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Harmonic quasi-isometric maps
between rank one symmetric spaces

By Yves Benoist and Dominique Hulin

Abstract

We prove that a quasi-isometric map between rank one symmetric spaces

is within bounded distance from a unique harmonic map. In particular, this

completes the proof of the Schoen-Li-Wang conjecture.

1. Introduction

1.1. Main result. We first explain the title. A symmetric space is a Rie-

mannian manifold X such that, for every point x in X, there exists a symmetry

centered at x, i.e., an isometry sx of X fixing the point x and whose differential

at x is minus the identity.

In this article we will call rank one symmetric space a symmetric space X

whose sectional curvature is everywhere negative: KX < 0. The list of rank

one symmetric spaces is well known. They are the real hyperbolic spaces Hp
R,

the complex hyperbolic spaces Hp
C, the quaternion hyperbolic spaces Hp

Q, with

p ≥ 2, and the Cayley hyperbolic plane H2
Ca.

A map f : X → Y between two metric spaces X and Y is said to be quasi-

isometric if there exists a constant c ≥ 1 such that f is c-quasi-isometric, i.e.,

such that, for all x, x′ in X, one has

(1.1) c−1 d(x, x′)− c ≤ d(f(x), f(x′)) ≤ c d(x, x′) + c.

Such a map f is called a quasi-isometry if one has supy∈Y d(y, f(X)) <∞.

A map h : X → Y between two Riemannian manifolds X and Y is said to

be harmonic if its tension field is zero, i.e., if it satisfies the elliptic nonlinear

partial differential equation tr(D2h) = 0, where D2h is the second covariant

derivative of h. For instance, an isometric map with totally geodesic image is

always harmonic. The problem of the existence, regularity and uniqueness of

harmonic maps under various boundary conditions is a very classical topic (see

[9], [16], [8], [35], [34] or [22]). In particular, when Y is simply connected and

has nonpositive curvature, a harmonic map is always C∞ (i.e., it is indefinitely
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differentiable) and is a minimum of the energy functional — see Formula (3.4)

— among maps that agree with h outside a compact subset of X.

The aim of this article is to prove the following.

Theorem 1.1. Let f : X → Y be a quasi-isometric map between rank

one symmetric spaces X and Y . Then there exists a unique harmonic map

h : X → Y that stays within bounded distance from f , i.e., such that

sup
x∈X

d(h(x), f(x)) <∞.

The uniqueness of h is due to Li and Wang in [21, Th. 2.3]. In this article

we prove the existence of h.

1.2. Previous results and conjectures. When X is equal to Y , Theorem 1.1

was conjectured by Li and Wang in [21, intro.] extending a conjecture of Schoen

in [31] for the case X = Y = H2
R. When these conjectures were formulated,

the case where X = Y is either equal to Hp
Q or H2

Ca was already known by a

previous result of Pansu in [27]. In that case the harmonic map h is an onto

isometry.

The uniqueness part of the Schoen conjecture was quickly settled by Li and

Tam in [20], and the proof was extended by Li and Wang to rank one symmetric

spaces in their paper [21]. Partial results towards the existence statement in

the Schoen conjecture were obtained in [36], [15], [29], [23], [5]. A major

breakthrough was then achieved by Markovic who proved successively the Li-

Wang conjecture for the case X = Y = H3
R in [25], for the case X = Y = H2

R
in [24] thus solving the initial Schoen conjecture, and very recently with Lemm

for the case X = Y = Hp
R with p ≥ 3 in [19].

As a corollary of Theorem 1.1, we complete the proof of the Li-Wang

conjecture. In particular, we obtain the following.

Corollary 1.2. For p ≥ 1, any quasi-isometric map f : Hp
C → Hp

C is

within bounded distance from a unique harmonic map h : Hp
C → Hp

C.

Another new feature in Theorem 1.1 is that one does not assume that X

and Y have the same dimension. Even the following special case is new.

Corollary 1.3. Any quasi-isometric map f : H2
R→H3

R is within bounded

distance from a unique harmonic map h : H2
R→H3

R.

We finally recall that, according to a well-known result of Kleiner and

Leeb in [18], every quasi-isometry f : X → Y between irreducible higher rank

symmetric spaces stays within bounded distance of an isometric map, after a

suitable scalar rescaling of the metrics. Another proof of this result has also

been given by Eskin and Farb in [10].

However one cannot extend Theorem 1.1 to irreducible higher rank sym-

metric spaces. For instance, let X and Y be symmetric spaces such that X×R
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embeds isometrically into Y , and let x0 ∈ X. Then the quasi-isometric map

f : X → X × [0,∞[ ⊂ Y given by f(x) = (x, d(x0, x)) does not stay within

bounded distance of a harmonic map. Indeed the second component of such

an harmonic map would be a nonconstant harmonic function that reaches its

minimum value, a contradiction to the maximum principle.

1.3. Motivation. We now briefly recall a few definitions and facts that are

useful to understand the context and the motivation of Theorem 1.1. None of

them will be used in the other sections of this article.

Let X and Y be rank one symmetric spaces. Recall first that X is diffeo-

morphic to Rk and has a visual compactification X∪∂X. The visual boundary

∂X is homeomorphic to a topological sphere Sk−1. Choosing a base point O

in X, this boundary is endowed with the Gromov quasidistance d′ defined by

d′(ξ, η) := e−(ξ|η)O for ξ, η in ∂X, where (ξ|η)O denotes the Gromov product

(see [13, §7.3]). A nonconstant continuous map F : ∂X → ∂Y between the

boundaries is called quasisymmetric if there exists K ≥ 1 such that for all ξ,

η, ζ in ∂X with d′(ξ, η) ≤ d′(ξ, ζ), one has d′(F (ξ), F (η)) ≤ Kd′(F (ξ), F (ζ)).

The following nice fact, which is also true for a wider class of geodesic Gro-

mov hyperbolic spaces, gives another point of view on quasi-isometric maps.

Fact 1.4. Let X, Y be rank one symmetric spaces.

