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Global well-posedness for the Yang-Mills
equation in 4 + 1 dimensions. Small energy

By Joachim Krieger and Daniel Tataru

Abstract

We consider the hyperbolic Yang-Mills equation on the Minkowski space

R4+1. Our main result asserts that this problem is globally well-posed for

all initial data whose energy is sufficiently small. This solves a longstanding

open problem.

1. Introduction

Let G be a semisimple Lie group and g its associated Lie algebra. We de-

note by ad(X)Y = [X,Y ] the Lie bracket on g and by 〈X,Y 〉 = tr(ad(X)ad(Y ))

its associated nondegenerate Killing form. The action of G on g by conjugation

is denoted by Ad(O)X = OXO−1. We recall that the Killing form is invariant,

in the sense that

〈[X,Y ], Z〉 = 〈X, [Y,Z]〉, X, Y, Z ∈ g,

or equivalently,

〈X,Y 〉 = 〈Ad(O)X,Ad(O)Y 〉, X, Y ∈ g, O ∈ G.

Let R4+1 be the five-dimensional Minkowski space equipped with the stan-

dard Lorentzian metric m = diag(−1, 1, 1, 1, 1). Denote by Aα : R4+1 → g,

α = 0, 1, . . . , 4, a connection form taking values in the Lie algebra g and by

Dα the associated covariant differentiation,

DαB := ∂αB + [Aα, B],

acting on g valued functions B. Introducing the curvature tensor

Fαβ := ∂αAβ − ∂βAα + [Aα, Aβ],
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the Yang-Mills equations are the Euler-Lagrange equations associated with the

formal Lagrangian action functional

L(Aα) :=
1

2

∫
R4+1
〈Fαβ, Fαβ〉 dxdt.

Here we are using the standard convention for raising indices. Thus, the Yang-

Mills equations take the form

(1.1) DαFαβ = 0.

There is a natural energy-momentum tensor associated to the Yang-Mills equa-

tions, namely,

Tαβ =
1

2
mγδ〈Fαγ , Fδβ〉 −

1

4
mαβ〈Fγδ, F γδ〉.

If A solves the Yang-Mills equations (1.1) then Tαβ is divergence free,

(1.2) ∂αTαβ = 0.

Integrating this for β = 0 yields a conserved energy

(1.3) E(A) =

∫
R4
T00 dx ≈ ‖F‖2L2 .

The case β 6= 0 yields further conservation laws, i.e., the momentum, which

play no role in the present article.

The Yang-Mills equations also have a scale invariance property,

A(t, x)→ λA(λt, λx).

The energy functional E is invariant with respect to scaling precisely in di-

mension 4 + 1. For this reason we call the 4 + 1 problem energy critical; this

is one of the motivations for our interest in this problem.

In order to study the Yang-Mills equations as well-defined evolutions in

time we first need to address its gauge invariance. Precisely, the equations (1.1)

are invariant under the gauge transformations

Aα −→ OAαO
−1 − ∂αOO−1,

with O elements of the corresponding group G. In order to uniquely determine

the solutions to the Yang-Mills equations we need to add an additional set of

constraint equations that uniquely determine the gauge. This procedure is

known as gauge fixing.

To motivate our choice we introduce the covariant wave operator

2A := DαDα.

Then we can write the Yang-Mills system in the following form:

2AAβ = Dα∂βAα = ∂β∂
αAα + [Aα, ∂βAα].(1.4)
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Expanded out, the equations take the form

2Aβ − ∂β∂αAα + ∂α[Aα, Aβ] + [Aα, ∂αAβ − ∂βAα + [Aα, Aβ]] = 0

or

2Aβ + 2[Aα, ∂
αAβ] = ∂β∂

αAα − [∂αAα, Aβ] + [Aα, ∂βAα]− [Aα, [Aα, Aβ]].

A natural condition that ensures that the above system is strictly hy-

perbolic is the Lorenz gauge, ∂αAα = 0. Unfortunately there are multiple

technical difficulties if one tries to implement such a gauge in the low regular-

ity setting; see, e.g., [18]. For this reason we will instead impose the Coulomb

Gauge condition, which requires

(1.5)
4∑
j=1

∂jAj = 0.

We remark that a somewhat similar gauge is the temporal gauge, namely,

A0 = 0. Another choice that is likely better but more involved technically is

the caloric gauge; see, e.g., [13].

Returning to the Coulomb gauge, we can use it to view the equations as

a nonlocal hyperbolic system for the spatial components Aj ; precisely, they

solve the system
2AAj = −∂j∂tA0 + [Aα, ∂jAα].

In order to eliminate the first term on the right and also to restrict the evolution

to divergence-free fields Aj we apply the Leray projection P and rewrite the

equation in the form

(1.6) 2Aj = P ([Aα, ∂jAα]− 2[Aα, ∂αAj ] + [∂0A0, Aj ]− [Aα, [Aα, Aj ]]) .

The nonlocality is due to the A0 component, which solves an elliptic equation

at fixed time, namely,

(1.7) ∆AA0 = [Aj , ∂0Aj ].

Here we use the notation ∆A = DjDj , with j ranging from 1 to 4. The time

derivative of A0 also appears in the Aj system, so it is useful to derive an

equation for it as well. This has the form (see, e.g. [6])

(1.8) ∆∂0A0 = ∂0∂j [A0, Aj ]− ∂jJj ,

with

Jj = −∂tFj0 + ∂kFjk = −2Aj − ∂t∂jA0 − ∂t[Aj , A0] + ∂k[Aj , Ak].

In fact, the preceding is a tautological identity in the Coulomb Gauge, which

becomes interesting due to the fact that

Jj = [A0, Fj0]− [Ak, Fjk]

due to the Yang-Mills equations.
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To summarize, in the Coulomb gauge, the Yang-Mills system can be cast

in the following expanded out form:

2Ai + 2[Aα, ∂
αAi] =− ∂i∂tA0 + [∂0A0, Ai] + [Aα, ∂iAα]− [Aα, [Aα, Ai]],

∆A0 + 2[Ai, ∂iA0] = [Ai, ∂0Ai]− [Ai, [Ai, A0]].

We will consider the solvability question for the system (1.6) in the class

of divergence-free vector fields, with initial data at time t = 0,

(1.9) (Aj(0), ∂0Aj(0)) = (A0j , A1j) ∈ H := Ḣ1(R4)× L2(R4).

We will also consider higher regularity properties of the solutions, using the

spaces

HN := (ḢN (R4) ∩ Ḣ1(R4))×HN−1(R4), N ≥ 1.

Here the dependent variables A0, ∂0A0 are determined by the linear equa-

tions (1.7) and (1.8). We remark that the solvability for these equations in

various spaces, including Ḣ1 × L2 at fixed time, is considered in Section 2.

In order to study the dependence of the solutions on the initial data we

will also need the linearized Yang-Mills equation,

2Bj = P (2[Aα, ∂jBα]− 2[Aα, ∂αBj ]− 2[Bα, ∂αAj ] + [∂0A0, Bj ] + [∂0B0, Aj ]

−2[Bα, [Aα, Aj ]]− [Aα, [Aα, Bj ]]),

(1.10)

with appropriate linear elliptic equations for B0, ∂0B0,

∆B0 = [Bj , ∂0Aj ] + [Aj , ∂0Bj ]− 2[Bj , ∂jA0]− 2[Aj , ∂jB0](1.11)

− 2[Bj , [Aj , A0]]− 2[Aj , [Aj , B0]],

∆∂0B0 = ∂0∂j([B0, Aj ] + [A0, Bj ])− LinB(∂j [A0, Fj0]− ∂j [Ak, Fjk]),(1.12)

where the term LinB(. . .) at the end denotes the linearisation of the expression

in parentheses around A and evaluated at B. For the linearized equation we

will go below scaling in regularity and use the spaces

Ḣs = Ḣs(R4)× Ḣs−1(R4),

with s < 1 but close to 1. Now we can state our main result:

Theorem 1. The Yang-Mills system in Coulomb gauge (1.6)–(1.7)–(1.8)

is globally well-posed in H for initial data that is small in H, in the following

sense:

(i) (Regular data) If in addition the data (A0j ,A1j) is more regular, (A0j ,A1j)

∈ HN , then there exists a unique global regular solution (Aj , ∂0Aj) ∈
C(R,HN ), which has a Lipschitz dependence on the initial data locally in

time in the HN topology.
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(ii) (Rough data) The flow map admits an extension

H 3 (Aj0, Aj1)→ (Aj , ∂tAj) ∈ C(R,H)

within the class of initial data that is small in H, and that is continuous

in the H ∩ Ḣs topology for s < 1 and close to 1.

(iii) (Weak Lipschitz dependence) The flow map is globally Lipschitz in the

Ḣs topology for s < 1 and close to 1.

To clarify, in part (ii) the H ∩ Ḣs norm is applied to differences of so-

lutions. In particular, we remark that HN is dense in H in this topology, so

this extension yields solutions for all small data in H. The Ḣs norm plays an

essential role here, as this is the norm where we have Lipschitz dependence of

the solutions on the initial data. If we limit ourselves to just the H topology,

then the best we can prove is a local in time continuous dependence on data;

thus, the scattering information is lost.

We remark that in effect the proof of the theorem provides a stronger

statement, where the regularity of the solutions is described in terms of function

spaces S1, SN that incorporate both Strichartz norms, Xs,b norms and null

frame spaces. For convenience, the stronger result is stated later in Theorem 2.

Implicit in Theorem 2 is also a scattering result; however, this is not so

easy to state as it is a modified rather than linear scattering. In a weaker

sense, one can think of scattering as simply the fact that the S1 norm is finite.

1.1. Brief historical remarks. The Yang-Mills equation belongs to the

larger class of geometric nonlinear wave equations, which includes other prob-

lems such as Wave-Maps and the (mass-less) Maxwell-Klein-Gordon system.

These problems have a number of shared features, including the gauge struc-

ture and the null condition. Also, in all these problems the nonlinearity is

nonperturbative at critical scaling, though only mildly so, more precisely in a

way that can be addressed via renormalization. For these reasons, the under-

standing of these problems has evolved in a related fashion and, as we describe

below, our work on Yang-Mills was strongly influenced by prior developments

for both Wave-Maps and Maxwell-Klein-Gordon.

For the Yang-Mills equation, a first global regularity result on a Minkowski

background in the physical dimension n = 3 was first established for large data

in classical work by Eardley-Moncrief, [4], [5], after earlier work by Choquet-

Bruhat and Christodoulou had proved a small data global existence result

in [3]. The physical n = 3 case is energy subcritical, which makes this problem

easier from the point of view of global existence than the critical case n = 4,

but harder from the point of view of understanding scattering.

The Eardley-Moncrief result was revisited and significantly strengthened

by Klainerman-Machedon [6]. In fact, these authors showed local (and thence
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global) well-posedness in H1. This work proved important for future develop-

ments on account of the fact that it identified the null structure and its use

via bilinear null-form estimates, which is also of paramount importance in this

work. The energy critical case n = 4 of the Yang-Mills system was first at-

tacked in Klainerman-Tataru [7]; more precisely, a model system with similar

null structures was considered there, and almost optimal local well-posedness

(in light of the scaling of the system) was shown. Somewhat later, Machedon-

Sterbenz [12] revisited the closely related subcritical Maxwell-Klein-Gordon

system in 3 + 1 dimensions, and exploiting a deep trilinear null structure in

the system, managed to push local well-posedness all the way to an almost

optimal H
1
2

+ε-result (optimal in light of scaling). The new null structure used

there will also be of fundamental importance for our work.

Further work on the Maxwell-Klein-Gordon and Yang-Mills equation fol-

lowed in the wake of important progress on the Wave Maps equation by the

second author in [27], [28] as well as by Tao in [21]. These works introduced

the functional framework that will be crucial for the present paper. In [17],

Rodnianski and Tao established an optimal small data global existence re-

sult at the scaling invariant level for high-dimensional Maxwell-Klein-Gordon

in the Coulomb Gauge. The important innovation there was the use of an

approximate parametrix for a magnetic potential wave equation to deal with

certain bad interaction terms that could not be handled perturbatively. By

refining this and working with more sophisticated Banach spaces coming from

the theory of Wave Maps, the authors jointly with J. Sterbenz pushed this to

the energy critical case in n = 4 dimensions in [11].

The present paper will borrow quite heavily from [11] and, in fact, will be

built directly on the spaces and null-form estimates established there. How-

ever, the geometry for the Yang-Mills system is significantly more complicated

than for the Maxwell-Klein-Gordon system, as the field A no longer “essen-

tially behaves like a free wave.” An adaptation of the method of [17] to global

regularity for small critical data of high-dimensional (n ≥ 6) Yang-Mills was

accomplished in Krieger-Sterbenz [10]. In the present paper we use an approx-

imate parametrix of the same type as in [10]. However, in its construction we

take advantage of the better functional framework in [11], as well as of better

connection integration techniques borrowed from Wave-Maps [28].

The small data result in the present paper can also be viewed as a stepping

stone toward the corresponding large data problem, which is still open. The

large data problem is better understood for the Wave-Map equation, where the

so-called Threshold Conjecture was recently proved by Sterbenz-Tataru [19],

[20] and also, independently, by Krieger-Schlag [9] and Tao [22], [23], [24],

[25], [26] for special target manifolds. More recently, large data well-posedness
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was also established for the Maxwell-Klein-Gordon system, independently in

Oh-Tataru [16], [14], [15] and Krieger-Luhrmann [8].

In related developments, one should also note the work of Bejenaru-

Herr [2], [1] on the closely related cubic Dirac equation, as well as the massive

Dirac-Klein-Gordon system.

1.2. Ingredients of the proof. The present paper is built directly on the

predecessor paper [11]. The nonlinearity is split into two parts, a perturba-

tive one and a non-perturbative paradifferential type component. As in [11],

even the “perturbative” part cannot be directly estimated in full. Instead,

there is a portion of it that requires reiteration of the equation and the use of

the second null condition. The nonperturbative part is then eliminated via a

paradifferential gauge renormalization.

The main novelty here then concerns the approximate parametrix con-

struction for the magnetic potential wave equation (6.1), which is considerably

more difficult in the present noncommutative setting. We use an ansatz (6.16)

as in [10] but construct the phase shift O(t, x, ξ) via a continuous version of

the “discretized” (over frequency blocks) Gauge construction in [21]; see (6.14).

Such a construction was first introduced in [28] and its usefulness proved fur-

ther in [19]. The fact that the angular separation in the definition of the Ψk

can be chosen as 2δk with δ > 0 arbitrarily small simplifies the arguments for

the control of the parametrix in Section 7 compared to the arguments in [10].

1.3. Notation and Conventions. We use the notation A . B to mean

A ≤ CB for some universal constant C > 0. We write A � B if the implicit

constant should be regarded as small.

Our convention regarding indices is as follows. The greek indices α, β run

over 0, . . . , 4, whereas the latin indices i, j only run over the spatial indices

1, . . . , 4. We raise and lower indices using the Minkowski metric, and sum over

repeated upper and lower indices. The indices k, h, l are reserved for dyadic

frequencies.

For the space-time Fourier variables, we will use (τ, ξ) or (σ, η). On occa-

sion we set τ = ξ0, or σ = η0; we will do this only to keep the notation simple

where there is covariant summation with respect to indices α, β.

Littlewood-Paley projections. We denote by Pk = Pk(Dx) the standard

spatial Littlewood Paley projections, where k is a dyadic index. We allow k to

be either discrete (integer) or continuous. We also use the notation P<k, P>k
for projections selecting lower or higher frequencies.

On occasion we will also need space-time Littlewood Paley projections.

These are denoted by Sk := Sk(Dx,t), S<k, S>k.

We also define modulation Littlewood Paley projections, Qj := Qj(|Dt| −
|Dx|). Sometimes we will restrict these to positive or negative time frequencies,
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Q±j := Q±Qj , where Q± := F−1[1[0,∞)(±τ)F [ϕ]] restricts to the ± frequency

half-space.

Frequency envelopes. For some more accurate bounds, at various places we

need to keep better track of the dyadic frequency distribution of norms. This

is done using the language of frequency envelopes. An admissible frequency en-

velope will be any sequence {ck}k∈Z of positive numbers that is slowly varying

upwards,

2−C0(j−k) ≤ cj/ck ≤ 2δ0(j−k), j > k,

with a large universal constant C0 and a small universal constant δ0. Given

such a sequence and a norm X, we define the norm

‖φ‖Xc = sup
k
c−1
k ‖Pkφ‖X .

We say that c is a frequency envelope for the data Ax[0] if for every k ∈ Z, we

have

‖(PkAx[0], Pkφ[0])‖H ≤ ck.
Given any Ax[0], φ[0] ∈ Ḣ1 × L2, we may construct such a c by

ck :=
∑
k′>k

2−δ0|k−k
′|‖Pk′Ax‖H +

∑
k′≤k

2−C0|k−k′|‖Pk′Ax‖H.

By Young’s inequality, we have ‖c‖`2 . ‖Ax[0]‖Ḣ1×L2 .

Lie group and algebra notation. We use the notation ad(A)B = [A,B]

for the Lie bracket on g, and its interpretation as a representation of g as a

subspace of Aut(g). The Killing form

〈A,B〉 = tr(ad(A)ad(B))

is nondegenerate if G is semisimple, and (with a possible sign adjustment) it

can be used as an invariant inner product on g. It also has the invariance

property

〈[A,B], C〉 = 〈A, [B,C]〉.
The action of G on g is denoted by Ad(O)A = OAO−1. This preserves Lie

brackets and the Killing form.

We also need to work with G valued functions and symbols O(t, x, ξ). To

differentiate O we introduce the notation

O;x = ∂xOO
−1, O;ξ = ∂ξOO

−1, etc.

These are all well-defined elements of the Lie algebra g. Furthermore, for any

two such derivatives we have the commutation relation

(1.13) ∂kO;l − ∂lO;k = [O;k, O;l].

Now we introduce the corresponding classes of pseudodifferential operators

acting on Lie algebra valued functions. We begin with Lie algebra valued
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symbols Ψ(x, ξ), where for g valued functions B we use the Lie bracket to

define using the left calculus

(1.14) Op(ad(Ψ))(x,D)B(x) =

∫
ei(x−y)ξ[Ψ(x, ξ), B(y)]dydξ.

We note that its L2 adjoint (with respect to the Killing form duality) is

−Op(ad(Ψ))(D, y).

