite

dimension, and a hereditary order a in EndF (V ), such that a carries realizations

of both Θi. That is, there are simple strata [a,mi, 0, βi] in EndF (V ) and simple

characters θi ∈ C(a, βi) such that θi is of endo-class Θi.

Let l > 0 be the least integer such that the characters θi | H l+1(βi, a)

intertwine (and are therefore conjugate [11, (3.5.11)]) in AutF (V ). We define

(5.1.1) A(Θ1, Θ2) = A(Θ2, Θ1) = l/ea.
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The definition is independent of all choices; see the discussion in [10, 6.15].

One may treat the trivial class 0 on the same basis, but it is quicker to simply

define

(5.1.2) A(Θ,0) = mΘ, Θ ∈ E(F ).

Proposition.

(1) Let Θ,Θ′ ∈ E(F ). If mΘ < mΘ′ , then A(Θ,Θ′) = mΘ′ .

(2) If Θ1, Θ2 ∈ E(F ), then A(Θ1, Θ2) = 0 if and only if Θ1 = Θ2.

(3) If Θ1, Θ2, Θ3 ∈ E(F ), then

(5.1.3) A(Θ1, Θ3) 6 max {A(Θ1, Θ2),A(Θ2, Θ3)}.

Proof. Part (1) follows from [11, (2.6.3)]. In (2), we find a hereditary order

a in some A = EndF (V ), a simple stratum [a,mi, 0, βi] and a simple character

θi ∈ C(a, 0, βi) of endo-class Θi, i = 1, 2. The assertion A(Θ1, Θ2) = 0 is

equivalent to the characters θi of H1(βi, a) being conjugate in AutF (V ). This,

in turn, is equivalent to Θ1 = Θ2.

In (3), we may take simultaneous realizations θi ∈ C(a, βi) of Θi, i = 1, 2, 3,

in some G = AutF (V ). Let tij be the least nonnegative integer such that

θi | H1+tij (βi, a) is G-conjugate to θj | H1+tij (βi, a). Thus A(Θi, Θj) = tij/ea.

By symmetry, we may assume that t12 6 t23. Replacing the θi by conjugates,

we may further assume that

H1+t12(β1, a) = H1+t12(β2, a),

H1+t23(β2, a) = H1+t23(β3, a)

and that

θ1(g) = θ2(g), g ∈ H1+t12(β1, a),

θ2(h) = θ3(h), h ∈ H1+t23(β2, a) = H1+t23(β1, a).

Thus θ1 agrees with θ3 on H1+t23(βi, a). It follows that t13 6 t23, as required

to prove (5.1.3). �

In summary, the pairing A defines an ultrametric on the set E(F ). It is

natural to re-state 4.5 Proposition in terms of A.

Corollary. If Θ,Θ′ ∈ E(F ), then ΦΘ(a) = ΦΘ′(a) for all a > A(Θ,Θ′).

5.2. In some circumstances, a different language is clearer. Let [a,m, 0, β]

be a simple stratum in some matrix algebra A = EndF (V ), and let θ ∈ C(a, β).

Let ε > 0, and let t be the greatest integer such that t/ea < ε. In particular,

t > 0. The ε-truncation of θ, denoted tcε(θ), is the character θ | H1+t(β, a).



HIGHER RAMIFICATION AND THE LOCAL LANGLANDS CORRESPONDENCE 939

Using the general machinery of [2, §8], we may form the endo-class of

tcε(θ): if Θ is the endo-class of θ, we denote the endo-class of tcε(θ) by tcε(Θ).

This depends only on Θ and ε. The definition of the ultrametric A then implies

Proposition. Let ε > 0. If Θ1, Θ2 ∈ E(F ), then A(Θ1, Θ2) < ε if and

only if tcε(Θ1) = tcε(Θ2).

5.3. The following, more delicate, property is needed in certain situations.

Density Lemma. Let Θ ∈ E(F ). The set {A(Θ,Ξ) : Ξ ∈ E(F )} is dense

in the half line {x > 0 : x ∈ R}.

Proof. Let x ∈ Q, x > 0. If x > mΘ, there exists Ξ ∈ E(F ) such that

mΞ = x, by 4.2 Proposition. This gives A(Θ,Ξ) = x, by 5.1 Proposition, so it

is enough to treat the case x < mΘ.

Lemma. Let [a,m, 0, β] be a simple stratum in a matrix algebra A =

Mn(F ), and let θ ∈ C(a, β). Let k be an integer, 1 6 k 6 m. There exists a

simple stratum [a,m, 0, β′] in A and θ′ ∈ C(a, β′) such that

(1) Hk(β′, a) = Hk(β, a);

(2) θ′ agrees with θ on Hk+1(β, a); and

(3) the characters θ, θ′ do not intertwine on Hk(β, a).

Proof. We first reduce to the case in which the stratum [a,m, k−1, β] is

simple. Suppose it is not. We choose a simple stratum [a,m, k−1, γ] equivalent

to [a,m, k−1, β]. Directly from the definitions in [11, Ch. 3], we have

Hk(γ, a) = Hk(β, a), C(a, k−1, γ) = C(a, k−1, β).

In particular, there exists ξ ∈ C(a, γ) agreeing with θ on Hk(β, a). We may

now work with the pair (γ, ξ) in place of (β, θ).

We revert to our original notation, assuming that [a,m, k−1, β] is simple.

Let B denote the A-centralizer of β, and let b = a∩B. We choose a simple stra-

tum [b, k, k−1, α] in B. Writing p = rad a, let a ∈ p−k satisfy sβ(a) = α, where

sβ : A→ B is a tame corestriction relative to F [β]/F . The stratum [a,m, k−1,

β+a] is then equivalent to a simple stratum [a,m, k−1, β′] [11, (2.2.3)]. Let ψa
denote the character

1+x 7−→ ψF (trA(ax)), x ∈ pk,

of Uka . The character θ′ = θψa of Hk(β′, a) = Hk(β, a) then lies in C(a, k−1, β′)

and agrees with θ on H1+k(β, a). However, 2.8 Proposition of [13] implies that

the characters θ, θ′ of Hk(β, a) do not intertwine. �

In the context of the lemma, let θ, θ′ have endo-class Θ, Θ′ respectively.

