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Kähler manifolds and the
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By Gang Liu

Abstract

We study the uniformization conjecture of Yau by using the Gromov-

Hausdorff convergence. As a consequence, we confirm Yau’s finite genera-

tion conjecture. More precisely, on a complete noncompact Kähler manifold

with nonnegative bisectional curvature, the ring of polynomial growth holo-

morphic functions is finitely generated. During the course of the proof, we

prove if Mn is a complete noncompact Kähler manifold with nonnegative

bisectional curvature and maximal volume growth, then M is biholomor-

phic to an affine algebraic variety. We also confirm a conjecture of Ni on the

existence of polynomial growth holomorphic functions on Kähler manifolds

with nonnegative bisectional curvature.

1. Introduction

In [34], Yau proposed to study the uniformization of complete Kähler

manifolds with nonnegative curvature. In particular, one wishes to determine

whether or not a complete noncompact Kähler manifold with positive bisec-

tional curvature is biholomorphic to a complex Euclidean space. For this sake,

Yau further asked in [34] (see also page 117 in [33]) whether or not the ring of

polynomial growth holomorphic functions is finitely generated and whether or

not dimension of the spaces of holomorphic functions of polynomial growth is

bounded from above by the dimension of the corresponding spaces of polyno-

mials on Cn. Let us summarize Yau’s questions in the three conjectures below:

Conjecture 1. Let Mn be a complete noncompact Kähler manifold with

positive bisectional curvature. Then M is biholomorphic to Cn.

Conjecture 2. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Then the ring OP (M) is finitely generated.
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Conjecture 3. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Then given any d > 0, dim(Od(M)) ≤
dim(Od(Cn)).

On a complete Kähler manifold M , we say a holomorphic function f has

polynomial growth, denoted by f ∈ Od(M) if there exists some C > 0 such

that |f(x)| ≤ C(1 + d(x, x0))d for all x ∈ M . Here x0 is a fixed point on M .

Let OP (M) = ∪d>0Od(M).

Conjecture 1 is open so far. However, there has been much important

progress due to various authors. In earlier works, Mok-Siu-Yau [24] and

Mok [23] considered embedding by using holomorphic functions of polynomial

growth. Later, with the Kähler-Ricci flow, results were improved significantly.

See, for example, [30], [31], [9], [27], [1], [8], [17].

Conjecture 3 was confirmed by Ni [26] with the assumption that M has

maximal volume growth. Later, by using Ni’s method, Chen-Fu-Le-Zhu [7]

removed the extra condition. See also [22] for a different proof. The key of

Ni’s method is a monotonicity formula for heat flow on Kähler manifold with

nonnegative bisectional curvature.

Despite great progress of Conjectures 1 and 3, not much was known about

Conjecture 2. In [23], Mok proved the following:

Theorem 1.1 (Mok). Let Mn be a complete noncompact Kähler manifold

with positive bisectional curvature such that for some fixed point p ∈M ,

• scalar curvature ≤ C0
d(p,x)2

for some C0 > 0;

• Vol(B(p, r)) ≥ C1r
2n for some C1 > 0.

Then Mn is biholomorphic to an affine algebraic variety.

In Mok’s proof, the biholomorphism was given by holomorphic functions

of polynomial growth. Therefore, OP (M) is finitely generated. In the general

case, it was proved by Ni [26] that the transcendental dimension of OP (M)

over C is at most n. However, this does not imply the finite generation of

OP (M). The main result in this paper is the confirmation of Conjecture 2 in

the general case:

Theorem 1.2. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Then the ring OP (M) is finitely generated.

During the course of the proof, we obtain a partial result for Conjecture 1:

Theorem 1.3. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Assume M is of maximal volume growth.

Then M is biholomorphic to an affine algebraic variety.

Here maximal volume growth means Vol(B(p, r)) ≥ Cr2n for some C > 0.

This seems to be the first uniformization type result without assuming the

curvature upper bound.
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If one wishes to prove Conjecture 1 by considering OP (M), it is important

to know when OP (M) 6= C. In [26], Ni proposed the following interesting

conjecture:

Conjecture 4. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Assume M has positive bisectional curva-

ture at one point p. Then the following three conditions are equivalent :

(1) OP (M) 6= C;

(2) M has maximal volume growth ;

(3) there exists a constant C independent of r so that −
∫
B(p,r) S ≤

C
r2

. Here S

is the scalar curvature and −
∫

means the average.

In the complex one-dimensional case, the conjecture is known to hold,

e.g., [19]. For higher dimensions, Ni proved (1) implies (3) in [26]. The proof

used the heat flow method. Then in [29], Ni and Tam proved that (3) also

implies (1). Their proof employs the Poincaré-Lelong equation and the heat

flow method. Thus, it remains to prove (1) and (2) are equivalent. Under some

extra conditions, Ni [27] and Ni-Tam [28] were able to prove the equivalence

of (1) and (2). In [21], the author proved that (1) implies (2). In fact, the con-

dition that M has positive bisectional curvature at one point could be relaxed

to that the universal cover of M is not a product of two Kähler manifolds.

In this paper, we prove that (2) also implies (1). Thus Conjecture 4 is

solved in full generality. More precisely, we prove

Theorem 1.4. Let (Mn, g) be a complete Kähler manifold with nonneg-

ative bisectional curvature and maximal volume growth. Then there exists a

nonconstant holomorphic function of polynomial growth on M .

The strategy of the proofs in this paper is very different from earlier works.

Here we make use of several different techniques:

• the Gromov-Hausdorff convergence theory developed by Cheeger-Colding

[2], [3], [4], [5], Cheeger-Colding-Tian [6];

• the heat flow method by Ni [26] and Ni-Tam [28], [29];

• the Hörmander L2-estimate of ∂ [16], [11];

• the three circle theorem [22].

We point out that recently, the Gromov-Hausdorff convergence theory was

shown to be a very powerful tool to study Kähler manifolds; see, e.g., [12], [32].

The first key point is to prove Theorem 1.4. By Hörmander’s L2-technique,

to produce holomorphic functions of polynomial growth, it suffices to construct

strictly plurisubharmonic function of logarithmic growth. However, it is not

obvious how to construct such functions by only assuming the maximal volume

growth condition. In [24], [23], Mok-Siu-Yau and Mok considered the Poincaré-

Lelong equation
√
−1∂∂u = Ric. When the curvature has pointwise quadratic
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decay, they were able to prove the existence of a solution with logarithmic

growth. Later, Ni and Tam [28], [29] were able to relax the condition to

that the curvature has average quadratic decay. Then it suffices to prove that

maximal volume growth implies the average curvature decay.

We prove Theorem 1.4 by a different strategy. We first blow down the

manifold. Then by using the Cheeger-Colding theory, heat flow technique

and Hörmander L2-theory, we construct holomorphic functions with controlled

growth in a sequence of exhaustion domains on M . Then the three circle theo-

rem ensures that we can take subsequence to obtain a nonconstant holomorphic

function with polynomial growth.

Once Theorem 1.4 is proved, Hörmander’s L2-technique produces a lot of

holomorphic functions of polynomial growth. It turns out OP (M) separates

points and tangent spaces onM . However, since the manifold is not compact, it

does not follow directly that M is affine algebraic. To overcome this difficulty,

we prove in Theorem 6.1 that the map given by Od(M) is proper. We will use

induction on the dimension of the splitting factor of a tangent cone.

Once we have proved the properness of the holomorphic map, it is straight-

forward to prove M is affine algebraic by using techniques from complex an-

alytic geometry. Here the argument resembles some part in [12]. Then we

conclude Conjecture 2 when the manifold has maximal volume growth. For

the general case, we apply the main result in [21]. It suffices to handle the

case when the universal cover of the manifold splits. Then we need to consider

group actions. The final result follows from an algebraic result of Nagata [25].

This paper is organized as follows. In Section 2, we collect some prelimi-

nary results necessary for this paper. In Section 3, we prove a result which con-

trols the size of a holomorphic chart when the manifold is Gromov-Hausdorff

close to a Euclidean ball. As the first application, in Section 4 we prove a gap

theorem for the complex structure of Cn. Section 5 deals with the proof of

Theorem 1.4. The proof of Theorem 6.1 is contained in Section 6. Finally, the

proof of Theorem 1.2 is given Section 7.

There are two appendices. In Appendix A, we present a result of Ni-Tam

in [28] which was not stated explicitly. (Here we are not claiming any credit.)

In Appendix B, we introduce some results of Nagata [25] to conclude the proof

of the main theorem.
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2. Preliminary results

First recall some convergence results for manifolds with Ricci curvature

lower bound. Let (Mn
i , yi, ρi) be a sequence of pointed complete Riemannian

manifolds, where yi ∈Mn
i and ρi is the metric on Mn

i . By Gromov’s compact-

ness theorem if (Mn
i , yi, ρi) have a uniform lower bound of the Ricci curvature,

then a subsequence converges to some (M∞, y∞, ρ∞) in the Gromov-Hausdorff

topology. See [14] for the definition and basic properties of Gromov-Hausdorff

convergence.

Definition 2.1. Let Ki ⊂ Mn
i → K∞ ⊂ M∞ in the Gromov-Hausdorff

topology. Assume that {fi}∞i=1 are functions on Mn
i and f∞ is a function on

M∞. Assume that Φi are εi-Gromov-Hausdorff approximations and lim
i→∞

εi=0.

If fi ◦Φi converges to f∞ uniformly, we say fi → f∞ uniformly over Ki → K∞.

In many applications, fi are equicontinuous. The Arzela-Ascoli theorem

applies to the case when the spaces are different. When

(Mn
i , yi, ρi)→ (M∞, y∞, ρ∞)

in the Gromov-Hausdorff topology, any bounded, equicontinuous sequence of

functions fi has a subsequence converging uniformly to some f∞ on M∞.

Let the complete pointed metric space (Mm
∞, y) be the Gromov-Hausdorff

limit of a sequence of connected pointed Riemannian manifolds, {(Mn
i , pi)},

with Ric(Mi) ≥ 0. Here Mm
∞ has Hausdorff dimension m with m ≤ n.

A tangent cone at y ∈ Mm
∞ is a complete pointed Gromov-Hausdorff limit

((M∞)y, d∞, y∞) of {(M∞, r−1
i d, y)}, where d, d∞ are the metrics ofM∞, (M∞)y

respectively, and {ri} is a positive sequence converging to 0.

Definition 2.2. A point y ∈ M∞ is called regular, if there exists some k

so that every tangent cone at y is isometric to Rk. A point is called singular,

if it is not regular.

In [3], the following theorem was proved:

Theorem 2.1. Regular points are dense in the Gromov-Hausdorff limits

of manifolds with Ricci curvature lower bound.

Below is a result of Ni-Tam [28] on the heat flow on Kähler manifolds:

Theorem 2.2. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Let u be a smooth function on M with

compact support. Let

v(x, t) =

∫
M
H(x, y, t)u(y)dy.
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Here H(x, y, t) is the heat kernel of M . Let η(x, t)αβ = vαβ and λ(x) be the

minimum eigenvalue for η(x, 0). Let

λ(x, t) =

∫
M
H(x, y, t)λ(y)dy.

Then η(x, t)−λ(x, t)gαβ is a nonnegative (1, 1) tensor for t ∈ [0, T ] for T > 0.

A detailed proof of this theorem is presented in Appendix A.

