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On the stability threshold for the 3D
Couette flow in Sobolev regularity

By Jacob Bedrossian, Pierre Germain, and Nader Masmoudi

Abstract

We study Sobolev regularity disturbances to the periodic, plane Couette

flow in the 3D incompressible Navier-Stokes equations at high Reynolds

number Re. Our goal is to estimate how the stability threshold scales in

Re: the largest the initial perturbation can be while still resulting in a

solution that does not transition away from Couette flow. In this work we

prove that initial data that satisfies ‖uin‖Hσ ≤ δRe−3/2 for any σ > 9/2

and some δ = δ(σ) > 0 depending only on σ is global in time, remains

within O(Re−1/2) of the Couette flow in L2 for all time, and converges to

the class of “2.5-dimensional” streamwise-independent solutions referred to

as streaks for times t & Re1/3. Numerical experiments performed by Reddy

et. al. with “rough” initial data estimated a threshold of ∼ Re−31/20, which

shows very close agreement with our estimate.
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1. Introduction

1.1. Presentation of the problem. We consider the 3-dimensional Navier-

Stokes equation with inverse Reynolds number ν = Re−1 > 0∂tv − ν∆v + v · ∇v = −∇p,
∇ · v = 0

set on T × R × T; in other words, v(t, x, y, z) ∈ R3 and p(t, x, y, z) ∈ R are

functions of (t, x, y, z) ∈ R+ × T × R × T. (The torus T is the periodized

interval [0, 1].) The simplest nontrivial stationary solution is the Couette flow

(y, 0, 0)t. Despite the apparent simplicity, understanding the stability of this

flow at high Reynolds number (ν → 0) is of enduring interest as a canonical,

but subtle, problem in hydrodynamic stability and has been studied regularly

throughout the history of fluid mechanics (along with several variants); see,

e.g., [Kel87], [Rom73], [OK80], [TA92], [TTRD93], [RSBH98], [Cha02], [LK02]

for a small representative subset or the texts [DR81], [SH01], [Yag12] and the

references therein.

Denoting u for the perturbation of the Couette flow (that is, we set v =

(y, 0, 0)t + u), then it satisfies

(1.1)
∂tu− ν∆u+ y∂xu+

(
u2
0
0

)
−∇∆−12∂xu

2 = −u · ∇u+∇∆−1(∂iu
j∂ju

i),

∇ · u = 0,

u(t = 0) = uin.

In this work, we want to answer the following question in the inviscid limit

ν → 0:

Given σ, what is the smallest γ > 0 such that if the initial perturbation

is such that ‖uin‖Hσ = ε < νγ , then u remains close to the Couette

flow (in a suitable sense) and converges back to the Couette flow as

t→∞?

Hence, the goal is not just to prove that the 3D Couette flow is nonlinearly

stable in a suitable sense (this is straightforward for (1.1)) but to estimate the

stability threshold — the size of the largest ball around zero in Hσ such that

all solutions remain close to Couette. It is also of interest to determine the

dynamics of solutions near the threshold [SH01].

1.2. Background and previous work. Understanding the stability and in-

stability of laminar shear flows at high Reynolds number has been a classical

question in applied fluid mechanics since the early experiments of Reynolds

[Rey83]; see, e.g., the texts [DR81], [SH01], [Yag12]. In 3D hydrodynamics,

one of the most ubiquitous phenomena is that of subcritical transition: when
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a laminar flow becomes unstable and transitions to turbulence in experiments

or computer simulations at sufficiently high Reynolds number despite perhaps

being spectrally stable. In fact, the flows in question can be nonlinearly asymp-

totically stable at all Reynolds numbers, despite being unstable for all practical

purposes [Rom73]; see also [KLH94], [LK02]. It was suggested by Lord Kelvin

[Kel87] that indeed the flow may be stable, but the stability threshold is de-

creasing as ν → 0, resulting in transition at a finite Reynolds number in any

real system. Hence, the goal is, given a norm ‖·‖X , to determine a γ = γ(X)

such that

‖uin‖X . ν
γ =⇒ stability,

‖uin‖X � νγ =⇒ possible instability.

Of course we do not know a priori that the stability threshold is a power

law. In the applied literature, γ is often referred to as the transition threshold.

The γ is expected to depend nontrivially on the norm X (as observed in, for

example, the numerical experiments of [RSBH98]).

Many works in applied mathematics and physics have been devoted to

estimating γ; see, e.g., [BGM15a], [SH01], [Yag12] and the references therein.

The linearized problem is nonnormal and permits several kinds of transient

growth mechanisms:

(A) a transient un-mixing effect known as the Orr mechanism, noticed by Orr

in 1907 in the context of 2D Couette flow [Orr07];

(B) the 3D lift-up effect, which rearranges mean streamwise momentum to

deform the shear flow away from Couette, noticed first by Ellingsen and

Palm [EP75] (see also [Lan80]);

(C) the transient growth of higher derivatives due to mixing; and

(D) a transient vorticity stretching.

Trefethen et. al. [TTRD93] considered the implications that nonnormal effects

could have in the weakly nonlinear regime, in particular, forwarding the idea

that the nonlinearity could repeatedly re-excite the transient growth, produc-

ing a “nonlinear bootstrap” scenario. The authors of [TTRD93] conjecture

that γ > 1 for (1.1); a number of works have taken these, and related, ideas

further to make conjectures generally giving 1 ≤ γ ≤ 7/4; see, e.g., [GG94],

[BDT95], [Wal95], [BT97], [LHR94], [Cha02]. Unfortunately, many of these

authors do not carefully consider how the regularity of the initial data may

affect the answer, despite the fact that the strength of the transient growth

mechanisms is deeply tied to the regularity since the Couette flow can move

information from small scales to large scales. (See Section 1.4 or [BM13],

[BGM15a]; in fact, the sensitivity was noted by Reynolds [Rey83].) However,

a few take the regularity into account, in particular, Reddy et. al. [RSBH98],

where numerical experiments estimated γ ≈ 5/4 for smooth initial data and
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γ ≈ 31/20 for “noisy” data. More recent numerical experiments have since

suggested γ ≈ 1 for smooth data [DBL10].

In this paper we consider Sobolev regularity data and prove that if the

initial perturbation satisfies ‖uin‖Hσ ≤ δν3/2 for σ > 9/2 and δ depending only

on σ, then the solution stays within O(ν1/2) of the Couette flow, is attracted

back to the class of x-independent solutions (referred to here as streaks) for t &
ν−1/3, and finally converges back to equilibrium as t→∞. Note that this result

is very closely matched by the numerical estimate γ ≈ 31/20 of [RSBH98]; see

Remark 1.2 below for more discussions on regularity and the over-estimations

in numerical experiments. The main result is stated in Theorem 1.1 below, the

main bootstrap argument is set up in Section 2, and the requisite estimates

constitute the remainder of the paper.

The main stabilizing effect is the mixing-enhanced dissipation wherein the

mixing due to the Couette flow results in anomalously fast dissipation time-

scales (first derived by Lord Kelvin [Kel87]); see Section 1.4 for more discussion

or previous works such as [RY83], [DN94], [LB01], [BL94], [BBG01], [BW13],

[CKRZ08], [BMV16], [BCZ15]. ([DN94] are the first to the authors’ knowledge

to observe that this is important for understanding (1.1).) Inviscid damping,

first derived by Orr [Orr07] in 2D and later noticed to be a hydrodynamic

analogue of Landau damping (see, e.g., [BS03], [Ryu99], [MV11]), also plays a

role in suppressing certain nonlinear effects.

Nonlinear stability of the Couette flow in Sobolev topology has been

considered previously in the case of the bounded, infinite channel, that is,

y ∈ [−1, 1] and x ∈ R (which can of course lead to further complications,

due to the presence of boundary layers), first by Romanov [Rom73], with later

improvements by [KLH94] and [LK02]. This last paper seems to give the

best mathematically rigorous result to date for this geometry, namely γ ≤ 4.

In [BGM15a], [BGM15b], we study the stability threshold in Gevrey-α for

α ∈ (1, 2) for (1.1). (Gevrey class was first introduced in [Gev18].) Roughly

speaking, in [BGM15a] we prove that γ = 1 in these topologies (consistent with

the numerical results of [DBL10]) and in [BGM15b] we study the dynamics of

solutions that are as large as ν2/3−δ. Note that the numerical over-estimation

of [RSBH98], 5/4 vs. 1, is more pronounced in Gevrey than in Sobolev; see

Remark 1.2.

All previous work in fluid mechanics and kinetic theory that depend on

mixing as the stabilizing mechanism in models with strong nonlinear reso-

nances are in infinite regularity. (Indeed, the resonances in (1.1) are far more

problematic than those in 2D Navier-Stokes/Euler [BM13] or Vlasov-Poisson

[MV11].) In this work we are looking for the boundary (in terms of γ) be-

tween when finite regularity results are possible and when infinite regularity

seems to be required; see Section 1.6 for a more indepth discussion of the
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relationship between this work and previous related infinite regularity results

in [MV11], [BMM16], [BM13], [BMV16], [You16], [BGM15a], [BGM15b]. We

remark that there exists some finite regularity results in certain kinetic the-

ory models [FR16], [FG16], [Die16], however, this is possible only because the

nonlinearities being studied satisfy stringent nonresonance conditions.

1.3. Streak solutions. The first basic property to notice about (1.1) is that

it admits a wide class of so-called “2.5-dimensional” solutions, which are often

referred to as streaks, due to the streak-like appearance of the relatively fast

fluid in experiments and computations [TTRD93], [SH01], [TE05], [BDDM98].

We will see that all solutions below the threshold converge to these streak so-

lutions for t & ν−1/3, and hence these solutions describe the fully 3D nonlinear

dynamics for long times.

Proposition 1.1 (Streak solutions). Let ν∈ [0,∞), uin∈H5/2+ be diver-

gence-free and independent of x, that is, uin(x, y, z) = uin(y, z), and denote

by u(t) the corresponding unique strong solution to (1.1) with initial data uin.

Then u(t) is global in time, and for all T > 0, u(t) ∈ L∞((0, T );H5/2+(R3)).

Moreover, the pair (u2(t), u3(t)) solves the 2D Navier-Stokes/Euler equations

in (y, z) ∈ R× T:

∂tu
i + (u2, u3) · ∇ui = −∂ip+ ν∆ui, i ∈ {2, 3},(1.2a)

∂yu
2 + ∂zu

3 = 0,(1.2b)

and u1 solves the (linear) forced advection-diffusion equation

∂tu
1 + (u2, u3) · ∇u1 = −u2 + ν∆u1.(1.3)

1.4. Linear effects. Four linear effects will play a key role in the analysis

to come: lift up, inviscid damping, enhanced dissipation, and vortex stretching.

We present quickly the linearized problem and how these four effects arise.

1.4.1. The linearized problem. The linearized problem reads∂tu− ν∆u+ y∂xu+
(
u2
0
0

)
−∇∆−12∂xu

2 = 0,

u(t = 0) = uin.

Switch to the independent variables (x, y, z)=(x−ty, y, z) by setting u(t, x, y, z)

= u(t, x, y, z); it solves∂tu− ν∆Lu+

Å
u2
0
0

ã
−∇L∆−1

L 2∂xu
2 = 0,

u(t = 0) = uin,
(1.4)

where ∇L = (∂x, ∂y − t∂x, ∂z) and ∆L = ∇L · ∇L.
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1.4.2. Lift up. Consider first the projection onto zero frequencies in x̄

(equivalently x) of the above equation. (For a function f(t, x, y, z), we denote

f0(y, z) =
∫
f(x, y, z) dx.) Note that ū0 = u0, and hence it reads∂tu0 − ν∆u0 = −

Å
u20
0
0

ã
,

u0(t = 0) = (uin)0.

The solution of this linear problem is given by

u =

Ö
eνt∆

[
(u1

in)0 − t(u2
in)0

]
eνt∆(u2

in)0

eνt∆(u3
in)0

è
The linear growth predicted by this formula for times t . 1

ν is known as the

lift up effect, and was first noticed by Ellingsen and Palm [EP75] (see also

[Lan80]). This nonnormal transient growth turns out to be a primary source

of instability in (1.1) for small data; note also that this effect is not present in

2D due to the vanishing of u2
0 by incompressibility in that case. For smooth

data of size ε, we can expect at best the bounds,

‖u1
0‖2L∞Hs + ν‖u1

0‖2L2Hs .
Å
ε

ν

ã2

.

1.4.3. Inviscid damping. Turning now to nonzero frequencies in x̄, de-

noted for a function f(x̄, y, z) by f6= = f − f0, observe that the linearized

problem satisfied by q2
6= = ∆Lu

2
6= reads

(1.5)

∂tq2 − ν∆Lq
2 = 0,

q2(t = 0) = q2
in.

For smooth data of size ε, this gives a global bound on q2 of order ε. This

unknown was first introduced by Kelvin [Kel87] and is often used when study-

ing the stability of parallel shear flows; see, e.g., [Cha02], [SH01]. The velocity

field can be recovered by the formula ū2
6= = ∆−1

L q2
6=, or, in Fourier (denoting k,

η, l for the dual variables of x̄, y, z respectively)”u2
6= =

1

k2 + (η − kt)2 + l2
”q2
6=.(1.6)

Due to the bound 1
k2+(η−kt)2+l2

. 〈η〉2
〈kt〉2 , this leads to a decay estimate of the

type

‖u2
6=‖Hs .

1

t2

∥∥∥q2
6=

∥∥∥
Hs+2

.(1.7)

This decay mechanism is known as inviscid damping ; indeed, notice that the

decay rate is independent of ν and is true also for the linearized 3D Euler equa-

tions. For the nonlinear problem, we will mostly depend on L2
tH

s
x estimates,
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in which case we can expect estimates such as

‖tu2
6=‖L2Hs . ε(1.8)

(ε standing for the size of the data). The regularity loss in (1.7) is required to

control the transient growth in (1.6) for ηk > 0; modes that are tilted against

the shear and are subsequently unmixed to large scales before being mixed to

small scales. This nonnormal effect was pointed out by Orr [Orr07] in 2D,

however, it will remain important in 3D. Orr referred to the time t = η/k as

the critical time, a terminology we also use below.

1.4.4. Enhanced dissipation. In order to understand enhanced dissipation

better, consider the model scalar problem, such as that solved by q̄2 above in

(1.5), ∂tw 6= − ν∆Lw 6= = 0,

w 6=(t = 0) = (win)6=.

Taking the Fourier transform, the problem can be recast as∂tŵ 6= − ν(k2 + (η − kt)2 + l2)ŵ 6= = 0,

ŵ 6=(t = 0) = ◊�(win) 6=.

Thus ŵ 6=(t, k, η, l) = e−ν
∫ t
0

(k2+(η−kτ)2+l2)dτ◊�(win)6=. Due to the inequality∫ t

0
(k2 + (η − kτ)2 + l2)dτ & t3,

for the linear problem we get the decay

‖w 6=‖Hs . εe−cνt
3
.

This decay is much faster than the standard viscous dissipation; indeed, the

characteristic time scale for dissipation in nonzero-in-x modes is order ∼ ν−1/3

instead of ν−1. We refer to this phenomenon as enhanced dissipation; as

mentioned above, it has been studied in several contexts previously; see, e.g.,

[RY83], [DN94], [LB01], [CKRZ08], [BW13], [BMV16], [BCZ15]. In this work,

we will use L2 time-integrated estimates of the type

‖w 6=‖L2Hs .
ε

ν1/6
and ‖tw 6=‖L2Hs .

ε√
ν
.

1.4.5. Vorticity stretching and kinetic energy cascade. The control of q̄2

provides the rapid decay of ū2 via inviscid damping, which can then be inte-

grated to understand the evolution of ū1 and ū3 in (1.4). In particular, we see

that for times 1� t� ν−1/3, ū1,3
6= are essentially time-independent, and hence

over these times u1,3
6= are being mixed like a passive scalar by the Couette flow.

Hence, over these time scales we see a forward cascade of kinetic energy. (This

persists on the nonlinear level as well [BGM15a].) Due to the negative order of
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the Biot-Savart law, it is easy to see that a forward cascade of kinetic energy

is only possible if there is an accompanying vorticity stretching; this can also

be confirmed by studying (1.4) in vorticity form.

Finally, we summarize the linear behavior here.

Proposition 1.2 (Linearized Navier-Stokes). Let uin be a divergence-

free, smooth vector field. The solution to the linearized Navier-Stokes u(t)

with initial data uin satisfies the following for some c ∈ (0, 1/3):∥∥∥ū2
6=(t)

∥∥∥
Hσ
. 〈t〉−2e−cνt

3
∥∥∥u2

in

∥∥∥
Hσ+2

,(1.9a) ∥∥∥ū1,3
6= (t)

∥∥∥
Hσ
. e−cνt

3 ‖uin‖Hσ+7(1.9b)

and the formulas

u1
0(t, y, z) = eνt∆

Ä
u1
in 0 − tu2

in 0

ä
,(1.10a)

u2
0(t, y, z) = eνt∆u2

in 0,(1.10b)

u3
0(t, y, z) = eνt∆u3

in 0.(1.10c)

1.5. Statement of results. We now state our main results.

Theorem 1.1. For all σ > 9/2, there exists δ = δ(σ) such that if ν ∈
(0, 1) and uin is divergence-free with

ε = ‖uin‖Hσ < δν3/2,(1.11)

then the resulting strong solution to (1.1) is global in time and there exists a

function ψ(t, y, z) satisfying

‖ψ‖2L∞Hσ + ν‖∇ψ‖2L2Hσ .
ε2

ν2
,

such that, denoting by U i, i ∈ {1, 2, 3} the velocity field ui in the new coordi-

nates

U i(t, x− ty − tψ(t, y, z), y + ψ(t, y, z), z) = ui(t, x, y, z),

the solution u(t) to (1.1) with initial data uin is global in time and satisfies the

following estimates :∥∥∥u1
0

∥∥∥
L∞Hσ

+
√
ν
∥∥∥∇u1

0

∥∥∥
L2Hσ

.
ε

ν
,(1.12a) ∥∥∥u2,3

0

∥∥∥
L∞Hσ

+
√
ν
∥∥∥∇u2,3

0

∥∥∥
L2Hσ

. ε,(1.12b) ∥∥∥U2
6=

∥∥∥
L∞Hσ−2

+
∥∥∥∇LU2

6=

∥∥∥
L2Hσ−3

+
∥∥∥tU2
6=

∥∥∥
L2Hσ−4

. ε,(1.12c) ∥∥∥U1
6=

∥∥∥
L∞Hσ−3

+
√
ν
∥∥∥tU1
6=

∥∥∥
L2Hσ−4

. ε,(1.12d) ∥∥∥U3
6=

∥∥∥
L∞Hσ−2

+
√
ν
∥∥∥tU3
6=

∥∥∥
L2Hσ−3

. ε.(1.12e)



3D COUETTE FLOW IN SOBOLEV REGULARITY 549

Remark 1.1. The latter terms in (1.12d) and (1.12e) emphasize the effect

of enhanced dissipation, discussed above in Section 1.4. In particular, the

scaling of the L2Hσ−4 norm of tU i6= is far better at small ν than what would

be true of the heat equation. The second two estimates in (1.12c) emphasize

the effect of inviscid damping: notice indeed that the decay does not depend

on ν.

Remark 1.2. How optimal are the assumptions of the theorem?

• As mentioned previously, numerics in [RSBH98] estimated a threshold for

“noisy data” at ε ∼ ν31/20; Theorem 1.1 shows that the stability threshold

is slightly better. In light of the numerical evidence, it is reasonable to

conjecture that Theorem 1.1 is sharp in terms of γ over some range of

Sobolev spaces.

• By parabolic smoothing, it should be possible to slightly weaken (1.11) to

something like uin = uS + uR with ‖uS‖H9/2+ +Cν
9
4
−α

2 ‖uR‖Hα < δν3/2 for

a universal C at least over some range of α ∈ (5/2, 9/2). This is a local-

in-time effect that is totally independent of Theorem 1.1 (though it may be

a nontrivial refinement of the local theory for (1.1)). This is qualitatively

consistent with the numerical over-estimation observed in [RSBH98] and

others: numerical algorithms will inevitably introduce noise at the smallest

scales of the simulation and hence possibly over-estimate γ; indeed, more

recent computations carried out in [DBL10] are closer to the γ ≈ 1 in the

case of smooth data. This also suggests that the Sobolev regularity γ is

more robust to low-regularity noise than the infinite regularity γ (which

requires exponentially small noise [BGM15a]), which is consistent with the

mentioned numerical observations.

1.6. Brief discussion of the results and new ideas. Our work shows that

it may now be feasible to build a mathematical theory of subcritical instabili-

ties in fluid mechanics and possibly also in related fields, such as magneto-

hydrodynamics. This seems especially possible in finite regularity, as the

methods here are significantly more tractable than those in infinite regular-

ity [BGM15a], [BGM15b]. Indeed, in the proof of Theorem 1.1, we need to use

methods that differ significantly from those used in the infinite regularity works

[MV11], [BMM16], [BM13], [BMV16], [You16], [BGM15a], [BGM15b]. In all of

these previous works, the infinite regularity class is used to absorb the potential

frequency cascade due to weakly nonlinear effects in a process related to clas-

sical Cauchy-Kovalevskaya-type arguments in, e.g., [Nir72], [Nis77], [FT89],

[LO97] (see Section 2.3 for more precise discussions) or, in the case of [MV11],

via a Nash-Moser-type iteration. Here this is clearly not an option, and hence

we need to rule out any such cascade with the least possible amount of dis-

sipation; something that will require a different kind of understanding of the
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weakly nonlinear effects in the pressure and a more precise understanding of

the interplay between the enhanced dissipation and vortex stretching. The

starting point for this is the linear analysis of Section 1.4, and based on this,

Fourier multipliers that precisely encode the interplay between the dissipation

and possible growth are designed. These multipliers are then used to make

energy estimates that lose the minimal amount of information from the linear

terms; see Section 2.3 for specifics and context with existing ideas in, e.g.,

[FT89], [Ali01], [BM13] and others. (In particular, we need multipliers that

more precisely capture the effect of dissipation than in [BGM15a], [BGM15b].)