Thus A(Θ,Θ′) = k/ea. The only restrictions on the rational number k/ea are

that ea be divisible by eΘ and k/ea 6 mΘ. Such values are dense in the region

0 < x < mΘ. �
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5.4. We recall the notation of the introduction: A0
n(F ) is the set of

equivalence classes of irreducible cuspidal representations of GLn(F ). We

set ĜLF =
⋃
n>1A0

n(F ) and, for π ∈ ĜLF , we write gr(π) = n to indicate

π ∈ A0
n(F ). Let π̌ be the contragredient of π.

A representation π ∈ ĜLF contains a simple character θπ. The conjugacy

class of θπ in GLn(F ) is determined uniquely by π; see, for instance, Corollary 1

of [7]. In particular, π determines the endo-class Θ = Θπ of θ.

We recall the definition of the Swan exponent sw(π1 × π2) of a pair of

representations π1, π2 ∈ ĜLF . Set ni = gr(πi), let ψ be a nontrivial character

of F , let s be a complex variable and q the cardinality of the residue class field

of F . Let ε(π1×π2, s, ψ) be the Rankin–Selberg local constant of [20] and [25].

This is a monomial in q−s of degree n1n2c(ψ)+Ar(π1 × π2), where c(ψ) is an

integer depending only on ψ, and the Rankin–Selberg exponent Ar(π1 × π2)
is an integer depending only on the πi. Define an integer d(π1, π2) as the

number of unramified characters χ of F× such that χπ1 ∼= π̌2. In particular,

d(π1, π2) = 0 if n1 6= n2. The Swan exponent is then

sw(π1 × π2) = Ar(π1 × π2)− n1n2 + d(π1, π2).

Reformulating 6.5 Theorem of [10] in our present notation, we find

Conductor formula. For i = 1, 2, let πi ∈ ĜLF and set Θi = Θπi . If

a = A(Θ1, Θ2), then

(5.4.1)
sw(π̌1 × π2)
gr(π1) gr(π2)

= ΦΘ1(a) = ΦΘ2(a).

If we take π ∈ A0
n(F ) and let ι be the trivial character of GL1(F ), we get

the special case (cf. (5.1.2))

(5.4.2) sw(π × ι)/n = sw(π)/n = mΘπ .

Proposition. Let Θ ∈ E(F ), and let π ∈ ĜLF satisfy Θπ = Θ. The

function ΦΘ is the unique continuous function on the positive real axis such

that
sw(π̌ × ρ)

gr(π) gr(ρ)
= ΦΘ

Ä
A(Θ,Θρ)

ä
for all ρ ∈ ĜLF .

Proof. This follows from (5.4.1), the continuity of the function ΦΘ (4.4

Proposition) and the Density Lemma of 5.3. �

The proposition has a consequence that is useful when making more gen-

eral conductor estimates, although we do not need it here. For i = 1, 2, let

Θi ∈ E(F ) and choose πi ∈ ĜLF such that Θi = Θπi . Let gr(πi) = ni. The

quantity

ς(π1, π2) = sw(π̌1 × π2)/n1n2
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depends only on the Θi, not on the choices of πi: this is a consequence of the

proposition. We therefore write ς(Θ1, Θ2) = ς(π1, π2).

Corollary. The pairing ς on the set E(F ) satisfies the ultrametric in-

equality : if Θ1, Θ2, Θ3 ∈ E(F ), then

ς(Θ1, Θ2) 6 max {ς(Θ1, Θ3), ς(Θ3, Θ2)}.

Proof. The pairing ς is symmetric: ς(Θ1, Θ2) = ς(Θ2, Θ1). We may as-

sume, by symmetry, that A(Θ1, Θ3) 6 A(Θ3, Θ2). The function ΦΘ3 is increas-

ing, so

ς(Θ1, Θ3) = ΦΘ3(A(Θ1, Θ3)) 6 ΦΘ3(A(Θ2, Θ3)) = ς(Θ2, Θ3).

We are thus reduced to checking that ς(Θ1, Θ2) 6 ς(Θ2, Θ3). However, the

ultrametric inequality for A and our hypothesis give A(Θ1, Θ2) 6 A(Θ3, Θ2) so

ς(Θ1, Θ2) = ΦΘ2(A(Θ1, Θ2)) 6 ΦΘ2(A(Θ3, Θ2)) = ς(Θ3, Θ2),

as required. �

5.5. We give a property of the ultrametric A relative to tame lifting, as in

[2] (see also 4.6 above). For clarity, we temporarily write AF for the canonical

ultrametric on E(F ) and AK for that on E(K), where K/F is a finite tame

extension.

Proposition. Let Θ, Υ ∈ E(F ), and let K/F be a finite tame extension

with e(K|F ) = e. If Θi, 1 6 i 6 r are the K/F -lifts of Θ and Υj , 1 6 j 6 s,

those of Υ , then

eAF (Θ, Υ ) = min
i,j

AK(Θi, Υj) = min
j

AK(Θ1, Υj).

Proof. From (9.8) Theorem of [2] we deduce that eAF (Θ, Υ ) 6 AK(Θi, Υj)

for all i and j. On the other hand, [2, (9.12) Corollary] implies that, for

any i, there exists j such that eAF (Θ, Υ ) > AK(Θi, Υj), whence the result

follows. �

6. Comparison via the Langlands correspondence

We use the local Langlands correspondence to connect the preceding lines

of thought.

