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Finite time singularity for the
modified SQG patch equation

By Alexander Kiselev, Lenya Ryzhik, Yao Yao, and Andrej Zlatoš

Abstract

It is well known that the incompressible Euler equations in two dimen-

sions have globally regular solutions. The inviscid surface quasi-geostrophic

(SQG) equation has a Biot-Savart law that is one derivative less regular

than in the Euler case, and the question of global regularity for its solu-

tions is still open. We study here the patch dynamics in the half-plane for

a family of active scalars that interpolates between these two equations, via

a parameter α ∈ [0, 1
2
] appearing in the kernels of their Biot-Savart laws.

The values α = 0 and α = 1
2

correspond to the 2D Euler and SQG cases,

respectively. We prove global in time regularity for the 2D Euler patch

model, even if the patches initially touch the boundary of the half-plane.

On the other hand, for any sufficiently small α > 0, we exhibit initial data

that lead to a singularity in finite time. Thus, these results show a phase

transition in the behavior of solutions to these equations and provide a

rigorous foundation for classifying the 2D Euler equations as critical.

1. Introduction

The question of global regularity of solutions is still open for many fun-

damental equations of fluid dynamics. In the case of the three dimensional

Navier-Stokes and Euler equations, it remains one of the central open prob-

lems of classical mathematical physics and partial differential equations. Much

more is known in two dimensions, though the picture is far from complete even

in that case. Global regularity of solutions to the 2D incompressible Euler

equations in smooth domains has been known since the works of Wolibner [53]

and Hölder [29]. However, even in 2D the estimates necessary for the Eu-

ler global regularity barely close, and the best upper bound on the growth of

derivatives is double exponential in time. Recently, Kiselev and Šverák showed

that this upper bound is sharp by constructing an example of a solution to the
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2D Euler equations on a disk whose gradient indeed grows double exponen-

tially in time [37]. Exponential growth on a domain without a boundary (the

torus T2) was recently shown to be possible by Zlatoš [56]. Some earlier ex-

amples of unbounded growth are due to Yudovich [32], [33], Nadirashvili [45],

and Denisov [18], [19]. In a certain sense that will be made precise below, the

2D Euler equations may be regarded as critical, even though we are not aware

of a simple scaling argument for such a classification.

The SQG and modified SQG equations. As opposed to the 2D Euler equa-

tions, the global regularity vs. finite time singularity question has not been

resolved for the two-dimensional surface quasi-geostrophic (SQG) equation,

which appears in atmospheric science models (and shares many of its features

with the 3D Euler equation; see, e.g., [10], [42], [50]). The SQG equation is

given by

(1.1) ∂tω + (u · ∇)ω = 0,

with ω(·, 0) = ω0 and the Biot-Savart law for the velocity

u := ∇⊥(−∆)−1/2ω,

where ∇⊥ := (∂x2 ,−∂x1). Equation (1.1) has the same form as the 2D Euler

equations in the vorticity formulation, but the latter has the more regular (by

one derivative) Biot-Savart law

u := ∇⊥(−∆)−1ω.

The SQG equation is usually considered on either R2 or T2, and the fractional

Laplacian can be defined via the Fourier transform. The equation appears,

for instance, in the book [46] by Pedlosky and was first rigorously studied in

the work of Constantin, Majda and Tabak [10] where, in particular, a closing

saddle scenario for a finite time singularity has been suggested. This scenario

and some other related ones have been ruled out in the later works of Córdoba

[14] and Córdoba and Fefferman [15]. Also, existence of global weak solutions

was proved by Resnick [49].

We should mention that a lot of work has focused on the SQG equation and

related active scalars with a fractional dissipation term of the form −(−∆)βω

on the right-hand side of (1.1). Global regularity for the critical viscous SQG

equation, with β = 1
2 , was proved independently by Caffarelli and Vasseur [3],

and by Kiselev, Nazarov, and Volberg [36]. (See also the subsequent works

[34], [12], [11] for alternative proofs.) The global regularity proof is standard

for β ∈ (1
2 , 1] (see, e.g., [30]), while in the super-critical case β < 1

2 the question

of global regularity vs. finite time blow-up remains open. The best available

result in this direction is global regularity for the logarithmically super-critical

SQG equation by Dabkowski, Kiselev, Silvestre, and Vicol [17].

A natural family of active scalars that interpolates between the 2D Euler

and SQG equations is given by (1.1) with the Biot-Savart law
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u := ∇⊥(−∆)−1+αω.

This family has been called modified or generalized SQG equations in the

literature. (See, e.g., Constantin et al. [9], or Pierrehumbert et al. [47] and

Smith et al. [51] for geophysical literature references.) The cases α = 0 and α =
1
2 correspond to the 2D Euler and SQG equations, respectively. The question of

global regularity of the solutions with smooth initial data has been open for all

α > 0, that is, for any of these models that are more singular than the 2D Euler

equations. Ironically, even though the SQG and the modified SQG equations

are more singular than the 2D Euler equations, no examples of solutions with

unbounded growth of derivatives in time are known. The best result in this

direction is arbitrary bounded growth of high Sobolev norms on finite time

intervals by Kiselev and Nazarov [35]. The reason is that due to nonlinearity

and nonlocality of active scalars, it is difficult to control the solutions at large

times, and this task gets harder as the Biot-Savart law becomes more singular.

This issue will be evident in the present paper as well.

Vortex patches. While the above discussion concerns active scalars with

sufficiently smooth initial data, an important class of solutions to these equa-

tions is the class of vortex patches

ω(x, t) =
∑
k

θkχΩk(t)(x).

Here θj are some constants, Ωj(t) are (evolving in time) open sets with nonzero

mutual distances and smooth boundaries, and χD denotes the characteristic

function of a domain D. Vortex patches model flows with abrupt variations

in vorticity, which are common in nature. Existence and uniqueness of appro-

priately defined vortex patch solutions to the 2D Euler equations in the whole

plane goes back to the work of Yudovich [31], and regularity in this setting

refers to sufficient smoothness of the patch boundaries as well as to the lack of

both self-intersections of each patch boundary and touches of different patches.

Singularity formation for 2D Euler patches had initially been conjectured

based on the numerical simulations by Buttke [2]; see Majda [41] for a dis-

cussion. Later, simulations by Dritschel, McIntyre, and Zabusky [21], [22]

questioning the singularity formation prediction appeared; we refer to [48] for

a review of these and related works. This controversy was settled in 1993, when

Chemin [7] proved that the boundary of a 2D Euler patch remains regular for

all times, with a double exponential upper bound on the temporal growth of

its curvature. (See also the work by Bertozzi and Constantin [1] for a different

proof.)

The patch problem for the SQG equation is more involved. Local existence

and uniqueness in the class of weak solutions of the special type

ω(·, t) = χ{x2<ϕ(x1,t)},
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with ϕ ∈ C∞ and periodic in x1, corresponding to a (single patch) initial

condition of the same form, was proved by Rodrigo [50]. For the SQG and

modified SQG patches with boundaries that are simple closed H3 curves, local

existence was established by Gancedo [25] via a study of a contour equation

whose solutions parametrize the patch boundary. (Uniqueness of solutions

was also proved for the contour equation for α ∈ (0, 1
2), although not for the

original modified SQG equation.) Local existence of such contour solutions in

the more singular case α ∈ (1
2 , 1] was obtained by Chae, Constantin, Córdoba,

Gancedo, and Wu [6]. Existence of splash singularities (touching of exactly

two segments of a patch boundary, which remains uniformly H3) for the SQG

equation was ruled out by Gancedo and Strain [26].

A computational study of the SQG and modified SQG patches by Córdoba,

Fontelos, Mancho, and Rodrigo [16] (where the patch problem for the mod-

ified SQG equation first appeared) suggested a finite time singularity, with

two patches touching each other and simultaneously developing corners at the

touching point. A more careful numerical study by Mancho [43] suggests in-

volvement of self-similar elements in this singularity formation process, but its

rigorous confirmation and understanding is still lacking. We note that even

local well-posedness is far from trivial for many interface evolution models of

fluid dynamics, see, e.g., [13] where the Muskat problem is discussed. We refer

to [5], [4], [54], [55] for other recent advances in some of the interface problems

of fluid dynamics.

Vortex patches in domains with boundaries. In this paper, we consider the

patch evolution for the 2D Euler equations and for the modified SQG equations

in the presence of boundaries. The latter are important in many applications,

in particular, in the onset of turbulence and in the creation of small scales in

the motion of fluids. The global existence of a single C1,γ patch for the 2D

Euler equations on the half-plane D := R × R+ was proved by Depauw [20]

when the patch does not touch the boundary ∂D initially. If it is, then [20]

only proved that the patch will remain C1,γ for a finite time, while Dutrifoy

[23] proved a result that can be used to obtain global existence in the weaker

space C1,s for some s ∈ (0, γ). Uniqueness of solutions in the 2D Euler case

follows from the work of Yudovich [31].

Since we are not aware of a global existence result without a loss of regu-

larity for (either one or multiple) 2D Euler patches on the half-plane that may

touch its boundary, we will provide a proof of the global existence for such C1,γ

patches here. This contrasts with our main goal, proving finite time singular-

ity formation for the modified SQG patch evolution with α > 0 in domains

with a boundary. These two results together will then also establish existence

of a phase transition in the behavior of solutions at α = 0. For the sake of

minimizing the technicalities, we do not strive for the greatest generality and
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will consider H3 patches (as in [25], [6], [26]) on the half-plane, with small

enough α > 0 (that is, slightly more singular than the 2D Euler case α = 0).

Our initial condition ω0 will be the difference of characteristic functions of two

patches with smooth boundaries. The patches will initially touch the bound-

ary of the half-plane and, as was explained above, the loss of H3 regularity

or self-intersections of their boundaries, as well as touches of the two patches,

will all constitute a singularity.