Recall the Hörmander L2-theory:

Theorem 2.3. Let (X,ω) be a connected but not necessarily complete

Kähler manifold with Ric ≥ 0. Assume X is Stein. Let ϕ be a C∞ function on

X with
√
−1∂∂ϕ ≥ cω for some positive function c on X . Let g be a smooth

(0, 1) form satisfying ∂g = 0 and
∫
X
|g|2
c e
−ϕωn < +∞. Then there exists a

smooth function f on X with ∂f = g and
∫
X |f |2e−ϕωn ≤

∫
X
|g|2
c e
−ϕωn.

The proof can be found in [11, pp. 38–39]. Also compare Lemma 4.4.1

in [16]. Note that the theorem also applies to singular metrics with positive

curvature in the current sense.

Recall the three circle theorem in [22]:

Theorem 2.4. Let M be a complete noncompact Kähler manifold with

nonnegative holomorphic sectional curvature, p ∈ M . Let f be a holomorphic

function on M . Let M(r) = sup
B(p,r)

|f(x)|. Then logM(r) is a convex function

of log r. Therefore, given any k > 1, M(kr)
M(r) is monotonic increasing.

Theorem 2.4 has the following consequences:

Corollary 2.1. Given the same condition as in Theorem 2.4, if f ∈
Od(M), then M(r)

rd
is nonincreasing.

Corollary 2.2. Given the same condition as in Theorem 2.4, if f(p)=0,

then M(r)
r is nondecreasing.

Remark 2.1. The three circle theorem is still true for holomorphic sections

on nonpositive bundles. See page 17 of [22] for a proof.

Finally, we need the multiplicity estimate by by Ni [26] (see also [7]):

Theorem 2.5. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Then dim(Od(M)) ≤ dim(Od(Cn)).

Note that this result also follows from Corollary 2.1.

In this paper, we will denote by Φ(u1, . . . , uk| . . . ) any nonnegative func-

tions depending on u1, . . . , uk and some additional parameters such that when

these parameters are fixed,

lim
uk→0

· · · lim
u1→0

Φ(u1, . . . , uk| . . . ) = 0.
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Let C(n), C(n, v) be large positive constants depending only on n or n, v, and

let c(n), c(n, v) be small positive constants depending only on n or n, v. The

values might change from line to line.

3. Construct holomorphic charts with uniform size

In this section, we introduce the following proposition, which is crucial for

the construction of holomorphic functions.

Proposition 3.1. Let Mn be a complete Kähler manifold with nonnega-

tive bisectional curvature, x ∈ M . There exist ε(n) > 0, δ = δ(n) > 0 so that

the following holds : For ε < ε(n), if dGH(B(x, 1
εr), BCn(0, 1

εr)) < εr, there

exists a holomorphic chart (w1, . . . , wn) containing B(x, δr) so that

• ws(x) = 0(1 ≤ s ≤ n);

•
∣∣∣ n∑
s=1

∣∣∣ws|2(y)− r2(y)| ≤ Φ(ε|n)r2 in B(x, δr) — here r(y) = d(x, y);

• |dws(y)| ≤ C(n) in B(x, δr).

Proof. By scaling, we may assume r � 1, to be determined. Set R = r
100

� 1. According to the assumptions and the Cheeger-Colding theory [2] (see

also equation (1.23) in [4]), there exist real harmonic functions b1, . . . , b2n on

B(x, 4r) so that

(3.1) −
∫
B(x,2r)

∑
j

|∇(∇bj)|2 +
∑
j,l

|〈∇bj ,∇bl〉 − δjl|2 ≤ Φ(ε|n, r)

and

(3.2) bj(x) = 0(1 ≤ j ≤ 2n), |∇bj | ≤ C(n)

in B(x, 2r). Furthermore, the map F (y) = (b1(y), . . . , b2n(y)) is a Φ(ε|n)r

Gromov-Hausdorff approximation from B(x, 2r) to BR2n(0, 2r). According to

the argument above Lemma 9.14 in [6] (see also (20) in [21]), after a suitable

orthogonal transformation, we may assume

(3.3) −
∫
B(x,r)

|J∇b2s−1 −∇b2s|2 ≤ Φ(ε|n, r)

for 1 ≤ s ≤ n. Set w′s = b2s−1 +
√
−1b2s. Then

(3.4) −
∫
B(x,r)

|∂w′s|2 ≤ Φ(ε|n, r).

The idea is to perturb w′s so that they become a holomorphic chart. We

would like to apply the Hörmander L2-estimate. First, we construct the weight
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function. Consider the function

h(y) =
2n∑
j=1

b2j (y).

Then in B(x, r),

(3.5) |h(y)− r2(y)| ≤ Φ(ε|n)r2.

By (3.2),

(3.6) |∇h(y)| ≤ C(n)r(y)

in B(x, r). The real Hessian of h satisfies

(3.7)

∫
B(x,5R)

∑
u,v

|huv(y)− 2guv|2 ≤ Φ(ε|n,R).

Now consider a smooth function ϕ: R+ → R+ with ϕ(t) = t for 0 ≤ t ≤ 1,

ϕ(t) = 0 for t ≥ 2, and |ϕ|, |ϕ′|, |ϕ′′| ≤ C(n). Let H(x, y, t) be the heat kernel

on M , and set

(3.8) u(y) = 5R2ϕ

Ç
h(y)

5R2

å
, ut(z) =

∫
M
H(z, y, t)u(y)dy.

Claim 3.1. u1(z) satisfies that (u1)αβ(z) ≥ c(n)gαβ > 0 in B
Ä
x, R10

ä
.

Proof. Let λ(y) be the lowest eigenvalue of the complex Hessian uαβ. By

(3.7),

−
∫
B(x,5R)

|hαβ − 2gαβ|
2 ≤ Φ(ε|n,R).

Then there exists E ⊂ B(x, 5R) with

(3.9) vol(B(x, 5R)\E) ≤ Φ(ε|n,R), hαβ ≥
1

2
gαβ

on E. By (3.5), we may assume h(y) ≤ 5R2 in B(x, 2R). Then u = h in

B(x, 2R). We have

(3.10)

Ç∫
B(x,2R)\E

|λ2(y)|dy
å 1

2

≤

Ñ∫
B(x,4R)\E

∑
α,β

|hαβ|
2

é 1
2

≤ 4

Ñ∫
B(x,4R)\E

∑
α,β

|hαβ − 2gαβ|
2dy

é 1
2

+ 4

Ñ∫
B(x,4R)\E

∑
α,β

|2gαβ|
2dy

é 1
2

≤ Φ(ε|n,R)
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and

(3.11)

|λ| ≤ |uαβ|

=

∣∣∣∣ϕ′hαβ +
ϕ′′

5R2
hαhβ

∣∣∣∣
≤ |ϕ′(hαβ − 2gαβ)|+

∣∣∣∣2ϕ′gαβ +
ϕ′′

5R2
hαhβ

∣∣∣∣
≤ C(n)(|hαβ − 2gαβ|+ 1).

Therefore,

(3.12)

∫
B(x,5R)

|λ(y)|dy ≤ C(n)R2n.

Let λ(z, 1) =
∫
H(z, y, 1)λ(y)dy. Note that by definition (3.8), u is supported

in B(x, 4R). By (3.9), λ ≥ 1
2 in E. For z ∈ B

Ä
x, R10

ä
,

(3.13)

∫
H(z, y, 1)λ(y)dy =

∫
B(x,4R)

H(z, y, 1)λ(y)dy

≥
∫
B(x,2R)\E

H(z, y, 1)λ(y)dy

+

∫
B(x,4R)\B(x,2R)

H(z, y, 1)λ(y)dy

+

∫
E∩B(z,1)

H(z, y, 1)λ(y)dy.

By heat kernel estimates of Li-Yau [20], H(z, y, 1) ≥ c(n) > 0 for y ∈ B(z, 1).

Also, with volume comparison, we findH(z, y, 1) ≤ C(n) for y, z ∈ B(x, 4R).As

a consequence,

(3.14)

∫
B(x,2R)\E

|H(z, y, 1)λ(y)|dy

≤ C(n)

∫
B(x,2R)\E

|λ(y)|dy

≤ C(n)

Ç∫
B(x,2R)\E

|λ2(y)|dy
å 1

2

(vol(B(x, 2R)\E))
1
2

≤ Φ(ε|n,R),

(3.15)

∫
E∩B(z,1)

H(z, y, 1)λ(y)dy ≥ 1

2

∫
E∩B(z,1)

H(z, y, 1)dy ≥ c(n) > 0.

Note that d(y, z) ≥ R for y ∈ B(x, 4R)\B(x, 2R). The heat kernel esti-

mate says H(y, z, 1) ≤ C(n)e−
R2

5 . Therefore, by (3.12),

(3.16)

∫
B(x,4R)\B(x,2R)

|H(z, y, 1)λ(y)|dy ≤ C(n)e−
R2

5 R2n < Φ

Å
1

R

ã
.
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Putting (3.14), (3.15), (3.16) in (3.13), we find

(3.17) λ(z, 1) =

∫
H(z, y, 1)λ(y)dy ≥ c(n)− Φ

Å
1

R
|n)− Φ(ε|n,R

ã
for z ∈ B

Ä
x, R10

ä
. We first let R be large and then let ε be very small. Then

λ(z, 1) > c(n). We conclude the proof of the claim from Theorem 2.2. �

Recall that ut is defined in (3.8). We claim that there exists ε0 = ε0(n) > 0

so that for large R,

(3.18) min
y∈∂B(x, R

20
)
u1(y) > 4 sup

y∈B(x,ε0
R
20

)

u1(y).

This is a simple exercise by using the heat kernel estimate. One can also apply

Proposition A.1 to conclude the proof. From now on, we freeze the value of R.

That is to say, R = R(n) > 0 satisfies Claim 3.1, (3.18) and R
20ε0 > 100.

Let Ω be the connected component ofy ∈ B
Å
x,
R

20

ã ∣∣∣∣u1(y) < 2 sup
y∈B(x,ε0

R
20

)

u1(y)


containing B(x, ε0

R
20). Then Ω is relatively compact in B(x, R20) and Ω is a

Stein manifold by Claim 3.1.

Now we apply Theorem 2.3 to Ω, with the Kähler metric induced from M .

Take smooth (0, 1) forms gs = ∂w′s defined in (3.4), and take the weight func-

tion ψ = u1. We find smooth functions fs in Ω with ∂fs = gs and

(3.19)

∫
Ω
|fs|2e−ψωn ≤

∫
Ω

|gs|2

c
e−ψωn ≤

∫
Ω |∂w′s|2ωn

c(n)
≤ Φ(ε|n).

Here we used the fact that r = 100R = 100R(n). By Proposition A.1, we find

ψ = u1 ≤ C(R,n) = C(n) in B(x,R). Therefore,

(3.20)

∫
B(x,10)

|fs|2ωn ≤
∫

Ω
|fs|2ωn ≤ Φ(ε|n).

Note that ws = w′s − fs is holomorphic, as ∂ws = ∂w′s − gs = 0. Since w′s
is harmonic (complex), fs is also harmonic. By the mean value inequality [18]

and Cheng-Yau’s gradient estimate [10], we find that in B(x, 5),

(3.21) |fs| ≤ Φ(ε|n), |∇fs| ≤ Φ(ε|n).

Therefore, equation (3.1) implies

(3.22)

∫
B(x,4)

|(ws)i(wt)jgij − 2δst| ≤ Φ(ε|n).