(a) Any quasi-isometric map f : X → Y induces a boundary map ∂f : ∂X →
∂Y , which is quasisymmetric.

(b) Two quasi-isometric maps f, g : X → Y have the same boundary map

∂f = ∂g if and only if f and g are within bounded distance from one

another.

(c) Any quasisymmetric map F : ∂X → ∂Y is the boundary map F = ∂f of

a quasi-isometric map f : X → Y .

This fact has a long history. Point (a) is in the paper of Mostow [26] and

was extended later by Gromov in [14, §7] (see also [13, §7]). Point (b) is in the

paper of Pansu [27, §9]. Point (c) is in the paper of Bonk and Schramm [4,

Ths. 7.4 and 8.2] extending previous results of Tukia in [37] and of Paulin in

[28]. (See also [3] and [6] for related questions.)

Recall that a diffeomorphism f of X is said to be quasiconformal if the

function x 7→ ‖Df(x)‖‖Df(x)−1‖ is uniformly bounded on X. The original

formulation of the Schoen conjecture involved quasiconformal diffeomorphisms

instead of quasi-isometries: Every quasisymmetric homeomorphism F of S1 is

the boundary map of a unique quasiconformal harmonic diffeomorphism of H2
R.

Relying on a previous result of Wan in [38, Th. 13], Li and Wang pointed

out in [21, Th. 1.8] that a harmonic map between the hyperbolic plane H2
R and

itself is a quasiconformal diffeomorphism if and only if it is a quasi-isometric

map. This is why Li and Wang formulated in [21] the higher dimensional
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generalization of the Schoen conjecture using quasi-isometries instead of qua-

siconformal diffeomorphisms.

Note that in dimension k ≥ 6 there exist harmonic maps between compact

manifolds of negative curvature that are homotopic to a diffeomorphism but

that are not diffeomorphisms (see [11]).

1.4. Strategy. To prove our Theorem 1.1, we start with a c-quasi-isometric

map f : X → Y between rank one symmetric spaces. We want to exhibit a

harmonic map h : X → Y within bounded distance from f .

We will first gather in Chapter 2 a few properties of Hadamard mani-

folds: images of triangles under quasi-isometric maps, Hessian of the distance

function, gradient estimate for functions with bounded Laplacian.

The first key point in our proof is the simple remark that, thanks to a

smoothing process, we may assume without loss of generality that the c-quasi-

isometric map f is C∞ and that its first and second covariant derivatives Df

and D2f are uniformly bounded on X (Proposition 3.4). We fix a point O

in X. For R > 0, we denote by BR := B(O,R) the closed ball in X with

center O and radius R and by ∂BR the sphere that bounds BR . We introduce

the unique harmonic map hR : BR → Y whose restriction to the sphere ∂BR is

equal to f . This map hR is C∞ on the closed ball BR . The harmonic map h will

be constructed as the limit of the maps hR when R goes to infinity. In order

to prove the existence of this limit h, using a classical compactness argument

that we will recall in Section 3.3, we just have to check that on the balls BR

the distances

ρR := d(hR , f)

are uniformly bounded in R. We will argue by contradiction and assume that

we can find radii R with ρR arbitrarily large.

The second key point in our proof is what we call the boundary estimate

(Proposition 3.8). It tells us that the ratio
d(h

R
(x),f(x))

d(x,∂B
R

) is uniformly bounded

for R ≥ 1 and x in BR . In particular, when ρR is large, the ball B(O,R−1)

contains a ball B(xR , rR) whose center xR satisfies d(hR(xR), f(xR)) = ρR and

whose radius rR ≥ 1 is quite large. A good choice for the radius rR will be

rR = ρ1/3
R

. We will focus on the restriction of the maps f and hR to this ball

B(xR , rR). Let yR := f(xR). For z in B(xR , rR), we will write

f(z) = expy
R

(ρf (z)vf (z)) and hR(z) = expy
R

(ρh(z)vh(z)),

where ρf (z), ρh(z) are nonnegative and vf (z), vh(z) lie in the unit sphere T 1
y
R
Y

of the tangent space Ty
R
Y . We write vR := vh(xR) and we denote by θ(v1, v2)

the angle between two vectors v1, v2 of the sphere T 1
y
R
Y .
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The third key point in our proof is to write for each point z on the sphere

S(xR , rR) the triangle inequality

θ(vf (z), vR) ≤ θ(vf (z), vh(z)) + θ(vh(z), vR)

and, adapting an idea of Markovic in [24], to focus on the set

WR := {z ∈ S(xR , rR) | ρh(z) ≥ ρR−
rR
2c

and ρh(zt) ≥
ρR

2
for 0 ≤ t ≤ rR},

where (zt)0≤t≤r
R

is the geodesic segment between xR and z.

O

xR

z
zt

rR

R R

vR

hR(xR)

hR(zt)

hR(z)
vh(z)

f(z)

R__
2

X Y

R
rR__
2c

_

(z)   v
f

f(x R)yR=

Figure 1. The vectors vf (z), vh(z) and v
R

when z belongs to W
R

.

The contradiction will come from the fact that when both R and ρR go

to infinity, the two angles θ1 := θ(vf (z), vh(z)) and θ2 := θ(vh(z), vR) converge

to 0 uniformly for z in WR , while one can find z = zR in WR such that the

other angle θ0 = θ(vf (z), vR) stays away from 0. Here is a rough sketch of the

arguments used to estimate these three angles.

To get the upper bound for the angle θ1 (Lemma 4.5), we use the relation

between angles and Gromov products (Lemma 2.1) and we notice that the set

WR has been chosen so that the Gromov product (f(z)|hR(z))y
R

is large.

To get the upper bound for the angle θ2 (Lemma 4.6), we check that the

gradient Dvh is uniformly small on the geodesic segment between xR and z.

This follows from the comparison inequality 2 sinh(ρh/2) ‖Dvh‖ ≤ ‖DhR‖,
from the bound for ‖DhR‖ that is due to Cheng (Lemma 3.3), and from the

definition of WR that ensures that the factor sinh(ρh/2) stays very large on

this geodesic.

