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On the structure of A -free
measures and applications

By Guido De Philippis and Filip Rindler

Abstract

We establish a general structure theorem for the singular part of A -free

Radon measures, where A is a linear PDE operator. By applying the

theorem to suitably chosen differential operators A , we obtain a simple

proof of Alberti’s rank-one theorem and, for the first time, its extensions to

functions of bounded deformation (BD). We also prove a structure theorem

for the singular part of a finite family of normal currents. The latter result

implies that the Rademacher theorem on the differentiability of Lipschitz

functions can hold only for absolutely continuous measures and that every

top-dimensional Ambrosio–Kirchheim metric current in Rd is a Federer–

Fleming flat chain.

1. Introduction

Consider a finite Radon measure µ on an open set Ω ⊂ Rd with values in

Rm that is A -free for a k’th-order linear constant-coefficient PDE operator A
(k ∈ N), i.e.,

(1.1) A µ :=
∑
|α|≤k

Aα∂
αµ = 0 in D′(Ω;Rn).

Here, Aα ∈ Rn×m and ∂α = ∂α1
1 · · · ∂

αd
d for each multi-index α = (α1, . . . , αd) ∈

(N ∪ {0})d. A central question about (1.1) asks what can be said about the

singular part µs of solutions µ = gL d + µs (µs ⊥ L d). Besides Alberti’s

celebrated rank-one theorem [1] for A = curl, not much is known at present.

In this respect we recall that the wave cone

ΛA :=
⋃
|ξ|=1

kerAk(ξ) ⊂ Rm with Ak(ξ) := (2πi)k
∑
|α|=k

Aαξ
α,

where ξα = ξα1
1 · · · ξ

αd
d , plays a crucial role in the compensated compactness

theory for sequences of A -free maps [29], [30], [42], [43], [16], [39]. Indeed, ΛA
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contains the values that an oscillating or concentrating sequence of functions is

expected to attain. The corresponding characteristic ξ’s determine the allowed

directions of oscillations and concentrations.

Since the singular part µs of a measure contains “condensed” concentra-

tions, it is natural to conjecture that for a measure µ solving (1.1), the polar
dµ
d|µ| , i.e., the Radon–Nikodým derivative of µ with respect to its total varia-

tion measure |µ|, must lie in the wave cone at almost all singular points. For

A = curl, this was conjectured by Ambrosio and De Giorgi in [14] and proved

by Alberti in [1]. Our main result asserts the truth of this conjecture in full

generality:

Theorem 1.1. Let Ω ⊂ Rd be an open set, let A be a k’th-order linear

constant-coefficient differential operator as above, and let µ ∈M(Ω;Rm) be an

A -free Radon measure on Ω with values in Rm. Then,

dµ

d|µ|
(x) ∈ ΛA for |µ|s-a.e. x ∈ Ω.

Remark 1.2. Note that (perhaps surprisingly) we do not need to require

A to satisfy Murat’s constant-rank condition [31].

Remark 1.3. Let us point out that Theorem 1.1 is also valid in the situa-

tion

(1.2) A µ = σ for some σ ∈M(Ω;Rn).

This can be reduced to the setting of Theorem 1.1 by defining µ̃ = (µ, σ) ∈
M(Rd;Rm+n) and Ã (with an additional 0’th-order term) such that (1.2) is

equivalent to Ã µ̃ = 0. It is easy to check that, if k ≥ 1, then ΛÃ = ΛA × Rn

and that for |µ|-a.e. point, dµ
d|µ| is proportional to dµ

d|µ̃| .

Remark 1.4. Using essentially the same proof, Theorem 1.1 can be further

extended to the setting of variable-coefficient linear differential operators A =∑
αAα(x)∂α with the coefficients satisfying suitable regularity assumptions.

In this setting, the conclusion reads

dµ

d|µ|
(x) ∈ ΛA (x) :=

⋃
|ξ|=1

kerAkx(ξ) for |µ|s-a.e. x,

where

Akx(ξ) :=
∑
|α|=k

(2πi)kAα(x)ξα.

Similar statements can be obtained if µ solves some pseudo-differential equa-

tions.

By applying Theorem 1.1 to suitably chosen differential operators, we

easily obtain several remarkable consequences, which are outlined below. In
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particular, we provide a simple proof of Alberti’s rank-one theorem and, for

the first time, its extensions to functions of bounded deformation (BD). We

also prove a structure theorem for the singular part of a finite family of normal

currents in the spirit of the rank-one theorem. By relying on the results of

Alberti and Marchese [4] and of Schioppa [40], the latter result immediately

implies that the Rademacher theorem can hold only for absolutely continuous

measures and that every top-dimensional Ambrosio–Kirchheim metric current

in Rd is a Federer–Fleming flat chain (a part of the so-called “flat chain con-

jecture”, see [11, §11]).

1.1. Rank-one property of BV-derivatives. As already mentioned above,

in [1] Alberti solved a conjecture of Ambrosio and De Giorgi [14] by showing the

rank-one property for the singular part of the gradients of BV-functions (also

see [15], [2]). Besides its theoretical interest, the rank-one theorem has many

applications in the theory of functions of bounded variation; we just mention

the following: lower-semicontinuity and relaxation [9], [18], [26], integral repre-

sentation theorems [12], Young measure theory [25], [38], [24], approximation

theory [27], and the study of continuity equations with BV-vector fields [6].

(In the latter case the use of the rank-one theorems can however be avoided;

see [6, Rem. 3.7] and [7].) We refer to [10, Ch. 5] for further history.

Theorem 1.5 (Alberti’s rank-one theorem). Let Ω ⊂ Rd be an open set

and let u ∈ BV(Ω;R`). Then, for |Dsu|-a.e. x ∈ Ω, there exist a(x) ∈ R` \{0},
b(x) ∈ Rd \ {0} such that

dDsu

d|Dsu|
(x) = a(x)⊗ b(x).

Alberti’s rank-one theorem easily follows by choosing A = curl in Theo-

rem 1.1. Let us also mention that Massaccesi and Vittone have recently given

a short and elegant proof of the rank-one property based on the theory of sets

of finite perimeter [28].