Similarly, for a G valued symbol O, we define

(1.15) Op(Ad(O))(x,D)B(x) =

∫
ei(x−y)ξO(x, ξ)B(y)O−1(x, ξ)dydξ.

Its L2 adjoint (with respect to the Killing form duality) is Op(Ad(O−1))(D, y).

1.4. Structure of the paper. Our paper is organized as follows. In Sec-

tion 2, we begin with some elliptic gauge related fixed time estimates. In

particular, these will help us relate the full nonlinear gauge independent en-

ergy with the linear energy associated to the YM-CG system. We also consider

similar issues for the linearized equation.

In the following section we switch to space-time analysis and define the

function spaces S1 and N ; with minor changes, this follows [11]. We also recall

some useful estimates from [11] and add to that some additional properties

from [14], related to the interval decomposition of the S1 and N spaces.

In Section 4 we use the S1 norms to provide a stronger form of our

main theorem, and we show that this follows from three estimates in Proposi-

tions 4.1, 4.2 and 4.3.

Section 5 contains the perturbative part of our analysis, which primarily

consists of bilinear estimates in S1 and N spaces. There we prove Propo-

sition 4.1, as well as Proposition 4.3 (the latter modulo Lemma 5.6, which

captures the trilinear structure governed by the second null condition, and

whose proof is relegated to the next to last section).

The bulk of the paper is devoted to the construction of a parametrix for

the paradifferential equation (4.3), which is the main step in the proof of the

remaining Proposition 4.2.

We begin in Section 6 with some heuristic considerations, followed by the

rigorous definition of the parametrix and by Theorem 3, which summarizes

its properties. This suffices for the proof of Proposition 4.2. In Section 7 we

review the notion of decomposability and establish a number of bounds for

the symbols Ψ and O arising in the definition of the parametrix. The symbol

bounds are then used in Section 8 to derive kernel bounds and a number of L2

estimates, concluding with the proof of the first three parametrix bounds in

Theorem 3, as well as the Strichartz and null frame bounds for the renormal-

ization operators in our parametrix. Section 9 contains the proof of the error



840 JOACHIM KRIEGER and DANIEL TATARU

estimates in Theorem 3, modulo Lemma 9.1. The two estimates that require a

fine trilinear analysis, namely, Lemmas 9.1 and 5.6, are proved in Section 10.

Acknowledgement. The authors would like to thank the referee for very

helpful comments and improvements to the manuscript.

2. Elliptic L2 bounds

Here, for convenience, we show that any small energy data admits a

Coulomb representation that is small in H. We also show that the equa-

tions (1.7)–(1.8) are well-posed; this justifies the fact that the initial data in

the Coulomb gauge is fully determined by (Aj(0), ∂tAj(0)) (at least at small

energies).

Proposition 2.1.

(a) Let (Ãα(0), ∂tÃj(0)) ∈ Ḣ1×L2 be an initial data for the Yang-Mills equa-

tion with energy E. If E is small enough then there exists a unique gauge

equivalent Coulomb data (up to action of a constant O ∈ G) with

(2.1) ‖(Aj(0), ∂tAj(0))‖2H ≈ E.

(b) For any Coulomb data (Aj(0), ∂tAj(0)) that is small in H, there exists a

unique solution (A0(0), ∂tA0(0)) ∈ H to (1.7)–(1.8) so that

(2.2) ‖(A0(0), ∂tA0(0))‖2H . E2.

(c) If in addition we have (Aj(0), ∂tAj(0))∈HN , we also have (A0(0), ∂tA0(0))

∈ HN and

(2.3) ‖(A0(0), ∂tA0(0))‖2HN . E‖(Aj(0), ∂tAj(0))‖2HN .

Proof. The first part is proved (in n ≥ 6 dimensions, but equally valid in

lower ones), for example, in [10]. The second part is a consequence of Sobolev

embeddings and a simple fixed point argument. �

We also consider the counterpart of part (b) for the linearized equa-

tion (1.10). We have

Proposition 2.2. Let (Aj(0), ∂tAj(0)) ∈ H be a Coulomb initial data for

the Yang-Mills equation with small energy E. Let 1
2 <s <1 and (Bj(0), ∂tBj(0))

∈ Ḣs be a Coulomb initial data for the linearized Yang-Mills equation (1.10).

Then there exists a unique solution (B0(0), ∂tB0(0)) ∈ Ḣs to (1.11)–(1.12) so

that

(2.4) ‖(B0(0), ∂tB0(0))‖2Ḣs . E‖(Bj(0), ∂tBj(0))‖2Ḣs .

Proof. This is also a simple fixed point argument that is based on the

Sobolev embeddings. The details are left for the reader. �
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3. The S and N spaces

With minor modifications, we will use the function spaces introduced in

[11] in the whole of R4+1. We also need to work on bounded time intervals,

for which we use the set-up of [14].

3.1. The S1, N , Z and Y 1 spaces. We begin our discussion with the func-

tion spaces introduced in [11], namely, S1 for the MKG waves (A, φ) and N

for the inhomogeneous terms in both the 2 and the 2A equation. In addition

to these we also recall the Z norm, which plays a key role in the reiteration of

the equation in connection to trilinear estimates and the second null structure.

These are spaces of functions defined over all of Rn+1, together with the

related spaces S and N∗. They are all defined via their dyadic subspaces, with

norms
‖φ‖2X =

∑
k∈Z
‖φk‖2Xk , X ∈ {S, S1, N, Z}.

Here we use the `2 Besov structure. On occasion we will also need `1 and `∞

type Besov norms, which are denoted by `1X, respectively `∞X, with norms

‖φ‖`1X =
∑
k∈Z
‖φk‖Xk , ‖φ‖`∞X = sup

k∈Z
‖φk‖Xk , X ∈ {S, S1, N, Z}.

We recall the definition of their norms. With minor modifications at high

modulations, we follow [11]. For Nk, we set

(3.1) Nk = L1L2 +X
0,− 1

2
1 ,

where

‖φ‖
Xs,b
r

:=
Ä∑

k

Ä∑
j

(2sk2bj‖PkQjφ‖L2L2)r
ä 2
r
ä 1

2 .

The Nk norm is the same as in [11].

The Sk space is a strengthened version of N∗k ,

(3.2) X
0, 1

2
1 ⊆ Sk ⊆ L∞L2 ∩X0, 1

2∞ = N∗k ,

while S1
k is defined as

(3.3) ‖φ‖S1
k

= ‖∇φ‖Sk + 2−
k
2 ‖2φ‖L2L2 + 2−

4k
9 ‖2φ‖

L
9
5L2

.

As in [14], compared to [11] we have loosened the `1 summability of the

2−1L2L2 norm and added the 2−1L
9
5L2 norm above. Both of these modi-

fications are of interest only at high modulations. The exact exponent 9/5 is

not really important; for our purposes, it only matters that it is less than two

and greater than 5/3.

We now recall the definition of the space Sk from [11]. The space Sk scales

like free waves with L2 × Ḣ−1 initial data and is defined by

‖φ‖2Sk = ‖φ‖2Sstr
k

+ ‖φ‖2Sang
k

+ ‖φ‖2
X

0, 12
∞

,
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where

(3.4)

‖φ‖Sstr
k

= sup
2≤q,r,≤∞, 1

q
+

3/2
r
≤ 3

4

2
( 1
q

+ 4
r
−2)k‖(φ, 2−k∂tφ)‖LqLr ,

‖φ‖Sang
k

= sup
l<0
‖φ‖Sang

k,k+2l
,

‖φ‖2Sang
k,j

=
∑
ω

‖Pωl Q<k+2lφ‖2Sω
k

(l) with l = dj − k
2
e.

The Sstr
k norm controls all admissible Strichartz norms on R1+4. The ω-sum

in the definition of Sang
k,j is over a covering of S3 by caps ω of diameter 2l with

uniformly finite overlaps, and the symbols of Pωl form a smooth partition of

unity associated to this covering. The angular sector norm Sωk (l) combines

the null frame space as in wave maps [21], [27] with additional square-summed

norms over smaller radially directed blocks Ck′(l′) of dimensions 2k
′× (2k

′+l′)3.

We first define

‖φ‖PW±ω (l) = inf
φ=
∫
φω′

∫
|ω−ω′|62l

‖φω′‖L2
±ω′ (L

∞
(±ω′)⊥

)dω
′,

‖φ‖NE = sup
ω
‖/∇ωφ‖L∞ω (L2

ω⊥
),

where the norms are with respect to `±ω = t±ω · x and the transverse variable

in the (`±ω )⊥ hyperplane (i.e., constant `±ω hyperplanes). Moreover, /∇ω denotes

tangential derivatives on the (`+ω )⊥ hyperplane. As in [11], we set

(3.5) ‖φ‖2Sω
k

(l) = ‖φ‖2Sstr
k

+ 2−2k‖φ‖2NE + 2−3k
∑
±
‖Q±φ‖2

PW∓ω (l)

+ sup
k′6k,l′60

k+2l6k′+l′6k+l

∑
Ck′ (l′)

(
‖PCk′ (l′)φ‖

2
Sstr
k

+ 2−2k‖PCk′ (l′)φ‖
2
NE

+ 2−2k′−k‖PCk′ (l′)φ‖
2
L2(L∞) + 2−3(k′+l′)

∑
±
‖Q±PCk′ (l′)φ‖

2
PW∓ω (l)

)
,

where the Ck′(l′) sum runs over a covering of R4 by the blocks Ck′(l′) with uni-

formly finite overlaps, and the symbols of PCk′ (l′) form an associated partition

of unity. We emphasize the role played by the next to last term in the above

expression, which captures the gain in Strichartz estimates on blocks that are

shorter radially. This gain was first discovered in [7] and plays a key role in

getting some of the sharper bilinear bounds that are needed in the present pa-

per. We remark that there is a similar gain at the level of the L2L6 Strichartz

norm, which could be easily added to the S1 structure; this would improve

some of the intermediate estimates in this paper, but it would not affect the

final result in a significant way.
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We also define the smaller space S]k ⊂ Sk (see the bound (3.7) below) by

‖u‖
S]
k

= ‖2u‖Nk + ‖∇u‖L∞L2 .

On occasion we need to separate the two characteristic cones {τ = ±|ξ|}. Thus

we define the spaces Nk,±, S]k,± and N∗k,± in an obvious fashion, so that

Nk = Nk,+ ∩Nk,−, S]k = S]k,+ + S]k,−, N∗k = N∗k,+ +N∗k,−.

Next we describe an auxiliary space of the type L1(L∞) that will be useful

for decomposing the nonlinearity:

‖φ‖2Z =
∑
k

‖Pkφ‖2Zk , ‖φ‖
2
Zk

= sup
l<C

∑
ω

2l‖Pωl Qk+2lφ‖2L1(L∞).

Note that as defined this space already scales like Ḣ1 free waves. In addi-

tion, note the following useful embedding, which is a direct consequence of

Bernstein’s inequality:

(3.6) 2−1L1(L2) ⊆ Z.

Finally, the function space Y 1 for A0 is easy to describe, since the A0 equation

is elliptic:

‖A0‖2Y 1 = ‖∇A0‖2L∞L2 + ‖∇A0‖2
L2Ḣ

1
2
.

In the study of the linearized equations we will also use the spaces Ss and

N s−1, whose norms are defined as

‖B‖2Ss[I] =
∑
k

22(s−1)k‖∇Bk‖2Sk , ‖G‖2Ns−1[I] =
∑
k

22(s−1)k‖Gk‖2Nk .

One of the results in [11] asserts that we have linear solvability for the

d’Alembertian in our setting.

Proposition 3.1. We have the linear estimates

‖∇φ‖S . ‖φ[0]‖H + ‖2φ‖N ,(3.7)

‖φ‖S1 . ‖φ[0]‖H + ‖2φ‖
N∩L2Ḣ−

1
2 ∩L

9
5 Ḣ−

4
9
.(3.8)

Here (3.7) is the embedding S] ⊂ S, whereas (3.8) follows immediately

from (3.7).

3.2. Interval localization. So far, we have described the global setting in

[11]. However, in this article we need to work on compact time intervals,

therefore we also need suitable interval localized function spaces. For this we

borrow the set-up of [14].

We start by defining

(3.9) ‖φ‖S1[I] = inf
φ=φ̃|I

‖φ̃‖S1 , ‖f‖N [I] = inf
f=f̃|I

‖f̃‖N .

The next result from [14] provides an alternate take on these definitions:
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Proposition 3.2. Consider a time interval I = [0, T ] and its character-

istic function χI . Then we have the bounds

(3.10) ‖χIφ‖S . ‖φ‖S , ‖χIf‖N . ‖f‖N .

The latter norm is also continuous as a function of I . We also have the linear

estimates

‖∇φ‖S[I] . ‖φ[0]‖H + ‖2φ‖N [I],(3.11)

‖φ‖S1[I] . ‖φ[0]‖H + ‖2φ‖
(N∩L2Ḣ−

1
2 ∩L

9
5 Ḣ−

4
9 )[I]

.(3.12)

Note that a consequence of the above proposition is that, up to equivalent

norms, we can replace the arbitrary extensions in (3.9) by the zero extension

in the N case, respectively by homogeneous waves with (φ, ∂tφ) as the data at

each endpoint outside I in the S1 case.

4. The proof of the main result

In this section we provide the main intermediate results used in the proof,

and we use them in order to complete the proof of the Theorem 1. For conve-

nience, we restate the theorem here in a more precise form:

Theorem 2. The Yang-Mills system in Coulomb gauge (1.6)–(1.7)–(1.8)

is globally well-posed in Ḣ1×L2 for initial data that is small in H = Ḣ1×L2,

(4.1) ‖Ax(0), ∂tAx(0)‖H ≤ ε,

in the following sense:

(i) (Regular data) If in addition the data (A0j , A1j) is more regular, (A0j , A1j)

∈ HN , then there exists a unique global in time regular solution (Aj , ∂0Aj)

∈ SN , which has a Lipschitz dependence on the initial data locally in time

in the HN topology.

(ii) (Rough data) The initial data to solution map admits an extension

H 3 (Aj0, Aj1)→ (Aj , ∂tAj) ∈ S1,

globally in time, for all small data as above, and that is continuous in the

H ∩ Ḣs → S1 ∩ Ṡs topology (applied to differences of solutions) for s < 1

but close to 1.

To set the stage for the proof of the theorem, we assume that we have a

solution Aj for the Yang-Mills equation (1.6) in a time interval I containing 0,

and further that this solution satisfies

(4.2) ‖Aj‖S1[I] ≤ ε� 1.

We begin by rewriting the equation in a paradifferential fashion,

(4.3) 2Aj,k + 2P[Aα,<k, ∂
αAj,k] = Fk,
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where Fk contains only terms that will be treated in a perturbative fashion,

Fk = P
(
Pk
Ä
[Aα, ∂jAα]− 2[Aα≥k, ∂αAj ]− [∂0A0, Aj ]− [Aα, [Aα, Aj ]]

ä
−2[[Pk, A

α
<k], ∂αAj ]

)
.

(4.4)

To estimate F we use the following:

Proposition 4.1. Assume that A is a solution to the Yang-Mills equa-

tion in Coulomb gauge in an interval I , which satisfies (4.2). Then for any

admissible frequency envelope c, we have

(4.5) ‖F‖Nc[I] . ε‖Aj‖S1
c [I]

and

(4.6) ‖F‖`1N [I] . ε‖Aj‖S1[I],

as well as

(4.7) ‖2A‖
(L2Ḣ−

1
2 ∩L

9
5 Ḣ−

4
9 )c[I]

. ε‖Aj‖S1
c [I].

This proposition is proved in the next section.

We now turn our attention to the linear equation (4.3). In order to un-

couple variables it will be useful to also consider the more general frequency

localized equation:

(4.8) 2Bj,k + 2P[Aα,<k, ∂
αBj,k] = Gj,k.

Proposition 4.2. Assume that A is a solution to the Yang-Mills equa-

tion in Coulomb gauge in an interval I , which satisfies (4.2). Then for equa-

tion (4.8), we have the following linear estimate:

(4.9) ‖∇Bj,k‖S[I] . (‖Gj,k‖N [I] + ‖Bj,k[0]‖H).

This result is the key point of the paper. Its proof is closed in Section 6,

using the paradifferential parametrix in Theorem 3. However, the proof of

Theorem 3 requires all the subsequent sections of the paper.

The two bounds above suffice in order to close the a priori bounds in S1

and SN , including frequency envelope bounds. In order to compare different

solutions, we need to work with the linearized equation (1.10)–(1.11)–(1.12).

Proposition 4.3. Suppose that A is a solution to the Yang-Mills equation

in Coulomb gauge in an interval I , which satisfies (4.2). Then equation (1.10)

is well-posed in Hs for s < 1, close to 1, in the time interval I .

To further clarify this last result, we rewrite equation (1.10) in a paradif-

ferential form,

(4.10) 2Bk + P[Aα,<k∂
αBk] = P[Bα,<k, ∂

αAk] +Gk.
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The term Gk plays the same role as Fk in the original equation. Precisely, we

have

Proposition 4.4. Assume that A is a solution to the Yang-Mills equation

in Coulomb gauge in an interval I , which satisfies (4.2). Let B be a solution

for the equation (1.10). Then for s ≤ 1 and close to 1, we have

(4.11) ‖Gj‖Ns−1 . ε‖Bj‖Ss .

This result is proved in the next section. We remark that the range of s

depends on the constant δ in the estimate (5.1) in the next section, which is

from [11]. We expect the correct range here to be s > 1
2 .

The new term [Bα,<k, ∂
αAk] in (4.10) does not have a counterpart in

the previous argument. This is the term which is responsible for disallowing

case s = 1 in Proposition 4.2, and ultimately for the failure of the Lipschitz

dependence of the solution on the initial data in the strong topologyH. We will

estimate this in a more roundabout fashion, proving the following statement:

Proposition 4.5. Suppose B ∈ Ss solves the linearized equation (1.10)

in a time interval I , around a YM-CG solution A which satisfies (4.2). Then

for s < 1 and close to 1, we have the estimate

(4.12) ‖[Bα,<k, ∂αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1 .

This proposition is more delicate than the previous proposition, as it re-

quires a fine trilinear analysis based on reiterating the linearized equation. Its

proof is also in the next section, modulo the most difficult case in Lemma 5.6,

which is relegated to Section 10.

The result in Proposition 4.3 is a direct consequence of Propositions 4.2,

4.4 and 4.5. We now turn our attention to Theorem 2.