6.1. We recall formally some matters mentioned in the introduction. Us-

ing the notation of 5.4, the Langlands correspondence is a canonical bijection

ĜLF −→ ŴF ,

π 7−→ Lπ,
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with, among others, the following properties:

dim Lπ = gr(π),

L(π̌) =
Ä
Lπ
ä∨
,

ε(π × ρ, s, ψ) = ε(Lπ ⊗ Lρ, s, ψ),

π, ρ ∈ ĜLF .(6.1.1)

Here, the second ε is the Langlands–Deligne local constant. The correspon-

dence also respects twisting with characters. The definition of sw(π1 × π2) in

5.4 thus implies

sw(π × ρ) = sw(Lπ ⊗ Lρ), π, ρ ∈ ĜLF .

We prefer to write ς(π1 × π2) = sw(π1 × π2)/gr(π1)gr(π2), so that

(6.1.2) ς(π̌ × ρ) = ς(Lπ̌ ⊗ Lρ), π, ρ ∈ ĜLF .

A representation π ∈ ĜLF determines an endo-class Θπ ∈ E(F ), as recalled

in 5.4. On the other hand, a representation σ ∈ ŴF determines an orbit

[σ; 0]+ ∈ WF \“PF , as in 2.2.

First ramification theorem. Let Θ ∈ E(F ), and choose π ∈ ĜLF
such that Θπ = Θ. The conjugacy class LΘ = [Lπ; 0]+ ∈ WF \“PF depends only

on Θ and not on the choice of π. The map

E(F ) −→WF \“PF ,
Θ 7−→ LΘ,

(6.1.3)

is a canonical bijection.

Proof. See [5, 8.2 Theorem], [9, 6.1]. �

6.2. Let Θ ∈ E(F ). Choose π ∈ ĜLF such that Θπ = Θ, and write Lπ =

σ. The decomposition function Σσ depends only on [σ; 0]+ = LΘ, so we use

the notation Σσ = ΣLΘ. Combining (6.1.2) with (3.1.4) and 5.4 Proposition,

we find

ΦΘ(A(Θ,Θρ)) = ς(π̌ × ρ) = ς(Lπ̌ ⊗ Lρ)

= ΣLΘ(∆(LΘ, LΘρ)), ρ ∈ ĜLF .

In other words,

(6.2.1) ΦΘ(A(Θ, Υ )) = ΣLΘ(∆(LΘ, LΥ )), Θ, Υ ∈ E(F ).

We accordingly define the Herbrand function ΨΘ of Θ by

(6.2.2) ΨΘ = Φ−1Θ ◦ΣLΘ, Θ ∈ E(F ).

Proposition. Let Θ ∈ E(F ).

(1) The function ΨΘ is continuous, strictly increasing and piecewise linear in

the region x > 0. It is smooth except at a finite set of points.
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(2) It satisfies ΨΘ(0) = 0 and ΨΘ(x) = x for x > mΘ.

Proof. Part (1) combines 4.4 Proposition with 3.1 Proposition. In part

(2), we choose π ∈ ĜLF such that Θπ = Θ and set σ = Lπ. Thus

ΦΘ(0) = ς(π̌ × π) = ς(σ̌ ⊗ σ) = ΣLΘ(0),

whence ΨΘ(0) = 0. By (5.4.2), mΘ = ς(π) = ς(σ) = sl(σ), so the second

assertion in (2) follows from (3.1.2) and (4.4.1). �

6.3. We pause to tie up some loose ends. Since sw(π) = sw(Lπ) and

gr(π) = dim Lπ, 2.4 Proposition follows from 4.2 Proposition. The Density

Lemma of 3.3 follows from that of 5.3 and the continuity of the strictly in-

creasing function Ψ−1Θ . This proves 3.3 Proposition.

6.4. We prove our first main result.

Higher Ramification Theorem. Let Θ ∈ E(F ), let ε > 0 and δ =

ΨΘ(ε). If Υ ∈ E(F ), then

∆(LΘ, LΥ ) < ε ⇐⇒ A(Θ, Υ ) < δ,

∆(LΘ, LΥ ) 6 ε ⇐⇒ A(Θ, Υ ) 6 δ.

Proof. Let Θ ∈ E(F ) and δ > 0. The endo-class Θ determines the function

ΦΘ and the orbit LΘ ∈ WF \“PF , whence it determines the function ΣLΘ. For

Υ ∈ E(F ), the condition A(Θ, Υ ) < δ implies

∆(LΘ, LΥ ) = Σ−1LΘ
ΦΘ(A(Θ, Υ )) = Ψ−1Θ (A(Θ, Υ )) < Ψ−1Θ (δ),

since the function ΨΘ is strictly increasing (6.2 Proposition). Indeed, the

converse holds for the same reason: if ∆(LΘ, LΥ ) < Ψ−1Θ (δ), then A(Θ, Υ ) < δ.

The same argument proves the second assertion. �

6.5. We give a more concrete variant of the main theorem. We first need

a technical result.

Lemma. If Θ, Υ ∈ E(F ) and x > A(Θ, Υ ), then Ψ−1Θ (x) = Ψ−1Υ (x).

Proof. Let δ > A(Θ, Υ ), and set ε = Ψ−1Θ (δ). An endo-class Ξ ∈ E(F )

thus satisfies A(Ξ, Υ ) < δ if and only if A(Ξ,Θ) < δ. The second condition

is equivalent to ∆(LΞ, LΘ) < ε by the theorem, while the first is equivalent to

∆(LΥ, LΞ) < Ψ−1Υ (δ). On the other hand,

∆(LΥ, LΞ) 6 max
¶

∆(LΥ, LΘ),∆(LΘ, LΞ)
©
< ε.

It follows that Ψ−1Υ (δ) 6 ε = Ψ−1Θ (δ) for δ > A(Θ, Υ ). By symmetry,

Ψ−1Υ (δ) = Ψ−1Θ (δ), δ > A(Θ, Υ ).

By continuity, the relation holds for δ > A(Θ, Υ ). �
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Remark. Under the hypotheses of the lemma, we may equally deduce that

ΨΘ(y) = ΨΥ (y) when y > ∆(LΘ, LΥ ).

We now use the notation of 5.2 for truncated endo-classes.

Corollary.