As already observed by Alberti in [1, Th. 4.13], Theorem 1.5 implies the

validity of a similar property for higher-order derivatives. A direct proof of

this fact can also be obtained as a corollary of our Theorem 1.1:

Theorem 1.6 (Rank-one theorem for higher-order derivatives). Let Ω ⊂
Rd be an open set and let u ∈ L1(Ω;R`) with Dru ∈ M(Ω; SLinr(Rd;R`))
for some r ∈ N, where SLinr(Rd;R`) contains all symmetric r-linear maps

from Rd to R`. Then, for |(Dru)s|-a.e. x ∈ Ω, there exist a(x) ∈ R` \ {0},
b(x) ∈ Rd \ {0} such that

d(Dru)s

d|(Dru)s|
(x) = a(x)⊗ b(x)⊗ · · · ⊗ b(x)︸ ︷︷ ︸

r times

.
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1.2. Polar density theorem for BD-functions. The proofs in [1] and in [28]

of Alberti’s rank-one theorem strongly rely on the structure of functions of

bounded variation and on their link with the theory of sets of finite perimeter.

In particular, so far it has remained open whether a similar statement is valid

for the larger class of functions of bounded deformation, i.e., those functions

u ∈ L1(Ω;Rd) whose symmetric part of the (distributional) derivative is a

measure,

Eu :=
Du+ (Du)T

2
∈M(Ω;Rd×dsym).

We collect all these functions into the set BD(Ω); see [45], [44], [8] for a detailed

account of the theory of this space.

The extension of Alberti’s rank-one theorem to the space of functions of

bounded deformation follows from our main Theorem 1.1 with the appropriate

choice of the differential operator A :

Theorem 1.7. Let Ω ⊂ Rd be an open set and let u ∈ BD(Ω). Then, for

|Esu|-a.e. x ∈ Ω, there exist a(x), b(x) ∈ Rd \ {0} such that

dEsu

d|Esu|
(x) = a(x)� b(x),

where we define the symmetrized tensor product as a � b := (a ⊗ b + b ⊗ a)/2

for a, b ∈ Rd.

This theorem has consequences for the structure theory of BD-functions

and lower semicontinuity theory. (In the lower semicontinuity theory our struc-

ture theorem can, however, be avoided at the price of some mild restrictions on

the functional; see [36] for BD and [37] for an analogous result in BV.) Some

of these consequences will be explored in future work.

Further, in [44], [20], [13] it is motivated why the space

U(Ω) :=
¶
u ∈ BD(Ω) : div u ∈ L2(Ω)

©
is the appropriate space for elasto-plasticity theory in the geometrically linear

setting. For this space we immediately get the following structure result:

Corollary 1.8. Let Ω ⊂ Rd be an open set and let u ∈ U(Ω). Then, for

|Esu|-a.e. x ∈ Ω, there exist a(x), b(x) ∈ Rd \ {0} with

a(x) ⊥ b(x)

such that

dEsu

d|Esu|
(x) = a(x)� b(x).
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1.3. Normal currents, the Rademacher theorem, and metric currents. Our

next application of Theorem 1.1 deals with finite families of (Euclidean) normal

currents, by which we obtain some consequences concerning the differentiability

of Lipschitz functions and the theory of metric currents. We assume the reader

to be familiar with the theory of currents and with basic multilinear algebra.

We refer to [17, Chs. 1, 4] and Section 3 below for the relevant notations and

definitions.

To motivate our result, recall that any (d−1)-dimensional normal current

T ∈ Nd−1(Rd) without boundary (∂T = 0) can be identified via Hodge duality

with the derivative of a function u ∈ BVloc(Rd;R), that is, T = ?Du. Using this

identification and the fact that dim Λd−1(V ) = 1 if and only if dim(V ) = d−1,

Theorem 1.5 can be rephrased as follows.

Corollary 1.9. Let

T1 = ~T1‖T1‖, . . . , Tr = ~Tr‖Tr‖ ∈ Nd−1(Rd)

be (d − 1)-dimensional boundaryless normal currents, i.e., ∂Ti = 0 for i =

1, . . . , r. Let further µ ∈M+(Rd) be a positive Radon measure such that

µ� ‖Ti‖ for i = 1, . . . , r.

Then, for µs-a.e. x ∈ Rd, there exists a (d− 1)-dimensional subspace Vx ⊂ Rd
such that ~T1(x), . . . , ~Tr(x) ∈ Λd−1(Vx).

As another simple application of Theorem 1.1 we can generalize the above

statement to finite families of normal currents (not necessarily of the same

dimension).

Theorem 1.10. Let Ω ⊂ Rd be an open set and let T1 = ~T1‖T1‖ ∈
Nk1(Ω), . . . , Tr = ~Tr‖Tr‖ ∈ Nkr(Ω) be normal currents, where k1, . . . , kr ∈
{1, . . . , d}, r ∈ N. Let further µ ∈ M+(Ω) be a positive Radon measure such

that

µ� ‖Ti‖ for i = 1, . . . , r.

Then, for µs-a.e. x ∈ Ω, there exists a 1-covector ωx ∈ Λ1(Rd) \ {0} such that

~T1(x) ωx = · · · = ~Tr(x) ωx = 0.

Equivalently, for µs-a.e. x ∈ Ω, ~T1(x) ∈ Λk1(kerωx), . . . , ~Tr(x) ∈ Λkr(kerωx).

Remark 1.11. Let us note in passing the following curious consequence

of the above result: It is well known that, apart from the trivial cases k ∈
{1, d− 1, d}, the orienting vector ~T of a k-dimensional normal current T need

not be simple, i.e., of the form ~T (x) = v1(x)∧· · ·∧vk(x), vi(x) ∈ Rd. However,

if dimV = (d − 1), then every w ∈ Λd−2(V ) is necessarily simple. Thus, we
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have that for T ∈ Nloc
d−2(Rd), the simplicity of ~T holds ‖T‖s-almost everywhere.

Note that the current

T = (e1 ∧ e2 + e3 ∧ e4)H4 {x5 = 0} ∈ Nloc
2 (R5)

shows that this statement is false for k-dimensional currents with 1<k<(d−2).