Proof of Theorem 2. Here we show that Theorem 2 follows from Proposi-

tions 4.1, 4.2, and 4.3. In addition to these propositions, we will also take it

for granted that for large N (e.g., N ≥ 3), the Yang-Mills equation is locally

well-posed inHN , with smooth dependence on the initial data; at least at small

energies this is a straightforward perturbative result, based purely on energy

estimates. We carry this out in several steps.

Step 1: A priori bounds for regular data. Here we consider regular HN
solutions in a time interval I = [0, T ], and which satisfy the smallness condition

(4.13) ‖Ax‖S1[I] ≤ ε0 � 1.

Let c be an admissible H frequency envelope for the initial data. Then we

claim that c is also an S1 frequency envelope for the solution and, in addition,

we have the bound

(4.14) ‖Ax‖S1
c
. ‖Ax[0]‖Hc .
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We remark that, as a consequence of this, we have, in particular, the bounds

(4.15) ‖Ax‖S1 . ‖Ax[0]‖H, ‖Ax‖SN . ‖Ax[0]‖HN .

Assume first that we already know that Ax ∈ Sc. Then (4.14) is obtained

by successively applying Propositions 4.1 and 4.2 in equation (4.3). Without

knowing that Ax ∈ Sc, let d be an admissible frequency envelope for Ax in S1.

Then for δ > 0, we have Ax ∈ S1
c+δd. Then we have (4.14) with c replaced by

c+ δd, and it suffices to let δ tend to zero to obtain again (4.14).

Step 2: Global solutions for regular data. Here we start with regular data

(Aj(0) ∂tAj(0)) ∈ HN that is small in the energy norm; i.e., it satisfies (4.1).

Then the solution exists in HN on some nonempty time interval [0, T ). We

claim that the solution is global, T =∞, and that it satisfies the bound

(4.16) ‖Aj‖S1 ≤ Cε,

with a fixed universal constant C.

This is done using a time continuity argument. Let T denote the set of all

times T for which a classical (i.e., HN solution ) exists in [0, T ] that satisfies

(4.16). We will prove that T is both open and closed, and thus must be equal

to R+.

(a) T is closed. Indeed, suppose that [0, T0) ⊂ T . By (4.15) we have a

uniform bound

‖Aj‖SN [0,T ] . ‖Aj [0]‖HN .

Then, in view of the Lipschitz dependence for classical solutions, the solution

Aj extends to time T0 (and indeed, past it) as a classical solution. By a scaling

argument (see, e.g., [28]), the S1[I] norm of classical solutions depends contin-

uously on the interval I. Thus the bound (4.16) at time T0 follows, so T0 ∈ T .

(b) T is open. Let T ∈ T . Then Aj [T ] ∈ HN , so we can continue the

solution beyond time T . It remains to show that the bound (4.16) persists.

Using again the continuous dependence of the S1[I] norm of classical solutions

on the interval I, it suffices to prove (4.16), this under a bootstrap assumption

(4.17) ‖Aj‖S1 ≤ 2Cε,

with a large universal constant C. But this again follows from (4.15) in Step 1.

Step 3: Weak Lipschitz dependence for regular solutions. Here we assert

that for any two small data global regular solutions, we have the bound

(4.18) ‖Aj − Ãj‖Ss . ‖Aj [0]− Ãj [0]‖Hs ,

provided s < 1 is close to 1. This is a direct consequence of the result in

Proposition 4.3.
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Step 4: Rough data solutions. The continuous extension of the flow map

to rough data for solutions that satisfy (4.16), using the H ∩ Ḣs topology,

follows in a standard manner from two properties of small data solutions:

• the frequency envelope bounds (4.14);

• the Lipschitz dependence in a weaker topology (4.18).

Indeed, consider some small energy data Ax[0] ∈ H. Then for any se-

quence A
(n)
x of regular solutions, whose data A

(n)
x [0] converge to Ax[0] ∈ H in

the sense that

‖A(n)
x [0]−Ax[0]‖... → 0,

the limit Ax of A
(n)
x exists in Ṡs by (4.18). Further, the relation (4.18) extends

to all solutions constructed in this way.

Favorably choosing A
(n)
x [0] so that they have the same H frequency enve-

lope as Ax[0] (e.g., as A
(n)
x [0] = P<nAx[0]) and applying (4.14), it follows that

Ax ∈ S1, and further that (4.14) holds for Ax.

Finally, to establish the continuity of the data to solution map fromH∩Ḣs
to S ∩ Ṡs, we use the previously established Ḣs Lipschitz bound for low fre-

quencies, combined with the uniform smallness of high frequency tails, which

is in turn derived from the frequency envelope bound. �

5. Bilinear estimates and perturbative analysis

The first goal of this section is to review the bilinear null-form bounds from

[11], which will be repeatedly used in our analysis. Then we use these bounds

to provide some preliminary characterization of YM solutions that satisfy an

a priori S1 bound. Finally, we conclude with a proof of Propositions 4.1

and 4.3.

5.1. Bilinear null-form bounds. We begin with the main bilinear null-form

estimate, where N (u, v) refers to any expression of the form ∂iu∂jv − ∂ju∂iv.

It comes from [11], and specifically from (131) in Theorem 12.1 there:

Proposition 5.1 ([11]). For any null-form N , we have the following null-

form estimates :

(5.1) ‖PkN (uk1 , vk2)‖N . 2k2δ(kmin−kmax)‖uk1‖S‖vk2‖S .

We remark that, in view of Proposition 3.2, the same bound holds in any

time interval I.

Ideally, we would like to improve this bound in the case of low-high fre-

quency interactions k1 < k2 = k and have a 2k1 factor instead. Unfortunately

that does not work in general. However, it does work for the most part. To

describe that, we isolate the bad component, namely, H∗N (uk1 , vk2). Here,
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following [11], if M(Dt,x, Dt,y) is any bilinear translation invariant operator,

then we set

H∗M(φk1 , ψk2) =
∑
j<k1

Q<j−CM(Qjφk1 , Q<j−Cψk2), k1 < k2 − C.(5.2)

We observe that the map H∗ selects the portion of the bilinear interaction

where both the high frequency input and the output have low modulation.

This case is unfavorable in the high frequency limit; this is most easily seen

using duality to rewrite the above bound in a trilinear fashion. We also remark

that the frequency/modulation localization in H∗ fixes the angle θ between the

two input functions to

θ ≈ 2(j−k1)/2.

A benefit of the null-form structure of the nonlinearity is that it provides

an additional gain at small angles in bilinear estimates, which is roughly pro-

portional to the angle. We will also need to take advantage of this gain in our

estimates. For this we introduce a second selection device for bilinear interac-

tions. Precisely, given two spatial frequencies ξ and η, we define a partition of

unity

1 =
∑

θ dyadic

χθ(ξ, η),

where χθ(ξ, η) is a smooth homogeneous cutoff that selects the region where

∠(ξ, η) ≈ θ. Then, given bilinear translation invariant operator M(Dt,x, Dt,y)

with symbol m(τ, ξ, σ, η), we define Mθ as the bilinear translation invariant

operator with symbol m(τ, ξ, σ, η)χθ(ξ, η). We will similarly used the notation

M<θ, M>θ with the obvious meanings.

We now return to the promised decomposition of the null form into a

good and a bad part. For the complement (I − H∗)N (uk1 , vk2), we have a

good S bound; for H∗N (uk1 , vk2), instead, we use the Z norm as a proxy. The

following estimates are contained in Theorems 12.1 and 12.2 in [11]:

Proposition 5.2 ([11]). For k1 < k2 −C and any null-form N , we have

the following bilinear estimates :

(a) S1 × S1 → N bound :

(5.3) ‖(I −H∗)N (uk1 , vk2)‖N . 2k1‖uk1‖S1‖vk2‖S1 .

We also have the small angle improvement

(5.4) ‖(I −H∗)<θN (uk1 , vk2)‖N . 2k1θ
1
4 ‖uk1‖S1‖vk2‖S1 .

(b) Z × S1 → N bound :

(5.5) ‖H∗N (uk1 , vk2)‖N . 2k1‖uk1‖Z‖vk2‖S1 , k1 < k2.
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(c) L2Ḣ
3
2 × S → N bound :

(5.6) ‖(I −H∗)(uk1 · ∇vk2)‖N . ‖uk1‖L2Ḣ
3
2
‖vk2‖S1 .

(d) 2
1
2 ∆−

1
2Z × S → N bound :

(5.7) ‖H∗(uk1 · ∇vk2)‖N . ‖uk1‖2 1
2 ∆−

1
2Z
‖vk2‖S1 .

In order to be able to take advantage of the bilinear bounds that use the

Z norm we need to have an additional estimate allowing us to bound Z norms

appropriately.

To describe the result we need a second operator Hk which, following [11],

is defined as

(5.8)

HkM(φk1 , ψk2) =
∑

j<k+C

QjPkM(Q<j−Cφk1 , Q<j−Cψk2), k < k1 = k2.

Then the Z bounds are as follows, also contained in [11]:

Proposition 5.3. For any null-form N , we have the following Z bounds :

(a) bound for classical solutions :

(5.9) ‖φk‖Z . ‖2φk‖L1L2 ;

(b) high-low interactions :

‖PkN (uk1 , vk2)‖2Z . 2k2−δ|k1−k2|‖uk1‖S‖vk2‖S1 , k > kmax − C,(5.10)

‖Pk(uk1 · ∇vk2)‖
∆

1
22

1
2Z
. 2k1+k22−δ|k1−k2|‖uk1‖S‖vk2‖S1 , k > kmax − C;

(5.11)

(c) high-high-low interactions :

‖(I −Hk)N (uk1 , vk2)‖2Z . 2k12−δ|k−k1|‖uk1‖S‖vk2‖S1 , k < k1 = k2,

(5.12)

‖(I −Hk)(uk1 · ∇vk2)‖
∆

1
22

1
2Z
. 2k1+k22−δ|k−k1|‖uk1‖S1‖vk2‖S1 , k < k1 = k2.

(5.13)

To better understand how the last two propositions fit together, we remark

that in the bounds in Proposition 5.2 there is no off-diagonal decay with respect

to the frequency gap k1 − k2. Hence, we can only apply it for portions of Ax
that we control in `1Z. This is why the off-diagonal decay in (5.10), (5.11) and

(5.12), (5.13) is important.

We further remark that the same estimates in [11] also yield a bound for

the remaining bad component of N (uk1 , vk2), namely,

(5.14) ‖HkN (uk1 , vk2)‖2Z . 2k1‖uk1‖S1‖vk2‖S1 , k < k1 = k2
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and, similarly,

(5.15) ‖Hk(uk1 · ∇vk2)‖
∆

1
22

1
2Z
. 2k1+k2‖uk1‖S1‖vk2‖S1 , k < k1 = k2.

Unfortunately, these bounds have no off-diagonal decay, so they only lead

to an `∞Z bound for the corresponding “bad”part of A. If one attempts to

combine this with Proposition 5.2, we are left with an unresolved logarithmic

divergence. Addressing this issue requires the finer trilinear analysis in the last

section of the paper and the use of the second null form.

5.2. Characterization of S1 solutions for YM-CG. While the S1 envelope

of a Yang-Mills wave A naturally inherits the `2 dyadic structure from the

initial data, one might expect that the inhomogeneous part of A, arising from

bilinear or cubic interactions, might carry a better, `1 dyadic summation. This

was indeed the case for the Maxwell-Klein-Gordon system in [11], and it al-

lowed us to treat the inhomogeneous part of A in a perturbative fashion, as

well as to use free wave magnetic potentials in the parametrix construction.

Unfortunately, it is no longer the case here, as the bilinear self-interactions

of A are not perturbative. However, we are still able to prove `1 dyadic sum-

mation fully for A0, and in a partial manner only for the inhomogeneous part

of Ax. This will allow us to treat not all but the bulk of the nonlinearity in a

perturbative fashion. Precisely, we prove the following:

Proposition 5.4. Let A be a solution for the YM-CG in an interval I

so that ‖A‖S1 ≤ ε. Then the following property holds :

(5.16) ‖∇A0‖
`1L2Ḣ

1
2
. ε.

Also, for each 0 ≤ b < 1
2 , we have

(5.17) ‖2Ax‖
`1Xb− 1

2 ,−b
+ ‖2Ax‖

L
9
5 Ḣ−

4
9
.b ε.

A related result holds for the linearized equation. There, the dyadic sum-

mation is not an issue because the bounds for the linearized problem are no

longer at scaling (though they are scale invariant). Also, the bounds we need

for the linearized equation are not as refined as those we need for the original

equation. We have

Proposition 5.5. Let A be a solution for the YM-CG in an interval I

so that ‖A‖S1 ≤ ε, and let B ∈ Ss be a solution to the linearized equation, with
1
2 < s ≤ 1. Then the following properties hold :

‖∇B0‖
L2Ḣs− 1

2
. ε‖B‖Ss ,(5.18)

‖2Bx‖
L2Ḣs− 3

2
. ε‖B‖Ss .(5.19)

Next we prove Proposition 5.4 with b = 0, as well as Proposition 5.5. The

proof of the case b > 0 of Proposition 5.4 is postponed for later in this section.
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We remark that while the case b = 0 is frequently used, the stronger bound for

b > 0 is used just once, later in the paper, in estimating the error term E1,out

in Section 9.

Proof of Proposition 5.4 for b= 0. (a) We begin with the A0 bound, where

we first estimate the right-hand side in equation (1.7). Using Sobolev embed-

dings we have the dyadic estimate with off-diagonal decay

‖Pk[Aj,k1 , ∂0Aj,k2 ]‖
L2Ḣ−

1
2
. 2−

1
6

(kmax−kmin)‖|Dx|
1
6Aj,k1‖L2L6‖∂0Aj,k2‖L∞L2

. 2−
1
6

(kmax−kmin)‖Aj,k1‖S1‖Aj,k2‖S1 .

(5.20)

After dyadic summation this gives

‖[Aj,k1∂0Aj,k2 ]‖
`1L2Ḣ−

1
2
. ‖Aj‖S1‖Aj‖S1 . ε2.

Now we solve equation (1.7) perturbatively in `1L2Ḣ
3
2 , estimating the terms

[Aj , [Aj , A0]] and [Aj , ∂jA0] in the same manner as above, appropriately using

Sobolev embeddings to gain off-diagonal decay in frequency.

We need to separately prove the ∂tA0 bound, for which we use the equa-

tion (1.8). Then it suffices to prove estimates of the form

‖[∂0A0, Aj ]‖
`1L2Ḣ−

1
2
. ‖∂0A0‖

L2Ḣ
1
2
‖Aj‖`2L∞Ḣ1 ,

‖[A0, ∂0Aj ]‖
`1L2Ḣ−

1
2
. ‖A0‖

L2Ḣ
3
2
‖∂0Aj‖`2L∞L2 .

These are also easily proved via dyadic estimates with off-diagonal decay, which

in turn are obtained using Sobolev embeddings.

(b) We separately consider each of the terms on the right in the equa-

tion (1.6) for Ax, exactly as in case (a), using the bound (5.16) for the terms

containing A0. Then the b = 0 case of (5.17) follows exactly as in case (a), sim-

ply by combining Strichartz estimates for the two factors and using Bernstein’s

inequality as needed. We remark that the null condition is not used at all here.
�

Proof of Proposition 5.5. (a) This is similar to the proof of the previous

proposition. One only needs to combine the bound (5.16) and the energy bound

(2.2) for A0 with Strichartz estimates for Ax and Bx and Sobolev embeddings

in order to solve equations (1.11) and (1.12) perturbatively in L2Ḣs+ 1
2 , respec-

tively L2Ḣs− 1
2 .

(b) This is similar to the corresponding bound in the b = 0 case of the

previous proposition. The terms on the right in (1.10) are similar to those in

(1.11), so exactly the same estimates apply. �

5.3. The perturbative bounds in Propositions 4.1 and 4.4. We primarily

discuss Proposition 4.1 here, as the numerology is simpler. As the terms in Gk
are similar to those in Fk, the proof of Proposition 4.4 is completely similar.
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However, we remark that, since we work with Fk and Gk term-by-term, one

can view Proposition 4.1 as a special case of Proposition 4.4 for s = 1.

Proof of Proposition 4.1. The high modulation bounds (4.7) have already

been taken care of in Proposition 5.4, so we only need to prove the bounds

for F . We will successively consider all terms in F , taking into account the

following observations:

(a) All estimates below are consequences of the corresponding dyadic esti-

mates. Hence, in order to gain the control of the frequency envelope for

the output F it suffices to obtain an off-diagonal gain in each of the ex-

pressions we consider.

(b) The estimates in the proposition are restricted to a time interval I. How-

ever, this does not cause any difficulties since both the Strichartz bounds

and the estimate (5.1) are equally valid in I. Further, we recall that by

Proposition 3.2 we can readily restrict S and N functions to time intervals.

(c) Due to the Leray projector and the identity

Fj =
∑
k

4−1∂k
Ä
∂kFj − ∂jFk

ä
valid for divergence-free vector fields F , it suffices to estimate the curl

of Fk. This observation will be used for the first term below, but not for

the rest.

Case 1: The term [Ai, ∂jAi]. Its curl is a null-form N (Ai, Ai), therefore it

remains to produce an N bound for the expression |Dx|−1N (Ai, Ai). But this

is a direct consequence of Proposition 5.1, with a suitable off-diagonal gain.

Case 2: The term [Aj , ∂jAi], high-high and and high-low interactions.

Here we use the Coulomb condition ∂jAj = 0 to write

[Aj , ∂jAi] = [∂k(4−1∂kAj), ∂jAi] = [∂k(4−1∂kAj), ∂jAi]−[∂j(4−1∂kAj), ∂kAi],

which is of the form N (|Dx|−1A,A) where the high frequency term is hit by

|Dx|−1. Then the desired bound is again a consequence of Proposition 5.1,

with off-diagonal gain.

Case 3: The term [∂0A0, Ai]. This is a Strichartz term. Precisely, we can

use ∂0A0 ∈ L2Ḣ
1
2 as in (5.16) together with the L2L6 Strichartz bound for Ai

and Sobolev embeddings to place it in L1L2, with off-diagonal gain.

Case 4: The term [A0, ∂tAi], high-high and and high-low interactions.

Here one uses A0 ∈ L2Ḣ−
1
2 and ∇−

3
2∂tAi ∈ L2L∞ to place the output into

L1L2.
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Case 5: The commutator term [Pk, ad(Aα<k)]∂αAj . This is equivalent to

an expression of the form

2−k[|Dx|Aα<k, ∂αAk].