The possible importance of boundaries in the formation of singularities

in fluids has been illustrated by recent numerical simulations of Luo and Hou

[40], [39], which suggested a new scenario for singularity formation in the 3D

Euler equations. The flow in this scenario is axi-symmetric on a cylinder and

so, in a way, can be viewed as two-dimensional. (See [8] for a more detailed

discussion.) The rapid growth of the vorticity in these simulations happens on

the boundary of the cylinder. The geometry of the construction we carry out

in this work bears some similarity to this scenario, as well as to the geometry

of the Kiselev-Šverák example of a solution to the 2D Euler equations with

a double exponential growth of its vorticity gradient. In particular, in all

three instances, a hyperbolic fixed point of the flow located on the boundary

is involved. However, the construction itself and the methods we use are quite

different from earlier works.

The main results. Let us now turn to the specifics. As we said above, we

will only consider modified SQG evolution for small enough α > 0, specifically

α ∈ (0, 1
24). The constraint α < 1

24 comes from the currently available local

well-posedness results, while the singularity formation argument by itself allows

a somewhat larger value. The Biot-Savart law for the patch evolution on the

half-plane D := R× R+ is

u = ∇⊥(−∆)−1+αω,

with the Dirichlet Laplacian on D, which can also be written as

(1.2) u(x, t) :=

ˆ
D

Ç
(x− y)⊥

|x− y|2+2α
− (x− ȳ)⊥

|x− ȳ|2+2α

å
ω(y, t)dy

for x ∈ D̄ (up to a positive pre-factor, which can be dropped without loss due

to scaling). We use here the notation

v⊥ := (v2,−v1) and v̄ := (v1,−v2)

for v = (v1, v2). The vector field u given by (1.2) is divergence free and

tangential to the boundary ∂D, that is,

u2(x, t) = 0 when x2 = 0.

A traditional approach to the 2D Euler (α = 0) vortex patch evolution, going

back to Yudovich (see [44] for an exposition) is via the corresponding flow map.
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The active scalar ω is advected by u from (1.2) via

(1.3) ω(x, t) = ω
Ä
Φ−1
t (x), 0

ä
,

where

(1.4)
d

dt
Φt(x) = u (Φt(x), t) and Φ0(x) = x.

The initial condition ω0 for (1.2)–(1.4) is patch-like,

(1.5) ω0 =
N∑
k=1

θkχΩ0k
,

with θ1, . . . , θN 6= 0 and Ω01, . . . ,Ω0N ⊆ D bounded open sets, whose closures

Ω0,k are pairwise disjoint and whose boundaries ∂Ω0k are simple closed curves.

One reason the Yudovich theory works for the 2D Euler equations is that

for ω that is (uniformly in time) in L1 ∩ L∞, the velocity field u given by

(1.2) with α = 0 is log-Lipschitz in space, and the flow map Φt is everywhere

well defined. In our situation, when ω is a patch solution and α > 0, the

flow u from (1.2) is smooth away from the patch boundaries ∂Ωk(t) but is

only Hölder at ∂Ωk(t), which is exactly where one needs to use the flow map.

(See Lemma 4.1 for the corresponding Hölder estimate.) Thus, the Yudovich

definition of the evolution may not be applied directly, as the flow trajectories

need not be unique when u is only Hölder continuous. We will instead use a

natural alternative definition of patch solutions to (1.1)–(1.2), which will be

equivalent to the usual definition in the 2D Euler case, and closely related to

the definitions used in earlier works on modified SQG patches. In order to not

interrupt this introduction, we postpone the precise discussion of these points

to Section 2; see Definition 2.2 and the rest of that section.

The following local well-posedness result is proved in the companion pa-

per [38].

Theorem 1.1 ([38]). If α ∈ (0, 1
24), then for each H3 patch-like initial

data ω0, there exists a unique local H3 patch solution ω to (1.1)–(1.2) with

ω(·, 0) = ω0. Moreover, if the maximal time Tω of existence of ω is finite,

then at Tω a singularity forms : either two patches touch, or a patch boundary

touches itself or loses H3 regularity.

The hypothesis α < 1
24 in Theorem 1.1 may well be an artifact of the local

existence proof, but we still will need a “small α” assumption, even though

less restrictive, in the finite time singularity proof below. The last claim in

this theorem means that either

∂Ωk(Tω) ∩ ∂Ωi(Tω) 6= ∅
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for some k 6= i, or ∂Ωk(Tω) is not a simple closed curve for some k, or

lim
t↗Tω

‖Ωk(t)‖H3 =∞

for some k, where the above norm is the H3 norm of any constant-speed

parametrization of ∂Ωk(t) (see Definition 2.1 below). Note that the sets

∂Ωk(Tω) := lim
t↗Tω

∂Ωk(t),

with the limit taken with respect to the Hausdorff distance dH , are well defined

if Tω <∞ because u is uniformly bounded; see Lemma 4.1 below. In fact, [38,

Lemma 4.10] yields

dH(∂Ω(t), ∂Ω(s)) ≤ ‖u‖L∞ |t− s|
for t, s ∈ [0, Tω).

We can now state the main results of the present paper — global regularity

of C1,γ patch solutions in the 2D Euler case α = 0, and existence of H3 patch

solutions that develop a singularity in finite time for small α > 0.

Theorem 1.2. Let α = 0 and γ ∈ (0, 1]. Then for each C1,γ patch-like

initial data ω0, there exists a unique global C1,γ patch solution ω to (1.1)–(1.2)

with ω(·, 0) = ω0.

Theorem 1.3. Let α ∈ (0, 1
24). Then there are H3 patch-like initial data

ω0 for which the unique local H3 patch solution ω to (1.1)–(1.2) with ω(·, 0)=ω0

becomes singular in finite time (i.e., its maximal time of existence Tω is finite).

To the best of our knowledge, Theorem 1.3 is the first rigorous proof of

finite time singularity formation in this class of fluid dynamics models. More-

over, Theorems 1.2 and 1.3 show that the α-patch model undergoes a phase

transition at α = 0, which provides a reason for calling the 2D Euler equations

“critical.”

Let us now describe the type of initial conditions, depicted in Figure 1,

which will lead to a singularity for α > 0. As we have mentioned above, our

choice of initial data is motivated by the numerical simulations of the three-

dimensional Euler equations in [40], [39], as well as by the example of smooth

solutions to the 2D Euler equations with a double exponential temporal growth

of their vorticity gradients in [37]. The initial condition consists of two patches

with opposite signs, symmetric with respect to the x2-axis and touching the

x1-axis. The patches are sufficiently close to the origin and have a sufficiently

large area. It can then be seen from (1.2) that the rightmost point of the

left patch on the x1-axis and the leftmost point of the right patch on the x1-

axis will move toward each other (see Figure 1). In the case of the 2D Euler

equations α = 0, Theorem 1.2 shows that the two points never reach the origin.

When α > 0 is small, however, we are able to control the evolution sufficiently
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∂D
x1

x2

ω0 = 1ω0 = −1

ω0 = 0

Figure 1. Initial data ω0 that leads to a finite time singularity.

well to show that — unless the solution develops another singularity earlier —

both points will reach the origin in a finite time. The argument yielding such

control is fairly subtle, and the estimates do not extend to all α < 1
2 , even

though one would expect the singularity formation to persist for more singular

equations.

We note that we will actually run the singularity formation argument for

the less regular C1,γ patch solutions. However, we do not currently have a local

well-posedness theorem in this class for α > 0, even though existence of such

solutions follows from existence of the more regular H3 patch solutions. Since

our argument requires odd symmetry, which would follow from uniqueness

due to the symmetries of the equation, it effectively shows that there exist

C1,γ patch solutions which either have a finite maximal time of existence (i.e.,

exhibit singularity formation) or lose uniqueness (and odd symmetry).

Throughout the paper we denote by C, Cγ , etc. various universal con-

stants, which may change from line to line.

Acknowledgment. We thank Peter Guba, Bob Hardt, and Giovanni Russo

for useful discussions. We acknowledge partial support by NSF-DMS grants

1056327, 1159133, 1311903, 1411857, 1412023, 1535653, and 1600641.

2. Vortex patches and low regularity velocity fields

In this section, we make precise the notion of the patch evolution for α > 0

and recall additional existence results from [38] that we will need in the proof

of Theorem 1.3.

The definition of the patch evolution. As we mentioned above, Hölder

regularity of the fluid velocity u at the patch boundaries is not sufficient for a

unique definition of the trajectories from (1.4) when α > 0. We start with a

definition of the Hölder and Sobolev norms of the boundaries of domains in R2

that will make the notions of C1,γ and H3 patches precise.
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Definition 2.1. Let Ω ⊆ R2 be a bounded open set whose boundary ∂Ω is

a simple closed C1 curve with arc-length |∂Ω|. A constant speed parametriza-

tion of ∂Ω is any counter-clockwise parametrization z : T → R2 of ∂Ω with

|z′| ≡ 1
2π |∂Ω| on the circle T := [−π, π] (with ±π identified), and we define

‖Ω‖Cm,γ := ‖z‖Cm,γ and ‖Ω‖Hm := ‖z‖Hm .

It is not difficult to see (using [38, Lemma 3.4]) that a domain Ω as above

satisfies ‖Ω‖Cm,γ < ∞ (resp. ‖Ω‖Hm < ∞) precisely when for some r > 0,

M < ∞, and each x ∈ ∂Ω, the set ∂Ω ∩ B(x, r) is (in the coordinate system

centered at x and with the axes given by the tangent and normal vectors to

∂Ω at x) the graph of a function with Cm,γ (resp. Hm) norm less than M .

We denote by dH(Γ, Γ̃) the Hausdorff distance between two sets Γ, Γ̃. For

a set Γ ⊆ R2, a vector field v : Γ→ R2, and h ∈ R, we let

Xh
v [Γ] := {x+ hv(x) : x ∈ Γ}.

Our definition of a patch solution to (1.1)–(1.2) in the half-plane is as follows.

Definition 2.2. Let D := R × R+, let θ1, . . . , θN ∈ R \ {0}, and for each

t ∈ [0, T ), let Ω1(t), . . . ,ΩN (t) ⊆ D be bounded open sets with pairwise disjoint

closures whose boundaries ∂Ωk(t) are simple closed curves, such that each

∂Ωk(t) is also continuous in t ∈ [0, T ) with respect to dH . Denote Ω(t) :=⋃N
k=1 Ωk(t), and let

(2.1) ω(x, t) :=
N∑
k=1

θkχΩk(t)(x).