(1) Let Θ ∈ E(F ) and δ > 0. There is a unique pair (ε, ξ), where ε > 0 and

ξ ∈ WF \“RF (ε), with the following property : a representation π ∈ ĜLF
satisfies tcδ(Θπ) = tcδ(Θ) if and only if the representation ξ is equivalent

to a component of Lπ | RF (ε).

(2) Let ε > 0 and ξ ∈ WF \“RF (ε). There exist Θ ∈ E(F ) and δ > 0 with the

following property : a representation π ∈ ĜLF satisfies tcδ(Θπ) = tcδ(Θ) if

and only if the representation ξ is equivalent to a component of Lπ | RF (ε).

The pair (ε, ξ) determines the truncated endo-class tcδ(Θ) uniquely.

Proof. The proofs of the two parts are virtually identical, so we treat

only (1). Set ε = Ψ−1Θ (δ), and let ξ be the conjugacy class of an irreducible

component of LΘ on RF (ε). From 6.4 Theorem, a class Υ ∈ E(F ) satisfies

A(Υ,Θ) < δ if and only if ∆(LΥ, LΘ) < ε. The first of these conditions is

equivalent to tcδ(Υ ) = tcδ(Θ) (5.2 Proposition) while the second is equivalent

to LΥ containing ξ, by the definition of ∆. All assertions now follow. �

7. The Herbrand function of an endo-class

We give a procedure for determining the Herbrand function ΨΘ of an

endo-class Θ ∈ E(F ).

7.1. Fundamental to the method is the following lifting property.

Proposition. Let K/F be a finite, tame extension, and set e(K|F ) = e.

If Θ ∈ E(F ) and if ΘK ∈ E(K) is a K/F -lift of Θ, then

(7.1.1) ΨΘK (x) = eΨΘ(e−1x), x > 0.

Proof. Using transitivity of tame lifting, we reduce immediately to the

case where the tame extension K/F is Galois. Write Γ = Gal(K/F ), and

let Υ ∈ E(F ). Let ΥK be a K/F -lift of Υ . Write AF , AK for the canonical

ultrametrics on E(F ), E(K) respectively. We choose the lift ΥK so that

AK(ΘK , ΥK) 6 AK(ΘK , γΥK), γ ∈ Γ.

The function ΨΘK is strictly increasing, so writing ∆F , ∆K for the canonical

ultrametrics on WF \“PF , WK\“PK respectively, we have

∆K(LΘK , LΥK) 6 ∆K(LΘK , L(γΥK)), γ ∈ Γ.



HIGHER RAMIFICATION AND THE LOCAL LANGLANDS CORRESPONDENCE 945

The canonical bijection E(K)→WK\“PK is Γ -equivariant, so this reads

∆K(LΘK , LΥK) 6 ∆K(LΘK , γ LΥK), γ ∈ Γ,

whence

AF (Θ, Υ ) = e−1AK(ΘK , ΥK),

∆F (LΘ, LΥ ) = e−1∆K(LΘK , LΥK),

by 5.5 Proposition, 2.6 Proposition respectively. Therefore,

AF (Θ, Υ ) = ΨΘ

Ä
∆F (LΘ, LΥ )

ä
= ΨΘ

Ä
e−1∆K(LΘK , LΥK)

ä
= ΨΘ(e−1Ψ−1

ΘK

Ä
AK(ΘK , ΥK)

ä
.

We write y = AF (Θ, Υ ) to get

(7.1.2) y = ΨΘ(e−1Ψ−1
ΘK

(ey)).

The Density Lemma of 5.2 says that the set of values y = AF (Θ, Υ ), Υ ∈ E(F ),

is dense on the positive real axis, so (7.1.2) holds for all y > 0. Writing

z = Ψ−1
ΘK

(ey), we get e−1ΨΘK (z) = ΨΘ(e−1z), as required. �

Remark. Given Θ ∈ E(F ), the definitions in [2] (or see [9, 6.3]) give a finite

tame extension K/F for which Θ has a totally wild K/F -lift. The proposition

therefore reduces the problem of computing ΨΘ to the case where Θ is totally

wild.

When Θ is totally wild and K/F is tamely ramified, there is a simple

relation (4.6) connecting ΦΘ and ΦΘK . Likewise for ΣLΘ and ΣLΘK (3.2).

However, for general Θ, the relations between ΦΘ and ΦΘK , and between ΣLΘ

and ΣLΘK , are rather intricate. The symmetry indicated by the proposition

can be viewed as a refinement of the Tame Parameter Theorem of [9, 6.3].

7.2. Recall that σ ∈ ŴF is totally wild if σ|PF is irreducible. Equiva-

lently, the orbit [σ, 0]+ ∈ WF \“PF has exactly one element. Write Ŵwr
F for the

set of totally wild classes in ŴF . In particular, any σ ∈ Ŵwr
F has dimension pr

for some r > 0.

Lemma. A representation σ ∈ ŴF is totally wild if and only if σ = Lπ

for π ∈ ĜLF such that gr(π) = degΘπ and Θπ is totally wild.

Proof. This follows from [9, 6.3]. �

7.3. Totally wild representations of WF exhibit simple ultrametric be-

havior with respect to twisting by characters.

Proposition. Let σ ∈ Ŵwr
F and let c be a positive integer. If χ is a

character of WF of conductor c, then ∆(σ, χ ⊗ σ) 6 c. If Σ′σ is continuous

at c, then ∆(σ, χ⊗ σ) = c.
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Proof. Suppose c > sl(σ). The definition of Σσ (3.1.2) shows that Σ′σ is

continuous at c. Also sl(χ ⊗ σ) = c > sl(σ), whence ∆(σ, χ ⊗ σ) = c. We

assume, therefore, that c 6 sl(σ). The representations σ, χ ⊗ σ are R+
F (c)-

isomorphic, so ∆(σ, χ⊗σ) 6 c. The distance ∆(σ, χ⊗σ) is strictly less than c if

and only if χ|RF (c) occurs in σ̌⊗σ|RF (c). Suppose this condition holds. Since χ

is trivial on R+
F (c), the definition now shows that Σ′σ is discontinuous at c. �

7.4. We recall how the set E(F ) carries a canonical action of the group

of characters of F×.