For α 6= 0, this gives, as in Case 2, a null form of the type 2−kN (A<k, Ak) that

is handled via Proposition 5.1. For α = 0, it is equivalent to

2−k[∇A0,<k, ∂tAk],

which is a Strichartz term as in Case 3. Both cases have some off-diagonal

gain.

Case 6: The cubic term [Aj , [Aj , Ai]]. This is placed in L1L2 via Strichartz

estimates and Sobolev embeddings. The off-diagonal gain is a consequence of

the fact that there is a range of Strichartz estimates that can be used in order

to obtain the L1L2 bound. �

5.4. The proof of Proposition 5.4 for b > 0. We consider the paradifferen-

tial decomposition of the nonlinearity in the wave equation for Aj as in (4.3).

For the F component, we already have the bound in Proposition 4.1, more

precisely (4.6), which suffices for all 0 ≤ b < 1
2 . Hence it remains to bound the

expression

(5.21) ‖
∑

k1<k−C
[Ak1,α, ∂

αAk2 ]‖
`1Xb− 1

2 ,−b
. ε2.

We first dispense with some good portions of this expression. First, by using

an L2L∞ bound for the first factor, we obtain

‖[Ak1,α, ∂αAk2 ]‖L2 . 2
k1
2 (‖Ak1,0‖L2Ḣ

3
2

+ ‖Ak1,x‖S1)‖Ak2‖S1 ,

which has off-diagonal decay when measured in Xb− 1
2
,−b at modulations j ≥

k1 − C in the output. It remains to consider low modulations in the output,

namely,

Q<k1−C [Ak1,α, ∂
αAk2 ].

We can peel off some further part of this, using the estimate

‖(I −H∗)Q<k1−C [Ak1,α, ∂
αAk2 ]‖N . (‖Ak1,0‖L2Ḣ

3
2

+ ‖Ak1,x‖S1)‖Ak2‖S1 ,

which is a consequence of (5.3) and (5.6), and again suffices for all b < 1
2 . Thus

we have reduced the problem to an estimate for

H∗Q<k1−C [Ak1,α, ∂
αAk2 ] =

∑
j<k1

Q<j−C [QjAk1,α, Q<j−C∂
αAk2 ].

For each j, this fixes the angle θ between the two factors to θ ≈ 2−(k1−j)/2, so

we can localize to angles of this size. Note carefully that these angles will be
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essentially disjoint on the high frequency side, but they will be overlapping on

the low frequency side.

From here on we can no longer view this as a bilinear estimate for two S1

functions. This is not just a technical difficulty; the direct bilinear null-form

estimate for two S1 functions will in effect be false for b < 1
4 , which is exactly

the threshold we need to cross.

To bypass this difficulty we need to use the fact that (A0, Ax) are not

arbitrary L2Ḣ
3
2 , respectively S1 functions, but are solution for the Yang-Mills

equation. Thus we can reiterate and use again equation (1.6) specifically for

the low frequency factor Ak1 . Here we can take advantage of the Z norm. We

will consider A0 and Ax separately.

(a) The contribution of A0. The analysis is simpler in this case. We simply

observe that, once (5.16) is proved, we can use it to expand it to a range of

mixed norm spaces as follows:

(5.22) ‖|Dx|
3
pA0‖`1Lp′Lp . ε

2, 2 ≤ p <∞.

We remark that this bound fails when p =∞. (Precisely, we can only control

the `∞ norm in that case.) This is why in the study of the Yang-Mills equation

we cannot simply think of A0 as directly perturbative, and it is closely related

to the coupling of A0 with Ax in the second null condition leading to the

trilinear estimates in the last section of the paper.

To prove (5.22), we only discuss the inhomogeneous term in the A0 equa-

tion, as the terms involving A0 are similar but simpler. For this, it suffices to

prove the L1L∞ counterpart of (5.20) without off-diagonal decay; then by in-

terpolation we gain the off-diagonal decay for all intermediate p’s and conclude

as above. Precisely, we claim that

(5.23) ‖|D|−2Pk[Aj,k1 , ∂0Aj,k2 ]‖L1L∞ . ‖Aj,k1‖S1‖Aj,k2‖S1 .

The case of unbalanced frequency interactions is easy, just by using L2L∞

Strichartz bounds for both factors. The more delicate case is that of high ×
high → low interactions, where k < k1 = k2. There, simply using L2L∞ for

both factors would yield a bad 22(k1−k) bound. To remedy this, we partition

both Ak1 and Ak2 in spatial frequency with respect to a lattice of cubes Ck of

size 2k, so that only opposite cubes will contribute to the output. Then by

Cauchy-Schwarz, we have

‖|D|−2Pk[Aj,k1 , ∂0Aj,k2 ]‖2L1L∞

. 2−4k22k1

Ñ∑
Ck

‖PCkAj,k1‖
2
L2L∞

éÑ∑
Ck

‖PCkAj,k2‖
2
L2L∞

é
. ‖Aj,k1‖2S1‖Aj,k2‖2S1 ,
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where we have used the next to last component of the Sωk (l) norm in (3.5) with

k = k1,2, k′ = k and l′ = 0.

We can now use (5.22) to bound directly all low × high frequency inter-

actions in the expression [A0,k1 , ∂0Ax,k2 ]. Indeed, by Sobolev embeddings we

have

‖|Dx|−
1
pA0‖`1Lp′L∞ . ε

2.

Using this we can estimate

‖|Dx|−
1
p [A0, ∂0Ax]‖Lp′L2 . ε2‖∂0Ax‖L∞L2 ,

which gives the desired bound as in (5.17) with b = 1
2 −

1
p in view of the

embedding

Lp
′
L2 ⊂ X0, 1

p
− 1

2 .

Since p is arbitrarily large, we obtain the desired bound for all 0 ≤ b < 1
2 .

(b) The contribution of Ax. Here we begin with the bounds (5.9) and

(5.10), which allow us to split Ax into two components,

Ax = Agood
x +Abad

x ,

where Agood
x satisfies a favorable Z bound,

‖Agood
x ‖`1Z . ε2,

and Abad
x is the remainder, namely,

Abad
x = 2−1|Dx|−1

∑
k<k1=k2

HkN (Ak1 , Ak2).

We can use the `1Z bound directly for Agood
x due to (5.5), which yields off-

diagonal decay for all b > 0.

For Abad
x , on the other hand, we have a favorable S1 bound with off-

diagonal decay, due to (5.1), and a Z bound without off-diagonal decay. Hence

interpolating the X
1, 1

2∞ component of the S1 norm with the Z norm we obtain

all intermediate bounds for Abad
x with off-diagonal decay. Then we can conclude

as in the A0 case. This suffices for all b < 1
2 .

5.5. Proof of Proposition 4.5, the bulk part. Here we consider most of the

proof of Proposition 4.5, modulo the more delicate trilinear part in Lemma 5.6.

We extend Bj outside the interval I as free waves, and B0 by zero. Then we

seek to prove the bound in the proposition on the full real line. This allows us

to consider modulation localizations. We decompose the bilinear form

[Bα,<k, ∂
αCk] = (I −H∗)[Bα,<k, ∂αCk] +H∗[Bα,<k, ∂αCk].

In the first term we separate the Bj and B0 components. For Bj , we use the S

norm bound, together with the null condition and the estimate (5.3). For B0,
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we use the L2Ḣs+ 1
2 bound in (5.6). It remains to consider the second term,

for which the Bj and B0 terms can no longer be separated:

Lemma 5.6. Suppose that B ∈ Ss solves the linearized equation (1.10) in

a time interval I . Extend Bj outside I as free waves and B0 by zero. Then for

s < 1 and close to 1, we have the global estimate

(5.24) ‖H∗[Bα,<k, ∂αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1 .

This remaining lemma is proved in Section 10.

6. The gauge transformation

This section is devoted to the proof of Proposition 4.2.

6.1. Equivalent formulations. A first difficulty we encounter in the proof

of the proposition is that the equations for Bj are coupled via the Leray pro-

jection. Fortunately, it turns out that the coupling is perturbative, and we can

discard the projector and work with the uncoupled equations:

Proposition 6.1. Assume that A is a solution to the Yang-Mills equation

in Coulomb gauge that satisfies

‖Aj‖S1 ≤ ε� 1.

Then for the equation

(6.1) 2Bk + 2[Aα,<k, ∂
αBk] = Fk,

we have the following linear estimate:

(6.2) ‖∇Bk‖S . (‖Fk‖N + ‖Bk[0]‖H).

To transition from this to Proposition 4.3 it suffices to apply this with

Bk = Bj,k and estimate the difference, namely,

‖∆−1∂j [∂lAα,<k, ∂
αBl,k]‖N . ‖Aα,<k‖S1‖∇Bl,k‖S

(using the null condition via ∇ · B = 0). This is a pure S bound as we have

an extra derivative on the low frequency, and it follows by (5.1).

In view of the estimates in Proposition 4.1, the frequency localized result

in Proposition 6.1 is equivalent to the following nonlocalized version:

Proposition 6.2. Assume that A is a solution to the Yang-Mills equation

in Coulomb gauge that satisfies

‖Aj‖S1 ≤ ε� 1.

Then for the equation

2AB = F,

we have the following linear estimate:

(6.3) ‖∇B‖S . (‖F‖N + ‖Bk[0]‖H).
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Further, in view of the same estimates in Proposition 4.1, the last propo-

sition is equivalent to the existence of a good parametrix for the corresponding

paradifferential problem; see the proof of Theorem 5 in [11].

Proposition 6.3. Assume that A is a solution to the Yang-Mills equation

in Coulomb gauge that satisfies

‖Aj‖S1 ≤ ε� 1.

Then for each frequency localized initial data (B0k, B1k) ∈ H and inhomoge-

neous term Fk ∈ N , there exists an approximate solution Bk for equation (4.8),

in the sense that

(i) we have the following linear estimate:

(6.4) ‖∇Bk‖S . (‖Fk‖N + ‖(B0k, B1k)‖H);

(ii) we have the small error estimates

‖Bk[0]− (B0k, B1k)‖H + ‖2Bk + 2[Aα,<k, ∂
αBk]− Fk‖N

. ε(‖Fk‖N + ‖(B0k, B1k)‖H).
(6.5)

6.2. Heuristic considerations. Naively, our goal is to “gauge out” the mag-

netic potential, i.e., to find a suitable transformation, which we call the renor-

malization operator which, up to small errors, interchanges the magnetic wave

equation with the flat d’Alembertian. We now outline several considerations

that eventually lead to our renormalization operators.

1. Scalar conjugations. We would like to make a gauge transformation

Ck = O−1
<kBkO<k,

where O<k is a G valued map that is also localized at lower frequency, in order

to turn the above equation into

2Ck = error.

A direct computation gives

2Ck = O−1
<k(2Bk − [∂αO<kO

−1
<k, ∂

αBk] + l.o.t.)O<k,

where in “lower order terms” (l.o.t.) we have included expressions where both

derivatives apply to the lower frequency term O<k. To insure cancellation here

we would need to require that

(6.6) ∂αO<kO
−1
<k = −A<k,α.

Solving this exactly would require the connection A to have zero curvature,

which is obviously unacceptable.
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2. Pseudodifferential renormalizations. The first remedy to the above

failure of complete integrability is then to allow the conjugation by O to be a

pseudodifferential operator, whose symbol O(t, x, ξ) would then have to satisfy

(6.7) ∂αO<kO
−1
<kξ

α ≈ −A<k,αξα.

Algebraically this means that for each ξ, we renormalize Aα in a single direc-

tion, which is now possible.

However, from an analytic perspective this implies that the symbol of O

will have singularities associated to space-time frequencies η so that ηαξα = 0.

To bypass this second difficulty we observe that solutions to the linear wave

equation are localized in frequency on the null cone ξαξ
α = 0, while the leading

part of Aα are also primarily localized on the cone ηαη
α = 0. This is useful

because when both ξ and η are on the cone, the expression ηαξα cannot vanish

unless ξ and η are collinear.

To take advantage of the above observation, we first note that we are in a

paradifferential situation where |η| � |ξ|, therefore the two cones ξ0 = ±|ξ| are

completely uncoupled and will be renormalized separately using different para-

metrices O±. In particular, this will allow us to work with symbols O±(t, x, ξ)

that do not depend on ξ0; therefore, they act separately on time slices. Thus

we replace (6.7) by

(6.8) (ωj∂j ± ∂0)O<k,±O
−1
<k,± ≈ −(ωjA<k,j ±A<k,0), ω = ξ′|ξ′|−1.

3. Pseudodifferential vs. nonlinear: divide and conquer. Above, it was

easy to replace ξ0 by ±|ξ| but, due to the nonlinear nature of the expression on

the left, it is far less straightforward to do the same for η. In order to uncouple

the pseudodifferential and nonlinear aspects of the analysis, we introduce an

intermediate step, namely,

(6.9) (ωj∂j ± ∂0)O<k,±O
−1
<k,± ≈ (ωj∂j ± ∂0)Ψ<k,± ≈ −(ωjA<k,jξ

j ±A<k,0).

The transition from A to Ψ is pseudodifferential but linear, therefore ap-

propriately (so that only differential operators in time are used) replacing η0

by |η′| we can rewrite the second part of the above relation as

(6.10) (∂2
j − (ωj∂j)

2)Ψ<k,± ≈ (∂0 ± ∂jωj)(ωjA<k,jξj ±A<k,0).

This transition is similar to the related step in the previous Maxwell-Klein-

Gordon result [11].

The step from Ψ to O, on the other hand, is more algebraic in nature and

resembles the similar step in the study of wave maps; see [28]. Precisely, for

fixed ω, we seek to have the more general approximate relation

∇O<k,±O−1
<k,± ≈ ∇Ψ<k,±.
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Differentiating with respect to the frequency parameter h < k we obtain

∇(∂hO<h,±O
−1
<h,±) + [∂hO<h,±O

−1
<h,±,∇O<h,±O

−1
<h,±] ≈ ∇Ψh.

The second term on the left is quadratic and has the added feature that the

derivative applies to the lower frequency factor. Hence it is natural to discard

it. Then it is natural to obtain O by integrating Ψh with respect to the

frequency parameter h, i.e.,

(6.11) ∂hO<hO
−1
<h = Ψh,

which is a well-defined G valued evolution.

4. Perturbative vs. renormalizable. The last question we need to address

is whether we need to feed all or only part of A into the construction of the

renormalization operators. For simplicity one might attempt first the former

but, as it turns out, there are two distinct obstructions for this strategy. Of

course, the downside of choosing the latter is that the remaining part of A

needs to be treated perturbatively.

The first issue is related to the symbol regularity for O. We observe that

even with ξ and η restricted to the null cones, the expression ηαξα = 0 can still

vanish but only when ξ and η are collinear. This is the well-known difficulty of

small angle interactions. To avoid the corresponding symbol singularities, we

will excise the small angle interactions from the linear flow (4.3) and treat them

perturbatively; this is where the null condition comes in handy. Unfortunately,

it is too much to ask to uniformly excise the small angle interactions, and

instead we do this in a frequency dependent fashion. Precisely, we will treat

perturbatively only the interactions at angles

|∠(ξ, η)| . (|η|/|ξ|)δ,

where δ is a universal small parameter. This considerations will affect the

linear step in the above construction, i.e., the transition from A to Ψ.

The second issue is related to the fact that the expression ∂αΨξα vanishes

in frequency on the hyperplane ηαξα = 0. Thus, it cannot at all cancel A

in the region near this hyperplane. It follows that, in order for our strategy

to work, the portion of A near this hyperplane must be perturbative. But

then it is pointless (and indeed counterproductive) to allow it to participate

in the construction of the renormalization operator. Further, A0’s leading

contribution lies in this region. Thus it is natural to place A0 fully on the

perturbative side.

6.3. The parametrix. Here we define the parametrix for 2A that yields

the proof of Proposition 6.3. By scaling we can assume that k = 0 in the

proposition and drop it from the notation. For the rest of the section, we will

use k < 0 to denote dyadic frequencies for A, Ψ and O.
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Following the above heuristics, we begin with ξ of size O(1) and ω = ξ/|ξ|.
Then we decompose Aj,<0 into a leading part Amain,±

j,<0 and a perturbative part

Apert,±
j,<0 in a fashion that depends on ω. Here the choice of ± sign corresponds

to the two cones τ ± |ξ| = 0.

The first difficulty we face is that Aj are a priori only defined in a fixed

time interval I, while our analysis uses many modulation localizations, which

are nonlocal in time. To address this issue, we start with Aj in I and extend

them in time outside I as free waves. By Proposition 3.2, such an extension

does not increase significantly the S1 norm of A.

Denoting the Fourier variables for A by (σ, η), the two relevant geometric

objects are the null cone |σ| = |η| and the null plane σ ± η · ω = 0.

It is natural to consider the two components of η, namely, η · ω and η⊥ =

η − ωη · ω. We first define a partition of the Fourier space

R4+1 = Dω,±
cone ∪D

ω,±
null ∪D

ω,±
out ,

where the three regions are homogeneous, symmetric with respect to the origin

and

Dω,±
cone = {sgn(σ)(σ ∓ η · ω) >

1

16
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)} ∩ {|σ| < 4|η|},

Dω,±
null = {|σ ∓ η · ω| ≤ 1

8
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)},

Dω,±
out = {sgn(σ)(σ ∓ η · ω) < − 1

16
|η|−1(|η⊥|2 + |σ ∓ η · ω|2)} ∪ {|σ > 2|η|}.

Correspondingly, we consider a partition of unit

1 = Πω,±
cone + Πω,±

null + Πω,±
out ,

where the regularity of these symbols degenerates where (σ, η) and (∓1, ω) are

collinear,

∂ασ,η⊥∂
β
η||
|Πω,±
∗ | .

(
|η|

|η⊥|+ (|η||σ ± η · ω|)
1
2

)2|α|+|β|

.

Our second partition is with respect to angles. Given an angle 0<θ<π/2,

we partition the Fourier space as

R4+1 = Dω,±
<2θ ∪D

ω,±
>θ/2,

where

Dω,±
<2θ = {∠(ω,−η sgn(σ)) < 2θ}, Dω,±

>θ/2 = {∠(ω,−η sgn(σ)) > θ/2}.
Correspondingly, we define a partition of unit

1 = Πω,±
<θ + Πω,±

>θ

with the obvious symbol regularity.