Claim 3.2. ws(s = 1, . . . , n) is a holomorphic chart in B(x, 1).
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Proof. Recall that (b1, . . . , b2n) is a Φ(ε|n) Gromov-Hausdorff approxima-

tion to the image in R2n. According to (3.21), on B(x, 1), w = (w1, . . . , wn)

is also a Φ(ε|n) Gromov Hausdorff approximation to BCn(0, 1). Therefore,

w−1(BCn(0, 1)) is compact in B(x, 1 + Φ(ε|n)). First we prove that the degree

d of the map w is 1. By (3.22) and the fact that holomorphic maps preserves

the orientation, d ≥ 1. We also have

(3.23)

d · vol(BCn(0, 1)) =
1

(−2
√
−1)n

∫
w−1(B(0,1))

dw1 ∧ dw1 ∧ · · · ∧ dwn ∧ dwn

≤ (1 + Φ(ε|n)) Vol(B(x, (1 + Φ(ε|n))) + Φ(ε|n)

by (3.21) and (3.22). This means that if ε is sufficiently small, then d = 1.

That is to say, (w1, . . . , wn) is generically one to one in B(x, 1). Moreover,

(w1, . . . , wn) must be a finite map: the preimage of a point must be a subvariety

which is compact in the Stein manifold Ω, thus finitely many points. According

to Proposition 14.7 on page 87 of [13], this is an isomorphism. �

We can make a small perturbation so that ws(x) = 0 for 1 ≤ s ≤ n. This

completes the proof of Proposition 3.1. �

4. A gap theorem for the complex structure of Cn

As the first application of Proposition 3.1, we prove a gap theorem for the

complex structure of Cn. The conditions are rather restrictive. However, we

shall expand some of the ideas in later sections.

Theorem 4.1. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature and p ∈M . There exists ε(n) > 0 so that if

ε < ε(n) and

(4.1)
vol(B(p, r))

r2n
≥ ω2n − ε

for all r > 0, then M is biholomorphic to Cn. Here ω2n is the volume of the

unit ball in Cn. Furthermore, the ring OP (M) is finitely generated. In fact, it

is generated by n functions which form a coordinate in Cn.

Proof. Consider the blow-down sequence (Mi, pi, gi) =
Ä
M,p, 1

s2i
g
ä

for

si →∞. According to Proposition 3.1 and the Cheeger-Colding theory [2], if ε

is sufficiently small, there exists a holomorphic chart (wi1, . . . , w
i
n) on B(pi, 1).

Moreover, the map (wi1, . . . , w
i
n) is a Φ(ε|n) Gromov-Hausdorff approximation

to BCn(0, 1). We may assume

(4.2) wis(pi) = 0
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for s = 1, . . . , n. We can also regard wis as holomorphic functions on B(p, si)

⊂M . For each i, we can find a new basis vis for span{wis} so that

(4.3)

∫
B(p,1)

visv
i
t = δst.

Set

(4.4) M i
s(r) = sup

x∈B(p,r)
|vis(x)|.

Claim 4.1. M i
s(si)

M i
s(

1
2
si)
≤ 2 + Φ(ε|n) for 1 ≤ s ≤ n.

Proof. It suffices to prove this for s = 1. Let vi1 =
n∑
j=1

cijw
i
j . Without loss of

generality, assume |ci1|= max
1≤j≤n

|cij |>0. Then
vi1
ci1

= wi1 +
n∑
j=2

αijw
i
j and |αij | ≤ 1.

Since on Mi, (wi1, . . . , w
i
n) is a Φ(ε|n) Gromov-Hausdorff approximation to

BCn(0, 1), we find

(4.5)

M i
s(si)

M i
s(

1
2si)

=

sup
x∈B(p,si)

∣∣∣∣wi1(x) +
n∑
j=2

αijw
i
j(x)

∣∣∣∣
sup

x∈B(p,
si
2

)

∣∣∣∣wi1(x) +
n∑
j=2

αijwij(x)

∣∣∣∣

=

sup
x∈B(pi,1)

∣∣∣∣wi1(x) +
n∑
j=2

αijw
i
j(x)

∣∣∣∣
sup

x∈B(pi,
1
2

)

∣∣∣∣wi1(x) +
n∑
j=2

αijwij(x)

∣∣∣∣
≤ 2 + Φ(ε|n).

This concludes the proof. �

According to the three circle Theorem 2.4, M
i
s(2r)

M i
s(r)

is monotonic increasing

for 0 < r < 1
2si. Then Claim 4.1 implies

(4.6)
M i
s(2r)

M i
s(r)

≤ 2 + Φ(ε|n)

for 0 < r < 1
2si. From (4.3), we find M i

s(
1
2) ≤ C(n). Equation (4.6) implies

(4.7) M i
s(r) ≤ C(n)(rα + 1)

for α = 1+Φ(ε|n). As si →∞, by taking subsequence, we can assume vis → vs
uniformly on each compact set of M . Set

(4.8) Ms(r) = sup
x∈B(p,r)

|vs(x)|.
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Then

(4.9) Ms(r) ≤ C(n)(rα + 1)

for α = 1 + Φ(ε|n) and r ≥ 0. We may assume vs ∈ O 3
2
(M). Note that vs also

satisfies

(4.10) vs(p) = 0(1 ≤ s ≤ n),

∫
B(p,1)

vsvt = δst.

Our goal is to prove that (v1, . . . , vn) is a biholomorphism from M to Cn.

Claim 4.2. Let ε in (4.1) be sufficiently small (depending only on n).

If we rescale each vs so that sup
B(p,1)

|vs| = 1, then in B(p, 1), (v1, . . . , vn) is a

1
100n -Gromov-Hausdorff approximation to BCn(0, 1).

Proof. We argue by contradiction. Assume there exists a positive sequence

εa → 0(a∈N), and let (M ′a, qa) be a sequence of n-dimensional complete non-

compact Kähler manifolds with nonnegative bisectional curvature and

(4.11)
vol(B(qa, r))

r2n
≥ ω2n − εa

for all r > 0. Assume there exist holomorphic functions uas(s = 1, . . . , n) on

M ′a so that

(4.12) uas(qa) = 0, uas ∈ O 3
2
(M ′a),

∫
B(qa,1)

uasu
a
t = castδst, sup

B(qa,1)
|uas | = 1.

Here cast are constants. Assume in B(qa, 1) that (ua1, . . . , u
a
n) is not a 1

100n -

Gromov-Hausdorff approximation to BCn(0, 1). According to Cheeger-Colding

theory [2] and (4.11), (M ′a, qa) converges to (R2n, 0) in the pointed Gromov-

Hausdorff sense. By the three circle theorem and (4.12), we have a uniform

bound for uas in B(qa, r) for any r > 0. Let a → ∞. Then there is a subse-

quence so that uas → us uniformly on each compact set. Moreover, by Remark

9.3 of [6] (see also (21) in [21]), there is a natural linear complex structure on

R2n. Thus we can identify the limit space with Cn. By Lemma 4 in [21], the

limits of holomorphic functions are still holomorphic. Moreover, {us} satisfy

(4.12), according to the three circle theorem. Thus us are all linear functions

which form a standard complex coordinate in Cn. Therefore, (u1, . . . , un) is

an isometry from BCn(0, 1) to BCn(0, 1). This contradicts the assumption that

(ua1, . . . , u
a
n) is not a 1

100n -Gromov-Hausdorff approximation to BCn(0, 1). �

According to Claim 4.2, (v1, . . . , vn)(∂B(p, 1)) ∩BCn(0, 1
2) = ∅. Let U be

the connected component of (v1, . . . , vn)−1(BCn(0, 1
2)) containing p. Then U

is relatively compact in B(p, 1). We claim that (v1, . . . , vn)(U) has complex

dimension n. Otherwise, for a generic point q in (v1, . . . , vn)(U), let the preim-

age in B(p, 1) be Σq. Then Σq has complex dimension at least one. But Σq
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is a compact analytic set in a Stein manifold. Thus it contains only finitely

many points. This is a contradiction.

Therefore, dv1 ∧ · · · ∧ dvn is not identically zero. By (4.9) and Cheng-

Yau’s gradient estimate, |dvi| ≤ C(n)(rΦ(ε|n) + 1). Thus |dv1 ∧ · · · ∧ dvn| ≤
C(n)(rΦ(ε|n) + 1). The canonical line bundle KM has nonpositive curvature.

Note that by the remark following Corollary 2.2, the three circle theorem also

holds for holomorphic sections of nonpositive bundles. Therefore, if the holo-

morphic n-form dv1∧···∧dvn vanishes at some point in M , then |dv1∧···∧dvn|
must be of at least linear growth, by Corollary 2.2. Therefore, dv1 ∧ · · · ∧ dvn
is vanishing identically on M . This is a contradiction.

Next we prove that the map (v1, . . . , vn): M → Cn is proper. Given

any R > 1, we can define a norm | · |R for the span of v1, . . . , vn induced by∫
B(p,R) vsvt. There exists a basis vR1 , . . . , v

R
n for the span of v1, . . . , vn so that

(4.13)

∫
B(p,1)

vRs v
R
t = δst,

∫
B(p,R)

vRs v
R
t = c(R)stδst.

That is, we diagonalize the two norms | · |1 and | · |R simultaneously. Obviously

we have

(4.14)
n∑
s=1

|vs(x)|2 =
n∑
s=1

|vRs (x)|2

for any x ∈M . To prove (v1, . . . , vn) is proper, it suffices to prove
n∑
s=1
|vRs (x)|2

is large for x ∈ ∂B(p,R) and large R. Define

(4.15) wRs (x) =
vRs (x)

cRs
,

where cRs are positive constants so that

(4.16) sup
x∈B(p,R)

wRs (x) = 1

for s = 1, . . . , n. Note that
∫
B(p,1) |vRs |2 = 1 and vRs (p) = 0. According to

Corollary 2.2 and (4.13),

(4.17) cRs ≥ cR,
where c = c(n) > 0, R > 1. We can apply Claim 4.2 to vRs in B(p,R). Here

we have to rescale the radius to 1. Then we obtain that (RwR1 , . . . , Rw
R
n ) is a

R
100n -Gromov-Hausdorff approximation from B(p,R) to BCn(0, R). In partic-

ular, for any x ∈ ∂B(p,R), there exists some s0 with |wRs0(x)| ≥ 1
2n . Then

|vRs0(x)| = cRs0 |w
R
s0(x)| ≥ 1

2n
cR,

n∑
s=1

|vs(x)|2 =
n∑
s=1

|vRs (x)|2 ≥ c(n)R2.
(4.18)

The properness is proved.



THE FINITE GENERATION CONJECTURE 789

As dv1 ∧ · · · ∧ dvn is not vanishing at any point on M and (v1, . . . , vn) is

a proper map to Cn, we conclude that (v1, . . . , vn) is a biholomorphism from

M to Cn.

Next we prove that OP (M) is generated by (v1, . . . , vn). We can regard

(v1, . . . , vn) as a global holomorphic coordinate system on M . If f ∈ Od(M),

we can think f = f(v1, . . . , vn). It suffices to prove the right-hand side is a poly-

nomial. Indeed, |f(x)| ≤ C(1+d(x, p)d). Note that by (4.18), |f(v1, . . . , vn)| ≤
C
ÄÄ n∑

s=1
|vs|2

ä d
2 + 1

ä
. This proves f is a polynomial of v1, . . . , vn. �

5. Proof of Theorem 1.4

Proof. We only consider the case for n ≥ 2. Otherwise, the result is

known. Pick p ∈M . Let

(5.1) α = lim
r→∞

vol(B(p, r))

r2n
> 0.