Let Θ ∈ E(F ), and let χ be a character of F×. If degΘ = 1, then Θ is

the endo-class of a character θ of U1
F and χΘ is the endo-class of the (possibly

trivial) character θχ | U1
F . Assume that degΘ > 1, and choose a realization

θ ∈ C(a, β) of Θ, relative to a simple stratum [a,m, 0, β] in a matrix algebra

EndF (V ). Define a character χθ of H1(β, a) by

χθ(h) = χ(deth) θ(h), h ∈ H1(β, a).

Lemma. Let k = sw(χ) > 1, and let c ∈ F× satisfy χ(1+x) = ψF (cx)

for 2υF (x) > k. If m′ = max {m,nk}, the quadruple [a,m′, 0, β+c] is a simple

stratum and χθ ∈ C(a, β+c).

Proof. See [12, appendix]. �

Denote by χΘ the endo-class of χθ. If π ∈ A0
n(F ) and Θ = Θπ, then χΘ is

the endo-class Θχπ of the representation χπ : g 7→ χ(det g)π(g), g ∈ GLn(F ).

The lemma shows that if Θ is totally wild, then so is χΘ for any χ. In

a more general setting, the following is a direct consequence of the definitions

(4.4.1), (3.1.2), on noting that L(χΘ) = χ⊗ LΘ (in the obvious notation).

Proposition. Let Θ ∈ E(F ). If χ is a character of F×, then ΦχΘ = ΦΘ
and ΣL(χΘ) = ΣLΘ. Consequently, ΨχΘ = ΨΘ.

7.5. Our main result gives a procedure for calculating the Herbrand func-

tion ΨΘ of any Θ ∈ E(F ). As noted in 7.1, it is enough to treat the case where

Θ is totally wild.

If Θ ∈ E(F ) is totally wild and if K/F is a finite tame extension, let ΘK ∈
E(K) be the unique K/F -lift of Θ. Denote by AK the canonical ultrametric

on E(K).

Interpolation Theorem. Let Θ ∈ E(F ) be totally wild. The function

ΨΘ has the following properties :

(1) It is continuous, strictly increasing and piecewise linear.

(2) The derivative Ψ′Θ is continuous except at a finite set of points.

(3) There is a finite set D of positive real numbers such that

(a) if K/F is a finite tame extension, with e = e(K|F ), and
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(b) if χ is a character of K× such that e−1sw(χ) /∈ D,

then

(7.5.1) AK(ΘK , χΘK) = eΨΘ(e−1sw(χ)).

These properties determine ΨΘ uniquely.

Proof. The function ΨΘ certainly satisfies (1) by 6.2 Proposition, while (2)

follows directly from the definitions of the functions ΦΘ, Σσ. Condition (3)

determines ΨΘ(x) at a set of points x dense in the positive real axis. Since ΨΘ

is continuous, it is thereby determined completely.

We have to show that ΨΘ has property (3). Let degΘ = pr and let π ∈
A0
pr(F ) satisfy Θπ = Θ. Set σ = Lπ ∈ Ŵwr

F . If K/F is a finite tame extension,

set σK = σ|WK
and define πK ∈ A0

pr(K) by LπK = σK . In particular, ΘπK =

ΘK [9, 6.2 Proposition].

Let χ be a character of K×, of conductor k > 1, such that Σ′σ is con-

tinuous at k/e, e = e(K|F ). By 3.2 Proposition, ΣσK (x) = eΣσ(x/e), so

Σ′
σK

is continuous at k. By (5.4.1), ς(π̌K × χπK) = ΦΘK (AK(ΘK , χΘK)). By

7.3 Proposition,

ς(σ̌K ⊗ χ⊗ σK) = ΣσK (∆K(σK , χ⊗ σK)) = ΣσK (k),

where ∆K is the canonical pairing on ŴK . By 4.6 Proposition, ΦΘK (x) =

eΦΘ(x/e). Altogether,

ς(π̌K × χπK) = ΦΘK
Ä
AK(χΘK , ΘK)

ä
= eΦΘ

Ä
e−1AK(χΘK , ΘK)

ä
= ς(σ̌K ⊗ χ⊗ σK) = ΣσK (k)

= eΣσ(k/e),

whence AK(χΘK , ΘK) = eΦ−1Θ ◦Σσ(k/e) = eΨΘ(k/e). Thus (3) holds relative

to any set D containing the discontinuities of Σ′σ. These are finite in number

by 3.1 Proposition. �

Remark. In this proof, it was necessary to exclude only the discontinuities

of Σ′σ. The result does not assert that the function ΨΘ is smooth elsewhere.

Indeed, Example 1 of 8.5 below gives a case in which Σ′σ has one discontinuity,

while Ψ′Θ has two, in the relevant range 0 < x < mΘ.

7.6. We describe the function ΨΘ, for Θ ∈ E(F ) totally wild, on part of

its range. We have already noted in 6.2 that ΨΘ(0) = 0 and that ΨΘ(x) = x

when x > mΘ.

It is convenient to first dispose of a special case. If degΘ = 1, the defini-

tions of the various functions give

(7.6.1) ΨΘ(x) = ΦΘ(x) = ΣLΘ(x) = x, x > 0,

so we henceforward exclude this case.
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Proposition. Let Θ ∈ E(F ) be totally wild of degree pr, r > 1, and

suppose that mΘ = apt−r for integers a and t satisfying a 6≡ 0 (mod p) and

0 6 t < r.

(1) There exists ε > 0 such that Ψ′Θ(x) = p−r for 0 < x < ε.

(2) There exists δ > 0 such that

Ψ′Θ(x) = pr−t, mΘ−δ < x < mΘ.

Proof. Part (1) follows from the definitions (4.4.1) and (3.1.2) on noting

that, if σ ∈ Ŵwr
F , there exists ε > 0 such that σ is irreducible on RF (ε).