Now we are ready to define the decomposition of Aj,<0, namely,

Aj,<0(t, x) = Amain,±
j,<0 (t, x, ξ) +Apert,±

j,<0 (t, x, ξ),
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where

Amain,±
j,<0 (t, x, ξ) = Πω,±

>|η|δΠ
ω,±
coneAj,<0,

Apert,±
j,<0 (t, x, ξ) = (Πω,±

<|η|δΠ
ω,±
cone + Πω,±

null + Πω,±
out )Aj,<0.

Here we make two observations. First, the size of the excised angle decreases

with the size of the frequency |η|. This is needed in order to guarantee decay

of the perturbative errors as |η| → 0. Secondly, even though Πω,±
>|η|δ has a jump

discontinuity at σ = 0, the symbol Πω,±
cone vanishes at σ = 0 so the discontinuity

disappears.

Next we use the symbols Amain,±
j,<0 to define the g valued zero homogeneous

symbols Ψ± = Ψ<0,±, by

(6.12) Ψ±(t, x, ξ) = −Lω∓∆−1
ω⊥
Amain,±
j,<0 ωj ,

where

Lω± = ∂t ± ω · ∇x, ∆ω⊥ = ∆− (ω · ∇x)2.

Later in the analysis we will also use the frequency localized functions

Amain,±
j,k and Ψ±,k defined for a continuous dyadic parameter h < 0 so that

(6.13) Amain,±
j,<k =

∫ k

−∞
Amain,±
j,<h dh, Ψ±,<k =

∫ k

−∞
Ψ±,hdh.

Once we have the g valued symbols Ψ±,k, we define the zero homogeneous

G valued symbols O±,<k(t, x, ξ) by solving the following differential equation

on the Lie group G:

(6.14)
d

dk
O<k,±O

−1
<k,± = Ψ±,k, O−∞,± = const.

Here the ordinary differential equation is solved separately for each (x, ξ),

and the solution is uniquely determined up to multiplication O → OU with

U = U(x, ξ) an arbitrary G-valued function. While a priori U may depend on

x and ξ, we can partially eliminate this dependence by requiring that

(6.15) lim
k→−∞

‖∂xO<k,±(t, x, ξ)‖L∞ = 0.

This uniquely determines O± up to multiplication with respect a field U(ξ).

We will allow this ambiguity to remain; all of our results will be invariant with

respect to such a conjugation.

To construct the parametrix for equation (4.8) we fix a large universal

constant κ (e.g., κ = 10) and use the symbols

O±(x,D) := O±,<−κ(x,D)

and the associated operators Op(Ad(O±))(x,D). To do this we conjugate the

constant coefficient wave flow with respect to the pair Op(Ad(O±))(x,D) on
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the left, respectively their adjoints Op(Ad(O−1
± ))(D, y) on the right. The ±

operators apply to the ± waves.

It is important to remark here on a minor technical point that will affect

the exact definition of the parametrix. Precisely, our parametrix should take

frequency one functions to frequency one functions. However, even though the

symbols Ψ±,k have sharp frequency localization, the symbols O±,<k are defined

in a nonlinear fashion and do not fully inherit this property. Thus, instead of

using directly the operators Op(Ad(O±))(t, x,D) in our parametrix, we need

to relocalize these symbols at frequencies much smaller than 1; for this we use

the notation

(Ad(O±)<0)(t, x,D) = P (|Dx| � 1)Ad(O±)(t, x,D),

which is nothing but a localized average of O±(x, ξ) on the unit spatial scale.

We further remark that this truncation is largely harmless, because the sym-

bols O± exhibit rapid decay with favorable bounds at all frequencies much

larger than 2−κ. This issue is discussed in detail in [11], and we will only go

over it lightly in here.

The approximate solution B will have the form

B(t) =
∑
±

1

2
Op(Ad(O±)<0)(t, x,D)e±it|D|

×Op(Ad(O−1
± )<0)(D, 0, y)(B0 ± i|D|−1B1)

+ Op(Ad(O±)<0)(t, x,D)
1

|D|
K±Op(Ad(O−1

± )<0)(D, s, y)F,

(6.16)

where

K±f(t) =

∫ t

0
e±i(t−s)|D|f(s)ds

represents the solution to

(∂t ∓ i|D|)u = f, u(0) = 0.

By analogy with the MKG problem, we need to prove the following bounds:

Theorem 3. The frequency localized renormalization operators

Op(Ad(O±)<0)(t, x,D)

have the following mapping properties with Z ∈ {N0, L
2, N∗0 }:

Op(Ad(O±)<0)(t, x,D) : Z → Z,(6.17)

∂tOp(Ad(O±)<0)(t, x,D) : Z → εZ,(6.18)

Op(Ad(O±)<0)(t, x,D)Op(Ad(O−1
± )<0)(D, y, s)− I : Z → εZ,(6.19)
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Op(Ad(O±)<0)2−2
p
A<0

Op(Ad(O±)<0) : S]0,± → εN0,±,(6.20)

Op(Ad(O±)<0) : S]0 → S0,(6.21)

where

2
p
A<0

= 2 + 2ad(Aα,<0)∂α.

We remark that, as we have constructed it above, O is defined globally in

time and is based on the free wave extension of Aj outside the interval I. All

the bounds in the above theorem will also be proved globally in time; indeed,

with the exception of the error estimate (6.20), only the S1 norm of Ax and

the Coulomb Gauge condition are used. However, in order to prove the bound

(6.20) we will need to use the Yang-Mills equation for Ax in I, as well as the

definition of A0 in terms of Ax, also in I.

The rest of the paper is devoted to the proof of the theorem. For the

remainder of this section, we use the theorem to conclude the proof of Propo-

sition 6.3.

Proof of Proposition 6.3. This is completely analogous to the proof of

Theorem 4 in [11]. We define the approximate solution via (6.16). Then

the bound (6.4) follows from (6.17) and (6.21).

Next, we prove (6.5). For the homogeneous part of the parametrix at time

t = 0, we have

B(0)−B0

=
1

2

∑
±

Op(Ad(O±)<0)(0, x,D)Op(Ad(O−1
± )<0)(D, 0, y)(B0 ± i|D|−1B1)−B0

=
î1
2

∑
±

Op(Ad(O±)<0)(0, x,D)Op(Ad(O−1
± )<0(D, 0, y))−I

ó
(B0 ± i|D|−1B1).

Thus the bound ∥∥∥B(0)−B0

∥∥∥
Ḣ1
. ε

∥∥∥(B0, B1)
∥∥∥
H

is a consequence of (6.19) applied to Z = L2. Further, the inequality∥∥∥∂tB(0)−B1

∥∥∥
L2
. ε
Ä∥∥∥(B0, B1)

∥∥∥
H

+
∥∥∥F∥∥∥

N

ä
is a consequence of (6.18) and (6.19); see the proof of Theorem 5 in [11].

Finally, for the the inhomogeneous term, we have the following:

2B + 2[Aα,<0, ∂
αB]

=
∑
±

î
2
p
A<0

Op(Ad(O±)<0)(t, x,D)−Op(Ad(O±)<0)(t, x,D)2
ó
B±

+
1

2

∑
±

î
Op(Ad(O±)<0)(t, x,D)Op(Ad(O−1

± )<0)(D, t, y)− 1
ó
F
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+
1

2

∑
±
±
î
Op(Ad(O±)<0)(t, x,D)|D|−1Op(Ad(O−1

± )<0)(D, t, y)−|D|−1
ó
∂tF

+
∑
±

Op(Ad(O±)<0)(t, x,D)|D|−1∂tOp(Ad(O−1
± )<0)(D, t, y)F,

where we set

B± = e±it|D|Op(Ad(O−1
± )<0)(D, 0, y)(B0 ± i|D|−1B1)

+ |D|−1K±Op(Ad(O−1
± )<0)(D, s, y)F.

The first term on the right is handled by combining (6.20) with (6.17), and

the last three terms are controlled using (6.19) and (6.18). �

7. Decomposability and symbol bounds for Ψ and O

In this section we review the notion of disposability, which is a convenient

technical tool allowing us to easily deal with issues related to symbol calculus,

which would otherwise be quite technical in the context of our function spaces.

Then we provide bounds for Ψ and O, first pointwise and then in disposable

spaces.

This section uses only the spatial components Aj,<0 at low frequency. We

assume throughout that this is divergence free, with ‖A‖S1 ≤ ε and frequency

envelope ck. We fix the ± sign to + and drop it from the notation.

7.1. A review of the Decomposable Calculus. First we discuss the notion

of decomposable function spaces and estimates. This has originated in [17]

and [10].

A zero homogeneous symbol c(t, x; ξ) is said to be in “decomposable

Lq(Lr)” if c =
∑
θ c

(θ), θ ∈ 2−N, and

(7.1)
∑
θ

‖ c(θ) ‖
Dθ

Ä
Lqt (L

r
x)
ä < ∞

where, adhering to the definition in [17] and with n = 4 throughout, we put

(7.2) ‖ c(θ) ‖
Dθ

Ä
Lqt (L

r
x)
ä =

∥∥∥( 10n∑
k=0

∑
φ

sup
ω
‖ bφθ (ω) (θ∇ξ)k c(θ) ‖2Lrx

) 1
2
∥∥∥
Lqt
.

Here bφθ (ξ) denotes a cutoff on a solid angular sector
∣∣∣ξ|ξ|−1 − φ

∣∣∣ 6 θ for a fixed

φ ∈ Sn−1, and the sum is taken over a uniformly finitely overlapping collection.

We define ‖ b ‖DLq(Lr) as the infimum over all sums (7.1). In [10] it is shown

that the following Hölder type inequality holds:

(7.3) ‖
m∏
i=1

bi ‖DLq(Lr) .
m∏
i=1

‖ bi ‖DLqi (Lri ), (q−1, r−1) =
∑
i

(q−1
i , r−1

i ).
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In the sequel we only need a special case of decompositions provided in terms

of these norms:

Lemma 7.1 (Decomposability Lemma ([11, Lemma 7.1])). Let A(t, x;D)

be any pseudodifferential operator with symbol a(t, x; ξ). Suppose A satisfies

the fixed time bound

(7.4) sup
t
‖A(t, x;D) ‖L2→L2 . 1.

Then for any symbol c(t, x; ξ) ∈ DLq(Lr), one has the space-time bounds

‖ (ac)(t, x;D) ‖Lq1L2→Lq2 (Lr2 ) .‖ c ‖DLq(Lr),
1

q1
+

1

q
=

1

q2
,

1

2
+

1

r
=

1

r2
, 1 ≤ q1, q2, q, r, r2 ≤ ∞.

(7.5)

In the sequel it will also be useful for us to treat estimates for products

of operators in a modular way. Recall that if a(x, ξ) and b(x, ξ) are symbols,

then arbr − (ab)r ≈ i(∂xa∂ξb)
r. This formula is not exact, but it leads to an

estimate, which is a simple variant of Lemma 7.2 in [11]:

Lemma 7.2 (Decomposable product calculus). Let a(x, ξ) and b(x, ξ) be

smooth symbols, and λ > 0. Then

‖ arbr − (ab)r ‖Lr(L2)→Lq(L2)

. sup
1≤|α|<N

λ−|α|‖ (∇xa)r ‖Lr(L2)→Lp1 (L2) sup
1≤|α|<N

λ|α|‖∇αξ b ‖Lp1L2→LqL2 .

(7.6)

7.2. Bounds for A. Here we state the decomposability bounds for A; see

[11, Lemma 7.3].

Lemma 7.3. The functions Ax ·ω, A0 satisfy the following decomposability

bounds :

(7.7) ‖Pk(A(θ)
x · ω,A

(θ)
0 )‖DLpL∞ . ε2(1− 1

p
)k
θ

5
2
− 2
p , p ≥ 2,

where we use the notation A
(θ)
x = Πω

θAx =
∑
±Πω,±

θ Ax and similarly for A
(θ)
0 ,

and Πω,±
θ localises to {∠(ω,−η sgn(σ)) ∼ θ}.

We observe that we gain two powers of θ compared to [11, Lemma 7.3] on

account of the fact that here A
(θ)
x does not involve the singular operator 4−1

ω⊥
.

7.3. Bounds for Ψ. For the purpose of our first step, we use the frame

determined by ω = ξ|ξ|−1 and its orthogonal complement ω⊥ to describe the

regularity of Ψ. We have
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Lemma 7.4. The functions Ψk(t, x, ξ) satisfy the following bounds for

fixed t and ξ:

‖∇ω⊥∇Ψk‖L2 . ck,(7.8)

‖∇2Ψk‖L2 . 2−δkck.(7.9)

We also get the bounds

(7.10) ‖∇Nξ ∇2Ψk‖L2 . 2−(N+1)δkck.

We remark that, as a consequence of Bernstein’s inequality, the bound

(7.8) implies the pointwise bounds

(7.11) ‖Ψk‖L∞ . ck.

Also we consider Lp norms at fixed time. Fixing ξ we use the orthonormal

frame associated to ξ, and the mixed norms L2
ωL

6 and L∞ω L
3. By Bernstein’s

inequality, from (7.8) we obtain

(7.12) ‖∇xΨk‖L2
ωL

6 + ‖∇ω⊥Ψk‖L∞ω L3 . ck.

Proof. We first note that simply using the L2 fixed time bound for ∇A
does not suffice due to the presence of two inverse derivatives in (6.12). We

will use the Coulomb gauge condition to cancel one of these two derivatives,

precisely, using the Coulomb gauge condition to write

Aj,kωj = (ωj − |∆|−1∇⊗∇)Aj,k = ∆−1∇∇ω⊥Aj,k,

which is exactly what we need. �

Next, we consider a number of decomposable estimates for the phase

Ψ(t, x; ξ) used to define our microlocal gauge transformations:

Lemma 7.5 (Decomposable estimates for Ψ). Let the phase Ψ(t, x; ξ) be

defined as in (6.12), and its angular components Ψ(θ) = Πω
θψ(t, x; ξ), where

ω = |ξ|−1ξ. Then for q ≥ 2 and 2/q + 3/r ≤ 3
2 , one has

(7.13) ‖ (Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) . 2

−( 1
q

+ 4
r

)k
θ

1
2
− 2
q
− 3
r ε.

In addition, suppose that θ . 2j . 1. Then for q, r ≥ 2, we also have

(7.14) ‖Qk+2j(Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) . 2

−( 1
q

+ 4
r

)k
2
− 2
q
j
θ

1
2
− 3
r ε.

Further,

(7.15) ‖2Ψ
(θ)
k ‖DL2(L∞) . θ

1
2 2

3
2
kε.

In particular,

‖ (Ψk, 2
−k∇t,xΨk) ‖DLq(L∞) . 2

− 1
q
k
ε, q > 4,(7.16)

‖Qk+2j(Ψk, 2
−k∇t,xΨk) ‖DLq(L∞) . 2

− 1
q
k
2

( 1
2
− 2
q

)j
ε, 2 ≤ q < 4,(7.17)

‖∇t,xΨk ‖DL2(Lr) . 2( 1
2
− 4
r
−δ( 1

2
+ 3
r

))kε, r ≥ 6.(7.18)
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Proof. Notice that the last three estimates follow from the first by sum-

ming over dyadic 2−δk ≤ θ . 1. For the first two bounds, we interchange the

t integration and the ω summation to obtain

‖ (Ψ
(θ)
k , 2−k∇t,xΨ

(θ)
k ) ‖DLq(Lr) .θ−22−k

Ä∑
ω

‖Πω
θ (D)A · ω ‖2Lq(Lr)

ä 1
2

.θ−12−k
Ä∑

ω

‖Πω
θ (D)A ‖2Lq(Lr)

ä 1
2 ,

where at the second step we have used the Coulomb gauge to gain another

factor of θ.

Now we conclude the proof of (7.13) using the Strichartz estimate com-

ponent of the Sk norms. In four space dimensions the Strichartz sharp range

is given by 2
q + 3

r0
= 3

2 . Moreover, on an angular sector of size θ Bernstein’s

inequality gives the embedding Πω
θ (D)PkL

r0 ⊆ θ3( 1
r0
− 1
r

)
2

4( 1
r0
− 1
r

)k
Lr. ThusÄ∑

ω

‖Πω
θ (D)Ak ‖2Lq(Lr)

ä 1
2 . θ

3
2
− 2
q
− 3
r 2

(1− 1
q
− 4
r

)k‖Ak ‖S1
k
,

and (7.13) follows.

The argument for (7.14) is simpler. The case q = r = 2 is immediate

using the L2 bound coming from the X
1, 1

2∞ component of the S1 norm, and

the transition to larger q, r is done using Bernstein’s inequality. Finally, the

estimate (7.15) is a direct consequence of Bernstein’s inequality, as

‖2Ψ
(θ)
k ‖DL2(L∞).θ

3
2 22k‖2Ψ

(θ)
k ‖DL2(L2).θ

1
2 2k‖2Ax,k‖L2 . θ

1
2 2

3k
2 ‖Ax,k‖S1 .

�

We wrap this section up by proving some additional symbol type bounds

for the phases Ψ. These involve the variation over the physical space variables:

Lemma 7.6 (Additional symbol bounds for Ψ). Let Ψ be as above. Then

one has

|Ψ<k(t, x; ξ)−Ψ<k(s, y; ξ)| . ε log(1 + 2k(|t− s|+ |x− y|)),(7.19)

|Ψ(t, x; ξ)−Ψ(s, y; ξ)| . ε log(1 + |t− s|+ |x− y|),(7.20)

|∂αξ (Ψ(t, x; ξ)−Ψ(s, y; ξ))| . ε〈(t− s, x− y)〉|α−
1
2
|δ, 1 6 α 6 δ−1.(7.21)

Proof. We decompose as before:

Ψ<k(t, x; ξ) =
∑
j<k

∑
θ>2δj

Ψ
(θ)
j (t, x, ξ).

For each fixed θ and j, by the definition of Ψ and the Coulomb gauge condition,

we have

|Ψ(θ)
j (t, x, ξ)| . θ−12−j sup

ω
‖Πω

θAj‖L∞ .
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Then by energy estimates for A and Bernstein’s inequality, we obtain

(7.22) |Ψ(θ)
j (t, x, ξ)| . θ

1
2 ‖Aj‖S1 , |Ψj(t, x, ξ)| . ‖Aj‖S1 .

A similar argument leads to

(7.23) |∂t,xΨ
(θ)
j (t, x, ξ)| . 2jθ

1
2 ‖Aj‖S1 , |∂t,xΨj(t, x, ξ)| . 2j‖Aj‖S1 .