If for each t ∈ (0, T ) and u from (1.2), we have

(2.2) lim
h→0

dH
(
∂Ω(t+ h), Xh

u(·,t)[∂Ω(t)]
)

h
= 0,

then ω is a patch solution to (1.1)–(1.2) on the time interval [0, T ). If we also

have

sup
t∈[0,T ′]

‖Ωk(t)‖Cm,γ <∞
(

resp. sup
t∈[0,T ′]

‖Ωk(t)‖Hm <∞
)

for each k and T ′ ∈ (0, T ), then ω is a Cm,γ (resp. Hm) patch solution to

(1.1)–(1.2) on [0, T ).

Lemma 4.1 below shows that u is Hölder continuous for patch solutions;

thus (2.2) says that ∂Ω is moving with velocity u(x, t) at any t ∈ [0, T ) and

x ∈ ∂Ω(t).

This definition generalizes the well-known definitions for the 2D Euler

equations in terms of (1.3)–(1.4) or in terms of the normal velocity at ∂Ω.

Indeed, if ω satisfies ∂Ωk(t) = Φt(∂Ωk(0)) for each k and t ∈ [0, T ), the
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patches have pairwise disjoint closures, and their boundaries remain simple

closed curves, then continuity of u, compactness of ∂Ω(t), and (1.4) show that

ω is a patch solution to (1.1)–(1.2) on [0, T ). Moreover, if ∂Ω(t) is C1 and

nx,t is the outer unit normal vector at x ∈ ∂Ω(t), then (2.2) is equivalent

to the motion of ∂Ω(t) with the outer normal velocity u(x, t) · nx,t at each

x ∈ ∂Ω(t) (which can be defined in a natural way by (2.2) with u(·, t) replaced

by (u(·, t) · n·,t)n·,t). However, Definition 2.2 makes sense even if Φt(x) cannot

be uniquely defined for some x, or when ∂Ω(t) is not C1.

It is not difficult to show (see [38, Rem. 3 after Def. 1.2]) that C1 patch

solutions to (1.1)–(1.2) are also weak solutions to (1.1) in the sense that for

each f ∈ C1(D̄), we have

(2.3)
d

dt

ˆ
D
ω(x, t)f(x)dx =

ˆ
D
ω(x, t)[u(x, t) · ∇f(x)]dx

for all t ∈ (0, T ), with both sides continuous in t. Also, weak solutions to

(1.1)–(1.2) that are of the form (2.1) and have C1 boundaries ∂Ωk(t) that

move with some continuous velocity v : R2× (0, T )→ R2 (in the sense of (2.2)

with v in place of u), do satisfy (2.2) with u. (Hence they are patch solutions

if those boundaries are simple closed curves and the domains have pairwise

disjoint closures.) Moreover, (2.3) also leads to |Ωk(t)| = |Ωk(0)| for each k and

t ∈ [0, T ); see an elementary argument at the end of the introduction of [38].

We also note that in the 2D Euler case α = 0, it is not difficult to show via

the standard approach of Yudovich theory that there is a unique global weak

solution ω to (1.1)–(1.2) on D with a given ω(·, 0) as in Definition 2.2, and it

is of the form (2.1) with ∂Ωk(t) = Φt(∂Ωk(0)). (We spell out this argument in

Section 3.) Thus, the above shows that as long as the patch boundaries remain

pairwise disjoint simple closed curves, ω is also the unique patch solution to

(1.1)–(1.2).

Relation of patch solutions to the flow map Φt in the modified SQG case

α > 0. The companion paper [38], which proves Theorem 1.1 as well as the

same result on R2 for all α ∈ (0, 1
2) (thus extending the results of [50] for

infinitely smooth SQG patches of a special type on R2 to all H3 modified SQG

patches), also provides a link between patch solutions and the flow map Φt

from (1.4) that will be important in our finite time singularity proof. Note

that since u is smooth away from ∂Ω, the trajectories Φt(x) remain unique

at least until they hit ∂Ω. (In the Euler case, Φt(x) is always unique because

u is log-Lipschitz.) However, after hitting a patch boundary, the trajectory

still exists but need not be unique. Part (a) of the following result from [38]

shows that for α < 1
4 and patch solutions with H3 boundaries, the flow lines

that start away from ∂Ω(0) will stay away from ∂Ω(t) as long as the solution

remains regular. (Note that we have H3(T) ⊆ C1,1(T).)
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Theorem 2.3 ([38]). For ω as in the first paragraph of Definition 2.2 and

x ∈ D̄ \ ∂Ω(0), let tω,x ∈ [0, T ] be the maximal time such that the solution of

(1.4) with u from (1.2) satisfies Φt(x) ∈ D̄ \ ∂Ω(t) for each t ∈ [0, tω,x).

(a) If α ∈ (0, 1
4), γ ∈ ( 2α

1−2α , 1], and ω is a C1,γ patch solution to (1.1)–(1.2)

on [0, T ), then tω,x = T for each x ∈ D̄ \ ∂Ω(0) and

Φt : [D̄ \ ∂Ω(0)]→ [D̄ \ ∂Ω(t)]

is a bijection for each t ∈ [0, T ).

(b) If α ∈ (0, 1
2), tω,x = T for each x ∈ D̄ \ ∂Ω(0), and Φt : [D̄ \ ∂Ω(0)] →

[D̄ \ ∂Ω(t)] is a bijection for each t ∈ [0, T ), then ω is a patch solution to

(1.1)–(1.2) on [0, T ). Moreover, Φt is measure preserving on D̄ \ ∂Ω(0)

and it also maps each Ωk(0) onto Ωk(t) as well as D̄ \Ω(0) onto D̄ \Ω(t).

Finally, we have

Φt(∂Ωk(0)) = ∂Ωk(t)

for each k and t ∈ [0, T ), in the sense that any solution of (1.4) with

x ∈ ∂Ωk(0) satisfies Φt(x) ∈ ∂Ωk(t), and for each y ∈ ∂Ωk(t), there is

x ∈ ∂Ωk(0) and a solution of (1.4) such that Φt(x) = y.

3. Global well-posedness for the Euler case α = 0

In this section we prove Theorem 1.2.

3.1. Proof of Theorem 1.2 in the single patch case. For the sake of sim-

plicity of presentation, we first consider a single patch Ω(t) ⊆ D, with

ω(x, t) = θχΩ(t)(x).

Later, we will show how to generalize this to finitely many patches. We may

assume without loss of generality that both θ = 1 and |Ω(t)| = |Ω(0)| = 1, as

the general single patch case then follows by a simple scaling. The local-in-time

existence and uniqueness of C1,γ patch solutions for this initial value problem

was proved in [20]. We will therefore focus on estimates that will allow the

solution to be continued indefinitely.

Our approach is a combination of the techniques form [1] and a refinement

of the estimates in [20]. Following [1], we reformulate the vortex-patch evo-

lution in terms of the evolution of a function ϕ(x, t), which defines the patch

via

Ω(t) = {ϕ(x, t) > 0}.
First, if ∂Ω(0) is a simple closed C1,γ curve, there exists a function ϕ0 ∈
C1,γ(Ω(0)) such that ϕ0 > 0 on Ω(0), ϕ0 = 0 on ∂Ω(0), and

(3.1) inf
∂Ω(0)

|∇ϕ0| > 0.
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One can obtain such ϕ0, for instance, by solving the Dirichlet problem

−∆ϕ0 = f on Ω(0),

ϕ0 = 0 on ∂Ω(0),

with 0 ≤ f ∈ C∞0 (Ω(0)). It follows from the standard elliptic estimates (see,

e.g., [27, Th. 8.34]) that ϕ0 ∈ C1,γ(Ω(0)), while (3.1) is a consequence of Hopf’s

lemma, which holds for C1,γ domains by a result of Finn and Gilbarg [24]; see

also [28, §10].

Consider now the flow map (1.4) corresponding to the Biot-Savart law for

the Euler equation on the half plane,

u(x, t) =

ˆ
Ω(t)

(x− y)⊥

|x− y|2 dy −
ˆ

Ω̃(t)

(x− y)⊥

|x− y|2 dy =: v(x, t)− ṽ(x, t),

with Ω̃(t) the reflection of Ω(t) across the x1-axis. For x ∈ Ω(t), we set

ϕ(x, t) = ϕ0(Φ−1
t (x)),

with Φ−1
t the inverse map, so that ϕ solves

(3.2) ∂tϕ+ u · ∇ϕ = 0

on {(t, x) : t > 0 and x ∈ Ω(t)}. Thus, for each t ≥ 0, ϕ(·, t) > 0 on Ω(t), it

vanishes on ∂Ω(t), and it is not defined on R2 \ Ω(t). We now let

(3.3) w = (w1, w2) := ∇⊥ϕ = (∂x2ϕ,−∂x1ϕ)

and define

Aγ(t) := ‖w(·, t)‖Ċγ(Ω(t)) := sup
x,y∈Ω(t)

|w(x, t)− w(y, t)|
|x− y|γ ,

A∞(t) := ‖w(·, t)‖L∞(Ω(t)),

Ainf(t) := inf
x∈∂Ω(t)

|w(x, t)|.

By our choice of ϕ0, we have

Aγ(0), A∞(0), Ainf(0)−1 <∞.

Moreover, w is divergence free and satisfies

(3.4) wt + u · ∇w = (∇u)w.

Proposition 1 in [1] and |Ω(t)| = 1 yield

(3.5) ‖∇v(·, t)‖L∞(R2) + ‖∇ṽ(·, t)‖L∞(R2) ≤ Cγ
Ç

1 + log+

Aγ(t)

Ainf(t)

å
,
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with log+ x := max{log x, 0} and some universal Cγ < ∞. Hence, from (3.4)

(after doubling Cγ), we obtain

A′∞(t) ≤ CγA∞(t)

Ç
1 + log+

Aγ(t)

Ainf(t)

å
,(3.6)

A′inf(t) ≥ −CγAinf(t)

Ç
1 + log+

Aγ(t)

Ainf(t)

å
.(3.7)

The main step in the proof will be to get an appropriate bound on Aγ(t).