Once we have understood and quantified the linear terms, one needs to

understand how this linear behavior interacts with the nonlinearity. For this,

of critical importance in the proof is the precise structure of the nonlinearity,

which contains a number of null structures. Similar to null forms for quasilin-

ear wave equations, introduced in [Kla82], the null structures encountered in

the present paper cancel possible interactions between large modes or deriva-

tives of the solution. The simplest is that the nonlinearity in (1.1) does not

allow u1
0 to directly interact with itself in a nonlinear way (this is essentially

how Proposition 1.1 works); however a similar structure also limits the way

u1
6= and u1

0 interact. Another slightly more subtle structure is that, since the

nonlinearity is comprised of forms of the type uj∂ju
i, the large growth of y

derivatives is crucially counter-balanced by the inviscid damping of u2 in non-

linear terms. Indeed, this is why quantifying the inviscid damping of u2 is

important for the proof to work. Similarly, the u1∂x and u3∂z structure pairs

less problematic derivatives with the more problematic u1,3. Since the inviscid

damping is important, a key physical mechanism to understand is how the

streak and the kinetic energy cascade interact nonlinearly in the y derivative

of the pressure, that is, the nonlinear term: −∂y∆−1
Ä
∂zu

1
0∂xu

3
6=
ä
. Controlling

this term is one of the main challenges, which is done in Section 3.1.2, and in

it, all of the linear effects outlined in Section 1.4 are playing a role (which is

why it is very important that these are treated precisely). See Section 2 below

for more details on the proof and techniques.

2. Preliminaries and outline of the proof

2.1. Notation.

2.1.1. Miscellaneous. Given two quantities A and B, we denote A . B

if there exists a constant C such that A ≤ CB. This constant might depend

on σ, but not on δ, ν, C0 or C1 (the two latter quantities remain to be defined),

provided that δ is chosen sufficiently small. That is, implicit constants such as,

e.g., C0δ are omitted for simplicity. We similarly denote A� B if A ≤ δ0B for

a small constant δ0 ∈ (0, 1) to emphasize the small size of the implicit constant.

Finally, we write 〈x〉 =
√

1 + x2.
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2.1.2. Fourier Analysis. The Fourier transform of a function f(X,Y, Z),

denoted f̂(k, η, `) or Ff , is such that

f(X,Y, Z) =
∑
k

∫
η∈R

∑
`

f̂(k, η, `)e2πi(kX+ηY+`Z) dη,

f̂(k, η, `) =

∫
X∈T

∫
Y ∈R

∫
Z∈T

f(X,Y, Z)e−i2π(kX+ηY+`Z) dX dY dZ.

The Fourier multiplier with symbol m(k, η, `) is such that

m(D)f = F−1m(k, η, `)Ff.

The projections on the zero frequency in X of a function f(X,Y, Z) are denoted

by

P0f = f0 =

∫
f(X,Y, Z) dX,

while

P6=f = f6= = f − P0f.

2.1.3. Functional spaces. The Sobolev space HN is given by the norm

‖f‖HN = ‖〈D〉Nf‖L2 .

Recall that, for s > 3
2 , Hs is an algebra: ‖fg‖Hs . ‖f‖Hs‖g‖Hs .

We will sometimes use the notation Hs+ for Hs+κ, where κ can be taken

arbitrarily small, with (implicit) constants depending on κ.

For a function of space and time f = f(t, x), and times a < b, the Banach

space Lp(a, b;HN ) is given by the norm

‖f‖Lp(a,b;HN ) = ‖‖f‖HN ‖Lp(a,b) .

For simplicity of notation, we usually simply write ‖f‖LpHN since the time-

interval of integration in this work will be the same basically everywhere.

2.1.4. Littlewood-Paley decomposition and paraproduct. Start with θ a

smooth, nonnegative function supported in the annulus B(0, 5)\B(0, 1) of R3,

and such that
∑+∞
j=−∞ θ

Ä
ξ
2j

ä
= 1 for ξ 6= 0, and define the Fourier multipliers

Pj = θ

Å
D

2j

ã
, P≤J =

J∑
j=−∞

θ

Å
D

2j

ã
, P>J = 1− P≤J .

These Fourier multipliers enable us to split the product into two pieces such

that each corresponds to the interaction of high frequencies of one function

with low frequencies of the other:

fg = fHigLo + fLogHi,
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with

fHigLo =
∑
j

PjfP≤jg, fLogHi =
∑
j

P≤j−1fPjg.

(The lack of symmetry in this formula is irrelevant.) We record the estimate

‖fHigLo‖Hs . ‖f‖Hs‖g‖Hσ for s > 0, σ > 3
2 .(2.1)

We further note that if g depends only on two variables, say y and z, then we

have

‖fHigLo‖Hs . ‖f‖Hs‖g‖Hσ for s > 0, σ > 1.(2.2)

2.2. Re-formulation of the equations. First, we reformulate the equations

to make them more amenable to long-time, nonlinear analysis.

2.2.1. Change of dependent variables. In order to understand the lin-

earized equation in Section 1.4, it is important to use the unknown q2 = ∆u2.

In linear or formal weakly nonlinear analyses (see, e.g., [Cha02, SH01] and

the references therein) it is natural to couple q2 with the vertical component

of the vorticity, however, we will also need to change independent variables

to adapt to the mixing caused by u1
0, which makes this approach very prob-

lematic. Therefore, it is more convenient to work with the set of unknowns

qi = ∆ui (as observed in [BGM15a]). These unknowns satisfy the system

(2.3)

∂tq
1 + y∂xq

1 − ν∆q1 + 2∂xyu
1 + q2 − 2∂xxu

2

= −u · ∇q1 − qj∂ju1 − 2∂iu
j∂iju

1 + ∂x
(
∂iu

j∂ju
i
)
,

∂tq
2 + y∂xq

2 − ν∆q2 = −u · ∇q2 − qj∂ju2 − 2∂iu
j∂iju

2 + ∂y
(
∂iu

j∂ju
i
)
,

∂tq
3 + y∂xq

3 − ν∆q3 + 2∂xyu
3 − 2∂xzu

2

= −u · ∇q3 − qj∂ju3 − 2∂iu
j∂iju

3 + ∂z
(
∂iu

j∂ju
i
)
,

q(t = 0) = qin.

2.2.2. Change of independent variables. The x-component of the streak,

u1
0, is expected to be as large as O(εν−1) (again from Section 1.4), which is far

too large to be balanced directly by the dissipation. (It is not hard to check

this would require ε� ν2.) Hence, we remove the fast mixing action due to the

streak itself, an approach also used in [BGM15a] for the same reason. There is

essentially no choice in the change of coordinates we can employ — it is dictated

uniquely by the desired properties and the structure of the equation. Although

the coordinate transform is described in detail in [BGM15a], because it is still

a central tool for our analysis here, we will describe briefly the motivation for
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its design. Define the coordinate transform with the ansatz as in [BGM15a],

X = x− ty − tψ(t, y, z),(2.4a)

Y = y + ψ(t, y, z),(2.4b)

Z = z.(2.4c)

We denote

ψy(t, Y, Z) = ∂yψ(t, y, z), ψz(t, Y, Z) = ∂zψ(t, y, z).

To distinguish between old and new coordinates, we capitalize ui and qi, while

ψ itself becomes C:

U i(t,X, Y, Z) = ui(t, x, y, z), Qi(t,X, Y, Z) = qi(t, x, y, z),

C(t, Y, Z) = ψ(t, y, z),

where we are using the shorthand X = X(t, x, y, z), Y = Y (t, x, y, z), and

Z = Z(t, x, y, z). Notice that ψy, ψz, and C are related as follows:

ψy =
∂Y C

1− ∂Y C
= ∂Y C

∞∑
j=0

(∂Y C)j ,(2.5a)

ψz =
∂ZC

1− ∂Y C
= ∂ZC

∞∑
j=0

(∂Y C)j .(2.5b)

In the new coordinates, differential operators are modified as follows: denoting

f(t, x, y, z) = F (t,X, Y, Z),

∇f(t, x, y, z) =

Ö
∂xf

∂yf

∂zf

è
=

Ö
∂XF

(1 + ψy)(∂Y − t∂X)F

(∂Z + ψz(∂Y − t∂X))F

è
=

Ö
∂tXF

∂tY F

∂tZF

è
= ∇tF (t,X, Y, Z).

It will be useful to isolate the “linear part” of ∇t (that is, the contribution

associated with the linearized problem), which we denote ∇L:

∇L =

Ö
∂X

∂Y − t∂X
∂Z

è
=

Ö
∂X
∂LY
∂Z

è
.

Using the notation

∆L = ∇L · ∇L = ∂2
X + (∂LY )2 + ∂2

Z(2.6a)

G = (1 + ψy)
2 + ψ2

z − 1,(2.6b)
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the Laplacian transforms as

∆f = ∆tF =
Ä
(∂X)2 + (∂tY )2 + (∂tZ)2

ä
F

= ∆LF +G∂LY Y F + 2ψz∂
L
ZY F + ∆tC∂

L
Y F.

One of the motivations for the ansatz (2.4) is so that the symbol of ∆t,

σ(∆t)(t, y, k, η) (as a pseudo-differential operator) fails to be elliptic precisely

when η = kt — the same as ∆L. (By convention, η is the wave number asso-

ciated with Y and k is the wave number associated with X.) This property

makes it possible to effectively approximate ∆−1
t with ∆−1

L , provided that ψ re-

mains sufficiently small. (Lemmas of this type are outlined in Appendix A.2.)

We will also need the modified Laplacian‹∆tF = ∆tF −∆tC∂
L
Y F = ∆LF +G∂LY Y F + 2ψz∂

L
Y ZF.(2.7)

Next, we describe how to choose ψ effectively. Suppose that f satisfies the

passive scalar equation:

∂tf + y∂xf + u · ∇f = ν∆f.

Then from the above considerations, we have

∂tF +

Ö
u1 − t(1 + ∂yψ)u2 − t∂zψu3 − ∂t(tψ) + νt∆ψ

(1 + ∂yψ)u2 + ∂zψu
3 + ∂tψ − ν∆ψ

u3

è
· ∇X,Y,ZF = ν›∆tF.

(2.8)

The primary contribution from the background streak in the velocity field is

given by the u1
0 − tu2

0 in the first component, so it is natural to choose the

contributions involving ψ to balance this by making the definition

d

dt
(tψ) + u0 · ∇ (tψ) = u1

0 − tu2
0 + νt∆ψ,(2.9a)

lim
t→0

tψ(t) = 0.(2.9b)

In fact, making a slightly different choice, e.g., by attempting to drop the

higher order u0 · ∇(tψ) term in (2.9a), does not seem to work, in the sense

that ψ remains too large to get reasonable estimates over long times. Hence,

(2.9a) appears to be the only feasible choice, given the ansatz (2.4). The mild

coordinate singularity at t = 0 will be irrelevant, as this coordinate transform

will only be applied for t ≥ 1.

Let us now apply the choices (2.4) and (2.9a) to (2.3). Define g and ‹U0

(which will be the X-independent part of the velocity in the new coordinates)

by

g =
1

t
(U1

0 − C), ‹U0 =

Ö
0

g

U3
0

è
.
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Computing from (2.9a), (2.3), and (1.1) gives the following system (we refer

to [BGM15a] for more details):



Q1
t − ν‹∆tQ

1 +Q2 + 2∂tXY U
1 − 2∂XXU

2

= −‹U0 · ∇Q1 − U 6= · ∇tQ1 −Qj∂tjU1 − 2∂tiU
j∂tijU

1 + ∂X(∂tiU
j∂tjU

i),

Q2
t − ν‹∆tQ

2

= −‹U0 · ∇Q2 − U 6= · ∇tQ2 −Qj∂tjU2 − 2∂tiU
j∂tijU

2 + ∂tY (∂tiU
j∂tjU

i),

Q3
t − ν‹∆tQ

3 + 2∂tXY U
3 − 2∂tXZU

2

= −‹U0 · ∇Q3 − U 6= · ∇tQ3 −Qj∂tjU3 − 2∂tiU
j∂tijU

3 + ∂tZ(∂tiU
j∂tjU

i),

(2.10)

coupled with the equations that must be solved to find the coordinate system

itself: ∂tC + ‹U0 · ∇C = g − U2
0 + ν‹∆tC,

∂tg + ‹U0 · ∇g = −2
t g −

1
t (U 6= · ∇tU

1
6=)0 + ν‹∆tg.

(2.11)

Although most work is done directly on the system (2.10), (2.11), for certain

steps it will be useful to use the momentum form of the equations

(2.12)

∂tU−ν‹∆tU+‹U0·∇U+U6=·∇tU=

Ö
−U2

0

0

è
+∇t∆−1

t 2∂XU
2+∇t∆−1

t (∂tiU
j∂tjU

i).

2.2.3. Shorthand. It will be quite convenient to use shorthand for the

various terms appearing in the above equations and to be able to distinguish

whether interacting modes have zero or nonzero X frequency. Let us start

with linear terms, appearing in the equations for Qk, k = 1, 3:

LU = Q2 (lift up term),

LS = 2∂tXY U
k (linear stretching term),

LP = −2∂tXkU
2 (linear pressure term).

Next, consider the nonlinear terms in (2.10). In the following, i, j run in

{1, 2, 3}, while ε1 and ε2 may be 0 or 6=):

T0,ε1 = ‹U0 · ∇Qkε1 (transport term),

T 6=,ε1 = U6= · ∇tQkε1 (transport term),

NLS1(j, ε1, ε2) = Qjε1∂
t
jU

k
ε2 (nonlinear stretching term),

NLS2(i, j, ε1, ε2) = 2∂tiU
j
ε1∂

t
ijU

k
ε2 (nonlinear stretching term),

NLP(i, j, ε1, ε2) = ∂tk(∂
t
jU

i
ε1∂

t
iU

j
ε2) (nonlinear pressure term).
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We will often abuse notation and, for instance, denote indifferently NLS1 for

this term and its contribution to an energy estimate. The origin of these terms

is more or less clear except perhaps the “stretching” terminology, which is due

to the similarity these terms have with the vortex stretching term in the 3D

Navier-Stokes equations in vorticity form.

2.3. The Fourier multipliers. At this point, our work here will depart from

the infinite regularity case [BGM15a].

The multiplier m: stretching versus dissipation. Our focus here is the

following linear equation:

∂tf + 2∂LXY ∆−1
L f − ν∆Lf = 0,

which occurs as some of the main linear terms governing Q1 and Q3 in (2.10).

This equation can be seen as a competition between the linear stretching term

2∂LXY ∆−1
L f and the dissipation term ν∆Lf . Taking the Fourier transform, it

becomes

∂tf̂ + 2
k(η − kt)

k2 + (η − kt)2 + `2
f̂ + ν

Ä
k2 + (η − kt)2 + `2

ä
f̂ = 0.

If k 6= 0, the factor 2 k(η−kt)
k2+(η−kt)2+`2

is positive for t < η
k , in which case it amounts

to damping on f̂ ; and it is negative for t > η
k , in which case it corresponds

to an amplification of f̂ . As for the factor ν
(
k2 + (η − kt)2 + `2

)
, this gives

enhanced dissipation for k 6= 0. We start with the following inequality, which

compares the sizes of these two factors: uniformly in (k, η, `), if k 6= 0, then

ν
Ä
k2 + (η − kt)2 + `2

ä
� |k(η − kt)|

k2 + (η − kt)2 + `2
if |t− η

k
| � ν−1/3.

Indeed, |k(η−kt)|
ν(k2+(η−kt)2+`2)2

≤ |t− η
k
|

ν(1+|t− η
k
|2)2

, and it is easy to check that x
ν(1+x2)2

�1

for |x| � ν−1/3.

To summarize, stretching overcomes dissipation if 0 < t− η
k . ν−1/3. To

deal with this range of t, we introduce the multiplier m. Define m(t, k, η, `) by

m(t = 0, k, η, `) = 1 and the following ordinary differential equation:

ṁ

m
=

0 if t /∈
î
η
k ,

η
k + 1000ν−1/3

ó
,

2k(η−kt)
k2+(η−kt)2+`2

if t ∈
î
η
k ,

η
k + 1000ν−1/3

ó
.

This multiplier is such that if f solves the above equation and 0 < t − η
k <

1000ν−1/3, then mf solves

∂t(mf)− ν∆L(mf) = 0,

and this equation is perfectly well behaved! That is, the growth that f under-

goes is balanced by the decay of the multiplier m; this is especially useful since
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the growth is highly anisotropic in frequency. Conveniently, it turns out that

m is given by a closed formula:

(1) if k = 0: m(t, 0, η, `) = 1;

(2) if k 6= 0, η
k < −1000ν−1/3: m(t, k, η, `) = 1;

(3) if k 6= 0, −1000ν−1/3 < η
k < 0:

• m(t, k, η, `) = k2+η2+`2

k2+(η−kt)2+`2
if 0 < t < η

k + 1000ν−1/3,

• m(t, k, η, `) = k2+η2+`2

k2+(1000kν−1/3)2+`2
if t > η

k + 1000ν−1/3;

(4) if k 6= 0, η
k > 0:

• m(t, k, η, `) = 1 if t < η
k ,

• m(t, k, η, `) = k2+`2

k2+(η−kt)2+`2
if η

k < t < η
k + 1000ν−1/3,

• m(t, k, η, `) = k2+`2

k2+(1000kν−1/3)2+`2
if t > η

k + 1000ν−1/3.

Notice, in particular, that

ν2/3 . m(t, k, η, `) ≤ 1.(2.13)

Further, we point out the following key inequality, which shows that the growth

is exactly balanced by ∆L:

m(t, k, η, l) &
k2 + l2

k2 + l2 + |η − kt|2
.(2.14)

Additional multipliers bounded from below by a positive constant. We will

use several additional multipliers, which unlike m, are bounded above and

below uniformly in ν and frequency. Multipliers M0 and M1 are used to

balance the growth due to the linear pressure terms as well as some of the

leading order nonlinear terms. The multiplier M2 plays an especially crucial

role by compensating for the transient slow-down of the enhanced dissipation

near the critical times, and hence this multiplier will be ultimately how we

quantify accelerated dissipation without regularity loss — of crucial importance

to our methods and not possible with the techniques employed in the infinite

regularity works [BMV16], [BGM15a].

Define M i, i = 0, 1, 2 as follows: M i(t = 0, k, η, `) = 1 and

• if k = 0, M i(t, k, η, `) = 1 for all t;

• if k 6= 0, Ṁ0

M0 = −k2
k2+`2+(η−kt)2 ;

• if k 6= 0, Ṁ1

M1 = −2〈k`〉
k2+`2+(η−kt)2 ;

• if k 6= 0, Ṁ2

M2 = − ν1/3

[ν1/3|t− ηk |]
1+κ

+1
,

where κ ∈ (0, 1/2) is a small, fixed constant. It is easy to check that these

multipliers satisfy

0 < c < M i(t, k, η, l) ≤ 1
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for a universal constant c. Define then

M = M0M1M2.

To see the usefulness of M , consider the weighted energy estimate

1

2

d

dt

∥∥∥MQ3
6=

∥∥∥2

HN
= −

∥∥∥∥»−ṀMQ3
6=

∥∥∥∥2

HN
+ 〈MU3,M∂tQ

3
6=〉HN .

In order to bound the latter term, we may firstly use some of the negative term

coming from Ṁ , and secondly, if we can control the term by something like

〈MQ3,M∂tQ
3
6=〉HN ≤

1

2

∥∥∥∥»−ṀMQ3
6=

∥∥∥∥2

HN
− ν

2

∥∥∥∇LMQ3
∥∥∥2

HN
+ ε3E(t),

where E is uniformly bounded in L1
t , then both

√
ν
∥∥∇LMQ3

∥∥
L2HN and∥∥∥∥»−ṀMQ3

6=

∥∥∥∥
L2HN

are bounded! The usefulness of this estimate is empha-

sized by the following very important lemma (the proof of which is immediate

from the definition of M2), which shows how to deduce L2 in time enhanced

dissipation without losing any regularity.

Lemma 2.1. For k 6= 0, there holds

1 . ν−1/6
»
−Ṁ2M2(k, η, l) + ν1/3 |k, η − kt, l| .

As a corollary, the following holds for any f and α ≥ 0:

‖f6=‖L2Hα . ν
−1/6

Å∥∥∥∥»−Ṁ2M2f6=

∥∥∥∥
L2Hα

+ ν1/2 ‖∇Lf6=‖L2Hα

ã
.

Note that Lemma 2.1 also holds with M2 replaced by the full M , as will

be used frequently below.