Differentiating with respect to ξ yields θ−1 factors

|∂αξ Ψ
(θ)
j (t, x, ξ)| . θ

1
2
−|α|‖Aj‖S1 , |∂x,t∂αξ Ψ

(θ)
j (t, x, ξ)| . 2jθ

1
2
−|α|‖Aj‖S1 .

For the bound (7.19), we use both (7.22) and (7.23) to write, for j ≤ k,

|Ψ<k(t, x; ξ)−Ψ<k(s, y; ξ)| .
î
2j(|t− s|+ |x− y|) + |k − j|

ó
‖Aj‖S1

and then optimize the choice of j.

The proof of (7.21) is similar. �

7.4. Fixed time bounds for O. Here we transfer the above bounds from Ψ

to O. Precisely, we have the following:

Lemma 7.7. The following estimates hold for O, where ⊥ below refers to

derivatives in the plane ω⊥:

‖Pk′O<k;⊥‖L2 . 2−k
′
ck′2

−N(k′−k)+ ,(7.24)

‖Pk′O<k;x,t‖L2 . 2(−δ−1)k′ck′2
−N(k′−k)+ .(7.25)

Estimates with one derivative less hold for ∂kO<k;x,t.

Proof. We treat the case of spatial derivatives, time derivatives being han-

dled similarly. Our strategy will be to use integration in h and reiteration in

the commutation relation

(7.26)
d

dh
O<h;x = Ψh,x + [Ψh, O<h;x]

as well as differentiated forms of it, in order to build up successively stronger

bounds for the derivatives of O<h. In this section, mixed Lebesgue spaces LpLq

refer to the coordinates ω, ω⊥ for the x-plane.

Step 1: L∞ bounds. A priori we have

‖Ψk‖L∞ . ck.

Then integration from −∞ with respect to h in (7.26) gives

‖O<k;x‖L∞ . 2kck.

Repeated differentiation similarly leads to a better high frequency bound

‖∂m−1
x O<k;x‖L∞ . 2mkck.
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Step 2: L2L12 bounds. Here we start with

‖Ψk‖L2L12 . 2−
3k
4 ck.

The same argument as above using (7.26) leads to

‖O<k;x‖L2L12 . 2
k
4 ck, ‖∂m−1

x O<k;x‖L2L12 . 2(m− 3
4

)kck.

Step 3: L∞L6 bounds. Here we start with

‖∂⊥Ψk‖L∞L6 . 2
1
2
kck.

As above, using (7.26) but only for ∂⊥ derivatives, we obtain

‖O<k;⊥‖L∞L6 . 2
k
2 ck, ‖∂m−1

x O<k;⊥‖L∞L6 . 2(m− 1
2

)kck.

Step 4: L2L6 bounds. For this we use the bound

‖Ψk‖L2L6 . 2−kck.

We apply a Littlewood-Paley projector Pk′ in (7.26) and integrate in h,

‖Pk′O<k;x‖L2L6 .
∫ k

−∞
‖Pk′Ψh,x‖L2L6 + ‖Pk′ [Ψh, O<h;x]‖L2L6 dh.

The first term on the right contributes only when h = k + O(1). Thus we

consider two scenarios. If k < k′, then we combine directly the high frequency

L∞ bound for O;x with the L2L6 bound for Ψh,x to obtain the rapid decay

‖Pk′O<k;x‖L2L6 . ck′2
−N(k′−k), k < k′.

If k ≥ k′, then we retain the contribution of the first term when h = k′+O(1)

and, in addition, we bound the second term for larger h > k′ using Bernstein’s

inequality as follows:

‖Pk′ [Ψh, O<h;x]‖L2L6 . 2
3
4
k′‖Ψh‖L2L6‖O<h;x‖L2L12 . c2

h2
3
4

(k′−h).

Taking advantage of the decay in h, we obtain the desired bound

‖Pk′O<k;x‖L2L6 . ck′ , k ≥ k′.

Step 5: L∞L3 bounds. For this we use the bound

‖∂⊥Ψk‖L∞L3 . 2−kck

and argue as in the L2L6 case. The only difference arises in the treatment of

the bilinear term for h ≥ k′, namely,

‖Pk′ [Ψh, O<h;⊥]‖L∞L3 . 2
1
2
k′‖Ψh‖L2L6‖O<h;⊥‖L∞L6 . c2

h2
1
2

(k′−h).

We obtain

‖Pk′O<k;⊥‖L∞L3 . ck′2
−N(k′−k)+ .

Step 6: L2 bounds. In this final step we use the equation

d

dh
Pk′O<h;⊥ = Pk′Ψh,⊥ + Pk′ [Ψh, O;⊥],
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take L2 norms, and integrate with respect to h. For h < k′, the first term on

the right vanishes, while for the second, we have

‖Pk′ [Ψh, O<h;⊥]‖L2 . ‖Ψh‖L2L6‖Pk′O;⊥‖L∞L3 . c2
h2−h2−N(k′−h).

Integrating, we obtain

‖Pk′O<k;⊥‖L2 . ck′2
−k′2−N(k′−k), k < k′.

It remains to consider the case k > k′. The first term Pk′Ψh,⊥ is nonzero

only if h = k′ +O(1), in which case it is easily estimated using (7.8). For the

second term, on the other hand, we have

‖Pk′ [Ψh, O<h;⊥]‖L2 . ‖Ψh‖L2L6‖O;⊥‖L∞L3 . c2
h2−h,

which is easily integrated for h > k′. Thus the proof of (7.24) is complete.

Step 7: Proof of the bound (7.25). This proof is largely similar, so we

outline the change. In fact, in Step 5, a 2−
1
2
δk loss in the ∂xΨ bound generates

a similar loss for O<k;x. The same loss propagates directly to Step 6.

7.5. Fixed time bounds for O;ξ . Differentiating the functions Ψk with re-

spect to ξ looses a factor of ∠(ξ, η). Due to the angular separation, this factor

is at most 2δk. Thus, the bounds for O<k;ξ are similarly related to the bounds

for O<k:

Lemma 7.8. We have the pointwise bounds

(7.27) |∂nξ O<k;x| . 2k(1−nδ), nδ < 1

as well as the L2 bounds

(7.28) ‖Pk′∂nξ O<k;x‖L2 . 2k(−1−nδ)2−N(k′−k)+ .

The evolution equation for O;ξ = OξO
−1 is

d

dh
O<h;ξ = Ψh,ξ + [Ψh, O<h;ξ].

We have a similar relation for Ox,

d

dh
O<h;x = Ψh,x + [Ψh, O<h;x].

Differentiating the latter with respect to ξ yields

d

dh
∂ξO<h;x = ∂ξΨh,x + [∂ξΨh, O<h;x] + [Ψh, ∂ξO<h;x].

Since (see Lemma 7.5 as well as (1) in the proof of Lemma 7.8)

|Ψh,x|+ |O<h;x| . 2h, |∂ξΨh,x| . 2h(1−δ),

we can integrate to obtain

|∂ξO<h;x| . 2h(1−δ).
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We further have L2 bounds

‖∂ξΨh,x‖L2 . 2h(−1−2δ), ‖∂ξΨh‖L2 . 2h(−2−2δ), ‖Ψh‖L2 . 2h(−2−δ),

with extra gain for further x derivatives. We can transfer these bounds to

∂ξO<h;x by using Littlewood-Paley projectors in x in the above evolution to

obtain (7.28).

We also have the commutation relation

(7.29) ∂ξO<h;x − ∂xO<h;ξ = −[O<h;x, O<h;ξ].

Up to this point O is only uniquely determined up to a ξ dependent conjuga-

tion,

O<h(x, ξ)→ O<h(x, ξ)P (ξ).

At the level of O<h;ξ this translates to the gauge freedom

O<h;ξ(x, ξ)→ O<h;ξ(x, ξ) +O<h(x, ξ)PξP
−1O−1

<h(x, ξ).

Fixing a choice of P is not necessary, as all estimates we need are invariant

under such a change.

7.6. Decomposable bounds for O;x, O;t. Our goal here is to transfer de-

composability bounds from Ψ to O. Precisely, we have

Lemma 7.9. We have the following estimates :

‖O<k;x, O<k;t ‖DLq(L∞) . 2
(1− 1

q
)k
ε, q > 4,(7.30)

‖O<k;x, O<k;t ‖DL2(L∞) . 2
1
2

(1−δ)kε.(7.31)

Proof. We prove the bounds for O<k;x; those for O<k;t are identical. We

use the evolution for Ok;x, namely,

∂kO<k;x = Ψk,x + [Ψk, O<k;x].

We proceed in several stages:

Step 1: A weaker DL∞L∞ bound. Using the pointwise bounds on O;x and

its ξ derivatives, we directly conclude that (for δ > 0 small enough)

‖O<k;x‖DL∞L∞ . 2(1−nδ)k, n = 40.

Step 2: The full DL∞L∞ bound. Using the above evolution we obtain the

integral bound

‖O<k;x‖DL∞L∞ . ‖O<l;x‖DL∞L∞ +

∫ k

l
‖Ψh,x‖DL∞L∞

+ ‖Ψh‖DL∞L∞‖O<h;x‖DL∞L∞dh.

By Gronwall’s inequality this gives

(7.32) ‖O<k;x‖DL∞L∞ . ‖O<l;x‖DL∞L∞e
∫ k
l
chdh +

∫ k

l
2hche

∫ k
h
ch1dh1dh.
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But by Cauchy-Schwarz, we have∫ k

l
chdh . |k − l|

1
2 .

Thus, using the weaker DL∞L∞ bound, the first term in (7.32) decays to zero

as l → −∞. On the other hand, the leading contribution in the second term

in (7.32) comes from h = k −O(1). Hence we obtain the desired bound.

‖O<k;x‖DL∞L∞ . 2kck.

Step 3: The DLqL∞ bound. Using again the above evolution and the fact

that, by construction, limk→−∞O<k;x = 0, we write

O<k;x =

∫ k

−∞
Ψh,x + [Ψh, O<h;x]dh.

Then we combine the DLqL∞ decomposability bound (7.16) for Ψh with the

previously established DL∞L∞ bound for O<h;x.

Step 4: The DL2L∞ bound. We proceed as in the previous step, but using

the bound (7.16) for Ψh instead. �

7.7. Difference bounds for O. Here we seek to compare O<k(t, x, ξ) with

O<k(s, y, ξ). Since both are elements of the Lie group G, it is natural (and

most useful in the sequel) to look at the product O<k(t, x, ξ)O
−1
<k(s, y, ξ). We

have

Lemma 7.10 (Difference bounds for O). Let O be as above. Then one has

d(O<k(t, x, ξ)O
−1
<k(s, y, ξ), Id) . ε log(1 + 2k(|t− s|+ |x− y|)),(7.33)

d(O(t, x, ξ)O−1(s, y, ξ), Id) . ε log(1 + |t− s|+ |x− y|),(7.34)

|∂nξ (O(t, x, ξ)O−1(s, y, ξ));ξ| . 〈(t− s, x− y)〉nδ.(7.35)

Proof. For the first two bounds, we use the Ad(O−1(t, x, ξ)) to interchange

the order and estimate instead the distance d(O−1
<k(s, y, ξ)O<k(t, x, ξ), Id). This

vanishes as k → −∞; therefore, we can write

d(O−1
<k(s, y, ξ)O<k(t, x, ξ), Id) .

∫ k

−∞
|(O−1

<h(s, y, ξ)O<h(t, x, ξ));h|dh.

But we have

(O−1
<h(s, y, ξ)O<h(t, x, ξ));h = O−1

<h(t, x, ξ)(Ψh(t, x, ξ)−Ψh(s, y, ξ))O<h(s, y, ξ),

so we obtain

d(O−1
<k(s, y, ξ)O<k(t, x, ξ), Id) .

∫ k

−∞
.|Ψh(t, x, ξ)−Ψh(s, y, ξ)|dh.

For Ψh, we have the bound

|Ψh(t, x, ξ)−Ψh(s, y, ξ)| . εmin{1, 2h(|x− y|+ |t− s|)}.
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Thus the bounds (7.33) and (7.34) follow after dyadic integration with respect

to h.

For the third bound (7.35), we denote V<k = O<k(t, x, ξ)O
−1
<k(s, y, ξ), and

proceed in two steps. For the first step, we fix k and show that

(7.36) |∂nξ V<k;ξ| . (|t− s|+ |x− y|)2k(1−nδ), 2k|x− y| . 1, n ≥ 0.

This bound is favorable provided that k is small enough. In the second step,

we extend the range of k for which (7.35) holds by evaluating the k derivative

of ∂nξ V<k;ξ.

We now proceed with the first step, where we will crucially use the bound

(7.37) |∂nξ O<k;x(t, x, ξ)| . 2k(1−δn);

see (7.27). The expression V<k;ξ vanishes if x = y, t = s, so it suffices to

estimate its x, t derivatives; below we do so for the x-derivatives, with similar

estimates applying to the t-derivatives:

∂x∂
n
ξ V<k;ξ = ∂n+1

ξ V<k;x + ∂nξ [V<k;x, V<k;ξ],

for which we use V<k;x = O<k;x(t, x, ξ) to rewrite it as

∂y∂
n
ξ V<k;ξ − [V<k;y, ∂

n
ξ V<k;ξ] = ∂n+1

ξ O<k;x +
n∑
j=1

[∂jξO<k;x, ∂
n−j
ξ V<k;ξ].

The last term is absent if n = 0, so the bound (7.36) follows directly from (7.37)

by integration. Finally we close by induction integrating over x, estimating

|[∂jξO<k;x, ∂
n−j
ξ V<k;ξ]| . 2k(1−δj)|x− y|2k(1−δ(n−j)) = 2k|x− y|2k(1−δn).

So far the bound (7.35) is established in the range 2k|x − y| . 1. To extend

it we forget about the distance between x and y and integrate instead with

respect to l (the new k). First write

V<l = W<l(x)V<kW
−1
<l (y),

where

W<l = O<lO
−1
<k.

We have

V<l;ξ = −W<l(x)V<kW
−1
<l (y)W<l;ξ(y)W<l(y)V −1

<kW
−1
<l (x)

+W<l(x)V<k;ξW
−1
<l (y) +W<l;ξ(x),

so repeated differentiation shows that it suffices to bound

(7.38) |∂nξW<l;ξ(x)| . 2−kδn, l > k, n ≥ 0.

For this we follow the previous strategy, writing

∂l∂
n
ξW<l;ξ = ∂n+1

ξ O<l;l + ∂nξ [O<l;l,W<l;ξ],
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which leads to

∂l∂
n
ξW<l;ξ − [Ψl, ∂

n
ξW<l;ξ] = ∂n+1

ξ Ψl +
n∑
j=1

[∂jξΨl, ∂
n−j
ξ W<l;ξ].

Using the bounds for Ψ we can inductively close (7.38). �

8. L2 bounds for the parametrix

In this section we establish a number of L2 bounds for the renormalization

operators and the parametrix. In the last part we prove the bounds (6.17),

(6.18), (6.19) and (6.21). Throughout the section we assume that A is a Yang-

Mills wave with ‖A‖S � 1 and frequency envelope ck. We fix the ± sign to

+ and drop it from the notation. Also, we shall consider unit frequencies and

put O instead of O<0. We split the argument across several subsections.

8.1. Oscillatory integral estimates. We first observe that on one hand our

parametrix involves operators of the form

T a = Op(Ad(O±))(t, x,D)e±i(t−s)|D|a(|D|)Op(Ad(O−1
± ))(D, s, y),

where a is localized at frequency 1.

On the other hand, arguing in TT ∗ fashion in order to prove various L2 es-

timates involving the operators Op(Ad(O(t, x,D)) and Op(Ad(O<0(t, x,D)∗)),

we need to consider bounds for similar operators in the special case when t = s.

The kernel of the operator Ta is given by the oscillatory integral

KaF (t, x) =

∫
a(ξ)e±i(t−s)|ξ|eiξ(x−y)(O(t, x, ξ)O−1(s, y, ξ))

× F (s, y)(O(t, x, ξ)O−1(s, y, ξ))−1dξ.

Our main estimates for such kernels are as follows:

Proposition 8.1.

(a) Assume that a is a smooth bump on the unit scale. Then the kernel Ka

satisfies

(8.1) |Ka(t, x; s, y)| . 〈t− s〉−
3
2 〈|t− s| − |x− y|〉−N .

(b) Let a = aC be a bump function on a rectangular region C of size 2k×(2k+l)3

with k ≤ l ≤ 0. Then

(8.2) |Ka(t, x; s, y)| . 24k+3l〈22(k+l)(t− s)〉−
3
2 〈2k(|t− s| − |x− y|)〉−N .

If in addition x− y and C have a 2k+l angular separation, then

(8.3) |Ka(t, x; s, y)| . 24k+3l〈22(k+l)|t− s|〉−N 〈2k(|t− s| − |x− y|)〉−N .
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Proof. (a) Away from a conic neighborhood of the cone {|t−s| = ±|x−y|}
the phase

Φ = ±(t− s)|ξ|+ ξ(x− y)

is nondegenerate. Hence applying the symbol bounds (7.21) repeated integra-

tion by parts with respect to ξ yields

|Ka(t, x, s, y)| . 〈(t, x)− (s, y)〉−N , N ∼ δ−1.

Near the cone we need to be more careful. Denoting T = |t− s|+ |x− y| and

R = |t− s| − |x− y|, in suitable (polar) coordinates the operator Ka takes the

form

KaF (t, x) =

∫
(O(t, x, ξ′)O−1(s, y, ξ′))

× F (s, y)(O(t, x, ξ′)O−1(s, y, ξ′))−1eiRξ1eiT ξ
′2
ã(ξ)dξ.

In ξ1 (the former radial variable) this is a straight Fourier transform, so we get

rapid decay in R. Given the bound (7.21), we can use stationary phase in ξ′.

While the ξ derivatives of the O−1(t, x, ξ′)O(s, y, ξ′) part of the phase are not

bounded, they only bring factors of T σ, which is small enough not to affect

the stationary phase. (This works up to σ = 1
2 .) We obtain

|Ka(t, x, s, y)| . T−
3
2 (1 +R)−N .