A simple calculation and (3.4) yield

(3.8) A′γ(t) ≤ γ‖∇u(·, t)‖L∞(R2)Aγ(t) + ‖∇u(·, t)w(·, t)‖Ċγ(Ω(t)).

Our goal will now be to show

(3.9) ‖∇u(·, t)w(·, t)‖Ċγ(Ω(t)) ≤ CγAγ(t)

Ç
1 + log+

Aγ(t)

Ainf(t)

å
with some universal Cγ <∞. This and (3.5) turn (3.8) into

(3.10) A′γ(t) ≤ CγAγ(t)

Ç
1 + log+

Aγ(t)

Ainf(t)

å
.

It follows from (3.10) and (3.7) that the ratio

A(t) :=
Aγ(t)

Ainf(t)

satisfies

A′(t) ≤ CγA(t)(1 + log+A(t)).

Therefore, A(t) grows at most double-exponentially in time, and the same

estimate for A∞(t), Ainf(t)
−1, and Aγ(t) follows from (3.6), (3.7), and (3.10),

respectively. This then proves Theorem 1.2 for a single patch because the above

bounds on Aγ(t), Ainf(t) and A∞(t) imply that the patch boundary cannot

touch itself and must be C1,γ at time t. (Hence the local-in-time solution can

be extended indefinitely.)

Thus, the proof for a single patch is reduced to (3.9). The time variable

will not play a role here, so we will drop the argument t in what follows. We

split (∇u)w as

(∇u)w = (∇v)w + (∇ṽ)w.

Since v is generated by the patch Ω, and w is tangential to ∂Ω, [1, Cor. 1] gives

(3.11) ‖(∇v)w‖Ċγ(Ω) ≤ Cγ‖∇v‖L∞(R2)‖w‖Ċγ(Ω)

with a universal Cγ . Note that in [1], w is defined in R2 and all the norms

are over R2. We can use Whitney-type extension theorems [52, §6.2, Th. 4] to

extend our ϕ to all of R2 so that its C1,γ norm increases at most by a universal

factor C̃γ < ∞. This and [1] now yield (3.11). Notice that this extended ϕ

does not necessarily solve (3.2).
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By (3.11) and (3.5), ‖(∇v)w‖Ċγ(Ω) is indeed bounded by the right-hand

side of (3.9). Thus, it suffices to show that ‖(∇ṽ)w‖Ċγ(Ω) satisfies the same

estimate. As w is not tangential to the boundary of Ω̃, which generates ṽ, we

cannot directly apply the methods from [1]. Let us take the above extension

of ϕ to R2 and define

ϕ̃(x) := ϕ(x̄) and w̃ := −∇⊥ϕ̃,

with x̄ = (x1,−x2). Then w̃ is tangential to ∂Ω̃ and

‖w̃‖Ċγ(R2) ≤ C̃γAγ .

Thus, Corollary 1 of [1] again yields

‖(∇ṽ)w̃‖Ċγ(Ω) ≤ Cγ‖∇ṽ‖L∞(R2)‖w̃‖Ċγ(R2) ≤ CγAγ
Å

1 + log+

Aγ
Ainf

ã
.

Hence, it suffices to prove the following bound.

Proposition 3.1. If ϕ : Ω → [0,∞) is positive on Ω ⊆ D and vanishes

on ∂Ω, then, with ṽ, w, w̃, Aγ , Ainf as above (and some universal Cγ <∞), we

have

(3.12) ‖∇ṽ(w − w̃)‖Ċγ(Ω) ≤ CγAγ
Å

1 + log+

Aγ
Ainf

ã
.

Let us introduce some notation. For any x ∈ R2 \ Ω̃, define

d(x) := dist(x, Ω̃),

let Px ∈ ∂Ω̃ be such that dist(x, Px) = d(x) (if there are multiple such points,

we pick any of them), and let P̄x be the reflection of Px across the x1-axis. For

an illustration of w, w̃, d(x), Px, P̄x, see Figure 2.

Ω

Ω̃

w

w̃

Ω

Ω̃

x

Px

P̄x
d(x)

Figure 2. Vector fields w and w̃, and d(x), Px, P̄x for x ∈ Ω.
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For arbitrary x, y ∈ Ω, we can assume, without loss of generality, that

d(x) ≤ d(y). Then, with g := (∇ṽ)(w − w̃), we have

|g(x)− g(y)|
|x− y|γ ≤|∇ṽ(y)|‖w − w̃‖Ċγ(Ω) +

|∇ṽ(x)−∇ṽ(y)|
|x− y|γ︸ ︷︷ ︸
T1(x,y)

∣∣∣w(x)− w̃(x)
∣∣∣︸ ︷︷ ︸

T2(x)

.

Since the first term on the right-hand side is bounded by the right-hand side

of (3.12) due to (3.5) and the definition of w̃, we only need to obtain the same

bound for the second term. We will estimate T1 and T2 separately, in terms of

Aγ , Ainf , d(x), and |w̃(Px)| = |w(P̄x)|.
Let us start with T2. We estimate

T2(x) ≤
∣∣∣w(P̄x)− w̃(Px)

∣∣∣+ ∣∣∣w(P̄x)− w(x)
∣∣∣+ ∣∣∣w̃(Px)− w̃(x)

∣∣∣
≤ 2C̃γAγd(x)γ + 2|w2(P̄x)|,

where we used the inequality

dist(x, P̄x) ≤ dist(x, Px) = d(x)

to bound the last two terms in the middle expression by C̃γAγd(x)γ , while the

first term equals 2|w2(P̄x)| because

w̃(Px) = (w1(P̄x),−w2(P̄x)).

The following lemma will allow us to control |w2(P̄x)|.
Lemma 3.2. For any P = (p1, p2) ∈ ∂Ω, we have

|w2(P )| ≤ 2 (Aγp
γ
2 |w(P )|γ)

1
1+γ .

Proof. Denote by θ ∈ [0, π2 ] the angle between ∇ϕ(P ) and the x2-axis (see

Figure 3), so that

(3.13) |w2(P )| = |∇ϕ(P )| sin θ ≤ 2|∇ϕ(P )| sin θ
2
.

If θ = 0, then we are done. Otherwise, let ν denote the unit vector such that

the angle between ν and ∇ϕ(P ) is π
2 − θ

2 (so ν points inside Ω at P ) and

ν2 < 0. Draw a ray in the direction ν and originating at P , and denote by Q

its intersection with the x1-axis. Note that Q 6= P since p2 > 0 due to θ 6= 0.

The length of the segment PQ is

|PQ| = p2

sinβ
,

where either β = θ
2 or β = 3θ

2 , the latter if (∇ϕ(P ))2 < 0. In either case, we

have

|PQ| ≤ p2

sin(θ/2)
.
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P

p2

Q

∇ϕ
θ

ν
∂Ω

ϕ > 0

ϕ = 0

β

Figure 3. The definitions of θ, β, ν,Q.

We also have

∇ϕ(P ) · ν = |∇ϕ(P )| sin θ
2
> 0,

and ∇ϕ · ν must change sign on the segment PQ because Q /∈ Ω and ϕ = 0 on

∂Ω. As

‖∇ϕ‖Ċγ(Ω) ≤ Aγ ,
we obtain

|∇ϕ(P )| sin θ
2
≤ Aγ

Ç
p2

sin(θ/2)

åγ
.

Raising this to power 1
1+γ and using (3.13) yields

|w2(P )| ≤ 2|∇ϕ(P )| sin θ
2
≤ 2 (Aγp

γ
2 |∇ϕ(P )|γ)

1
1+γ .

Since |∇ϕ(P )| = |w(P )|, the proof is complete. �

The above lemma applied at P := P̄x, along with |w(P̄x)| = |w̃(Px)|, now

yields

(3.14) T2(x) ≤ 2C̃γAγd(x)γ + 4 (Aγ d(x)γ |w̃(Px)|γ)
1

1+γ .

Next we bound T1.

Proposition 3.3. With the hypotheses of Proposition 3.1, for x, y ∈ Ω

with d(x) ≤ d(y), we have

(3.15)

T1(x, y) :=
|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ Cγ

Å
1 + log+

Aγ
Ainf

ã
min

®
Aγ
|w̃(Px)| , d(x)−γ

´
.

A related but weaker bound (which does not suffice here) was proved

in [20]. Before proving Proposition 3.3, let us first complete the proof of

Proposition 3.1.

Proof of Proposition 3.1. The bound (3.15) implies

T1(x, y) ≤ Cγ
Å

1 + log+

Aγ
Ainf

ã
min


Ç

Aγ
|w̃(Px)|

å γ
1+γ

d(x)
− γ

1+γ , d(x)−γ

 .



FINITE TIME SINGULARITY 925

Multiplying this by (3.14) gives

T1(x, y)T2(x) ≤ CγAγ
Å

1 + log+

Aγ
Ainf

ã
.

As we have explained above, this yields (3.12) and concludes the proof. �

We are left with proving Proposition 3.3. We start with the following

simple lemma.

Lemma 3.4. When d(x) ≤ d(y) for x, y ∈ Ω, we have (with a universal

C <∞)

(3.16)
|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ C

γ
d(x)−γ .

Proof. The mean value theorem yields

|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ |∇2ṽ(Zxy)||x− y|1−γ

for some point Zxy on the segment connecting x and y. Since Ω̃ is the reflection

of Ω ⊆ D with respect to the x1-axis, we have d(x) ∈ [x2, 2x2] and d(y) ∈
[y2, 2y2]. As d(x) ≤ d(y), we then obtain

d(Zxy) ≥ min{x2, y2} ≥
d(x)

2
.

Moreover, for any Z ∈ R2 \ Ω̃, we have (with a universal C <∞)

(3.17) |∇2ṽ(Z)| ≤
ˆ
R2\B(Z,d(Z))

C

|Z − z|3 dz ≤ Cd(Z)−1.