A particularly relevant instance of Theorem 1.10 is obtained when r = d

and k1 = · · · = kd = 1. In view of the subsequent applications, let us state it

in a slightly different (but equivalent) formulation:

Corollary 1.12. Let T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Rd) be one-

dimensional normal currents such that there exists a positive Radon measure

µ ∈M+(Rd) with the following properties :

(i) µ� ‖Ti‖ for i = 1, . . . , d;

(ii) for µ-a.e. x, span{~T1(x), . . . , ~Td(x)} = Rd.
Then, µ� L d.

This answers the question about a higher-dimensional analogue of [2,

Prop. 8.6]. By the trivial identification of one-dimensional normal currents

with vector-valued measures, Corollary 1.12 can be stated in the following

equivalent formulation, which in a sense is dual to Theorem 1.5. It can be also

directly inferred from Theorem 1.1.

Corollary 1.13. Let µ ∈M(Ω;Rd×d) be a matrix-valued measure such

that

divµ ∈M(Ω;Rd).

Then,

rank

Ç
dµ

d|µ|
(x)

å
≤ d− 1 for |µ|s-a.e. x ∈ Ω.

It has been noted in several places that the validity of the rank-one the-

orem for maps u ∈ BV(R2;R2) has some direct implications concerning differ-

entiability of Lipschitz functions and the structure of top-dimensional metric

currents in the plane [34], [2], [3], [35], [4], [40]. Relying on [4], [40], we use

Corollary 1.12 to extend these results to every dimension. In particular, The-

orem 1.15 below provides a positive answer to the case k = d of the “flat chain

conjecture” stated in [11, §11]; see [40, Th. 1.6] for the case k = 1.

Theorem 1.14. Let µ ∈M+(Rd) be a positive Radon measure such that

every Lipschitz map f : Rd → R is differentiable µ-almost everywhere. Then,

µ� L d.

Theorem 1.15. Let T ∈ Mmet
d (Rd) be an Ambrosio–Kirchheim metric

current of dimension d; see [11]. Then, ‖T‖ � L d. In particular, the space
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of d-dimensional metric currents in Rd coincides with the space of Federer–

Fleming d-dimensional flat chains, Mmet
d (Rd) = Fd(Rd).

Let us mention that the last two theorems will also follow by a stronger re-

sult announced by Csörnyei and Jones in [23], namely, that for every Lebesgue

null set E ⊂ Rd, there exists a Lipschitz map f : Rd → Rd that is nowhere

differentiable in E; see the discussion in the introduction of [4] for a detailed

account of these type of results.

1.4. Sketch of the proof. We conclude this introduction with an outline of

the main ideas behind the proof of Theorem 1.1. Let us assume for simplicity

that A is a first-order homogeneous operator, A =
∑
`A`∂`. Assume by

contradiction that there is a set E of positive |µ|s-measure such that the polar

vector dµ
d|µ|(x) is not in the wave cone ΛA for every x ∈ E. One can then find

a point x0 ∈ E and a sequence rj ↓ 0 such that

w*-lim
j→∞

(T x0,rj )]µ

|µ|(Brj (x0))
= w*-lim

j→∞

(T x0,rj )]µ
s

|µ|s(Brj (x0))
= P0ν,

where T x,r : Rd → Rd is the dilation map T x,r(y) = (y − x)/r, T x,r] de-

notes the push-forward operator (that is, for any measure σ and Borel set B,

[(T x,r)]σ](B) := σ(x + rB)), ν ∈ Tan(x0, |µ|) = Tan(x0, |µ|s) is a nonzero

tangent measure in the sense of Preiss [33], and

P0 :=
dµ

d|µ|
(x0) /∈ ΛA .

Moreover, one easily checks that

d∑
`=1

A`P0 ∂`ν = 0 in D′(Ω;Rn).

By taking the Fourier transform of the above equation, we get

A(ξ)P0 ν̂(ξ) = 0, ξ ∈ Rd.

Having assumed that P0 /∈ ΛA , this implies supp ν̂ = {0} and thus ν � L d.

The latter fact, however, is not by itself a contradiction to ν ∈ Tan(x0, |µ|s).
Indeed, Preiss [33] provided an example of a purely singular measure that has

only multiples of Lebesgue measure as tangents. (We also refer to [32] for a

measure that has every measure as a tangent at almost every point.)

On the other hand, P0 /∈ ΛA implies that A(ξ)P0 6= 0, so one can hope

for some sort of “elliptic regularization” that forces not only ν � L d but

also |µ|s � L d in a neighborhood of x0. In fact, this is (almost) the case:

Inspired by Allard’s Strong Constancy Lemma in [5] and using some basic
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pseudo-differential calculus, we can show that in the above situation, not only

νj :=
(T x0,rj )]µ

s

|µ|s(Brj (x0))
∗
⇀ ν � L d

but that, crucially, this convergence also holds in the total variation norm,

|νj − ν|(B1)→ 0.

Since νj ⊥ L d, this latter fact easily gives a contradiction to ν � L d and

concludes the proof of the theorem.
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2. Proof of the main theorem

2.1. Notation. We denote byM(Ω;Rm) the space of all finite Radon mea-

sures on an open set Ω ⊂ Rd with values in Rm and by M+(Ω) the space

of positive Radon measures on Ω. We write µ = w*-limj→∞ µj or µj
∗
⇀ µ

for the local weak*-convergence of µj to µ, that is
∫
ϕdµj →

∫
ϕdµ for all

ϕ ∈ C0
c(Ω), the set of all continuous functions with compact support in Ω.

The d-dimensional Lebesgue measure is L d. Given a Borel set B ⊂ Ω and a

measure µ ∈ M(Ω;Rm) (or µ ∈ M+(Ω)), we denote by µ B the restriction

of µ to B.

The Lebesgue–Radon–Nikodým decomposition of a Radon measure µ ∈
M(Ω;Rm) is given as

µ =
dµ

d|µ|
|µ| = µa + µs = gL d +

dµ

d|µ|
|µ|s,

where dµ
d|µ| ∈ L(Ω, |µ|;Rm) is the polar of µ, i.e., the Radon–Nikodým derivative

of µ with respect to µ’s total variation measure |µ| ∈ M+(Ω), µa � L d is the

absolutely continuous part of µ with density g ∈ L1(Ω), and µs ⊥ L d is the

singular part of µ. Note that here and in the following the terms “singular” and

“absolutely continuous” are always understood with respect to the Lebesgue

measure if not otherwise specified.