(b) Away from the cone, the estimate follows easily as above since the

phase is nondegenerate. Near the cone we again use polar coordinates to

express our oscillatory integral as above,

KCF (t, x) =

∫
(O(t, x, ξ′)O−1(s, y, ξ′))

× F (s, y)(O(t, x, ξ′)O−1(s, y, ξ′))−1eiRξ1eiT ξ
′2
ãC(ξ)dξ,

where aC is a bump function in a rectangle on the 2k scale in the radial

variable ξ1 and on the 2k+l scale in the angular variable ξ′. Then we can

separate variables in (ξ1, ξ
′). We note that this rectangle need not be centered

at ξ′ = 0, though this is the worst case. In ξ1, this is again a Fourier transform,

so we get the factor

2k〈2kR〉−N .

In ξ′, we can use stationary phase to get the factor

23(k+l)〈22(k+l)T 〉−
3
2 .

The bound (8.2) follows by multiplying these two factors.

Finally, the estimate (8.3) corresponds to the case when aC is supported

in |ξ′| > 2k+l in the above representation. If T < 2−2(k+l), then there are no
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oscillations in ξ′ on the 2k+l scale, and we just use the brute force estimate.

For T > 2−2(k+l), the phase is nonstationary in ξ′, and we obtain the factor

23(k+l)(1 + 22(k+l)T )−N . �

While the above proposition contains all the oscillatory integral estimates

that are needed, it does not apply directly to the frequency localized operators

Op(Ad(O))<0(t, x,D) and Op(Ad(O))<0(D, y, s). For that we need to produce

similar estimates for the kernels Ka
<0 of the operators

T a<0 = Op(Ad(O))<0(t, x,D)a(D)e±i(t−s)|D|Op(Ad(O−1))<0(D, s, y).

The transition to such operators is made in the next proposition:

Proposition 8.2.

(a) Assume that a is a smooth bump on the unit scale. Then the kernel Ka
<0

satisfies

(8.4) |Ka
<0(t, x; s, y)| . 〈t− s〉−

3
2 〈|t− s| − |x− y|〉−N .

In addition, the following fixed time bound holds :

(8.5) |Ka
<0(t, x; t, y)− ǎ(x− y)| ≤ ε| log ε|.

(b) Let a = aC be a bump function on a rectangular region C of size 2k×(2k+l)3

with k ≤ l ≤ 0. Then

(8.6) |Ka
<0(t, x; s, y)| . 24k+3l〈22(k+l)(t− s)〉−

3
2 〈2k(|t− s| − |x− y|)〉−N .

(c) Let a= aC be a bump function on a rectangular region C of size 1×(2l)3

with l ≤ 0. Let ω ∈ S3 be at angle l from C . Then we have the character-

istic kernel bound

|Ka
<0(t, x; s, y)| . 23l〈22l|t− s|〉−N 〈2l|x′ − y′|〉−N ,

t− s = (x− y) · ω.
(8.7)

Here we use the coordinate splitting x = (x1, x
′) in analogy to the splitting

ξ = (ξ1, ξ
′) introduced above.

Proof. (a) We represent the action of symbol Op(Ad(O))<0 by

(8.8)

Op(Ad(O))<0F (x) =

∫
m(z)

∫
ei(x−y)ξO(x+ z, ξ)F (y)O−1(x+ z, ξ)dydξ dz,

where m(z) is an integrable bump function on the unit scale. One proceeds

similarly for functions on space-time.

This can be expressed in a concise form using the operators Tz, Tw to

represent translation in the space-time directions z, w acting on the variables

t, x and s, y, respectively.



878 JOACHIM KRIEGER and DANIEL TATARU

Using this representation for both of the operators Op(Ad(O))<0 and

Op(Ad(O−1))<0, and denoting a(z, w)(ξ) = a(ξ)ei(±|ξ|,ξ)·(z−w), the kernel Ka
<0

can be expressed in terms of the kernelsKa in the previous proposition, namely,

(8.9) Ka
<0F (t, x) =

∫
TzTwK

a(z,w)F (t, x) m(z)m(w) dzdw.

To prove the bound (8.4) we use (8.1), together with the additional obser-

vation that the implicit constant in (8.1) depends on finitely many seminorms

of a (at most 8, to be precise), which we denote by |||a|||. Then

|||a(z, w)||| . (1 + |z|+ |w|)N .

However, this growth is compensated by the rapid decay of m, therefore the

bound (8.1) for Ka transfers directly to Ka
<0 in (8.4).

To prove (8.5) we use the same representation as above to write

Ka
<0F (t, x)− ǎ ∗ F (t, x) =

∫
(TzTwK

a(z,w) − I)F (t, x) m(z)m(w) dzdw.

By (7.20), we have

|TzΨ±(t, x, ξ)− TwΨ±(t, y, ξ))| . ε log(1 + |z|+ |w|+ |x− y|),

which yields

|Ka
<0(t, x, t, y)− ǎ(x− y)| . ε

∫
log(1 + |z|+ |w|+ |x− y|)|m(z)||m(w)|dzdw

. ε log(2 + |x− y|).

This suffices if log(2 + |x− y|) . | log ε|. But for larger |x− y| we can use (8.4)

directly.

(b) Using the representation (8.9), the bound (8.6) follows from (8.2)

exactly by the same argument as in case (a).

(c) Using the representation (8.9), the same argument also yields the

bound (8.7) provided we have the following estimate for Ka:

|Ka(t, x, s, y)| . 23l〈22l|t− s|〉−N 〈2l|x′ − y′|〉−N (1 + |(t− s)− (x− y) · ω|)10N .

To see that this is true, we consider four cases:

(i) If |t− s| . 2−2l, then (8.2) applies directly.

(ii) If |t− s| � 2−2l but ||x− y| − |t− s|| & 2l|x′ − y′|+ 22l|t− s|, then (8.2)

still suffices.

(iii) If |t− s| � 2−2l and |(t− s)− (x− y) · ω)| & 2l|x′ − y′|+ 22l|t− s|, then

(8.2) also applies.

(iv) Finally, if |t− s| � 2−2l, but ||x− y| − |t− s|| � 2l|x′− y′|+ 22l|t− s| and

|(t−s)−(x−y)·ω|)| � 2l|x′−y′|+22l|t−s|, then we must have ∠(x−y, ω)

� 2l, which implies that ∠(x− y, C) ≈ 2l. Then (8.3) applies. �
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8.1.1. Fixed-time L2 estimates for the gauge transformations. Here we use

the previous theorem to prove three L2 estimates that correspond to the L2-

part of (6.17) and (6.18) as well as that of (6.19). These will also be repeatedly

used later in conjunction with the notion of disposability.

Proposition 8.3. The following fixed time L2 estimates hold for func-

tions localized at frequency 1, with or without the < 0 symbol localization :

Op(Ad(O))<0(t, x,D) : L2 → L2,(8.10)

Op(Ad(O))<0(t, x,D)a(D)

×Op(Ad(O−1))<0(D, y, s)− a(D) : L2 → ε
N−4
N log ε L2,

(8.11)

∂x,tOp(Ad(O))<0(t, x,D) : L2 → εL2.(8.12)

Proof. (a) By the estimate (8.1) with s = t, the TT ∗ type operator

Op(Ad(O))(t, x,D)P 2
0 Op(Ad(O−1))(D, y, t)

has an integrable kernel, so it is L2 bounded. Therefore Op(Ad(O))(t, x,D)P0

and its adjoint are L2 bounded. To accommodate symbol localizations we

observe that

Op(Ad(O))<k =

∫
mk(z)Op(Ad(TzO)) dz,

where m(z) is an integrable bump function on the 2−k scale and Tz denotes

translation in the direction z, with z representing space-time coordinates. Since

the wave equation is invariant to translations, the symbol TzO is of the same

type as O and its left and right quantizations are also L2 bounded. Thus the

bound (8.10) follows by integration with respect to z.

(b) For the estimate (8.11), we note that the kernel of

Op(Ad(O))<0(t, x,D)a(D)Op(Ad(O−1))<0(D, y, s)− a(D)

is given by Ka
<0(t, x, t, y)− ǎ(x− y). Combining (8.4) and (8.5) we get

|Ka
<0(t, x, t, y)− ǎ(x− y)| . min{ε| log ε|, |x− y|−N}.

The integral of the expression on the right is about ε
N−4
N | log ε|, therefore the

conclusion follows.

(c) By translation invariance ,we discard the < 0 symbol localization and

show that ∂x,tOp(Ad(O))(t, x,D)P0 is L2 bounded. We have

∂x,tAd(O) = ad(O;x,t)Ad(O).

By (7.30), we have O;x,t ∈ εDL∞(L∞), and therefore we can dispose of it and

use the L2 boundedness of Op(Ad(O))P0. �
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8.2. High space-time frequencies in O. Although Ψ<k is localized at space-

time frequencies < k, its renormalization counterpart O<k does not share the

same property since it is obtained in a nonlinear fashion. Nevertheless, the

following result asserts that the high frequency part of O<k does satisfy much

better bounds:

Lemma 8.4. Assume that 1 6 q 6 p 6 ∞. Then for k + C ≤ l ≤ 0, we

have

(8.13) ‖Op(Ad(O<k))l(t, x;D) ‖Lp(L2)→Lq(L2) . ε2
( 1
p
− 1
q

)k
25(k−l).

This holds for both left and right quantizations.

Proof. For the symbol, we iteratively write

SlAd(O<k) = 2−lSl∂x,t(Ad(O)<k) = 2−lSl(ad(O;(x,t))Ad(O)<k)

= · · · = 2−5l(
5∏
j=1

S
(j)
l ad(O;(x,t))) ·Ad(O)<k,

where the product denotes a nested (repeated) application of multiplication by

Sl∂tψ<k for a series of frequency cutoffs S
(j+1)
l S

(j)
l = S

(j)
l ≈ Sl with expanding

widths. Disposing of these translation invariant cutoffs we see that (8.13)

follows directly from (7.30). �

8.3. Modulation localized estimates. Our next goal is to show that the

fixed time L2 bounds for Op(O) drastically improve to space-time L2(L2)

bounds if one selects a fixed “frequency” in the symbol. Precisely, for k < 0,

we can express the difference

Ad(O<0)−Ad(O<k) =

∫ 0

k
ad(Ψh)Ad(O<h)dh,

where the integrand Ad(O);h := ad(Ψh)Ad(O<h), while not exactly localized

at frequency 2h, nevertheless is better behaved both at higher and at lower

frequencies. The next result asserts that the output of Op(Ad(O);h)(t, x,D) is

better behaved at modulations less than 2h:

Proposition 8.5. For l 6 k′±O(1), one has the fixed frequency estimate

(8.14) ‖QlOp(Ad(O);k′)Q<0P0 ‖
N∗→X

0, 12
1

. 2δ(l−k
′)ε.

In particular, summing over all (l, k′) with l 6 k and k−O(1) 6 k′ for a fixed

k 6 0 yields

(8.15) ‖Q<k(Op(Ad(O<0))−Op(Ad(O<k−C)))Q<0P0 ‖
N∗→X

0, 12
1

. ε.

Proof of Proposition 8.5. We proceed in a series of steps, where we con-

sider successive modulation scenarios.
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Step 1: High modulation input. First we estimate the contribution of the

dyadic piece QkOp(Ad(O);k′)Q>k−CP0 to line (8.14). Using the X
0, 1

2∞ bounds

for the input, it suffices to prove the estimate

‖QkOp(Ad(O);k′)P0 ‖L2(L2)→L2(L2) . 2
1
5

(k−k′)ε.

By Sobolev estimates in |τ | ± |ξ|, this reduces to the bound

‖Op(Ad(O);k′)P0 ‖
L2(L2)→L

10
7 (L2)

. 2−
1
5
k′ε.

Recalling that Op(Ad(O);k′) has symbol ad(Ψk′)Ad(O<k′), it suffices to use

the L2 boundedness for Op(O<k′) and the L5L∞ disposability bound for Ψk′ .

Step 2: Main decomposition for low modulation input. Now we esti-

mate the expression QkOp(Ad(O);k′)Q<k−CP0u. First expand the untruncated

group elements as follows:

Ad(O);k′ = ad(Ψk′)Ad(O<k−C) +

∫ k′

k−C
ad(Ψk′)ad(Ψl)Ad(O<k−C)dl(8.16)

+

∫ k′

k−C′

∫ k′

l′
ad(Ψk′)ad(Ψl)ad(Ψl′)Ad(O<l′)dldl

′

= L+Q+ C.

We will estimate the effect of each of these terms separately.

Step 3: Estimating the linear term L. The factor ad(Ψk′) in L is well

localized both in frequency and modulation. While not exactly localized, the

second factor Ad(O<k−C) is to the leading order localized at frequency and

modulation ≤ k − C/2, with more regular and decaying tails at larger fre-

quencies and modulations. The geometry of the bilinear wave interactions, on

the other hand, requires us to estimate differently the contribution of ad(Ψk′)

depending on its modulation relative to 2k. To account for both considerations

above, we split the term L as follows:

(8.17) L = ad(Ψk′)S<k−4Ad(O<k−C) + ad(Ψk′)S>k−4Ad(O<k−C).

Step 3a: Estimating the principal linear term in L. For the first term on

right-hand side of line (8.17), it suffices to show the general estimate

‖Qk Op(ad(Ψk′)b<k−4)Q<k−CP0 ‖L∞(L2)→L2(L2)(8.18)

. ε 2−
1
2
k+ 1

4
(k−k′) sup

t
‖B<k−4(t) ‖L2→L2

for k′ > k, and for symbols b(x, ξ)<k−4 with sharp frequency and modulation

localization and with either the left or right quantization. The geometry of the

bilinear wave interactions requires us to estimate differently the contribution

of ad(Ψk′) depending on its modulation relative to 2k. Thus we will consider

three cases.
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Step 3a(i): The contribution of Q<kΨk′ . In this case the modulation of

the output determines the angle θ between the spatial frequencies of Ψk′(x, ξ)

and the spatial frequency of the input, which is θ ∼ 2
1
2

(k−k′). Since this is

also the angle with ξ, we may restrict the symbol of Ψk′ to Ψ
(θ)
k′ for which the

estimate (8.18) follows immediately from (7.5) and summing over (7.13).

Step 3a(ii): The contribution of QkΨk′ . In this case one of the inputs

has the same modulation as the output, so we only get a bound from above

on the angle θ, namely, θ . 2
1
2

(k−k′). However, instead of (7.13), which looses

at small angles, we can take advantage of the fixed modulation to use (7.14),

which gains at small angles.

Step 3a(iii): The contribution of Q>kΨk′ . In this case one of the inputs

has high modulation, say 2k
′+2j′ with (k − k′)/2 < j′ ≤ 0 . This determines

the angle θ to be θ ≈ 2j
′
. Then we can again use (7.14).

Step 3b: Estimating the frequency truncation error in L. For the second

term on right-hand side of line (8.17), we use (7.16) for Ψk′ with p = 6 combined

with (8.13) with (p2, q) = (∞, 3).

Step 4: Estimating the quadratic term Q. We follow a similar procedure to

Step 3 above. First split S<k−4Ad(O<k−C)+S>k−4Ad(O<k−C). For the second

term, one can proceed as in Step 3b above using (7.16), (8.13), and (7.3).

Therefore we only need to consider the effect of the first term, for which

we will prove the trilinear bound

(8.19) ‖Qk ·Op(ad(Ψk′)ad(Ψl)b<k−4)(t, x;D) ·Q<k−CP0 ‖L∞(L2)→L2(L2)

. ε2 2−
1
2
k2

1
4

(k−k′)2
1
6

(k−l) sup
t
‖B<k−4(t) ‖L2→L2

for k′ > l > k. We decompose the symbol ad(Ψk′)ad(Ψl) in terms of the angles∑
θ&2

1
2 (k−k′)

ad(Ψ
(θ)
k′ )ad(Ψl) +

∑
θ&2

1
2 (k−k′)

θ′�2
1
2 (k−l)

ad(Ψ
(θ)
k′ )ad(Ψ

(θ′)
l )

+
∑

θ�2
1
2 (k−k′)

θ�2
1
2 (k−l)

ad(Ψ
(θ)
k′ )ad(Ψ

(θ′)
l ) = T1 + T2 + T3.

For the term T1, put the first factor in DL3(L∞) and the second in DL6(L∞).

This gives us dyadic terms in the left-hand side of (8.19):

(T1) ∼ 2−
1
2
k2

1
4

(k−l)2
1
6

(k−k′).

For the term, T2 do the opposite, which yields a similar bound. Finally, for

the term T3, a frequency modulation analysis shows that at least one of the

two factors has modulation ≥ k. Then we use (7.14) to place that factor in

DL2(L∞) and simply bound the remaining factor in DL∞L∞.
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Step 5: Estimating the cubic term C. In this case we can gain 2
1
6

(k−k′)

directly through the use of (7.16) and three DL6(L∞). Further details are left

to the reader. �

8.4. The N0 and N∗0 bounds in (6.17), (6.18) and (6.19). We are now

ready to conclude the proof of the first part of Theorem 3.

Proof of (6.17) for Z = N0, N
∗
0 . By duality it suffices to prove the N∗0

bound for both the left and the right calculus. The L∞L2 bound follows from

the fixed time L2 bound. The X
0, 1

2∞ bound is also straightforward when we go

from high to low modulation. It remains to consider the case of low modulation

input and high modulation output. Precisely, we need to show that

(8.20) ‖QkOp(Ad(O))Q<k−CP0‖L∞L2→L2 . ε2−
k
2 .

From here on, we specialize to the left calculus. By (8.15), it remains to

estimate

‖QkOp(Ad(O<k−C))Q<k−CP0‖L∞L2→L2L2 . .ε2−
k
2 .

Here we can harmlessly replace Ad(O<k−C) by S>k−4Ad(O<k−C). But then

we can conclude using (8.13).

To prove (8.20) for the right calculus, we use duality to switch to the left

calculus bound

(8.21) ‖P0Q<k−COp(Ad(O))Qk‖L2→L1L2 . ε2−
k
2 .

Then we can conclude the proof in the same manner as before. �

Proof of (6.18) for Z = N0, N
∗
0 . Here we repeat the above analysis with

Ad(O) replaced by ∂t(Ad(O)) = ad(O:t)Ad(O). We remark that

∂h∂t(Ad(O)) = ad(∂t(Ψh))Ad(O) + ad(Ψh)ad(O:t)Ad(O)

and all terms above are of the same form as above, possibly with Ad(O) harm-

lessly replaced by ad(O:t)Ad(O). �

Proof of (6.19) for Z = N0, N
∗
0 . By duality it suffices to consider the case

Z = N∗0 . In view of the L2 bound proved earlier, it suffices to show that

‖QkOp(Ad(O))Op(Ad(O))∗Q<k−C‖L∞L2→L2 . ε2−
k
2 .