Combining these estimates, we obtain

|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ Cd(Zxy)

−1|x− y|1−γ ≤ 2Cd(x)−1|x− y|1−γ .

If |x− y| ≤ d(x), then (3.16) follows because γ ≤ 1.

If |x− y| ≥ d(x), let

Qxy = (x1, x2 + 2|x− y|),
and connect x and y by a path consisting of the segments [xQxy] and [Qxyy].

Then

(3.18) |Qxy − y| ≤ 3|x− y|
yields

(3.19)
|∇ṽ(x)−∇ṽ(y)|

3|x− y| ≤
ˆ 1

0
|∇2ṽ(x+s(Qxy−x))| ds+

ˆ 1

0
|∇2ṽ(y+s(Qxy−y))| ds.
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Note that

(3.20) d(x+ s(Qxy − x)) ≥ max{d(x), 2s|x− y|},
and we also have

d(y + s(Qxy − y)) ≥ s|x− y| ≥ s

3
|Qxy − y|

due to

(Qxy − y)2 ≥ |x− y|
and (3.18). It then follows that

d(y) ≤ d(y + s(Qxy − y)) + s|Qxy − y| ≤ 4d(y + s(Qxy − y)),

so by d(x) ≤ d(y) and the above, we have

d(y + s(Qxy − y)) ≥ max

®
d(x)

4
, s|x− y|

´
,

in addition to (3.20). Combining these estimates with (3.17), we obtain

|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ C|x− y|1−γ

Ñˆ d(x)
|x−y|

0
d(x)−1ds+

ˆ 1

d(x)
|x−y|

(s|x− y|)−1ds

é
≤ C|x− y|−γ

Ç
1 + log

|x− y|
d(x)

å
≤ C

γ
d(x)−γ

because |x− y| ≥ d(x). �

We continue the proof of Proposition 3.3. Due to Lemma 3.4, to prove

(3.15) we only need to consider the case

d(x) ≤ C̃−1

Ç |w̃(Px)|
Aγ

å1/γ

for any fixed C̃ <∞. Let us pick C̃ := 16(4C̃γ)1/γ , with the universal constant

C̃γ from the remark about Whitney extensions after (3.11), so that if we let

Ãγ := ‖w̃‖Ċγ(R2) and

rx :=

Ç |w̃(Px)|
2Ãγ

å1/γ

,

then it suffices to consider d(x) ≤ 2−4−1/γrx (because Ãγ ≤ C̃γAγ).

Hence, the next lemma finishes the proof of Proposition 3.3.

Lemma 3.5. When d(x) ≤ min{d(y), 2−4−1/γrx} for x, y ∈ Ω, we have

(with a universal constant Cγ <∞)

(3.21)
|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ Cγ

Å
1 + log+

Aγ
Ainf

ã
Aγ
|w̃(Px)| .
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In the proof of this lemma, the following improvement of (3.17) will be

used to control |∇ṽ(x) − ∇ṽ(y)|. Its proof is postponed until the end of this

section.

Lemma 3.6. For any x ∈ R2 \ Ω̃ with d(x) ∈ (0, 1
4rx], we have (with a

universal Cγ <∞)

|∇2ṽ(x)| ≤ Cγd(x)−1+γr−γx .

Proof of Lemma 3.5. Let us first assume

|x− y| ≥ 2−4−1/γrx,

so that

|x− y|−γ ≤ 64C̃γ
Aγ
|w̃(Px)| .

Then (3.21) follows from the estimate

|∇ṽ(x)−∇ṽ(y)| ≤ 2‖∇ṽ‖L∞(R2)

and (3.5). (The latter holds for any Ω, ϕ as in Proposition 3.1; see [1, Propo-

sition 1].)

Assume now that |x− y| < 2−4−1/γrx. As in Lemma 3.4, let

Qxy = (x1, x2 + 2|x− y|),
and connect the points x and y by a path consisting of the two segments

[xQxy], [Qxyy], again parametrized by

z1(s) = x+ s(Qxy − x) and z2(s) = y + s(Qxy − y)

for s ∈ [0, 1] (see Figure 4). Then we again have

d(zi(s)) ≥ s|x− y|
for i = 1, 2 and s ∈ [0, 1].

Px
Ω̃

rx

y
x

Qxy

z1(s)
z2(s) Bx

Figure 4. The point Qxy and the paths z1(s) and z2(s).
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We also have

|zi(s)− Px| ≤ |zi(s)− x|+ d(x) ≤ 2|x− y|+ d(x),

so

(3.22) d(zi(s)) ≤ 2−2−1/γrx.

These imply

(3.23) Pzi(s) ∈ B(Px, 2
−1−1/γrx) ⊆ Bx := B(Px, rx).

Note that for all z ∈ Bx, we have

(3.24) |w̃(z)− w̃(Px)| ≤ |w̃(Px)|
2

.

Thus, (3.23) gives

|w̃(Pzi(s))| ≥
1

2
|w̃(Px)|,

implying

rzi(s) ≥ 2−1/γrx.

From (3.22) it now follows that

d(zi(s)) ≤ 1
4rzi(s).

Thus, Lemma 3.6 applies to zi(s) and yields (together with the above esti-

mates)

|∇2ṽ(zi(s))| ≤ Cγd(zi(s))
−1+γr−γzi(s) ≤ 2Cγ(s|x− y|)−1+γr−γx .

Then (3.19) implies

|∇ṽ(x)−∇ṽ(y)|
|x− y|γ ≤ 12Cγ |x− y|1−γ

ˆ 1

0
(s|x− y|)−1+γ r−γx ds

≤ 12Cγ
γ

r−γx ≤ 24CγC̃γ
γ

Aγ
|w̃(Px)| ,

which gives (3.21). �

3.2. Proof of Theorem 1.2 in the general case. We now consider an initial

condition ω0 with an arbitrary number of patches and arbitrary values of θk as

in the statement of Theorem 1.2, and we extend it as an odd function to x2 < 0.

By [42, Ths. 8.1 and 8.2], there is a unique global weak solution ω to (1.1) with

the whole plane flow

(3.25) u(x, t) =

ˆ
R2

(x− y)⊥

|x− y|2 ω(y, t)dy,



FINITE TIME SINGULARITY 929

and the initial data ω(·, 0) = ω0, in the sense thatˆ
D
ω(x, T )g(x, T )dx−

ˆ
D
ω0(x)g(x, 0)dx

=

ˆ
D×(0,T )

ω(x, t)[∂tg(x, t) + u(x, t) · ∇g(x, t)]dxdt

for all T < ∞ and g ∈ C1(D̄ × [0, T ]). This solution is also a collection of

vortex patches

ω(·, t) =
N∑
k=1

θkχΩk(t),

with Ωk(t) = Φt(Ωk(0)) for each k [44, Chapter 2, Theorem 3.1]. Note that

Φt(x) is uniquely defined for any x ∈ R2, due to the time-uniform log-Lipschitz

a priori bound

(3.26) |u(x, t)− u(y, t)| ≤ Cω0 |x− y| log
Ä
1 + |x− y|−1

ä
for u (see, e.g., [42, Lemma 8.1]), with the constant depending only on ‖ω0‖L1

and ‖ω0‖L∞ . Uniqueness shows that ω remains odd in x2, and thus its restric-

tion to D× [0,∞) is also the unique weak solution to (1.1), (3.25). (It is unique

such with ω(·, 0) = ω0 because an odd-in-x2 extension of a weak solution on

D× [0,∞) is a weak solution on R2× [0,∞).) It follows from (1.4), continuity

of u (which is obtained as the last claim in Lemma 4.1 below but using (3.26)

instead of (4.7)), and compactness of ∂Ω(t) × {t} that (2.2) holds for each

t > 0. Hence, if we show that {∂Ωk(t)}Nk=1 is a family of disjoint simple closed

curves for each t ≥ 0, and

sup
t∈[0,T ]

max
k
‖Ωk(t)‖C1,γ <∞

for each T < ∞, then ω will also be a C1,γ patch solution to (1.1)–(1.2) on

[0,∞). Moreover, since C1,γ patch solutions are weak solutions in the above

sense as well (it is easy to see that (2.3) implies this), ω must then also be the

unique patch solution.

Note that (3.26) yields

min
i 6=k

dist(Ωi(t),Ωk(t)) ≥ δ(t) > 0

for all t ≥ 0, where δ(t) decreases double exponentially in time. This will ensure

that the effects of the patches on each other will be controlled. Therefore, it

remains to prove that each ∂Ωk(t) is a simple closed curve with ‖∂Ωk(t)‖C1,γ

uniformly bounded on bounded intervals.

Let us decompose

u =
N∑
i=1

ui,
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with each ui coming from the contribution of the patch Ωi to u. If i 6= k, then

obviously

‖∇nui(·, t)‖L∞(Ωk(t)) ≤ C(ω0, n)δ(t)−n−1

for all n ≥ 0. This yields

‖∇ui(·, t)‖Ċγ(Ωk(t)) ≤ C(ω0)δ(t)−3

for i 6= k. Also, simple scaling shows that (3.5) now becomes (for each i and

with vi, ṽi defined analogously to v, ṽ)

‖∇vi(·, t)‖L∞(R2) + ‖∇ṽi(·, t)‖L∞(R2) ≤ Cγ |θi|
Ç

1 + log+

Aγ(t)|Ωi(t)|γ/2
Ainf(t)

å
.

We now consider a separate ϕk and wk := ∇⊥ϕk for each Ωk, all ϕk
evolving with velocity u. We also add supk in the definitions of Aγ and A∞
and infk in the definition of Ainf . We can repeat the proof above, with

‖(∇u)wk‖Ċγ(Ωk) ≤ CγΘAγ

Å
|Ω|+ log+

Aγ
Ainf

ã
+
∑
i 6=k

Ä
‖∇ui‖L∞(Ωk)‖wk‖Ċγ(Ωk) + ‖∇ui‖Ċγ(Ωk)‖wk‖L∞(Ωk)

ä
≤ CγNΘAγ

Å
|Ω|+ log+

Aγ
Ainf

ã
+ C(ω0)Nδ−3A∞,

where

Θ := max
1≤k≤N

|θk| and |Ω| := 1 + max
1≤k≤N

|Ωk(t)| = 1 + max
1≤k≤N

|Ωk(0)|.