To find a point z = zR in WR whose angle θ0 is not small (Lemma 4.7), we

use the almost invariance of the Gromov products — and hence of the angles

— under a quasi-isometric map (Lemma 2.2). We also use a uniform lower

bound on the measure of WR (Lemma 4.4). This lower bound is a consequence

of the subharmonicity of the function ρh (Lemma 3.2) and of Cheng’s estimate.
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We would now like to point out the difference between our approach and

those of the previous papers. The starting point of Markovic’s method in [24] is

the fact that any K-quasisymmetric homeomorphism of the circle is a uniform

limit of K-quasisymmetric diffeomorphisms. This fact has no known analog

in high dimension. The starting point of the methods in both [25] and [19] is

the fact that a quasisymmetric homeomorphism of the sphere Sk−1 is almost

surely differentiable. This fact is not true on S1. Since our strategy avoids the

use of quasisymmetric maps, it gives a unified approach for all Hp
R with p ≥ 2,

and it also works when X and Y have different dimensions.

The assumption that X and Y have negative curvature is used in several

places, for instance in the boundary estimates in Proposition 3.8 or in the angle

estimates in Lemma 2.1. The assumption that X and Y are symmetric spaces

is also used in several places, for instance in the Green formula in Lemma 4.4

or in the smoothing process in Proposition 3.4.

Acknowledgements. Both authors thank the MSRI for its hospitality, the

Simons Foundation and the GEAR Network for their support in the spring of

2015, at the beginning of this project.

2. Hadamard manifolds

In this preliminary section, we recall various estimates on a Hadamard

manifold: for the angles of a geodesic triangle, for the Hessian of the distance

function, and also for functions with bounded Laplacian.

2.1. Triangles and quasi-isometric maps. We first recall basic estimates

for triangles in Hadamard manifolds and explain how one controls the angles

of the image of a triangle under a quasi-isometric map.

All the Riemannian manifolds will be assumed to be connected and to

have dimension at least two. We will denote by d their distance function.

A Hadamard manifold is a complete simply connected Riemannian man-

ifold X of nonpositive curvature KX ≤ 0. For instance, the Euclidean space

Rk is a Hadamard manifold with zero curvature KX = 0, while the rank one

symmetric spaces are Hadamard manifolds with negative curvature KX < 0.

We will always assume without loss of generality that the metric on a rank one

symmetric space X is normalized so that −1 ≤ KX ≤ −1/4.

Let x0, x1, x2 be three points on a Hadamard manifold X. The Gromov

product of the points x1 and x2 seen from x0 is defined as

(2.1) (x1|x2)x0 := (d(x0, x1) + d(x0, x2)− d(x1, x2))/2.

We recall the basic comparison lemma, which is one of the motivations for

introducing the Gromov product.
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Lemma 2.1. Let X be a Hadamard manifold with −1 ≤ KX ≤ −a2 < 0,

let T be a geodesic triangle in X with vertices x0, x1, x2, and let θ0 be the

angle of T at the vertex x0.

(a) One has (x0|x2)x1 ≥ d(x0, x1) sin2(θ0/2).

(b) One has θ0 ≤ 4 e−a (x1|x2)x0 .

(c) Moreover, when min((x0|x1)x2 , (x0|x2)x1) ≥ 1, one has θ0 ≥ e−(x1|x2)x0 .

Proof. Assume first that X is the hyperbolic plane H2
R with curvature −1.

Let `0 := d(x1, x2), `1 := d(x0, x1), `2 := d(x0, x2) be the side lengths of T and

m := (`1 + `2 − `0)/2 so that

(x1|x2)x0 = m , (x0|x2)x1 = `1 −m , (x0|x1)x2 = `2 −m.

The hyperbolic law of cosines

cosh(`0) = cosh(`1)cosh(`2)− cos(θ0)sinh(`1)sinh(`2)

can be rewritten as

(2.2) sin2(θ0/2) =
sinh(`1 −m)

sinh(`1)

sinh(`2 −m)

sinh(`2)
.

Hence, one has sin2(θ0/2) ≤ `1−m
`1

. This proves (a) when KX = −1.

We still assume that KX = −1. Equation (2.2) and the basic inequality

sinh(`−m)

sinh(`)
≤ e−m for 0 ≤ m ≤ `

yield θ0 ≤ 4e−(x1|x2)x0 .

When KX = −a2, one deduces the bounds (a) and (b) by a rescaling.

Assuming again KX = −1, the bound (c) follows from (2.2) and

sinh(`−m)

sinh(`)
≥ e−m/2 for 0 ≤ m ≤ `− 1.

Finally, when the sectional curvature of X is pinched between −1 and

−a2, the triangle comparison theorems of Alexandrov and Toponogov (see [17,

Ths. 4.1 and 4.2]) ensure that these results also hold in X. �

We now recall the effect of a quasi-isometric map on the Gromov product.

Lemma 2.2. Let X , Y be Hadamard manifolds with −b2 ≤ KX ≤ −a2 < 0

and −b2 ≤ KY ≤ −a2 < 0, and let f : X → Y be a c-quasi-isometric map.

There exists A = A(a, b, c) > 0 such that, for all x0, x1, x2 in X , one has

(2.3) c−1(x1|x2)x0 −A ≤ (f(x1)|f(x2))f(x0) ≤ c(x1|x2)x0 +A.

Proof. This is a general property of quasi-isometric maps between Gromov

δ-hyperbolic spaces that is due to M. Burger. See [13, Prop. 5.15]. �
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2.2. Hessian of the distance function. We now recall basic estimates for

the Hessian of the distance function and of its square on a Hadamard manifold.

When x0 is a point in a Riemannian manifold X, we denote by dx0 the

distance function defined by dx0(x) = d(x0, x) for x in X. We denote by d2
x0

the square of this function. When F is a C2 function on X, we denote by DF

the differential of F and by D2F the Hessian of F , which is by definition the

second covariant derivative of F .

Lemma 2.3. Let X be a Hadamard manifold and x0 ∈ X .

(a) The Hessian of the square d2
x0 satisfies on X

(2.4) D2d2
x0 ≥ 2 gX ,

where gX is the Riemannian metric on X .