The use of norms with time-decaying norms is quite classical when working

in infinite regularity; see, e.g., the Cauchy-Kowalevskaya theorems of [Nir72],

[Nis77]. The use of dissipation-like terms that appear in L2-based infinite reg-

ularity estimates goes back to [FT89]; see also related ideas in, e.g., [LO97],

[KV09], [CGP11], [MV11] and the references therein. The ghost energy of

Alinhac [Ali01] for quasilinear wave equations uses O(1) time-dependent

weights in the norms, and the O(1) multiplier M is a Fourier-side analogue;

this general idea has been used several times [Zil14], [BGM15a], [BGM15b].

Combining ideas like the ghost energy with the Cauchy-Kowalevskaya-type

ideas are multipliers such as m(t,∇), which are not O(1) (m−1 is bounded

only by O(ν−2/3)); this is significantly more complicated, as will be clear from

the proof. In the context of nonlinear mixing, this general idea was introduced

for infinite regularity in [BM13] and extended further in [BMV16], [BGM15a],

[BGM15b]. However, m is very different from ideas appearing in these infinite

regularity works, as we must use very differently the interplay between the

dissipation and destabilizing effects.
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2.4. Bootstrap. In the following, it will be convenient (for bookkeeping

purposes) to introduce

N = σ − 2 >
5

2
.

First, we have the following standard lemma. One can, for example, apply the

energy methods in [MB02] and [LO97] (for the analyticity). We omit the proof

for brevity.

Lemma 2.2 (Local existence, continuation, and propagation of analytic-

ity). Let uin be divergence-free and satisfy (1.11). Then there exists a T ? > 0

independent of ν such that there is a unique strong solution to (1.1) u(t) ∈
C([0, T ?];HN+2) that satisfies the initial data and is real analytic for t ∈
(0, T ?]. Moreover, there exists a maximal time of existence T0 with T ?<T0≤∞
such that the solution u(t) remains unique and real analytic on (0, T0) and, if

for some τ ≤ T0 we have lim supt↗τ ‖u(t)‖HN <∞, then τ < T0.

By similar considerations (see Section 2.7), for ε sufficiently small, there

are no issues getting estimates on qi, ui, and ψ until t = 2.

Lemma 2.3. For εν−3/2 sufficiently small and constants C0, C1 sufficiently

large (chosen below), the following estimates hold for t ∈ [0, 2]:∥∥∥q1(t)
∥∥∥
HN

+
∥∥∥q3(t)

∥∥∥
HN
≤ 2C0ε,(2.15a) ∥∥∥q2(t)

∥∥∥
HN
≤ 2ε,(2.15b) ∥∥∥u1(t)

∥∥∥
HN+2

+
∥∥∥u3(t)

∥∥∥
HN+2

≤ 2C0ε,(2.15c) ∥∥∥u2(t)
∥∥∥
HN+2

≤ 2ε,(2.15d)

‖tψ(t)‖HN ≤ 2C1ε.(2.15e)

Lemma 2.3 shows that we only need to worry about times t > 1, for which

we now move to the coordinate system defined in Section 2.2.2; for details on

converting the estimates to and from these coordinates, see Section 2.7 below.

From now on, all time norms are taken over the interval [1, T ] unless otherwise

stated; that is, all norms are defined via

‖f‖LpHs := ‖‖f(t)‖Hs‖Lp([1,T ]) .

Fix C0, C1, and C2 large constants determined by the proof below, and let T

be the largest time T ≥ 1 such that the following estimates hold on [1, T ] (see

Lemma 2.7 below for a proof that T ≥ 2): the bounds on Q,∥∥∥〈t〉−1Q1
0(t)

∥∥∥
L∞HN

≤ 8C0ε,(2.16a) ∥∥∥Q1
0

∥∥∥
L∞HN

+ ν1/2
∥∥∥∇Q1

0

∥∥∥
L2HN

≤ 8C0εν
−1,(2.16b)
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6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥mM∇LQ1

6=

∥∥∥
L2HN

(2.16c)

+

∥∥∥∥»−ṀMmQ1
6=

∥∥∥∥
L2HN

≤ 8C0εν
−1/3,∥∥∥m1/2MQ2

∥∥∥
L∞HN

+ ν1/2
∥∥∥m1/2M∇LQ2

∥∥∥
L2HN

(2.16d)

+

∥∥∥∥»−ṀMm1/2Q2
∥∥∥∥
L2HN

≤ 8ε,∥∥∥mMQ3
∥∥∥
L∞HN

+ ν1/2
∥∥∥mM∇LQ3

∥∥∥
L2HN

(2.16e)

+

∥∥∥∥»−ṀMmQ3
∥∥∥∥
L2HN

≤ 8C0ε,∥∥∥MQ2
6=

∥∥∥
L∞HN−1

+ ν1/2
∥∥∥M∇LQ2

6=

∥∥∥
L2HN−1

(2.16f)

+

∥∥∥∥»−ṀMQ2
6=

∥∥∥∥
L2HN−1

≤ 8ε,

the bounds on U , ∥∥∥〈t〉−1U1
0

∥∥∥
L∞HN−1

≤ 8C0ε,(2.17a) ∥∥∥U1
0

∥∥∥
L∞HN−1

+ ν1/2
∥∥∥∇U1

0

∥∥∥
L2HN−1

≤ 8C0εν
−1,(2.17b)

‖U2
0 ‖L∞HN−1 + ν1/2‖U2

0 ‖L2HN−1 + ν1/2‖∇U2
0 ‖L2HN−1 ≤ 8ε,(2.17c)

‖U3
0 ‖L∞HN−1 + ν1/2‖∇U3

0 ‖L2HN−1 ≤ 8C0ε,(2.17d)

∥∥∥MU1
6=

∥∥∥
L∞HN−1

+ ν1/2
∥∥∥∇LMU1

6=

∥∥∥
L2HN−1

+

∥∥∥∥»−ṀMU1
6=

∥∥∥∥
L2HN−1

≤ 8C0ε,

(2.17e)

∥∥∥U2
0

∥∥∥
L1L2

≤ 8C2εν
−1,(2.17f)

and the bounds on the coordinate system

‖g‖L∞HN+2 + ν1/2 ‖∇g‖L2HN+2 ≤ 8C0ε,(2.18a) ∥∥∥t2g∥∥∥
L∞HN−1

+ ν1/2
∥∥∥t2∇g∥∥∥

L2HN−1
≤ 8C0ε,(2.18b)

‖C‖L∞HN+2 + ν1/2 ‖∇C‖L2HN+2 ≤ 8C1εν
−1.(2.18c)

Note that Lemma 2.3 implies T > 2; see Section 2.7 and the continuity of the

constant in Lemma 2.5. The goal is then to prove that T = +∞, which follows

immediately from the following (and that all of these norms are continuous in

time).

Proposition 2.1. Assume that ‖uin‖HN+2 ≤ ε ≤ δν3/2, ν ∈ (0, 1), and

that, for some T > 1, the estimates (2.17), (2.16), (2.18) hold on [1, T ]. Then

for δ sufficiently small depending only on σ,C0, C1, and C2 (in particular,
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independent of T ), these same estimates hold with all the occurrences of 8 on

the right-hand side replaced by 4.

That Proposition 2.1 implies Theorem 1.1 is proved in Lemma 2.8 below.

The proof of Proposition 2.1 comprises the remainder of the paper.

Before going any further, let us comment on the choice of the a priori

estimates (2.16), (2.17), and (2.18).

• Most of these estimates are the natural ones for the linearized problems,

given the multipliers chosen above: consider, for instance, (2.16e), which is

typical. It comprises a global bound in HN weighted by m, ‖mMQ3‖L∞HN

(natural due to the linear stretching, as discussed in Section 2.3), a bound

accounting for the viscous dissipation, ν1/2‖mM∇LQ3‖L∞HN , and finally

a bound corresponding to the dissipation-like structure arising from the

multipliers as explained in Section 2.3, ‖
»
−ṀMmQ3‖L2HN .

• For the modes that grow linearly in the absence of viscosity, we add esti-

mates incorporating a weight 〈t〉−1: this gives (2.16a) and (2.17a).

• The estimate (2.16c) loses ν−1/3 on the right-hand side compared to the

linearized estimate. (This loss occurs when estimating the lift up term in

Section 5.1.1.) It might not be optimal, but it is sufficient to close the

bootstrap when coupled with (2.17e).

• Finally, one of the main subtleties are the two estimates on Q2 in (2.16d)

and (2.16f). The nonlinear effect of high frequencies can be quite dramatic

near the critical times, and the leading order nonlinear term in the Q2 equa-

tion, which turns out is NLP(1, 3, 0, 6=) (see the treatment in Section 3.1.2

below), cannot be bounded in HN uniformly in t and ν if we only assume

ε . ν3/2. This term is a very 3D nonlinear interaction involving the Orr

mechanism, the stretching of Q3, and the lift-up effect of U1
0 all at once. By

allowing Q2 to grow near the critical time until the dissipation can balance

the growth, quantified by the inclusion of the decaying m1/2 in the norm,

one can complete an estimate — hence (2.16d). However, any growth of Q2

in turn limits the inviscid damping of U2, and the decay provided by the

inviscid damping provides a kind of null structure that diminishes the ef-

fect of certain nonlinear terms that would otherwise be uncontrollable. The

solution to this issue is to pay regularity and get a better uniform estimate

at lower frequencies, as expressed in (2.16f) — the gap of one derivative is

roughly analogous to the fact that paying one derivative will give one power

of t−1 decay in an estimate such as (1.7).

2.5. Choice of constants. Four constants have not been specified yet: δ ≥
εν−3/2, which appears in the statement of Theorem 1.1, and C0, C1, and C2,

which appear in the above bootstrap estimates. In the course of the proof, we
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choose them small such that

1

C0
+
C0

C1
+ C1δ + C0δ <

1

A

for a universal constant A = A(σ) that depends only on σ. The constant C2

is a fixed, universal constant. Specifically, this means that one first fixes C0,

then C1 dependent on C0, and then finally δ small relative to both.

2.6. Estimates following immediately from the bootstrap hypotheses. This

section outlines some of the consequences of the bootstrap hypotheses.

The first lemma is a simple result of the Sobolev product law, the geo-

metric series representation (2.5), and the bootstrap hypotheses. (Also recall

the shorthand (2.6b).)

Lemma 2.4. Under the bootstrap hypotheses, for εν−1 sufficiently small

and 1 < s ≤ N + 2,

‖ψy‖Hs + ‖ψz‖Hs + ‖G‖Hs . ‖∇C‖Hs .

As a consequence, there holds for all i, j ∈ {X,Y, Z},∥∥∥∂tY f∥∥∥Hs
.
∥∥∥∂LY f∥∥∥Hs

s ≤ N + 1,(2.19a)

∥∥∥∂tZf∥∥∥Hs
. ‖∂Zf‖Hs + εν−1

∥∥∥∂LY f∥∥∥Hs
. ‖∇Lf‖Hs s ≤ N + 1,

(2.19b)

‖∆tf6=‖Hs +
∥∥∥∂ti∂tjf6=∥∥∥Hs

. ‖∆Lf6=‖Hs s ≤ N,(2.19c)

‖∆tf0‖Hs +
∥∥∥∂ti∂tjf0

∥∥∥
Hs
. ‖∆f0‖Hs + εν−1 ‖∇f0‖Hs s ≤ N.(2.19d)

Similarly, by using also Lemma A.1, we have for all α∈ [0, 1] and 3/2<s≤N ,∥∥∥mα∂tjf6=
∥∥∥
Hs
. (1 + ‖∇C‖Hs+2α) ‖∇Lmαf‖Hs .(2.20)

Remark 2.1. Note that for s + 2α ≤ N + 1, the leading factor in (2.20)

can be ignored by the L∞HN+2 control on C for ν sufficiently small depending

on C1.

Remark 2.2. Lemma 2.4, particularly (2.19), is used so frequently through-

out the proof that, for the sake of brevity, we do not always make explicit

mention of it.

An important consequence of (2.19) is that in many places, the difference

between ∂ti and ∂Li is irrelevant, however, the difference cannot be neglected

everywhere. For example, for s > 3/2, there holds (note that ψy is independent

of X),

〈f, ∂tY g〉Hs . ‖∇Lf‖Hs ‖g‖Hs +
∥∥∥∇2C

∥∥∥
Hs
‖f‖Hs ‖g‖Hs ;(2.21)
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indeed this is proved by integrating by parts and Cauchy-Schwarz. If s ≤ N

and the frequency of f is nonzero, then the second term in (2.21) is controlled

by the first:

〈f6=, ∂tY g〉Hs . ‖∇Lf6=‖Hs ‖g‖Hs .(2.22)

Note that for ν sufficiently small, the implicit constant does not depend on C1.

However, at the zero frequency, we need both terms in (2.21). Similar inequal-

ities hold also for ∂tZ . One also has the following variant for α ∈ [0, 1], which

is useful in many places: for 3/2 < s ≤ N ,

〈mαf6=,m
α
Ä
∂tY g

ä
〉Hs . ‖∇Lmαf6=‖Hs

∥∥∥mmin(α,1/2)g
∥∥∥
Hs
.(2.23)

As above, for ν sufficiently small, the implicit constant does not depend on C1.

The next proposition consists of those estimates that follow directly from

the estimates on Qi and the elliptic lemmas detailed in Section A.2. These

elliptic lemmas provide the technical tools for understanding ∆−1
t , important

for recovering U i from Qi = ∆tU
i.

Proposition 2.2 (Basic a priori estimates on the velocity in HN ). Under

the bootstrap hypotheses, for εν−3/2 sufficiently small, the following additional

estimates hold : ∥∥∥〈t〉−1U1
0 (t)

∥∥∥
L∞HN+2

. C0ε,(2.24a) ∥∥∥U1
0

∥∥∥
L∞HN+2

+ ν1/2
∥∥∥∇U1

0

∥∥∥
L2HN+2

. C0εν
−1,(2.24b) ∥∥∥U2

0

∥∥∥
L∞HN+2

+ ν1/2
∥∥∥∇U2

0

∥∥∥
L2HN+2

. ε,(2.24c) ∥∥∥U3
0

∥∥∥
L∞HN+2

+ ν1/2
∥∥∥∇U3

0

∥∥∥
L2HN+2

. C0ε,(2.24d) ∥∥∥U1
6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥∇LU1

6=

∥∥∥
L2HN

+

∥∥∥∥»−ṀMU1
6=

∥∥∥∥
L2HN

. C0εν
−1/3,(2.24e) ∥∥∥U2

6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥∇LU2

6=

∥∥∥
L2HN

+

∥∥∥∥»−ṀMU2
6=

∥∥∥∥
L2HN

. ε,(2.24f) ∥∥∥U3
6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥∇LU3

6=

∥∥∥
L2HN

+

∥∥∥∥»−ṀMU3
6=

∥∥∥∥
L2HN

. C0ε,(2.24g) ∥∥∥m∆LU
1
6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥m∇L∆LU

1
6=

∥∥∥
L2HN

ν−1/3(2.24h)

+

∥∥∥∥»−ṀMm∆LU
1
6=

∥∥∥∥
L2HN

. C0ε,∥∥∥m1/2∆LU
2
6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥m1/2∇L∆LU

2
6=

∥∥∥
L2HN

(2.24i)

+

∥∥∥∥»−ṀMm1/2∆LU
2
6=

∥∥∥∥
L2HN

. ε,
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3
6=

∥∥∥
L∞HN

+ ν1/2
∥∥∥m∇L∆LU

3
6=

∥∥∥
L2HN

(2.24j)

+

∥∥∥∥»−ṀMm∆LU
3
6=

∥∥∥∥
L2HN

. C0ε.

Proof. The estimates on the zero frequencies follow from Lemma A.3 and

the bootstrap hypotheses.

By (2.14), the estimates (2.24h), (2.24i), and (2.24j) imply (2.24e), (2.24f),

and (2.24g). The estimates (2.24h), (2.24i), and (2.24j) follow from applying

Lemmas A.4, A.6, and A.7 and using the bootstrap hypotheses onQ and C. �

The next proposition details the inviscid damping of U2 and the enhanced

dissipation.

Proposition 2.3. Under the bootstrap hypotheses, the following addi-

tional estimates hold :

• the enhanced dissipation of Qi: ∥∥∥mQ1
6=

∥∥∥
L2HN

. C0εν
−1/2,(2.25a) ∥∥∥m1/2Q2

6=

∥∥∥
L2HN

+
∥∥∥Q2
6=

∥∥∥
L2HN−1

. εν−1/6,(2.25b) ∥∥∥mQ3
6=

∥∥∥
L2HN

. C0εν
−1/6;(2.25c)

• the enhanced dissipation and inviscid damping of U i:∥∥∥∇LU2
6=

∥∥∥
L2HN

. εν−1/6,(2.26a) ∥∥∥∇LU2
6=

∥∥∥
L2HN−1

. ε,(2.26b) ∥∥∥∆X,ZU
3
6=

∥∥∥
L2HN

. C0εν
−1/6,(2.26c) ∥∥∥∆X,ZU

1
6=

∥∥∥
L2HN

. C0εν
−1/2,(2.26d) ∥∥∥U1

6=

∥∥∥
L2HN−1

. C0εν
−1/6;(2.26e)

• the enhanced dissipation of tU i:∥∥∥t∂XU1
6=

∥∥∥
L2HN−1

. C0εν
−5/6,(2.27a) ∥∥∥t∂XU1

6=

∥∥∥
L2HN−2

. C0εν
−1/2,(2.27b) ∥∥∥t∂XU3

6=

∥∥∥
L2HN−1

. C0εν
−1/2,(2.27c) ∥∥∥t∂XU2

6=

∥∥∥
L2HN−2

. ε,(2.27d) ∥∥∥t∂XU2
6=

∥∥∥
L2HN−1

. εν−1/6.(2.27e)
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Proof. The enhanced dissipation estimates on Qi follow from Lemma 2.1

and the bootstrap estimates onQ. Turning to (2.26a), by (2.14) and Lemma 2.1,∥∥∥∇LU2
6=

∥∥∥
HN
.
∥∥∥m1/2∆LU

2
∥∥∥
HN

. ν−1/6
Å∥∥∥∥m1/2

»
−ṀM∆LU

2
∥∥∥∥
HN

+ ν1/2
∥∥∥m1/2∇L∆LU

2
∥∥∥
HN

ã
,

from which the estimate follows from Proposition 2.2. For (2.26b), first note

that by the definition of M , for k 6= 0 there holds

|k, η − kt, `| ≤ |k|
|k|+ |η − kt|+ |`|

|k, η − kt, `|2

.
»
−Ṁ0M0 |k, η − kt, `|2 ≤

»
−ṀM |k, η − kt, `|2 .

It hence follows that∥∥∥∇LU2
6=

∥∥∥
HN−1

.
∥∥∥∥»−ṀM∆LU

2
∥∥∥∥
HN−1

,

from which the estimate follows from Lemma A.7 and the a priori estimate

(2.16f).

To deduce (2.26c), we use (2.14) followed by Lemma 2.1 to derive∥∥∥∆X,ZU
3
6=

∥∥∥
HN
.
∥∥∥m∆LU

3
6=

∥∥∥
HN

. ν−1/6
Å∥∥∥∥m»−ṀM∆LU

3
6=

∥∥∥∥
HN

+ ν1/2
∥∥∥m∇L∆LU

3
6=

∥∥∥
HN

ã
,

after which the estimates follow from Proposition 2.2. The estimates on U1 in

(2.26d) and (2.26e) follow similarly.

Turn next to the enhanced dissipation estimates involving powers of t in

(2.27). For example, we have by (2.14), |kt| . 〈η − kt〉〈η〉, and Proposition 2.2,∥∥∥t∂XU1
6=

∥∥∥
HN−1

.
∥∥∥∇Lm∆LU

1
6=

∥∥∥
HN

,

and similarly for t∂XU
3. For t∂XU

2, we again use |kt| . 〈η − kt〉〈η〉:∥∥∥t∂XU2
6=

∥∥∥
HN−2

.
∥∥∥∇LU2

6=

∥∥∥
HN−1

,

which is then controlled by (2.26b), and similarly for the analogous inequality

in HN−1. �

In what follows we will use the shorthand

A = m1/2M〈D〉N ,(2.28a)

B = mM〈D〉N .(2.28b)
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2.7. Equivalence of coordinate systems. Coordinate systems of the gen-

eral type (2.4) have been used in [BM13], [BMV16], [BGM15a], [BGM15b],

and here we may follow a similar scheme for how to transfer information from

one coordinate system to the other; we will give a sketch for completeness.

In Sobolev regularity the technical details are significantly simpler as com-

positions behave well in finite regularity classes. In particular, we have the

following composition lemma; if s′ ∈ N, this is immediate from the Faá di

Bruno formula and Sobolev embedding; for fractional s, see, e.g., [IKT13] for

a proof.

Lemma 2.5 (Sobolev composition). Let s > 5/2, s ≥ s′ ≥ 0, g ∈ Hs be

such that ‖∇g‖∞ < 1. Then, there exists a constant

CS = CS(s, s′, ‖g‖Hs , ‖∇g‖L∞) > 1

such that for all f ∈ Hs′ , there holds

‖f ◦ (Id+ g)‖Hs′ ≤ CS ‖f‖Hs′ .

Moreover, if ‖g‖Hs ↘ 0, then CS ↘ 1.

We also need a Sobolev inverse function theorem, which follows by straight-

forward arguments using Lemma 2.5.