We will generically denote by A a k’th-order linear partial differential op-

erator with constant coefficients that acts on smooth functions u ∈ C∞(Rd;Rm)

as

A u :=
∑
|α|≤k

Aα∂
αu ∈ C∞(Rd;Rn),
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where α = (α1, . . . , αd) ∈ (N ∪ {0})d is a multi-index, ∂α = ∂α1
1 · · · ∂

αd
d , and

Aα ∈ Rn×m are matrices. A vector-valued Radon measure µ ∈ M(Ω;Rm) is

said to be A -free if

A µ = 0 in D′(Ω;Rn).

Here, D(Ω;Rn) = C∞c (Ω;Rn) is the set of Rn-valued test functions in Ω with

the usual topology and D′(Ω;Rn) is the set of Rn-valued distributions on Ω.

Given A as above, its symbol A : Rd → Rn×m is defined as

A(ξ) :=
∑
|α|≤k

(2πi)|α|Aαξ
α, ξ ∈ Rd,

where ξα := ξα1
1 . . . ξαdd . Note that for u in the Schwartz class S(Rd;Rm),‘A u(ξ) = A(ξ)û(ξ),

where for v ∈ S(Rd;Rm) we denote by v̂ its Fourier transform,

v̂(ξ) = F [v](ξ) :=

∫
v(x)e−2πix·ξ dx, ξ ∈ Rd.

We also recall the definition of the wave cone associated to A [42], [31],

[43], [16]:

ΛA :=
⋃
|ξ|=1

kerAk(ξ) ⊂ Rm with Ak(ξ) := (2πi)k
∑
|α|=k

Aαξ
α.

2.2. First-order operators. For the sake of illustration, we first treat the

case when A is a first-order homogeneous constant-coefficient differential op-

erator, namely,

(2.1) A µ =
d∑
`=1

A`∂`µ = 0 in D′(Ω;Rn).

Proof of Theorem 1.1 assuming (2.1). We have

ΛA =
⋃
|ξ|=1

kerA(ξ), A(ξ) = A1(ξ) = 2πi
d∑
`=1

A`ξ`.

Let

E :=

®
x ∈ Ω :

dµ

d|µ|
(x) /∈ ΛA

´
,

where the existence of dµ
d|µ|(x) in the sense of the Besicovitch derivation theorem

(see [10, Th. 2.22]) is part of the definition of E.

Assume by contradiction that |µ|s(E) > 0. We now choose a point x0 ∈ E
and a sequence rj ↓ 0 such that

(i) lim
j→∞

|µ|a(Brj (x0))
|µ|s(Brj (x0))

= 0 and lim
j→∞

−
∫
Brj (x0)

∣∣∣∣∣ dµ

d|µ|
(x)− dµ

d|µ|
(x0)

∣∣∣∣∣ d|µ|s(x) = 0;
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(ii) there exists a positive Radon measure ν ∈M+(Rd) with ν B1/2 6= 0 and

such that

νj :=
(T x0,rj )]|µ|s

|µ|s(Brj (x0))
∗
⇀ ν;

(iii) for the polar vector, it holds that

P0 :=
dµ

d|µ|
(x0) /∈ ΛA

and there is a positive constant c > 0 such that |A(ξ)P0| ≥ c|ξ| for ξ ∈ Rd.
Indeed, (i) holds at |µ|s-a.e. point by classical measure theory, (ii) follows by

the fact that for |µ|s-a.e. x ∈ Ω the space of tangent measures Tan(|µ|s, x) to

|µ|s at x is nontrivial (see, for instance, [33, Th. 2.5] or [36, Lemma A.1]), and

finally, (iii) follows from the assumption |µ|s(E) > 0.

We now claim that (i)–(iii) above imply that

0 6= ν B1/2 � Ld,(2.2)

lim
j→∞

|νj − ν|(B1/2) = 0.(2.3)

Before proving (2.2) and (2.3), let us show how to use them to conclude the

proof. Recall that νj ⊥ Ld, and take Borel sets Ej ⊂ B1/2 with L d(Ej) = 0 =

ν(Ej) and νj(Ej) = νj(B1/2). Then,

νj(B1/2) = νj(Ej) ≤ |νj − ν|(B1/2) + ν(Ej) = |νj − ν|(B1/2)→ 0,

thanks to (2.3). Hence, we infer ν(B1/2) = 0, in contradiction to (2.2). Thus,

|µ|s(E) = 0, concluding the proof of the theorem.

We are thus left to prove (2.2) and (2.3). Let us assume that x0 = 0 and

set T r := T x0,r. Clearly,

A
Ä
T r] µ
ä

= 0 in D′(B1;Rn).

Therefore, with νj defined as in (ii) above and cj := |µ|s(Brj )−1,

(2.4) A (P0νj) = A (P0νj − cjT
rj
] µ).

Let now {ϕε}ε>0 be a compactly supported, smooth, and positive approxima-

tion of the identity. By the lower semicontinuity of the total variation,

|νj − ν|(B1/2) ≤ lim inf
ε→0

|νj ∗ ϕε − ν|(B1/2).

Thus, for every j, we can find εj ≤ 1/j such that

(2.5) |νj − ν|(B1/2) ≤ |νj ∗ ϕεj − ν|(B1/2) +
1

j
.

We now convolve (2.4) with ϕεj to get

(2.6) A (P0uj) = A (Vj),
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where we have set

uj := νj ∗ ϕεj , Vj :=
î
P0νj − cjT

rj
] µ
ó
∗ ϕεj .

Note that uj , Vj are smooth, uj ≥ 0, and

(2.7) uj
∗
⇀ ν.