Consider the blow-down sequence (Mi, pi, gi) =
Ä
M,p, 1

s2i
g
ä

for si → ∞. By

the Cheeger-Colding theory [2], a subsequence converges to a metric cone

(X, p∞, d∞). Define

(5.2) r(x) = d∞(x, p∞), x ∈ X, ri(x) = dgi(x, pi), x ∈Mi.

Now pick two regular points y0, z0 ∈ X with

(5.3) r(y0) = r(z0) = 1, d∞(y0, z0) ≥ c(n, α) > 0.

Note that the latter inequality is guaranteed by Theorem 2.1. There exists

δ0 > 0 satisfying

(5.4) B(y0, 2δ0) ∩B(z0, 2δ0) = ∅, δ0 <
1

10

and

dGH

Å
B

Å
y0,

1

ε
δ0

ã
, BR2n

Å
0,

1

ε
δ0

ãã
≤ 1

2
εδ0,

dGH

Å
B

Å
z0,

1

ε
δ0

ã
, BR2n

Å
0,

1

ε
δ0

ãã
≤ 1

2
εδ0.

(5.5)

Here ε = 1
2ε(n), where ε(n) is given by Proposition 3.1. Therefore, if i is

sufficiently large, we can find points yi, zi ∈Mi with ri(yi) = ri(zi) = 1 and

(5.6)

dGH

Å
B

Å
yi,

1

ε
δ0

ã
, BR2n

Å
0,

1

ε
δ0

ãã
≤ εδ0,

dGH

Å
B

Å
zi,

1

ε
δ0

ã
, BR2n

Å
0,

1

ε
δ0

ãã
≤ εδ0.

Let wis and vis be the local holomorphic charts around yi and zi constructed

in Proposition 3.1. Note that they have uniform size (independent of i). By
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changing the value of δ0, we may assume wis, v
i
s are holomorphic charts in

B(yi, δ0) and B(zi, δ0). Moreover,

|dwis|, |dvis| ≤ C(n), wis(yi) = 0, vis(zi) = 0,(5.7) ∣∣∣∣ n∑
s=1

|wis(y)|2 − dgi(y, yi)2
∣∣∣∣ ≤ Φ(ε|n)δ2

0 ,(5.8)

∣∣∣∣ n∑
s=1

|vis(z)|2 − dgi(z, zi)2
∣∣∣∣ ≤ Φ(ε|n)δ2

0(5.9)

for y ∈ B(yi, δ0), z ∈ B(zi, δ0). We need to construct a weight function on

B(pi, R) for some large R to be determined later. The construction is similar

to Proposition 3.1. Set

(5.10) Ai = B(pi, 5R)\B
Å
pi,

1

5R

ã
.

By the Cheeger-Colding theory [2, (4.43) and (4.82)], there exists a smooth

function ρi on Mi so that∫
Ai

|∇ρi −∇
1

2
r2
i |2 + |∇2ρi − gi|2 < Φ

Å
1

i
|R
ã
,(5.11)

|ρi −
r2
i

2
| < Φ

Å
1

i
|R
ã

(5.12)

in Ai. According to (4.20)–(4.23) in [2],

(5.13) ρi =
1

2
(Gi)

2
2−2n , ∆Gi(x) = 0, x ∈ B(pi, 10R)\B

Å
pi,

1

10R

ã
,

and

(5.14) Gi = r2−2n
i

on ∂(B(pi, 10R)\B(pi,
1

10R)). Now

(5.15) |∇ρi(y)| = C(n)|Gi|
n

1−n |∇Gi(y)|.

By (5.12)–(5.14) and the Cheng-Yau’s gradient estimate,

(5.16) |∇ρi(y)| ≤ C(n)ri(y)

for y∈Ai and sufficiently large i. Now consider a smooth function ϕ: R+→R+

given by ϕ(t) = t for t ≥ 2, ϕ(t) = 0 for 0 ≤ t ≤ 1, and |ϕ|, |ϕ′|, |ϕ′′| ≤ C(n).

Let

(5.17) ui(x) =
1

R2
ϕ(R2ρi(x)).

We set ui(x) = 0 for x ∈ B(pi,
1

5R). Then ui is smooth in B(pi, 4R).

Claim 5.1. For sufficiently large i,
∫
B(pi,4R) |∇ui−∇

1
2r

2
i |2+|∇2ui−gi|2 <

Φ( 1
R),

∣∣∣ui − r2i
2

∣∣∣ < Φ
Ä

1
R

ä
, and |∇ui| ≤ C(n)ri in B(pi, 4R).
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Proof. We have

∇ui(x) = ϕ′(R2ρi(x))∇ρi(x),(5.18)

∇2ui(x) = R2ϕ′′(R2ρi(x))∇ρi ⊗∇ρi + ϕ′(R2ρi(x))∇2ρi.(5.19)

The proof follows from a routine calculation, by (5.12), (5.13), and (5.16). �

As in Proposition 3.1, consider a smooth function ϕ: R+ → R+ with

ϕ(t) = t for 0 ≤ t ≤ 1, ϕ(t) = 0 for t ≥ 2, and |ϕ|, |ϕ′|, |ϕ′′| ≤ C(n). Set

(5.20) vi(z) = 3R2ϕ

Ç
ui(z)

3R2

å
, vi,t(z) =

∫
M
Hi(z, y, t)vi(y)dy.

Here Hi(x, y, t) is the heat kernel on Mi. Then vi is supported in B(pi, 4R).

By similar arguments as in Claim 3.1, we arrive at the following:

Proposition 5.1. vi,1(z) satisfies that (v1)αβ(z) ≥ c(n, α)gαβ > 0 for

z ∈ B(pi,
R
10). Here α > 0 is given by (5.1).

Now define

(5.21)

qi(x) = 4n

Ç
log

Ç n∑
s=1

|wis|2
å
λ

Ç
4

n∑
s=1
|wis|2

δ2
0

å
+ log

Ç n∑
s=1

|vis|2
å
λ

Ç
4

n∑
s=1
|vis|2

δ2
0

åå
.

Here λ is a standard cut-off function R+ → R+ with λ(t) = 1 for 0 ≤ t ≤ 1 and

λ(t) = 0 for t ≥ 2. Note that by (5.8) and (5.9), qi(x) has compact support in

B(yi, δ0) ∪B(zi, δ0) ⊂ B(pi, 2).

Lemma 5.1.
√
−1∂∂qi ≥ −C(n, δ0)ωi. Moreover, e−qi(x) is not locally

integrable at yi and zi.

Proof. We have

(5.22) |
√
−1∂∂|wis|2| = |∂wis ∧ ∂wis| ≤ |dwis|2 ≤ C(n)

in B(yi, δ0). When λ′
Ç

4

n∑
s=1

|wis|2

δ20

å
6= 0,

(5.23) δ2
0 ≥

n∑
s=1

|wis|2 ≥
1

4
δ2

0 .

Also note that

(5.24)
√
−1∂∂ log

(
n∑
s=1

|wis|2
)
≥ 0

in the current sense. Then the proof of the first part follows from routine

calculation.



792 GANG LIU

For the second part, when x ∈ B(yi,
δ0
10),

e−qi(x) =
1Å

n∑
s=1
|wis|2

ã4n .

As wis(yi) = 0 for all s, a simple calculation shows e−qi(x) is not locally inte-

grable at yi. The same argument works for zi. �

Putting Proposition 5.1 and Lemma 5.1 together, we find C(n, α, δ0) > 0

so that

(5.25)
√
−1∂∂(qi(x) + C(n, α, δ0)vi,1(x)) ≥ ωi

in B
Ä
pi,

R
15

ä
. Set

(5.26) ψi(x) = qi(x) + C(n, α, δ0)vi,1(x).

By the same argument as in Proposition 3.1, we find ε0 = ε0(α, n) > 0 so

that for sufficiently large R,

(5.27) min
y∈∂B(pi,

R
20

)
vi,1(y) > 4 sup

y∈B
Ä
pi,ε0

R
20

ä vi,1(y).

Of course, we can assume

(5.28)
ε0R

20
> 4.

From now on, we freeze the value of R. That is,

(5.29) R = R(n, α) > 0

satisfies the all the conditions above. Let Ωi be the connected component ofy ∈ B
Å
pi,

R

20

ã ∣∣∣∣vi,1(y) < 2 sup
y∈B(pi,ε0 R20)

vi,1(y)


containing B

Ä
pi, ε0

R
20

ä
. Then Ωi is relatively compact in B

Ä
pi,

R
20

ä
and Ωi is a

Stein manifold, by Proposition 5.1. Also B(pi, 3) ⊂ Ωi.

Now consider a function fi(x) = 1 for x ∈ B
Ä
yi,

δ0
4

ä
; fi has compact

support in B(yi, δ0) ⊂ B(pi, 2) and |∇fi| ≤ C(n, α, δ0). Then fi(zi) = 0. We

solve the equation ∂hi = ∂fi in Ωi with

(5.30)

∫
Ωi

|hi|2e−ψi ≤
∫

Ωi

|∂fi|2e−ψi ≤ C(n, α, δ0).

By Lemma 5.1, we have that e−qi is not locally integrable at yi and zi, hi(yi) =

hi(zi) = 0. Define the holomorphic function µi = fi − hi. Recall that by the

construction, fi(yi) = 1, fi(zi) = 0. Then

(5.31) µi(yi) = fi(yi)− hi(yi) = 1, µi(zi) = fi(zi)− hi(zi) = 0.
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Therefore, µi is not constant on Ωi. It is easy to see that ψi(x) ≤ C(n, α, δ0)

in B(pi, 3). Then

(5.32)
1

C(n, α, δ0)

∫
B(pi,3)

|hi|2 ≤
∫

Ωi

|hi|2e−ψi ≤ C(n, α, δ0).

Thus

(5.33)

∫
B(pi,3)

|µi|2 ≤ 2

∫
B(pi,3)

(|hi|2 + |fi|2) ≤ C(n, α, δ0).

Mean value inequality implies that

(5.34) |µi(x)| ≤ C(n, α, δ0)

for x ∈ B(pi, 2). Therefore, the holomorphic function

(5.35) ν∗i (x) = µi(x)− µi(pi)

is uniformly bounded in B(pi, 2). Set

(5.36) M ′i(r) = sup
x∈B(pi,r)

|ν∗i (x)|.

Then

(5.37) M ′i(2) ≤ C(n, α, δ0).

On the other hand, by (5.31), we find

(5.38) M ′i(1) ≥ 1

2
.

Therefore,

(5.39)
M ′i(2)

M ′i(1)
≤ C(n, α, δ0).

Now we are ready to apply the three circle theorem. More precisely, we consider

the rescale functions ν∗i = βiν
∗
i in B(p, 2si) ⊂ M . Here βi are constants so

that

(5.40)

∫
B(p,2)

|ν∗i |2 = 1.

This implies

(5.41) |ν∗i | ≤ C(n, α)

in B(p, 1). Set Mi(r) = sup
x∈B(p,r)

|ν∗i |. The three circle theorem says Mi(2r)
Mi(r)

is

monotonic increasing for 0 < r ≤ si. By (5.39) and similar arguments as in

(4.9), we obtain that

(5.42) Mi(r) ≤ C(n, α, δ0)
Ä
rC(n,α,δ0) + 1

ä
for all i and si ≥ r. Let i → ∞. A subsequence of ν∗i converges uniformly on

each compact set to a holomorphic function v of polynomial growth. v cannot
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be constant, as v satisfies v(p) = 0 and
∫
B(p,2) |v|2 = 1. Moreover, the degree

at infinity is bounded by C(n, α, δ0). �

Remark 5.1. By the Gromov compactness theorem, we can find δ0 =

δ0(n, α), y0, z0 satisfying (5.3), (5.4) and (5.5). Therefore, the degree of the

holomorphic function at infinity is bounded by C(n, α). The dependence on α

is obvious necessary if we look at the complex one-dimensional case.