(b) Assume that −b2 ≤ KX ≤ −a2 < 0. The Hessian of the distance function

dx0 satisfies on X \ {x0}

(2.5) a coth(a dx0) g0 ≤ D2dx0 ≤ b coth(b dx0) g0,

where g0 := gX −Ddx0 ⊗Ddx0 .

Proof. (a) When X = Rk is the k-dimensional Euclidean space, one has

D2d2
x0 = 2 gX . The general statement follows from this model case and the

Alexandrov triangle comparison theorem.

(b) Assume first that X = H2
R is the real hyperbolic plane with curva-

ture −1. Using the expression cosh(`t) = cosh(`0) cosh(t) for the length `t of

the hypothenuse of a right triangle with side lengths `0 and t, one infers that

D2dx0 = coth(dx0) g0.

The general statement follows by the same argument combined again with the

Alexandrov and Toponogov triangle comparison theorems. �

2.3. Functions with bounded Laplacian. We give a bound for functions

defined on balls of a Hadamard manifold, when their Laplacian is bounded

and their boundary value is equal to 0.

The Laplace-Beltrami operator ∆ on a Riemannian manifold X is defined

as the trace of the Hessian. In local coordinates, the Laplacian of a function

F reads as

∆F = tr(D2F ) =
1

V

k∑
i,j=1

∂

∂xi

Ç
V gij

X

∂

∂xj
F

å
,

where V =
»

det(gijX ) is the volume density. The function F is said to be

harmonic if ∆F = 0, subharmonic if ∆F ≥ 0, and superharmonic if ∆F ≤ 0.

The study of harmonic functions on Hadamard manifolds has been initiated

by Anderson and Schoen in [1].
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Proposition 2.4. Let X be a Hadamard manifold with KX ≤ −a2 < 0.

Let O be a point of X and BR = B(O,R) be the closed ball with center O and

radius R > 0. Let G be a C2 function on BR , and let M > 0. Assume that

|∆G| ≤M on BR ,(2.6)

G = 0 on ∂BR .

Then, for all x in BR , one has the upper bound

(2.7) |G(x)| ≤ M
a d(x, ∂BR).

Remark. The assumption in Proposition 2.4 that the curvature is negative

is essential. Indeed, the function G := R2−d2
O on the ball BR of the Euclidean

space X = Rk satisfies (2.6) with M = 2k while the ratio |G(x)|/d(x, ∂BR)

cannot be bounded independently of R.

The proof of Proposition 2.4 relies on the following.

Lemma 2.5. Let X be a Hadamard manifold with KX ≤ −a2 and x0 be

a point of X . Then, the function dx0 is subharmonic. More precisely, the

distribution ∆ dx0−a is nonnegative.

Proof of Lemma 2.5. Since X is a Hadamard manifold, Lemma 2.3 en-

sures that the function dx0 is C∞ on X \ {x0} and satisfies ∆ dx0(x) ≥ a for

x 6= x0. It remains to check that the distribution ∆ dx0−a is nonnegative

on X. The function dx0 is the uniform limit when ε converges to 0 of the C∞
functions dx0,ε := (ε2 + d2

x0)1/2. One computes their Laplacian on X \ {x0}:

∆dx0,ε =
dx0

(ε2 + d2
x0)1/2

∆dx0 +
ε2

(ε2 + d2
x0)3/2

.

Hence, one has on X \ {x0}:

∆dx0,ε ≥
a dx0

(ε2 + d2
x0)1/2

.

Since both sides are continuous functions on X, this inequality also holds

on X. Since a limit of nonnegative distributions is nonnegative, one gets the

inequality ∆dx0 ≥ a on X by letting ε go to 0. �

Proof of Proposition 2.4. According to Lemma 2.5, both functions

G± := M
a (R− dO)±G

are superharmonic on BR , i.e., one has ∆G± ≤ 0. Since they vanish on the

boundary ∂BR , the maximum principle ensures that these functions G± are

nonnegative on the ball BR . �
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3. Harmonic maps

In this section we begin the proof of Theorem 1.1. We first recall basic

facts satisfied by harmonic maps. We then explain why we can assume our

c-quasi-isometric map f to be C∞ with bounded covariant derivatives. We also

explain why an upper bound on d(hR , f) implies the existence of the harmonic

map h. Finally we provide this upper bound near the boundary ∂BR .

3.1. Harmonic maps and the distance function. In this section, we recall

two useful facts satisfied by a harmonic map h: the subharmonicity of the

functions dy0 ◦ h, and Cheng’s estimate for the differential Dh.

Definition 3.1. Let h : X → Y be a C∞ map between two Riemannian

manifolds. The tension field of h is the trace of the second covariant derivative

τ(h) := trD2h. The map h is said to be harmonic if τ(h) = 0.

The tension τ(h) is a Y -valued vector field on X, i.e., it is a section of the

pulled-back of the tangent bundle TY → Y under the map h : X → Y .

Lemma 3.2. Let h : X → Y be a harmonic C∞ map between Hadamard

manifolds. Let y0 ∈ Y , and let ρh : X → R be the function ρh := dy0 ◦h. Then

the continuous function ρh is subharmonic on X .

Proof. The proof is similar to the proof of Lemma 2.5. We first recall the

formula for the Laplacian of a composed function. Let f : X → Y be a C∞
map and F ∈ C∞(Y ) be a C∞ function on Y . Then one has

(3.1) ∆(F ◦ f) =
∑

1≤i≤k
D2F (Deif,Deif) + 〈DF, τ(f)〉,

where (ei)1≤i≤k is an orthonormal basis of the tangent space to X.

Since Y is a Hadamard manifold, the continuous function ρh = dy0 ◦ h is

C∞ outside h−1(y0). Using Formula (3.1), the harmonicity of h and Lemma 2.3,

we compute the Laplacian on X \ h−1(y0):

∆ ρh =
∑

1≤i≤k
D2dy0(Deih,Deih) ≥ 0.