Lemma 2.6 (Sobolev inverse function theorem). Let s > 5/2. Then, there

exists an ε0 = ε0(s) such that if ‖α‖Hs ≤ ε0, then there exists a unique solution

β to

β(y) = α(y + β(y)),

which satisfies ‖β‖Hs . ‖α‖Hs .

The next step is to prove Lemma 2.3 and also deduce that we may take

T > 1, the T such that the bootstrap hypotheses (2.16), (2.17), and (2.18)

hold. Hence, we do not need to worry about the coordinate singularity at

t = 0.

Lemma 2.7. For εν−3/2 sufficiently small, Lemma 2.3 holds, we may take

2 ≤ T (defined in Section 2.4 above), and for t ≤ 2, the inequalities (2.16),

(2.17), and (2.18) all hold with constant 2 instead of 8.

Proof. As in analogous lemmas in [BM13], [BGM15a], the proof is done

by using the linearized coordinate transform. Indeed, define

x̄ = x− ty,(2.29a)

hi(t, x̄, y, z) = qi(t, x̄+ ty, y, z),(2.29b)

vi(t, x̄, y, z) = ui(t, x̄+ ty, y, z);(2.29c)
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note that vi = ∆−1
L hi. These satisfy natural analogues of (2.10) and (2.12).

Using standard (inviscid) energy methods, it is easy to propagate HN regular-

ity on these unknowns to t = 2 (or any other fixed, finite time) by choosing ε

sufficiently small. Next, we need to solve for (x̄, y, z) in terms of (X,Y, Z) and

then apply Lemma 2.5. From (2.9a) it is straightforward via classical energy

methods to derive ‖tψ‖HN+2 . ε for t ∈ [0, 2]. For t ∈ [1/2, 2], this yields good

estimates on ψ(t, y, z) = Y (t, y, z)− y and X(t, x, y, z) = x̄(t, x, y)− tψ(t, y, z).

We then write

x̄(t,X, Y, Z) = X + tψ(t, y(t, Y, Z), z(t, Y, Z)),

y(t, Y, Z) = Y + ψ(t, y(t, Y, Z), z(t, Y, Z)),

z(t, Y, Z) = Z.

To solve for y(t, Y, Z), we rewrite this equation as

y(t, Y, Z)− Y = ψ(t, Y − (y(t, Y, Z)− Y ) , Z)

and apply Lemma 2.6 by choosing ε sufficiently small. Using y and z we also

derive x̄ in terms of X,Y, Z. Hence, Lemma 2.5 and (2.29) complete the proof

of the lemma for εν−1 sufficiently small. (In particular, one can ensure that

the constant lost due to changing coordinate systems is arbitrarily close to 1

due to the continuity of CS in Lemma 2.5.) �

In order to move information back to the original variables, as in [BM13],

[BMV16], [BGM15a], we first move to the coordinate system (X, y, z). Hence,

write
q̄i(t,X, y, z) = Qi(t,X, Y (t, y, z), Z)

and
ūi(t,X, y, z) = U i(t,X, Y (t, y, z), Z).

(Recall that Z = z.) This lemma also proves that Proposition 2.1 implies

Theorem 1.1.

Lemma 2.8. For ε < δν3/2 with δ sufficiently small, the bootstrap hy-

potheses imply that all the estimates in Propositions 2.2 and 2.3 hold also for

q̄i and ūi (with different implicit constants).

In particular, for εν−3/2 sufficiently small, Proposition 2.1 implies Theo-

rem 1.1.

Proof. Notice that Z(y, z) = z and Y (y, z) − y = ψ(y, z), and hence we

need estimates on ψ, however, from (2.18), we only have estimates on C, ψy and

ψz in (Y,Z) coordinates. Hence, we need to solve for y = y(t, Y, z). To this end,

write Y − y = C(t, Y, Z) = C(t, y + (Y − y), Z) and then apply Lemma 2.6 to

solve for Y − y(t, Y, z) = β(t, Y, z). Lemma 2.6 moreover provides the uniform

estimate ‖y(t, Y, z)− Y ‖HN+2 . εν−1. With the bootstrap hypotheses, (2.4),

and Lemma 2.5, this completes the lemma. Indeed, by the definition of X

in (2.4), Theorem 1.1 follows immediately. �
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3. Energy estimates on Q2

In this section, we prove that, under the assumptions of Proposition 2.1

(in particular, the bootstrap assumptions (2.17), (2.16), and (2.18)), the in-

equalities (2.16d) and (2.16f) hold, with 8 replaced by 4 on the right-hand

side.

3.1. HN estimate on Q2. An energy estimate gives (recall the shorthand

(2.28))

1

2
‖Mm1/2Q2(T )‖2HN + ν‖∇LMm1/2Q2‖2L2HN + ‖

»
−ṀMm1/2Q2‖2L2HN

≤ 1

2
‖Mm1/2Q2(1)‖2HN +

∫ T

1

∫
AQ2A

î
−(‹U0 · ∇+ U6= · ∇t)Q2 −Qj∂tjU2

− ∂tiU j∂tijU2 + ∂tY (∂tiU
j∂tjU

i) + ν(‹∆t −∆L)Q2
ó
dV dt

=
1

2
‖Mm1/2Q2(1)‖2HN + T + NLS1 + NLS2 + NLP + DE.

3.1.1. Transport nonlinearity. Decompose the transport nonlinearity by

frequency:

T =

∫ T

1

∫
AQ2A

Ä
Ũ0 · ∇Q2

0 + Ũ0 · ∇Q2
6=
ä
dV dt

+

∫
AQ2A

Ä
U6= · ∇tQ2

0 + U 6= · ∇tQ2
6=
ä
dV dt

= T00 + T0 6= + T 6=0 + T 6=6=.

Further decompose T00 into

T00 =

∫ T

1

∫
〈D〉NQ2

0〈D〉N
Ä
g∂YQ

2
0

ä
dV dt

+

∫
〈D〉NQ2

0〈D〉N
Ä
U3

0∂ZQ
2
0

ä
dV dt = T 2

00 + T 3
00.

To bound T 2
00, split g into low and high frequencies:

T 2
00 =

∫ T

1

∫
〈D〉NQ2

0〈D〉N
Ä
P≤1g∂YQ

2
0

ä
dV dt

+

∫ T

1

∫
〈D〉NQ2

0〈D〉N
Ä
P>1g∂YQ

2
0

ä
dV dt

. ‖Q2
0‖L∞HN ‖g‖L2L2‖∇Q2

0‖L2HN + ‖Q2
0‖L∞HN ‖∇g‖L2HN ‖∇Q2

0‖L2HN

. ε3ν−1/2−1/2 = ε3ν−1,

where the last line followed from the bootstrap hypotheses. (Note that (2.18b)

is used to deduce ‖g‖L2L2 . ε.) To bound T 3
00, observe that either the first Q3

0

factor, or the U3
0 factor, must have nonzero Z frequency — or the contribution
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is zero. Therefore (using also Proposition 2.2),

T 3
00 . ‖Q2

0‖L∞HN ‖∇U3
0 ‖L2HN ‖∇Q2

0‖L2HN

+ ‖U3
0 ‖L∞HN ‖∇Q2

0‖2L2HN . ε3ν−1/2−1/2 = ε3ν−1.

For the T06= term, we apply the paraproduct decomposition defined above in

Section 2.1.4:

T06= =

∫ T

1

∫
AQ2
6=A

ÄÄ
Ũ0

ä
Hi
·
Ä
∇Q2

6=
ä
Lo

ä
dV dt

+

∫ T

1

∫
AQ2
6=A

ÄÄ
Ũ0

ä
Lo
·
Ä
∇Q2

6=
ä
Hi

ä
dV dt

= T06=;HL + T0 6=;LH .

Consider the LH term first, which we write out as follows:

T06=;LH =

∫ T

1

∫
AQ2A

Ä
gLo(∂Y − t∂X)(Q2

6=)Hi + (U3
0 )Lo(∂ZQ

2
6=)Hi

ä
dV dt

+

∫ T

1

∫
AQ2A

Ä
gLot∂X(Q2

6=)Hi
ä
dV dt.

By (2.1), (2.13), and the bootstrap hypotheses,

T06=;LH

. ν−1/3
∥∥∥AQ2

6=

∥∥∥
L2L2

(
‖〈t〉g‖L∞H3/2+ +

∥∥∥U3
0

∥∥∥
L∞H3/2+

) ∥∥∥∇LAQ2
∥∥∥
L2L2

. ε3ν−1,

where note that we applied (2.25). Similarly, for the HL term we have by

(2.13) and (2.25b) from Proposition 2.3 (using N > 5/2),

T06=;HL .
∥∥∥AQ2

6=

∥∥∥
L2L2

(
‖g‖L∞HN +

∥∥∥U3
0

∥∥∥
L∞HN

) ∥∥∥∇Q2
6=

∥∥∥
L2H3/2+

. ν−1/3
∥∥∥AQ2

6=

∥∥∥2

L2L2

(
‖g‖L∞HN +

∥∥∥U3
0

∥∥∥
L∞HN

)
. ε3ν−2/3.

Consider next T 6=0. By the product rule, the bootstrap hypotheses, and Propo-

sition 2.3 (specifically (2.26a) and (2.26c)), we have

T 6=0 .
∥∥∥AQ2

6=

∥∥∥
L∞L2

∥∥∥U2,3
6=

∥∥∥
L2HN

∥∥∥∇Q2
0

∥∥∥
L2HN

. ε3ν−2/3.

Consider finally T6= 6=, by (2.13),

T 6=6= . ν−1/3
∥∥∥AQ2

∥∥∥
L∞L2

‖U6=‖L2HN

∥∥∥∇LAQ2
∥∥∥
L2L2

. ε3ν−4/3.
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3.1.2. Nonlinear pressure terms. Recall the shorthands defined in Sec-

tion 2.2.3. Consider first the NLP(0, 0) terms, which are straightforward. We

first apply (2.21), which results in an error term when the derivative lands on

the coefficients, and then we apply Lemma 2.4:

NLP(i, j, 0, 0) .
∥∥∥∇Q2

0

∥∥∥
L2HN

‖∇U2,3
0 ‖L2HN ‖∇U2,3

0 ‖L∞H3/2+

+ ‖∆C‖L2HN

∥∥∥Q2
0

∥∥∥
L∞HN

‖∇U2,3
0 ‖L2HN ‖∇U2,3

0 ‖L∞H3/2+

. ε3ν−1.

Next turn to the NLP(0, 6=, i, j) terms, which include one of the leading

order nonlinear terms, NLP(1, 3, 0, 6=). Consider this problematic term first,

and expand with a paraproduct as described in Section 2.1.4,

NLP(1, 3, 0, 6=) =

∫ T

1

∫
AQ2A∂tY

ÄÄ
∂tZU

1
0

ä
Hi

Ä
∂XU

3
6=
ä
Lo

ä
dV dt

+

∫ T

1

∫
AQ2A∂tY

ÄÄ
∂tZU

1
0

ä
Lo

Ä
∂XU

3
6=
ä
Hi

ä
dV dt

= PHL + PLH.

For the LH term we have, using (2.23), Lemma A.1, and the inequality |m1/2∂X |
. m

»
−ṀM(−∆L) that follows from (2.14),

PLH . ‖∇LAQ2‖L2L2‖∂tZU1
0 ‖L∞H5/2+‖m1/2∂XU

3
6=‖L2HN

. ‖∇LAQ2‖L2L2‖∂tZU1
0 ‖L∞H5/2+

∥∥∥∥m»−ṀM∆LU
3
6=

∥∥∥∥
L2HN

. ε3ν−1/2−1 = ε3ν−3/2,

which suffices for εν−3/2 � 1; hence this term uses sharply the smallness

requirement. For the HL term we can apply (2.22) and deduce using (2.27),

PHL .
∥∥∥∇Lm1/2MQ2

∥∥∥
L2HN

∥∥∥〈t〉−1∇U1
0

∥∥∥
L∞HN

∥∥∥〈t〉∂XU3
6=

∥∥∥
L2H3/2+

. ν−1ε3.

This completes NLP(1, 3, 0, 6=) term; NLP(1, 2, 0, 6=) is similar.

Consider next NLP(i, j, 0, 6=) with i, j 6= 1. For these terms we do not

need a sophisticated argument; using (2.22) and Proposition 2.2 there holds,

NLP(i, j, 0, 6=)1i,j,6=1

.
∥∥∥∇LAQ2

∥∥∥
L2L2

∥∥∥∇U j0∥∥∥L∞HN

∥∥∥∇LU i6=∥∥∥L2HN
1i,j,6=1 . ε

3ν−1.

Turn next to NLP(i, j, 6=, 6=). We expand with a paraproduct and by

symmetry, we only have to consider the case when i is in “high frequency.” By
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(2.21) (note that the leading factor could have zero X frequency),

NLP(i, j, 6=, 6=) =

∫ T

1

∫
AQ2A∂tY

ÄÄ
∂tjU

i
6=
ä
Hi

Ä
∂tiU

j
6=
ä
Lo

ä
dV dt

.
(∥∥∥∇LAQ2

∥∥∥
L2L2

+
∥∥∥AQ2

∥∥∥
L∞L2

‖∇C‖L2HN+1

)
×
∥∥∥∇LU i6=∥∥∥L∞HN

∥∥∥∂tiU j6=∥∥∥L2H3/2+

. ν−1/3
(∥∥∥∇LAQ2

∥∥∥
L2L2

+
∥∥∥AQ2

∥∥∥
L∞L2

‖∇C‖L2HN+1

)
×
∥∥∥∆LmU

i
6=

∥∥∥
L∞HN

∥∥∥∂tiU j6=∥∥∥L2HN−1

At this point, we distinguish two cases: i = 1 and i 6= 1. First, notice that by

the divergence-free condition, N > 3/2, ε� ν3/2, (2.14), Proposition 2.3, and

the bootstrap hypotheses, there follows∥∥∥∂XU1
∥∥∥
L2HN−1

≤
∥∥∥∂tY U2

6=

∥∥∥
L2HN−1

+
∥∥∥∂tZU3

6=

∥∥∥
L2HN−1

(3.1)

. (1 + ‖∇C‖L∞HN−1)
∥∥∥∇LU2

6=

∥∥∥
L2HN−1

+
∥∥∥U3
6=

∥∥∥
L2HN

+ ‖∇C‖L∞HN−1

∥∥∥∇LU3
6=

∥∥∥
L2HN−1

.
Ä
1 + εν−1

ä ∥∥∥∇LU2
6=

∥∥∥
L2HN−1

+
∥∥∥U3
6=

∥∥∥
L2HN

+ εν−1
∥∥∥∇Lm∆LU

3
6=

∥∥∥
L2HN−1

. ε+ εν−1/6 + ε.

Hence, if i = 1, we have the following by applying by Proposition 2.3 (and

(3.1) in the case j = 1):

NLP(1, j, 6=, 6=) . ν−1/3
(∥∥∥∇LAQ2

∥∥∥
L2L2

+
∥∥∥AQ2

∥∥∥
L∞L2

‖∇C‖L2HN+1

)
× ‖∆LmU

1
6=‖L∞HN ‖∂XU j‖L2HN−1

. ε3ν−1/3−1/2−1/3−1/6 = ε3ν−4/3.

On the other hand, if i 6= 1, by Proposition 2.2, (2.16d), and (in the case j = 1)

(2.17e), the following holds:

NLP(i, j, 6=, 6=) . ν−1/3
(∥∥∥∇LAQ2

∥∥∥
L2L2

+
∥∥∥AQ2

∥∥∥
L∞L2

‖∇C‖L2HN+1

)
× ‖∆LmU

i
6=‖L∞HN ‖∇LU j6=‖L2HN−1

. ε3ν−1/3−1/2−1/2 = ε3ν−4/3.

This completes the nonlinear pressure terms.



572 J. BEDROSSIAN, P. GERMAIN, and N. MASMOUDI

3.1.3. Nonlinear stretching terms. Starting with NLS1(0, 0, j) (note that

j 6= 1) and using (2.19),

NLS1(0, 0, j) .
∥∥∥Q2

0

∥∥∥
L∞HN

∥∥∥∆tU
j
0

∥∥∥
L2HN

∥∥∥∇U2
0

∥∥∥
L2HN

.
∥∥∥Q2

0

∥∥∥
L∞HN

∥∥∥∇U j0∥∥∥L2HN+1

∥∥∥∇U2
0

∥∥∥
L2HN

. ε3ν−1.

By Propositions 2.2 and 2.3 (note that j = 1 is permitted),

NLS1(0, 6=, j) .
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥Qj0∥∥∥L∞HN

∥∥∥∇LU2
6=

∥∥∥
L2HN

. ε3ν−4/3

and, using (2.13) and Proposition 2.3 (note that here j 6= 1),

NLS1(6=, 0, j) .
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥Qj6=∥∥∥L2HN

∥∥∥∇U2
0

∥∥∥
L∞HN

. ε3ν−1.

Similarly (note that j = 1 is permitted),

NLS1(6=, 6=, j) .
∥∥∥AQ2

∥∥∥
L∞L2

∥∥∥Qj6=∥∥∥L2HN

∥∥∥∇LU2
6=

∥∥∥
L2HN

. ε3ν−4/3.

Recall the second stretching term, NLS2, is written ∂tiU
j∂tijU

2. The

contributions from the NLS2(0, 0) terms are treated in the same manner as

NLS1(0, 0) above and are hence omitted for brevity. Turning to the nonzero

frequencies, we have by Lemma 2.4, (2.14), (2.13), Proposition 2.3, and Propo-

sition 2.2,

NLS2(0, 6=, j) .
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥∂tiU j0∥∥∥L∞HN

∥∥∥∂tijU2
6=

∥∥∥
L2HN

1j 6=1

+
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥∂tiU1
0

∥∥∥
L∞HN

∥∥∥∂X∂tiU2
6=

∥∥∥
L2HN

. ν−1/3
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥∇U j0∥∥∥L∞HN

∥∥∥m1/2∆LU
2
6=

∥∥∥
L2HN

1j 6=1

+
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥∇U1
0

∥∥∥
L∞HN

∥∥∥m1/2∆LU
2
6=

∥∥∥
L2HN

. ε3ν−1/3−1/6−1/6 + ε3ν−1/6−1−1/6 . ε3ν−4/3.

Similarly, we have (note that in this case j 6= 1)

NLS2(6=, 0, j) .
∥∥∥AQ2

6=

∥∥∥
L2L2

∥∥∥∂tiU j6=∥∥∥L2HN

∥∥∥∇U2
0

∥∥∥
L∞HN+1

. ε3ν−1/6−1/2 = ε3ν−2/3

and, using Lemma 2.4, (2.13), Lemma 2.1, and Propositions 2.2 and 2.3, we

have

NLS2(6=, 6=, j) .
∥∥∥AQ2

∥∥∥
L∞L2

∥∥∥∂tiU j6=∥∥∥L2HN

∥∥∥∆LU
2
6=

∥∥∥
L2HN

. ε3ν−1/2−1/3−1/3−1/6 = ε3ν−4/3.
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3.1.4. Dissipation error terms. These terms are given by (recall the short-

hand (2.6b))

DE = ν

∫
AQ2A

Ä
G∂LY YQ

2 + 2ψz∂
L
Y ZQ

2
ä
dV = E1 + E2.

Both E1 and E2 are treated similarly, hence only consider E1. Arguing as in

(2.21) and (2.13) (recall G is independent of X), by Lemma 2.4, we have

E1 . ν
2/3 ‖G‖L∞HN

∥∥∥∇LAQ2
∥∥∥2

L2L2

+ ν2/3 ‖∇G‖L2HN

∥∥∥AQ2
∥∥∥
L∞L2

∥∥∥∇LAQ2
∥∥∥
L2L2

. ε3ν2/3−1−1/2−1/2 = ε3ν−4/3,

which suffices.

3.2. HN−1 estimate on Q2. Recall that a crucial strategy of the current

approach is to confirm that the extra m1/2 on Q2 can be removed in HN−1.

As in Section 3.1, an energy estimate gives

1

2
‖MQ2(T )‖2HN−1 + ν‖∇LMQ2‖2L2HN−1 + ‖

»
−ṀMQ2‖2L2HN−1

≤ 1

2
‖MQ2(1)‖2HN−1 +

∫ T

1

∫
〈D〉N−1MQ2〈D〉N−1M

×
î
−(‹U0 · ∇+ U 6= · ∇t)Q2 −Qj∂tjU2 − ∂tiU j∂tijU2

+∂tY (∂tiU
j∂tjU

i) + ν(‹∆t −∆L)Q2
ó
dV dt

=
1

2
‖MQ2(1)‖2HN−1 + T + NLS1 + NLS2 + NLP + DE.

Nearly every step in this estimate is similar to those done in Section 3.1,

indeed, the presence of m1/2 in Section 3.1 is used only to control the NLP(1, 3,

0, 6=) term in Section 3.1.2. The T is bounded as in Section 3.1.1 and is hence

omitted. (However, notice that this requires the HN estimate (2.16d) here;

this detail is due to our only assuming N − 1 > 3/2, where normally H5/2+ is

natural for closing energy estimates on a system such as (2.10).) Similarly, the

dissipation error terms DE are controlled as in Section 3.1.4.

The NLP(0, 0) terms are treated as in Section 3.1.2 Now let us see how the

reduction of one derivative allows to eliminate the use of m1/2 in the treatment

of NLP(1, 3, 0, 6=). By (2.22), (2.27), and N − 1 > 3/2,

NLP(1, 3, 0, 6=) .
∥∥∥∇LMQ2

∥∥∥
L2HN−1

∥∥∥〈t〉−1∇U1
0

∥∥∥
L∞HN−1

∥∥∥〈t〉∂XU3
6=

∥∥∥
L2HN−1

. ε3ν−1/2−1/2 = ε3ν−1.

