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Rigid inner forms of real and p-adic groups

By Tasho Kaletha

Abstract

We define a new cohomology set H1(u → W,Z → G) for an affine

algebraic group G and a finite central subgroup Z, both defined over a

local field of characteristic zero, which is an enlargement of the usual first

Galois cohomology set of G. We show how this set can be used to give

a precise conjectural description of the internal structure and endoscopic

transfer of tempered L-packets for arbitrary connected reductive groups

that extends the well-known conjectural description for quasi-split groups.

In the case of real groups, we show that this description is correct using

Shelstad’s work.
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1. Introduction

The principal goal of this paper is to give a precise conjectural description

of the internal structure of tempered L-packets and the character identities

satisfied by them for an arbitrary connected reductive group defined over a

local field F of characteristic zero, and then to prove that this description is

correct when F = R. For a quasi-split group G, such a description has been

available for some time. Indeed, let Γ, WF , and W ′F be the absolute Galois,

Weil, and Weil-Deligne groups of F , let “G be the connected complex Lang-

lands dual group of G, and let LG = “GoWF be the Weil-form of its L-group.

Given a tempered Langlands parameter ϕ : W ′F → LG, one expects the exis-

tence of a finite set ΠG
ϕ of irreducible admissible tempered representations of

the topological group G(F ). These finite sets, called L-packets, are supposed

to satisfy a number of properties, some of which are listed in [Bor79, §10].

Among the most important properties are their internal parametrization and

the endoscopic character identities. These tie the L-packets to the stabiliza-

tion of the spectral side of the Arthur-Selberg trace formula and lead to the

multiplicity formula for discrete automorphic representations. The conjectural

internal parametrization is the following. First, Shahidi’s tempered L-packet

conjecture [Sha90, §9] states that for a fixed Whittaker datum w of G, the

set ΠG
ϕ should contain a unique w-generic representation. Second, if we let Sϕ

denote the centralizer in “G of the image of ϕ, it is expected that there exists

an injection (bijection if F is p-adic)

(1.1) ιw : ΠG
ϕ → Irr(π0(Sϕ/Z(“G)Γ)),

where the right-hand side is the set of isomorphism classes of irreducible rep-

resentations of the finite group π0(Sϕ/Z(“G)Γ). This map should however not

be arbitrary. It should send the unique w-generic constituent of ΠG
ϕ to the

trivial representation and should, moreover, provide the correct relationship

between the Harish-Chandra characters of the constituents of ΠG
ϕ and the char-

acters of the representations of π0(Sϕ/Z(“G)Γ) so that the endoscopic character

identities hold. This conjecture has been established for F = R and general

quasi-split connected reductive groups by Langlands and Shelstad [Lan89],

[She79c], [She79a], [She81], [She82], [She08b] and for a finite extension F/Qp
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and quasi-split symplectic and orthogonal groups by Arthur [Art13]. This in-

cludes the proof of Shahidi’s conjecture. In the real case it is is based on

the work of Kostant [Kos78] and Vogan [Vog78], and in its strong form it is

completed in [She08b]. In the p-adic case, Konno [Kon02] proved the exis-

tence of generic members of tempered L-packets of classical groups conditional

on their twisted endoscopic transfer to GLn, which was then established for

quasi-split symplectic and orthogonal groups in [Art13]. Uniqueness was ini-

tially obtained in the course of proving the local Gan-Gross-Prasad conjecture

by Waldspurger, Beuzart-Plessis, and Gan-Ichino. Recently a short and simple

proof was announced by Atobe [Ato15].

Important for both the statement and the proof of these conjectures is

the fact that the same datum that is used to fix the bijection (1.1), namely,

the Whittaker datum, also leads to a normalization of the endoscopic transfer

factors that enter the formulation of the character identities.

The situation for groups G′ that are not quasi-split is more subtle. Let

G be the (unique up to isomorphism) quasi-split inner form of G′. If we fix

an isomorphism ψ : G → G′ defined over F such that ψ−1σ(ψ) is an inner

automorphism for all σ ∈ Γ, then ψ can be used to identify the L-groups of

G and G′. (Note that this identification depends on the isomorphism class of

ψ, and not just on G and G′.) The parameter ϕ now becomes a parameter for

G′, and we may ask for an analog of (1.1). Such an analog has to depend not

just on G′, but also on ψ. The tuple (G′, ψ) is called an inner twist of G and

the set of isomorphisms of inner twists is parametrized by H1(Γ, G/Z(G)). It

was shown by Kottwitz [Kot86] that there is a canonical map from this set to

the Pontryagin dual of the finite abelian group Z(“Gsc)
Γ — the Γ-fixed points

of the center of the simply connected cover of the derived subgroup of “G. One

can now try to formulate a conjectural injection similar to (1.1) in terms of

a variant of Sϕ involving “Gsc, making a reference to the character of Z(“Gsc)
Γ

to which ψ corresponds. However, Vogan [Vog93] and Arthur [Art06] observe

that such an attempt cannot be successful. Arthur’s point of departure is the

fact that on a nonquasi-split group G′ the endoscopic transfer factors have no

natural normalization, and this makes it impossible to state the endoscopic

character identities. Since those are intimately tied with the internal structure

of L-packets, one also cannot hope to parametrize that structure. He suggests

[Art06, §3] that to resolve this problem, one can conjecture the existence of

two sets of functions — the spectral transfer factors ∆(ϕ, π) and the mediating

functions ρ(∆, s̃). These functions take away the problem arising from the lack

of a natural normalization of the endoscopic transfer factors by incorporating

all possible normalizations. Shelstad [She08b] has been able to show that such

functions indeed exist when the ground field is R. The existence of these

functions for p-adic fields has thus far remained unknown. This was a serious
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problem that prevented the establishment of the endoscopic classification of

representations of nonquasi-split symplectic and orthogonal groups. We refer

the reader to [Art13, Ch. 9] for a discussion.

Studying this problem from a different perspective, Vogan [Vog93] points

out that the object (G′, ψ) has too many automorphisms, and these automor-

phisms can permute ΠG′
ϕ without being detected by LG. This behavior is not

at all pathological and already occurs for groups as simple as SL2(R). This

indicates that the datum (G′, ψ) is by itself not sufficient to specify an injec-

tion as in (1.1) and that one needs to further enrich it by additional data.

Vogan then proposes one such enrichment, which consists of adding to (G′, ψ)

an element z ∈ Z1(Γ, G) with the property that ψ−1σ(ψ) = Ad(z(σ)). The

triples (G′, ψ, z) are called pure inner twists and their isomorphism classes are

parametrized by the set H1(Γ, G), which according to Kottwitz’s result is re-

lated to the Pontryagin dual of π0(Z(“G)Γ). The work of Adams, Barbasch,

Kottwitz, Vogan, and others suggests the following variant of (1.1): There

should exist a finite set Πpure
ϕ of isomorphism classes of quadruples (G′, ψ, z, π′),

where (G′, ψ, z) is a pure inner twist and π′ is an irreducible tempered repre-

sentation of G′(F ), together with a commutative diagram

(1.2) Πpure
ϕ

ιw //

��

Irr(π0(Sϕ))

��

H1(Γ, G) // π0(Z(“G)Γ)∗

in which the bottom arrow is Kottwitz’s map, the right arrow sends an irre-

ducible representation to its central character, the left arrow sends a quadruple

(G′, ψ, z, π′) to the class of z, and the top arrow (the only conjectural arrow

in the diagram) is a bijection that identifies the trivial representation on the

right to the quadruple (G, id, 1, π) on the left, where π is the unique w-generic

constituent of ΠG
ϕ , and furthermore provides the correct virtual characters nec-

essary for the endoscopic character identities. Note that in this formulation

the top arrow is expected to be bijective both in the real and in the p-adic case,

making this formulation more uniform than that of (1.1). The diagram (1.2)

was constructed by DeBacker and Reeder [DR09] for any unramified p-adic

group G and a class of depth-zero supercuspidal Langlands parameters ϕ. It

was then shown by the author [Kal11] that this construction satisfies the ex-

pected endoscopic character identities. Just as in the quasi-split case, it was

important for both the statement and the proof of the conjecture that given a

pure inner twist (ψ, z) : G→ G′, the data w and z lead to a natural normaliza-

tion ∆[w, z] of the endoscopic transfer factors. The relationship of this point

of view with that of Arthur is straightforward: The spectral transfer factor is

given by the expression ∆(ϕ, ιw(ρ)) = tr(ρ(s)), where s ∈ Sϕ is part of the
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endoscopic datum to which ∆[w, z] is associated, and the mediating function

ρ(∆, s̃) is specified by ρ(∆[w, z], s̃) = 1.

While pure inner twists seem to very elegantly resolve the problem, they

have an essential drawback: The map H1(Γ, G) → H1(Γ, G/Z(G)) is usually

not surjective, which means that not every inner twist ψ : G → G′ can be

equipped with an element z. The worst case is when F is p-adic and G is sim-

ply-connected. A theorem of Kneser [Kne65] states that then H1(Γ, G) = {1}
and the diagram (1.2) collapses to the quasi-split case (1.1). Over the real num-

bers, the notion of a strong real form was introduced in the work of Adams-

Barbasch-Vogan, which resolves this problem and builds one of the founda-

tions of the treatment of the local Langlands correspondence for real groups in

[ABV92]. Over p-adic fields however, the problem of finding a suitable analog

of strong real forms has thus far remained open [Vog93, Prob. 9.3].

One attempt to alleviate this problem can be made using Kottwitz’s the-

ory of isocrystals with additional structure [Kot85], [Kot97]. In this theory a

different cohomology set for G is studied — if we let L be the completion of the

maximal unramified extension of F and L an algebraic closure of L, Kottwitz

studies the set H1(WF , G(L)) and shows that the elements of a certain subset

B(G)bas of this cohomology set give inner forms of G and have an interpreta-

tion in terms of “G similar to that of H1(Γ, G). Using this theory, Kottwitz has

suggested a diagram similar to (1.2), and a precise formulation of the result-

ing conjecture is presented in [Kal14, §2.4]. It was then shown by the author

[Kal14] that the work [DR09] of DeBacker and Reeder extends to this setting

and that the endoscopic character identities hold. Furthermore, the same is

true [Kal15a] for a different class of supercuspidal Langlands parameters, for

which the corresponding L-packets consist of epipelagic representations [RY14].

The cohomology set B(G)bas has a map to H1(Γ, G/Z(G)) that is surjective

when the center of G is connected. In this case, the set B(G)bas resolves the

problem completely. The opposite case is that of a simply connected group

G, where again one has B(G)bas = {1}. One also encounters other problems

when using B(G)bas to study local L-packets. For one, the relationship be-

tween B(G)bas and the strong real forms of [ABV92] is unclear. Furthermore,

we do not see a way to relate in this language local L-packets and the stable

Arthur-Selberg trace formula when G fails the Hasse principle, because this

would entail passing from G to its simply connected cover Gsc, a step that is

problematic due to B(Gsc)bas = {1}.
In the present paper we introduce a new cohomology set for affine algebraic

groups by replacing the cohomology of the Galois group with the cohomology of

a certain Galois gerb [LR87] that is canonically associated to any local field of

characteristic zero. This new cohomology set resolves the problems described

above pertaining to the statement of the local Langlands correspondence and
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endoscopic character identities for p-adic groups. It provides a solution to

[Vog93, Prob. 9.3]. It also provides explicit formulas for Arthur’s conjectural

spectral transfer factors and mediating functions. In fact, since our goal is

not just to give a good description of L-packets for p-adic groups, but to

also make sure that this description interfaces well with the stabilized Arthur-

Selberg trace formula so as to be suitable for global applications, we provide

a construction that works uniformly for real and p-adic groups. The interplay

between this construction and the trace formula is studied in [Kal15b], where

it is shown that the local normalizations established here fit perfectly with the

stabilized trace formula. The new cohomology set is associated to any affine

algebraic group G and any finite central subgroup Z ⊂ G, both defined over

a local field F of characteristic zero, and is denoted by H1(u → W,Z → G).

For applications to the local Langlands correspondence, G will be connected

and reductive, and Z will be a finite central subgroup, which can often times

be taken to be the center of the derived subgroup of G. The cohomology set

H1(u→W,Z → G) has the following properties: There exist an injective map

H1(Γ, G)→ H1(u→W,Z → G) and a surjective map H1(u→W,Z → G)→
H1(Γ, G/Z). Both of these maps are functorial in G. We show that, when G

is connected and reductive and Z contains the center of the derived subgroup

of G, the induced map H1(u → W,Z → G) → H1(Γ, G/Z(G)) is surjective,

and thus every inner twist ψ : G → G′ can be equipped with an element of

H1(u → W,Z → G). The set H1(u → W,Z → G) is efficient in the following

sense: It is always finite, and when G is split and F is p-adic, the map

H1(u→W,Z(Gder)→ G)→ H1(Γ, G/Z(G))

is bijective, which means that for every inner twist ψ : G → G′, there is a

unique element of H1(u→W,Z(Gder)→ G) belonging to that twist. A similar

efficiency holds over the real numbers, but it is slightly more complicated

to state. For a general connected reductive G and finite central Z, the set

H1(u→ W,Z → G) admits a functorial map to a certain finite abelian group

that is constructed from LG. This analog of the result of Kottwitz discussed

above allows us to construct a normalization of the endoscopic transfer factors

from an element of H1(u → W,Z → G), and this in turn allows us to state a

version of (1.2) and of the endoscopic character identities for all inner forms of

a given quasi-split connected reductive group G, and thus for any connected

reductive group.

To elaborate on the last sentence, let G be a connected reductive group

defined and quasi-split over F , and let Z ⊂ G be a finite central subgroup

defined over F . Set G = G/Z. The isogeny G → G dualizes to an isogeny“G→ “G of the complex Langlands dual groups. We let Z(“G)+ be the preimage

under this isogeny of the diagonalizable group Z(“G)Γ. Then we show that the
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set H1(u → W,Z → G) is equipped with a functorial map to the Pontryagin

dual of π0(Z(“G)+). This map is a bijection when F is p-adic or when G

is a torus, and is compatible with Kottwitz’s map for any F and G. We

define a rigid inner twist of G to be an inner twist ψ : G → G′ equipped

with an element z ∈ Z1(u → W,Z → G) (for some Z) that lifts the element

ψ−1σ(ψ) ∈ Z1(Γ, G/Z(G)). Given a tempered Langlands parameter ϕ, we let

S+
ϕ denote the preimage in “G of Sϕ. When F = R, the finite group π0(S+

ϕ ) is

always abelian but may fail to be a 2-group. When F is p-adic, π0(S+
ϕ ) can

be nonabelian — this already happens for SL2, and we discuss an example

in Section 5.4. We expect to have a finite set Πϕ of isomorphism classes of

quadruples (G′, ψ, z, π′) and a commutative diagram

(1.3) Πϕ

��

ιw // Irr(π0(S+
ϕ ))

��

H1(u→W,Z → G) // π0(Z(“G)+)∗

with the same properties as (1.2). In fact, each term in diagram (1.2) is a

subset of the corresponding term here, and we expect that this diagram is an

enlargement of (1.2) in the obvious sense. Furthermore, we show that the data

w and z lead to a normalization ∆[w, z] for the endoscopic transfer factor and

this allows us to state the conjectural endoscopic character identities. In order

to state these identities, we must work with a slight refinement of the notion

of endoscopic datum. This refinement resolves another problem observed by

Arthur in [Art06] that pertains to the invariance of the transfer factor under

automorphisms of endoscopic data. We refer the reader to Section 5.4 for

more details. The relationship between our statement of the local Langlands

conjecture and the endoscopic character identities and that of Arthur is again

straightforward. When G is simply connected, the conjectural spectral transfer

factor of Arthur is given by the expression ∆(ϕ, ιw(ρ)) = tr(ρ(s̃)), where s̃ is

part of the refined endoscopic datum to which ∆[w, z] is associated, and the

mediating function ρ(∆, s̃) is specified by ρ(∆[w, z], s̃) = 1. When G is not

simply connected, the situation is almost as simple but requires a bit more

notation. We refer the reader to [Kal15b, §4.6]. For any G, our results provide

a construction of Arthur’s mediating functions. As a result, these objects are

now known for p-adic groups.

Given the mature state of the local Langlands correspondence and en-

doscopy for real groups, two natural questions arise: If G is a real reductive

group, how does our set H1(u → W,Z → G) relate to the set of strong real

forms of G constructed in [ABV92], and how does our diagram (1.3) and our

statement of endoscopic character identities relate to the work of Langlands
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and Shelstad? In this paper we answer both questions completely. With re-

gards to the first question, we were pleasantly surprised to find out that, while

the notion of strong real forms and the notion of rigid inner twists (for real

groups) are defined in very different ways, they are in fact equivalent. By

this we mean that the category of strong real forms of a given real group

is equivalent to the category of rigid inner twists. We alert the reader that

[Vog93] introduces the similar sounding notion of “rigid rational form,” of

which “strong real form” is a special case. Despite the similarity in names, our

“rigid inner twists” in the case of real groups are equivalent to “strong real

forms” and not to “rigid rational forms.” Regarding the second question, it

turns out that the constructions and arguments of Langlands and Shelstad can

be put into our framework without much effort, after which their work implies

the existence of diagram (1.3) for any tempered Langlands parameter, as well

as the validity of our statement of endoscopic character identities. A further

natural question would be to compare the construction of diagram (1.3) given

in this paper, which is based on the cohomology sets H1(u → W,Z → G),

with the analogous construction in [ABV92], which is based on the geometry

of the dual group. We leave this more subtle question for a separate paper.

There is by now substantial evidence that the formulation of the refined lo-

cal Langlands correspondence presented in this paper is the correct one. First,

it is uniform for real and p-adic groups and is true for real groups. Second,

we show in [Kal15b] that this formulation fits seamlessly into the spectral side

of the stabilized Arthur-Selberg trace formula. In particular, the canonical

adelic transfer factor admits a decomposition as the product of the normalized

local transfer factors introduced here, and the normalized local bijections of

diagram (1.3) fit together to a canonical pairing between the adelic L-packet

and its global S-group, which in turn leads to the multiplicity formula for

discrete automorphic representations of arbitrary connected reductive groups.

With these facts at hand, a proof of our formulation of the local Langlands

conjecture for classical groups is well within reach by the methods of [Art13].