Then (3.10) is replaced by

A′γ(t) ≤ CγNΘAγ(t)

Ç
|Ω|+ log+

Aγ(t)

Ainf(t)

å
+ C(ω0)Nδ(t)−3A∞(t).

From this and (3.6), (3.7), a simple computation shows that

Ã(t) := Aγ(t)Ainf(t)
−1 +A∞(t)

satisfies

Ã′(t) ≤ C(γ,N, ω0)Ã(t)
Ä
δ(t)−3 + log+ Ã(t)

ä
.

Since δ(t)−3 increases at most double exponentially in time, it follows that Ã(t)

increases at most triple exponentially. As before, this implies that each ∂Ωk(t)

is a simple closed curve with ‖∂Ωk(t)‖C1,γ uniformly bounded on bounded

intervals. Hence ω is a global C1,γ patch solution to (1.1)–(1.2), thus finishing

the proof.
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3.3. Proof of Lemma 3.6. Let us start with a simple geometric result con-

cerning the behavior of ∂Ω̃ near Px, which is similar to the Geometric Lemma

in [1]. It says that ∂Ω̃ ∩Bx is sufficiently “flat.”

Lemma 3.7. Given x ∈ R2 \ Ω̃, let nx := ∇ϕ̃(Px)/|∇ϕ̃(Px)|, and

(3.27) Sx :=

ß
Px + ρν : ρ ∈ [0, rx), |ν| = 1,

Å
ρ

rx

ãγ
≥ 2|ν · nx|

™
.

If ν is a unit vector and ρ ∈ [0, rx), then the following hold. If ν · nx ≥ 0

and Px + ρν 6∈ Sx, then Px + ρν ∈ Ω̃. If ν · nx ≤ 0 and Px + ρν 6∈ Sx, then

Px + ρν ∈ R2 \ Ω̃.

In particular, ∂Ω̃ ∩Bx ⊆ Sx (see Figure 5).

nx

Px
⌦̃

rx

B̃x

Sxx

Bx

Figure 5. The sets Sx (shaded), B̃x, and Ω̃4B̃x (lined).

Proof. We only prove the first statement, as the proof of the second is

analogous. Let us assume ν · nx ≥ 0 and Px + ρν 6∈ Ω̃, with |ν| = 1 and ρ ≥ 0.

Then

∇ϕ̃(Px) · ν ≥ 0 and ϕ̃(Px + ρν) ≤ 0,

so we must have ∇ϕ̃(Px) · ν ≤ Ãγργ because ϕ̃(Px) = 0. Thus

2ν · nx ≤
2Ãγρ

γ

|∇ϕ̃(Px)| =

Å
ρ

rx

ãγ
,

so either ρ ≥ rx or Px + ρν ∈ Sx. �

Proof of Lemma 3.6. Let nx, Sx be from Lemma 3.7. Let B̃x :=B(Ox, rx),

where

Ox := Px + rxnx.
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Then Px ∈ ∂B̃x and the unit inner normal to ∂B̃x at Px is nx. We have

∂B̃x ∩Bx ⊆ Sx because if Px + ρν ∈ ∂B̃x ∩Bx with |ν| = 1 and ρ > 0, then

rx > ρ = 2rx|ν · nx|.
Combining this with Lemma 3.7 directly yields

(3.28) (Ω̃4B̃x) ∩Bx ⊆ Sx,
with

Ω̃4B̃x := (Ω̃\B̃x) ∪ (B̃x\Ω̃)

the symmetric difference of Ω̃ and B̃x (the lined region in Figure 5). Let

uB̃x(z) :=

ˆ
B̃x

(z − y)⊥

|z − y|2 dy = 2π(∇⊥∆−1χB̃x)(z)

be the velocity field corresponding to the disc B̃x. When |z − Ox| > rx, we

have by the rotational invariance of uB̃x (and with n the outer unit normal

vector to ∂B(Ox, |z −Ox|)), we have

uB̃x(z) =
(z −Ox)⊥

|z −Ox|
∣∣∣uB̃x(z)

∣∣∣
=

(z −Ox)⊥

|z −Ox|

 
∂B(Ox,|z−Ox|)

n · 2π∇∆−1χB̃xdσ

=
(z −Ox)⊥

|z −Ox|2
ˆ
B(Ox,|z−Ox|)

χB̃x(y)dy

= πr2
x

(z −Ox)⊥

|z −Ox|2
.

Differentiating this and noting that

|x−Ox| = rx + d(x) > rx

yields

(3.29) |∇2uB̃x(x)| ≤ C

rx
.

From the definitions of ṽ and uB̃x we also have (with some C̃ <∞ and a new

C <∞)

(3.30) |∇2ṽ(x)−∇2uB̃x(x)| ≤
ˆ
R2\Bx

C̃

|x− y|3dy︸ ︷︷ ︸
≤Cr−1

x

+

ˆ
(Ω̃4B̃x)∩Bx

C̃

|x− y|3dy︸ ︷︷ ︸
=:I

.

Finally, note that

dist(x, Sx) ≥ d(x)

2
.
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This holds because if Px + ρν ∈ B(x, 1
2d(x)) with |ν| = 1 and ρ ≥ 0, then

ν · nx ≥ cos
π

6
>

1

2
and ρ ≤ 3

2
d(x) < rx

(due to d(x) ≤ 1
4rx), hence Px + ρν /∈ Sx. Also, if |Px − y| ≥ 2d(x), then

|Px − y| ≤ |x− y|+ d(x) ≤ 2|x− y|.
From these, (3.28), and |θ| ≤ 2| sin θ| for |θ| ≤ π

2 , we now have

I ≤
ˆ
Sx

C̃

|x− y|3dy

≤
ˆ
Sx\B(Px,2d(x))

C̃

|x− y|3dy + C̃

Ç
d(x)

2

å−3 ∣∣∣Sx ∩B(Px, 2d(x))
∣∣∣

≤
ˆ
Sx\B(Px,2d(x))

8C̃

|Px − y|3
dy +

8C̃

d(x)3

∣∣∣Sx ∩B(Px, 2d(x))
∣∣∣

≤
ˆ rx

2d(x)

8C̃

ρ3
4

Å
ρ

rx

ãγ
ρ dρ+

8C̃

d(x)3

ˆ 2d(x)

0
4

Å
ρ

rx

ãγ
ρ dρ

≤ Cγd(x)−1+γr−γx .

This, (3.30), and (3.29) now yield

|∇2ṽ(x)| ≤ Cγd(x)−1+γr−γx + Cr−1
x ,

so the result follows from d(x) ≤ 1
4rx. �

4. Finite time blow-up for small α > 0

In this section we prove Theorem 1.3, which is an immediate corollary of

Theorem 4.6 below.

Let α ∈ (0, 1
24) and ε > 0 be a small α-dependent number, to be deter-

mined later. Let D+ := R+ × R+, Ω1 := (ε, 4) × (0, 4), Ω2 := (2ε, 3) × (0, 3),

and let Ω0 ⊆ D+ be an open set satisfying Ω2 ⊆ Ω0 ⊆ Ω1 whose boundary

is a smooth simple closed curve. Let ω be the unique H3 patch solution to

(1.1)–(1.2) with the initial data

(4.1) ω(·, 0) := χΩ0 − χΩ̃0

and the maximal time of existence Tω > 0. Here, Ω̃0 is the reflection of Ω0

with respect to the x2-axis. Then oddness of ω0 in x1 and the local uniqueness

of the solution imply that

(4.2) ω(·, t) = χΩ(t) − χΩ̃(t)

for t ∈ [0, Tω), with Ω(t) := Φt(Ω0) and Ω̃(t) the reflection of Ω(t) with respect

to the x2-axis. Note that Ω(t) is well defined due to Theorem 2.3(a) and
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H3(T) ⊆ C1,1(T)). We will show that Tω <∞; that is, ω becomes singular in

finite time.

More specifically, let

(4.3) T := 50(3ε)2α and X(t) :=

ï
(3ε)2α − t

50

ò1/2α
for t ∈ [0, T ],

so that

(4.4) X ′(t) = − 1

100α
X(t)1−2α,

on [0, T ], with X(0) = 3ε and X(T ) = 0, and let

(4.5) K(t) := {x ∈ D+ : x1 ∈ (X(t), 2) and x2 ∈ (0, x1)}

for t ∈ [0, T ]. We will show that if Tω > T , then K(t) ⊆ Ω(t) for all t ∈ [0, T ].

This yields a contradiction because then Ω(T ) and Ω̃(T ) touch at the origin

(and thus they also cannot remain H3).

x1

x2

Ω2

Ω1

ε 3 4

4

3

2ε

Ω0

K(0)

3ε 2

Figure 6. The domains Ω1,Ω2,Ω0, and K(0) (with ω0 = χΩ0 −
χΩ̃0

).

This result will, in fact, hold for the less regular C1,γ patches, but in this

case we need to assume oddness of ω in x1. (This is not immediate from the

same property of ω0 without knowing local uniqueness in this class.) Before

we can prove the result, however, we need to obtain some estimates on the

velocity u, the most crucial of which is Proposition 4.5.

Remark. The fact that the fraction on the right-hand side of (4.4) blows

up as α → 0 may seem worrying but ε will go to zero quickly as α → 0 (and

X(t) ∈ [0, 3ε]), so this growth will be compensated by the term X(t)1−2α,

which decays as α→ 0.
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4.1. Some estimates on the velocity fields. Let us start with some basic

estimates on the fluid velocities for a general ω.