Corollary 5.1. Let Mn be a complete Kähler manifold with nonnegative

bisectional curvature and maximal volume growth. Then the transcendental

dimension of polynomial growth holomorphic functions is n. Moreover, OP (M)

separates points and tangents on M .

Proof. From Theorem 1.4, there exists a nonconstant holomorphic func-

tion f of polynomial growth. First we assume that the universal cover of M

does not split as products. Then by Theorem 3.1 in [28], if we run the heat

flow for log(|f |2 + 1), the function becomes strictly plurisubharmonic of log-

arithmic growth. Then we can apply Hörmander’s L2-estimate (for example,

Theorem 5.2 in [26]) to conclude that OP (M) separates points and tangents

on M . Together with the multiplicity estimate Theorem 2.5, we proved that

the transcendental dimension of holomorphic functions of polynomial growth

over C is n. If the universal covering splits, we work on the universal covering

space. Each factor must be of maximal volume growth. Then we can find

nonconstant holomorphic functions of polynomial growth. Then we run the

heat flow for each factor to obtain strictly plurisubharmonic functions of log-

arithmic growth. Then we add these function together, which is still strictly

plurisubharmonic. Finally, to put these functions back to M , just observe

that π1(M) is finite. Then we can symmetrize the function. Then it projects

to M , still with logarithmic growth. Then the argument is the same for the

nonsplitting case. �

Remark 5.2. In this case, one can actually prove Mn is biholomorphic to

a quasi-affine variety. This follows from Mok’s deep work in [23]. However, this

is not enough to prove that OP (M) is finitely generated. By using Theorem 6.1

below, we shall prove M is affine algebraic.

6. A properness theorem

Proposition 6.1. There exists ε(n, v) > 0 so that the following holds :

Let (Y n, q) be a complete Kähler manifold with nonnegative bisectional curva-

ture and vol(B(q,r))
r2n

≥ v > 0 for all r > 0. Assume that for some 0 < ε < ε(n, v),

(6.1) dGH

Å
B

Å
q,

1

ε
R

ã
, BX

Å
o,

1

ε
R

ãã
≤ εR
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for some metric cone (X, o) (o is the vertex) and R > 0. Then there exist

N = N(v, n) ∈ N, 1 > δ1 > 5δ2 > δ = δ(v, n) > 0 and holomorphic functions

g1, . . . , gN on B(q, δ1R) with gj(q) = 0 and

(6.2) min
x∈∂B(q,

δ1
3
R)

N∑
j=1

|gj(x)|2 > 2 sup
x∈B(q,δ2R)

N∑
j=1

|gj(x)|2.

Furthermore, for all j,

(6.3)

sup
x∈B(q, 1

2
δ1R)

|gj(x)|2

sup
x∈B(q, 1

3
δ1R)

|gj(x)|2
≤ C = C(n, v).

Remark 6.1. This proposition is a generalization of Proposition 3.1. Es-

sentially it deals with the separation of points.

Proof. By rescaling, we see that if the proposition holds for some R > 0,

then it holds for all R > 0 with the same parameter constants. Therefore, with-

out loss of generality, we may assume R is sufficiently large, to be determined.

Assume

(6.4) X = Rk × Z.

We will do induction on k. For the case k = 2n, the proposition reduces

to Proposition 3.1. Assume the proposition holds for k = 2s, but fails for

k = 2s − 2. Then there exist complete Kähler manifolds (Y n
i , qi)(i ∈ N) with

nonnegative bisectional curvature and vol(B(qi,r))
r2n

≥ v > 0 for all r > 0, metric

cones (Xi, oi), and a sequence Ri > 0 with

(6.5) (Xi, oi) = (R2s−2, 0)× (Zi, z
∗
i ), dGH(B(qi, iRi), BXi(oi, iRi)) ≤

1

i
Ri.

Furthermore, Proposition 6.1 does not hold uniformly for any subsequence

(Yik , qik). That is to say, there do not exist positive constants δ, C,N , 1 >

δik1 > 5δik2 > δ and holomorphic functions gjik on B(qik , δ
ik
1 Ri) (gjik(qik) = 0),

satisfying (6.2) and (6.3) (replace R by Ri) for all k.

By rescaling (Yi, qi), we may assume that Ri = R for all i. For nota-

tional simplicity, we still denote the rescaled manifolds by (Yi, qi). By Gromov

compactness, after passing to a subsequence, we may assume (Yi, qi) converges

in the pointed Gromov-Hausdorff sense to a metric space (X0, o0). By (6.5),

(X0, o0) is a metric cone. Also there exists a sequence si →∞ with

(6.6)

(X0, o0) = (R2s−2, 0)× (Z0, z
∗
0), dGH(B(qi, siR), BX0(o0, siR)) < Φ

Å
1

i

ã
R.
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Observe that Z0 does not split off the R2 factor, by the induction hypothesis.

Our goal is to show that Proposition 6.1 holds uniformly for (Yi, qi) when i is

sufficiently large. Of course, this would complete the induction.

The idea is this. For some δ3 > 0, we shall consider the set ∂B(o0,
δ3R

3 ) ∩
(X0\(R2s−2× z∗0)). Then each tangent cone splits off R2s. Thus a small neigh-

borhood is Gromov-Hausdorff close to a ball in R2s times a metric cone. This

is still true for Yi, when i is sufficiently large. Then we can apply induction

around these points. The Hörmander L2-estimate of ∂ can be applied to sepa-

rate these points from qi. For points near the slice R2s−2×z∗0 , we can construct

holomorphic coordinate functions as in Proposition 3.1 to separate from qi.

For the reader’s convenience, we break the proof of Proposition 6.1 into

three parts.

Part I: Basic setup. As in (5.20), we have a nonnegative function vi,1 so

that in B(qi, 10R),
√
−1∂∂vi,1 ≥ c(n, v)ωi > 0,(6.7)

inf
y∈B(qi,

1
2
R)\B(qi,

1
4
R)
vi,1(y) > 4 sup

y∈B(qi,δ3R)
vi,1(y),(6.8)

inf
y∈B(qi,

δ3
2
R)\B(qi,

δ3
4
R)

vi,1(y) > 4 sup
y∈B(qi,δ4R)

vi,1(y).(6.9)

Here δs = δs(n, v) > 0(s = 3, 4). By Proposition A.1, we may also assume

(6.10) 4 sup
y∈B(qi,δ4R)

vi,1(y) >
1

2
, δ3R > 100.

Now we freeze the value of R. That is to say,

(6.11) R = R(n, v) > 0.

Then

(6.12) |vi,1(y)| ≤ C(R,n, v) = C(n, v), y ∈ B(qi, R).

Let Ωi be the connected component of
¶
z|vi,1(z) < sup

B(qi,δ3R)
vi,1
©

containing

B(qi, δ3R). As before, we see Ωi is Stein.

According to (6.6) and (2.4)–(2.11) in [6], there exist harmonic functions

bil(1 ≤ l ≤ 2s− 2) in B(qi, 2R) with

(6.13)

∫
B(qi,R)

∑
1≤l1,l2≤2s−2

|〈∇bil1 ,∇b
i
l2〉 − δl1l2 |

2 +
∑
l

|∇2bil|2 < Φ

Å
1

i
|n
ã

and

(6.14) bil(qi) = 0, |∇bil| ≤ C(n)
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in B(qi, R). Moreover, in B(qi, R), (bi1, . . . , b
i
2s−2) approximates (y1, . . . , y2s−2)

with error Φ(1
i |n). Here (y1, . . . , y2s−2) is the Euclidean coordinate of (X0, o0)

= (R2s−2, 0)× (Z0, z
∗
0). By similar arguments as before, we may assume that

(6.15)

∫
B(qi,R)

|J∇bi2m−1 −∇bi2m|2 ≤ Φ

Å
1

i
|n
ã

for 1 ≤ m ≤ s− 1. Set w̃im = bi2m−1 +
√
−1bi2m. Then

(6.16)

∫
B(qi,R)

|∂w̃im|2 ≤ Φ

Å
1

i
|n
ã
.

By solving the ∂ problem as before, we find holomorphic functions wim(1 ≤
m ≤ s− 1) with

(6.17) wim(qi) = 0, |wim − w̃im| ≤ Φ

Å
1

i
|n
ã

in B(qi,
R
2 ). Recall that δ3 in (6.9). For sufficiently large i, define

Ei =

{
x|x ∈ ∂B

Å
qi,

δ3R

3

ã
,
s−1∑
m=1

|wim|2 ≤
(δ3R)2

27

}
,(6.18)

E =

{
x|x ∈ ∂BR2s−2×Z0

Å
(0, z∗0),

δ3R

3

ã
,

2s−2∑
k=1

|yk|2 ≤
(δ3R)2

18

}
.(6.19)

Then the limit of Ei is contained in E under the Gromov-Hausdorff approxi-

mation. Observe from the definition and (6.10), if x ∈ ∂B(qi,
δ3R

3 )\Ei, then

(6.20)
s−1∑
m=1

|wim(x)|2 > (δ3R)2

27
> 1.

Part II: The induction step. For x ∈ E, let Cx be a tangent cone. Then Cx
must split off a factor R2s−1, by Cheeger-Colding [2]. Since Cx is the Gromov-

Hausdorff limit of Kähler manifolds with noncollapsed volume and nonnegative

Ricci curvature, Cx splits off a factor R2s, by [6]. According to the induction

hypothesis, let ε(n, v, s) > 0 be the constant ε(n, v) in Proposition 6.1 when

X splits off R2s. There exists

(6.21)
δ3R

20
> rx > 0

with

(6.22) dGH

Å
B

Å
x,

1

ε
rx

ã
, BW

Å
w,

1

ε
rx

ãã
< εrx, (W,w) = (R2s, 0)×(H,h∗).

Here ε = 1
2ε(n, v, s) and (H,h∗) is a metric cone with vertex at h∗. Note that

when y ∈ E is sufficiently close to x,

(6.23) dGH

Å
B

Å
y,

1

ε
rx

ã
, BW

Å
w,

1

ε
rx

ãã
< εrx.
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By compactness, we can find a uniform positive lower bound of rx, say

(6.24) rx ≥ R0(X0) > 0.

By Gromov compactness, we actually have

(6.25) rx > R0 = R0(n, v) > 0.

Note that W is not necessarily equal or close to a tangent cone of x.

Then for sufficiently large i and any point xi ∈ Ei,

dGH

Å
B

Å
xi,

1

ε
rxi

ã
, BWi

Å
wi,

1

ε
rxi

ãã
< εrxi ,(6.26)

δ3R

20
> rxi ≥ R0 > 0, (Wi, wi) = (R2s, 0)× (Hi, h

∗
i ).(6.27)

Here ε is the same as in (6.22) and (Hi, h
∗
i ) is a metric cone with vertex at h∗i .

We can apply the induction to B(xi,
1
εrxi) and the metric cone (Wi, wi). By

the induction hypothesis, there exist

(6.28) 1 > δ1 > 5δ2 > δ(n, v), N = N(v, n) ∈ N

and holomorphic functions gji (1 ≤ j ≤ N) in B(xi, δ1rxi) with

gji (xi) = 0, min
x∈∂B

Ä
xi,

δ1rxi
3

ä N∑
i=1

|gji (x)|2 > 2 sup
x∈B(xi,δ2rxi )

N∑
i=1

|gji (x)|2,(6.29)

sup
x∈B(xi,

1
2
δ1rxi )

|gji (x)|2

sup
x∈B(xi,

1
3
δ1rxi )

|gji (x)|2
≤ C(n, v).(6.30)

By normalization, we can also assume

(6.31) sup
j

sup
y∈B(xi,δ2rxi )

|gji (y)| = 2.