The function ρh is the uniform limit when ε go to 0 of the C∞ functions

ρh,ε := (ε2 + ρ2
h)1/2. We compute their Laplacian on X \ h−1(y0):

∆ρh,ε =
ρh

(ε2 + ρ2
h)1/2

∆ρh +
ε2

(ε2 + ρ2
h)3/2

≥ 0.

It follows that the inequality ∆ρh,ε ≥ 0 also holds on the whole X.

One finally gets ∆ρh ≥ 0 as a distribution on X by letting ε go to 0. �

Another crucial property of harmonic maps is the following bound for

their differential due to Cheng.
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Lemma 3.3. Let X , Y be two Hadamard manifolds with −b2 ≤ KX ≤ 0.

Let k = dimX , x0 be a point of X , r0 > 0, and let h : B(x0, r0) → Y be a

harmonic C∞ map such that the image h(B(x0, r0)) lies in a ball of radius R0.

Then one has the bound

(3.2) ‖Dh(x0)‖ ≤ 25 k 1+br0
r0

R0.

In the applications, we will use this inequality with b = 1 and r0 = 1.

Proof. This is an explicit version of [7, formula (2.9)] in which we keep

track of the constant. We use Cheng’s formula (2.9), where the point called y0

by Cheng is on the sphere S(h(x0), 2R0) and the radii called a and b by Cheng

are respectively equal to r0 and 4R0. Correcting a misprint, this formula is

r4
0 ‖Dh(x0)‖2

(12R2
0)2

≤ Ck max

Ç
Kr4

0

7R2
0

,
(1 +

√
K r0)r2

0

7R2
0

,
16R2

0r
2
0

49R4
0

å
,

where −K is a lower bound for the Ricci curvature on X, and where Ck is a

constant depending only on k. Choosing K = kb2, one gets

‖Dh(x0)‖2 ≤ 144 kCk max

Ç
b2R2

0

7
,
(1 + br0)R2

0

7r2
0

,
16R2

0

49 r2
0

å
and hence, one has ‖Dh(x0)‖ ≤ ck

1+br0
r0

R0 for some constant ck. Since the

explicit value ck = 25k for this constant is not crucial, we omit the details of

this calculation. �

3.2. Smoothing quasi-isometric maps. The following proposition will al-

low us to assume in Theorem 1.1 that the quasi-isometric map f is C∞ with

bounded covariant derivatives.

Proposition 3.4. Let X , Y be two symmetric spaces of nonpositive cur-

vature and f : X → Y be a quasi-isometric map. Then there exists a C∞
quasi-isometric map f̃ : X → Y within bounded distance from f and whose

covariant derivatives Dpf̃ are bounded on X for all p ≥ 1.

This regularized map f̃ will be constructed as follows. Let α : R→ R be

a nonnegative C∞ function with support [−1, 1]. For x in X, we introduce the

positive finite measure on X,

αx := (α ◦ d2
x) dvolX .

Let µx := f∗αx denote the image measure on Y . It is defined, for any positive

function ϕ on Y , by

µx(ϕ) =

∫
X
ϕ(f(z))α(d2(x, z)) dvolX(z).

We choose α so that each µx is a probability measure. By homogeneity of X,

this fact does not depend on the point x. We will define f̃(x) ∈ Y to be
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the center of mass of the measure µx. To be more precise, we will need the

following Lemma 3.5, which is an immediate consequence of Lemma 2.3.

Lemma 3.5. For x in X , let Qx be the function on Y defined for y in

Y by

(3.3) Qx(y) =

∫
X
d2(y, f(z))α(d2(x, z)) dvolX(z).

For x in X , the functions Qx are proper and uniformly strictly convex. More

precisely, for all x in X and y in Y , the Hessian admits the lower bound

D2
yQx ≥ 2 gY ,

where gY is the Riemannian metric on Y .

Proof of Proposition 3.4. For x in X, we define the point f̃(x) ∈ Y to be

the center of mass of µx, i.e., to be the unique point where the function Qx
reaches its infimum. Equivalently, the point y = f̃(x) ∈ Y is the unique critical

point of the function Qx, i.e., it is defined by the implicit equation

DyQx = 0.

Since the map f is c-quasi-isometric, the support of the measure µx lies in the

ball B(f(x), 2 c). Since Y is a Hadamard manifold, the balls of Y are convex

(see [2]) so that the center of mass f̃(x) also belongs to the ball B(f(x), 2 c).

In particular, one has

d(f, f̃) ≤ 2 c.

We now check that the map f̃ : X → Y is C∞. Since the Hessians D2
yQx

are nondegenerate, this follows from the implicit function theorem applied to

the C∞ map

Ψ : (x, y) ∈ X × Y −→ DyQx ∈ T ∗Y.

To prove that the first derivative of f̃ is bounded on X, we first notice

that Lemma 3.5 ensures that the covariant derivative

DyΨ(x, y) = D2
yQx ∈ L(TyY, TyY

∗)

is an invertible linear map with

‖(DyΨ(x, y))−1‖ ≤ 1/2.

We also notice that, since the point y = f̃(x) is at distance at most 4c of all

the points f(z) with z in the ball B(x, 1), the norm

‖DxΨ(x, f̃(x))‖

is also uniformly bounded on X. Hence the norm ‖Df̃‖ of the derivative of f̃

is uniformly bounded on X.
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For the same reason, since Y is homogeneous, the norm of each covariant

derivative

‖Dp
xD

q
yΨ(x, f̃(x))‖

is uniformly bounded on X for p, q ≥ 0. Hence the norm of each covariant

derivative ‖Dpf̃‖ is uniformly bounded on X for p ≥ 1. �

3.3. Existence of harmonic maps. In this section we prove Theorem 1.1,

taking for granted Proposition 3.6 below.

Let X, Y be rank one symmetric spaces and f : X → Y be a c-quasi-

isometric C∞ map whose first two covariant derivatives are bounded.

We fix a point O in X. For R > 0, we denote by BR := B(O,R) the closed

ball in X with center O and radius R and by ∂BR the sphere that bounds BR .