Lemma 4.1. For α ∈ (0, 1
2) and u(·, t) as in (1.2) with ω(·, t) ∈ L1(D) ∩

L∞(D), we have

(4.6) ‖u(·, t)‖L∞ ≤
2π

1− 2α
‖ω(·, t)‖L∞ + 2‖ω(·, t)‖L1

and

(4.7) ‖u(·, t)‖C1−2α ≤ 8π

α(1− 2α)
‖ω(·, t)‖L∞ + 2‖ω(·, t)‖L1 .

Furthermore, if ω is weak-∗ continuous as an L∞(D)-valued function on a

time interval [a, b], and is supported inside a fixed compact subset of D̄ for

every t ∈ [a, b], then u is continuous on D̄ × [a, b].

Proof. Let η : R2 → R be the odd extension of ω(·, t) to the whole plane.

The Biot-Savart law (1.2) for x ∈ D then becomes

(4.8) u(x, t) =

ˆ
R2

(x− y)⊥

|x− y|2+2α
η(y)dy,

and (4.6) follows from

|u(x, t)| ≤
ˆ
|x−y|≤1

|η(y)|
|x− y|1+2α

dy +

ˆ
|x−y|>1

|η(y)|
|x− y|1+2α

dy

≤ ‖η‖L∞
ˆ
|x−y|≤1

1

|x− y|1+2α
dy + ‖η‖L1

≤ 2π

1− 2α
‖ω(·, t)‖L∞ + 2‖ω(·, t)‖L1 .

To prove (4.7), consider any x, z ∈ D̄ with r := |x− z|. Then

|u(x, t)− u(z, t)| ≤
ˆ
B(x,2r)

1

|x− y|1+2α
η(y) dy +

ˆ
B(x,2r)

1

|z − y|1+2α
η(y) dy

+

ˆ
R2\B(x,2r)

∣∣∣∣∣ (x− y)⊥

|x− y|2+2α
− (z − y)⊥

|z − y|2+2α

∣∣∣∣∣ η(y) dy

≤4π‖η‖L∞
ˆ 3r

0
s−2α ds+ 32‖η‖L∞

ˆ ∞
2r

rs−1−2α ds

≤
Å

12π

1− 2α
+

32

2α

ã
‖η‖L∞ |x− z|1−2α.

Combining this with (4.6) yields (4.7).

It remains to prove the last claim. Since the kernel in (4.8) is L1 on any

compact subset of D̄, the assumptions show that u is continuous in t ∈ [a, b]

for any fixed x ∈ D̄. The claim now follows from uniform continuity of u in

x ∈ D̄; see (4.7). �
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For y = (y1, y2) ∈ D̄+ = R+ × R+, we denote ȳ := (y1,−y2) and ỹ :=

(−y1, y2). If ω(·, t) ∈ L∞(D) is odd in x1, then (1.2) becomes (we drop t from

the notation in this subsection)

(4.9) u1(x) = −
ˆ
D+

K1(x, y)ω(y)dy, u2(x) =

ˆ
D+

K2(x, y)ω(y)dy,

where

K1(x, y) =
y2 − x2

|x− y|2+2α︸ ︷︷ ︸
K11(x,y)

− y2 − x2

|x− ỹ|2+2α︸ ︷︷ ︸
K12(x,y)

− y2 + x2

|x+ y|2+2α︸ ︷︷ ︸
K13(x,y)

+
y2 + x2

|x− ȳ|2+2α︸ ︷︷ ︸
K14(x,y)

,(4.10)

K2(x, y) =
y1 − x1

|x− y|2+2α︸ ︷︷ ︸
K21(x,y)

+
y1 + x1

|x− ỹ|2+2α︸ ︷︷ ︸
K22(x,y)

− y1 + x1

|x+ y|2+2α︸ ︷︷ ︸
K23(x,y)

− y1 − x1

|x− ȳ|2+2α︸ ︷︷ ︸
K24(x,y)

.(4.11)

Let us start with some simple observations about K1 and K2.

Lemma 4.2. For α ∈ (0, 1
2) and x, y ∈ D+, we have the following :

(a) K1(x, y) ≥ K11(x, y)−K12(x, y);

(b) sgn(y2 − x2)(K11(x, y)−K12(x, y)) ≥ 0;

(c) K2(x, y) ≥ K21(x, y)−K24(x, y);

(d) sgn(y1 − x1)(K21(x, y)−K24(x, y)) ≥ 0.

Proof. Part (a) is immediate from |x− ȳ| ≤ |x+ y| and (b) from |x− y| ≤
|x− ỹ|. Exchanging ȳ and ỹ yields the proofs of (c) and (d). �

Our goal will be to show that if the solution with the initial data from

(4.1) exists globally , in which case 0 ≤ ω ≤ 1 on D+ by symmetry, then the

patch Ω(t) and its reflection across the x2 axis must touch at the origin in finite

time, which is a contradiction. In particular, we will need to show that u1 is

sufficiently negative in an appropriate subset of D+ (at least for some time).

We will do this by separately estimating the “bad” part

ubad
1 (x) := −

ˆ
R+×(0,x2)

K1(x, y)ω(y)dy

of the integral in (4.9) (where K11 −K12 < 0) and the “good” part

ugood
1 (x) := −

ˆ
R+×(x2,∞)

K1(x, y)ω(y)dy

(where K11−K12 ≥ 0). We will also obtain similar estimates for the u2 analogs

ubad
2 (x) :=

ˆ
(0,x1)×R+

K2(x, y)ω(y)dy

and

ugood
2 (x) :=

ˆ
(x1,∞)×R+

K2(x, y)ω(y)dy.
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Lemma 4.3. Let α ∈ (0, 1
2), and assume that ω is odd in x1 and 0 ≤ ω ≤ 1

on D+.

(a) If x ∈ D+ and x2 ≤ x1, then

ubad
1 (x) ≤ 1

α

Å
1

1− 2α
− 2−α

ã
x1−2α

1 .

(b) If x ∈ D+ and x2 ≥ x1, then

ubad
2 (x) ≥ − 1

α

Å
1

1− 2α
− 2−α

ã
x1−2α

2 .

Proof. (a) As 0 ≤ ω ≤ 1 on D+, it follows from Lemma 4.2(a,b) that

ubad
1 (x) ≤ −

ˆ
R+×(0,x2)

Ç
y2 − x2

|x− y|2+2α
− y2 − x2

|x− ỹ|2+2α

å
ω(y)dy

≤ −
ˆ
R+×(0,x2)

Ç
y2 − x2

|x− y|2+2α
− y2 − x2

|x− ỹ|2+2α

å
dy

= −
ˆ

(0,2x1)×(0,x2)

y2 − x2

|x− y|2+2α
dy.

The equality holds due to the identityˆ
R+×(0,x2)

y2 − x2

|x− ỹ|2+2α
dy =

ˆ
(2x1,∞)×(0,x2)

y2 − x2

|x− y|2+2α
dy,

which can be verified by a change of variables y1 7→ y1 + 2x1. Now, the change

of variables z := x−y, symmetry, together with the assumption x2 ≤ x1, yield

ubad
1 (x) ≤ 2

ˆ
(0,x1)×(0,x2)

z2

(z2
1 + z2

2)1+α
dz

=
1

α

ˆ x1

0

Ç
1

z2α
1

− 1

(z2
1 + x2

2)α

å
dz1

≤ 1

α(1− 2α)
x1−2α

1 − 1

α

ˆ x1

0

1

(2x2
1)α

dz1

=
1

α

Å
1

1− 2α
− 2−α

ã
x1−2α

1 .

(4.12)

The proof of part (b) is analogous to (a). �

In the estimate of the “good” parts of u1, u2 we will in addition assume

that for some x ∈ D+, we have ω = 1 on the triangle

(4.13) A(x) := {y : y1 ∈ (x1, x1 + 1) and y2 ∈ (x2, x2 + y1 − x1)} ,
which is depicted in Figure 7. This assumption will feature in the proof of the

comparison-principle-type result K(t) ⊆ Ω(t) (mentioned above) in the next

subsection.



938 ALEXANDER KISELEV, LENYA RYZHIK, YAO YAO, and ANDREJ ZLATOŠ

0

A(x)

x

x+ (1, 1)

x+ (1, 0)

Figure 7. The domain A(x).

Lemma 4.4. Let α ∈ (0, 1
2), and assume that ω is odd in x1 and that for

some x ∈ D+, we have ω ≥ χA(x) on D+, with A(x) from (4.13). There exists

δα ∈ (0, 1), depending only on α, such that the following hold :

(a) if x1 ≤ δα, then

ugood
1 (x) ≤ − 1

6 · 20αα
x1−2α

1 ;

(b) if x2 ≤ δα, then

ugood
2 (x) ≥ 1

5 · 8ααx
1−2α
2 .

Proof. (a) Using Lemma 4.2(a) and then changing variables y1 7→ y1+2x1,

we obtain

ugood
1 (x) ≤ −

ˆ
A(x)

Ç
y2 − x2

|x− y|2+2α
− y2 − x2

|x− ỹ|2+2α

å
dy

= −
ˆ
A(x)

y2 − x2

|x− y|2+2α
dy +

ˆ
A(x)+2x1e1

y2 − x2

|x− y|2+2α
dy,

(4.14)

with e1 := (1, 0). Since the last two integrands are the same, after a cancella-

tion due to the opposite signs we obtain

ugood
1 (x) ≤ −

ˆ
A1

y2 − x2

|x− y|2+2α
dy︸ ︷︷ ︸

T1

+

ˆ
A2

y2 − x2

|x− y|2+2α
dy︸ ︷︷ ︸

T2

,

with the domains

A1 := {y : y2 ∈ (x2, x2 + 1) and y1 ∈ (x1 + y2 − x2, 3x1 + y2 − x2)} ,
A2 := (x1 + 1, 3x1 + 1)× (x2, x2 + 1)

illustrated in Figure 8. Since for y ∈ A2 we have y2 − x2 ≤ 1 ≤ |x − y|, we

obtain

T2 ≤ |A2| = 2x1.
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x

0

A1 A2

{
2x1

1

x+ (1, 1)

2x1
{x+ (1, 0)

Figure 8. The domains A1 and A2.