Third, it is shown in [Kal15b, §4.6] that our formulation implies, and is in fact

equivalent to, a stronger version of Arthur’s local conjecture [Art06, §3]. The

strengthening comes from the fact that the results of this paper give explicit

formulas for Arthur’s conjectural spectral transfer factors and mediating func-

tions. Fourth, it is shown in [Kal15c, §§4, 6] that for groups for which the

formulation of the local conjecture based on B(G)bas, as presented in [Kal14,

§2.4], is available, its validity is equivalent to the validity of the formulation pre-

sented here. In particular, this implies that the results of [Kal14] and [Kal15a]

provide a proof of the validity of our formulation in the special case of depth-

zero and epipelagic supercuspidal representations. And fifth, it is shown in

[Kal15c, §§5, 6] that the validity of our formulation for all connected reductive
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groups is equivalent to the validity of the formulation of [Kal14, §2.4] for all

connected reductive groups with connected center. The latter formulation, be-

sides having been proved in special cases in [Kal14] and [Kal15a], is supported

by a conjecture of Kottwitz that describes the cohomology of Rapoport-Zink

spaces. Fargues has recently announced a conjectural program that aims at a

resolution of Kottwitz’s conjecture and at a proof of the formulation of [Kal14,

§2.4] for all connected reductive p-adic groups with connected center.

We will now describe the contents of this paper and sketch the construc-

tion of the set H1(u → W,Z → G) and its map to the dual of π0(Z(“G)+).

The construction and study of H1(u → W,Z → G) is the main topic of Sec-

tion 3. It is based on Kottwitz’s notion of algebraic 1-cocycles introduced in

[Kot97, §8]. If W is a topological group, which is an extension of Γ by an

algebraic group X (a Galois gerb in the terminology of [LR87]), then Kottwitz

defines an algebraic 1-cocycle of W into the F -points of an algebraic group Y

to be a continuous 1-cocycle W → Y (F ) whose restriction to X(F ) is given

by an algebraic homomorphism X → Y . In Section 3.1 we construct a certain

pro-finite multiplicative algebraic group u as a limit of certain finite multi-

plicative algebraic groups uE/F,n. We then show that H1(Γ, u) vanishes and

H2(Γ, u) is topologically cyclic. This implies that there is an (up to isomor-

phism) canonical Galois gerb W bound by u and the only automorphisms it

has come from conjugation by elements of u. In other words, it is as canonical

as the relative Weil group of a finite Galois extension of F . In Section 3.2

we then define H1(u → W,Z → G) to be the set of cohomology classes of

those algebraic 1-cocycles of W valued in G whose restriction to u has im-

age contained in Z. An important feature of the group u is that for any

finite multiplicative algebraic group Z defined over F , there is a natural sur-

jection Hom(u, Z)Γ → H2(Γ, Z). This eventually leads to the surjectivity of

H1(u → W,Z → G) → H1(Γ, G/Z). The latter, together with the injective

map H1(Γ, G) → H1(u → W,Z → G), the finiteness of H1(u → W,Z → G),

its functoriality in Z → G, an inflation-restriction sequence, as well as fur-

ther properties, are discussed in Section 3.3. These properties make the set

H1(u→W,Z → G) easily computable by reducing the computation to that of

classical Galois cohomology groups. In Section 3.4 we construct a quotient of

H1(u → W,Z → G) by a certain equivalence relation. This quotient is called

H1
ab(u → W,Z → G) and is analogous to the first Galois-cohomology set of

the crossed module Gsc → G. When the ground field F is p-adic, the equiva-

lence relation is trivial and we obtain nothing new, but over the real numbers,

H1
ab(u→W,Z → G) is usually a proper quotient of H1(u→W,Z → G).

Section 4 is concerned with the construction of the functorial map from

H1(u → W,Z → G) to the Pontryagin dual of π0(Z(“G)+) in the case where

G is a connected reductive group defined over F . This map is among the
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most important properties of the cohomology set H1(u → W,Z → G) and

is crucial for its application to the local Langlands conjectures. Instead of

using the language of the dual group, in this section we construct a finite

abelian group Y +,tor(Z → G) from the root datum of G that will later turn

out to admit a functorial map to π0(Z(“G)+)∗ that is bijective when F is

p-adic or when G is a torus and injective in general. The abelian group

Y +,tor(Z → G) is constructed in Section 4.1. It is functorial in Z → G. In

Section 4.2 we show that there can exist at most one functorial isomorphism

Y +,tor(Z → G)→ H1
ab(u→W,Z → G) subject to two conditions, one of them

being that it coincides with the Tate-Nakayama isomorphism when Z = {1}
and G is a torus. The task then becomes to construct this isomorphism. For

this, we introduce in Section 4.3 a device similar to the cup-product between

Tate-cochains of positive and negative degrees, which we call an unbalanced

cup-product. In Section 4.4 we review some arithmetic material from [Lan83]

concerning specific representatives of fundamental classes of finite Galois ex-

tensions. With these preparations in place we can give an explicit realization of

the Galois gerb W in Section 4.5 and then use it to construct the isomorphism

Y +,tor(Z → G)→ H1
ab(u→W,Z → G), first when G is a torus in Section 4.6,

and then when G is a connected reductive group in Section 4.7.

Section 5 describes how the set H1(u→W,Z → G) can be applied to the

study of the local Langlands correspondence and endoscopy. We introduce the

concept of rigid inner twists in Section 5.1 and show how for a given maximal

torus S ⊂ G in a connected reductive group, the set H1(u → W,Z → S)

parametrizes the rational classes inside the stable class of any given strongly-

regular element of S(F ). This leads to a cohomological invariant inv(δ, δ′) that

will allow us to normalize the transfer factors later. This discussion follows

the ideas already used in [Kal11, §2.1], but now adapted to the set H1(u →
W,Z → G). In Section 5.2 we establish the equivalence between the notion

of rigid inner twists of a given real reductive group and that of strong real

forms of it. In Section 5.3 we establish the functorial injective map from the

abelian group Y +,tor(Z → G) defined in Section 4.1 to the Pontryagin dual

of π0(Z(“G)+). This map can be phrased (Corollary 5.4) as a pairing between

H1(u→W,Z → G) and π0(Z(“G)+), and, besides inv(δ, δ′), this pairing is the

second ingredient in the normalization of the transfer factor. We then proceed

to define the notions of a refined endoscopic datum and of an isomorphism

between such data. This notion is the third ingredient in the normalization of

the transfer factor, which we then are able to establish. We also show that this

normalization is invariant under all automorphisms of the refined endoscopic

datum, thereby resolving the issue noted by Arthur [Art06, p. 208] that an

absolute transfer factor for a nonquasi-split group need not be invariant under
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all automorphisms of a (usual) endoscopic datum. In Section 5.4 we spell out

the conjectural diagram (1.3) and the statements of the conjectural endoscopic

character identities. In Section 5.6 we turn to the setting of real groups and

show that the work of Langlands and Shelstad implies that the conjectures

stated in Section 5.4 hold for real groups. In Section 5.7 we give a short

overview of the applications of our local results to the study of automorphic

forms that are developed in [Kal15b].

The author is grateful to Robert Kottwitz for introducing him to this

problem and for sharing his intuition that algebraic cocycles of Galois gerbs

could hold the key to its resolution. He further thanks Jeffrey Adams, Stephen

DeBacker, Diana Shelstad, and Olivier Täıbi for their helpful comments, sug-

gestions, and corrections. The support of the National Science Foundation via

grant DMS-161489 is gratefully acknowledged.

2. Some notation

Let F be a local field of characteristic zero. Fix an algebraic closure F

of F , and write Γ or ΓF for the Galois group of F/F and WF for the Weil

group of F/F . Finite extensions of F will be taken to be subfields of F . For a

fixed finite Galois extension E/F we will write ΓE/F and WE/F for the relative

Galois and Weil groups and NE/F for the norm endomorphism of any ΓE/F -

module. We will reserve the letter W for a different purpose. Given σ ∈ Γ and

x ∈ F , we will denote the image of x under σ by σx.

We will use the symbol N× to denote the set of positive integers with the

partial order given by divisibility. By a co-final sequence in N× we mean a

totally ordered subset {nk} ⊂ N× so that every element of N× is dominated

by some nk.

If D is a diagonalizable group, we will write X∗(D) and X∗(D) for its

character and cocharacter modules. These will be written additively, and the

canonical pairing between χ ∈ X∗(D) and λ ∈ X∗(D) will be denoted by

〈χ, λ〉. For x ∈ F , we will sometimes write xλ instead of λ(x) for the image of

x under the map λ : Gm → D.

If G is a connected reductive group, we will write Gder for its derived

subgroup and Gsc and Gad for the simply connected cover and the adjoint

quotient of Gder. If S ⊂ G is a maximal torus, we will write Sder, Ssc and Sad

for the corresponding maximal tori of Gder, Gsc and Gad respectively. Recall

that a strongly regular semi-simple element of G is one whose centralizer is a

maximal torus of G; the subset of strongly regular semi-simple elements of G

will be denoted by Gsr. When G is defined over F , we will write G(R) for the

set of points of G with values in an F -algebra R. The notation g ∈ G will be

shorthand for g ∈ G(F ). The action of g on G by conjugation will be denoted

by Ad(g). Two elements g1, g2 ∈ Gsr(F ) are called stably conjugate if they
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are conjugate under G(F ). For all elements h ∈ G(F ) with Ad(h)g1 = g2,

conjugation by h provides the same isomorphism from the centralizer of g1 to

the centralizer of g2, and we will call this isomorphism φg1,g2 . In the slightly

more general setting where an isomorphism ψ : G → G′ has been fixed and

g1 ∈ Gsr, g2 ∈ G′sr are such that there exists h ∈ G with g2 = ψ(hg1h
−1), we

will write φg1,g2 for the isomorphism ψ ◦Ad(h).

We will write “G for the (connected) complex Langlands dual group of G

and LG = “GoWF for the (Weil-form) of its L-group, as in [Bor79, §1].

Given a finite group ∆ and a ∆-module M , besides the usual group coho-

mology H i(∆,M), we will also use the modified, or Tate-cohomology, which

we will denote by H i
Tate(∆,M).

3. The cohomology set H1(u→W,Z → G)

3.1. The multiplicative pro-algebraic group u. For a finite Galois exten-

sion E/F (which by our convention is taken to be a subfield of F ) and a

natural number n, we consider the algebraic group RE/F [n] := ResE/Fµn.

This is a multiplicative group with X∗(RE/F [n]) = Z/nZ[ΓE/F ] with Γ act-

ing by multiplication on the left, and for any Galois extension K/F , we

have RE/F [n](K) = Maps(ΓE/F , µn(F ))ΓK , where (σf)(τ) = σ(f(σ−1τ)) for

f : ΓE/F → µn(F ), σ ∈ ΓK , and τ ∈ ΓE/F . We have the diagonal embedding

µn → RE/F [n] that sends each x ∈ µn to the constant map with value x. We

define the multiplicative group uE/F,n to be the cokernel of this embedding, so

that we have the exact sequence

(3.1) 1→ µn → RE/F [n]→ uE/F,n → 1.

If K/F is a Galois extension containing E and m is a multiple of n, then

composing the norm for K/E with the m/n-power map leads to the map

(3.2) p : RK/F [m]→ RE/F [n],

which in terms of the explicit description of both sides given above has the

formula

(pf)(a) =
∏

b∈ΓK/F
b 7→a

f(b)
m
n , a ∈ ΓE/F .

This map is an epimorphism and descends to an epimorphism uK/F,m →
uE/F,n. We define the pro-algebraic multiplicative group u as the limit

u := lim←−uE/F,n
taken over the index category I whose objects are tuples (E/F, n) and where

there is at most one morphism (K/F,m)→ (E/F, n) and it exists if and only

if E ⊂ K and n|m. For every (E/F, n), the canonical map u → uE/F,n is an

epimorphism.
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Given a finite multiplicative algebraic group Z defined over F we will write

Hom(u, Z) for the set of algebraic homomorphisms. Such a homomorphism

is given by the composition of an algebraic homomorphism uE/F,n → Z for

some suitable (E/F, n) ∈ I with the natural projection u → uE/F,n. It is

straightforward to check that we have the isomorphism

(3.3) Homalg.grp.(uE/F,n, Z)Γ → Homalg.grp.(µn, Z)NE/F , f 7→ f ◦ δe,

where the superscript NE/F denotes the kernel of the norm map and δe : µn →
uE/F,n is the homomorphism dual to the “evaluation at emap” eve :X∗(uE/F,n)

= Z/nZ[ΓE/F ]0 → Z/nZ. (Thus δe(x) is the map ΓE/F → µn supported at e

and having the value x there.)

The group of F -points of the pro-algebraic group u carries a natural pro-

finite topology and a continuous action of Γ. The continuous cohomology

groups H i(Γ, u) are therefore defined.

Theorem 3.1. We have

H1(Γ, u) = 0 and H2(Γ, u) =

Ẑ, F is nonarch.

Z/2Z, F = R.

Note here that the equality signifies a canonical isomorphism.

Proof. We begin by noting that the limit defining u may be taken over

any co-final subcategory of I. We fix such a subcategory {(Ek, nk)} by taking

a tower F = E0 ⊂ E1 ⊂ E2 ⊂ · · · of finite Galois extensions of F with the

property
⋃
Ek = F and a co-final sequence {nk} ⊂ N×. According to [NSW08,

Cor. 2.7.6], we have an isomorphism H i(Γ, u)→ lim←−H
i(Γ, uk), where the limits

are taken over the above co-final subcategory and we have abbreviated uEk/F,nk
by uk. We must compute lim←−H

i(Γ, uk) for i = 1, 2.

We begin with i = 2 and use the functorial isomorphism

H2(Γ, uk) ∼= H0(Γ, X∗(uk))
∗ ∼=
ñ

nk
(nk, [Ek : F ])

Z/nkZ
ô∗
∼= Z/(nk, [Ek : F ])Z,

where ∗ denotes the group of Q/Z-valued characters. Here the first isomor-

phism is given by Poitou-Tate duality [Tat63]. Note that in the archime-

dean case, in general one needs to use the quotient H0
Tate of H0, but for

X∗(uk), one sees that the two groups coincide. For k > l, the transition

map H2(p) : H2(Γ, uk) → H2(Γ, ul) is translated by this isomorphism to the

natural projection map Z/(nk, [Ek : F ])Z → Z/(nl, [El : F ])Z. If F = R,

then for k � 0, we have (nk, [Ek : F ]) = 2. If F is nonarchimedean, we can

clarify the situation by setting nk = [Ek : F ]. Then (nk, [Ek : F ]) = nk. This

completes the computation in the case i = 2.

Now we turn to i = 1. Our goal is to show that for any l there is k > l

such that the transition map H1(p) : H1(Γ, uk) → H1(Γ, ul) is the zero map.
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This would follow if we could find k > j > l so that the transition maps

H1(p) : H1(Γ, Rj)→ H1(Γ, Rl) and H2(p) : H2(Γ, µnk)→ H2(Γ, µnj ) are zero,

by chasing through the diagram arising from the exact sequence H1(Γ, Rk)→
H1(Γ, uk) → H2(Γ, µnk). To treat the case of H1(Γ, Rj), we apply Shapiro’s

lemma to obtain an isomorphism H1(Γ, Rj) → H1(ΓEj , µnj ) → E×j /E
×,nj
j .

Under this isomorphism the transition map is translated to the norm map

NEj/El : E×j /E
×,nj
j → E×l /E

×,nl
l , and we select j so that NEj/El(E

×
j ) ⊂ E×,nll .

For the case of H2(Γ, µnk), we note that the restriction of the map p to the

diagonally embedded copy of µnk into Rk is the (nknj )2-power map. We then

choose k so that nk/nj is a multiple of nj . This completes the proof. �

From now on we will denote by ξ ∈ H2(Γ, u) the element corresponding

to −1 ∈ Z resp. −1 ∈ Z/2Z. The reason we use −1 instead of 1 is that we

want the isomorphism of Section 4 to be compatible with the classical Tate-

Nakayama isomorphism, rather than its negative. Of course for F = R, this

makes no difference, but for F/Qp it does.

For any multiplicative algebraic group Z defined over F , we obtain a map

(3.4) ξ∗ : Hom(u, Z)Γ → H2(Γ, Z) φ 7→ φ(ξ).

Proposition 3.2. If Z is a finite multiplicative algebraic group defined

over F , then ξ∗ is surjective. If Z is also split, then ξ∗ is also injective.

Proof. We again appeal to the perfect duality of Poitou-Tate, which can

be written uniformly in the archimedean and nonarchimedean cases as

H2(Γ, Z)⊗ (lim←−X
∗(Z)Γ/NE/FX

∗(Z))→ Q/Z, (z, χ) 7→ invF (z ∪ χ).

Under this duality, the map dual to ξ∗ takes the form

lim←−X
∗(Z)Γ/NE/FX

∗(Z)→Hom(X∗(Z), X∗(u))Γ,∗

by(3.3) ∼= (lim−→Hom(X∗(Z),Z/nZ)NE/F )∗

∼= Hom(lim←−X
∗(Z)/NE/FX

∗(Z),Q/Z)∗

∼= lim←−X
∗(Z)/NE/FX

∗(Z).

The somewhat unorthodox manipulation of limits is justified by the finiteness

of the appropriate arguments of Hom. Tracing through the identifications, one

sees that the composite map works out to be the obvious inclusion. In addition,

when X∗(Z) carries a trivial Γ-action, this map is an isomorphism. �

3.2. Definition of H1(u→W,Z → G). According to [NSW08, Th. 2.7.7],

the class ξ ∈ H2(Γ, u) corresponds to an isomorphism class of extensions of

profinite groups

1→ u(F )→W → Γ→ 1.
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Furthermore, H1(Γ, u) = 0 implies that the only automorphisms of an exten-

sion belonging to this isomorphism class, which induce the identity on both Γ

and u, are given by inner automorphisms by elements of u. We now fix one

such extension.

Let A be the category of monomorphisms Z → G defined over F , where

G is an affine algebraic group, Z is a finite multiplicative group, and the

morphism embeds Z into the center of G. Later we will also be interested in

the subcategories T ⊂ R ⊂ A, where [Z → G] ∈ A belongs to T if G is a torus

and belongs to R if G is a connected reductive group. For two such objects

Z1 → G1 and Z2 → G2, we define the set of morphisms A(Z1 → G1, Z2 → G2)

to be the set of commutative diagrams

Z1

��

// Z2

��
G1

// G2 ,

where the horizontal maps are morphisms of algebraic groups defined over F .