Since the manifold Y is a Hadamard manifold, there exists a unique harmonic

map hR : BR → Y satisfying the Dirichlet condition hR = f on the sphere

∂BR . Moreover, this harmonic map hR is energy minimizing. This means that

the map hR achieves the minimum of the energy functional

(3.4) ER(h) :=

∫
B

R

‖Dh(x)‖2 dvolX(x)

among all C1 maps g on the ball that agree with f on the sphere ∂BR , i.e., one

has

ER(hR) = inf
g
ER(g).

These facts are due to Schoen (see [30] or [9, Thm 12.11]). Thanks to Schoen

and Uhlenbeck in [32] and [33], the harmonic map hR is known to be C∞ on

the closed ball BR . We denote by

d(hR , f) = sup
x∈B(O,R)

d(hR(x), f(x))

the distance between these two maps.

The main point of this article is to prove the following uniform estimate.

Proposition 3.6. There exists a constant M ≥ 1 such that, for any

R ≥ 1, one has d(hR , f) ≤M .

Even though the argument is very classical, we first explain how to deduce

our main theorem from this proposition.

Proof of Theorem 1.1. As explained in Proposition 3.4, we may also as-

sume that the c-quasi-isometric map f is C∞ with bounded covariant deriva-

tives. Pick an increasing sequence of radii Rn converging to ∞, and let

hRn : BRn → Y be the harmonic C∞ map that agrees with f on the sphere

∂BRn . Proposition 3.6 ensures that the sequence of maps hRn is locally uni-

formly bounded. More precisely, there exists M ≥ 1 such that, for all S ≥ 1,
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for n large enough, one has

hRn(B2S) ⊂ B(f(O), 2 cS +M).

Using the Cheng Lemma 3.3 with b = 1 and r0 = 1, it follows that the

derivatives are also uniformly bounded on each ball BS . More precisely, one

has, for all S ≥ 1, for n large enough,

sup
x∈B

S

‖DhRn(x)‖ ≤ 26k (2 cS +M).

The Ascoli-Arzela theorem implies that, after extraction, the sequence hRn

converges uniformly on every ball BS towards a continuous map h : X → Y .

By construction this limit map h stays within bounded distance from the

quasi-isometric map f . We claim that the limit map h is harmonic. Indeed, the

harmonic maps hRn are energy minimizing and, on each ball BS , the energies

of hRn are uniformly bounded:

lim sup
n→∞

ES(hRn) <∞.

Hence the Luckhaus compactness theorem for energy minimizing harmonic

maps (see [35, §2.9]) tells us that the limit map h is also harmonic and energy

minimizing. �

Remark 3.7. By Li-Wang uniqueness theorem in [22], the harmonic map h

that stays within bounded distance from f is unique. Hence the above argu-

ment also proves that the whole family of harmonic maps hR converges to h

uniformly on the compact subsets of X when R goes to infinity.

3.4. Boundary estimate. In this section we begin the proof of Proposi-

tion 3.6: we bound the distance between hR and f near the sphere ∂BR .

Proposition 3.8. Let X , Y be Hadamard manifolds and k = dimX .

Assume that −1 ≤ KX ≤ −a2 < 0. Let c ≥ 1 and f : X → Y be a C∞ map

with ‖Df(x)‖ ≤ c and ‖D2f(x)‖ ≤ c. Let O ∈ X , R > 0, BR := B(O,R).

Let hR : BR → Y be the harmonic C∞ map whose restriction to the sphere

∂BR is equal to f . Then, for all x in BR , one has

(3.5) d(hR(x), f(x)) ≤ 4kc2

a d(x, ∂BR).

An important feature of this upper bound is that it does not depend on

the radius R, provided the distance d(x, ∂BR) remains bounded. This is why

we call (3.5) the boundary estimate. The proof relies on an idea of Jost in

[16, §4].

Proof. Let x be a point in BR and w in ∂BR such that d(x,w) = d(x, ∂BR).

Since hR(w) = f(w), the triangle inequality reads as

(3.6) d(f(x), hR(x)) ≤ d(f(x), f(w)) + d(hR(w), hR(x)).
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The assumption on f ensures that

(3.7) d(f(x), f(w)) ≤ c d(x, ∂BR).

To estimate the other term, we choose a point y0 on the geodesic ray starting

from hR(x) and passing by hR(w). This choice of y0 ensures that one has the

equality

(3.8) d(hR(w), hR(x)) = d(hR(x), y0)− d(hR(w), y0).

We also choose y0 far enough so that

(3.9) F (z) := d(f(z), y0) ≥ 1 for all z in BR .

This function F is then C∞ on the ball BR . Let H : BR → R be the harmonic

C∞ function whose restriction to the sphere ∂BR is equal to F . By Lemma 3.2,

since hR is a harmonic map, the function z 7→ d(hR(z), y0) is subharmonic

on BR . Since this function is equal to H on the sphere ∂BR , the maximum

principle ensures that

(3.10) d(hR(z), y0) ≤ H(z) for all z in BR ,

with equality for z in ∂BR . Combining (3.8) and (3.10), one gets

(3.11) d(hR(w), hR(x)) ≤ H(x)−H(w).

To estimate the right-hand side of (3.11), we observe that the function G :=

F −H vanishes on ∂BR and has bounded Laplacian:

|∆G| ≤ 3kc2.

Indeed, using Formulas (3.1), (2.5) and (3.9), one computes

|∆G| = |∆(dy0 ◦ f)| ≤ k‖D2dy0‖‖Df‖2 + k‖Ddy0‖‖D2f‖ ≤ 3kc2.

Using Proposition 2.4, one deduces that

|G(x)| ≤ 3kc2

a d(x, ∂BR)

and therefore, combining with (3.6), (3.7) and (3.11), one concludes that

d(f(x), hR(x))≤ c d(x, ∂BR) + |G(x)|+ |F (x)− F (w)|
≤ (3kc2

a + 2c) d(x, ∂BR).

This proves (3.5). �

4. Interior estimate

In this section we complete the proof of Proposition 3.6. We follow the

strategy explained in the introduction (Section 1.4).
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4.1. Notation. We first explain more precisely the notation and the as-

sumptions that we will use in the whole section.