In part (2), write mΘ = p−rm = pt−ra. The class Θ has a realization

θ ∈ C(a, β) for a simple stratum [a,m, 0, β] in Mpr(F ). We choose a simple

stratum [a,m,m−1, α] equivalent to [a,m,m−1, β], and we set E = F [α]. The

extension E/F is totally ramified of degree ps, where 0 6 s 6 r. The integer m

satisfies m/ea = −υF (α)/ps, or m = −pr−sυF (α). If s = 0 or, equivalently,

if α ∈ F , then m is divisible by pr, contrary to hypothesis. Thus s > 1

and α /∈ F . Since α is minimal over F , the valuation υE(α) is not divisible

by p. In other words, t = r−s and a = −υE(α). The definition (4.4.1) gives

Φ′Θ(x) = [E:F ]−1 = pt−r in a region mΘ−δ1 < x < mΘ, δ1 > 0.

Let σ ∈ Ŵwr
F satisfy [σ; 0]+ = LΘ. Since sl(σ) = ς(σ) = mΘ, the restriction

of σ to RF (mΘ) is a sum of characters of RF (mΘ) trivial on R+
F (mΘ). These

are all conjugate under PF and so, by 1.2 Lemma 2, they are all the same.

Therefore, every irreducible component of σ̌ ⊗ σ contains the trivial character

of RF (mΘ). By 2.1 Proposition 1, σ̌ ⊗ σ is trivial on RF (mΘ−δ2), for some

δ2 > 0. In that region, Σ′σ has value 1, whence the result follows with δ =

min {δ1, δ2}. �

Remark. In the context of the proposition, consider the case where mΘ =

apt−r, with a 6≡ 0 (mod p), but t > r. Following the argument through, the

element α of the proof lies in F , so there is a character χ of F× such that

mχΘ < mΘ. In light of 7.4 Proposition, nothing is lost by excluding this case.

7.7. Example. Say that Θ ∈ E(F ) is essentially tame if, for some finite,

tamely ramified extension K/F , Θ has a K/F -lift of degree 1: equivalently,

eΘ is relatively prime to p.

Corollary. For Θ ∈ E(F ), the following conditions are equivalent :

(1) ΨΘ(x) = x, x > 0;

(2) Ψ′Θ(x) is continuous in the region 0 < x < mΘ;

(3) Θ is essentially tame.

Proof. Let Θ ∈ E(F ), and let K/F be a finite tame extension such that

Θ has a totally wild K/F -lift ΘK . Thus ΨΘ(x) = ΨΘK (ex)/e, e = e(K|F ). If
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Θ is essentially tame, then degΘK = 1. Both (1) and (2) hold for ΨΘK , hence

also for ΨΘ by 7.1 Proposition.

Conversely, suppose that Θ is not essentially tame. The totally wild endo-

class ΘK then has degree pr for some r > 1, and there is a character χ of K×

so that χΘK satisfies the hypotheses of 7.6 Proposition. Therefore, both (1)

and (2) fail for the function ΨχΘK = ΨΘK , hence also for ΨΘ. �

8. The decomposition function

We analyze some features of the decomposition function Σσ, σ ∈ ŴF ,

taking the view that Σσ has been given somehow, without prior knowledge

of σ.

8.1. We examine the discontinuities of the derivative Σ′σ, using only

group-theoretic methods.

Proposition. Let σ ∈ ŴF , let ε > 0, and let σε be an irreducible com-

ponent of σ | RF (ε). Let Γε be the group of characters of RF (ε)/R+
F (ε). The

following are equivalent :

(1) The function Σ′σ is continuous at ε.

(2) The representation χ⊗σε is notWF -conjugate to σε for any χ ∈ Γε, χ 6= 1.

Proof. An exercise in elementary representation theory yields

Lemma. Suppose that the representation σε | R+
F (ε) = σ+ε is irreducible.

The map χ 7→ χ⊗σε is a bijection between the group Γε and the set of isomor-

phism classes of irreducible smooth representations of RF (ε) that contain σ+ε .

We prove the proposition. For ε > 0, define

dε = dim HomRF (ε)(1, σ̌ ⊗ σ),

d+ε = dim HomR+
F (ε)

(1, σ̌ ⊗ σ).

The step function Σ′σ is continuous at a point ε > 0 if and only if it is constant

on a neighborhood of ε. This is equivalent to the condition dε = d+ε .

Let mε be the multiplicity of σε in σ | RF (ε) and lε the number of WF -

conjugates of σε. Define m+
ε and l+ε analogously, relative to an irreducible

component σ+ε of σε | R+
F (ε). Thus dε = lεm

2
ε and d+ε = l+ε m

+
ε
2
. Moreover,

lεmε and l+ε m
+
ε are the Jordan–Hölder lengths of the restrictions σ | RF (ε)

and σ | R+
F (ε) respectively.

Suppose that condition (2) holds. In particular, σε 6∼= σε ⊗ χ for any

character χ ∈ Γε, χ 6= 1. This implies that σε | R+
F (ε) is irreducible, so

set σ+ε = σε | R+
F (ε). The lemma implies that σε is the unique irreducible

component of σ | RF (ε) containing σ+ε . Thus mε = m+
ε and the representations
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σε, σ
+
ε have the same WF -isotropy, whence l+ε = lε. Therefore, dε = d+ε and

Σ′σ is continuous at ε.

Suppose now that (2) fails. If σε | R+
F (ε) is reducible, certainly Σ′σ cannot

be continuous at ε. We therefore assume the contrary and let c be the number

of χ ∈ Γε such that χ ⊗ σε is WF -conjugate to σε. Thus c > 1 by hypothesis

and, by the lemma, lε = c l+ε . Correspondingly, m+
ε = cmε, so d+ε = cdε > dε

and Σ′σ is not continuous at ε. �

Remark. We draw attention to one step in the preceding proof: if the

conditions of the proposition are satisfied, then σε | R+
F (ε) is irreducible.