Since F has characteristic zero, such a diagram is determined by its bottom

horizontal arrow.

Given [Z → G] ∈ A, the set G(F ) taken with the discrete topology carries

a continuous Γ-action, which we inflate to a continuous W -action. We define

Z1(u → W,Z → G) to be the set of those continuous cocycles of W in G(F )

whose restriction to u is an algebraic homomorphism u → Z. Clearly, this

definition is functorial in [Z → G]. Further define Z
1
(u → W,Z → G) =

Z1(u → W,Z → G)/B1(W,Z) and H1(u → W,Z → G) = Z1(u → W,Z

→ G)/B1(W,G).

If 1→ u→W ′ → Γ→ 1 is an isomorphic extension, then there are canon-

ical isomorphisms of functors Z
1
(u → W ) → Z

1
(u → W ′) and H1(u → W )

→ H1(u → W ′). On the other hand, while there is also an isomorphism

Z1(u→W )→ Z1(u→W ′), it is not canonical.

3.3. Basic properties of H1(u→W,Z → G). We continue with a fixed ex-

tension W of Γ by u belonging to the canonical isomorphism class determined

by ξ ∈ H2(Γ, u). Let [Z → G] ∈ A. A simple remark of fundamental impor-

tance for us is that any z ∈ Z1(u→W,Z → G) gives rise to an inner form Gz

of G. Namely, the image of z in Z1(W,Gad) belongs to Z1(Γ, Gad) and we can

use it to twist the Γ-action on G(F ). This will be the prime topic of discussion

in Section 5.1, but it will be also useful now, as we shall see momentarily.

The inflation-restriction sequence associated to the homomorphism W→Γ

specializes to the exact sequence

(3.5) 1→ H1(Γ, G)→ H1(u→W,Z → G)→ Hom(u, Z)Γ → H2(Γ, G),

where the last term is to be ignored if G is not abelian.



574 TASHO KALETHA

Lemma 3.3. If G is abelian, then the map Hom(u, Z)Γ → H2(Γ, G)

in (3.5) can be taken to be the composition of (3.4) with the natural map

H2(Γ, Z)→ H2(Γ, G).

Proof. The map in question is usually taken to be the transgression map.

Recall from [NSW08, Prop. 1.6.6] that the image of φ ∈ Hom(u, Z)Γ under

the transgression map can be represented by choosing a continuous section

s : Γ→W and taking the differential of the 1-cochain

c : W → G, c(w) = φ(w−1s(w)).

By definition, ξ̇(σ, τ) = s(σ)s(τ)s(στ)−1 represents the class ξ and one com-

putes that dc(σ, τ) = φ(ξ̇(σ, τ))−1. Of course we may replace the transgression

map by its negative and still keep the sequence (3.5) exact. �

Lemma 3.4. The set H1(u→W,Z → G) is finite.

Proof. The finiteness of Z implies that Hom(u, Z)Γ =lim−→Hom(uE/F,n, Z)Γ

is also finite. For any z ∈ Z1(u → W,Z → G), let Gz be the inner form of

G obtained by twisting the Γ-structure by z. Then the fiber of H1(u→ W,Z

→ G) → Hom(u, Z)Γ through the class of z is identified under (3.5) with the

set H1(Γ, Gz), which is also known to be finite [PR94, Th. 6.14]. �

Proposition 3.5. Let [Z → S] ∈ A, and assume that S is a split torus.

Then H1(u→W,Z → S) = 0.

Proof. By assumption, the groups Z and S = S/Z are split, hence both

maps Hom(u, Z)Γ → H2(Γ, Z) → H2(Γ, S) are injective. The proposition

follows from (3.5). �

Proposition 3.6. Let [Z → G] ∈ A. Put G = G/Z . Then we have the

commutative diagram with exact rows and columns

(3.6) G(F )

��

G(F )

��
1 // H1(Γ, Z)

Inf //

��

H1(u→W,Z → Z)
Res //

��

Hom(u, Z)Γ

1 // H1(Γ, G)
Inf // H1(u→W,Z → G)

Res //

a
��

Hom(u, Z)Γ

(3.4)

��

// ∗

H1(Γ, G) // H1(Γ, G) //

��

H2(Γ, Z)

��

// ∗

1 1 ,

where ∗ is to be taken as H2(Γ, G) if G is abelian and disregarded otherwise.
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Proof. The second and third rows come from (3.5), the fourth row and

the left column come from the long exact sequence for Γ-cohomology of the

short exact sequence 1 → Z → G → G → 1. The middle column comes from

the long exact sequence for W -cohomology associated to the same short exact

sequence. The commutativity of all squares is obvious, except for the bottom

right one, which is the content of Lemma 3.3, and the bottom middle one,

which we turn to now.

Choose again a continuous section s : Γ→W . Let z∈Z1(u→W,Z→G).

Then c(σ) = z(s(σ)) is an element of C1(Γ, G) that lifts a(z), so dc ∈ Z2(Γ, Z)

is the image of a(z) under the connecting homomorphism. Using the fact that z

is a cocycle, we see that dc(σ, τ) = z(ξ̇(σ, τ)), where ξ̇(σ, τ) = s(σ)s(τ)s(στ)−1

represents the class ξ.

To complete the proof of the proposition, we need to establish the surjec-

tivity of the map a. If G is abelian, this surjectivity follows from the already

established surjectivity of (3.4) and the four-lemma. For a generalG, let R ⊂ G
be a complement to the unipotent radical of G, i.e., a Levi subgroup [PR94,

Th. 2.3], and let S ⊂ R be a fundamental maximal torus [Kot86, §10]. Then

Z is a subset of S, S is a fundamental maximal torus of R, and R is a Levi

subgroup of G. Then we have the diagram

H1(u→W,Z → S) //

��

H1(u→W,Z → G)

��
H1(Γ, S) // H1(Γ, G) .

We already know that the left vertical map is surjective, and according to

[PR94, Prop. 9.2] and [Kot86, Lemma 10.2], the bottom horizontal map is

surjective. It follows that the right vertical map is also surjective. �

Corollary 3.7. Let [Z → G] ∈ R.

(1) If G possesses anisotropic maximal tori, then the map H1(u→W,Z → G)

→ Hom(u, Z)Γ from (3.5) is surjective.

(2) If S ⊂ G is a fundamental torus, then the map

H1(u→W,Z → S)→ H1(u→W,Z → G)

is surjective.

Proof. The first point follows from the fact that if S is an anisotropic

torus, then H2(Γ, S) vanishes, so by (3.5) the map H1(u → W,Z → S) →
Hom(u, Z)Γ is surjective, and then so is H1(u→W,Z → G)→ Hom(u, Z)Γ.
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The second point follows from the surjectivity of the map H1(Γ, S) →
H1(Γ, G) [Kot86, Lemma 10.2] and the four-lemma applied to the diagram

H1(u→W,Z → Z) // H1(u→W,Z → S) //

��

H1(Γ, S) //

��

1

H1(u→W,Z → Z) // H1(u→W,Z → G) // H1(Γ, G) // 1 . �

Corollary 3.8. Let G be a connected reductive group defined over F ,

let Z be the center of Gder, and set G = G/Z . Then both natural maps

H1(u→W,Z → G)→ H1(Γ, G)→ H1(Γ, Gad)

are surjective. If F is p-adic and G is split, then both maps are bijective. If

F = R and G is split, then the second map is bijective and the first map has

trivial kernel (but possibly nontrivial fibers away from the neutral element).

Proof. The surjectivity of the first map is already stated in Proposition 3.6,

while that of the second maps follows from the fact that G is the direct product

Gad×Z(G)/Z. Assume now that G is split. The group Z(G)/Z is a split torus

and has trivial first cohomology, which accounts for the injectivity of the second

map.

We will now discuss the first map. The bijectivity of (3.4) and the exact

sequence (3.5) imply the bijectivity of Inf : H1(Γ, Z) → H1(u → W,Z → Z).

Combining this with Proposition 3.6 we see that the kernel of the the first map

in the corollary, which coincides with the kernel of the composition

H1(u→W,Z → G)→ H1(Γ, G)→ H1(Γ, Gad),

must be equal to the kernel of the map H1(Γ, G) → H1(Γ, Gad). But this

kernel is trivial. Indeed, it is enough to check that Gad(F ) → H1(Γ, Z(G))

is surjective, but if T ⊂ G is a split maximal torus, with image Tad in Gad,

then Tad(F )→ H1(Γ, Z(G)) is surjective because H1(Γ, T ) is trivial, and that

suffices.

If F is p-adic, then the map H1(Γ, G) → H1(Γ, Gad) is actually a homo-

morphism of abelian groups [Kot86, Th. 1.2], and the triviality of its kernel

implies its injectivity. �

Remark. The following is a simple example that shows that some fibers of

the first map in Corollary 3.8 can be nontrivial for F = R and G a split group.

Let G = SL2/R. Then H1(R, Gad) has two elements. The fiber of the sur-

jection H1(u → W,Z → G) → H1(Γ, Gad) over the nontrivial element can be

identified via twisting with the kernel of H1(u → W,Z → G′) → H1(Γ, G′ad),

where G′ is the nontrivial inner form of SL2/R, namely, the anisotropic group

SU2. The arguments of Corollary 3.8 show that this kernel is equal to the
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image of H1(Γ, Z) → H1(Γ, G′). Using [PR94, Th. 6.17], one computes that

this map is a bijection between two sets of order 2.

3.4. Definition of H1
ab(u → W,Z → G). Let [Z → G] ∈ R. We will

now describe a quotient of H1(u → W,Z → G) that will be used in the next

section. For this, we impose on H1(u→ W,Z → G) the following equivalence

relation: Let z1, z2 ∈ Z1(u → W,Z → G). Let G1 be the twist of G by the

image of z1 in Z1(Γ, Gad). Tautologically z2 · z−1
1 ∈ Z1(u→W,Z → G1), and

we say that the images of z1 and z2 in H1(u → W,Z → G) are equivalent if

z2 · z−1
1 belongs to the image of Z1(Γ, G1

sc). One checks easily that this defines

an equivalence relation on H1(u → W,Z → G) and we denote the quotient

by H1
ab(u→ W,Z → G). Since every homomorphism of reductive groups lifts

uniquely to a homomorphism of the simply connected covers of their derived

groups, we obtain a functor H1
ab(u→W ) : R → Sets and a surjective map

H1(u→W )→ H1
ab(u→W ),

which is an isomorphism whenever H1(Γ, Gsc) = 1. This condition holds when

F is p-adic by Kneser’s theorem [Kne65], as well as when G is a torus because

then Gsc = 1.

We remark that in the same way we can define H1
ab(Γ, G) by impos-

ing the same equivalence relation on H1(Γ, G). In that situation, we obtain

H1
ab(Γ, G) ∼= H1(Γ, Gsc → G), where Gsc → G is regarded as a crossed module

placed in degrees −1 and 0. This group was introduced by Borovoi [Bor98].

4. The isomorphism Y +,tor → H1
ab(u→W )

Recall that if S is an algebraic torus defined over F and split over a fi-

nite Galois extension E/F , there is an isomorphism H−1
Tate(ΓE/F , X∗(S)) →

H1(Γ, S) [Tat66]. The source of this isomorphism can be computed to be

X∗(S)Γ,tor, the torsion submodule of the Γ-coinvariants of X∗(S). This has the

advantage of eliminating the dependence of this isomorphism on the finite ex-

tension E, and in this way one obtains an isomorphism X∗(S)Γ,tor → H1(Γ, S)

that is functorial in S.

In this section we are going to define a functor

Y +,tor : R → AbGrp,

which extends the functor S 7→ X∗(S)Γ,tor, as well as a morphism of functors

from Y +,tor to the functor [Z → G] 7→ Hom(u, Z)Γ. We will then prove that

there exists a unique isomorphism

Y +,tor → H1
ab(u→W ),

which for objects [1 → S] ∈ T , coincides with the Tate-Nakayama isomor-

phism, and such that the composition Y +,tor(Z → G)→ H1
ab(u→W,Z → G)

→ Hom(u, Z)Γ coincides with the morphism just alluded to.
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4.1. Definition of Y +,tor. Let [Z → S] ∈ T . As before we write S = S/Z.

Let X = X∗(S), X = X∗(S), Y = X∗(S), and Y = X∗(S). We have the exact

sequences

0→ X → X → X/X → 0 and 0→ Y → Y → Y /Y → 0,

and we will identify X with its image in X and Y with its image in Y . The

abelian group Y /Y is finite and the Z-pairing between Y and X provides a

Q-pairing between Y and X, which in turn provides a Γ-equivariant perfect

pairing

Y /Y ⊗X/X → Q/Z.

This perfect pairing can also be formulated as the isomorphism

(4.1) Y /Y → Hom(µn, Z), λ̄ 7→ (x 7→ xnλ̄) for [Y : Y ]|n.

We will write Y N and Y
N

for the kernel of the norm map for the action of the

Galois group ΓE/F for any finite Galois extension of E/F over which S splits.

If I ⊂ Z[ΓE/F ] is the augmentation ideal, we define Y + = Y /IY . The modules

Y N , Y
N

, and IY are independent of the choice of E, and we have the exact

sequence

0→ YΓ → Y + → Y /Y → 0,

where YΓ = Y/IY is the module of Γ-coinvariants in Y . Write Y N
Γ and Y

N
+ for

the quotients of Y N and Y
N

by IY . The following fact is easily observed.

Fact 4.1. For any field extension E/F splitting S, we have Y
N
+ = Y +,tor,

the latter being the torsion submodule of Y +. Moreover, we have the exact

sequence

0→ YΓ,tor → Y +,tor → [Y /Y ]N
N→ Y Γ/N(Y ).

Composing the map Y +,tor → [Y /Y ]N with (4.1) and the inverse of (3.3)

we obtain a homomorphism Y +,tor → Hom(uE/F,n, Z)Γ. For varying E/F

and n, these homomorphisms are compatible and splice to a homomorphism

(4.2) Y +,tor → Hom(u, Z)Γ.

Given a morphism [Z1 → S1] → [Z2 → S2] in T , the induced morphism

S1 → S2 gives rise to a morphism X∗(S1)+,tor → X∗(S2)+,tor. In other words,

the assignment [Z → S] 7→ Y +,tor is functorial; i.e., we obtain a functor

Y +,tor : T → FinAbGrp.

The homomorphism Y +,tor → Hom(u, Z)Γ is functorial in [Z → S].

In order to extend the functor Y +,tor to R, we need the following lemma.
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Lemma 4.2. Let [Z → G] ∈ R, and let S1, S2 ⊂ G be maximal tori. Any

g ∈ G(F ) with S2 = Ad(g)S1 provides a Γ-equivariant isomorphism

Ad(g) : Y 1/Q
∨
1 → Y 2/Q

∨
2 ,

where Y i = X∗(Si/Z) and Q∨i = X∗(Si,sc). Moreover, this isomorphism is

independent of the choice of g.

Proof. It is clear that Ad(g) provides an isomorphism between its source

and target. If we show that this isomorphism is independent of the choice of g,

the Γ-equivariance will follow. We may assume S1 = S2 = S and g ∈ N(S,G).

Let w be the image of g in the Weyl group Ω(S,G). We want to show that w

acts trivially on Y /Q∨. The isogeny S/Z → S/(Z·Z(Gder)) = Sad×G/(Z·Gder)

gives an injection Y → P∨ ⊕ X∗(G/Z · Gder), where P∨ = X∗(Sad) is the

coweight lattice. Let ȳ ∈ Y , and decompose it as ȳ = p + z with p ∈ P∨ and

z ∈ X∗(G/Z ·Gder). Then wz = z and wp− p ∈ Q∨ by [Bou02, Ch VI, §1, no.

10, Prop 27]. �

Let [Z → G] ∈ R. For a maximal torus S ⊂ G, we consider the expression

lim−→
[X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))
,

where the colimit is taken over the set of Galois extensions E/F splitting S.

We define Y +,tor([Z → G]) to be the limit of the system whose objects are

these expressions and whose morphisms are given by Lemma 4.2.

Given a morphism f : [Z → G]→ [C → H] in R, the map f : G→ H lifts

uniquely to a map fsc : Gsc → Hsc. Choose maximal tori S ⊂ G and T ⊂ H

such that f(S) ⊂ T . Restricting f to S we obtain a morphism f : [Z → S]→
[C → T ] in T and a compatible homomorphism Ssc → Tsc, and hence a map

(4.3) lim−→
[X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))

fS,T−→ lim−→
[X∗(T/C)/X∗(Tsc)]

N

I(X∗(T )/X∗(Tsc))
.

If S′ and T ′ are other choices of maximal tori of G and H with f(S′) ⊂ T ′,

then there exist g ∈ G and h ∈ Cent(f(S), H) such that S′ = Ad(g)S and

T ′ = Ad(hf(g))T . The commutativity of

S
Ad(g)

//

f
��

S′

f
��

T
Ad(hf(g))

// T ′

implies that the maps fS,T for all possible choices of S and T splice together

to a map

Y +,tor(f) : Y +,tor(G)→ Y +,tor(H).
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This completes the definition of the functor

Y +,tor : R → FinAbGrp.

One checks that (4.2) extends to a homomorphism

(4.4) Y +,tor → Hom(u, Z)Γ

of functors R → FinAbGrp.

4.2. Uniqueness of the isomorphism. Let ι(1), ι(2) : Y +,tor → H1
ab(u→W )

be two isomorphisms, both of which coincide with the Tate-Nakayama isomor-

phism for objects [1 → S] ∈ T and lift the morphism Y +,tor → Hom(u, Z)Γ

defined by (4.2). We will show that ι(1) = ι(2).

Step 1: Let [Z → S] ∈ T with S an anisotropic torus. Then we have the

equations lim−→(Y /Y )NE/F = X∗(S)/X∗(S) and Y +,tor = X∗(S)/IX∗(S) and

conclude that the composition
(
ι
(1)
[Z→S]

)−1
ι
(2)
[Z→S] is therefore an automorphism

of the extension

0→ X∗(S)/IX∗(S)→ X∗(S/Z)/IX∗(S)→ X∗(S/Z)/X∗(S)→ 0.

This automorphism induces the identities on the first and third terms and thus

differs from the identity by a homomorphism

δ[Z→S] : X∗(S/Z)/X∗(S)→ X∗(S)/IX∗(S).