This suffices for the NLP(1, 3, 0, 6=) term; the NLP(1, 2, 0, 6=) is similar. The

other NLP terms can be treated as in Section 3.1.2, and the NLS1 and NLS2
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terms can be treated as in Section 3.1.3 above, and hence these contributions

are also omitted. This completes the HN−1 estimate (2.16f).

4. Energy estimate on Q3

In this section, we prove that, under the assumptions of Proposition 2.1

(in particular, the bootstrap assumptions (2.17), (2.16), (2.18)), the inequal-

ity (2.16e) holds, with 8 replaced by 4 on the right-hand side.

An energy estimate gives (recall the shorthand (2.28))

1

2
‖BQ3(T )‖2L2 + ν‖∇LBQ3‖2L2L2‖m

»
−ṀMQ3‖2L2HN + ‖M

√
−ṁmQ3‖2L2HN

(4.1)

=
1

2
‖BQ3(1)‖2L2 +

∫ T

1

∫
BQ3B

î
−2∂tXY U

3 + 2∂tXZU
2

− (‹U0 · ∇+ U6= · ∇t)Q3 −Qj∂tjU3 − 2∂tiU
j∂tijU

3

+∂tZ
Ä
∂tiU

j∂tjU
i
ä

+ ν(‹∆t −∆L)Q3
ó
dV dt

=
1

2
‖BQ3(1)‖2L2 + LS + LP + T + NLS1 + NLS2 + NLP + DE.

4.1. The linear stretching term LS. The linear stretching term can be split

into (recall the shorthands (2.6b) and (2.28))

LS =

∫ T

1

∫
BQ3B

î
−2∂LXY ∆−1

L

×d[Q3 −G∂LY Y U3 − 2ψz∂
L
Y ZU

3 −∆tC∂
L
Y U

3]
ó
dV dt

+

∫ T

1

∫
BQ3B

Ä
ψy∂

t
XY U

3
ä
dV dt

= LS1 + LS2 + LS3 + LS4 + LS5.

The leading order term, LS1, is absorbed by the left-hand side of (4.1): indeed,

by construction of m in Section 2.3, we have

LS1 ≤ ‖M
√
−ṁmQ3‖2L2HN +

ν

2
‖∇LBQ3‖2L2L2 .

We turn next to the error terms. For LS2, we apply Lemma A.1, use that

|k| . |k, η − kt, l|
»
−Ṁ0M0, and (2.14) together with Lemma 2.1 and Propo-

sition 2.2 to deduce

LS2 = −2

∫ T

1

∫
B∂LXY ∆−1

L Q3B
Ä
G∂LY Y U

3
ä
dV dt

.
∥∥∥∥»−Ṁ0M0mQ3

∥∥∥∥
L2HN

‖G‖L∞HN+1

∥∥∥m1/2∆LU
3
6=

∥∥∥
L2HN

. ε3ν−1−1/3−1/6 = ε3ν−3/2,
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which suffices for εν−3/2 � 1; notice that this is a sharp use of the small-

ness conditions. The term LS3 can be estimated in the same way as LS2.

The LS4 term is estimated with a slight variation, using 2.14 and |k| .
|k, η − kt, l|

»
−Ṁ0M0:

LS4 .
∥∥∥∥»−Ṁ0M0mQ3

6=

∥∥∥∥
L2HN

‖C‖L∞HN+2

∥∥∥∇LU3
6=

∥∥∥
L2HN

. ε3ν−3/2.

Turn to LS5. Here we use Lemma A.1, |k| . |k, η − kt, l|
»
−Ṁ0M0, and (2.13)

to deduce

LS5 .
∥∥∥BQ3

6=

∥∥∥
L2L2

‖∇C‖L∞HN+1

∥∥∥∥»−Ṁ0M0m1/2∆LU
3
6=

∥∥∥∥
L2HN

. ε3ν−1/6−1−1/3 = ε3ν−3/2,

which suffices for εν−3/2 � 1.

4.2. The linear pressure term LP. The linear pressure term is split into

two contributions:

LP =

∫ T

1

∫
BQ3B∂LXZU

2
6=dV dt+

∫ T

1

∫
BQ3B

Ä
ψz∂

L
XY U

2
6=
ä
dV dt

= LP1 + LP2.

By definition of M1,

LP1 .
∥∥∥∥»−Ṁ1M1mQ3

∥∥∥∥
L2HN

∥∥∥∥»−Ṁ1M1m1/2∆LU
2
6=

∥∥∥∥
L2HN

. C−1
0 (C0ε)

2 ,

which suffices by choosing C0 sufficiently large. For LP1, we have, similar to

LS5 above, by the definition of M and Lemma A.7 along with Lemma A.1,

LP2 . ‖∇C‖L∞HN+1

∥∥∥MmQ3
6=

∥∥∥
L2HN

∥∥∥∥»−ṀMm1/2∆LU
2
6=

∥∥∥∥
L2HN

. ε3ν−7/6,

which is sufficient.

4.3. Transport nonlinearity. The interaction of nonzero frequencies will

require more precision here than in Section 3.1.1. As in Section 3.1.1, we

subdivide based on frequency:

T = −
∫ T

1

∫
BQ3B

Ä
Ũ0 · ∇Q3

0 + Ũ0 · ∇Q3
6=
ä
dV dt

−
∫ T

1

∫
BQ3B

Ä
U 6= · ∇tQ3

0 + U 6= · ∇tQ3
6=
ä
dV dt

= T00 + T06= + T6=0 + T 6=6=.

The T00 term is treated as in Section 3.1.1 and is hence omitted for brevity.

The T0 6= term is treated analogously to the corresponding term in Section 3.1.1
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via a paraproduct decomposition, yielding (applying Propositions 2.2 and 2.3

as above)

T06= .
∥∥∥BQ3

6=

∥∥∥
L2L2

(
‖g‖L∞HN +

∥∥∥U3
0

∥∥∥
L∞HN

) ∥∥∥∇Q3
6=

∥∥∥
L2H3/2+

∗ +
∥∥∥BQ3

6=

∥∥∥
L2L2

(
‖〈t〉g‖L∞H3/2+ +

∥∥∥U3
0

∥∥∥
L∞H3/2+

) ∥∥∥∇LMQ3
6=

∥∥∥
L2HN

. ν−2/3
∥∥∥BQ3

6=

∥∥∥2

L2L2

(
‖g‖L∞HN +

∥∥∥U3
0

∥∥∥
L∞HN

)
+ ν−2/3

∥∥∥BQ3
6=

∥∥∥
L2L2

(
‖〈t〉g‖L∞H3/2+ +

∥∥∥U3
0

∥∥∥
L∞H3/2+

) ∥∥∥∇LBQ3
6=

∥∥∥
L2L2

. ε3ν−1 + ε3ν−4/3.

Consider next T 6=0, which follows from Proposition 2.3 and the bootstrap hy-

potheses

T6=0 .
∥∥∥BQ3

6=

∥∥∥
L∞L2

∥∥∥U2,3
6=

∥∥∥
L2HN

∥∥∥∇Q3
0

∥∥∥
L2HN

. ε3ν−2/3.

Finally consider T6= 6=. First, divide up based on the presence of U1
6=:

T6= 6= =

∫
BQ3B

Ä
U j6=∂

t
jQ

3
6=
ä
dV dt = T 1

6=6= + T 2
6=6= + T 3

6=6=.

The latter two terms can be treated in a straightforward manner using (2.13)

and Propositions 2.2 and 2.3,

T 2,3
6= 6= . ν

−2/3
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥U2,3
6=

∥∥∥
L2HN

∥∥∥∇LBQ3
∥∥∥
L2L2

. ε3ν−4/3.

Next, decompose T 1
6= 6= via a paraproduct

T 1
6=6= =

∫
BQ3B

Ä
(U1
6=)Hi(∂XQ

3
6=)Lo

ä
dV dt

+

∫
BQ3B

Ä
(U1
6=)Lo(∂XQ

3
6=)Hi

ä
dV dt

= T 1
6=6=;HL + T 1

6=6=;LH .

For the HL term, we have the following by (2.13) and Propositions 2.2 and 2.3

(specifically, (2.25c) and (2.26d)):

T 1
6=6=;HL .

∥∥∥BQ3
∥∥∥
L∞L2

∥∥∥U1
6=

∥∥∥
L2HN

∥∥∥Q3
6=

∥∥∥
L2H5/2+

. ν−2/3
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥U1
6=

∥∥∥
L2HN

∥∥∥BQ3
6=

∥∥∥
L2L2

. ε3ν−4/3.

For the LH term, we use the better estimate on
∥∥∥U1
6=

∥∥∥
HN−1

from Proposition 2.3

(and (2.13)):

T 1
6= 6=;LH . ν

−2/3
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥U1
6=

∥∥∥
L2H3/2+

∥∥∥∂XBQ3
∥∥∥
L2L2

. ε3ν−4/3.

This completes the transport nonlinearity.
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4.4. Nonlinear pressure and stretching terms.

4.4.1. The stretching terms. Recall the shorthands defined in Section 2.2.3.

The NLSi(0, 0) terms are treated as in Section 3.1.3 and are hence omitted here

.

For NLS1, we get from Proposition 2.3 (note j 6= 1)

NLS1(j, 6=, 0) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥Qj6=∥∥∥L2HN

∥∥∥∇U3
0

∥∥∥
L∞HN

. ε3ν−1/6−2/3−1/6 = ε3ν−1.

Similarly, by Propositions 2.3 and 2.2,

NLS1(j, 0, 6=) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥Qj0∥∥∥L∞HN

∥∥∥∂tjU3
6=

∥∥∥
L2HN

. ε3
Ä
ν−1/6−1−1/61j=1 + ν−1/6−1/21j 6=1

ä
. ε3ν−4/3.

For the interaction of nonzero frequencies, we use the slight variant

NLS1(j, 6=, 6=) .
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥Qj6=∥∥∥L2HN

∥∥∥∂tjU3
6=

∥∥∥
L2HN

. ε3
Ä
ν−2/3−1/6−1/21j 6=1 + ν−1−1/6−1/61j=1

ä
. ε3ν−4/3,

which is sufficient for εν−4/3 � 1.

Turn next to NLS2; first by Proposition 2.3 (since j 6= 1),

NLS2(i, j, 6=, 0) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥∇LU j6=∥∥∥L2HN

∥∥∥∇U3
0

∥∥∥
L∞HN+1

. ε3ν−1/6−1/2 = ε3ν−2/3,

which suffices. Consider next NLS2(0, 6=, 1), which requires a slightly more pre-

cise treatment. Via a paraproduct decomposition, Lemma 2.4, and Lemma A.1,

there holds

NLS2(i, 1, 0, 6=) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥∇U1
0

∥∥∥
L∞H5/2+

∥∥∥m1/2∂ti∂XU
3
6=

∥∥∥
L2HN

+
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥〈t〉−1∂tiU
1
0

∥∥∥
L∞HN+1

∥∥∥m1/2〈t〉∂ti∂XU3
6=

∥∥∥
L2H3/2+

.

Using (2.20), (2.14), and t |k| . 〈η〉〈η − kt〉, followed by Proposition 2.2 and

(2.25), we have

NLS2(i, 1, 0, 6=) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥U1
0

∥∥∥
L∞HN+2

∥∥∥m∆LU
3
6=

∥∥∥
L2HN

+
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥〈t〉−1U1
0

∥∥∥
L∞HN+2

∥∥∥m∇L∆LU
3
6=

∥∥∥
L2H5/2+

. ε3ν−1/6−1−1/6 + ε3ν−1/6−1/2 = ε3ν−4/3,
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which is sufficient. For j 6= 1 contributions, we have

NLS2(i, j, 0, 6=) .
∥∥∥BQ3

6=

∥∥∥
L2L2

∥∥∥∇U j0∥∥∥L∞HN+1

∥∥∥m1/2∆LU
3
6=

∥∥∥
L2HN

. ε3ν−2/3.

Turn finally to the interaction of nonzero frequencies; using (2.14), (2.13), and

Proposition 2.2,

NLS2(i, j, 6=, 6=) .
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥∇LU2,3
6=

∥∥∥
L2HN

∥∥∥∆LU
3
6=

∥∥∥
L2HN

+
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥∇LU1
6=

∥∥∥
L2HN

∥∥∥∂X∇LU3
6=

∥∥∥
L2HN

. ν−1
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥m∆LU
2,3
6=

∥∥∥
L2HN

∥∥∥m∆LU
3
6=

∥∥∥
L2HN

+ ν−2/3
∥∥∥BQ3

∥∥∥
L∞L2

∥∥∥m∆LU
1
6=

∥∥∥
L2HN

∥∥∥m∆LU
3
6=

∥∥∥
L2HN

. ε3ν−1−1/6−1/6 = ε3ν−4/3,

which completes the treatment of the stretching terms.

4.4.2. The pressure term NLP. The treatment of the NLP(i, j, 0, 0) term

is the same as that in Section 3.1.2 and is hence omitted here. For the lead-

ing order term involving i = 1, we begin by subdividing via a paraproduct

decomposition:

NLP(1, j, 0, 6=) =

∫ T

1

∫
BQ3B∂tZ

Ä
(∂tjU

1
0 )Hi(∂XU

j
6=)Lo

ä
dV dt

+

∫ T

1

∫
BQ3B∂tZ

Ä
(∂tjU

1
0 )Lo(∂XU

j
6=)Hi

ä
dV dt

= PHL + PLH.

By (2.23) and (2.27), we have, since j 6= 1,

PHL .
∥∥∥∇LBQ3

6=

∥∥∥
L2L2

∥∥∥〈t〉−1∂tjU
1
0

∥∥∥
L∞HN

∥∥∥〈t〉∂XU j6=∥∥∥L2H3/2+
. ε3ν−1.

By (2.23), Lemma A.1, (2.13), Lemma 2.4, and the inequality 1 . (|k|+ |l|+
|η − kt|)

»
−Ṁ0M0 we deduce

PLH .
∥∥∥∇LBQ3

6=

∥∥∥
L2L2

∥∥∥∂tjU1
0

∥∥∥
L∞H5/2+

∥∥∥∥»−ṀMm1/2∂X∇LU j6=
∥∥∥∥
L2HN

.
∥∥∥∇LBQ3

6=

∥∥∥
L2L2

∥∥∥U1
0

∥∥∥
L∞HN+2

∥∥∥∥»−ṀMm∆LU
j
6=

∥∥∥∥
L2HN

. ε3ν−3/2,

which completes the NLP(1, j, 0, 6=) terms for εν−3/2 � 1. For the NLP(i 6= 1,

j, 0, 6=) terms, a much simpler argument is possible; indeed, by (2.22) and

Proposition 2.3,

NLP(i 6= 1, j, 0, 6=) .
∥∥∥∇LBQ3

6=

∥∥∥
L2L2

∥∥∥∂tjU i0∥∥∥L∞HN

∥∥∥∇LU j6=∥∥∥L2HN
. ε3ν−1.
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Turn next to the NLP(1, j, 6=, 6=) terms. By the paraproduct decomposition

we deduce

NLP(1, j, 6=, 6=) .
∥∥∥∇LBQ3

∥∥∥
L∞L2

(∥∥∥∂jtU1
6=

∥∥∥
L∞HN

∥∥∥∂XU j6=∥∥∥L2H3/2+

+
∥∥∥∂tjU1

6=

∥∥∥
L∞H3/2+

∥∥∥∂XU j6=∥∥∥L2HN

)
.

For j = 1, we use (2.14), (3.1), Proposition 2.3, and Lemma 2.2 to deduce,

NLP(1, 1, 6=, 6=) .
∥∥∥∇LBQ3

∥∥∥
L∞L2

∥∥∥m∆LU
1
6=

∥∥∥
L∞HN

∥∥∥∂XU1
6=

∥∥∥
L2H3/2+

. ε3ν−1.

For j 6= 1, we use instead (using (2.14), Lemma 2.1, and Lemma 2.2),

NLP(1, j, 6=, 6=)1j 6=1

.
∥∥∥∇LBQ3

∥∥∥
L∞L2

(∥∥∥∇LU1
6=

∥∥∥
L∞HN

∥∥∥∂XU j6=∥∥∥L2H3/2+

+
∥∥∥∇LU1

6=

∥∥∥
L∞H3/2+

∥∥∥∂XU j6=∥∥∥L2HN

)
1j 6=1

. ν−1/3
∥∥∥∇LBQ3

∥∥∥
L∞L2

∥∥∥m∆LU
1
6=

∥∥∥
L∞HN

∥∥∥m∆LU
j
6=

∥∥∥
L2HN

1j 6=1

. ε3ν−1/3−1/2−1/3−1/6 = ε3ν−4/3.

For the other 6=, 6= terms, we use the following via (2.21), (2.14), Lemma 2.1,

and Proposition 2.2:

NLP(i, j, 6=, 6=)1i,j 6=1 .
∥∥∥∇LBQ3

∥∥∥
L2L2

∥∥∥∇LU i6=∥∥∥L∞HN

∥∥∥∇LU j6=∥∥∥L2HN
1i,j 6=1

. ν−2/3
∥∥∥∇LBQ3

∥∥∥
L2L2

∥∥∥m∆LU
i
6=

∥∥∥
L∞HN

∥∥∥m∆LU
j
6=

∥∥∥
L2HN

1i,j 6=1

. ε3ν−4/3.

This completes all of the nonlinear pressure terms.

4.5. Dissipation error terms. Next turn to the dissipation error terms,

DE = ν

∫ ∫
BQ3B

Ä
G∂LY YQ

3 + 2ψz∂
L
ZYQ

3
ä
dV dt = E1 + E2.

We will need a slightly more refined treatment here than was used in Sec-

tion 3.1.4. As E1 is slightly harder, we will just treat this term and omit the

treatment of E2 for brevity. At the zero X frequency we have, via integration

by parts and the product rule,

E1;0 = ν

∫ ∫
BQ3

0B
Ä
G∂Y YQ

3
0

ä
dV dt

. ν
∥∥∥Q3

0

∥∥∥
L∞HN

‖∇G‖L2HN

∥∥∥∇Q3
0

∥∥∥
L2HN

+ ν ‖G‖L∞HN

∥∥∥∇Q3
0

∥∥∥2

L2HN

. ε3ν−1.
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Turn next to the nonzero frequencies. Via integration by parts, Lemma A.1,

and (2.13),

E1; 6= = ν

∫
BQ3

6=B
Ä
G∂LY YQ

3
6=
ä
dV dt

. ν
∥∥∥∇LBQ3

6=

∥∥∥
L2L2

‖G‖L∞HN+1

∥∥∥m1/2∇LQ3
6=

∥∥∥
L2HN

+ ν
∥∥∥BQ3

6=

∥∥∥
L2L2

‖G‖L∞HN+1

∥∥∥∇LQ3
6=

∥∥∥
L2HN

. ε3ν−4/3.

This completes the treatment of the dissipation error terms.

5. Energy estimates on Q1

The energy estimates on Q1 are generally much simpler than estimates

on Q3 as the bounds (2.16c), (2.16a), and (2.16b) are so much weaker than

(2.16e). (The lift-up effect growth is generally much larger than what the

nonlinear terms could do in this regime.)

5.1. Energy estimate on Q1
6= in HN . An energy estimate gives (recall the

shorthand (2.28))

1

2
‖BQ1

6=(T )‖2L2 + ν‖∇LBQ1
6=‖2L2L2

+ ‖m
»
−ṀMQ1

6=‖2L2HN + ‖M
√
−ṁmQ1

6=‖2L2HN

=
1

2
‖BQ1

6=(1)‖2L2 +

∫ T

1

∫
BQ1

6=B
î
−Q2

6= − 2∂tXY U
1
6= + 2∂XXU

2
6=

− ((‹U0 · ∇+ U6= · ∇t)Q1)6= − (Qj∂tiU
1)6= − 2(∂tiU

j∂ti∂
t
jU

1)6=

+ ∂X
Ä
∂tiU

j∂tjU
i
ä

+ ν(‹∆t −∆L)Q1
6=
ó
dV dt

=
1

2
‖mMQ1

6=(1)‖2HN + LU + LS + LP

+ T + NLS1 + NLS2 + NLP + DE.

Several terms above can be estimated exactly like the corresponding terms

for Q3, namely, LS, LP, and DE. Therefore, we omit the estimates of these

terms for brevity and only treat the others.

5.1.1. The lift up term LU. The lift-up effect term is treated via Propo-

sition 2.3, which implies

LU = −
∫ T

1

∫
BQ1

6=BQ
2
6=dV dt .

∥∥∥BQ1
6=

∥∥∥
L2L2

∥∥∥AQ2
6=

∥∥∥
L2L2

. C0ε
2ν−2/3,

which is consistent with the estimate as stated for C0 chosen sufficiently large.
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5.1.2. The stretching and pressure terms NLS1, NLS2, and NLP. We will

focus on NLS1 and NLS2; the NLP terms can be treated analogously to the

latter.

Consider first the NLS1(0, 6=, 1) terms. Using a paraproduct decomposi-

tion as has been done several times above and applying Lemma A.1, we get

NLS1(0, 6=, 1) .
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥Q1
0

∥∥∥
L∞H5/2+

∥∥∥∂Xm1/2U1
6=

∥∥∥
L2HN

+
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥Q1
0

∥∥∥
L∞HN

∥∥∥∂XU1
6=

∥∥∥
L2H3/2+

. ν−2/3ε2
Ä
εν−4/3

ä
.