Note that by the three circle theorem,

(6.32) sup
y∈B(xi,

rxi δ1
2

)

|gji (y)| ≤ C(n, v).

Set

(6.33) Fi(x) =
N∑
j=1

|gji |
2.

Let λ be a standard cut-off function R+ → R+ given by λ(t) = 1 for 0 ≤ t ≤ 1,

λ(t) = 0 for t ≥ 2, and |λ′|, |λ′′| ≤ C(n). Consider

(6.34) hi(x) = 4n logFi(x)λ(Fi(x)).

By (6.29) and (6.31), hi(x) is supported in B
Ä
xi,

δ1rxi
3

ä
. Similar to Lemma 5.1,

it is easy to check that

(6.35)
√
−1∂∂hi(x) ≥ −C(n, v)ωi.
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By (6.7), there exists ξ = ξ(n, v) > 0 with

(6.36)
√
−1∂∂(ξvi,1 + hi) ≥ ωi

in Ωi. We will assume such ξ is large, to be determined later. Set

(6.37) φ(x) = ξvi,1(x) + hi(x).

Now consider a function

(6.38) µi(x) = ϕ

Ç
d(x, xi)

δ1rxi

å
.

Here ϕ(t) = 1 for t ≤ 1
3 , ϕ(t) = 0 for t ≥ 1, and |ϕ′| ≤ C(n). Then it is clear

µi is supported in B(xi, δ1rxi). Also, by (6.27),

(6.39) |∇µi| ≤ C(n, v).

We solve the ∂ problem ∂si = ∂µi on Ωi satisfying

(6.40)

∫
Ωi

e−φ|si|2 ≤
∫

Ωi

e−φ|∂µi|2

=

∫
B(xi,δ1rxi )\B

Ä
xi,

δ1rxi
3

ä e−φ|∂µi|2
≤ exp

Ñ
−ξ inf

y∈B(qi,
δ3R

2
)\B(qi,

δ3R

4
)

vi,1(y)

é
C(n, v).

Here we used that hi is supported in B
Ä
xi,

δ1rxi
3

ä
. We also used that

(6.41) B(xi, δ1rxi) ⊂ B
Å
qi,

δ3R

2

ã∖
B

Å
qi,

δ3R

4

ã
,

by (6.27). Observe that by (6.9), µi vanishes on B
Ä
qi,

1
2δ4R

ä
. Hence si is

holomorphic in B
Ä
qi,

1
2δ4R

ä
. The mean value inequality implies that for x ∈

B
Ä
qi,

δ4R
5

ä
,

(6.42)

|si(x)| ≤
∫
B(qi,δ4R) |si|2

c(n, v)(δ4R)2n

≤ exp

(
ξ sup
y∈B(qi,δ4R)

vi,1(y)

) ∫
Ωi
e−φ|si|2

c(n, v)(δ4R)2n

≤ exp

Ç
− ξ
Ç

inf
y∈B
Ä
qi,

δ3R

2

ä
\B
Ä
qi,

δ3R

4

ävi,1(y)− sup
y∈B(qi,δ4R)

vi,1(y)

åå
1

c(n, v)(δ4R)2n

≤ e−
ξ
4

c(n, v)(δ4R)2n
.
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Here we used (6.9) and (6.10). If ξ is large (depending only on n, v), then we

can make

(6.43) |si(x)| ≤ 1

10

for x ∈ B
Ä
qi,

δ4R
5

ä
. Now we freeze the value of ξ = ξ(n, v). Note that the local

integrability of si forces si(xi) = 0. Set

(6.44) w1
i (x) = µi(x)− si(x).

Then wi1 is holomorphic in Ωi and

(6.45) w1
i (xi) = 1, |w1

i | ≤
1

10

in B
Ä
qi,

δ4R
5

ä
. Set

(6.46) f1
i (x) = w1

i (x)− w1
i (qi).

Then

(6.47) f1
i (qi) = 0, |f1

i (xi)| ≥
9

10
.

By (6.40) and mean value inequality, we find

(6.48) |f1
i (x)| ≤ C(n, v), |∇f1

i (x)| ≤ C(n, v), x ∈ B
Å
qi,

2δ3R

3

ã
.

Therefore, there exists δ5(n, v) > 0 so that

(6.49) |f1
i (x)| ≥ 1

2

in B(xi, δ5R).

Part III: Completion of the proof. By a standard covering argument, we

can take xj ∈ E (j = 1, 2, . . . ,K, K = K(v, n)) with

(6.50) ∪j B
Å
xj ,

δ5R

3

ã
⊃ E, δ3R

20
> rxj ≥ R0(n, v) > 0,

and

(6.51)

dGH

Å
B

Å
xj ,

1

ε
rxj

ã
, BW j

Å
wj ,

1

ε
rxj

ãã
<εrxj , (W j , wj)=(R2s, 0)× (Hj , (hj)∗).

Here (Hj , (hj)∗) is a metric cone with vertex at (hj)∗ and ε is the same as in

(6.21). Then for sufficiently large i, we can find xji ∈ Ei, j = 1, . . . ,K with

(6.52) dGH

ÅÅ
B(xji ,

1

ε
rxj

ã
, BW j

Å
wj ,

1

ε
rxj

ãã
< εrxj

and

(6.53) ∪j B
Å
xji ,

δ5R

2

ã
⊃ Ei.
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Now we can apply the induction argument as in Part II for each geodesic ball

B(xji ,
1
εrxj ). We obtain holomorphic functions f ji on B(qi, δ3R) satisfying

(6.54) |f ji (x)| ≥ 1

2

for x ∈ B(xji , δ5R) and

(6.55) |f ji (x)| ≤ C(n, v), x ∈ B
Å
qi,

2δ3R

3

ã
, f ji (qi) = 0.

Put Gi(x) =
K∑
j=1
|f ji |2 +

s−1∑
m=1
|wim|2. Then by (6.17), (6.20), (6.53) and

(6.55),

(6.56) |∇Gi(x)| ≤ C(n, v), x ∈ B
Å
qi,

δ3R

2

ã
, Gi(qi) = 0,

and

(6.57) |Gi(x)| ≥ 1

4
, x ∈ ∂B

Å
qi,

δ3R

3

ã
.

Therefore, there exists δ6 = δ6(n, v) > 0 with

(6.58) sup
x∈B(qi,δ6R)

|Gi(x)| ≤ 1

10
.

Take gki = fki for k = 1, . . . ,K and gki = wik−K for K + 1 ≤ k ≤ K + s − 1.

Then we can find parameters δ, C,N so that (6.2) and (6.3) hold for (Yi, qi)

when i is sufficiently large. This contradicts the assumption in the paragraph

right below (6.4). The proof of Proposition 6.1 is complete. �

The following is the main theorem in this section:

Theorem 6.1. Let Mn be a complete noncompact Kähler manifold with

nonnegative bisectional curvature and maximal volume growth. Then there

exist finitely many polynomial growth holomorphic functions f1, . . . , fk so that

(f1, . . . , fk) is a proper holomorphic map from M to Ck.

Proof. Pick a point p ∈M . Put

(6.59) v = lim
r→∞

vol(B(p, r))

r2n
> 0.

For any sequence ri →∞, set (Mi, pi) = (M,p, r−2
i g). (We shall make ri

explicit in Proposition 6.2 below.) Then there exist R′′i →∞ and metric cones

(Xi, x
∗
i ) with

(6.60) dGH(B(pi, R
′′
i ), BXi(x

∗
i , R

′′
i )) <

1

R′′i
.
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Let di(x) = di(x, pi) for x ∈ Mi. Following the construction in (5.11) and

Claim 5.1, we find a sequence R′i →∞ and functions ρi on Mi satisfying

(6.61)

∫
B(pi,4R′i)

∣∣∣∣∇ρi −∇1

2
d2
i

∣∣∣∣2 + |∇2ρi − gi|2 < Φ

Å
1

i

ã
.

Also, in B(pi, 4R
′
i),

(6.62)

∣∣∣∣ρi − d2
i

2

∣∣∣∣ < Φ

Å
1

i

ã
, |∇ρi| ≤ C(n)di.

As before, consider a smooth function ϕ: R+ → R+ with ϕ(t) = t for 0 ≤ t ≤ 1,

ϕ(t) = 0 for t ≥ 2, and |ϕ|, |ϕ′|, |ϕ′′| ≤ C(n). Set

(6.63) vi(z) = 3(R′i)
2ϕ

Ç
ρi(z)

3(R′i)
2

å
.

Then vi is supported in B(pi, 4R
′
i). Let Hi(x, y, t) be the heat kernel of Mi.

Consider the function τi(x) = log(1 + vi(x)), and define

(6.64) τi,t(z) =

∫
Mi

Hi(z, y, t)τi(y)dy.

By (6.62), we have

(6.65) inf
B(pi,

3
2

)\B(pi,
30
24

)
τi − sup

B(pi,
27
24

)

τi ≥ 2c(n, v) > 0.

Here τi is of logarithmic growth uniform for all i. By heat kernel estimates,

there exists t0 = t0(n, v) > 0 so that

(6.66) inf
B(pi,

3
2

)\B(pi,
30
24

)
τi,t0 − sup

B(pi,
27
24

)

τi,t0 ≥ c(n, v) > 0.

On a smooth Kähler metric cone, let r be the distance function to the

vertex. Then
√
−1∂∂ log(1+ 1

2r
2) is a positive (1, 1) form away from the vertex.

Since τi resembles log(1 + 1
2r

2), by similar arguments as in Proposition 5.1, we

find that on B(pi, 5),

(6.67)
√
−1∂∂τi,t0 ≥ c(n, v) > 0.

By Proposition A.1, for any fixed R and sufficiently large i, on B(pi, R),

c(n, v) log(di(x) + 2)− C(n, v) ≤ τi,t0(x) ≤ C(n, v) log(di(x) + 2),(6.68)
√
−1∂∂τi,t0(x) > 0, x ∈ B(pi, R).(6.69)

Therefore, there exist sequences ‹Ri → ∞, Ri → ∞, and ci → ∞ so that

τ−1
i,t0

({c|c ≤ ci}) ∩B(pi, ‹Ri) is relatively compact in B(pi, ‹Ri). Also

τ−1
i,t0

({c|c ≤ ci}) ∩B(pi, ‹Ri) ⊃ B(pi, Ri),(6.70)
√
−1∂∂τi,t0 > 0(6.71)
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in τ−1
i,t0

({c|c ≤ ci})∩B(pi, ‹Ri). Let Ωi be the connected component of the open

set τ−1
i,t0

({c|c < ci}) containing B(pi, Ri). Then Ωi is a Stein manifold.

Let δ1 = δ1(n, v) be given by Proposition 6.1. According to Proposi-

tion 6.1, there exist holomorphic functions wij(1 ≤ j ≤ K = K(n, v)) on

B(pi, 3) (here we take R = 3
δ1

in Proposition 6.1) so that

wij(pi) = 0, max
j

sup
B(pi,1)

|wij | = 1,(6.72)

min
x∈∂B(pi,1)

K∑
j=1

|wij(x)|2 > 2 sup
x∈B(pi,

3δ2
δ1

)

K∑
i=1

|wij(x)|2,(6.73)

sup
x∈B(pi,

3
2

)

|wij(x)|2

sup
x∈B(pi,1)

|wij(x)|2
≤ C(n, v).(6.74)

Then of course, on B
Ä
pi,

3
2

ä
,

(6.75) |wij(x)| ≤ C(n, v).