As we fix S and vary Z, this homomorphism is still functorial in Z and hence

determines a homomorphism

δS : lim−→
Z

X∗(S/Z)/X∗(S)→ X∗(S)/IX∗(S).

This homomorphism has a divisible source and a finite target and is thus zero.

Each individual homomorphism δ[Z→S] is a restriction of δS and thus also zero.

Step 2: Now let [Z → S] ∈ T be arbitrary. Let Sa ⊂ S be the maximal

anisotropic subtorus and let Za = Z ∩ Sa. Then we obtain the diagram with

exact rows

H1(u→W,Za→Sa) // H1(u→W,Z→S) // H1(u→W,Z/Za→S/Sa)

Y +,tor(Za→Sa)

OO

// Y +,tor(Z→S)

OO

// Y +,tor(Z/Za→S/Sa) .

OO

According to Proposition 3.5, the top third term vanishes, and then so must

the bottom third. Thus ι
(k)
[Z→S] is determined by ι

(k)
[Za→Sa] for k = 1, 2, and by

Step 1 we have ι
(1)
[Z→S] = ι

(2)
[Z→S].

Step 3: Let [Z → G] ∈ R, and let S ⊂ G be a fundamental maximal

torus. According to Corollary 3.7, ι
(k)
Z→G is determined by ι

(k)
Z→S .
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4.3. Unbalanced cup-products. The construction of the isomorphism Y +,tor

→ H1
ab(u→W ) will be based on a modified version of the cup-product between

a positive-degree cochain and a negative-degree cochain in Tate cohomology.

It is defined as follows. Let ∆→ Θ be a surjection of finite groups, let A be a

∆-module, and let B a Θ-module. Recall that for any integer i, the set of ho-

mogenous i-cochains Ci,hom
Tate (Θ, B) is defined as HomΘ(PΘ

i , B), where (PΘ
i )i∈Z

is the standard complete resolution of the trivial Θ-module Z. Analogously,

we have Ci,hom
Tate (∆, A) = Hom∆(P∆

i , A). When i ≥ 0, the set Ci,hom
Tate (∆, A) can

be identified with the set of ∆-equivariant functions from ∆i+1 to A, where ∆

acts by diagonal left multiplication on ∆i+1. Moreover, we may work in the

more general situation where ∆ is not finite, but rather a compact topological

group and ∆ → Θ is continuous, as long as we take the functions from ∆i+1

to A to be continuous with respect to the discrete topology on A. We will also

occasionally drop the subscript “Tate” in that situation.

Let i > j > 0. We will be interested in a subset

Ci,j,hom(∆,Θ, A) ⊂ Ci,hom(∆, A)

defined as follows: An i-cochain of ∆ with values in A belongs to this subset

if and only if its values remain unchanged when we multiply any of its last

j-many variables by an element in the kernel of ∆ → Θ. This is equivalent

to saying that this i-cochain is the composition of a (continuous) function

∆i+1−j×Θj → A with the natural projection ∆i+1 → ∆i+1−j×Θj . Notice that

the differential d : Ci,hom(∆, A)→ Ci+1,hom(∆, A) carries Ci,j,hom(∆,Θ, A) to

Ci+1,j,hom(∆,Θ, A).

We can consider B as a ∆ module as well and form the ∆-module A⊗B.

Now let i ≥ j′ ≥ j > 0. Given two cochains f ∈ Ci,j
′,hom(∆,Θ, A) and

g ∈ C−j,hom
Tate (Θ, B), we define

f t g ∈ Ci−j,j
′−j,hom

Tate (∆,Θ, A⊗B)

using the formula

(f t g)(g0, . . . , gi−j) =
∑

(s1,...,sj)∈Θj

f(g0, . . . , gi−j , s1, . . . , sj)⊗ g(s∗j , . . . , s
∗
1).

The condition on f ensures that this formula makes sense. In the degenerate

case ∆ = Θ this is just the formula for f ∪ g given in [NSW08, Prop. 1.4.7].

We also define

(f t g)(g0, . . . , gi) = (f ∪ g)(g0, . . . , gi) = f(g0, . . . , gi)⊗ g(gi)

in the case j = 0. Then we observe that t has the following feature in common

with the usual cup-product.

Fact 4.3. d(f t g) = df t g + (−1)if t dg.
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The proof relies on the fact that for i ≥ 0, the differential for homogenous

i-cochains is given by a formula that is independent of the group; i.e., it is the

same for both ∆ and Θ — a fact that is not true for i < 0. Once this has been

observed, the proof is straightforward and we shall leave it to the reader.

It will be more convenient to work with inhomogenous cochains in the

subsequent sections. For i > j′ ≥ j > 0, the set of inhomogenous i-cochains

Ci(∆, A) is then just the set of (continuous) functions ∆i → A, and the subset

Ci,j
′
(∆,Θ, A) is defined by the same condition as for the homogenous case.

For negative degrees, we will be particularly interested in the case j = 1. An

inhomogenous (−1)-cochain with values in B is simply an element of B. Given

f ∈ Ci,1(∆,Θ, A) and λ ∈ B, we have

(f t λ)(g1, . . . , gi−1) =
∑
a∈Θ

f(g1, . . . , gi−1, a)⊗ g1 . . . gi−1aλ.

In a situation where more than one pair of groups ∆→ Θ is involved, we

will write f t
Θ
g to keep track of which group is being used. When Θ is the

Galois group of some finite Galois extension E/F , we will also write f t
E/F

g.

4.4. Arithmetic preparations. We again choose an increasing tower Ek of

Galois extensions of F with
⋃
Ek = F . For each k, the relative Weil group

WEk/F = WF /W
c
Ek

fits into the exact sequence [Tat79]

1 // E×k
reck // WEk/F

pk // ΓEk/F
// 1 .

For each k, choose an arbitrary (set-theoretic) section ζk for the natural pro-

jection πΓ
k : ΓEk+1/F → ΓEk/F . Every element of ΓEk+1/F can be written as a

product yζk(x) for unique y ∈ ΓEk+1/Ek and x ∈ ΓEk/F . For each k, choose

inductively a section sk+1 : ΓEk+1/F →WEk+1/F of pk+1 with the properties

sk+1(yζk(x)) = sk+1(y)sk+1(ζk(x)) and sk(x) = πWk (sk+1(ζk(x))),

where πWk : WEk+1/F →WEk/F is the natural projection.

Define ck∈Z2(ΓEk/F , E
×
k ) by ck(σ, τ) = rec−1

k (sk(σ)sk(τ)sk(στ)−1). Then

ck represents the canonical class of the extension Ek/F . The following lemma

expresses the compatibility between the different ck. Its proof is contained

in the discussion found in [Lan83, VI.1], and we reproduce it here for the

convenience of the reader.

Lemma 4.4. For any σ, τ ∈ ΓEk+1/F , we have

ck(π
Γ
k (σ), πΓ

k (τ)) =
∏

v∈ΓEk+1/Ek

ck+1(vσ, ζk(π
Γ
k (τ))) =

∏
v∈ΓEk+1/Ek

ck+1(σ, vτ)ck+1(σ, v)−1.
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Proof. For any x, y ∈ ΓEk/F and z, w ∈ ΓEk+1/Ek , our choice of the sections

sk implies the following equations, whose derivation we leave to the reader:

ck+1(w, z) = ck+1(w, zζk(x)),(4.5)

ck(x, y) = NEk+1/Ek(ck+1(ζk(x), ζk(y))) · rec−1
k (πWk (sk+1(cΓ(x, y)))).(4.6)

Here cΓ : Γ2
Ek/F

→ ΓEk+1/Ek is defined by cΓ(x, y) = ζk(x)ζk(y)ζk(xy)−1 and

the second factor in the right-hand side of (4.6) is defined because the function

πWk ◦ sk+1 maps ΓEk+1/Ek into the image of reck. Given z ∈ ΓEk+1/Ek , we have

rec−1
k (πWk (sk+1(z))) = rec−1

k+1(tr(πWk (sk+1(z)))),

where tr : W ab
Ek
→ W ab

Ek+1
is the transfer map. Because W ab

Ek
= W ab

Ek+1/Ek
,

this transfer map is equal to the transfer map tr : W ab
Ek+1/Ek

→ W ab
Ek+1/Ek+1

=

WEk+1/Ek+1
. In order to compute it, we need a section of the natural projection

WEk+1/Ek →WEk+1/Ek/WEk+1/Ek+1
= ΓEk+1/Ek , and for this we can take sk+1.

Then we have

rec−1
k+1(tr(π

W
k (sk+1(z))))=

∏
v∈ΓEk+1/Ek

rec−1
k+1(sk+1(v)sk+1(z)sk+1(vz)−1)=

∏
v∈ΓEk+1/Ek

ck+1(v, z).

Plugging this into equation (4.6) we obtain

ck(x, y) =
∏

v∈ΓEk+1/Ek

vck+1(ζk(x), ζk(y)) · ck+1(v, cΓ(x, y)),

and according to equation (4.5) this leads to

ck(x, y) =
∏

v∈ΓEk+1/Ek

vck+1(ζk(x), ζk(y)) · ck+1(v, cΓ(x, y)ζk(xy))

=
∏

v∈ΓEk+1/Ek

vck+1(ζk(x), ζk(y)) · ck+1(v, ζk(x)ζk(y))

=
∏

v∈ΓEk+1/Ek

ck+1(vζk(x), ζk(y)) · ck+1(v, ζk(x))

=
∏

v∈ΓEk+1/Ek

ck+1(vζk(x), ζk(y)).

This completes the proof of the first of the two equations that are stated in

the lemma. The second equation follows from

ck(π
Γ
k (σ), πΓ

k (τ))

=
∏

v∈ΓEk+1/Ek

ck+1(σv, ζk(π
Γ
k (τ)))

=
∏

v∈ΓEk+1/Ek

σck+1(v, ζk(π
Γ
k (τ))) · ck+1(σ, vζk(π

Γ
k (τ))) · ck+1(σ, v)−1

and the fact that ck+1(v, ζk(π
Γ
k (τ))) = 1 according to equation (4.5). �
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4.5. An explicit realization of the extension of Γ by u. In the previous

section we chose the sequence of extensions Ek as well as the maps ζk and sk.

We obtained 2-cocycles ck ∈ Z2(ΓEk/F , E
×
k ) representing the canonical classes.

In addition, we choose a co-final sequence {nk} ⊂ N× and maps lk : F
× → F

×

having the properties lk(x)nk = x and lk+1(x)
nk+1
nk = lk(x) for all x ∈ F×.

For each k, again write uk = uEk/F,nk . Recall the homomorphism δe :

µnk → REk/F [nk] that sends x to the map ΓEk/F → µnk supported at e and

having value x there. It induces a homomorphism δe : µnk → uk that is easily

seen to be killed by the norm map for the group ΓEk/F acting on Hom(µnk , uk).

Thus δe ∈ Z−1
Tate(ΓEk/F ,Hom(µnk , uk)). On the other hand we have the cochain

lkck ∈ C2,2(ΓF ,ΓEk/F , F
×

) and its differential dlkck ∈ Z3,2(ΓF ,ΓEk/F , µnk).

We define

(4.7) ξk = dlkck t
Ek/F

δe ∈ Z2(Γ, uk)

and let Wk = uk�ξkΓ be the extension of Γ by uk determined by this 2-cocycle.

We will now arrange the extensions Wk into a projective system. In order

to define the transition maps, it will be convenient to introduce the torus

REk/F = ResEk/FGm and let SEk/F by the quotient of REk/F by the diagonally

embedded copy of Gm. Then uk is the subgroup of nk-torsion points in SEk/F .

Recall the map p : uk+1 → uk defined by (3.2). Define

(4.8) αk =

Ç
lkck t

Ek/F
δe

å−1

· p
Ç
lk+1ck+1 t

Ek+1/F
δe

å
∈ C1(Γ, SEk/F ).

Lemma 4.5.

(1) The cochain αk takes values in uk and the equality dαk = p(ξk+1)ξ−1
k holds

in C2(Γ, uk).

(2) The element ([ξk]) of lim←−H
2(Γ, uk) is equal to the canonical class ξ.

Proof. In order to prove the first statement, we will rewrite αk as follows.

Define for σ, τ ∈ ΓEk+1/F the element

ηk(σ, τ) = lkck(π
Γ
k (σ), πΓ

k (τ))−1 ·
∏

v∈ΓEk+1/Ek

î
lkck+1(σ, τv) · lkck+1(σ, v)−1

ó
.

According to Lemma 4.4 we have ηk ∈ C2,1(Γ,ΓEk/F , µnk), and we claim that

αk = ηk t
Ek/F

δe ∈ C1(Γ, uk).

Indeed, in C2(Γ, SEk/F ) one computes thatñ
(σ, τ) 7→

∏
v

lkck+1(σ, τv)

ô
t

Ek/F
δe = p(lk+1ck+1 t

Ek+1/F
δe) = p(ξk+1),
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while ñ
(σ, τ) 7→

∏
v

lkck+1(σ, v)

ô
t

Ek/F
δe

represents an element of REk/F that lies in the image of the diagonal embedding

of Gm and is thus trivial in SEk/F .

Turning to the second statement, we need to show that under the isomor-

phism H2(Γ, uk) → H0(Γ, X∗(uk))
∗ → Z/(nk, [Ek : F ])Z used in the proof

of Theorem 3.1, the class of ξk maps to the element −1. For this we com-

pute the cup-product of ξk with the element nk
(nk,[Ek:F ]) ∈

nk
(nk,[Ek:F ])Z/nkZ ∼=

H0(Γ, X∗(uk)) and obtain the nk
(nk,[Ek:F ]) -th power of the element of C2(Γ, µnk)

given by
(σ, τ) 7→

∏
a∈ΓEk/F

dlkck(σ, τ, (στ)−1a).

In C2(Γ, F
×

) this power is cohomologous to the [Ek : F ]/(nk, [Ek : F ])-th

power of c−1
k and is thus a 2-cocycle of invariant −1/(nk, [Ek : F ]). It follows

that the class ξk corresponds to the character of H0(Γ, X∗(uk)) that sends the

element nk
(nk,[Ek:F ]) to −1

(nk,[Ek:F ]) ∈ Q/Z. �

It follows from the first part of the above lemma that the map

Wk+1 →Wk, x� σ 7→ p(x)αk(σ) � σ

is a homomorphism of extensions. Since it is surjective, the limit W = lim←−Wk

is an extension of Γ by u. The element of H2(Γ, u) = lim←−H
2(Γ, uk) defined by

this extension is given by the system ([ξk]). Thus, by the second part of the

above lemma, the extension W belongs to the isomorphism class of extensions

of Γ by u determined by ξ.

We also have the following explicit description of the homomorphism (3.4),

which follows right away from the explicit formula (4.7) for ξk.

Fact 4.6. Let φ ∈ Hom(uk, Z)Γ, and let ϕ = φ ◦ δe ∈ Hom(µnk , Z)NEk/F .

Then
φ(ξk) = dlkck t

Ek/F
ϕ.

4.6. Construction of the isomorphism in the case of tori. Now let [Z→S]

∈ T . We again write Y =X∗(S) and Y =X∗(S/Z). Let k be large enough so

that Ek splits S and |Z| divides nk. Let λ̄∈Y NEk/F , and let φλ̄,k∈Hom(uk, Z)Γ

be its image under the isomorphism

[Y /Y ]NEk/F → Hom(µnk , Z)NEk/F → Hom(uk, Z)Γ

given by the composition of (4.1) and (3.3). For x� σ ∈Wk = uk � Γ, set

zλ̄,k(x� σ) = φλ̄,k(x) ·
Ç
lkck t

Ek/F
nkλ̄

å
(σ) ∈ S(F ).

Then zλ̄,k is a map Wk → S that we inflate to a map W → S.
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Lemma 4.7. The map zλ̄,k : W → S belongs to Z1(u → W,Z → S). If

l > k, then zλ̄,l and zλ̄,k are equal in Z1(u→W,Z → S).

Proof. By definition zλ̄,k is a continuous 1-cochain W → S whose restric-

tion to u factors through an algebraic homomorphism uk → Z. It remains to

show that this 1-cochain is in fact a 1-cocycle. We compute

dzλ̄,k(x� σ, y � τ) = φλ̄,k(ξk(σ, τ))−1 · d(lkck t nkλ̄)(σ, τ),

(Fact 4.3) = φλ̄,k(ξk(σ, τ))−1 · (dlkck t nkλ̄)(σ, τ),

(Fact 4.6) = 1.

To compare zλ̄,l and zλ̄,k, we will show that the inflation of zλ̄,k to Wl is equal

to zλ̄,l. For this it is enough to consider l = k + 1. According to the definition

of the transition map Wk+1 →Wk, the inflation of zλ̄,k takes at x� σ ∈Wk+1

the value

φλ̄,k(p(x)αk(σ)) ·
Ç
lkck t

Ek/F
nkλ̄

å
(σ).

One checks that the equalities

φλ̄,k ◦ p = φλ̄,k+1, φλ̄,k

Ç
lkck t

Ek/F
δe

å
= lkck t

Ek/F
nkλ̄

hold, and the proof is complete. �

We will henceforth denote the inflation of zλ̄,k to a map W → S(F ) by

zλ̄, due to its independence of k.

Theorem 4.8. The assignment λ̄ 7→ zλ̄ induces an isomorphism

ι : Y +,tor → H1(u→W )

of functors T → AbGrp. This isomorphism coincides with the Tate-Nakayama

isomorphism for objects [1→ S] ∈ T and lifts the morphism (4.2).

Proof. The fact that zλ̄ is additive in λ̄ is clear from its definition, so

that we indeed obtain a homomorphism of groups from the subgroup of Y of

elements killed by NEk/F for some k, to the group H1(u → W,Z → S). The

functoriality in Z → S is also clear from the construction, as both factors in the

product defining zλ̄,k are functorial in λ̄. If λ̄ ∈ Y , then φλ̄,k = 0 and, moreover,

lkck t nkλ̄ = ck ∪ λ̄, thus zλ̄,k represents the image in H1(Γ, S) of λ̄ under

the classical Tate-Nakayama isomorphism [Tat66]. This shows that the group

homomorphism λ̄ 7→ zλ̄ annihilates IY and thus descends to a homomorphism

ι[Z→S] : Y +,tor(Z → S)→ H1(u→ W,Z → S). It furthermore shows that the

latter homomorphism is equal to the Tate-Nakayama isomorphism if Z = 1.