Moreover, recalling that x0 = 0 and cj = |µ|s(Brj )−1, by the definition of Vj ,

νj , P0 and standard properties of convolutions (see [10, Th. 2.2]), for εj ≤ 1/4,

it holds that∫
B3/4

|Vj | dx ≤

∣∣∣P0 T
rj
] |µ|s − T

rj
] µ

∣∣∣(B1)

|µ|s(Brj )

≤

∣∣∣P0 |µ|s − µs
∣∣∣(Brj )

|µ|s(Brj )
+
|µ|a(Brj )
|µ|s(Brj )

= −
∫
Brj

∣∣∣∣∣ dµ

d|µ|
(0)− dµ

d|µ|
(x)

∣∣∣∣∣d|µ|s(x) +
|µ|a(Brj )
|µ|s(Brj )

.

Hence, by (i) above,

(2.8) lim
j→∞

∫
B3/4

|Vj | dx = 0.

Take a cut-off function χ ∈ D(B3/4) with 0 ≤ χ ≤ 1 and χ ≡ 1 on B1/2.

Then, (2.6) implies that

(2.9) A (P0χuj) = χA (P0uj) + A (P0χ)uj = A (χVj) +Rj ,

where the remainder terms Rj := A (P0χ)uj −
∑
`A`Vj∂`χ are smooth, com-

pactly supported in B1, and satisfy

sup
j

∫
B1

|Rj | dx ≤ C

for some constant C thanks to (2.7) and (2.8). Taking the Fourier transform

of (2.9), we obtain

[A(ξ)P0]‘χuj(ξ) = A(ξ)‘χVj(ξ) + “Rj(ξ).
Now multiply by [A(ξ)P0]

∗ = [A(ξ)P0]T and add ‘χuj(ξ) to both sides of the

above equation to obtain

(1 + |A(ξ)P0|2)‘χuj(ξ) = [A(ξ)P0]
∗A(ξ)‘χVj(ξ) +‘χuj(ξ) + [A(ξ)P0]

∗“Rj(ξ),
which can be rewritten as‘χuj(ξ) =

[A(ξ)P0]
∗A(ξ)‘χVj(ξ)

1 + |A(ξ)P0|2
+

1 + 4π2|ξ|2

1 + |A(ξ)P0|2
·
‘χuj(ξ)

1 + 4π2|ξ|2

+
(1 + 4π2|ξ|2)1/2[A(ξ)P0]

∗

1 + |A(ξ)P0|2
·

“Rj(ξ)
(1 + 4π2|ξ|2)1/2

.
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Hence,

(2.10) χuj = T0[χVj ] + T1[χuj ] + T2[Rj ] =: fj + gj + hj

with

T0[V ] := F−1
[
(1 + |A(ξ)P0|2)−1[A(ξ)P0]

∗A(ξ)“V (ξ)
]
,

T1[u] := F−1
[
m1(ξ)(1 + 4π2|ξ|2)−1û(ξ)

]
,

T2[R] := F−1
[
m2(ξ)(1 + 4π2|ξ|2)−1/2“R(ξ)

]
,

where we have set

m1(ξ) = (1 + |A(ξ)P0|2)−1(1 + 4π2|ξ|2),

m2(ξ) = (1 + |A(ξ)P0|2)−1(1 + 4π2|ξ|2)1/2[A(ξ)P0]
∗.

By (iii) above, T0 is an operator associated with an Hörmander–Mihlin

multiplier (meaning that it has a smooth symbol m0(ξ) such that |∂βm0(ξ)| ≤
K|ξ|−|β| for every multi-index |β| ≤ bd/2c+ 1 and some K > 0). The L1–L1,∞

estimates [21, Th. 5.2.7] in conjunction with (2.8) give

(2.11) sup
λ≥0

λL d
Ä
{|fj | > λ}

ä
≤ C‖χVj‖L1 → 0.

Moreover, the operators T1 and T2 are compact from L1
c(B1) to L1

loc(Rd), where

L1
c(B1) is the set of L1-functions vanishing outside B1. Indeed, by Lemma 2.1

below, for every s > 0, the operator

(Id−∆)−s/2w = F−1
î
(1 + 4π2|ξ|2)−s/2“w(ξ)

ó
is compact from L1

c(B1) to Lp(Rd) for 1 < p < p(d, s) and by [21, Th. 5.2.7]

the symbols m1 and m2 are Lp-multipliers. We conclude, in particular, that

{gj + hj}j is precompact in L1
loc(Rd).

From (2.8) we further get
(2.12)¨

fj , ϕ
∂

=
¨
T0[χVj ], ϕ

∂
=
¨
χVj , T

∗
0 [ϕ]
∂
→ 0 for every ϕ ∈ D(Rd;Rn),

where T ∗0 : S(Rd;Rn) 7→ S(Rd,Rm) is the adjoint of T0. Since χuj ≥ 0, (2.10)

gives that
f−j := max{0,−fj} ≤ |gj + hj |.

As shown above, the family {gj + hj}j is precompact in L1
loc(Rd) and thus the

previous inequality implies the local equi-integrability of {f−j }. Together with

(2.11), (2.12) and Lemma 2.2 below this yields fj → 0 in L1
loc(Rd) and thus

that the sequence {χuj} is precompact in L1
loc(Rd). Since also χuj

∗
⇀ χν by

(2.7), we deduce that χν ∈ L1(Rd), which implies (2.2), Moreover,

χuj → χν in L1(Rd),
which, taking into account (2.5), implies (2.3). �
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2.3. General operators. We now treat the general situation, namely, the

case of a measure µ ∈M(Ω;Rn) satisfying

(2.13) A µ =
∑
|α|≤k

Aα∂
αµ = 0 in D′(Ω;Rn).

Proof of Theorem 1.1. As before, let us set

E :=

®
x ∈ Ω :

dµ

d|µ|
(x) /∈ ΛA

´
and assume that |µ|s(E) > 0. Arguing as in the proof for first-order operators,

we may find a point x0 ∈ E satisfying (i) and (ii) above and also

(iii′) for the polar vector, it holds that

P0 :=
dµ

d|µ|
(x0) /∈ ΛA ,

and there is a positive constant c > 0 such that |Ak(ξ)P0

∣∣∣ ≥ c|ξ|k for

ξ ∈ Rd.
We will show that (i), (ii) and (iii′) together imply (2.2) and (2.3), and thus

yield the desired contradiction.