8.2. To prepare for the main result, we develop some ideas from Galois

theory.

Let σ ∈ ŴF , and assume dimσ > 1. Define σ̄ to be the projective repre-

sentation defined by σ: that is, if dimσ = n, then σ̄ is the composition of σ

with the canonical map GLn(C) → PGLn(C). The image of σ̄ is finite and

Ker σ̄ is of the form WE for a finite Galois extension E/F . We call E/F the

centric field of σ. Let T/F be the maximal tamely ramified sub-extension of

E/F : we call T/F the tame centric field of σ.

Definition. Let σ ∈ Ŵwr
F .

(1) Define D(σ) as the group of characters χ of WF such that χ⊗ σ ∼= σ.

(2) Write σ+0 = σ | PF ∈ “PF . Define D0(σ) as the group of characters φ of PF
such that φ⊗ σ+0 ∼= σ+0 .

Restriction of characters gives a canonical homomorphism D(σ)→ D0(σ).

A character φ of PF lies in D0(σ) if and only if it is a component of σ̌+0 ⊗ σ
+
0 ,

whence |D0(σ)| 6 (dimσ)2.

On the other hand, provided dimσ > 1, the group D0(σ) is not trivial.

For, σ+0 factors through an irreducible representation, call it ρ, of a finite

quotient G of PF . Since G is a finite p-group and dim ρ has dimension strictly

greater than 1, ρ is induced from a representation of a subgroup H of G of

index p. It follows that ρ ∼= φ ⊗ ρ for any character φ of G/H. Viewed as a

character of PF , φ ∈ D0(σ).

The representation σ+0 is stable under conjugation by WF , so WF acts on

D0(σ), with PF acting trivially. The WF -stabilizer of a character φ ∈ D0(σ)

is thus of the form WTφ for a finite tame extension Tφ/F . The kernel of the

canonical map WF → AutD0(σ) is therefore

WTI =
⋂

φ∈D0(σ)

WTφ ,

where TI/F is a finite, tamely ramified, Galois extension. We call TI/F the

imprimitivity field of σ.
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If K/F is a finite tame extension, the representation σK = σ | WK is

irreducible and lies in Ŵwr
K . It agrees with σ on PK = PF , so D0(σ

K) = D0(σ).

Proposition. If σ ∈ Ŵwr
F has tame centric field T/F and imprimitivity

field TI/F , then TI ⊂ T . The canonical map D(σTI ) → D0(σ) is an isomor-

phism.

Proof. We first note

Lemma 1. If ζ ∈ D(σ) is tamely ramified, then ζ = 1.

Proof. The kernel of ζ is WK , for a finite, cyclic, tame extension K/F .

The relation ζ ⊗ σ ∼= σ implies that σ is reducible on WK . Since PF ⊂ WK , it

is also reducible on PF , contrary to hypothesis. �

Lemma 2. Let K/F be a finite tame extension. The restriction map

D(σK) → D0(σ) is an isomorphism of D(σK) with the group D0(σ)WK of

WK-fixed points in D0(σ).

Proof. Lemma 8.1 implies that the map D(σK)→ D0(σ) is injective. Its

image is clearly contained in D0(σ)WK . Let ζ ∈ D0(σ)WK . Thus ζ admits

extension to a character ζ̃ ofWK [9, 1.3 Proposition]. The representations σK ,

ζ̃ ⊗ σK agree on PK so (loc. cit.) there is a tame character χ of WK such that

χζ̃ ⊗ σK ∼= σK . Therefore, χζ̃ ∈ D(σK), as required. �

By the definition of T , we have WT = PFWE . A character ζ ∈ D0(σ)

is effectively a character of PFWE/WE , and hence a character of WT . In

particular, WT fixes ζ, whence WT ⊂ WTζ . Therefore, WT ⊂ WTI , or T ⊃ TI ,
as required to complete the proof of the proposition. �

8.3. Let σ ∈ Ŵwr
F . Say that σ is absolutely wild if its tame centric field

is F . That is, if E is the centric field of σ, then E/F is totally wildly ramified.

Theorem. Let σ ∈ Ŵwr
F be absolutely wild of dimension pr, r > 1. If

a > 0 is the least discontinuity of Σ′σ , then a is an integer and

a = min{sw(χ) : χ ∈ D(σ), χ 6= 1}.

Proof. Nothing is changed by tensoring σ with a tame character of WF .

We may therefore assume that σ is a representation of Gal(‹E/F ), where ‹E/F
is totally wildly ramified.

The group D(σ) ∼= D0(σ) is nontrivial. We accordingly define

c = min {sw(χ) : χ ∈ D(σ), χ 6= 1}.

Any character φ ∈ D(σ) occurs as an irreducible component of σ̌ ⊗ σ, so the

definitions in 3.1 imply that Σ′σ is discontinuous at c. Thus c > a.
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If 0 < ε < a, condition (2) of 8.1 Proposition holds at ε, so σε = σ | RF (ε)

is irreducible (8.1 Remark). It follows that σa = σ | RF (a) is also irreducible.

SinceΣ′σ is discontinuous at a, there is a nontrivial character χ ofRF (a)/R+
F (a)

such that σa ⊗ χ is WF -conjugate to σa, say σga
∼= σa ⊗ χ for some g ∈ WF .

However, σa = σ | RF (a) and surely σg ∼= σ. Thus σa ∼= σa ⊗ χ, whence σa is

reducible on R+
F (a). Consequently, σ is reducible on R+

F (a). As σ is effectively

a representation of a finite p-group, it is induced from a representation of an

open normal subgroup ofWF , of index p and containing R+
F (a). That is, there

is a nontrivial character φ of WF , trivial on R+
F (a), such that σ ⊗ φ ∼= σ.

Therefore, c 6 sw(φ) 6 a, giving c = a, as required. �

The proof of the theorem relies on σ being absolutely wild, but the result

extends to the general case of σ ∈ Ŵwr
F .