Let X and Y be rank one symmetric spaces and k = dimX. We start

with a C∞ quasi-isometric map f : X → Y all of whose covariant derivatives

are bounded. We fix a constant c ≥ 1 such that, for all x, x′ in X, one has

(4.1) ‖Df(x)‖ ≤ c, ‖D2f(x)‖ ≤ c

and

(4.2) c−1 d(x, x′)− c ≤ d(f(x), f(x′)) ≤ c d(x, x′).

Note that the additive constant c on the right-hand side term of (1.1) has been

removed since the derivative of f is bounded by c.

We fix a point O in X. For R > 0, we introduce the harmonic C∞ map hR :

B(O,R)→ Y whose restriction to the sphere ∂B(O,R) is equal to f . We let

ρR := sup
x∈B(O,R)

d(hR(x), f(x)).

We denote by xR a point of B(O,R) where the supremum is achieved:

d(hR(xR), f(xR)) = ρR .

According to the boundary estimate in Proposition 3.8, one has

d(xR , ∂B(O,R)) ≥ 1
8kc2

ρR .

When ρR is large enough, we introduce a ball B(xR , rR) with center xR , and

whose radius rR is a function of R satisfying

(4.3) 1 ≤ rR ≤ 1
16kc2

ρR .

Note that this condition ensures the inclusion B(xR , rR) ⊂ B(O,R−1). Later

on, in Section 4.5, we will assume that rR := ρ1/3
R
.

We will focus on the restrictions of the maps f and hR to this ball

B(xR , rR). We will express the maps f and hR through the polar exponential

coordinates (ρ, v) in Y centered at the point yR := f(xR). For z in B(xR , rR),

we will thus write

f(z) = expy
R

(ρf (z)vf (z)),

hR(z) = expy
R

(ρh(z)vh(z)),

hR(xR) = expy
R

(ρRvR),

where ρf (z) ≥ 0, ρh(z) ≥ 0 and where vf (z), vh(z) and vR belong to the unit

sphere T 1
y
R
Y of the tangent space Ty

R
Y . Note that ρh and vh are shorthands

for ρh
R

and vh
R

. For simplicity, we do not write the dependence on R.

We denote by [xR , z] the geodesic segment between xR and z.
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Definition 4.1. We introduce the following subsets of the sphere S(xR , rR):

UR = {z ∈ S(xR , rR) | ρh(z) ≥ ρR − 1
2c rR},

VR = {z ∈ S(xR , rR) | ρh(zt) ≥ ρR/2 for all zt in [xR , z] },
WR =UR ∩ VR .

4.2. Measure estimate. We first notice that one can control the size of

ρh(z) and of DhR(z) on the ball B(xR , rR). We will then give a lower bound

for the measure of WR .

Lemma 4.2. Assume (4.3). For z in B(xR , rR), one has

ρh(z) ≤ ρR + c rR .

Proof. The triangle inequality and (4.2) give, for z in B(xR , rR),

ρh(z) ≤ d(hR(z), f(z)) + d(f(z), yR) ≤ ρR + c rR . �

Lemma 4.3. Assume (4.3). For z in B(xR , rR), one has

‖DhR(z)‖ ≤ 28 k ρR .

Proof. For all z, z′ in B(O,R) with d(z, z′) ≤ 1, the triangle inequality

and (4.2) yield

d(hR(z), hR(z′))≤ d(hR(z), f(z)) + d(f(z), f(z′)) + d(f(z′), hR(z′))

≤ ρR + c+ ρR ≤ 4 ρR .

Applying Cheng’s Lemma 3.3 with b = 1 and r0 = 1, one gets for all z in

B(O,R−1) the bound ‖DhR(z)‖ ≤ 28 k ρR . �

We now give a lower bound for the measure of WR . We will denote by the

same letter σ the probability measure on each sphere S(xR , t) that is invariant

under all the isometries of X that fix the point xR .

Lemma 4.4. Assume (4.3). Then one has

σ(WR)≥ 1

3 c2
− 212k c

r2
R

ρR

.(4.4)

Proof. The proof relies on the subharmonicity of the function ρh on the

ball B(xR , rR) (see Lemma 3.2). We claim that, for any 0 < t ≤ rR , one has

(4.5)

∫
S(x

R
,t)

(ρh(z)− ρR) dσ(z) ≥ 0.

Let us give a short proof of this special case of the Green formula. Since X

is a rank one symmetric space, the group Γ of isometries of X that fix the

point xR is a compact group that acts transitively on the spheres S(xR , t). Let

dγ be the Haar probability measure on Γ. The function F :=
∫

Γ ρh ◦ γ dγ,
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defined as the average of the translates of the function ρh under Γ, is equal

to a constant Ft on each sphere S(xR , t) of radius t ≤ rR . By the maximum

principle applied to this subharmonic function F , one gets F0 ≤ Ft for all

t ≤ rR . Since F0 = ρh(xR) = ρR , this proves (4.5).

First step. We prove

(4.6) σ(UR) ≥ 1

3 c2
.

By Lemma 4.2, the function ρh is bounded by ρR + c rR , hence equation (4.5)

implies
c rR σ(UR)− rR

2c
(1− σ(UR)) ≥ 0

so that σ(UR) ≥ (1 + 2 c2)−1 ≥ c−2/3.

Second step. We prove

(4.7) σ(VR) ≥ 1− 212k c
r2
R

ρR

.

For z in the complementary subset V c
R
⊂ S(xR , rR), we define

tz := inf{t ∈ [0, rR ] | ρh(zt) = 1
2 ρR},

sz := sup{t ∈ [0, tz] | ρh(zt) = 3
4 ρR}.

We claim that, for each z in V c
R

, one has

(4.8) tz − sz ≥ 2−10k−1.

Indeed, the length of the curve t 7→ hR(zt) between t = sz and t = tz is at

least
ρ
R
4 . Hence, using Lemma 4.3, one gets

ρR

4
≤ (tz − sz) sup

B(x
R
,r

R
)
‖DhR‖ ≤ 28 k (tz − sz)ρR ,

which prove (4.8).