But this is a consequence of two bounds,

‖QkOp(Ad(O))Q<k−C‖L∞L2→L2 . ε2−
k
2

and

‖Q>k−C/2Op(Ad(O))∗Q<k−C‖L∞L2→L2 . ε2−
k
2 ,

both of which follow from (8.20). �
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8.5. Strichartz and null frame norm estimates. Here we briefly outline

how to prove the bound (6.21). In fact, the argument for this bound follows

exactly like the proof of (83) in Section 11 of [11]. One replaces (114) in [11]

by the L2-boundedness of the operators Op(Ad(O±)<k)(t, x,D), the dispersive

bounds (108), (110) in [11] by the bounds (8.4), (8.6), and the bound (118) in

[11] by (8.15).

9. Error estimates

Here we again simplify notation by writing O<0 = O. The goal of this

section is to consider the conjugation error

E = 2
p
A<0

Op(Ad(O))−Op(Ad(O))2

and prove the bound (6.20) in Theorem 3.

Commuting 2, we have

E = 2Op(ad(A<0,α)Ad(O))∂α

+ 2Op(ad(A<0,α)ad(O;α)Ad(O)) + 2Op(ad(O;α)Ad(O))∂α

+ Op(ad(∂αO;α)Ad(O)) + Op(ad(O;α)ad(O;α)Ad(O))

= 2Op(ad(A<0,α + Ψ<0,α)Ad(O))∂α

+ 2Op(ad(O;α −Ψα)Ad(O))∂α

+ 2Op(ad(A<0,α)ad(O;α)Ad(O)) + Op(ad(O;α)ad(O;α)Ad(O))

+ Op(ad(∂αO;α)Ad(O))

= E1 + E2 + E3 + E4.

Here the main difficulty is to estimate the term E1, which not only contains

the input of Apert,±
j,<0 but also the full input from A0. We carry out a good

portion of the analysis in Section 9.1, modulo a single interaction scenario that

is more extensive and requires more than the S norm of A ; this is relegated

to the last Section 10. The remaining terms E2, E3 and E4 are dealt with in

Section 9.2. These are more in line with previous estimates and only require

the S1 norm of Ax.

9.1. The estimate for E1. We recall that

Ψk,+(t, x, ξ) = −Lω−∆−1
ω⊥

(Amain
j,k · ωj), Amain

j,k = Πω
>δkΠ

ω
coneAj,k,

where

Lω− = ∂t − ω∇x.

Replacing the operator Dt by −|Dx| we produce a first error, namely,

Op(ad(A0 + ∂0Ψ)Ad(O))(Dt + |Dx|),
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which is easily dealt with using DL2L∞ disposability bounds for A0 and ∂tΨ.

We are left with

E1 = Op(ad(Aj · ω +A0 + Lω+Ψ+)Ad(O)).

Now we use

−Lω+Lω−∆−1
ω⊥

= 2∆−1
ω⊥
− 1

to write

G := Aj · ω +A0 + Lω+Ψ+ = Gcone +Gnull +Gout,

where

Gcone = 2∆−1
ω⊥

Πω
>δkAj,coneωj + Πω

<δkAj,coneωj +A0,cone,

Gnull = Aj,nullωj +A0,null,

Gout = Aj,outωj +A0,out.

We seek to prove that Op(ad(G)Ad(O)) : N∗ → N . We do this in two stages.

First we will show that we can dispense with O and simply prove that

(9.1) Op(ad(G)) : S0 → N.

Since Op(Ad(O)) is bounded from S]0 into S0, in order to achieve this it suffices

to show that

(9.2) Op(ad(G)Ad(O))−Op(ad(G))Op(Ad(O)) : N∗ → N.

This latter bound will not follow immediately from pdo calculus, since G is

not smooth with respect to ξ on the unit scale. Instead, our strategy will be

to first peel off a contribution that is bad from the perspective of pdo calculus

but has a good decomposable structure. For this we consider the pieces G
(θ)
h

of G, which are localized at frequency 2h and angle θ with respect to ω. In

view of the bounds (7.7) and (7.13) they satisfy

‖G(θ)
h ‖DL2L∞ . θ

3
2 2

h
2 .

These symbols are smooth in ξ on the θ scale, so it is natural to match them

against symbols that are smooth in x on the θ−1 scale. Thus, let hθ be defined

by 2hθ = θ. Then we decompose the above difference as

D
(θ)
h = Op(ad(G

(θ)
h ))Ad(O))−Op(ad(G

(θ)
h ))Op(Ad(O))

=

∫ 0

hθ

Op(ad(G
(θ)
h )ad(Ψk)Ad(O<k))dk

−
∫ 0

hθ

Op(ad(G
(θ)
h )Op(ad(Ψk)Ad(O<k))dk

+ Op(ad(G
(θ)
h )Ad(O<hθ))−Op(ad(G

(θ)
h ))Op(Ad(O<hθ)).
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For the first term, decomposable estimates show

‖Op(ad(G
(θ)
h )ad(Ψk)Ad(O<k))‖L∞L2→L1L2

. ‖G(θ)
h ‖DL2L∞‖Ψk‖DL2L∞ . θ

3
2 2

h
2 2(− 1

2
−δ)k,

which is favorable in view of the range θ < 2k < 1. A similar argument applies

for the second term. For the third term, instead, we can use the pdo calculus.

For |α| ≥ 1, we have

‖∂αξ G
(θ)
h ‖DL2L∞ ≤ cαθ−|α|θ

3
2 2

h
2 ,

while (using Lemma 7.9)

‖∂αxAd(O<hθ)‖L∞L2→L2L2 . θ|α|−
1
2
−δ.

It follows that

‖Op(ad(G
(θ)
h )Ad(O<hθ))−Op(ad(G

(θ)
h ))Op(Ad(O<hθ))‖L∞L2→L1L2

. θ
1
2 2

h
2 θ

1
2
−δ,

which again suffices. Thus the bound (9.2) is proved. We now return to (9.1).

Corresponding to the partition of G into three parts, we will also partition

E1 = E1,cone + E1,null + E1,out.

In this section we will estimate E1,cone and E1,out. We will postpone the bound

for E1,null for the next section.

The bound for E1,cone. The redeeming feature of E1,cone is that the modu-

lation localization and the angle are mismatched and that forces a large mod-

ulation on either the input or the output. Precisely, consider the Gcone compo-

nent G
(θ)
cone,k at frequency k and angle θ. Then G

(θ)
cone,k has modulation at most

2kθ2, whereas either the input or the output must have modulation at least

2kθ2. Hence we can use the L2 norm for either the input or the output; there-

fore, it suffices to have L2L∞ disposability for the terms in Gcone. Precisely,

we obtain

‖E1,cone‖N∗→N .
∑
k<0

∑
θ<1

θ−12−k/2‖G(θ)
cone,k‖DL2L∞ .

The nontrivial business is to insure summation. In the second term in Gcone

we gain from the angle, and thus also in k. In the first term we use dispos-

ability derived from the L2 bound for 2Ak; therefore we gain in angle and `1

summation in k. The same follows for the third term.
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The bound for E1,out. Again the modulation localization and the angle

are mismatched, and that forces a large modulation on either the input or the

output. Precisely, consider the Gout component Qk+2jG
(θ)
out,k at frequency k

and angle θ. Then G
(θ)
out,k has modulation 2k+2j ≥ 2kθ2, whereas either the

input or the output must have modulation at least comparable. Hence we can

again use the L2 norm for either the input or the output, and therefore it

suffices to have L2L∞ disposability for the terms in Gout. We obtain

‖E1,out‖N∗→N .
∑
k<0

∑
j<0

∑
θ<2j

2−(k+2j)/2‖Qk+2jG
(θ)
out,k‖DL2L∞

.
∑
k<0

∑
j<0

∑
θ<2j

2−
(k+2j)

2 θθ
3
2 22k

∥∥∥PkQk+2jAx
∥∥∥
L2L2

+ 2−(k+2j)/2θ
3
2 22k

∥∥∥PkA0

∥∥∥
L2L2

.

The first term comes from Aj and the second from A0. The latter has `1 dyadic

summation, while for the former we use Proposition 5.4.

The bound for E1,null. We can dispense with the case when either the

input or the output have high modulation (& 2kθ2, where k, θ stand for the

frequency, respectively the angle of A) as in the case of E1,cone. We are then

left with the expression

H∗Op(ad(Aα,<0))∂αC.

The bound for this expression is stated in the following lemma, whose proof is

relegated to the next section:

Lemma 9.1. Suppose that A has S1 norm at most ε and solves the YM-

CG equation in a time interval I . Extend Ax to a free wave outside I and A0

by 0. Then for C at frequency 1, we have the estimate

(9.3) ‖H∗Op(ad(Aα,<0))∂αC‖N . ε‖C‖S .

9.2. The estimates for E2, E3 and E4. For these terms we can directly

use the decomposability bounds bounds on Ψ and O in the previous sections.

We consider them successively.

9.2.1. The E2 term. For the second term in the error we recall that

∂hO;α = Ψh,α + [Ψh, O;α].

Thus, repeatedly expanding the symbol ad(O;α − Ψα)Ad(O) (by means of

(6.13)) with respect to h, we are left with an integral with respect to decreasing

h’s of expressions of the form

ad(Ψh1)ad(∂αΨh2)Ad(O<h2) · · · ad(Ψh1) · · · ad(Ψh5)ad(∂αΨh6)Ad(O<h6)
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plus a final remainder term

ad(Ψh1) · · · ad(Ψh5)ad(O<h6;α)Ad(O<h6)

with possibly changed order of factors.

For the sixth-linear terms, we use DL6L∞ bounds for all factors. (In

particular, we need this for O<h6;α with no loss; DL∞L∞ would also do by

reiterating once more.)

For the lower order expressions, we are in the same situation as in the

MKG case, with the critical difference that the Ψ’s may now have nonzero

modulations. We discuss the second order term, as all higher order terms are

similar:

ad(Ψh1)ad(∂αΨh2)Ad(O<h2)∂α.

Replacing ∂0 by −|ξ| (with a better error) this becomes

ad(Ψh1)ad(Lω+Ψh2)Ad(O<h2)|ξ|,

and doing the symbol computation, this has the form

D2 = ad(Ψh1)ad(Amain
j,h2 ωj)Ad(O<h2)|ξ|.

Now we do an angle/modulation analysis. We begin with angles, and we denote

by θ1, θ2 the two angles. Then by (7.13) and (7.7), we can first estimate

‖D2‖L∞L2→L1L2 . ‖Ψ(θ1)
h1
‖DL2L∞‖A

main,(θ2)
j,h2

· ω‖DL2L∞ . 2(h2−h1)/2θ
− 1

2
1 θ

3
2
2 .

This is favorable if 2h1θ2
1 & 2h2θ2

2. If this is not the case, then either one of

the factors or the input or the output must have modulation at least as large

as 2h2θ2
2. This cannot be the case for A

main,(θ2)
j,h2

by definition, so we have the

following three scenarios to consider:

(a) High modulation input : Then by (7.13) and (7.7), we have

‖D2B‖L1L2 . 2−h2/2θ−1
2 ‖Ψ

(θ1)
h1
‖DL6L∞‖A

main,(θ2)
j,h2

· ω‖DL3L∞‖B‖N∗

. 2(h2−h1)/6θ
2− 1

6
2 ,

which suffices.

(b) High modulation output where we have exactly the same bound.

(c) High modulation on Ψ1: Then we can use (7.14) for its DL2L∞ bound.

9.2.2. The term E3. In this term we have high frequencies to spare. For

[O;α, [O
α
; ,Op(O)·]], we need some mild L2L∞ disposability estimate for O;α.

Similarly, for Aα, we can use an L2L∞ bound.
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9.2.3. The term E4. For ad(∂αO;α)Ad(O), we expand in h:

ad(∂αO;α)Ad(O)

=

∫ 0

−∞
(ad(2Ψh) + ∂α[Ψh, O<h;α] + ad(∂αO<h;α)ad(Ψh))Ad(O<h)dh.

For the second and third term, we use L2L∞ disposability for Ψh and O<h;α,

with room to spare. For the first term, consider the component ad(2Ψ
(θ)
h ) at

angle θ and re-expand with 2hθ = θ22h:

ad(2Ψ
(θ)
h )Ad(O<h)

= ad(2Ψ
(θ)
h )Ad(O<hθ−C) +

∫ h

hθ−C
ad(2Ψ

(θ)
h )ad(Ψh1)Ad(O<h1)dh1.

For the integrand, we can use two DL2L∞ bounds to estimate

‖2Ψ
(θ)
h ‖DL2L∞‖Ψh1‖DL2L∞ . θ

1
2 2

3h
2 2−( 1

2
+δ)h1 ,

which is favorable due to the range of h1 and the fact that θ is restricted to

the range θ > 2δh in the definition of Ψh.

For the leading term, we replace Ad(O<hθ−C) by S<hθ−4Ad(O<hθ−C),

using (8.13). At this stage we are left with the operator

Op(ad(2Ψ
(θ)
h )S<hθ−4Ad(O<hθ−C)).

Given the frequency localization of Ψ
(θ)
h , the space-time frequency interaction

analysis shows that either the input or the output must have modulations at

least 2hθ2. Then we can conclude using the DL2L∞ disposability of 2Ψ
(θ)
h in

(7.15). Again, the restricted range θ > 2δh in the definition of Ψh allows us to

compensate θ losses by 2δh gains. �

10. Trilinear forms and the second null structure

Here we prove Lemmas 9.1 and 5.6, which we restate for convenience:

Lemma 10.1.

(a) Suppose that A has S1 norm at most ε and solves the YM-CG equation in

a time interval I . Extend Ax to a free wave outside I and A0 by 0. Then

for Ck at frequency 2k, we have the estimate

(10.1) ‖H∗[Aα,<k, ∂αCk]‖N . ε‖Ck‖S1 .

(b) Suppose, in addition, that B ∈ Ss solves the linearized equation (1.10) in

a time interval I . Extend Bj outside I as free waves and B0 by zero. Then

for s < 1 and close to 1, we have the global estimate

(10.2) ‖H∗[Bα,<k, ∂αCk]‖Ns−1 . ε‖B‖Ss‖Ck‖S1 .



890 JOACHIM KRIEGER and DANIEL TATARU

The proofs for the two parts are quite similar and hinge on a double

null structure in the main trilinear expression arising when one replaces the

first factor in the expressions above with the solutions of the corresponding 2

equation for Ax and Bx, respectively the ∆ equation for A0 and B0.

Proof of Lemma 10.1. (a) To better frame the question, denote by 2h, θ

the frequency, respectively the angle of A. Then the H∗ operator selects the

cases where both the input and the output are at modulation less than 2hθ2.

Our first tool here is to use the Z norm bounds (5.5) and (5.7). To bound

(most of) Ax and A0, we use their equations (1.6), respectively (1.7). We claim

that the following hold:

‖2Aj −HP[Ai, χI∂jAi]‖`12Z . ε2,

‖∆A0 −H[Ai, χI∂0Ai]‖
`12

1
2 ∆

1
2Z
. ε2.

(10.3)

For this we consider all other terms in the equations for Aj and A0, which we

recall here:

2Aj = P ([Aα, ∂jAα]− 2[Aα, ∂αAj ]− [∂0A0, Aj ]− [Aα, [Aα, Aj ]]) ,

∆A0 = [Aj , ∂0Aj ]− 2[Aj , ∂jA0]− [Aj , [Aj , A0]].

Here we seemingly pay a price for working in an interval I, as both right hand

sides need to be multiplied by the characteristic function χI of I. However, this

turns out to be harmless, because we can always place χI on the differentiated

factor and still retain the use of the S norm.

(i) Cubic terms A3. These are placed in `1L1L2, which suffices by (5.9). (We

do need to gain `1 summability in k.)

(ii) [Aj , ∂jA0] and [∂0A0, Aj ]. These are also in `1L1L2 by using L2Ḣ
1
2 for

∇A0 and L2L6 for Aj .

(iii) The term [A0, ∂0Aj ]. The low-high case is the worst, but even then we

can use Strichartz to produce L1L∞.

(iv) High-low interactions in the quadratic terms Aj∇Ak. This is where we

use (5.10).

(v) High-high interactions in [Aj , ∂jAk]. Here we can take the derivative out

and estimate as in the high-low case via (5.10).

(vi) High-high interactions in [Aj , ∂αAj ] with at least one high modulation.

Here by estimating one factor in L2 we can gain in terms of high frequen-

cies; see (5.12).

This concludes the proof of (10.3). In view of (5.5) and (5.7), this leaves

us with one remaining case:

The final case: High-high interactions in [Aj , ∂αAj ] with two low modu-

lations. Here we need to combine the 2−1Aj and ∆−1A0 contributions
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in order to gain an additional cancellation. Omitting the frequency and

modulation localizations, the expression is as follows:

L = 2−1P[Aj , ∂kAj ]∂kF + ∆−1[Aj , ∂0Aj ]∂0F

= 2−1[Aj , ∂kAj ]∂kF −
∂k∂i
2∆

[Aj , ∂iAj ]∂kF −∆−1[Aj , ∂0Aj ]∂0F

= 2−1[Aj , ∂αAj ]∂
αF − ∂k∂i

2∆
[Aj , ∂iAj ]∂kF +

∂2
0

2∆
[Aj , ∂0Aj ]∂0F

= 2−1[Aj , ∂αAj ]∂
αF − ∂α∂i

2∆
[Aj , ∂iAj ]∂

αF

− ∂0∂i
2∆

[Aj , ∂iAj ]∂0F +
∂2

0

2∆
[Aj , ∂0Aj ]∂0F

= 2−1[Aj , ∂αAj ]∂
αF − ∂α∂i

2∆
[Aj , ∂iAj ]∂

αF − ∂0∂α
2∆

[Aj , ∂
αAj ]∂0F.

The estimate for this term is exactly the trilinear bound in [11]; see op.

cit. Theorem 12.1(136)–(138).

(b) This is similar to the proof in part (a), with two differences:

(i) There is an additional gain in the low frequency input, which eliminates

any need to control `1 norms.

(ii) There is a small additional loss in high-high interactions in 2Ax and ∆A0.

However, this is harmless as in all cases we have a small high frequency

gain (including, notably, the trilinear case). �
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