The fact that ι[Z→S] lifts (4.2) is evident from the construction of zλ̄,k. What
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remains to be shown is that ι[Z→S] is an isomorphism. For this, we consider

the diagram

1 // H1(Γ, S) // H1(u→W,Z→S) // Hom(u, Z)Γ // H2(Γ, S)

0 // YΓ,tor

OO

// Y +,tor

OO

// lim−→[Y /Y ]Nk

OO

// lim−→Y Γ/Nk(Y ) ,

OO

where Nk denotes the norm map for the action of ΓEk/F and the limits are

taken with respect to k, beginning with k large enough. The transition maps

for the first limit are the natural inclusions, and the transition map k → k+ 1

for the second limit is given by the norm map for the action of ΓEk+1/Ek .

(In fact, this action is trivial, so the map is just multiplication by [Ek+1 :

Ek].) The right-most bottom horizontal map is given by the system of maps

[Y /Y ]Nk → Y Γ/Nk(Y ) sending λ̄ + Y to Nk(λ̄) + Nk(Y ). The right vertical

map sends λ ∈ Y Γ to λ ∪ c−1
k ; i.e., it is the composition of the negative of

the Tate-Nakayama isomorphism Y Γ/Nk(Y ) → H2(ΓEk/F , S(Ek)) with the

inclusion into H2(Γ, S). The commutativity of the left and middle square has

just been established. For the commutativity of the right square, we know

that λ̄ ∈ Y maps up and across to φλ̄,k(ξk) ∈ H2(Γ, S), which by Fact 4.6

equals dlkck t
Ek/F

nkλ̄. According to Fact 4.3, we have in C2(Γ, S) the equality

d(lkcktnkλ̄) = dlkcktnkλ̄+lkcktnkdλ̄, which implies in H2(Γ, S) the equality

dlkck tnkλ̄ = −lkck tnkdλ̄. Since λ̄ represents an element of [Y /Y ]Nk and the

differential in degree −1 is the map Nk, we see that dλ̄ ∈ Y Γ, so the right-hand

side of the last equation is equal to −ck ∪ dλ̄, which coincides with the image

of λ̄ across and then up.

We have shown that the above diagram is commutative. The top row

is exact by (3.5), and the bottom row is exact, being derived from the exact

sequence of Fact 4.1. We know that the first and third vertical maps are iso-

morphisms. We also know that the fourth vertical map is injective, being given

by a system of compositions YΓ/Nk(Y ) → H2(ΓEk/F , S(Ek)) → H2(Γ, S), of

which the first is bijective and the second injective. (Recall that k is large

enough.) We now appeal to the five-lemma, and the proof is complete. �

4.7. Construction of the isomorphism for reductive groups. We will now

extend the isomorphism of Theorem 4.8 to an isomorphism

ι : Y +,tor → H1
ab(u→W )

of functors R → Sets. When F is p-adic, this isomorphism will endow the

set H1(u → W,Z → G) with the structure of an abelian group. Moreover,

this group structure will be compatible with the group structure on H1(Γ, G)

obtained by Kottwitz [Kot86, Th. 1.2] and with the natural group structure
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on Hom(u, Z), and the maps in diagram (3.6) will all become group homomor-

phisms.

Lemma 4.9. Let [Z → G] ∈ R, and let S ⊂ G be a maximal torus. The

fibers of the composition

Y +,tor(Z → S)→ H1(u→W,Z → S)→ H1
ab(u→W,Z → G)

are torsors under the image of X∗(Ssc)Γ,tor in Y +,tor(Z → S).

Proof. The usual twisting argument reduces the question to studying the

fiber of the given map over the equivalence class containing the trivial element.

This is the preimage under Y +,tor(Z → S) → H1(u → W,Z → G) of the the

image of H1(Γ, Gsc) in H1(u→W,Z → G). An element of H1(u→W,Z → S)

will map to that image only if it belongs to H1(Γ, S). This reduces the problem

studying the preimage under

YΓ,tor → H1(Γ, S)→ H1(Γ, G)

of the image of H1(Γ, Gsc). According to [Kot86, Th. 1.2], this preimage is

dual to the cokernel of the map

π0(Z(“G)Γ)→ π0(ŜΓ).

The cokernel of this map is equal to π0(ŜΓ/Z(“G)Γ), and this is a subgroup

of π0([Ŝ/Z(“G)]Γ). It follows that dually the map H1(Γ, Ssc) → H1(Γ, S) →
H1(Γ, G) surjects onto the image of H1(Γ, Gsc). The lemma follows. �

Lemma 4.10. Let [Z → G] ∈ R, and let S1, S2 ⊂ G be maximal tori. Let

g ∈ G(F ) with Ad(g)S1 = S2. If λ̄i ∈ Y
N
i are such that λ̄2 = Ad(g)λ̄1, then

the images of ι[Z→S1](λ̄1) and ι[Z→S2](λ̄2) in H1
ab(u→W,Z → G) are equal.

Proof. Consider the isogeny Si/Z → Si/(Z · Z(Gder)). It provides an

injection Y i → P∨i ⊕X∗(G/Z ·Gder), where P∨i = X∗(Si,ad). Write λ̄1 = p1 +z

accordingly. Then λ̄2 = p2 + z with p2 = Ad(g)p1. The map Z(G)◦ →
G/Z ·Gder is an isogeny and leads to an injection X∗(Z(G)◦)→ X∗(G/Z ·Gder)

with finite cokernel. We choose k large enough so that nkp1 ∈ Q∨1 = X∗(S1,sc)

and nkz ∈ X∗(Z(G)◦). By construction (Lemma 4.7), for x�σ ∈Wk, we have

zλ̄i,k(x� σ) = φλ̄i,k(x) · [lkck t nkpi](σ) · [lkck t nkz](σ).

We have

φλ̄1,k(x) = φλ̄2,k(x) ∈ Z and [lkck t nkz](σ) ∈ Z(G)◦

and conclude that

zλ̄2,k(x� σ) · zλ̄1,k(x� σ)−1 = a2(σ) · a1(σ)−1,
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where ai = lkck t nkpi ∈ C1(Γ, Si,sc). The image of a1 in C1(Γ, S1,ad) is equal

to ck ∪ p1 and is thus a 1-cocycle, so we can twist the Γ-structure on Gsc using

it. We call the twisted structure G1
sc. We need to show that

a2 · a−1
1 ∈ Z1(Γ, G1

sc).

For this, we compute the coboundary at (σ, τ) and obtain

[a2(σ)a1(σ)−1] · a1(σ)σ[a2(τ)a1(τ)−1]a1(σ)−1 · [a2(στ)a1(στ)−1]−1

= a2(σ)σa2(τ)[σa1(τ)−1a1(σ)−1a1(στ)]a2(στ)−1.

The three bracketed factors in the second line belong to S1,sc and we can

rearrange them, obtaining da1(σ, τ)−1. This is an element of Z2(Γ, Z(Gsc)) and

can be pulled in front of the other terms, which themselves produce da2(σ, τ).

However, by Fact 4.3 we have

da1 = dlkck t nkp1 = dlkck t nkp2 = da2,

because the images of p1 and p2 under P∨i → P∨i /Q
∨
i → Hom(µn, Z(Gsc))

coincide. This proves the claim that a2 · a−1
1 ∈ Z1(Γ, G1

sc). �

Theorem 4.11. The isomorphism ι of Theorem 4.8 extends to an iso-

morphism

ι : Y +,tor → H1
ab(u→W )

of functors R → Sets, which lifts (4.4).

Proof. Let [Z → G] ∈ R and let S ⊂ G be a fundamental maximal torus.

According to Corollary 3.7 the map

Y +,tor(Z → S)→ H1(u→W,Z → S)→ H1(u→W,Z → G)

is surjective, and according to Lemma 4.9 it descends to a bijection

Y +,tor(Z → S)/X∗(Ssc)Γ,tor → H1
ab(u→W,Z → G).

We claim that

(4.9) Y +,tor(Z → S)/X∗(Ssc)Γ,tor = lim−→
[X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))
,

where the colimit is again taken over all finite Galois extensions E/F split-

ting S. Indeed, for any maximal torus S and finite Galois extension E/F

splitting it, we have the exact sequence

X∗(Ssc)
N

IX∗(Ssc)
→ X∗(S/Z)N

IX∗(S)
→ [X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))
→ X∗(Ssc)

Γ

N(X∗(Ssc))
,

in which the last map sends an element represented by x ∈ X∗(S/Z) to N(x).

This gives the inclusion ⊂ in (4.9). The reverse inclusion follows from the fact

that a fundamental maximal torus of a simply connected semi-simple group

has vanishing H0
Tate, so the fourth term in the above exact sequence vanishes.
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If S′ is a second fundamental maximal torus ofG and g ∈ G(F ) is such that

S′ = Ad(g)S, then Lemmas 4.2 and 4.10 imply that we have a commutative

diagram

lim−→
[X∗(S/Z)/X∗(Ssc)]N

I(X∗(S)/X∗(Ssc))

))
Ad(g)

��

H1
sc(u→W,Z → G) .

lim−→
[X∗(S′/Z)/X∗(S′sc)]N

I(X∗(S′)/X∗(S′sc))

55

By definition of Y +,tor(Z → G), the diagonal bijections in the above diagram

splice to a bijection

ι[Z→G] : Y +,tor(Z → G)→ H1
ab(u→W,Z → G).

The fact that ι[Z→S] lifts (4.2) implies that ι[Z→G] lifts (4.4). Moreover, for

any maximal torus S ⊂ G (fundamental or not), the diagram

Y +,tor(Z → S)

ι[Z→S]
��

// Y +,tor(Z → G)

ι[Z→G]

��
H1(u→W,Z → S) // H1

ab(u→W,Z → G)

commutes. This and the functoriality of ι[Z→S] imply the functoriality of

ι[Z→G]. �

5. Applications to the Langlands conjectures

5.1. Rigid inner twists. We continue to work with a fixed extension W of

Γ by u belonging to the isomorphism class determined by ξ. For any connected

reductive group G and finite central subgroup Z, both defined over F , the sets

Z1(u→W,Z→G) and H1(u→W,Z→G) are then defined. Set G = G/Z.

The natural projection G→G induces maps Z1(u→W,Z→G)→Z1(Γ, G)→
Z1(Γ, Gad) and H1(u → W,Z → G) → H1(Γ, G) → H1(Γ, Gad). If Z ′ ⊂ G

is another finite central subgroup defined over F and Z ⊂ Z ′, we obtain an

isogeny G/Z→G/Z ′ as well as natural injective maps Z1(u→W,Z→G)→
Z1(u→W,Z ′→G) and H1(u→W,Z→G)→H1(u→W,Z ′→G).

Recall that an inner twist of G is an isomorphism ψ : G → G′ defined

over F between G and a connected reductive group G′ defined over F such

that for any σ ∈ Γ, the automorphism ψ−1σ(ψ) of G is inner. An isomorphism

between two inner twists ψ1 : G → G1 and ψ2 : G → G2 is an isomorphism

f : G1 → G2 defined over F and having the property that ψ−1
2 ◦ f ◦ ψ1 is an
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inner automorphism of G. The set of isomorphism classes of inner twists is in

bijection with H1(Γ, Gad).

By a rigid inner twist (ψ, z) : G → G′ we will mean an inner twist ψ :

G→ G′ and an element z ∈ Z1(u→W,Z → G), where Z is any finite central

subgroup, having the property that for all σ ∈ Γ, we have

ψ−1σ(ψ) = Ad(z̄(σ)),

where z̄ ∈ Z1(Γ, Gad) is the image of z. We will say that (ψ, z) is realized by Z

if we want to keep track of Z. Given two rigid inner twists (ψ1, z1) : G → G1

and (ψ2, z2) : G → G2, with zi ∈ Z1(u → W,Z → G), an isomorphism

(f, g) : (ψ1, z1)→ (ψ2, z2) consists of an element g ∈ G(F ) and an isomorphism

f : G1 → G2 defined over F , for which the equality z2(w) = gz1(w)w(g−1)

holds in Z1(u→W,Z → G) and the diagram

G
ψ1 //

Ad(g)
��

G1

f
��

G
ψ2 // G2

is commutative. The following fact is obvious but very important.

Fact 5.1. Every automorphism of a rigid inner twist (ψ, z) : G → G′ is

given by an inner automorphism by an element of G′(F ).

We will denote by RIZ(G) the category whose objects are rigid inner twists

of G realized by Z and whose morphisms are isomorphisms of rigid inner twists.

For Z ⊂ Z ′, the obvious functor RIZ(G) → RIZ′(G) is fully faithful. We will

denote by RI(G) = lim−→RIZ(G) the category of rigid inner twists of G. The

set of isomorphism classes of RIZ(G) is H1(u → W,Z → G), and the set of

isomorphism classes of RI(G) is

H1(u→W,G) := lim−→H1(u→W,Z → G),

the limit being taken over all finite central subgroups Z defined over F . We

point out that even though the set H1(u → W,G) may appear more natural

than H1(u→W,Z → G), it is in fact less natural, as it is not functorial in G.

A remark is in order on the dependence of the category RIZ(G) on the ex-

tension W . Let us temporarily write RIWZ (G) to emphasize this dependence.

If W ′ is another extension in the isomorphism class determined by ξ, then

any isomorphism of extensions W → W ′ determines an equivalence of cate-

gories RIWZ (G) → RIW
′

Z (G) and, in particular, a bijection between their sets

of isomorphism classes. Two different isomorphisms W → W ′ will in general

produce two different equivalences RIWZ (G) → RIW
′

Z (G), but these equiva-

lences will determine the same bijection on the level of isomorphism classes.
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Since it is only the isomorphism class of a rigid inner form that matters for

applications to endoscopy, the dependence of RIWZ (G) on the particular choice

of W is for us inessential, and we will drop the superscript W .

According to Corollary 3.8, for every inner twist ψ : G→ G′, there exists

z ∈ Z1(u → W,Z(Gder) → G) such that (ψ, z) is a rigid inner twist. If G

is split and F is p-adic, then the map (ψ, z) 7→ ψ sets up a one-to-one cor-

respondence between the set of isomorphism classes of RIZ(Gder) and and the

set of isomorphism classes of (ordinary) inner twists. Thus it appears natural,

at least in the p-adic case, to fix the finite central subgroup Z to be equal

to Z(Gder). However, the additional flexibility that comes from not fixing Z

makes some arguments more transparent — in particular, parabolic descent.

(We refer to the discussion surrounding equation (5.14) for an example.) More-

over, as we will see in the next subsection, taking the limit over all Z allows

us to reconcile our notion of rigid inner twists for F = R with the notion of

strong real forms defined in [ABV92]. For any fixed Z, the category RIZ(G)

has only finitely many isomorphism classes by Lemma 3.4, so there are only

finitely many isomorphism classes of rigid inner twists realized by Z that map

to the same isomorphism class of a given (ordinary) inner twist. After taking

the limit over all Z, this is no longer true, and we obtain an infinite set of

isomorphism classes of rigid inner twists mapping to a given (ordinary) inner

twist. In practice it will often be enough to work with an arbitrary fixed Z as

long as one keeps track of how the constructions change upon enlarging Z.

A rigid inner twist (ψ, z) is called pure if it is realized by {1}. The pure

rigid inner twists are of course just the pure inner twists introduced in [Vog93,

Def. 2.6] and further studied in [Kal11, §2]. In order to accommodate the fact

that for F = R, the set H1
ab(u → W,Z → G) might be a proper quotient of

H1(u → W,Z → G), we introduce the following notion: A K-group of rigid

inner twists of G is a set, each element of which is an isomorphism class of

rigid inner twists of G, and if we identify each such isomorphism class with an

element of H1(u→W,Z→G), then the resulting subset of H1(u→W,Z→G)

is exactly one fiber of the map H1(u → W,Z → G) → H1
ab(u → W,Z → G).

Note that this is very close to the notion of a K-group studied in [Art99,

§1] and [She08b, §4]. In fact, if we choose a set of rigid inner twists that

represents the isomorphism classes comprising a given K-group of rigid inner

twists of G, then the reductive groups we obtain comprise a K-group in the

sense of these references. The difference is, however, that in these references

the individual reductive groups are endowed with Galois 1-cocycles valued in

their simply connected covers that measure the relative position of one group

to another, while in our case the reductive groups are endowed with elements

of Z1(u → W,Z → G) that measure the absolute position of each reductive

group relative to the fixed group G. Moreover, it is possible that two distinct
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K-groups of rigid inner twists of G give rise to the same K-group in the earlier

sense. That is, the two K-groups of rigid inner twists are disjoint sets of

isomorphism classes of rigid inner twists, but give the same set of inner forms

of G. An example of this phenomenon is the quasi-split unitary group in an

odd number of variables with Z = {1}, where there are precisely two K-groups

of rigid inner twists, both of which contain the same inner forms.

Now let Z ⊂ G be a finite central subgroup of G defined over F , let

(ψi, zi) : G → Gi, i = 1, 2, be two rigid inner twists realized by Z, and

let δi ∈ Gi,sr(F ). We say that (G1, ψ1, z1, δ1) and (G2, ψ2, z2, δ2) are (ratio-

nally) conjugate if there exists an isomorphism (f, g) : (ψ1, z1)→ (ψ2, z2) with

f(δ1) = δ2. We say that (G1, ψ1, z1, δ1) and (G2, ψ2, z2, δ2) are stably conju-

gate if ψ−1
1 (δ1) and ψ−1

2 (δ2) are G(F )-conjugate. If G is quasi-split, then for

any (G1, ψ1, z1, δ1), there exists δ ∈ Gsr(F ) such that (G1, ψ1, z1, δ1) is sta-

bly conjugate to (G, id, 1, δ). This follows from [Kot82, Cor. 2.2] by taking

as T the centralizer of δ1 in G1 and taking as i the restriction to T of ψ−1
1 .