Also, by the three circle theorem, we have

(6.76) max
j

sup
B(pi,

3δ2
δ1

)

|wij | ≥ c(n, v) > 0.

Thus

(6.77) min
x∈∂B(pi,1)

K∑
j=1

|wij(x)|2 ≥ c(n, v) > 0.

Now consider a cut off function λi(x) = λ(di(x)) with λi = 1 in B(pi,
30
24), where

λi has compact support in B(pi,
33
24) and |∇λi| ≤ C(n, v). Let w̃ij = λiw

i
j . Then

∂w̃ij is supported in B(pi,
33
24)\B(pi,

30
24). We solve the ∂-problem ∂f̃ ij = ∂w̃ij

in Ωi with the weight function ψi = ητi,t0 where η = η(n, v) is a very large

number, to be determined. Then by (6.67),

(6.78)

∫
Ωi

|f̃ ij |2e−ψi ≤
∫

Ωi
|∂w̃ij |2e−ψi

c(n, v)
.

This implies that

(6.79)

∫
B(pi,

27
24

)
|f̃ ij |2e−ψi ≤

∫
B(pi,

3
2

)\B(pi,
30
24

) |∂w̃ij |2e−ψi

c(n, v)
.

Let

(6.80) f ij(x) = w̃ij(x)− f̃ ij(x)− (w̃ij(pi)− f̃ ij(pi)).
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By (6.66), (6.72), (6.73), (6.75), (6.77) and similar arguments as in (6.42), if

η = η(n, v) is large enough, we can make |f̃ ij | so small in B(pi, 1) that

(6.81) C(n, v) ≥ min
x∈∂B(pi,1)

K∑
j=1

|f ij(x)|2 > 3

2
sup

x∈B(pi,
3δ2
δ1

)

K∑
i=1

|f ij(x)|2 ≥ c(n, v).

Now we freeze the value η = η(n, v). (6.68) says ψi is of logarithmic growth

uniform for all i. By (6.78) and the mean value inequality, we find C =

C(n, v) > 0 so that for any R > 0, if i is sufficiently large,

(6.82) |f ij(x)| ≤ C(di(x)C + 1)

for x ∈ B(pi, R). By passing to a subsequence, we can assume (Mi, pi) →
(M∞, p∞) in the pointed Gromov-Hausdorff sense. Also, f ij converges to f∞j ,

which is of polynomial growth of order C on M∞.

For C in (6.82), let V = span{g ∈ O2C(M)|g(p) = 0} and let k = dim(V ).

Take a basis gs of V satisfying

(6.83)

∫
B(p,1)

gsgt = δst.

To prove Theorem 6.1, it suffices to prove the following:

Proposition 6.2. There exist constants R > 0 and c > 0 with
∑
s
|gs(x)|2

≥ cd(x, p)2 for d(x, p) ≥ R.

Proof. Assume the proposition is not true. There exist ri →∞ and points

xi with

(6.84) d(p, xi) = ri,
∑
s

|gs(xi)|2 ≤
r2
i

i
.

We follow the notation from (6.60) to (6.82). For each i, there exists a basis

gis of V with

(6.85)

∫
B(p,1)

gisg
i
t = δst,

∫
B(pi,1)

gisg
i
t = λistδst.

Then (6.83) and (6.85) imply

(6.86)
∑
s

|gs|2 =
∑
s

|gis|2.

Note that by the three circle theorem and the mean value inequality,

(6.87) λiss ≥ c(n, v)r2
i .

Then his = gis√
λiss

satisfies

(6.88)

∫
B(pi,1)

hish
i
t = δst.
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The three circle theorem and the mean value inequality imply

(6.89) 0 < c(n, v) ≤ sup
B(pi,1)

|his(x)| ≤ C(n, v).

After passing to subsequence, we may assume that Mi → M∞ and his, f
i
j all

converge. Say his → h∞s and f ij → f∞j uniformly on each compact set. Clearly

h∞s (s = 1, . . . , k) are linearly independent on M∞.

Claim 6.1. span{f∞j } ⊂ span{h∞s } on M∞.

Proof. Assume the claim is not true. Set V ′ = span{f∞j , h∞s }. Then

dim(V ′) > k. By the three circle theorem, f∞j , h
∞
s are of polynomial growth of

order 2C. Take a basis u1, . . . , um of V ′, m ≥ k + 1. Therefore, ul(1 ≤ l ≤ m)

are of polynomial growth of order 2C. For any f ∈ V ′, f satisfies the three

circle theorem. That is, if M(f, r) = sup
B(p∞,r)

|f(x)|, then logM(f, r) is convex

in terms of log r. The reason is that f is a limit of holomorphic functions of

polynomial growth on Mi. Write ul =
k∑
s=1

asl h
∞
s +

K∑
j=1

bjl f
∞
j . Here asl , b

j
l are

constants. Define uil =
k∑
s=1

asl h
i
s +

K∑
j=1

bjl f
i
j . Then uil → ul uniformly on each

compact set. As ul is a basis for V ′, for sufficiently large i, uil are linearly

independent on B(pi, 1). We can also regard uil as holomorphic functions on

B(p, 3ri) on M . Let vil be a basis of span{uil} with
∫
B(p,1) v

i
lv
i
t = δlt. Let us

write vil =
m∑
t=1

Ciltu
i
t. Here Cilt are constants. We are interested in

(6.90) Fi,l =

sup
B(pi,2)

|vil |

sup
B(pi,1)

|vil |
=

sup
B(pi,2)

∣∣∣∣ m∑
t=1

Ciltu
i
t

∣∣∣∣
sup
B(pi,1)

∣∣∣∣ m∑
t=1

Ciltu
i
t

∣∣∣∣ .

In the quotient, we can normalize the coefficients Cilt so that sup
1≤t≤m

|Cilt| = 1.

As ul are linearly independent on M∞, by a simple compactness argument

and the three circle theorem for V ′ on M∞, we see that for i sufficiently large,

1 ≤ l ≤ m,

(6.91) Fi,l ≤ (2 + ε)2C

for any given ε > 0. As before, we can apply the three circle theorem to find a

subsequence of vil converging to linearly independent holomorphic functions vl
on M , satisfying vl(p) = 0 and deg(vl) ≤ 2C. As l is from 1 to m and m > k,

this contradicts that dim(V ) = k. �
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Given Claim 6.1, we find f ij is almost in the span{his}. More precisely,

(6.92) lim
i→∞

sup
B(pi,1)

|f ij(x)−
∑
s

cijsh
i
s| = 0

for cijs =
∫
B(pi,1) f

i
jh
i
s. In particular, |cijs| ≤ C(n, v). By (6.81),

(6.93) min
∂B(pi,1)

K∑
j=1

|f ij(x)|2 > 3

2
sup

B
Ä
pi,

3δ2
δ1

ä K∑
j=1

|f ij(x)|2 ≥ c(n, v) > 0.

Hence

(6.94) C(n, v) min
∂B(pi,1)

∑
s

|his|2 ≥ c(n, v) > 0.

By (6.87),

(6.95) |his|2 =
|gis|2

λiss
≤ |g

i
s|2

cr2
i

.

Then from (6.86),

(6.96) min
∂B(p,ri)

∑
s

|gs|2 = min
∂B(pi,1)

∑
s

|gs|2 = min
∂B(pi,1)

∑
s

|gis|2 ≥ c(n, v)r2
i > 0.

This contradicts (6.84). �

The proof of Theorem 6.1 is complete. �

7. Completion of the proof of Theorem 1.2

First, we prove Theorem 1.2 under the assumption that the manifold has

maximal volume growth.

Theorem 7.1. Let M be a complete noncompact Kähler manifold with

nonnegative bisectional curvature and maximal volume growth. Then M is

biholomorphic to an affine algebraic variety. Also the ring of holomorphic

functions of polynomial growth is finitely generated.

Proof. Given any k ∈ N, let nk = dimC(Ok(M)). Define a holomorphic

map from M to Cnk by Fk(x) = (g1(x), . . . , gnk(x)). Here g1, . . . , gnk is a basis

for Ok(M). When k is getting larger, we only add new functions to the basis.

That is, we do not change the previous functions. Our goal is to prove that

for sufficiently large k, Fk is a biholomorphism to an affine algebraic variety.

Below, the value of k might change from line to line; basically we shall in-

crease its value in finite steps. First assume k is so large that the holomorphic

functions constructed in Theorem 6.1 are in Ok(M) and they separate the tan-

gent space at a point p ∈M . Let Σk be the affine algebraic variety defined the

integral ring generated by g1, . . . , gnk . Then dim(Σk) = n, as the transcenden-

tal dimension of (g1, . . . , gnk) over C is n. Moreover, dim(Fk(M)) = n, as the
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tangent space at p is separated. By Theorem 6.1, Fk is a proper holomorphic

map from M to Cnk . Hence the image of Fk is closed. By the proper mapping

theorem, the image of Fk is an analytic subvariety of dimension n. As Σk is

irreducible, Fk(M) = Σk.

Our argument below is very similar to some parts of [12]. Given any

point in Σk, the preimage of Fk is a compact subvariety of M , as Fk is proper.

As M is exhausted by Stein manifolds Ωi, the preimages contain only finitely

many points. Given a generic point y ∈ Σk, we can find polynomial growth

holomorphic functions separating F−1
k (y). Therefore, by increasing k, we may

assume Fk is generically one to one. Note that if x ∈ Σk and the preimages of

x contain more than one point, then x is in the singular set of Σk, say S(Σk).

Write S(Σk) as a finite union of irreducible algebraic subvarieties Σ′s(1 ≤ s ≤
tk). Set h = dim(S(Σk)). Let us assume dim(Σ′s) = dim(S(Σk)) for 1 ≤ s ≤
rk ≤ tk. For a generic point x ∈ Σ′s, the preimages under Fk contain finitely

many points. Therefore, we can increase the value of k so that the preimages

of x and their tangent spaces are separated. In this way, the dimension of

S(Σk) is decreased. After finitely many steps, Fk becomes a biholomorphism

from M to Σk which is affine algebraic.

Claim 7.1. We can identify polynomial growth holomorphic functions on

M with regular functions on Σk via Fk. Thus OP (M) is finitely generated.

Proof. First, by Theorem 3.2 in [15], regular functions on Σk are iden-

tified with the affine coordinate ring of Σk. Thus, any regular function is of

polynomial growth. Recall that the transcendental dimension of OP (M) is n

over C. By increasing k if necessary, we may assume the affine coordinate func-

tions generate the field of OP (M). Then every polynomial growth holomorphic

function is rational on Σk and hence a regular function on Σk. �

The proof of Theorem 7.1 is complete. �

Next, we come to the finite generation in the general case. Let us rewrite

Theorem 1.2 as follows:

Corollary 7.1. Let M be a complete noncompact Kähler manifold with

nonnegative bisectional curvature. Then the ring of holomorphic functions of

polynomial growth is finitely generated.

Proof. We first consider the case when the universal cover does not split.

By Theorem 2 in [21], if there exists a nonconstant holomorphic function of

polynomial growth on M , then M is of maximal volume growth. Then then

the result follows from the theorem above.