Assuming that x0 = 0, we note that (2.13) and a simple scaling argument

give

A k
Ä
T r] µ
ä

+
k−1∑
h=0

A h
Ä
rk−hT r] µ

ä
= 0,

where A h :=
∑
|α|=hAα∂

α is the h-homogeneous part of the operator A .

Hence, with νj defined as in (ii) and cj = |µ|s(Brj )−1,

∑
|α|=k

Aα∂
α(P0νj) =

∑
|α|=k

Aα∂
α
Ä
P0νj − cjT

rj
] µ
ä
−
k−1∑
h=1

A h
Ä
rk−hj cjT

rj
] µ
ä
.

Mollification and localization now yield

(2.14)
∑
|α|=k

Aα∂
α(P0χuj) =

∑
|α|=k

Aα∂
α(χVj) +Rj .

Here, as before,

uj := νj ∗ ϕεj , Vj = [P0νj − cjT
rj
] µ] ∗ ϕεj ,

where χ ∈ D(B3/4) with 0 ≤ χ ≤ 1, χ ≡ 1 on B1/2, and ϕεj is a sequence

of mollifier such that (2.5) is satisfied. In particular, by (i), ‖χVj‖L1 → 0.

Moreover, the remainder term Rj can be written as a finite sum of smooth-

coefficient partial differential operators of order at most k−1 applied to smooth
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functions with bounded L1-norm and compact support:

Rj =
k−1∑
h=0

∑
|α|=h

bα(x)∂αzαj ,

where bα(x) ∈ D(B3/4), the functions zαj are smooth and compactly supported,

and supj ‖zαj ‖L1 ≤ C for some constant C. Namely, Rj = R1
j +R2

j +R2
j , where

R1
j =

∑
|α|=k

∑
β+γ=α
|γ|≥1

cβγ∂
γχ∂β(AαP0χ̃uj),

R2
j =

∑
|α|=k

∑
β+γ=α
|γ|≥1

cβγ∂
γχ∂β(Aαχ̃Vj),

R3
j =

∑
|α|≤k−1

∑
|α|=h

χ∂α
(
χ̃Aα(rk−hj cjT

rj
] µ) ∗ ϕεj

)
with cβγ ∈ R, and χ̃ ∈ D(B1) is identically equal to 1 on the support of χ.

By taking the Fourier transform of (2.14) and performing the same com-

putations as in the first part, but now multiplying with [Ak(ξ)P0]
∗ instead of

[A(ξ)P0]
∗, we obtain

(2.15) χuj = S0[χVj ] + S1[χuj ] + ‹Rj ,
where S0 and S1 are given by

S0[V ] = F−1
[

[Ak(ξ)P0]
∗Ak(ξ) “V (ξ)

1 + |Ak(ξ)P0|2

]
,

S1[u] = F−1
[

(1 + 4π2|ξ|2)k

1 + |Ak(ξ)P0|2
· û(ξ)

(1 + 4π2|ξ|2)k

]
.

Applying the Hörmander–Mihlin multiplier theorem and arguing as for first-

order operators, we deduce that

sup
λ≥0

λL d
Ä
{|S0[χVj ]| > λ}

ä
≤ C‖χVj‖L1(B1) → 0 and S0[χVj ]

∗
⇀ 0.

Moreover, the family {S1[χuj ]} is precompact in L1
loc(Rd). To conclude the

proof it is enough to show that {‹Rj} is precompact in L1
loc(Rd), since then the

application of Lemma 2.2 as in the first part will imply the validity of (2.2)

and (2.3). The generic term of ‹Rj can be written as

fαj = Q ◦ (Id−∆)−
k
2 ◦ Pα ◦ (Id−∆)

|α|−k
2 [zαj ],

where 0 ≤ |α| ≤ (k − 1), supj ‖zαj ‖L1 ≤ C,

Q[z] = F−1
[
(1 + |Ak(ξ)P0|2)−1(1 + 4π2|ξ|2)k/2Ak(ξ)ẑ(ξ)

]
,
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and Pα is the k’th-order pseudo-differential operator given by

Pα[z](x) =

∫
bα(x)

(2πi)|α|ξα

(1 + 4π2|ξ|2)
|α|−k

2

ẑ(ξ) e2πix·ξ dξ, x ∈ Rd.

The composition (Id−∆)−k/2 ◦ Pα is a pseudo-differential operator of order 0

(see [41, Th. 2, Ch. VI]), and thus bounded from Lp(Rd) to itself; see [41,

Prop. 4, Ch. VI]. By (iii′) and the Hörmander–Mihlin multiplier theorem, also

Q is a bounded operator from Lp(Rd) to itself. Since |α| ≤ k − 1, Lemma 2.1

below implies that (Id − ∆)(|α|−k)/2 is compact from L1
c(B1) to Lp(Rd) for

1 < p < p(d, |α| − k). We conclude that {fαj } is precompact in L1
loc(Rd). The

validity of (2.2) and (2.3) now follows from (2.15) by arguing as before. �

2.4. Auxiliary results. Finally, we prove the two simple technical lemmas

that have been used in the proofs above. The first is an L1-compactness result

in the spirit of the Sobolev embedding theorems. Since we have not been able

to find a reference, we provide its simple proof.

Lemma 2.1. For u ∈ S(Rd) and s > 0, define

(Id−∆)−s/2u := F−1
î
(1 + 4π2|ξ|2)−s/2û(ξ)

ó
.

Then, (Id − ∆)−s/2 extends to a compact map from L1
c(B1) to Lp(Rd) for

1 ≤ p < p(d, s), where

p(d, s) :=


d

d− s
if s < d,

∞ otherwise,

and L1
c(B1) ⊂ L1(Rd) is the set of L1-functions supported in B1.