Now fix δ ∈ Gsr(F ) and consider the category CZ(δ) whose objects are the

tuples (G1, ψ1, z1, δ1), with z1 ∈ Z1(u → W,Z → G), which are stably con-

jugate to (G, id, 1, δ), and where the set of morphisms from (G1, ψ1, z1, δ1) to

(G2, ψ2, z2, δ2) is the set of isomorphisms (f, g) : (ψ1, z1) → (ψ2, z2) satisfying

f(δ1) = δ2. The category CZ(δ) can be seen as a generalization of the concept

of a stable conjugacy class, and the set of isomorphism classes of CZ(δ) corre-

sponds to the set of rational classes inside the stable conjugacy class of δ. Set

S = Cent(δ,G). For an object δ̇1 = (G1, ψ1, z1, δ1) ∈ CZ(δ), choose g ∈ G such

that ψ1(gδg−1) = δ1. One checks easily that

[w 7→ g−1z1(w)w(g)] ∈ Z1(u→W,Z → S),

that the class of this element in H1(u → W,Z → S) is independent of the

choice of g, and that it remains unchanged if we replace (G1, ψ1, z1, δ1) by an

isomorphic object of CZ(δ). We call this class inv(δ, δ̇1). The usual argument

(e.g., [Kal11, Lemma 2.1.5]) shows that the map

δ̇1 7→ inv(δ, δ̇1)

sets up a bijection between the set of isomorphism classes in CZ(δ) and H1(u→
W,Z → S). Moreover, if we fix a rigid inner twist (G1, ψ1, z1), then this

map restricts to a bijection between the set of G1(F )-conjugacy classes of

elements δ1 ∈ G1,sr(F ) that are stably conjugate to δ and the fiber of H1(u→
W,Z → S) → H1(u → W,Z → G) over the class of z1. If Z ′ ⊂ G is a

finite central subgroup defined over F and containing Z, there is an obvious

fully-faithful functor ι : CZ(δ) → CZ′(δ), as well as a natural embedding

H1(u → W,Z → S) → H1(u → W,Z ′ → S), and for any δ̇1 ∈ CZ(δ), the

image of inv(δ, δ̇1) in H1(u → W,Z ′ → S) coincides with inv(δ, ι(δ̇1)). For
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this reason, we will not include Z in the notation for inv and will also identify

CZ(δ) with its image under ι.

It is useful to rephrase this discussion in an equivalent but slightly different

way. We continue to assume that G is quasi-split and consider only rigid

inner twists realized by the fixed finite central subgroup Z. If we are given a

torus S and a Γ-invariant G(F )-conjugacy class of embeddings S → G defined

over F and having maximal tori of G as their images, we obtain for every

rigid inner twist (G′, ψ, z) a Γ-invariant G′(F )-conjugacy class of embeddings

S→G′. Kottwitz’s result cited above shows that there exist embeddings S→G

defined over F and belonging to the given G(F )-conjugacy class. Fix one such

η : S → G. For a given rigid inner twist (G′, ψ, z), there may or may not exist

embeddings of S into G′ defined over F and belonging to the given G′(F )-

conjugacy class. Say η′ : S → G′ is one such; then there exists g ∈ G(F ) such

that η′ = ψ◦Ad(g)◦η. One checks in the same way as above that g−1z(w)w(g)

provides a well-defined element inv(η, η′) ∈ H1(u→W,Z → S) and that η′ 7→
inv(η, η′) is a bijection between equivalence classes of embeddings of S into rigid

inner twists of G and the group H1(u → W,Z → S). Here two embeddings

η1 : S → G1 and η2 : S → G2 of S into the rigid inner twists (Gi, ψi, zi) are

equivalent if there exists an isomorphism (f, g) : (G1, ψ1, z1) → (G2, ψ2, z2)

such that η2 = f ◦ η1. Moreover, for a fixed rigid inner twist (G′, ψ, z), the set

of embeddings S → G′, taken up to G′(F )-conjugacy, is in bijection with the

fiber over the class of z of the map H1(u→W,Z → S)→ H1(u→W,Z → G)

induced by η. In particular, such embeddings exist if and only if this fiber is

nonempty.

We define a representation of a rigid inner twist of G to be a tuple

(G1, ψ1, z1, π1), where (ψ1, z1) : G→ G1 is a rigid inner twist and π1 is an ad-

missible representation of G1(F ). By an isomorphism (f, g) : (G1, ψ1, z1, π1)→
(G2, ψ2, z2, π2) we mean an isomorphism (f, g) : (ψ1, z1) → (ψ2, z2) such that

the representations π2 ◦f and π1 are isomorphic. (In the real case we take this

to mean infinitesimally equivalent.) According to Fact 5.1, two representations

(G1, ψ1, z1, π1) and (G1, ψ1, z1, π
′
1) of the same rigid inner twist are isomorphic

if and only if π1 and π′1 are isomorphic in the usual sense as representations of

G1(F ). That this is not true if one uses the classical notion of inner twists was

observed by Vogan [Vog93, §2]. We will write Πrig(G) for the set of isomor-

phism classes of irreducible admissible representations of rigid inner twists of

G. The subsets Πrig
unit(G), Πrig

temp(G) and Πrig
2 (G) will then be those consisting

of unitary, tempered, and essentially square-integrable representations.

Given π̇ ∈ Πrig(G), π̇ = (G1, ψ1, z1, π1), the Harish-Chandra character Θπ1

of π1 is an invariant distribution on G1(F ), represented by a locally integrable

function. Any isomorphism of rigid inner twists (G1, ψ1, z1) → (G2, ψ2, z2)

allows us to transport this distribution to G2(F ). According to Fact 5.1, the
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resulting distribution on G2(F ) is independent of the choice of isomorphism.

Thus we get a well-defined distribution on the F -points of any rigid inner twist

that is isomorphic to (G1, ψ1, z1), and we will use the symbol Θπ̇ to denote this

distribution.

5.2. Comparison between rigid inner twists of real groups and strong real

forms. In this section we consider the ground field F = R. Let G be a con-

nected reductive group defined over R. In Chapter 2 of [ABV92], Adams,

Barbasch, and Vogan, define the notion of a strong real form of G(C) o Γ.

This notion is a refinement of the notion of an inner twist of G, and the pur-

pose of this section is to compare this notion with the notion of a rigid inner

twist of G. While the two notions are defined by completely different methods,

it turns out (quite surprisingly, as we find) that they are equivalent.

We begin by recalling from [ABV92, Def. 2.13] that a strong real form

of G(C) o Γ is an element of the coset G(C) o σ of G(C) o Γ whose square

is a central element of finite order in G(C). Here σ ∈ Γ denotes complex

conjugation. Such an element, usually denoted by δ in loc. cit., leads to the

inner form of G with R-points given by

G(δ,R) = {g ∈ G(C)|δgδ−1 = g}.

Two strong real forms δ, δ′ are called equivalent if they are conjugate under

the action of G(C) on the coset G(C)o σ. The set of strong real forms can be

given the structure of a small category by setting Hom(δ, δ′) = {g ∈ G(C)|δ′ =
gδg−1}.

Theorem 5.2. The category of strong real forms of G(C)oΓ is equivalent

to the category RI(G).

Proof. To construct an equivalence we will use the following objects tra-

ditionally associated with the fields R and C, which are also used in [ABV92].

First, we have a preferred primitive fourth root of unity i ∈ C. This element

leads, for any natural number n, to the function

kn(r · eiφ) = n
√
r · e

iφ
n , r ∈ R>0, φ ∈ [0, 2π).

We have kn(z)n = z and km(z)
m
n = kn(z) for all z ∈ C× and n|m. Second, the

relative Weil-group WC/R has a traditional presentation [ABV92, Def. 5.2] as

the group C×�cΓ, where c ∈ Z2(Γ,C×) is the 2-cocycle satisfying c(σ, σ) = −1.

In particular, we have a section s : Γ → WC/R. We set Ek = C for all k,

nk = k!, lk = knk , ζk = id, sk = s. The construction of Section 4.5 now gives

us an inverse system Wk = uk �ξk Γ of extensions of Γ by uk whose limit is an

extension W of Γ by u belonging to the isomorphism class given by ξ.

Let (ψ, z) : G → G′ be a rigid inner twist of G. Thus z ∈ Z1(uk →
Wk, Z → G) for some suitable finite central subgroup Z ⊂ G defined over R



596 TASHO KALETHA

and some k. We define δz = z(1 � σ) · σ and claim that this is a strong real

form. Indeed, we have δ2
z = z(1�σ) ·σ(z(1�σ)) = z(ξk(σ, σ)�1), which is an

element of Z, thus a central element of finite order. Notice that the transition

map Wk+1 →Wk is given by x�σ 7→ p(x)�σ, because the 1-cochain αk defined

in (4.8) is trivial in this case. This shows that δz is independent of the choice

of k. It is clearly independent of the choice of Z. The assignment (ψ, z) 7→ δz
is thus well defined and will be the equivalence of categories that we seek on

the level of objects. On the level of morphisms, this equivalence sends the

isomorphism (f, g) : (ψ, z)→ (ψ′, z′) to the isomorphism g ∈ Hom(δz, δz′). We

will now show that the resulting functor is indeed an equivalence of categories.

It is clear that it is fully faithful, with the inverse of (f, g) 7→ g being given

by g 7→ (ψ′ ◦ Ad(g) ◦ ψ−1, g). To show essential surjectivity, let δ ∈ G(C) o σ

be a strong real form. Then δ2 ∈ Z(G)(C) is of finite order and, moreover,

σ(δ2) = δ · δ2 · δ−1 = δ2 shows that it actually belongs to Z(G)(R). Let Z ⊂ G
be the subgroup generated by δ2. This is a finite central subgroup of G defined

over R. If n is a multiple of |Z|, we have the isomorphisms

Hom(uC/R,n, Z)Γ → Homalg.grp(µn, Z)NC/R → Z(R),

the first one being (3.3), and the second one being φ 7→ φ(e
2πi
n ). The resulting

system of isomorphisms is compatible with the maps p : uC/R,m → uC/R,n
defined by (3.2) for n|m and induces an isomorphism

Hom(u, Z)Γ → Z(R).

Let φδ ∈ Hom(u, Z)Γ be the preimage of δ2 under this isomorphism. We choose

k so that nk is a multiple of |Z| and define zδ,k : Wk = uk �ξk Γ → G(C) by

zδ,k(x�1) = φδ(x) ∈ Z and zδ,k(1�σ) = δσ−1 ∈ G(C). The inflation zδ of zδ,k
to W does not depend on k, and we claim that it belongs to Z1(u→ W,Z →
G). For this, we compute

zδ,k(1 � σ) · σ(zδ,k(1 � σ)) = δ2 = σ(δ2) = σ

Å
φδ

Å
δe

Å
e

2πi
nk

ããã
,

and recalling the definition (4.7) of ξk, we see

ξk(σ, σ) = [dlkc ∪ δe](σ, σ) = dlkc(σ, σ, σ)σδe =

Å
e
−2πi
nk

ãδσ
= σ

ÇÅ
e

2πi
nk

ãδeå
.

We conclude that zδ,k(1� σ) · σ(zδ,k(1� σ)) = φδ(ξk(σ, σ)), and this is enough

to establish that zδ ∈ Z1(W,G). It is then evident from the construction that

in fact zδ ∈ Z1(u→W,Z → G). Letting Gδ be the twist of G by the image of

zδ in Z1(Γ, Gad), we have that (id, zδ) : G→ Gδ is a rigid inner twist and that

our functor maps it to δ. �
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5.3. Refined endoscopic data and transfer factors. Let [Z → G] ∈ R, and

let “G be a complex Langlands dual group for G. The isogeny G→ G dualizes

to an isogeny “G→ “G. Let “Z be the kernel of the latter isogeny. We let Z(“G)+

denote the preimage of Z(“G)Γ in Z(“G). In this way one obtains a functor

R → FinAbGrp, [Z → G] 7→ π0(Z(“G)+)∗,

where ∗ denotes Pontryagin-dual.

Proposition 5.3. There is a functorial embedding

Y +,tor(Z → G)→ π0(Z(“G)+)∗.

When G is a torus, it is an isomorphism. For general G, this embedding is

an isomorphism when F is p-adic and when F = R its image consists of those

characters of π0(Z(“G)+) that kill the image of the norm map NC/R : Z(“G)→
Z(“G).

Proof. For every maximal torus S ⊂ G, there exists a canonical embed-

ding Z(“G) → Ŝ and analogously a canonical embedding Z(“G) → Ŝ. These

embeddings provide the identifications

X∗(Z(“G)) =
X∗(S)

X∗(Ssc)
and X∗(Z(“G)) =

X∗(S)

X∗(Ssc)
.

Since Z(“G)+ is the fiber product of Z(“G) with Z(“G)Γ over Z(“G), we see that

X∗(Z(“G)+) =
X∗(S)

IX∗(S) +X∗(Ssc)

and the elements on the left that kill the connected component of the identity

are precisely the torsion elements on the right. On the other hand, for every

finite Galois extension E/F splitting S, we have the obvious embedding

[X∗(S)/X∗(Ssc)]
N

I(X∗(S)/X∗(Ssc))
⊂
ñ

X∗(S)

IX∗(S) +X∗(Ssc)

ô
tor

.

The image of this embedding consists of those characters of Z(“G)+ that kill

the image of N : Z(“G) → Z(“G). Assume that F is p-adic. For varying E/F ,

the above displayed embeddings are compatible and lead to an embedding of

the colimit over all E/F of the left-hand side into the right-hand side. This

embedding is in fact surjective, because for a large enough extension E/F , the

image of N : Z(“G)→ Z(“G) is contained in Z(“G)Γ,◦ = Z(“G)+,◦. If we drop the

assumption that F is p-adic and instead assume that G is a torus, then the

surjectivity of same embedding is stated in Fact 4.1. �
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Corollary 5.4. There is a pairing

H1(u→W,Z → G)⊗ π0(Z(“G)+)→ Q/Z,

which is functorial in [Z → G] ∈ R. Its left kernel is trivial. If F is p-adic or

G is a torus, then its right kernel is also trivial ; i.e., it is perfect. If Z = {1},
this pairing coincides with the one defined by Kottwitz in [Kot86].

Proof. Only the last statement requires proof. For this, use that both

pairings coincide for tori and are functorial with respect to the inclusion S ⊂ G
of a fundamental maximal torus. �

In the situation that Z = Z(Gder), we have G = Gad×G/Gder and conse-

quently “G = [“G]sc × Z(“G)◦. Note that if G is split, this implies π0(Z(“G)+) =

Z([“G]sc), which is in accordance with Corollary 3.8.

Our next task is to show how any fixed normalization of the endoscopic

transfer factor of Langlands and Shelstad [LS87] for the group G extends to a

normalization of the transfer factor for any rigid inner twist of G. Before we

can address this issue, we need a slight refinement of the notion of endoscopic

datum. We begin by recalling that notion, following [LS87, §1.2] and [KS99,

§2.1]. An endoscopic datum for G is a tuple (H,H, s, η), where H is a quasi-

split connected reductive group defined over F ; H is a split extension of WF

by “H such that the homomorphism WF → Out(“H) provided by this extension

is identified with the homomorphism WF → Out(H) provided by the rational

structure of H via the natural isomorphism Out(“H) ∼= Out(H); s ∈ Z(“H);

η : H → LG is an L-embedding mapping “H isomorphically to Cent(η(s), “G)◦

and s ∈ Z(“H)Γ ·η−1(Z(“G)). An isomorphism from (H,H, s, η) to another such

tuple (H ′,H′, s′, η′) is an element g ∈ “G satisfying the following two conditions.

First, gη(H)g−1 = η′(H′). Write β : “H → “H ′ for the isomorphism determined

by Ad(g). The second condition is that β(s) and s′ become equal modulo

Z(“H ′)Γ,◦ · η′−1(Z(“G)).

Given an endoscopic datum (H,H, s, η) of G, we may replace it by an

equivalent one and assume that s ∈ Z(“H)Γ. Furthermore, there is a canonical

embedding Z(G) → H, and we may form H = H/Z. The isogeny H → H

dualizes to an isogeny “H → “H, and as before we obtain Z(“H)+ that is the

preimage of Z(“H)Γ under that isogeny.

We now propose the following refinement of the notions of endoscopic data

and of an isomorphism of endoscopic data. A refined endoscopic datum is a

tuple (H,H, ṡ, η) where H and H are as before; ṡ is an element of Z(“H)+,

whose image in Z(“H)Γ we denote by s; and η is again as before. It is ob-

vious that a refined endoscopic datum (H,H, ṡ, η) gives rise to an (ordinary)

endoscopic datum (H,H, s, η), and we argued that up to equivalence every
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(ordinary) endoscopic datum comes from a refined one. An isomorphism of

refined endoscopic data between (H,H, ṡ, η) and (H ′,H′, ṡ′, η′) is an element

g ∈ “G satisfying the following two conditions. First, gη(H)g−1 = η′(H′). Write

β : “H → “H ′ for the isomorphism determined by Ad(g). This isomorphism lifts

uniquely to an isomorphism β̄ : “H → ”H ′. The second condition is that β̄(ṡ)

and ṡ′ become equal in π0(Z(
”
H
′
)+).

Clearly, an isomorphism of refined endoscopic data induces an isomor-

phism between the corresponding ordinary endoscopic data. However, the

converse is not true — two nonisomorphic refined endoscopic data may give

isomorphic ordinary endoscopic data. Indeed, the requirement imposed on an

isomorphism of ordinary endoscopic data is that β(s) and s′ be equal in a

quotient of π0(Z(“H)Γ), while the requirement for an isomorphism of refined

endoscopic data is that β̄(ṡ) and ṡ′ are equal in π0(Z(“H)+), and the latter

surjects onto π0(Z(“H)Γ) with finite kernel. It follows that every isomorphism

class of ordinary endoscopic data can be refined in only finitely many ways up

to isomorphism. We will see that this new notion of an isomorphism is nec-

essary in order for the value of the endoscopic transfer factor we are about to

define to be invariant under isomorphisms of endoscopic data. This is related

to the problem discovered by Arthur [Art06, §3] that an absolute transfer fac-

tor for a nonquasi-split connected reductive group will not be invariant under

all automorphisms of the (ordinary) endoscopic datum. Our stricter notion of

an isomorphism resolves this problem.

We now proceed to show how rigid inner twists provide the means to

extend normalizations of transfer factors. We let G be a connected reductive

group defined and quasi-split over F , Z a finite central subgroup defined over

F , and (ψ, z) : G → G′ a rigid inner twist of G realized by Z. Let ė =

(H,H, ṡ, η) be a refined endoscopic datum for G, and let e = (H,H, s, η) be

the corresponding ordinary endoscopic datum. Let z = (Hz, ηz) be a z-pair for

e. We recall [KS99, §2.2] that Hz is an extension of H by an induced torus,

and ηz : H → LHz is an L-embedding extending the embedding “H → “Hz dual

to the surjection Hz → H. Then this data (without the element z) gives rise

to relative transfer factors for both G and G′, which are functions

∆[e, z] : Hz,G−sr(F )×Gsr(F )×Hz,G−sr(F )×Gsr(F )→ C,
∆[e, z, ψ] : Hz,G−sr(F )×G′sr(F )×Hz,G−sr(F )×G′sr(F )→ C.