For corresponding terms with j 6= 1, an easier treatment is available:

NLS1(0, 6=, j 6= 1) .
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥Qj0∥∥∥L∞HN

∥∥∥∇LU1
6=

∥∥∥
L2HN

. ε−1/3−1/6−1/2−1/3 =
Ä
εν−2/3

ä
ν−2/3ε2.

Similarly (noting that j 6= 1 by the nonlinear structure),

NLS1(j, 6=, 0) .
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥m1/2Qj6=

∥∥∥
L2HN

∥∥∥U1
0

∥∥∥
L∞HN+2

.
Ä
εν−4/3

ä
ε2ν−2/3.

Finally, for the NLS1(i, 6=, 6=) terms, we may use another straightforward ar-

gument. By (2.14),

NLS1(j, 6=, 6=) .
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥Q1
6=

∥∥∥
L∞HN

∥∥∥∂XU1
6=

∥∥∥
L2HN

+
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥Q2,3
6=

∥∥∥
L∞HN

∥∥∥∇LU1
6=

∥∥∥
L2HN

.
Ä
εν−4/3

ä
ν−2/3ε2.

This completes the NLS1 terms.

Turning to NLS2, we have first, since j 6= 1,

NLS2(i, j, 6=, 0) . ‖BQ1‖L2L2‖∇LU2,3
6= ‖L2HN ‖∇U1

0 ‖L∞HN+1

.
Ä
εν−4/3

ä
ε2ν−2/3.

Next, we rely on Lemma A.1 and (2.20) (for the j = 1 case), (2.14), and (2.13),

NLS2(i, j, 0, 6=) . ‖BQ1
6=‖L2L2‖∇tU1

0 ‖L∞HN+1‖m1/2∂X∇LU1
6=‖L2HN1j=1

+ ‖BQ1
6=‖L2L2‖∇tU2,3

0 ‖L∞HN ‖∆LU
1
6=‖L2HN1j 6=1

. ‖BQ1
6=‖L2L2‖U1

0 ‖L∞HN+2‖m∆LU
1
6=‖L2HN1j=1

+ ν−2/3‖BQ1
6=‖L2L2‖U2,3

0 ‖L∞HN+1‖m∆LU
1
6=‖L2HN1j 6=1

.
Ä
εν−4/3

ä
ε2ν−2/3.
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Finally, (2.22), a paraproduct decomposition, (2.14), and Propositions 2.2 and

2.3 imply

NLS2(i, j, 6=, 6=) . ‖BQ1
6=‖L2L2

Ä
‖∇LU i6=‖L∞H3/2+‖∆LU

1
6=‖L2HN

+‖∇LU i6=‖L∞HN ‖∆LU
1
6=‖L2H3/2+

ä
1i 6=1

+ ‖BQ1
6=‖L2L2

Ä
‖∇LU1

6=‖L∞H3/2+‖∂X∇LU1
6=‖L2HN

+‖∇LU1
6=‖L∞HN ‖∂X∇LU1

6=‖L2H3/2+

ä
. 1i 6=1

Ä
εν−4/3

ä
ε2ν−2/3 + 1i=1

Ä
εν−1

ä
ε2ν−2/3,

which suffices for εν−4/3 � 1.

5.1.3. Transport nonlinearity. These terms can mostly be treated as in

Section 4.3, however, one must check the contributions from Q1
0. As in Sec-

tion 3.1.1 and Section 4.3, we subdivide based on frequency (note that the

slight difference since we are only focusing on nonzero frequencies here):

T =

∫ T

1

∫
BQ1

6=B
Ä
Ũ0 · ∇Q1

6=
ä
dV dt

+

∫ T

1

∫
BQ1

6=B
Ä
U 6= · ∇tQ1

0 + U6= · ∇tQ1
6=
ä
dV dt

= T06= + T6=0 + T 6=6=.

The terms T06= and T6= 6= can be treated as in Section 4.3 and are hence omitted

for the sake of brevity. Hence, turn to the remaining T 6=0. Here we have (note

the nonlinear structure that eliminates U1
6=)

T 6=0 .
∥∥∥BQ1

6=

∥∥∥
L2L2

∥∥∥U2,3
6=

∥∥∥
L∞HN

∥∥∥∇Q1
0

∥∥∥
L2HN

. ε3ν−1/3−1/6−3/2

. ν−2/3ε2
Ä
εν−4/3

ä
.

5.2. Long-time energy estimate on Q1
0. In this section we improve the

estimate (2.16b). First, Q1
0 solves the equation

∂tQ
1
0 − ν‹∆tQ

1
0 +Q2

0 = −((‹U0 · ∇+ U6= · ∇t)Q1)0

− (Qj∂tjU
1)0 − 2(∂tiU

j∂tj∂
t
iU

1)0.

An energy estimate gives

1

2
‖Q1

0(T )‖2HN + ν‖∇LQ1
0‖2L2HN =

1

2
‖(Q1(1))0‖2HN

+

∫ T

1

∫
〈D〉NQ1

0〈D〉N
î
−Q2

0 − ((‹U0 · ∇+ U 6= · ∇t)Q1)0 − (Qj∂tjU
1)0

−2(∂tiU
j∂tj∂

t
iU

1)0 + ν(‹∆t −∆L)Q1
0

ó
dV dt

=
1

2
‖(Q1(1))0‖2HN + LU + T + NLS1 + NLS2 + DE.
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5.2.1. The lift up term LU. Using Lemma 2.4 and Proposition 2.2,

LU = −
∫ T

1

∫
〈D〉NQ1

0〈D〉N
î
∆U2

0 +G∂Y Y U
2
0 + 2ψz∂Y ZU

1
0

+∆tC∂Y U
2
0

ó
dV dt

. (1 + ‖∇C‖L∞HN )
∥∥∥∇Q1

0

∥∥∥
L2HN

∥∥∥∇U2
0

∥∥∥
L2HN

+ ‖∇C‖L2HN+1

∥∥∥Q1
0

∥∥∥
L∞HN

∥∥∥∇U2
0

∥∥∥
L2HN

. C0ε
2ν−2,

which is consistent with the bootstrap argument provided C0 is chosen suffi-

ciently large.

5.2.2. Transport nonlinearity. Similar to Section 5.1.3, we subdivide based

on frequency:

T =

∫ T

1

∫
〈D〉NQ1

0〈D〉N
Ä
Ũ0 · ∇Q1

0

ä
dV dt

+

∫ T

1

∫
〈D〉NQ1

0〈D〉N
Ä
U6= · ∇tQ1

6=
ä
dV dt

= T0 + T6=.

The zero frequencies T0 can be treated as in Section 3.1.1 and are hence omit-

ted for brevity. For the nonzero frequencies, first apply the divergence-free

condition:

T 6= =

∫ T

1

∫
〈D〉NQ1

0〈D〉N∇t ·
Ä
U6=Q

1
6=
ä

0
dV dt.

Due to the X average, the contribution from U1
6= is crucially eliminated as well

as the term involving −t∂X in ∂LY . Hence, by (2.21), (2.13) and Propositions 2.2

and 2.3,

T6= .
∥∥∥∇Q1

0

∥∥∥
L2HN

∥∥∥U2,3
6=

∥∥∥
L2HN

∥∥∥Q1
6=

∥∥∥
L∞HN

+
∥∥∥Q1

0

∥∥∥
L∞HN

‖C‖L∞HN+2

∥∥∥U2,3
6=

∥∥∥
L2HN

∥∥∥Q1
6=

∥∥∥
L2HN

. ν−2ε2
Ä
εν−2/3 + ε2ν−4/3

ä
,

which suffices.

5.2.3. Nonlinear stretching terms. Consider first NLS1(0, 0), which are

treated similar to NLS(0, 0) and NLP(0, 0) terms above: by Proposition 2.2

(and the fact that j 6= 1),

NLS1(0, 0) .
∥∥∥Q1

0

∥∥∥
L∞HN

∥∥∥∇U j0∥∥∥L2HN+1

∥∥∥∂tjU1
0

∥∥∥
L2HN

.
ε

ν

Ç
ε2

ν2

å
,

which is sufficient. NLS2(0, 0) is treated similarly and is hence omitted.
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Turn next to NLS1(6=, 6=):

NLS1(6=, 6=, j 6= 1) .
∥∥∥Q1

0

∥∥∥
L∞HN

∥∥∥Qj6=∥∥∥L2HN

∥∥∥∂tjU1
6=

∥∥∥
L2HN

.
ε

ν2/3

Ç
ε2

ν2

å
NLS1(6=, 6=, 1) .

∥∥∥Q1
0

∥∥∥
L∞HN

∥∥∥Q1
6=

∥∥∥
L2HN

∥∥∥∂XU1
6=

∥∥∥
L2HN

.
ε

ν2/3

Ç
ε2

ν2

å
,

which is sufficient. The NLS2( 6=, 6=) term is treated analogously and is hence

omitted for brevity.

5.2.4. The dissipation error terms DE. These are controlled as in Sec-

tion 3.1.4 and are hence omitted for brevity.

5.3. Short-time energy estimate on Q1
0 in HN . Here we deduce (2.16a),

which we refer to as a “short-time” estimate since it provides a superior esti-

mate on
∥∥Q1

0(t)
∥∥
HN for t� ν−1 versus the “long-time” estimate

∥∥Q1
0(t)

∥∥
HN .

εν−1.

For this estimate (and the similar (2.17a)), we use a slightly different

method from that which we have applied for most estimates in the paper.

Consider the differential equality

1

2

d

dt

Å
〈t〉−2

∥∥∥Q1
0(t)

∥∥∥2

HN

ã
= − t

〈t〉4
∥∥∥Q1

0(t)
∥∥∥2

HN
− 〈t〉−2

∫
〈D〉NQ1

0〈D〉NQ2
0dV

(5.1)

− ν〈t〉−2
∥∥∥∇Q1

0

∥∥∥2

HN
+NL,

where using the shorthand from Section 2.2.3 analogous to that used in Sec-

tion 5.2,

NL = T + NLS1 + NLS2 + DE

denotes the contributions from all of the nonlinear terms. For the lift-up effect

term, by (2.16d),

−〈t〉−2
∫
〈D〉NQ1

0〈D〉NQ2
0dV ≤ 〈t〉−2

∥∥∥Q1
0

∥∥∥
HN

∥∥∥Q2
0

∥∥∥
HN
≤ 〈t〉−28ε‖Q1

0‖HN ,

and hence (5.1) becomes

1

2

d

dt

Å
〈t〉−2

∥∥∥Q1
0(t)

∥∥∥2

HN

ã
+ ν〈t〉−2

∥∥∥∇Q1
0

∥∥∥2

HN
(5.2)

≤ 1

〈t〉2

Ç
8ε− t

〈t〉2
∥∥∥Q1

0(t)
∥∥∥
HN

å ∥∥∥Q1
0(t)

∥∥∥
HN

+NL.

It follows from this differential inequality (and continuity) that if NL ≤
1
2ν〈t〉

−2‖∇Q1
0(t)‖2

HN + f(t), with ‖f‖L1 ≤ C0ε
2, then (2.16a) holds for C0

sufficiently large. Indeed, let t ∈ (a, b) ⊂ [1, T ], where a < b is such that
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〈s〉−1
∥∥Q1

0(s)
∥∥
HN ≥ 8〈1〉ε for all s ∈ (a, b) and 〈a〉−1

∥∥Q1
0(a)

∥∥
HN ≤ 8〈1〉ε.

Then, (5.2) implies

1

2

d

dt

Å
〈t〉−2

∥∥∥Q1
0(t)

∥∥∥2

HN

ã
+

1

2
ν〈t〉−2

∥∥∥∇Q1
0(t)

∥∥∥2

HN
≤ f(t),

and hence, by integrating from a to t,

〈t〉−2
∥∥∥Q1

0(t)
∥∥∥2

HN
≤ 64〈1〉2ε2 + C0ε

2.

By continuity, for C0 sufficiently large, this implies 〈t〉−1
∥∥Q1

0(t)
∥∥
HN ≤ 4C0ε.

5.3.1. Transport nonlinearity. As in Section 5.2.2, we divide the transport

nonlinearity into two pieces:

T = 〈t〉−2
∫
〈D〉NQ1

0〈D〉N
Ä
Ũ0 · ∇Q1

0 +
Ä
U 6= · ∇tQ1

6=
ä

0

ä
dV = T0 + T 6=.

The first term is treated analogously to the treatment in Section 3.1.1:

T0 .
∥∥∥U3

0

∥∥∥
HN

∥∥∥〈t〉−1∇Q1
0

∥∥∥2

HN

+
(
‖g‖L2 + ‖∇g‖HN +

∥∥∥∇U3
0

∥∥∥
HN

) ∥∥∥〈t〉−1∇Q1
0

∥∥∥
HN

∥∥∥〈t〉−1Q1
0

∥∥∥
HN

. ε
∥∥∥〈t〉−1∇Q1

0

∥∥∥2

L2HN
+ ε

Å
‖g‖2L2 +

∥∥∥∇U3
0

∥∥∥2

HN
+ ‖∇g‖2HN

ã
;

the first term is absorbed by the dissipation in (5.2), and the latter term

integrates to O(ε3ν−1).

For T6=, we first use the divergence-free condition as in Section 5.2.2:

T 6= = 〈t〉−2
∫
〈D〉NQ1

0〈D〉N∇t ·
Ä
U 6=Q

1
6=
ä

0
dV,

which eliminates the contribution from U1 and −t∂X . By (2.21), (2.13), and

Proposition 2.2, and for any constant K,

T6= . 〈t〉−2
∥∥∥∇Q1

0

∥∥∥
HN

∥∥∥U2,3
6=

∥∥∥
HN

∥∥∥Q1
6=

∥∥∥
HN

+ 〈t〉−2
∥∥∥Q1

0

∥∥∥
HN
‖C‖HN+2

∥∥∥U2,3
6=

∥∥∥
HN

∥∥∥Q1
6=

∥∥∥
HN

.
ν

K
〈t〉−2

∥∥∥∇Q1
0

∥∥∥2

HN
+
K

ν
〈t〉−2

∥∥∥U2,3
6=

∥∥∥2

HN

∥∥∥Q1
6=

∥∥∥2

HN

+ 〈t〉−2
∥∥∥Q1

0

∥∥∥
HN
‖C‖HN+2

∥∥∥U2,3
6=

∥∥∥
HN

∥∥∥Q1
6=

∥∥∥
HN

.

The first term is absorbed by the dissipation in (5.2) for K sufficiently large;

the remaining terms integrate to ε4ν−3 and ε4ν−2−1/6 using the L∞ controls

on U , Q, and C, which is sufficient. (Note that ε4ν−3 � ε2 is borderline as it

requires εν−3/2 � 1.)
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5.3.2. Nonlinear stretching. Turn first to the interaction of zero frequen-

cies. Consider NLS1 (noting that j 6= 1):

NLS1(0, 0) = 〈t〉−2
∫
〈D〉NQ1

0〈D〉N
Ä
∆tU

j
0∂

t
jU

1
0

ä
dV

. 〈t〉−2
∥∥∥Q1

0

∥∥∥
HN

∥∥∥∇U j0∥∥∥HN+1

∥∥∥∇U1
0

∥∥∥
HN

.

Hence, by Proposition 2.2 and Cauchy-Schwarz in time,∫ T

1
NLS1(0, 0)dt .

∥∥∥〈t〉−1Q1
0

∥∥∥
L∞HN

∥∥∥U j0∥∥∥L∞HN+2

∥∥∥∇U1
0

∥∥∥
L2HN

. ε3ν−3/2,

which is sufficient for εν−3/2 sufficiently small. The NLS2(0, 0) terms can be

treated similarly and are hence omitted for the sake of brevity.

Consider next NLS1( 6=, 6=). Using that ∇t ·Q = 0 due to the divergence-

free condition and (2.21), we have for any K,

NLS1(6=, 6=) = 〈t〉−2
∫
〈D〉NQ1

0〈D〉N
Ä
Qj6=∂

t
jU

1
6=
ä

0
dV

= 〈t〉−2
∫
〈D〉NQ1

0〈D〉N∂tj
Ä
Qj6=U

1
6=
ä

0
dV

. 〈t〉−2
(∥∥∥∇Q1

0

∥∥∥
HN

+ ‖∇C‖HN+1

∥∥∥Q1
0

∥∥∥
HN

) ∥∥∥Q2,3
6=

∥∥∥
HN

∥∥∥U1
6=

∥∥∥
HN

.
ν

K
〈t〉−2

∥∥∥∇Q1
0

∥∥∥2

HN
+
K

ν
〈t〉−2

∥∥∥Q2,3
6=

∥∥∥2

HN

∥∥∥U1
6=

∥∥∥2

HN

+ 〈t〉−2 ‖∇C‖HN+1

∥∥∥Q1
0

∥∥∥
HN

∥∥∥Q2,3
6=

∥∥∥
HN

∥∥∥U1
6=

∥∥∥
HN

.

For K large, the first term is absorbed by the dissipation. By the L∞ controls

from Proposition 2.2, the second factor integrates to ε2
(
ε2ν−3

)
and the third

factor integrates to ε2
(
ε4ν−4

)
, both of which are sufficient. The NLS2( 6=, 6=)

term is treated similarly and is hence omitted.

5.3.3. Dissipation error estimates. Write

DE = 〈t〉−2ν

∫
〈D〉NQ1

0〈D〉N
Ä
G∂Y YQ

1
0 + 2ψz∂Y ZQ

1
0

ä
dV = E1 + E2.

We only bound E1; E2 is bounded in the same manner. Via integration by

parts and the Sobolev product rule,

E1 . 〈t〉−2ν ‖G‖HN

∥∥∥∇Q1
0

∥∥∥2

HN
+ 〈t〉−2ν ‖∇G‖HN

∥∥∥Q1
0

∥∥∥
HN

∥∥∥∇Q1
0

∥∥∥
HN

. 〈t〉−2ε
∥∥∥∇Q1

0

∥∥∥2

HN
+ εν2 ‖∇C‖2HN+1 .

The first term is absorbed by the leading order dissipation in (5.2), and the

other term integrates to O(ε3ν−1), which suffices. This completes the short-

time energy estimate on Q1
0.
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6. Energy estimate on U1
6=

In this section we deduce the control (2.17e). This is relatively easy due

to the lower regularity, however, there are some differences here from previous

arguments due to the fact that we are working in velocity form. The entire

point of this estimate is that by working directly on the velocity, it is easier to

take advantage of the inviscid damping from (2.26b) in the lift-up effect term,

which is the reason for the large growth of Q1
6=.

From the momentum equations, the nonzero frequencies of U1 solve

∂tU
1
6= − ν‹∆tU

1
6= = −U2

6= + 2∂XX∆−1
t U2

6=

−
Äî‹U0 · ∇+ U6= · ∇t

ó
U1
ä
6= + ∂X∆−1

t (∂tiU
j∂tjU

i) 6=.

An energy estimate gives

1

2
‖MU1

6=(T )‖2HN−1 + ν‖M∇LU1
6=‖2L2HN−1 + ‖

»
−ṀMU1

6=‖2L2HN−1

=
1

2
‖MU1

6=(1)‖2HN−1

+

∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M
î
−U2
6= + 2∂2

X∆−1
t U2

6=

−(
î‹U0 · ∇+ U6= · ∇t

ó
U1) 6= + (∂X∆−1

t ∂tiU
j∂tjU

i) 6= + ν(‹∆t −∆L)U1
6=
ó
dV dt

=
1

2
‖MU1

6=(1)‖2HN−1 + LU + LP + T + NLP + DE.

6.1. Lift-up effect. Start with the lift-up effect term, which can be bounded

through the inviscid damping estimate we have on U2
6= in HN−1 in (2.26b). In

particular, since 1 .
»
−Ṁ0M0|∇L| (see Section 2.3),

LU .
∥∥∥∥»ṀMU1

6=

∥∥∥∥
L2HN−1

∥∥∥∇LU2
6=

∥∥∥
L2HN−1

. C0ε
2,

which is sufficient for C0 chosen sufficiently big. We remark that the simplicity

and effectiveness of this estimate is the reason we are working with U1
6=.

6.2. Linear pressure. We now turn to the linear pressure term, LP, which

we bound by relying first on the inequality 1 .
»
−Ṁ0M0|∇L|, and then on

Lemmas A.6 and Proposition 2.3,

LP . ‖
»
ṀMU1

6=‖L2HN−1‖∇L∆L∆−1
t U2

6=‖L2HN−1

. ‖
»
ṀMU1

6=‖L2HN−1

î
‖∇LU2

6=‖L2HN−1 + ‖∇C‖L∞HN+1‖U2
6=‖L2HN−1

ó
. C0ε

2,

which is sufficient for C0 sufficiently large. Note that the inviscid damping of

U2 is also very important here.
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6.3. Transport nonlinearity. Turning to the transport term, we subdivide

analogous to what has been applied in, e.g., Section 3.1.1:

T =

∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M
î‹U0 · ∇U1

6= +U6= · ∇tU1
6= +U 6= · ∇tU1

0

ó
dV dt

= T06= + T 6=6= + T 6=0.