The Green formula also gives the following variation of (4.5):

(4.9)

∫
S(x

R
,r

R
)

∫ r
R

0
(ρh(zt)− ρR) dt dσ(z) ≥ 0.

By Lemma 4.2, the function ρh is bounded by ρR + c rR , hence equation (4.9)

implies

(4.10) c r2
R

+

∫
V c
R

∫ tz

sz

(ρh(zt)− ρR) dt dσ(z) ≥ 0.

Using the bound ρh(zt) ≤ 3
4 ρR , for all t in the interval [sz, tz], one deduces

from (4.8) and (4.10) that

c r2
R
− 2−10k−1 ρR

4 σ(V c
R

) ≥ 0.

This proves (4.7).
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Since WR = UR ∩ VR , the bound (4.4) follows from (4.6) and (4.7). �

4.3. Upper bound for θ(vf (z), vh(z)). For all v in UR, we give an upper

bound for the angle between vf (z) and vh(z).

For two vectors v1, v2 of the unit sphere T 1
y
R
Y of the tangent space Ty

R
Y ,

we denote by θ(v1, v2) the angle between these two vectors.

Lemma 4.5. Assume (4.3). Then, for z in UR , one has

θ(vf (z), vh(z))≤ 4 e
c
4 e−

r
R
8 c .(4.11)

Proof. For z in UR , we consider the triangle with vertices yR , f(z) and

hR(z). Its side lengths satisfy

`0 := d(hR(z), f(z)) ≤ ρR by definition of ρR ,

`1 := ρf (z) ≥ 1
c rR − c since f is c-quasi-isometric,

`2 := ρh(z) ≥ ρR − 1
2c rR by definition of UR.

Since KY ≤ −1/4, applying Lemma 2.1 with a = 1
2 , one gets

θ(vf (z)), vh(z)) ≤ 4 e−
1
4

(`1+`2−`0) ≤ 4 e
c
4 e−

r
R
8 c . �

4.4. Upper bound for θ(vh(z), vR). For all v in VR, we give an upper bound

for the angle between vh(z) and vR .

Lemma 4.6. Assume (4.3). Then, for z in VR , one has

θ(vh(z), vR)≤
8 ρ2

R

sinh(ρR/4)
.(4.12)

Proof. Let us first sketch the proof. We recall that the curve t 7→ zt, for

0 ≤ t ≤ rR , is the geodesic segment between xR and z. By definition, for

each z in VR , the curve t 7→ hR(zt) lies outside of the ball B(yR , ρR/2) and by

Cheng’s bound on ‖DhR(zt)‖ one controls the length of this curve.

We now detail the argument. For z in VR , we have the inequality

θ(vh(z), vR)≤ rR sup
0≤t≤ r

R

‖Dvh(zt)‖.

Since KY ≤ −1/4, the Alexandrov triangle comparison theorem and the Gauss

lemma ([12, 2.93]) yield, for y in Y r {yR},

2 sinh(ρ(y)/2) ‖Dv(y)‖ ≤ 1,

where (ρ(y), v(y)) ∈ ]0,∞[×T 1
y
R
Y are the polar exponential coordinates on Y

centered at yR . Since ρh = ρ ◦ h and vh = v ◦ h, one gets, for x in B(O,R)

with hR(x) 6= yR ,

2 sinh(ρh(x)/2) ‖Dvh(x)‖ ≤ ‖DhR(x)‖.
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Hence since the point z belongs to VR , one deduces

θ(vh(z), vR) ≤ rR
2 sinh(ρR/4)

sup
0≤t≤ r

R

‖DhR(zt)‖.

Hence using Lemma 4.3 one gets

θ(vh(z), vR) ≤ 28 k ρR

rR
2 sinh(ρR/4)

.

Using (4.3) this finally gives (4.12). �

4.5. Lower bound for θ(vf (z), vR). When ρR is large enough, we find a

point z = zR in WR for which the angle between vf (z) and vR is bounded below.

For a subset W of the unit sphere T 1
y
R
Y , we denote by

diam(W ) := sup({θ(v, v′) | v, v′ ∈W})
the diameter of W .

Lemma 4.7. Assume that there exists a sequence of radii R going to in-

finity such that ρR goes to infinity. Then, choosing rR := ρ1/3
R

, the diameters

diam({vf (z) | z ∈WR})

do not converge to 0 along this sequence.

Proof. Let σ0 := 1
4c2

. According to Lemma 4.4, one has

lim inf
R→∞

σ(WR) > σ0 > 0.

There exists ε0 > 0 such that every subset W of the Euclidean sphere

Sk−1 whose normalized measure is at least σ0 contains two points whose angle

is at least ε0.

Hence if R and ρR are large enough, one can find z1, z2 in WR such that

(4.13) θx
R

(z1, z2) ≥ ε0 and rR ≥
(A+ 1)c

sin2(ε0/2)
,

where θx
R

(z1, z2) is the angle between z1 and z2 seen from xR , and where A is

the constant given by Lemma 2.2. According to Lemma 2.1(a), we infer that

min((xR |z1)z2 , (xR |z2)z1)) ≥ (A+ 1)c.

Then using Lemma 2.2, one gets

(4.14) min((yR |f(z1))f(z2), (yR |f(z2))f(z1))) ≥ 1.

We now have the inequalities

θ(vf (z1), vf (z2))≥ e−(f(z1)|f(z2))y
R by Lemma 2.1(c) and (4.14),

≥ e−A e−c (z1|z2)x
R by Lemma 2.2,

≥ e−A (ε0/4)2c by Lemma 2.1(b) and (4.13).

This proves our claim. �
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End of the proof of Proposition 3.6. Assume that there exists a sequence

of radii R going to infinity such that ρR goes also to infinity. We set rR = ρ1/3
R

.

Using Lemmas 4.5 and 4.6 and the triangle inequality, one gets

(4.15) lim
R→∞

sup
z∈W

R

θ(vf (z), vR) = 0.

This contradicts Lemma 4.7. �
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