To control T1, we first note that its integrand is positive, so we can get a lower

bound on T1 by only integrating over A′1 := A1 ∩ [R × (x2 + 2x1,∞)]. For

y ∈ A′1, we have

y2 − x2 ≥
1

2
(y1 − x1),

which yields √
5(y2 − x2) ≥ |x− y|.

This gives

T1 ≥ 5−1−α
ˆ
A′1

(y2 − x2)−(1+2α)dy

= 5−1−α2x1

ˆ x2+1

x2+2x1

(y2 − x2)−(1+2α)dy2

=
1

51+αα
x1[(2x1)−2α − 1].

(4.15)

Putting the estimates for T1 and T2 together yields

(4.16) ugood
1 (x) ≤ −

ï
1

5 · 20αα
−
Å

1

51+αα
+ 2

ã
x2α

1

ò
x1−2α

1 .

The result now follows for some small enough δα > 0.

(b) Using Lemma 4.2(c) and then the change of variables y2 7→ y2 + 2x2,

we obtain

ugood
2 (x) ≥

ˆ
A(x)

Ç
y1 − x1

|x− y|2+2α
− y1 − x1

|x− ȳ|2+2α

å
dy

=

ˆ
A(x)

y1 − x1

|x− y|2+2α
dy −

ˆ
A(x)+2x2e2

y1 − x1

|x− y|2+2α
dy,

(4.17)
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with e2 := (0, 1). Since the last two integrands are the same, after a cancella-

tion due to the opposite signs we obtain

ugood
2 (x) ≥

ˆ
B1

y1 − x1

|x− y|2+2α
dy −

ˆ
B2

y1 − x1

|x− y|2+2α
dy,

with the domains

B1 := (x1, x1 + 1)× (x2, 3x2) ,

B2 := {y : y1 ∈ (x1, x1 + 1) and y2 ∈ (x2 + y1 − x1, 3x2 + y1 − x1)}

illustrated in Figure 9. The change of variables y2 7→ y2 − (y1 − x1) in the

second integral then yields

ugood
2 (x) ≥

ˆ
B1

Ç
y1 − x1

|x− y|2+2α
− y1 − x1

|x− (y1, y2 + y1 − x1)|2+2α

å
dy.

Since the integrand is positive, and for y ∈ (x1 + 2x2, x1 + 1) × (x2, 3x2), we

have

|x− (y1, y2 +y1−x1)|2 = 2|x−y|2 +(y2−x2)[2(y1−x1)− (y2−x2)] > 2|x−y|2

due to y1 − x1 > 2x2 > y2 − x2 > 0, it follows that

ugood
2 (x) ≥

Ä
1− 2−1−α

äˆ
(x1+2x2,x1+1)×(x2,3x2)

y1 − x1

|x− y|2+2α
dy.

x

0

B1

B2

1

2x2

2x2

x+ (1, 1)

x+ (1, 0)

Figure 9. The domains B1 and B2.
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On this domain of integration we have y1 − x1 ≥ 1√
2
|x− y|, so 1− 2−1−α ≥ 1

2

shows

ugood
2 (x) ≥ 2−2−α

ˆ
(x1+2x2,x1+1)×(x2,3x2)

(y1 − x1)−1−2αdy

= 2−1−αx2

ˆ x1+1

x1+2x2

(y1 − x1)−1−2αdy1

=

ï
1

4 · 8αα −
1

22+αα
x2α

2

ò
x1−2α

2 .

(4.18)

The result now follows for some small enough δα > 0. �

The last two lemmas combine to the following result for small α.

Proposition 4.5. Let α ∈ (0, 1
24), and assume that ω is odd in x1 and

that for some x ∈ D+, we have χA(x) ≤ ω ≤ 1 on D+, with A(x) from (4.13).

Then there exists δα ∈ (0, 1), depending only on α, such that the following

hold :

(a) if x2 ≤ x1 ≤ δα, then

u1(x) ≤ − 1

50α
x1−2α

1 ;

(b) if x1 ≤ x2 ≤ δα, then

u2(x) ≥ 1

50α
x1−2α

2 .

Proof. (a) This is immediate from the last two lemmas and u1 = ubad
1 +

ugood
1 because

− 1

6 · 20α
+

Å
1

1− 2α
− 2−α

ã
is increasing in α and its value for α = 1

24 is less than −1/50.

(b) Since 5 · 8α < 6 · 20α, this is analogous to (a). �

4.2. The finite time singularity analysis. Let us now return to the setting

from the beginning of this section. The initial condition we consider is odd

in x1, and the resulting unique H3 patch solution is also odd. We will run

the blow-up argument in the class of the less regular C1,γ patch solutions to

(1.1)–(1.2) and show that any such solution either has a finite maximal time

of existence (i.e., loss of existence) or stops being odd (i.e., loss of uniqueness).

Of course, the latter cannot happen for the H3 patch solution.

Theorem 4.6. Let α ∈ (0, 1
24) and ε > 0 be small enough. Let ω(·, 0)

be given by (4.1), with a bounded open Ω0 ⊆ D+ such that (2ε, 3) × (0, 3) ⊆
Ω0 ⊆ (ε, 4) × (0, 4) and ∂Ω0 is a smooth simple closed curve. Then for any
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γ > 2α
1−2α , there is no odd-in-x1 C

1,γ patch solution ω to (1.1)–(1.2) on any

interval [0, T ′) with T ′ > 50(3ε)2α.

This immediately yields Theorem 1.3 because the (local) H3 solution for

this initial condition is odd in x1 (due to of its uniqueness), and it is C1,γ for

each γ ∈ (0, 1].

Proof. Let us assume that such a solution exists, and let T,X(t),K(t)

be from (4.3)–(4.5). The solution then has the form (4.2), and we will show

that K(t) ⊆ Ω(t) for each t ∈ [0, T ]. This is a contradiction because then the

patches Ω(T ) and Ω̃(T ) touch at 0.

As |Ω(t)| = |Ω0| ≤ 16, Lemma 4.1 implies

(4.19) ‖u(·, t)‖L∞ ≤ 100

for all t ∈ [0, T ]. Since ∂Ω(t) is continuous in t ∈ [0, T ] with respect to

the Hausdorff distance of sets, the lemma also shows that u is continuous on

D̄ × [0, T ].

Consider δα ∈ (0, 1) from Proposition 4.5, and let the constant ε in (4.3)

satisfy

ε ≤ δ
1/2α
α

3 · 1001/α
.

We know from (4.19) that the function f(t) := dist(D+ \ Ω(t),K(t)) is con-

tinuous on [0, T ]. Hence, if K(t) is not contained in Ω(t) at some t ∈ [0, T ],

then there is the first time t0 ∈ [0, T ] such that f(t0) = 0. As f(0) ≥ ε > 0,

we have t0 > 0 and K(t0) ⊆ Ω(t0).

Let us assume that such t0 exists, and let

Ω3 :=

Å
δα,

5

2

ã
×
Å

0,
5

2

ã
.

Then T ≤ 200−1δα, the estimate (4.19), and 2ε < 1
2δα <

1
2 imply

[D+ \ Ω(t0)] ∩ Ω3 = ∅,
where we also used that symmetry and Theorem 2.3 yield

(4.20) D+ \ Ω(t) = Φt(D
+ \ Ω(0))

for any t ∈ [0, T ]. As t0 is the first time with f(t0) = 0, it follows that there

exists some

(4.21) x ∈ ∂[D+ \ Ω(t0)] ∩ [I1 ∪ I2],

where I1 = {X(t0)}×[0, X(t0)) and I2 is the closed straight segment connecting

the points (X(t0), X(t0)) and (δα, δα) (see Figure 10).

If x ∈ I1, then the triangle A(x) defined in (4.13) and depicted in Figure 7

satisfies

A(x) ⊆ K(t0) ⊆ Ω(t0)
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x1

x2

5
2

5
2

X(t0) 2

Ω3

K(t0)

I2

δα

I1

Figure 10. The segments I1 and I2 and the sets Ω3 and K(t0).

because

X(t0) ≤ 3ε < δα < 1.

Hence Proposition 4.5(a) and x1 = X(t0) yield

u1(x, t0) ≤ − 1

50α
x1−2α

1 < − 1

100α
x1−2α

1 = X ′(t0).

Since

Φt0(D+ \ Ω(0)) ∩B(x, r) 6= ∅
for any r > 0 and u is continuous, it follows from this and (4.19) that for any

sufficiently small s ∈ (0, 1
100 [X(t0)− x2]), we have

Φt0−s(D
+ \ Ω(0)) ∩ [(X(t0 − s), 2)× (0, X(t0))] 6= ∅.

From (4.20) and (X(t0−s), 2)×(0, X(t0))⊆K(t0−s) we now obtain f(t0−s)=0

for these s, a contradiction with the choice of t0.

If now x ∈ I2, so that x1 = x2 ≤ δα, a similar argument and Proposi-

tion 4.5(a, b) yield

(−1)j−1uj(x, t0) ≤ − 1

50α
x1−2α

1 < − 1

100α
x1−2α

1 ≤ X ′(t0)

for j = 1, 2, and thus

Φt0−s(D
+ \Ω(0))∩ [(x1 +X(t0−s)−X(t0), 2)×(0, x1−X(t0−s)+X(t0))] 6= ∅

for all small enough s > 0. We again obtain a contradiction because X(t0) ≤
x1 = x2 implies (x1 +X(t0 − s)−X(t0), 2)× (0, x1) ⊆ K(t0 − s). �
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References

[1] A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,

Comm. Math. Phys. 152 (1993), 19–28. MR 1207667. Zbl 0771.76014. Avail-

able at http://projecteuclid.org/euclid.cmp/1104252307.

[2] T. F. Buttke, The observation of singularities in the boundary of patches of

constant vorticity, Physics of Fluids A: Fluid Dynamics 1 (1989), 1283–1285.

http://dx.doi.org/10.1063/1.857353.

[3] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional

diffusion and the quasi-geostrophic equation, Ann. of Math. 171 (2010), 1903–

1930. MR 2680400. Zbl 1204.35063. http://dx.doi.org/10.4007/annals.2010.171.

1903.
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