The term T0 6= is treated like the analogous term in Section 3.1.1 and is hence

omitted. The term T6=0 is treated via the following, using Proposition 2.2 and

(2.27) (also N − 1 > 3/2+):

T6=0 .
∥∥∥MU1

6=

∥∥∥
L2HN−1

∥∥∥〈t〉U2,3
6=

∥∥∥
L2HN−1

∥∥∥〈t〉−1∇U1
0

∥∥∥
L∞HN−1

. ε3ν−1/6−1/2 = ε3ν−2/3.

For T 6=6=, we may also apply a straightforward argument:

T 6=6= .
∥∥∥MU1

6=

∥∥∥
L∞HN−1

∥∥∥U1,2,3
6=

∥∥∥
L2HN−1

∥∥∥∇LU1
6=

∥∥∥
L2HN−1

. ε3ν−1/6−1/2 = ε3ν−2/3.

This completes the transport terms.

6.4. Nonlinear pressure. The nonlinear pressure term can be split into

one piece, for which both velocity fields have nonzero X frequency, and its

complement:

NLP =

∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M∂X∆−1
t (∂tiU

j
6=∂

t
jU

i
6= + 2∂tiU

j
0∂

t
jU

i
6=) dV

= NLP6= + NLP0.

Treating NLP 6= is straightforward: using the divergence-free condition and

Lemma A.5, we have

NLP6= =

∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M∆−1
t ∂X∂

t
i (U

j
6=∂

t
jU

i
6=) dV

. ‖U1
6=‖L2HN−1‖U 6=‖L∞HN−1‖∇LU 6=‖L2HN−1 . ε3ν−1/6−1/2 = ε3ν−2/3.

The NLP0 terms are bounded similarly, except for the ones involving U1
0 — to

these we now turn. Using the divergence-free condition,∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M∂X∆−1
t (2∂tiU

1
0∂XU

i
6=) dV

=

∫ T

0

∫
〈D〉N−1MU1

6=〈D〉N−1M∆−1
t ∂X∂

t
i (2U

1
0∂XU

i
6=) dV

.
∥∥∥MU1

6=

∥∥∥
L2HN−1

∥∥∥U1
0

∥∥∥
L∞HN−1

Ä
‖∂XU2‖L2HN−1 + ‖∂XU3‖L2HN−1

ä
. ε3ν−1/6−1−1/6 = ε3ν−4/3.

This completes the nonlinear pressure terms.
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6.5. Dissipation error. Finally, the dissipation error is easily dealt with

via the same method we have used several times previously: integrating by

parts in the second equality,

DE = ν

∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M(G∂LY Y + 2ψz∂
L
Y Z)U1

6=) dV dt

=−ν
∫ T

1

∫
〈D〉N−1M∂LY U

1
6=〈D〉N−1M(G∂LY + 2ψz∂Z)U1

6=) dV dt

− ν
∫ T

1

∫
〈D〉N−1MU1

6=〈D〉N−1M(∂YG∂
L
Y + 2∂Y ψy∂Z)U1

6=) dV dt

. ν
î
‖C‖L∞HN ‖∇LU1

6=‖2L2HN−1 +‖∇C‖L2HN ‖U1
6=‖L∞HN−1‖∇LU1

6=‖L2HN−1

ó
. ε3ν−1.

This completes the estimate on U1
6=.

7. Estimates on C and g

7.1. Energy estimate on C . In this section, we prove that, under the as-

sumptions of Proposition 2.1 (in particular, the bootstrap assumptions (2.17),

(2.16), (2.18)), the inequality (2.18c) holds, with 8 replaced by 4 on the right-

hand side. Recall (2.11). An energy estimate gives
1

2
‖C(T )‖2HN+2 + ν‖∇LC‖2L2HN+2

=
1

2
‖C(1)‖2HN+2

+

∫ T

1

∫
〈D〉N+2C〈D〉N+2

î
−Ũ0 · ∇C + g − U2

0 + ν(‹∆t −∆L)C
ó
dV dt

=
1

2
‖C(1)‖2HN+2 + T + L1 + L2 + DE.

The transport nonlinearity T can be treated in the same manner as in the Qi0
energy estimates above and are hence omitted for brevity.

7.1.1. The linear term L1. Distinguish first between high and low frequen-

cies:

L1 =

∫ T

1

∫
〈D〉N+2C〈D〉N+2 [P≤1g + P>1g] dV dt = L1L + L1H .

Low frequencies are estimated by taking advantage of the decay of g:

L1L . ‖C‖L∞L2‖g‖L1L2 .
C1ε

ν
(C0ε) =

C0ν

C1

Å
C1ε

ν

ã2

,

while high frequencies are estimated with the help of the viscous dissipation:

L1H . ‖∇C‖L2HN ‖∇g‖L2HN .
C1ε

ν3/2

C0ε√
ν

=
C0

C1

Å
C1ε

ν

ã2

.

Both are consistent with the Proposition 2.1 for C1 � C0.
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7.1.2. The linear term L2. The approach is analogous to the above term.

Separating first high and low frequencies,

L2 =

∫ T

1

∫
〈D〉N+2C〈D〉N+2

î
P≤1U

2
0 + P>1U

2
0

ó
dV dt = L2L + L2H ,

we estimate low frequencies with the help of (2.17f),

L2L . ‖C‖L∞L2‖U2
0 ‖L1L2 .

C1ε

ν

C0ε

ν
=
C0

C1

Å
C1ε

ν

ã2

,

and high frequencies using viscous dissipation,

L2H . ‖∇LC‖L2HN ‖∇LU2
0 ‖L2HN .

C1ε

ν3/2

C0ε√
ν

=
C0

C1

Å
C1ε

ν

ã2

.

This completes the treatment of the linear terms.

7.1.3. Dissipation error terms. Write

DE = ν

∫ T

1

∫
〈D〉N+2C〈D〉N+2 (G∂Y Y C + 2ψz∂Y ZC) dV dt = E1 + E2.

The two error terms are treated exactly the same, so consider only E1. Using

a paraproduct decomposition,

E1 = ν

∫ T

1

∫
〈D〉N+2C〈D〉N+2 (GHi∂Y Y CLo +GLo∂Y Y CHi) dV dt

. ν ‖C‖L∞HN+2 ‖G‖L2HN+2 ‖∇C‖L2H5/2+

+ν (‖∇C‖L2HN+2 ‖G‖L∞H3/2+ +‖C‖L∞HN+2 ‖∇G‖L2H3/2+) ‖∇C‖L2HN+2

. ε3ν−3,

which is sufficient for εν−1 � 1.

7.2. Estimates on g. In this section, we prove that, under the assumptions

of Proposition 2.1 (in particular, the bootstrap assumptions (2.17), (2.16), and

(2.18)), the inequalities (2.18b) and (2.18a) hold, with 8 replaced by 4 on the

right-hand side.

7.2.1. Decay estimate on g in HN−1. In this section we improve (2.18b).

Recall (2.11). Therefore, an energy estimate gives

1

2
‖T 2g(T )‖2HN−1 + ν‖t2∇Lg‖L2HN−1

=
1

2
‖g(1)‖2HN−1 +

∫ T

1

∫
t4〈D〉N−1g〈D〉N−1

ï
−Ũ0 · ∇g −

1

t
(U 6= · ∇tU1

6=)0

+ν(‹∆t −∆L)g
ó
dV dt

=
1

2
‖g(1)‖2HN−1 + T0 + T6= + DE;
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notice the cancellation between the derivative of the time weight and the damp-

ing term. The estimates of T0 and DE are obtained similarly to the treatment

in Section 7.1 and are hence omitted for brevity. However, a new element

appears in the estimate of T 6=. First, notice that

T6= = −
∫ T

1

∫
〈D〉N−1t2g〈D〉N−1t

[
(U1
6=∂XU

1
6=)0︸ ︷︷ ︸

0

+(U2
6=∂

t
Y U

1
6=)0

+(U3
6=∂

t
ZU

1
6=)0

]
dV dt.

Therefore, by (2.27) and Proposition 2.2, it follows that

T 6= . ‖t2g‖L∞HN−1

Ä
‖〈t〉U2

6=‖L2HN−1 + ‖〈t〉U3
6=‖L2HN−1

ä
‖∇LU1

6=‖L2HN−1

. ε3ν−1.

This completes the improvement of the estimate (2.18b).

7.2.2. Energy estimate on g in HN+2. From (2.11), an energy estimate

on g gives

1

2
‖g(T )‖2HN+2 + ν‖∇Lg‖2L2HN+2

=
1

2
‖g(1)‖2HN+2 +

∫ T

1

∫
〈D〉N+2g〈D〉N+2

ï
−Ũ0 · ∇g −

2g

t

−1

t
(U 6= · ∇tU1

6=)0 + ν(‹∆t −∆L)g

ò
dV dt

=
1

2
‖g(1)‖2HN+2 + T0 + L+ T6= + DE.

Observe that L does not need to be estimated, since it has a favorable sign.

All other terms appearing in the right-hand side can be estimated following

the same pattern as in many other instances in this paper (hence these are

omitted for the sake of brevity), except for T6=, to which we now turn. Observe

that

T6= ≤ ‖g‖L∞HN+2

∥∥∥∥1

t
(U 6= · ∇tU1

6=)0

∥∥∥∥
L1HN+2

. C0ε

∥∥∥∥1

t
(U 6= · ∇tU1

6=)0

∥∥∥∥
L1HN+2

.

This last factor can, in turn, be estimated by∥∥∥∥1

t
(U6= · ∇tU1

6=)0

∥∥∥∥
L1HN+2

.
∥∥∥∥1

t
(U6= · ∇tU1

6=)0

∥∥∥∥
L1L2

+

∥∥∥∥∆1

t
(U6= · ∇tU1

6=)0

∥∥∥∥
L1HN

.

The first term on the right-hand side is easily estimated (using that N − 1 >

3/2 for Sobolev embedding):∥∥∥∥1

t
(U6= · ∇tU1

6=)0

∥∥∥∥
L1L2

. ‖U6=‖L∞HN−1

∥∥∥∇LU1
6=

∥∥∥
L2HN−1

. ε2ν−1/2.
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For the second term, we use that for any function f , ∆f0 = (∆Lf)0 as well as

the identity (U1
6=∂XU

1
6=)0 = 0 (which was used in Section 7.2.1 above as well),

we obtain∥∥∥∥∆1

t
(U 6= · ∇tU1

6=)0

∥∥∥∥
L1HN

=

∥∥∥∥1

t
(∆L[U2,3

6= · ∇tU1
6=])0

∥∥∥∥
L1HN

.
∥∥∥∥1

t
((∆LU

2,3
6= ) · ∇tU1

6=)0

∥∥∥∥
L1HN

+

∥∥∥∥1

t
(U2,3
6= ·∆L∇tU1

6=)0

∥∥∥∥
L1HN

+

∥∥∥∥1

t
((∇LU2,3

6= ) · ∇L∇tU1
6=)0

∥∥∥∥
L1HN

. ‖∆LU
2,3
6= ‖L∞HN ‖∇LU1

6=‖L2HN

+ ‖U2,3
6= ‖L∞HN ‖∇L∆LU

1
6=‖L2HN + ‖∇LU2,3

6= ‖L2HN ‖∆LU
1
6=‖L∞HN

. ε2ν−1−1/2 = ε2ν−3/2,

where in the last line we used (2.13) and Lemma 2.2. This completes the

improvement of (2.18a) for εν−3/2 � 1. (Note the sharp use of the hypotheses.)

8. Zero frequency velocity estimates

The purpose of these estimates are to deduce low frequency controls on

the velocity. First, observe that by the discussion in Section 2.7, it suffices

to prove these estimates on ui0, rather than U i0. Indeed, due to Lemma 2.5

and the estimate ‖C‖L∞HN+2 . εν−1, for εν−1 � 1, we may move from one

coordinate system to another, in particular,

‖U i0‖Hs ≈ ‖ui0‖Hs ,(8.1a) ∥∥∥U i6=∥∥∥Hs
≈
∥∥∥ūi6=∥∥∥Hs

;(8.1b)

recall the definition of ūi from Section 2.7.

8.1. Decay of U2
0 . In this section, we improve the estimate (2.17f). First,

due to the divergence-free condition, û2
0(k = 0, η, l = 0) = 0, thus Qu2

0 = u2
0,

where Q projects on the Fourier modes for which k or l 6= 0. Therefore, u2
0

solves

∂tu
2
0 − ν∆u2

0 = −Q(u · ∇u2)0 +Q∂y∆
−1(∂iu

j∂ju
i)0

= −Q(u0 · ∇u2
0) +Q(∂y∆

−1(∂iu
j
0∂ju

i
0))

−Q(u6= · ∇u2
6=)0 +Q∂y∆

−1(∂iu
j
6=∂ju

i
6=)0

= QT0 +QP0 +QT6= +QP6=,

with data (u2
in)0. Duhamel’s formulation then reads

u2
0 = eνt∆(u2

in)0 +

∫ t

0
eν(t−s)∆(QT0(s) +QP0(s) +QT6=(s) +QP6=(s)) ds

= I + II + III + IV + V.
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Due to the spectral gap made possible via Q, there holds

‖eνt∆Qf‖L2 . e−νt‖f‖L2 and ‖eνt∆∇Qf‖L2 .
1√
νt
e−νt‖f‖L2 ,(8.2)

so that ∥∥∥∥∥
∫ t

0
eν(t−s)∆QF (s) ds

∥∥∥∥∥
L1L2

.
1

ν
‖F‖L1L2 ,∥∥∥∥∥

∫ t

0
eν(t−s)∆∇QF (s) ds

∥∥∥∥∥
L1L2

.
1

ν
‖F‖L1L2 .

Therefore, one obtains immediately

‖I‖L1L2 .
1

ν
‖uin‖L2 .

ε

ν
.

Next, by the divergence-free condition on u and Sobolev embedding,

‖II‖L1L2 =

∥∥∥∥∥
∫ t

0
eν(t−s)∆Q[∂y(u

2
0)2 + ∂z(u

2
0u

3
0)] ds

∥∥∥∥∥
L1L2

.
1

ν

î
‖(u2

0)2‖L1L2 + ‖u2
0u

3
0‖L1L2

ó
.

1

ν
‖u2

0‖L1L2

î
‖u2

0‖L∞HN−1 + ‖u3
0‖L∞HN−1

ó
.
ε

ν
‖u2

0‖L1L2 ,

which is sufficient for εν−1 � 1 as it can be absorbed into the left-hand side

of the estimate. Similarly, we claim that the same bound holds for III:

‖III‖L1L2 .
ε

ν
‖u2

0‖L1L2 .

Indeed, let us look at QP0 which, since u is divergence-free, can be written

Q∂yij∆
−1(uj0u

i
0). If i or j is equal to 2, then the same proof as for II applies.

If both i and j are equal to 3, use the divergence-free condition on u, namely,

∂zu
3
0 = −∂yu2

0, to reduce matters to the previous case.

Next turn to estimates IV and V. Due to the zero mode projection and

the divergence-free constraint, first note

(u6= · ∇u2
6=)0 =

Ä
∇ · (u6=u2

6=)
ä

0
=
Ä
∂y(ū

2
6=ū

2
6=)
ä

0
+
Ä
∂z(ū

3
6=ū

2
6=)
ä

0
.

Therefore, by (8.2) we have

‖IV‖L1L2 . ν−1
Å∥∥∥ū2

6=

∥∥∥2

L1L4
+
∥∥∥ū3ū2

6=

∥∥∥
L1L2

ã
. ν−1

∥∥∥ū2
6=

∥∥∥
L1L2

(∥∥∥ū2
6=

∥∥∥
L∞HN−1

+
∥∥∥ū3
6=

∥∥∥
L∞HN−1

)
. ν−1ε2,
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where the last line followed from (8.1) and (2.27); note the use of the inviscid

damping on ū2
6=. We may apply a similar treatment for V; indeed, by the zero

mode projection and the divergence-free constraint,

∂y∆
−1(∂iu

j
6=∂ju

i
6=)0 = ∂y∆

−1(∂i∂j
Ä
uj6=u

i
6=
ä
)0

= ∂y∆
−1
Ä
∂yy

Ä
ū2
6=ū

2
6=
ä

+ 2∂yz
Ä
ū2
6=ū

3
6=
ä

+ ∂zz
Ä
ū3
6=ū

3
6=
ää

0
.

By (8.2) we have

‖V‖L1L2 . ν−1
∥∥∥ūi6=ūj6=∥∥∥L1H1

1i 6=11j 6=1

. ν−1
∥∥∥ūi6=∥∥∥L2HN−1

∥∥∥ūj6=∥∥∥L2HN−1
1i 6=11j 6=1 . ν

−4/3ε2

which is sufficient for εν−4/3 � 1.

Gathering all the above estimates, we obtain that, for a constant K,

‖u2
0‖L1L2 ≤ K

ε

ν
+K

ε2

ν4/3
+K

ε

ν
‖u2

0‖L1L2 ,

which, by (8.1), improves (2.17f) for εν−3/2 = δ sufficiently small.

8.2. Uniform bound on U1
0 . As discussed above, it suffices to consider the

velocity in the original coordinates, u1
0, which solves

∂tu
1
0 − ν∆u1

0 = −u2
0 − (u · ∇u1)0.

An energy estimate gives

1

2
‖u1

0(t)‖2HN−1 + ν‖∇u1
0‖2L2HN−1

=
1

2
‖(u1

in)0‖2HN−1 −
∫ T

0

∫
〈D〉N−1u1

0〈D〉N−1
î
u2

0 − (u · ∇u1)0

ó
dV dt

=
1

2
‖(u1

in)0‖2HN−1 + LU + T .

To estimate the lift up term, use that u2
0 always has a nonzero z frequency by

incompressibility together with the algebra property of HN−1 to obtain

LU ≤ ‖∇u1
0‖L2HN−1‖∇u2

0‖L2HN−1 .
C0ε

ν3/2

ε√
ν

=
1

C0

Å
C0ε

ν

ã2

,

which suffices for C0 sufficiently large. Split the transport term into the con-

tribution of zero and nonzero frequencies (in X):

T =

∫ T

0

∫
〈D〉N−1u1

0〈D〉N−1
î
u2

0∂yu
1
0 + u3

0∂zu
1
0 + (u6= · ∇u1

6=)0

ó
dV ds

= T0 + T6=.

To estimate T0, consider first the term involving (roughly speaking) u1
0u

2
0∂yu

1
0;

to bound it, we will again us that the z frequency of u2
0 cannot be zero. Consider

next the term involving u1
0u

3
0∂zu

1
0; to bound it, we will use that at least two of
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the factors u1
0, u3

0, and ∂zu
1
0 must have nonzero z frequency. This leads to the

estimate

T0 . ‖u1
0‖L∞HN−1‖∇u2

0‖L2HN−1‖∇u1
0‖L2HN−1

+ ‖u1
0‖L∞HN−1‖∇u3

0‖L2HN−1‖∇u1
0‖L2HN−1

+ ‖∇u1
0‖L∞HN−1‖u3

0‖L2HN−1‖∇u1
0‖L2HN−1

.
C0ε

ν

C0ε√
ν

C0ε

ν3/2
≤ C0ε

ν

Å
C0ε

ν

ã2

,

which suffices for εν−1 sufficiently small.

To estimate T 6= we use the projection to zero frequency to note

(u6= · ∇u1
6=)0 = (ū2

6= · (∂y − t∂yu1
0∂x)ū1

6=)0 + (ū3
6= · ∂zū1

6=)0

(note that the ū1∂X ū
1 is eliminated), which implies (using also N − 1 > 3/2)

T6= . ‖u1
0‖L∞HN−1‖ū2,3

6= ‖L2HN−1‖∇Lū1
6=‖L2HN−1

.
C0ε

ν

C0ε

ν1/6

C0ε√
ν
≤ C0εν

1/3
Å
C0ε

ν

ã2

,

which suffices for ε sufficiently small. This completes the energy estimate on u1
0.

8.3. Short time estimate on U1
0 . We also need to deduce (2.17a). For

this, we combine the techniques of Section 5.3 combined with the methods

applied in Section 8.2. We omit the treatment for brevity as the details follow

analogously. (Note that the main change from Section 8.2 is the way the lift-up

effect is treated.)

8.4. Uniform bound on U2
0 . In this section we improve the bound (2.17c).

As discussed above, we may perform estimates on u2
0 rather than U2

0 . In the

original coordinates, u2
0 solves the equation

∂tu
2
0 − ν∆u2

0 = −(u · ∇u2)0 + ∂y∆
−1(∂iu

j∂ju
i)0.

An energy estimate gives

1

2
‖u2

0(T )‖2HN−1 + ν‖∇Lu2
0‖2L2HN−1

=
1

2
‖(u2

in)0‖2HN−1

+

∫ T

0

∫
〈D〉N−1u2

0〈D〉N−1
î
−(u · ∇u2)0 + ∂y∆

−1(∂iu
j∂ju

i)0

ó
dV dt

=
1

2
‖(u2

in)0‖2HN−1 + T + NLP.

The transport term T can be treated as for u1
0 in Section 8.2; we omit the

details. Turning to the nonlinear pressure term, it can be written, using that
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u is divergence-free, as

NLP =

∫ T

0

∫
〈D〉N−1u2

0〈D〉N−1∂y∆
−1
î
∂i(u

j
0∂ju

i
0) + ∂i(u

j
6=∂ju

i
6=)0

ó
= NLP0 + NLP 6=.