These functions are constructed in [LS87]. See, in particular, [LS87, §3.7],

where their values are denoted by ∆(γH , γG; γ̄H , γ̄G). We have added the

notation in brackets to indicate the additional data they depend on. Recall

that Gsr is the set of strongly-regular semi-simple elements. To explain Hz,G−sr,

recall that to any maximal torus S ⊂ G corresponds a canonical conjugacy class
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of embeddings Ŝ → “G, called admissible. An isomorphism i : SH → S from

a maximal torus of H to a maximal torus of G is called admissible if it is the

composition of an admissible embedding ŜH → “H with the datum η and the

inverse of an admissible embedding Ŝ → “G. For h ∈ SH , the element i(h) is

called an image of h and the elements h and i(h) are said to be related. The

subset Hz,G−sr consists of the preimages of those elements of H that are related

to strongly-regular semi-simple elements of G.

In fact, as pointed out in [KS12], there are four different ways to normalize

the relative transfer factor, and these are called ∆,∆′,∆D,∆
′
D. We will work

here with ∆, but our discussion applies equally well with trivial modifications

to the other three versions. In Section 5.4, we will use ∆′.

An absolute transfer factor is a function

∆[e, z]abs : Hz,G−sr(F )×Gsr(F )→ C,

which is nonzero for any pair (γz, δ) of related elements, and has the property

∆[e, z]abs(γz,1, δ1) ·∆[e, z]abs(γz,2, δ2)−1 = ∆[e, z](γz,1, δ1, γz,2, δ2)

for any two pairs (γz,1, δ1) and (γz,2, δ2) of related elements. In contrast to

the case of ∆[e, z], a function ∆[e, z]abs as above is not unique. The condition

imposed on it specifies it only up to multiplication by a complex scalar in the

unit circle. A normalization of ∆[e, z]abs can be specified by either choosing a

splitting for G [LS87, §3.7], or by choosing a Whittaker datum for G [KS99,

§5.3]. Since G′ is not quasi-split, these normalizations are not available for

the absolute transfer factor ∆[e, z, ψ]abs corresponding to the relative transfer

factor ∆[e, z, ψ]. However, using the rigid inner twist (ψ, z) and the refinement

ė of e, we can obtain from any fixed normalization of ∆[e, z]abs a corresponding

normalization of ∆[ė, z, ψ, z]abs. We do this following the recipe of [Kal11, §2.2]

but using the rigid inner twists developed here.

Let δ′ ∈ G′sr(F ) and γz ∈ Hz(F ) be related elements. Let γ ∈ H(F ) be the

image of γz under the map Hz → H. As remarked in Section 5.1, there exists

δ ∈ Gsr(F ) such that δ̇′ = (G′, ψ, z, δ′) ∈ CZ(δ) (notation as in Section 5.1). Let

SH be the centralizer of γ and S be the centralizer of δ. There exists a unique

admissible isomorphism φγ,δ : SH → S carrying γ to δ. This isomorphism

identifies the embedded copies of Z into both tori and induces an isomorphism

φ̄γ,δ : S
H → S. Composing the dual of the inverse of this isomorphism with

the embedding Z(“H)+ → [Ŝ
H

]+ we obtain from ṡ an element ṡγ,δ ∈ [Ŝ ]+. We

put

(5.1) ∆[ė, z, ψ, z]abs(γz, δ
′) = ∆[e, z]abs(γz, δ) · 〈inv(δ, δ̇′), ṡγ,δ〉−1,

where the pairing 〈−,−〉 is the one from Corollary 5.4 applied to G = S.



RIGID INNER FORMS OF REAL AND p-ADIC GROUPS 601

Before we prove that this object is a transfer factor, it would be useful to

know how its definition depends on the finite central subgroup Z. For this, let

Z ′ be a second finite central subgroup of G defined over F and assume Z ⊂ Z ′.
For the sake of bookkeeping, let us write z′ ∈ Z1(u→W,Z ′ → G) for the image

of z under the natural inclusion. We then have the rigid inner twist (ψ, z′).

The refined endoscopic datum ė does not serve (ψ, z′) any more, because the set

Z(“H)+ to which ṡ belongs was constructed with respect to Z. Let us write,

for a lack of better notation, Z(
“̄
H)+ for the corresponding set defined with

respect to Z ′. By definition this set surjects onto Z(“H)+, and we may choose

a preimage s̈ ∈ Z(
“̄
H)+ of ṡ. Now ë = (H,H, s̈, η) is a refined endoscopic datum

that serves (ψ, z′). We now define ∆[̈e, z, ψ, z′]abs(γz, ι(δ
′)) by the same formula

as above, but using the element s̈ instead of ṡ and ι(δ̇′) ∈ CZ′(δ) instead of δ̇′ ∈
CZ(δ). We had remarked in Section 5.1 that inv(δ, δ̇′) ∈ H1(u → W,Z → G)

maps to inv(δ, ι(δ̇′)) ∈ H1(u → W,Z ′ → G). The functoriality of the pairing

from Corollary 5.4 now implies the following fact.

Fact 5.5. We have the equality

∆[ė, z, ψ, z]abs(γz, δ
′) = ∆[̈e, z, ψ, z′]abs(γz, ι(δ

′)).

Having handled passage to a larger Z, we can now focus again on a par-

ticular fixed Z.

Proposition 5.6. The value of ∆[ė, z, ψ, z]abs(γz, δ
′) does not depend on

the choice of δ, and the function ∆[ė, z, ψ, z]abs is an absolute transfer factor.

Moreover, the function ∆[ė, z, ψ, z]abs does not change if we replace ė by an

isomorphic refined endoscopic datum, or if we replace (ψ, z) by an isomorphic

rigid inner twist realized by Z .

Proof. We begin by showing independence of δ. Let δ0 ∈ Gsr(F ) be an-

other element stably conjugate to δ′. Then δ and δ0 are also stably-conjugate,

and if g0 ∈ G(F ) is such that Ad(g0)δ0 = δ, then we have [LS87, §3.4]

∆[e, z]abs(γz, δ) = ∆[e, z]abs(γz, δ0) · 〈inv(δ0, δ), sγ,δ0〉−1.

Here inv(δ0, δ) is the class of σ 7→ g−1
0 σ(g0) in H1(Γ, S0), with S0 the centralizer

of δ0, and sγ,δ0 ∈ ŜΓ
0 is the image of s under the composition of the inclusion

Z(“H)Γ → [ŜH ]Γ and the inverse of the dual of the admissible isomorphism

φγ,δ0 : SH → S0 carrying γ to δ0. The pairing 〈 〉 is the usual Tate-Nakayama

pairing. By Theorem 4.8, we have

〈inv(δ0, δ), sγ,δ0〉 = 〈inv(δ0, δ), ṡγ,δ0〉,

where on the right we are using the pairing of Corollary 5.4. Now consider

〈inv(δ, δ̇′), ṡγ,δ〉. The functoriality of the pairing implies that if we transport
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inv(δ, δ̇′) to H1(u → W,Z → S0) and ṡγ,δ to [Ŝ0]+ using the isomorphism

Ad(g0) : S0 → S and pair them afterwards, we will obtain the same result.

The image of ṡγ,δ in [Ŝ0]+ is equal to ṡγ,δ0 . If g ∈ G(F ) is the element with

δ′ = ψ(gδg−1), then inv(δ, δ̇′) is represented by the 1-cocycle w 7→ g−1z(w)w(g)

and its image in H1(u → W,Z → S0) is represented by the 1-cocycle w 7→
g−1

0 g−1z(w)w(g)g0. It follows that the product 〈inv(δ0, δ), sγ,δ0〉·〈inv(δ, δ̇′), ṡγ,δ〉
is equal to the pairing of ṡγ,δ0 with the product

g−1
0 g−1z(w)w(g)g0 · g−1

0 w(g0),

and this represents inv(δ0, δ̇
′). We conclude

〈inv(δ0, δ), sγ,δ0〉 · 〈inv(δ, δ̇′), ṡγ,δ〉 = 〈inv(δ0, δ̇
′), ṡγ,δ0〉,

and this completes the proof of independence of the choice of δ.

The invariance under isomorphisms of rigid inner twists follows immedi-

ately from the fact that inv(δ, δ̇′) depends only on the isomorphism class of δ̇′ in

CZ(δ). For the invariance under isomorphisms of the refined endoscopic datum,

say g ∈ “G is an isomorphism from ė = (H,H, ṡ, η) to ė′ = (H ′,H′, ṡ′, η′). Write

β̂ : “H → “H ′ for the isomorphism induced by Ad(g), and write β : H ′ → H for

an isomorphism defined over F and dual to β̂ (β is determined up to H(F )-

conjugacy, and the particular choice is irrelevant.) We let H ′z be the extension

of H ′ obtained by composing the map Hz → H with with β−1, and we set

z′ = (H ′z, ηz ◦ η−1 ◦Ad(g−1) ◦ η′).
The second component of z′ make sense, because η is injective and its image

is equal to the image of Ad(g−1) ◦ η′. Now z′ is a z-pair for e′, and we want to

show that for any γz ∈ H ′z(F ) = Hz(F ) and δ′ ∈ G′sr(F ), we have

∆abs[ė
′, z′, ψ, z](γz, δ

′) = ∆[ė, z, ψ, z]abs(γz, δ
′).

For this we choose δ ∈ Gsr(F ) stably-conjugate to δ′. We first claim that we

have the equality

(5.2) ∆[e′, z′]abs(γz, δ) = ∆[e, z]abs(γz, δ).

Since all absolute transfer factors for e and z differ from each other by a scalar,

it is enough to check this equation for a specific normalization. We choose a

pinning of G and discuss the normalization ∆0 of [LS87]. After fixing a-data

and χ-data for S = Cent(δ,G) and using the admissible isomorphism φγ,δ :

SH → S, the factor ∆0[e, z] can be written as a product of terms ∆I, ∆II,

∆III2 , ∆IV, with ∆III1 = 1 due to our choice of φγ,δ. We use the same a-data

and χ-data to form ∆0[e′, z′]. However, we must use a different admissible

isomorphism, because the endoscopic group H ′ underlying e′ is different from

H. Let γ′ ∈ H ′(F ) be the image of γz under the projection Hz(F ) → H ′(F ).

By construction we have β(γ′) = γ and hence φγ′,δ = φγ,δ ◦ β. This is the

admissible isomorphism we will use, and now we can compare the individual
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terms. The terms ∆II and ∆IV depend only on δ and the chosen a-data and

χ-data for S, so they do not notice the passage from e, z to e′, z′. The term

∆I[e, z] depends on the a-data, the pinning of G, as well as sγ,δ. But one

observes immediately that s′γ′,δ = sγ,δ as elements of π0(ŜΓ), and thus passing

to e′, z′ preserves ∆I. One considers the diagram

LHz
LSHz? _oo LSHzoo LSH? _oo

H
?�

ηz

OO

� � η // LG LS? _oo

Lφγ,δ

OO

for the term ∆III2 . Here LS → LG comes from the chosen χ-data. This χ-data

is transported to SH via φγ,δ and then to SHz via the projection SHz → SH

and leads to LSHz → LHz. The dotted arrow is the unique L-automorphism

extending the identity on ŜHz and making the diagram commute. Its restriction

to WF is a Langlands parameter a : WF → LSHz and ∆III2 = 〈a, γz〉, where

〈−,−〉 is the Langlands duality pairing for tori. Passing to e′, z′, only the

two corners H and LSH of this diagram change. In both cases, the change is

balanced out by passing from ηz to ηz′ = ηz ◦ η−1 ◦Ad(g−1 ◦ η′ and from Lφγ,δ
to Lφγ′,δ = Lβ−1 ◦ Lφγ,δ. The dotted arrow in the diagram, as well as ∆III2 ,

remain unchanged. This completes the proof of (5.2). It remains to check that

〈inv(δ, δ̇′), ṡ′γ′,δ〉 = 〈inv(δ, δ̇′), ṡγ,δ〉,

which follows immediately from the equation ṡ′γ′,δ = ṡγ,δ ∈ π0([Ŝ ]+).

We now proceed to show that ∆abs[ė, z, ψ, z] is an absolute transfer factor.

This amounts to showing that for two pairs (γz,1, δ
′
1) and (γz,2, δ

′
2) of related

elements, we have

∆[ė, z, ψ, z]abs(γz,1, δ
′
1) ·∆[ė, z, ψ, z]abs(γz,2, δ

′
2)−1 = ∆[e, z, ψ](γz,1, δ

′
1, γz,2, δ

′
2).

At this point it will be convenient to enlarge Z. Fact 5.5 allows us to do so,

after replacing ė by an appropriate refined endoscopic datum for the new Z in

the same way we constructed ë. Thus we assume that Z contains Z(Gder).

We return to the proof of above equation. Following the construction of

the left-hand side, we choose δ1, δ2 ∈ G(F ) such that δ1 is stably conjugate to

δ′1 and δ2 is stably conjugate to δ′2 and we have to show that

〈inv(δ1, δ̇
′
1), ṡγ1,δ1〉−1

〈inv(δ2, δ̇′2), ṡγ2,δ2〉−1
=

∆[e, z, ψ](γz,1, δ
′
1, γz,2, δ

′
2)

∆[e, z](γz,1, δ1, γz,2, δ2)
,

where γi is the image in H(F ) of γz,i. Applying [LS87, Lemma 4.2.A], we see

that the right-hand side is equal toÆ
inv

Ç
γ1, δ

′
1

γ2, δ′2

å
, sU

∏
.
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This object is constructed in [LS87, §3.4], and we will now recall its construc-

tion. We let SHi be the centralizer of γi in H, Si the centralizer of δi in G, and

S′i the centralizer of δ′i in G′. We fix gi ∈ Gsc with ψ(giδig
−1
i ) = δ′i. We fix an

arbitrary 1-cochain u : Γ→ Gsc with the property ψ−1σ(ψ) = Ad(uσ), and we

form the 1-cochains vi(σ) = g−1
i u(σ)σ(gi). Then vi takes values in Si,sc and

its differential takes values in Z(Gsc). Moreover, dv1 = dv2, so if we form the

torus U = S1,sc×S2,sc/Z(Gsc), where Z(Gsc) is embedded into the product by

z 7→ (z, z−1), the 1-cochain Γ → U, σ 7→ (v1(σ)−1, v2(σ)) is in fact a 1-cocycle

and is independent of the choice of u. We denote its class by

inv

Ç
γ1, δ

′
1

γ2, δ′2

å
.

To explain sU , consider the admissible isomorphisms φγi,δi : SHi → Si. Let

sγi,δi ∈ ŜΓ
i be the image of s under the composition of the natural inclusion

Z(“H)Γ → ŜHi with φ̂−1
γi,δi

. For any h ∈ H(F ) with Ad(h)SH2 = SH1 , the (not

necessarily Γ-equivariant) admissible isomorphism

φ̂ = φ̂−1
γ2,δ2
◦”Ad(h) ◦ φ̂γ1,δ1 : Ŝ1 → Ŝ2

intertwines the embeddings of Z(“H) into both tori. The isomorphism φ̂ lifts

to an isomorphism φ̂ : [Ŝ1]sc → [Ŝ2]sc and induces an isomorphism

(5.3) [Ŝ1]sc ×Ŝ1
Z(“H)→ [Ŝ2]sc ×Ŝ2

Z(“H),

which is independent of the choice of h, and hence Γ-equivariant. We choose

an arbitrary lift s̃γ1,δ1 ∈ [Ŝ1]sc×Ŝ1
Z(“H) ⊂ [Ŝ1]sc of the image of sγ1,δ1 in [Ŝ1]Γad

and set s̃γ2,δ2 = φ̂(s̃γ1,δ1) ∈ [Ŝ2]sc. Since φ̂ is Γ-equivariant on [Ŝ1]sc ×Ŝ1
Z(“H),

it identifies the differentials of s̃γi,δi ∈ C0(Γ, [Ŝi]sc). These differentials however

belong to Z(“Gsc), and we therefore conclude that they are equal. It follows

that the image sU of (s̃γ1,δ1 , s̃γ2,δ2) in the quotient “U of [Ŝ1]sc × [Ŝ2]sc by the

image of Z(“Gsc) under the diagonal embedding belongs to “UΓ. One checks

that “U is the dual torus to U , and thus the element sU can be paired with the

element inv(γ1, δ
′
1/γ2, δ

′
2) using Tate-Nakayama duality.

Let us now prove the equality

(5.4)
〈inv(δ1, δ

′
1), ṡγ1,δ1〉−1

〈inv(δ2, δ′2), ṡγ2,δ2〉−1
=

Æ
inv

Ç
γ1, δ

′
1

γ2, δ′2

å
, sU

∏
.

We begin by forming the torus V = S1 × S2/Z(G), where Z(G) is embedded

into S1 × S2 via z 7→ (z, z−1). The homomorphism S1 × S2 → V defines the

morphism [Z × Z → S1 × S2]→ [Z × Z/Z → V ] in the category T . We claim

that the image in H1(u→W,Z × Z/Z → V ) of the element

(inv(δ1, δ
′
1)−1, inv(δ2, δ

′
2)) ∈ H1(u→W,Z × Z → S1 × S2)
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under that morphism belongs to H1(Γ, V ). Indeed, the restriction maps

H1(u→W,Z → Si)→ Hom(u, Z)Γ

factor as the composition of H1(u → W,Z → Si) → H1(u → W,Z → G)

and the restriction H1(u → W,Z → G) → Hom(u, Z)Γ, and the images of

inv(δi, δ
′
i) in H1(u→ W,Z → G) are both equal to the class of the rigidifying

element z, so the claim follows from the exact sequence (3.5).

We also have a homomorphism U → V and we claim that the image of

the element inv(γ1, δ
′
1/γ2, δ

′
2) ∈ H1(Γ, U) in H1(Γ, V ) is equal to the image of

the element (inv(δ1, δ
′
1)−1, inv(δ2, δ

′
2)). To see this, fix a section s : Γ → W .