Proof. For u in the Schwartz class, we can write

(Id−∆)−s/2u = b(s, d) ∗ u

where b(s, d) = F−1[(1+4π|ξ|2)−s/2] is the Bessel potential of order s; see [22,

§6.1.2]. By classical estimates [22, Prop. 6.1.5], b(s, d) ∈ Lp for 1 ≤ p < p(d, s)

so that by Young’s inequality for convolutions,

(Id−∆)−s/2u ∈ Lp for 1 ≤ p < p(d, s)

(actually also for p = p(d, s) if s 6= d). For every ε > 0, we can write

b(s, d) = b1,ε + b2,ε with b1,ε ∈ C1
c(Rd) and ‖b2,ε‖L1 < ε;

see [22, Prop. 6.1.6]. Thus,

(Id−∆)−s/2u = b1,ε ∗ u+ b2,ε ∗ u =: T1,ε[u] + T2,ε[u].

Because b1,ε ∈ C1
c(Rd), T1,ε is compact from L1

c(B1) to L1(Rd). Moreover,

‖(Id−∆)−s/2 − T1,ε‖L1→L1 ≤ ‖T2,ε‖L1→L1 ≤ ε,
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so that (Id−∆)−s/2 is the limit in the uniform topology of compact operators

and thus compact as well. The conclusion of the lemma now follows by Hölder’s

inequality. �

The second lemma is a consequence of the Vitali convergence theorem.

Lemma 2.2. Let {fj} ⊂ L1
c(B1) be a family of functions such that

(a) fj
∗
⇀ 0 in D′(B1);

(b) the negative parts of the fj ’s tend to zero in measure, i.e.,

lim
j→∞

L d
Ä
{f−j > λ}

ä
= 0 for every λ > 0;

(c) the sequence of negative parts {f−j } is equi-integrable,

lim
L d(E)→0

sup
j∈N

∫
B1

f−j dx = 0.

Then, fj → 0 in L1
loc(B1).

Proof. Let ϕ ∈ D(B1), 0 ≤ ϕ ≤ 1. It is enough to show that

(2.16) lim
j→∞

∫
ϕ|fj | dx = 0.

We write∫
ϕ|fj | dx =

∫
ϕfj dx+ 2

∫
ϕf−j dx ≤

∫
ϕfj dx+ 2

∫
f−j dx.

The first term on the right-hand side goes to 0 as j → ∞ by assumption (a).

Thanks to the Vitali convergence theorem, assumptions (b) and (c) further

give that also the second term vanishes in the limit. Hence, (2.16) follows. �

3. Applications

Theorems 1.5, 1.6 and 1.7 follow from Theorem 1.1 simply by applying it

to the differential constraints that gradients, higher gradients, or symmetrized

gradients, respectively, have to satisfy.

Proof of Theorem 1.5. Let µ = (µkj ) ∈M(Ω;R`×d) be the (distributional)

gradient of a function u ∈ BV(Ω;R`), µ = Du. Then,

0 = ∂iµ
k
j − ∂jµki for i, j = 1, . . . , d; k = 1, . . . , `.

Setting

A µ :=
Ä
∂jµ

k
i − ∂iµkj

ä
i,j=1,...,d; k=1,...,`

,

it is a simple algebraic exercise, carried out for instance in [19, Rem. 3.5(iii)],

to compute that

ΛA =
¶
a⊗ ξ ∈ R`×d : a ∈ R`, ξ ∈ Rd \ {0}

©
.

Corollary 1.5 then follows directly from Theorem 1.1. �
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Proof of Theorem 1.6. For the operator

A µ :=
(
∂jµ

k
α1···αhiαh+2···αr − ∂iµ

k
α1···αhjαh+2···αr

)
i,j,α1,...,αn=1,...,d; k=1,...,`;h=1,...,r

,

one can see that A µ = 0 if and only if µ is an r’th-order derivative, and

furthermore one can compute that

ΛA =
¶
a⊗ ξ ⊗ · · · ⊗ ξ ∈ SLinr(Rd;R`) : a ∈ R`, ξ ∈ Rd \ {0}

©
;

see[19, Ex. 3.10(d)] for the details. �

Proof of Theorem 1.7. Let µ = (µkj ) ∈M(Ω,Rd×dsym) be the (distributional)

symmetrized gradient of u ∈ BD(Ω), µ = Eu. Then, by direct computation

(see [19, Ex. 3.10(e)]),

0 = A µ :=

Ç d∑
i=1

∂ikµ
j
i + ∂ijµ

k
i − ∂jkµii − ∂iiµkj

å
j,k=1,...,d

.

These equations are often called the Saint-Venant compatibility conditions in

applications. Hence, for M ∈ Rd×dsym ,

−(4π)−2A(ξ)M = (Mξ)⊗ ξ + ξ ⊗ (Mξ)− (trM) ξ ⊗ ξ − |ξ|2M,

which gives

kerA2(ξ) = kerA(ξ) =
¶
a⊗ ξ + ξ ⊗ a : a ∈ Rd

©
.

Theorem 1.1 now implies the conclusion. �

Proof of Corollary 1.8. The only fact to show in addition to the assertion

of Corollary 1.7 is that a(x) · b(x) = 0. For Eu, we have the Lebesgue–Radon–

Nikodým decomposition Eu = EuL d + Esu and thus

div u = tr(Eu) L d + a(x) · b(x) |Esu|.

Since div u ∈ L2(Ω), we must have a(x) · b(x) = 0 for |Esu|-a.e. x ∈ Ω. �

Before proving Theorem 1.10, let us recall some simple facts concerning

(Euclidean) currents and multi-linear algebra. We refer to [17] for more details.

Given a finite dimensional vector space V , we let Λk(V ) be the set of

k-vectors and Λk(V ) ' (Λk(V ))∗ be the set of k-covectors. If v ∈ Λk(V ) and

η ∈ Λ1(V ), then the interior product of η with v is the (k − 1)-vector v η ∈
Λk−1(V ) defined by duality as 〈v η, ω〉 := 〈v, η ∧ ω〉 for every ω ∈ Λk−1(V );

see [17, §1.5].