In order to bound NLP6=, once again we use the remark that, due to the X

average,

(∂iu
j
6=∂ju

i
6=)0 = ∂ij(ū

iūj)01i 6=11j 6=1.

Therefore,

NLP6= . ‖u2
0‖L∞HN−1‖ū2,3

6= ‖L2HN−1‖∇Lū2,3
6= ‖L2HN−1 . ε3ν−2/3.

Since i and j can only be equal to 2 or 3, NLP0 can be estimated by

NLP0 . ‖u2
0‖L2HN−1

Ä
‖u2

0‖L∞HN−1 + ‖u3
0‖L∞HN−1

ä
×
Ä
‖∇u2

0‖L2HN−1 + ‖∇u3
0‖L2HN−1

ä
. ε3ν−1.

This gives the desired bound on ‖u2
0‖2L∞HN−1 + ν‖∇Lu2

0‖2L2HN−1 for εν−1 suf-

ficiently small.

8.5. Uniform bound on U3
0 . As already explained above, we perform esti-

mates on u3
0, which solves

∂tu
3
0 − ν∆u3

0 = −(u · ∇u3)0 + ∂y∆
−1(∂iu

j∂ju
i)0.

An energy estimate gives

1

2
‖u3

0(T )‖2HN−1 + ν‖∇u3
0‖2L2HN−1 =

1

2
‖(u3

in)0‖2HN−1

+

∫ T

0

∫
〈D〉N−1u2

0〈D〉N−1
î
−(u · ∇u3)0 + ∂z∆

−1(∂iu
j∂ju

i)0

ó
dV dt

=
1

2
‖(u3

in)0‖2HN−1 + T + NLP.

The estimate on T is similar to that done on u1
0 and hence is omitted for

brevity. The estimate on NLP requires a slight variant of what is done for u2
0.

First,

NLP =

∫ T

0

∫
〈D〉N−1u3

0〈D〉N−1∂z∂i∆
−1
î
(uj0∂ju

i
0) + (uj6=∂ju

i
6=)0

ó
= NLP0 + NLP 6=.

The treatment of NLP 6= is the same as for u2
0 and is hence omitted. Turn next

to NLP0. If i = j = 3, then at least two of the three factors must have a
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nonzero z frequency, and hence we have

NLP0 .
∥∥∥u3

0

∥∥∥
L∞HN−1

∥∥∥∇u3
0

∥∥∥2

L2HN−1
+
∥∥∥u3

0

∥∥∥
L∞HN−1

∥∥∥u2
0

∥∥∥
L2LN−1

∥∥∥∇u3
0

∥∥∥
L2LN−1

+
∥∥∥u3

0

∥∥∥
L∞HN−1

∥∥∥u2
0

∥∥∥
L2HN−1

∥∥∥∇u2
0

∥∥∥
L2LN−1

.
ε

ν
ε2,

which suffices for εν−1 sufficiently small. Notice that we used
∥∥u2

0

∥∥
L2HN−1 .

εν−1/2; one way to deduce this is via incompressibility,∥∥∥u2
0

∥∥∥
L2HN−1

≤
∥∥∥∂zu2

0

∥∥∥
L2HN−1

.

This completes all of the zero frequency velocity estimates.

Appendix A. Commutation and elliptic estimates

A.1. Commutator-like estimates. In this section we outline some techni-

cal pointwise estimates on the Fourier multipliers we are employing; these

essentially become product-rule type estimates in practice.

Lemma A.1 (Commutator-type estimate on m). For all t, k, l, η, ξ, there

holds

m(t, k, η, l) . 〈η − ξ, l − l′〉2m(t, k, ξ, l′).

Proof. Clearly it suffices to show that

m(t, k, η, l)

m(t, k, η′, l′)
. 〈l − l′〉2 + 〈η − η′〉2.

Due to the definition of m, this estimate is proved by distinguishing several

cases, depending on how t, η
k , and η′

k compare. Since all these cases are fairly

similar, we will only consider three of them for brevity:

• If η
k > 0, η′

k > 0, t > η
k + 1000ν−1/3 and t > η′

k + 1000ν−1/3, then

m(t, k, η, l)

m(t, k, η′, l′)
=

k2 + l2

k2 + (l′)2

k2 + (1000ν−1/3k)2 + (l′)2

k2 + (1000ν−1/3k)2 + l2

.
1 + L2

1 + (L′)2

ν−2/3 + (L′)2

ν−2/3 + L2
,

where we set L = l
k and L′ = l′

k . Since

1 + L2

1 + (L′)2

ν−2/3 + (L′)2

ν−2/3 + L2
− 1 .

ν−2/3(L2 − (L′)2)

〈L′〉2(ν−2/3 + L2)
,

we deduce the desired bound.
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• If η
k > 0, η′

k > 0, and t < η
k and t > η′

k + 1000ν−1/3, then

m(t, k, η, l)

m(t, k, η′, l′)
.
ν−2/3 + (L′)2

1 + (L′)2
. 1 + ν−2/3 . 〈η − η′〉2.

• If 0 < η
k < t < η

k + 1000ν−1/3 and 0 < η′

k < t < η′

k + 1000ν−1/3, then

m(t, k, η, l)

m(t, k, η′, l′)
=

(1 + L2)(1 + (t−H ′)2 + (L′)2)

(1 + (t−H)2 + L2)(1 + (L′)2)
,

where we set L = l
k , L′ = l′

k , H = η
k , and H ′ = η′

k . Since

(1 + L2)(1 + (t−H ′)2 + (L′)2)

(1 + (t−H)2 + L2)(1 + (L′)2)
− 1

=
(t−H)2(L2 − (L′)2) + L2(2t−H −H ′)(H −H ′)

(1 + (t−H)2 + L2)(1 + (L′)2)

.
|(L′)2 − L2|

1 + (L′)2
+

L2|t−H||H −H ′|
(1 + (t−H)2 + L2)(1 + (L′)2)

+
L2|H −H ′|2

(1 + (t−H)2 + L2)(1 + (L′)2)

. 〈L− L′〉2 + 〈H −H ′〉2,

the desired bound follows. �

Lemma A.2 (Commutator-type estimate on
»
−ṀM). For all t, k, l, l′, η,

and η′, there hold the following estimates :»
−Ṁ0M0(t, k, η, l) . 〈η − η′, l − l′〉

»
−Ṁ0M0(t, k, η′, l′),(A.1a) »

−Ṁ1M1(t, k, η, l) . 〈η − η′, l − l′〉3/2
»
−Ṁ1M1(t, k, η′, l′),(A.1b) »

−Ṁ2M2(t, k, η, l) . 〈ν1/3
∣∣η − η′∣∣〉(1+κ)/2

»
−Ṁ2.M2(t, k, η′, l′).(A.1c)

Proof. All of these estimates follow immediately from the definition of M i

in Section 2.3. �

A.2. Elliptic lemmas. This section concerns estimates on ∆−1
t involving

the Fourier multipliers m, Ṁ , and ∇L. All of these estimates are based on

comparing ∆−1
t to ∆−1

L . The estimates here differ from the analogous estimates

employed previously in [BM13], [BMV16], [BGM15a], [BGM15b] due to the

much lower regularity and the fact that the coefficients are a little smaller here

(relative to the primary unknowns).

The first estimate concerns inverting ∆t at zero X frequencies.
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Lemma A.3 (Zero mode elliptic regularity). Under the bootstrap hypothe-

ses, for εν−1 sufficiently small, there hold for any 1 < s ≤ N ,∥∥∥∆−1
t φ0

∥∥∥
Hs+2

. ‖φ0‖Hs +
∥∥∥∆−1

t φ0

∥∥∥
L2
,(A.2a) ∥∥∥∇∆−1

t φ0

∥∥∥
Hs+1

. ‖∇φ0‖Hs−1 +
∥∥∥∇∆−1

t φ0

∥∥∥
L2
,(A.2b) ∥∥∥∆∆−1

t φ0

∥∥∥
Hs
. ‖φ0‖Hs + εν−1

∥∥∥∇∆−1
t φ0

∥∥∥
L2
.(A.2c)

Proof. Consider (A.2a). First,∥∥∥∆−1
t φ0

∥∥∥
Hs+2

≤
∥∥∥∆∆−1

t φ0

∥∥∥
Hs

+
∥∥∥∆−1

t φ0

∥∥∥
L2
.

From the definition of ∆t, we have∥∥∥∆∆−1
t φ0

∥∥∥
Hs
≤ ‖φ0‖Hs +

∥∥∥ÄG∂Y Y ∆−1
t φ0

ä∥∥∥
Hs

(A.3)

+ 2
∥∥∥Äψz∂Y Z∆−1

t φ0

ä∥∥∥
Hs

+
∥∥∥Ä∆tC∂Y ∆−1

t φ0

ä∥∥∥
Hs
.

For the first two error terms, we simply have∥∥∥ÄG∂Y Y ∆−1
t φ0

ä∥∥∥
Hs

+ 2
∥∥∥Äψz∂Y Z∆−1

t φ0

ä∥∥∥
Hs
. ‖∇C‖Hs

∥∥∥∆∆−1
t φ0

∥∥∥
Hs

. εν−1
∥∥∥∆∆−1

t φ0

∥∥∥
Hs
,

which is then absorbed on the left-hand side of (A.3) for εν−1 � 1. For the

last error term, we use the product rule and a frequency decomposition:∥∥∥Ä∆tC∂Y ∆−1
t φ0

ä∥∥∥
Hs
≤
∥∥∥Ä∆tC∂Y P≤1∆−1

t φ0

ä∥∥∥
Hs

+
∥∥∥Ä∆tC∂Y P>1∆−1

t φ0

ä∥∥∥
Hs

. ‖C‖Hs+2

∥∥∥∆−1
t φ0

∥∥∥
L2

+ ‖C‖Hs+2

∥∥∥∆∆−1
t φ0

∥∥∥
Hs
.

The latter term is again absorbed on the left-hand side of (A.3) for εν−1 � 1

(since s ≤ N), and the former is consistent with the right-hand side of (A.2a).

Estimate (A.2b) follows by similar considerations.

Estimate (A.2c) follows from∥∥∥∆∆−1
t φ0

∥∥∥
Hs
≤ ‖φ0‖Hs +

∥∥∥G∂Y Y ∆−1
t φ0

∥∥∥
Hs

+ 2
∥∥∥ψz∂Y Z∆−1

t φ0

∥∥∥
Hs

+
∥∥∥∆tC∂Y ∆−1

t φ0

∥∥∥
Hs
.

. ‖φ0‖Hs + εν−1
∥∥∥∆∆−1

t φ0

∥∥∥
Hs

+ εν−1
∥∥∥∇∆−1

t φ0

∥∥∥
Hs

. ‖φ0‖Hs + εν−1
∥∥∥∆∆−1

t φ0

∥∥∥
Hs

+ εν−1
∥∥∥P<1

Ä
∇∆−1

t φ0

ä∥∥∥
Hs

. ‖φ0‖Hs + εν−1
∥∥∥∆∆−1

t φ0

∥∥∥
Hs

+ εν−1
∥∥∥∇∆−1

t φ0

∥∥∥
L2
.

The second term is then absorbed on the left-hand side. �
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Lemma A.4. Under the bootstrap hypotheses, for εν−4/3 sufficiently small,

there holds for any α ∈ [0, 1], 3/2 < s ≤ N ,∥∥∥mα∆L∆−1
t φ 6=

∥∥∥
Hs
. ‖mαφ 6=‖Hs .

Proof. Writing P = ∆−1
t φ gives

∆LP = φ−G∂LY ∂LY P − 2ψz∂
L
Y ∂ZP −∆tC∂

L
Y P.

Applying 〈D〉smα to both sides gives∥∥∥mα∆L∆−1
t φ 6=

∥∥∥
Hs
. ‖mαφ 6=‖Hs +

3∑
j=1

Ej ,(A.4)

where

E1 = ‖mαG∂LY ∂
L
Y P‖Hs , E2 = ‖mαψz∂

L
Y ∂ZP‖Hs , E3 = ‖mα∆tC∂

L
Y P‖Hs .

By Lemma A.1 we can deduce

E1 + E2 . ‖∇C‖Hs+min(2α,1)

∥∥∥mmin(1/2,α)∆LP
∥∥∥
Hs

. ν−max(0,2α−1)/3 ‖∇C‖Hs+min(2α,1) ‖mα∆LP‖Hs .

However, since s ≤ N , by the bootstrap hypotheses,

ν−max(0,2α−1)/3 ‖∇C‖Hs+min(2α,1) . εν−4/3 � 1,

and this error can be absorbed by the left-hand side of the estimate in (A.4).

For E3, we apply (2.14):

E3 .
∥∥∥∇2C

∥∥∥
Hs
‖∇LP‖Hs . ‖∇C‖Hs+1

∥∥∥mmin(1/2,α)∆LP
∥∥∥
Hs
,

and from here we may proceed as in E1,2 above. �

Lemma A.5. Under the bootstrap hypotheses, for εν−4/3 sufficiently small,

there holds for any 3/2 < s ≤ N ,∥∥∥∆−1
t ∂ti∂

t
jφ 6=

∥∥∥
Hs
. ‖φ 6=‖Hs .

Proof. The first observation is that ∆−1
t and ∂ti∂

t
j commute; indeed one

need only undo the coordinate transform, commute them as Fourier multipliers,

and then redo the coordinate transform. Therefore, the estimate is the same as∥∥∥∂ti∂tj∆−1
t φ 6=

∥∥∥
Hs
. ‖φ 6=‖Hs .

By the L∞HN+2 control on C and the projection to nonzero frequencies, we

have ∥∥∥∂ti∂tj∆−1
t φ 6=

∥∥∥
Hs
.
∥∥∥∆L∆−1

t φ 6=
∥∥∥
Hs
.

Hence, the desired result now follows from Lemma A.4. �
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Lemma A.6. Under the bootstrap hypotheses, for εν−4/3 sufficiently small,

there holds for any α ∈ [0, 1], 3/2 < s ≤ N ,∥∥∥∇Lmα∆L∆−1
t φ 6=

∥∥∥
Hs
. ‖∇Lmαφ 6=‖Hs(A.5)

+ ‖∇C‖Hs+2 ν
−max(0,2α−1)/3 ‖mαφ 6=‖H3/2+ .

Remark A.1. For s ≤ N − 1, the second term in (A.5) can be removed.

Proof. Define P = ∆−1
t φ 6=. As in the proof of Lemma A.4 above,

∥∥∥∇Lmα∆L∆−1
t φ 6=

∥∥∥
Hs
. ‖∇Lmαφ 6=‖Hs +

3∑
j=1

Ej ,(A.6)

where

E1 = ‖∇LmαG∂LY ∂
L
Y P‖Hs , E2 = ‖∇Lmαψz∂

L
Y ∂ZP‖Hs ,

E3 = ‖∇Lmα∆tC∂
L
Y P‖Hs .

By the product rule and that G does not depend on X,

E1 .
∥∥∥mαG∂LY ∂

L
Y∇LP

∥∥∥
Hs

+
∥∥∥mα∇G∂LY ∂LY P

∥∥∥
Hs
.

Expanding each term with a paraproduct decomposition (see Section 2.1.4)

and Lemma A.1, we have

E1 . ‖G‖H1+2α+ ‖∇Lmα∆LP‖Hs + ‖G‖Hs+min(2α,1)

∥∥∥∇Lmmin(1/2,α)∆LP
∥∥∥
H3/2+

+ ‖∇G‖H1+min(2α,1)

∥∥∥mmin(1/2,α)∆LP
∥∥∥
Hs

+ ‖∇G‖Hs+min(2α,1)

∥∥∥mmin(1/2,α)∆LP
∥∥∥
H3/2+

.

Using Lemma 2.4, we have

E1 . ‖∇C‖H1+2α+ ‖∇Lmα∆LP‖Hs

+ ‖∇C‖Hs+min(2α,1)

∥∥∥∇Lmmin(1/2,α)∆LP
∥∥∥
H3/2+

+ ‖∇C‖H2+min(2α,1)

∥∥∥mmin(1/2,α)∆LP
∥∥∥
Hs

+ ‖∇C‖Hs+1+min(2α,1)

∥∥∥mmin(1/2,α)∆LP
∥∥∥
H3/2+

.

By (2.13), (2.14), and N > 2, we have

E1 .
Ä
‖C‖HN+2 + ν−max(0,2α−1)/3 ‖∇C‖Hs+min(2α,1)

ä
‖∇Lmα∆LP‖Hs

+ ν−max(0,2α−1)/3 ‖∇C‖H3+ ‖mα∆LP‖Hs

+ ν−max(0,2α−1)/3 ‖∇C‖Hs+2 ‖mα∆LP‖H3/2+

. εν−4/3 ‖∇Lmα∆LP‖Hs + ν−max(0,2α−1)/3 ‖∇C‖Hs+2 ‖mα∆LP‖Hs .
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By εν−4/3 sufficiently small, the first term can be absorbed on the right-hand

side of (A.6), and the second term is consistent with the stated (A.5) by

Lemma A.4. By Lemma 2.4, the treatment of E2 is exactly the same and is

hence omitted for brevity.

For E3, we apply again Leibniz’s rule and (2.14):

E3 . ‖∆C‖H1+2α+ ‖mα∆LP‖Hs + ‖∆C‖H2+ ‖∇LP‖Hs

+ ‖∆C‖Hs ‖∆LP‖H3/2+ + ‖∆C‖Hs+1 ‖∇LP‖H3/2+

. ‖C‖HN+2 ‖mα∇L∆LP‖Hs + ‖∆C‖Hs

∥∥∥mmin(1/2,α)∇L∆LP
∥∥∥
H3/2+

+ ‖∆C‖Hs+1

∥∥∥mmin(1/2,α)∆LP
∥∥∥
H3/2+

. ν−max(0,2α−1)/3 ‖C‖HN+2 ‖mα∇L∆LP‖Hs

+ ‖∆C‖Hs+1

∥∥∥mmin(1/2,α)∆LP
∥∥∥
H3/2+

. εν−4/3 ‖mα∇L∆LP‖Hs + ν−max(0,2α−1)/3 ‖∇C‖Hs+2 ‖mα∆LP‖H3/2+ .

As above, for εν−4/3 sufficiently small, the first term can be absorbed on the

right-hand side of (A.6), and the second term is consistent with the stated

(A.5) by Lemma A.4. Also note that if s + 3 ≤ N + 2, then the latter term

can be absorbed on the right-hand side of (A.6) for εν−4/3 � 1, as claimed in

Remark A.1. �

Lemma A.7. Suppose i ∈ {0, 1, 2}. Under the bootstrap hypotheses, for

εν−3/2 sufficiently small, there holds for any α ∈ [0, 1], 0 ≤ s ≤ N ,∥∥∥∥»−Ṁ iM imα∆L∆−1
t φ 6=

∥∥∥∥
Hs
.
∥∥∥∥»−ṀMmαφ 6=

∥∥∥∥
Hs

(A.7)

+ (εν−3/2)ν1/2
∥∥∥∇Lmα∆L∆−1

t φ 6=
∥∥∥
Hs
.

Proof. Writing P = ∆−1
t φ, applying the multiplier

»
−Ṁ iM i〈D〉smα to

both sides of the equation, and taking L2 norms gives

∥∥∥∥»−Ṁ iM imα∆L∆−1
t φ 6=

∥∥∥∥
Hs
.
∥∥∥∥»−ṀMmαφ 6=

∥∥∥∥
Hs

+
3∑
j=1

Ej ,(A.8)

where

E1 = ‖
»
−ṀMmαG∂LY ∂

L
Y P‖Hs , E2 = ‖

»
−ṀMmαψz∂

L
Y ∂ZP‖Hs ,

E3 = ‖
»
−ṀMmα∆tC∂

L
Y P‖Hs .
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Similar to the arguments employed in the other elliptic lemmas, via a para-

product decomposition, Lemma A.1, and Lemma A.2, we get

E1 + E2 . ν
−max(0,2α−1)/3 ‖∇C‖H5/2+min(1,2α)+

∥∥∥∥»−ṀMmα∆LP

∥∥∥∥
Hs

+ ν−max(0,2α−1)/3 ‖∇C‖Hs+min(1,2α) ‖mα∆LP‖H3/2+ .

However, by Lemma 2.1 we have

‖mα∆LP‖H3/2+ . ν−1/6
Å∥∥∥∥»−ṀMmα∆LP

∥∥∥∥
Hs

+ ν1/2 ‖∇Lmα∆LP‖Hs

ã
,

which implies (along with N ≥ max(s, 5/2+))

E1 + E2 . (εν−3/2)

∥∥∥∥»−ṀMmα∆LP

∥∥∥∥
Hs

+ (εν−3/2)ν1/2 ‖∇Lmα∆LP‖Hs .

For εν−3/2 sufficiently small, the first term is absorbed in the left-hand side of

(A.8) whereas the latter term is consistent with (A.7).

Consider next the error term E3, which by a paraproduct decomposition,

Lemma 2.1, (2.14), and the lower bound on m, is

E3 . ‖∆C‖H5/2+

∥∥∥∥»−ṀM∇LP
∥∥∥∥
Hs

+
∥∥∥∇2C

∥∥∥
Hs
‖∇LP‖3/2+

. ν−max(0,2α−1)/3 ‖C‖HN+2

∥∥∥∥»−ṀMmα∆LP

∥∥∥∥
Hs

+ ν−max(0,2α−1)/3 ‖∇C‖Hs+1 ‖mα∆LP‖3/2+ ,

from which the result follows in the same way as for E1,2. �
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