Corollary. Let σ ∈ Ŵwr
F have dimension pr, r > 1. Let TI/F be the

imprimitivity field of σ, and set e = e(TI |F ). The least discontinuity a of Σ′σ
is given by

a = min {sw(χ)/e : χ ∈ D(σTI ), χ 6= 1}.

In particular, a is p-integral.

Proof. We apply the theorem to the absolutely wild representation σT ∈
Ŵwr
T , where T/F is the tame centric field of σ. If c is the least discontinuity of

Σ′σ, then e(T |F )c is that of Σ′
σT

. If φ ∈ D(σT ), then φ = χ|WT
, for a unique

χ ∈ D(σTI ) (8.2 Proposition), and sw(φ) = e(T |TI) sw(χ). �

8.4. Consider, as an example, the case where degΘ = p, Θ ∈ E(F ). Thus

Θ is either essentially tame or totally wild. The first case is covered by 7.7, so

we assume Θ to be totally wild. Write mΘ = m/p. Twisting with a character

of F× changes nothing, so we further assume m 6≡ 0 (mod p). This case is

analyzed in [22], to which we refer for details.

Directly from (4.4.1) and 4.1 Proposition, we have ΦΘ(0) = m(p−1)/p2

and Φ′Θ(x) = p−1, 0 < x < m/p. On the other side, ΣLΘ(0) = ΦΘ(0). So, in

this p-dimensional case, the Herbrand function ΨΘ may be read directly from

the decomposition function Σσ. In particular, the derivatives Ψ′Θ, Σ′σ have the

same discontinuities in the region 0 < x < mΘ = ς(σ).

The only possible values for Σ′LΘ are p−2, p−1 and 1. The function Σ′σ has

either one or two discontinuities. If it has two discontinuities, at a < b, say,

then σ | RF (a) is irreducible, σ | R+
F (b) is a multiple of a character, leaving

only the possibility that σ | R+
F (a) is a sum of p distinct characters. If σ is

absolutely wild, it is induced from a character χ ofWK , with K/F cyclic. The

extension K/F is uniquely determined, and χ is determined up to conjugation

by elements of Gal(K/F ). Moreover, sw(χ) = a.
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If Σ′σ has only one discontinuity a, examination of the graph of ΨΘ reveals

that a = m/(p+1). In this case, σ is, loosely speaking, a“Heisenberg represen-

tation.” More exactly, the finite p-group σ(PF ) is extra special of class 2.

8.5. We mention a couple of examples, with the aim of giving the reader

a broader perspective.

In dimension pr, r > 2, the Herbrand function can be quite complicated.

As an example, take p = 2 and assume that F contains a primitive cube

root of unity. Let τ ∈ Ŵwr
F have dimension 2 and Swan exponent 1. Thus τ

belongs to a class of representation, sometimes called “epipelagic,” analyzed

completely in [8]. In the present case, there is a simple stratum [a, 1, 0, α]

in M2(F ) such that [τ ; 0]+ = LΘ, where Θ is the endo-class of the unique

simple character θ ∈ C(a, α). There exists τ ′ ∈ Ŵwr
F , satisfying the same con-

ditions, attached to a simple stratum [a, 1, 0, α′], such that (detα′)3 6≡ (detα)3

(mod U1
F ). The derivatives Σ′τ , Σ′τ ′ each have a single discontinuity, lying at 1

3 .

A short argument, starting from 5.1 Theorem and 5.2 Corollary of [8], shows

that σ = τ ⊗ τ ′ is irreducible and that Σ′σ has a unique discontinuity, again

at 1
3 . Also, ς(σ) = ς(τ) = ς(τ ′) = 1

2 , so sw(σ) = 2.

Define Ξ ∈ E(F ) by LΞ = [σ; 0]+. This is the endo-class of some ξ ∈
C(A, β), where [A, 2, 0, β] is a simple stratum in M4(F ) in which F [β]/F is

totally ramified of degree 4. The only possibility is k0(β,A) = −1, so we can

write down ΦΞ directly from its definition. We find that Φ′Ξ has a unique

discontinuity at 1
4 and ΦΞ(0) = 5

16 . Summarizing,

Example 1. In the range 0 < x < mΞ = 1
2 , the function Ψ′Ξ has disconti-

nuities at 1
3 and 3

8 . Consequently,

Ψ′Ξ(x) =


1
4 , 0 < x < 1

3 ,

4, 1
3 < x < 3

8 ,

2, 3
8 < x < 1

2 .

One can push this case just one step further, with surprising consequences.

There is a third representation τ ′′ ∈ Ŵwr
F of the same sort, attached to a

stratum [a, 1, 0, α′′] in M2(F ), such that (detα′′)3 is not congruent to either

(detα)3 or (detα′)3 modulo U1
F . Applying Theorem 1 of [4], one shows

Example 2. The representation ρ = τ ⊗ τ ′⊗ τ ′′ is irreducible, totally wild,

and sw(ρ) = 3. Let [ρ; 0]+ = LΥ , Υ ∈ E(F ). In the range 0 < x < mΥ = 3
8 ,

each of the functions Ψ′Υ (x), Σ′ρ(x) has a unique discontinuity, which occurs

at x = 1
3 .



954 COLIN J. BUSHNELL and GUY HENNIART

References

[1] C. J. Bushnell, Effective local Langlands correspondence, in Automorphic

Forms and Galois Representations, Vol. 1 (F. Diamond, P. L. Kassei, and

M. Kim, eds.), London Math. Soc. Lecture Notes 414, Cambridge Univ. Press,

Cambridge, 2014, pp. 102–134. MR 3444244. Zbl 06589911.

[2] C. J. Bushnell and G. Henniart, Local tame lifting for GL(N). I. Simple char-

acters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233. MR 1423022.

Zbl 0878.11042. https://doi.org/10.1515/9781400882496. Available at http://

www.numdam.org/item?id=PMIHES 1996 83 105 0.

[3] C. J. Bushnell and G. Henniart, Local Tame Lifting for GL(n). II. Wildly
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