In the general case, let M̃ be the universal cover. Let G be the funda-

mental group of M . Let E be the set of G-invariant holomorphic functions of



808 GANG LIU

polynomial growth on M̃ . We can identify E with OP (M). Given any f ∈ E,

consider

(7.1) uft (x) =

∫‹M H‹M (x, y, t) log(|f(y)|2 + 1)dy,

where H‹M (x, y, t) is the heat kernel of M̃ . By Theorem 3.1 in [28],
√
−1∂∂uft

≥ 0 for t > 0. Let Dt
f be the null space of

√
−1∂∂uft . Theorem 3.1 in [28] says

Dt
f is a parallel distribution.

Claim 7.2. Dt
f is invariant for t > 0. Then we define Df = Dt

f , t > 0.

Proof. By Theorem 2.1, part (ii) in [28] (see also the second sentence in

the proof of Corollary 2.1 in [28]), if t1 > t2 > 0, then

(7.2) dim(Dt1
f ) ≤ dim(Dt2

f ).

The de Rham theorem says we can write M̃ = N1×N2 where Dt2
f is the tangent

space of N2. uft2 is of logarithmic growth by Proposition A.1. Moreover,

uft2 is pluriharmonic on each slice N2and hence harmonic on N2. As N2 has

nonnegative bisectional curvature, the Ricci curvature of N2 is nonnegative.

By a theorem of Cheng-Yau [10], uft2 is constant on each slice N2. That is to

say, uft2 is a function on N1. By uniqueness of the heat flow, uft1 is also constant

on each slice of N2. Combining this with (7.2), we obtain that Dt1
f = Dt2

f . �

Hence, uft is constant on N2 for t ≥ 0. This implies f is constant on the

factor N2. Now define the parallel distribution

(7.3) D = ∩f∈EDf .

By the de Rham theorem, we can assume M̃ = M1×M2 where D is the tangent

space of M2. Then, for any f ∈ E, f is constant on the factor M2. Note that D

is invariant under G-action. Fix an inclusion i of a slice: M1 ↪→M1×M2. Now

for any g ∈ G, g(i(M1)) must be another slice of M1. Let π be the projection

from M1×M2 to M1. For x ∈M1 and g ∈ G, define a holomorphic isometry ug
of M1 by ug(x) = π(g(i(x))). Of course, ug is a subgroup of the holomorphic

isometry group of M1. Let G′ be the closure of ug. Then we can identify E

with polynomial growth holomorphic functions on M1 invariant under G′.

Claim 7.3. G′ is a compact group.

Proof. It suffices to prove that for x ∈ M1, ug(x) is bounded for g ∈ G.

Assume this is not true. Then there exists a sequence gi ∈ G′ with xi = gi(x)

→∞ on M1. Let (U, z1, . . . , zm) be a holomorphic chart on M1 around x with

z(x) = 0. Let (Ui = gi(U), zis = zs ◦ g−1
i ) be the holomorphic chart on Ui. By

taking a subsequence if necessary, we may assume Ui are mutually disjoint.
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We will use some construction in [26]. First, pick finitely many fj ∈ E so that√
−1∂∂

∑
j
u
fj
1 > 0 onM1. Let u =

∑
j
u
fj
1 . Then u is a strictly plurisubharmonic

function on M1 with logarithmic growth. Moreover, u is invariant under G′

action. Let U2 ⊂⊂ U1 ⊂⊂ U be open sets containing x. Consider a smooth

cut-off function ϕ with ϕ = 1 in U2 and ϕ = 0 in M1\U1. Define ϕi = ϕ ◦ g−1
i .

Then ϕi is supported in Ui. Let

(7.4) ψ(x) = 4m
∑
i

ϕi(x) log

(
m∑
s=1

|zis(x)|2
)

+ Cu(x).

Here C is a positive constant so that
√
−1∂∂ψ ≥ ω on Ui. ω is the Kähler form

on M1. Then
√
−1∂∂ψ > 0 on M1. Now we solve the ∂-problem ∂hi = ∂ϕi

with

(7.5)

∫
M1

|hi|2e−ψ ≤
∫
M1

|∂ϕi|2e−ψ.

One sees that λi = hi − ϕi are holomorphic functions of polynomial growth.

The growth orders are uniformly bounded. Moreover, hi(xk) = 0 for all k ∈ N.

Thus λi are linearly independent, as λi(xj) = hi(xj) − ϕi(xj) = −δij . This

contradicts Theorem 2.5. �

Claim 7.4. M1 is of maximal volume growth.

Proof. As M1 is simply connected, write M1 as a product of irreducible

Kähler manifolds. For each factor, there exists a polynomial growth holomor-

phic function on M1 which is not constant. Then it must be of maximal volume

growth by Theorem 2 in [21]. �

By Claim 7.4 and Theorem 7.1, OP (M1) is finitely generated. OP (M) is

just the subring of OP (M1) invariant under G′. Since G′ is compact, the finite

generation of OP (M) follows from a theorem of Nagata [25]. The detailed

argument is in Appendix B.

�

Appendix A. Proof of Theorem 2.2

Proof. This part basically follows from [28]. For any a > 0, η(x, t) satisfies

(A.1)

Å
∂

∂t
−∆

ã
ηγδ = Rβαγδηαβ −

1

2
(Rγpηpδ +Rpδηγp)

and

(A.2)

∫
M
‖η(x, 0)‖ exp(−ar2(x))dx <∞.
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For the moment, we will assume

(A.3) lim
r→∞

inf

∫ T

0

∫
B(p,r)

‖η‖2(x, t) exp(−ar2(x))dxdt <∞.

The proof is given at the end of this section.

Recall Corollary 1.1 in [28] with simplified the assumptions:

Proposition A.1. Let (Mn, p) be a complete noncompact Kähler mani-

fold with nonnegative bisectional curvature. r(x) = d(x, p). Let u be a nonneg-

ative function on M satisfying

(A.4) u(x) ≤ exp(a+ br(x))

for some constants a, b > 0. Let

(A.5) v(x, t) =

∫
M
H(x, y, t)u(y)dy.

Here H is the heat kernel on M . Then given any ε > 0, T > 0, there exists

C(n, ε, a, b) > 0 such that for any x satisfying r = r(x) ≥
√
T ,

(A.6) C1(n, ε) inf
B(x,εr)

u ≤ v(x, t) ≤ C(n, ε, a, b) + sup
B(x,εr)

u

for 0 ≤ t ≤ T . Here C1(n, ε) > 0.

Fix a point p ∈M . Let r(x) = d(x, p). Let φ(x) = exp(r(x)). Define

(A.7) φ(x, t) = et
∫
M
H(x, y, t)φ(y)dy.

Then

(A.8)

Å
∂

∂t
−∆

ã
φ = φ

and

(A.9) φ(x, t) ≥ cec1r

for 0 ≤ t ≤ T , by Proposition A.1. Here c, c1 are positive constants. Let

(A.10) h(x, t) =

∫
M
H(x, y, t)‖η‖(y, 0)dy.

The proposition below is just Lemma 2.2 in [28]. Note that we used that u has

compact support on M .

Proposition A.2. There exists a positive function τ(R) so that for 0 ≤
t ≤ T , h(x, t) ≤ τ(R) for x ∈ B(p, 2R)\B

Ä
p, R2

ä
. Moreover, lim

R→∞
τ(R) = 0.

The next proposition is Lemma 2.1 in [28]. Note that (A.1), (A.2) and

(A.3) are used.
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Proposition A.3. ‖η‖(x, t) is a subsolution of the heat equation. More-

over, ‖η‖(x, t) ≤ h(x, t).

Given ε > 0, define

(A.11) (η̃)αβ = ηαβ + (εφ− λ(x, t))gαβ.

At t = 0, η̃ > 0. Also, for 0 ≤ t ≤ T , if R is sufficiently large, by Propo-

sition A.2, we have η̃ > 0 on ∂B(p,R). Suppose that at some t0 ∈ [0, T ],

η̃(x0, t0) < 0 for x0 ∈ B(p,R). Then there exists 0 ≤ t1 < T with η̃(x, t) ≥ 0

for x ∈ B(p,R) and 0 ≤ t ≤ t1. Moreover, the minimum eigenvalue of η̃(x1, t1)

is zero for some x1 ∈ B(p,R). (Note that x1 cannot be on the boundary.) Now

we apply the maximal principle. Let us assume

(A.12) η̃(x1, t1)γγ = 0

for γ ∈ T 1,0
x1 M, |γ| = 1. We may diagonalize η̃ at (x1, t1). Of course, we can

assume γ is one of the basis of the holomorphic tangent space. Then at (x1, t1),

(A.13)

Å
∂

∂t
−∆

ã
η̃γγ ≤ 0.

On the other hand, by (A.1),

(A.14)

Å
∂

∂t
−∆

ã
ηγγ =

∑
α

Rγγααηαα −
∑
α

Rγγααηγγ

=
∑
α

Rγγαα(η̃αα − η̃γγ)

≥ 0.

Note that

(A.15)

Å
∂

∂t
−∆

ã
((εφ− λ(x, t))gγγ) = εφgγγ > 0.

Hence at (x1, t1),

(A.16)

Å
∂

∂t
−∆

ã
η̃γγ > 0.

This is a contradiction. Now let R → ∞ and then ε → 0. We proved that

η − λ(x, t)gαβ ≥ 0 for 0 ≤ t ≤ T .

Next we verify (A.3). Basically we follow pages 487–488 in [28]. Note that

our condition is more special. First, we have that |v(x, t)| ≤ C for all x, t, as

u has compact support. Note that

(A.17)

Å
∆− ∂

∂t

ã
v2 = 2|∇v|2.
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Multiplying (A.17) by suitable cut-off functions, using integration by parts, we

find

(A.18)

∫ T

0
−
∫
B(p,r)

|∇v|2 ≤ C1

Ç
r−2

∫ 2T

0
−
∫
B(p,2r)

v2 +−
∫
B(p,r)

u2

å
≤ C2(T + 1)

for r ≥ 1. The Bochner formula gives

(A.19)

Å
∆− ∂

∂t

ã
|∇v|2 ≥ 2|∇2v|2.

Multiplying (A.19) by suitable cut-off functions, using integration by parts, we

find

(A.20)∫ T

0
−
∫
B(p,r)

|∇2v|2 ≤ C3

Ç
r−2

∫ 2T

0
−
∫
B(p,2r)

|∇v|2 +−
∫
B(p,r)

|∇u|2
å
≤ C2(T + 1)

for r ≥ 1. From this, (A.3) follows easily. �

Appendix B. Some algebraic results of Nagata

We continue the proof of Theorem 1.2. The ring R = OP (M1) is finitely

generated. We may assume the generators are in F = Od(M1) for some d > 0.

Let g1, . . . , gl be a basis for F . Obviously F is an invariant space of G′. Then

we may think OP (M1) is C[g1, . . . , gl]/α. Here α is an ideal. Then the G′

action on R is induced by the representation G′ → GL(l,C). Let IG′(R) be

the subring of R fixed by G′. In [25, p. 370], the following definition was made:

Definition B.1. A group G is reductive if every rational representation is

completely reducible.

It was pointed out on page 370 of [25] that all rational representations of

G in [25] are given by some specific finite-dimensional representations of G. In

our case, as G′ is compact, every finite-dimensional representation (complex)

is completely reducible. Therefore, according to the definition above, G′ is

reductive. In [25], the following was proved:

Theorem B.1 (Nagata). IG(R) is finitely generated if G is semi-reductive.

It was pointed out in the first sentence of part 5, page 373 of [25] that a

reductive group is obviously semi-reductive. Putting all these things together,

we proved the finite generation of IG′(R) = OP (M).
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