Following [17, §4.1.7], we let

Dk(Ω) := D(Ω,Λk(Rd)) and Dk(Ω) := D′(Ω,Λk(Rd))

be the sets of compactly supported k-differential forms with smooth coeffi-

cients and the set of k-dimensional currents, respectively. For T ∈ Dk(Ω), the
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boundary ∂T ∈ Dk−1(Ω) is defined by duality with the exterior differential via

〈∂T, ω〉 := 〈T, dω〉, where ω ∈ Dk−1(Ω). One easily checks that

(3.1) ∂T = −
d∑
i=1

∂iT dxi;

see [17, p. 356]. Here, for T ∈ Dk(Ω) and η ∈ C∞(Ω; Λ1(Rd)), T η ∈ Dk−1(Ω)

is defined as 〈T η, ω〉 := 〈T, η ∧ ω〉, ω ∈ Dk−1(Ω) and ∂iT ∈ Dk(Ω) is defined

by duality via 〈∂iT, φ dxj1 ∧ · · · ∧ dxjk〉 = −〈T, ∂iφdxj1 ∧ · · · ∧ dxjk〉.
We endow Λk(Rd) with the mass norm; see [17, §1.8]. A k-current is said

to have finite mass if it can be extended to a Λk(Rd)-valued (finite) Radon

measure, and we let ‖T‖ be the total variation of T and

~T :=
dT

d‖T‖
;

see [17, §4.1.7]. In this context, the Radon–Nikodým theorem reads as T =
~T‖T‖. We denote by Nk(Ω) the set of k-dimensional normal currents, i.e.,

those currents such that T and ∂T both have finite mass. Note that the

boundary of a k-dimensional normal current T can be seen as a Λk−1(Rd)-
valued Radon measure, ∂T ∈M(Ω; Λk−1(Rd)).

Proof of Theorem 1.10. Let us set

T := (T1, . . . , Tr) ∈M(Ω; Λk1(Rd)× · · · × Λkr(Rd))

and note that the assumption of Theorem 1.10 can be rewritten as

A T := (∂T1, . . . , ∂Tr) ∈M(Ω; Λk1−1(R
d)× · · · × Λkr−1(Rd)).

By applying Theorem 1.1 in conjunction with Remark 1.3 we deduce that for

|T |s-a.e. x ∈ Ω, there exists ξx 6= 0 such that

(3.2)
dT

d|T |
(x) ∈ kerA(ξx) .

Thanks to (3.1), one easily checks that for v = (v1, . . . , vr) ∈ Λk1(Rd)× · · · ×
Λkr(Rd), it holds that

(3.3) A(ξ)v = −2πi
Ä
v1 ωξ, . . . , vr ωξ

ä
∈ Λk1−1(R

d)× · · · × Λkr−1(Rd),

where ωξ ∈ Λ1(Rd) is defined as ωξ(w) := w · ξ, w ∈ Rd.
Let µ ∈ M+(Ω) be as in the statement of the theorem, and note that

since µ � ‖Ti‖ for every i = 1, . . . , r, the Radon-Nikodým derivatives d|T |
d‖Ti‖

and dTi
d|T | exist µ-almost everywhere. Then,

(3.4) ~Ti =
d|T |
d‖Ti‖

dTi
d|T |

.
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Since clearly µs � |T |s, the first part of the conclusion with ωx = ωξx follows

from (3.2), (3.3) and (3.4). It is now a simple exercise in linear algebra to see

that the second part of the statement is equivalent to the first one. �

Proof of Corollary 1.12. By Theorem 1.10, assumption (i) implies that for

µs-a.e. x ∈ Rd, there exists a (d− 1)-dimensional subspace Vx such that

~T1(x), . . . , ~Td(x) ∈ Vx.

Assumption (ii) hence gives that µs = 0, which is the desired conclusion. �

Proof of Corollary 1.13. Let µ = (µkj ) ∈M(Ω;Rd×d) and let

A µ := divµ =

Ç d∑
j=1

∂jµ
k
j

å
k=1,...,d

.

Then, for M ∈ Rd×d, A(ξ)M = (2πi)Mξ, so that

ΛA =
¶
M ∈ Rd×d : rankM ≤ d− 1

©
.

The conclusion follows from Theorem 1.1 and Remark 1.3. �

We will now show how to obtain Theorems 1.14 and 1.15 from Corol-

lary 1.12. In order to do so, we assume the reader to be familiar with the

work of Alberti–Marchese [4] concerning differentiability of Lipschitz functions,

with the definition of metric currents given in [11], as well as with the work of

Schioppa in [40]. We refer to these papers also for notations and definitions.

Let us start with the following lemma, which is essentially [4, Cor. 6.5].

Lemma 3.1. Let µ ∈ M+(Rd) be a finite positive Radon measure. Then

the following are equivalent :

(i) the decomposability bundle of µ (see [4, §2.6]) is of full dimension,

V (µ, x) = Rd for µ-a.e. x ∈ Rd;
(ii) there are d normal one-dimensional currents T1 = ~T1‖T1‖, . . . , Td =

~Td‖Td‖ ∈ N1(Rd) such that µ� ‖Ti‖ for i = 1, . . . , d, and

span
¶
~T1(x), . . . , ~Td(x)

©
= Rd for µ-a.e. x ∈ Rd.

Proof. The implication (i)⇒ (ii) is obtained by choosing (in a measurable

way) for µ-a.e. x ∈ Rd a basis {e1(x), . . . , ed(x)} of V (µ, x) and by applying

to each ei the implication (i) ⇒ (ii) of [4, Cor. 6.5]. For the other implication,

simply notice that, by the implication (ii)⇒ (i) of [4, Cor. 6.5], ~Ti(x) ∈ V (µ, x)

for µ-a.e. x ∈ Rd. �

Proof of Theorem 1.14. By [4, Th. 1.1] the assumptions in the statement

of the theorem are equivalent to V (µ, x) = Rd for µ-a.e. x ∈ Rd. This implies

that µ� L d by Lemma 3.1 and Corollary 1.12. �
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Proof of Theorem 1.15. By [40, Th. 1.3] the mass measure ‖T‖ associated

with a d-dimensional metric current T ∈Mmet
d (Rd) admits d independent Al-

berti representations, which, by the very definition of decomposability bundle

(see [4, §2.6]) implies that V (‖T‖, x) = Rd for ‖T‖-a.e. x ∈ Rd. Theorem 1.15

hence follows from Theorem 1.14; see also the discussion after Theorem 1.3

in [40]. �
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