From the rigidifying element z ∈ Z1(u→ W,Z → G) we obtain the 1-cochain

z ◦ s : Γ→ G and decompose it as z(s(σ)) = ū(σ) · x(σ) with ū(σ) ∈ Gder and

x(σ) ∈ Z(G). Fix a lift u(σ) ∈ Gsc of ū(σ). By construction then

inv

Ç
γ1, δ

′
1

γ2, δ′2

å
= ((g−1

1 u(σ)σ(g))−1, (g−1
2 u(σ)σ(g))).

The image in V of this 1-cochain equals ((g−1
1 z(s(σ))σ(g))−1, (g−1

2 z(s(σ))σ(g))),

which is indeed the image of (inv(δ1, δ
′
1)−1, inv(δ2, δ

′
2)), as claimed.

Since the pairing of Corollary 5.4 is functorial and extends the Tate-

Nakayama pairing for tori, the equality (5.4) will be established once we pro-

duce an element of [“V ]+ whose image in [Ŝ1]+× [Ŝ2]+ is equal to (ṡγ1,δ1 , ṡγ2,δ2)

and whose image in [“U ]+ maps to sU under the isogeny [“U ]+ → “UΓ. Here we

have formed U from the object [Z(Gsc)→ U ] ∈ T .

We must first understand the tori “V and “V . For this we apply a very useful

technique from the papers [LS90] and [KS99]: The admissible isomorphism

φ : S2 → S1 dual to φ̂ is defined over F and using it we can form the map

f : S1 × S2 → S1 × S2, (s1, s2) 7→ (s1φ(s2), s2).

This is an isomorphism of algebraic tori defined over F . The transport of the

Γ-action from its source to its target is given by

f ◦ σ ◦ f−1(t1, t2) = (σt1, σt2) ·
Ç
φ(σt2)

σφ(t2)
, 1

å
.

We obtain the commutative diagram

(5.5) U //

��

V

��

S1 × S2
oo

��
S1,sc × S2,ad

// S1 × S2,ad S1 × S2 ,oo
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where all vertical arrows are isomorphisms induced by f , and all horizontal

arrows are the natural componentwise arrows. The dual diagram is then

(5.6) “U “Voo // Ŝ1 × Ŝ2

[Ŝ1]ad × [Ŝ2]sc

OO

Ŝ1 × [Ŝ2]scoo

OO

// Ŝ1 × Ŝ2 .

f̂

OO

The left vertical isomorphism sends (s̄1, s2) ∈ [Ŝ1]ad × [Ŝ2]sc to (s1, φ̂(s1)s2) ∈
[Ŝ1]sc × [Ŝ2]sc/Z(“Gsc) = “U , where s1 ∈ [Ŝ1]sc is any lift of s̄1. The right

isomorphism is given by (s1, s2) 7→ (s1, φ̂(s1)s2) and transports the Γ-action

on its target to the twisted Γ-action on its source given by f̂−1 ◦σ ◦ f̂(s1, s2) =Ä
σs1,

σφ̂(s1)

φ̂(σs1)
σs2

ä
.

Under the middle vertical isomorphism of (5.5), Z×Z/Z → V is identified

with Z → S1×S2,ad where Z is embedded into S1. Our assumption Z(Gder) ⊂
Z implies that S1 = S1/Z = S1,ad× [Z(G)/Z]. Dually we have Ŝ1 = [Ŝ1]sc× “C,

where “C is an algebraic torus that is a finite cover of Z(“G)◦. Thus we obtain

the commutative diagram“U “Voo // Ŝ1 × Ŝ2

[Ŝ1]sc × [Ŝ2]sc

OO

[Ŝ1]sc × “C × [Ŝ2]scoo //

OO

[Ŝ1]sc × “C × [Ŝ2]sc × “C ,

OO

where the vertical arrows are isomorphisms and the bottom arrows are given

by (s1, s2)←[ (s1, z, s2) and (s1, z, s2) 7→ (s1, z, s2, 1).

We will now show that there exists ṡV ∈ [“V ]+ that maps to (ṡγ1,δ1 , ṡγ2,δ2)

∈ [Ŝ1]+ × [Ŝ2]+ and to sU in “UΓ. The right vertical isomorphism sends

(s1, z1, s2, z2) to (s1z1, φ̂(s1z1)s2z2). By construction, we have ṡγ2,δ2 = φ̂(ṡγ1,δ1),

and hence the preimage of (ṡγ1,δ1 , ṡγ2,δ2) under that isomorphism is equal to

(s1, z1, 1, 1), with s1z1 = ṡγ1,δ1 being the decomposition according to Ŝ1 =

[Ŝ1]sc × “C. Thus if we let ṡV be the image of (s1, z1, 1) under the middle

vertical isomorphism, then ṡV does indeed map to (ṡγ1,δ1 , ṡγ2,δ2). To show

that ṡV ∈ [“V ]+, we must argue that (sγ1,δ1 , 1) ∈ Ŝ1 × [Ŝ2]sc is fixed under

the twisted action of Γ for which the middle vertical isomorphism of (5.6) is

Γ-equivariant. This follows from the equality σφ̂(sγ1,δ1) = σsγ2,δ2 = sγ2,δ2 =

φ̂(sγ1,δ1) = φ̂(σsγ1,δ1) for all σ ∈ Γ. Finally, since s1 ∈ [Ŝ1]sc is a preimage of

the image of sγ1,δ1 in [Ŝ1]ad, we see that ṡV maps to sU ∈ “UΓ. �

5.4. Structure of tempered L-packets and endoscopic transfer. The dis-

cussion of the previous section suggests a way to phrase the conjectural local
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Langlands correspondence for an arbitrary connected reductive group defined

over a local field F of characteristic zero in an unambiguous way. Again let G

be a connected reductive algebraic group defined and quasi-split over F , and

let Z be a finite central subgroup defined over F . Fix a Whittaker datum w

for G, i.e., a G(F )-conjugacy class of pairs (B, ζB) consisting of a Borel sub-

group B ⊂ G defined over F and a nondegenerate character ζB : Bu(F )→ C×,

where Bu is the unipotent radical of B. Let ϕ : W ′F → LG be a tempered Lang-

lands parameter, i.e., a homomorphism that is continuous on WF , algebraic on

SL2(C), commutes with the projections to WF on both sides, and sends WF to

a set of semi-simple elements of LG projecting onto a bounded subset of “G. We

write Sϕ = Cent(ϕ, “G) and let S+
ϕ be the preimage of Sϕ in “G. The inclusion

Z(“G)+ ⊂ S+
ϕ leads to a map π0(Z(“G)+) → π0(S+

ϕ ) whose image is a central

subgroup. We write Irr(π0(S+
ϕ )) for the set of irreducible representations of

the finite group π0(S+
ϕ ). Recalling from Section 5.1 the notation Πrig

temp(G), we

expect that there is a finite subset Πϕ ⊂ Πrig
temp(G) and a commutative diagram

(5.7) Πϕ
ιw //

��

Irr(π0(S+
ϕ ))

��

H1(u→W,Z → G) // π0(Z(“G)+)∗

in which the top arrow is a bijection, the bottom arrow is given by the pair-

ing of Corollary 5.4, the right arrow assigns to each irreducible representation

(the restriction of) its central character, and the left arrow sends a quadru-

ple (G′, ψ, z, π′) to the class of z. In accordance with Shahidi’s tempered

L-packet conjecture [Sha90, §9], we expect that Πϕ contains a unique element

(G, id, 1, π) such that π is w-generic and that the top arrow identifies the trivial

representation of π0(S+
ϕ ) with that element (G, id, 1, π).

We alert the reader familiar with [Art06] that the group π0(S+
ϕ ) is in

general different from Arthur’s group S̃ϕ appearing in [Art06, §3]. While there

are some situations in which the two groups coincide, for example when G is

simply connected and Z = Z(G), in general they are different. Nonetheless,

there is a direct relationship between the conjecture proposed here and Arthur’s

local conjecture of [Art06], as discussed in [Kal15b, §4.6].

If we fix a rigid inner twist (ψ, z) : G→ G′ realized by Z, the elements of

Πϕ over the class of z constitute the L-packet on G′(F ) corresponding to ϕ.

This set should be empty precisely when ϕ is not G′-relevant, i.e., when the

image of ϕ is contained in a parabolic subgroup of LG that does not correspond

to a parabolic subgroup of G′ defined over F . When G is split, F is p-adic,

and Z = Z(Gder), Corollary 3.8 implies that every inner twist ψ : G→ G′ can

be rigidified in exactly one way. Thus, the L-packet of each inner twist of G
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appears exactly once in the compound L-packet Πϕ. In general, there will be

multiple ways to rigidify an inner twist ψ : G→ G′. The conjecture stated here

implies that the corresponding subsets of Πϕ contain the same representations

and can be explicitly identified; see [Kal15c, §6].

We expect that the diagram (5.7) behaves naturally with respect to the

finite central subgroup Z. By this we mean that, if Z ⊂ Z ′ is a larger finite

central subgroup of G defined over F and if we consider the analogous diagram

for Z ′, the two left corners and the bottom right corner in the diagram for Z

embed naturally into the corresponding corners of the diagram for Z ′, and we

expect that the upper right corner also embeds and that the four embeddings

commute with all the arrows in the diagrams.

Given π̇ = (G1, ψ1, z1, π1) ∈ Πϕ, write 〈−, π̇〉 for the conjugation-invariant

function on π0(S+
ϕ ) given by the character of the irreducible representation

ιw(π̇). We expect that for a fixed rigid inner twist (ψ, z) : G→ G′, the virtual

character

(5.8) SΘϕ,ψ,z = e(G′)
∑
π̇∈Πϕ
π̇ 7→[z]

〈1, π̇〉Θπ̇

is a stable distribution on G′(F ) [Lan83, §I.4] and is independent of w, where

e(G′) is the sign defined in [Kot83]. Furthermore, for any semi-simple element

ṡ ∈ S+
ϕ , put

(5.9) Θṡ
ϕ,w,ψ,z = e(G′)

∑
π̇∈Πϕ
π̇ 7→[z]

〈ṡ, π̇〉Θπ̇.

The element ṡ determines a refined endoscopic datum ė = (H,H, ṡ, η) just as an

element s ∈ Sϕ determines a usual endoscopic datum e = (H,H, s, η): We let s

be the image in Sϕ of ṡ, take “H = “G◦s and H = “H ·ϕ(WF ), and let η : H → LG

be the natural inclusion. By construction the image of ϕ is contained in H, and

taking a z-pair z = (Hz, ηz), for e we obtain the tempered Langlands-parameter

ϕz = ηz ◦ ϕ. Let ∆′[e, z,w] : Hz,G−sr(F ) × Gsr(F ) → C be the Whittaker

normalization of the absolute transfer factor [KS12, §5.5] corresponding to

the Whittaker datum w (as defined by equation (5.5.2) in [KS12], where it

is denoted by ∆′λ). Using the formula (5.1) and Proposition 5.6 we obtain

a corresponding normalization, let us call it ∆′[ė, z,w, ψ, z] : Hz,G−sr(F ) ×
G′sr(F ) → C, of the transfer factor for the group G′. Note that we must add

an inverse to (5.1) since we are dealing with ∆′ rather than ∆ here. Thus we

now have

(5.10) ∆′[ė, z,w, ψ, z]abs(γz, δ
′) = ∆′[e, z,w](γz, δ) · 〈inv(δ, δ̇′), ṡγ,δ〉.
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We then expect that if f ė and f are smooth compactly supported functions

on Hz(F ) and G′(F ) respectively, whose orbital integrals are ∆′[ė, z,w, ψ, z]-

matching [KS99, §5.5], then we have

(5.11) SΘϕz,id,1(f ė) = Θṡ
ϕ,w,ψ,z(f).

Remark. We conclude this section with some remarks on the group π0(S+
ϕ )

and an example involving SL2. We will see in Section 5.6 that when the

ground field F is the field of real numbers, the finite group π0(S+
ϕ ) is always

abelian. This statement follows from Shelstad’s result [She82, (5.4.5)] and is

part of Proposition 5.9. However, contrary to the finite abelian group Sad
ϕ =

π0(Sϕ/Z(“G)Γ) commonly used to parametrize L-packets for real groups, the

group π0(S+
ϕ ) will in general not be an elementary 2-group. This happens

already for discrete series parameters for the group SU2/R, in which case the

group π0(S+
ϕ ) coincides with the group Ssc

ϕ introduced by Shelstad and is a

cyclic group of order 4 [She08b, §11].

On the other hand, when the ground field F is p-adic, the finite group

π0(S+
ϕ ) need not be abelian. While this phenomenon was already present in

the usual finite group Sad
ϕ , it is much more prevalent with π0(S+

ϕ ) and already

occurs for G = SL2/F , as the following example shows.

Example. We will now discuss the case of a particular parameter ϕ for

the group G = SL2/F over a p-adic field F and see that diagram (5.7) and

equations (5.8), (5.9), (5.11) are in accordance with the known behavior of

endoscopy in that case. This example is also discussed in [She79b] and [Art06].

We let Z denote the center ofG. According to Corollary 3.8, H1(u→W,Z→G)
∼= H1(Γ, Gad) ∼= Z/2Z, so there are two equivalence classes of rigid inner twists

of G, one corresponding to G = SL2 and one corresponding to the unique inner

form G′ of G, i.e., G′(F ) = SL1(D), where D is the quaternion algebra over F .

We have “G = PGL2(C). Let E/F be a quadratic extension, and let θ :

E× → C× be a character having the property that θ−1 · (θ ◦σ) is a character of

order 2, where σ ∈ ΓE/F is the nontrivial element. Fix an element σ◦ ∈WE/F

that maps to σ. Then, as discussed in [She79b, §11], we obtain a tempered

Langlands parameter ϕ : WE/F → “G by the rule

ϕ(e) =

ñ
θ(e) 0

0 θ(σ(e))

ô
, e ∈ E×, ϕ(σ◦) =

ñ
0 1

1 0

ô
.

As argued there, the subgroup Sϕ ⊂ “G = PGL2(C) is given by

Sϕ =

®ñ
1 0

0 1

ô
,

ñ
−1 0

0 1

ô
,

ñ
0 1

1 0

ô
,

ñ
0 1

−1 0

ô´
.
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It follows that the subgroup S+
ϕ ⊂

“G = SL2(C) is given by®ñ
1 0

0 1

ô
,

ñ
−1 0

0 −1

ô
,

ñ
−i 0

0 i

ô
,

ñ
i 0

0 −i

ô
,

ñ
0 i

i 0

ô
,

ñ
0 −i
−i 0

ô
,

ñ
0 1

−1 0

ô
,

ñ
0 −1

1 0

ố
.

Thus S+
ϕ is the quaternion group. The group Z(“G)+ is equal to the center

of SL2(C) and is of order two, with nontrivial element −12. The group S+
ϕ

has exactly five irreducible representations, four of which, ρ1, . . . , ρ4, are of

dimension 1 and kill the central element −12, while the fifth ρ5 is of dimension

2 and its central character sends −12 to −1.

Diagram (5.7) now implies that the compound L-packet Πϕ should have

five elements, four of which should correspond to irreducible representations π1,

π2, π3, π4 of G(F ) = SL2(F ), and the fifth should correspond to an irreducible

representation π5 of G′(F ) = SL1(D). Indeed, it is argued in [She79b, §12]

that the L-packet ΠG
ϕ contains four members and the L-packet ΠG′

ϕ contains a

single element. It is furthermore argued that
∑4
i=1 Θπi is a stable distribution

on SL2(F ) and that Θπ5 , hence also 2Θπ5 , is a stable distribution on SL1(D),

in accordance with equation (5.8). With regards to endoscopic transfer, it is

argued in [She79b, §12] that if we take the endoscopic element 1 = s ∈ Sϕ,

so that the associated endoscopic group H is equal to G, then the stable

distribution
∑4
i=1 Θπi on H(F ) transfers to the stable distribution 2Θπ5 =

±e(G′)trρ5(s)Θπ5 on G′(F ). The sign-ambiguity comes from the fact that the

normalizations of the transfer factors in [She79b] are left somewhat arbitrary,

and this corresponds precisely to the fact that the character values of trρ5 on

the two lifts 12,−12 ∈ S+
ϕ of 1 ∈ Sϕ differ by a sign. On the other hand, if

we take an endoscopic element 1 6= s ∈ Sϕ, so that the associated endoscopic

group H is an anisotropic torus, then the corresponding stable distribution

on H(F ), which is just given by a character, transfers to the distribution∑4
i=1 trρi(s)Θπi on G(F ) (which makes sense since the characters ρ1, . . . , ρ4

descend to Sϕ) and transfers to the zero distribution on G′(F ). For any lift

ṡ ∈ S+
ϕ of s, we have tr(ρ5)(ṡ) = 0. Thus the results of [She79b, §12] are

consistent with equation (5.11) in this case.

5.5. A note on the relevance of parameters. An examination of (5.7) re-

veals that part of our claim is the following: If a tempered Langlands param-

eter ϕ is relevant for an inner form G′ of G that is part of a rigid inner twist

(G′, ψ, z), then the character of π0(Z(“G)+) that corresponds to the class of z

must annihilate the kernel of the map

(5.12) π0(Z(“G)+)→ π0(S+
ϕ ).

In fact, something more precise is true. Given a K-group of rigid inner twists

of G, we will say that ϕ is relevant for that K-group if ϕ is relevant for some
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inner form of G that occurs in that K-group. Recall that the isomorphism

classes of K-groups of rigid inner twists of G that are realized by Z are in

bijection with H1
ab(u→W,Z → G) and thus by Corollary 5.4 in bijection with

certain characters of π0(Z(“G)+).

Lemma 5.7. The characters of π0(Z(“G)+) that annihilate the kernel of

(5.12) are precisely those that correspond to K-groups of rigid inner twists of

G for which ϕ is relevant.

Before we prove the lemma, it would be useful to illuminate some of the

structure of π0(S+
ϕ ) and π0(Z(“G)+) in the case where Z(Gder) ⊂ Z. In that

case we have “G = [“G]sc × “C, where “C is a complex torus with an isogeny to

Z(“G)◦. If we let “C+ be the preimage of Z(“G)◦,Γ under that isogeny, then

Z(“G)◦ = “C implies Z(“G)+,◦ = “C+,◦. We conclude that we have an injection

Z([“G]sc)
+ × π0(“C+) ↪→ π0(Z(“G)+),

where Z([“G]sc)
+ denotes the preimage in [“G]sc of Z(“G)Γ. Turning to S+

ϕ , we

have

S+
ϕ = {g × c|g ∈ [“G]sc, c ∈ “C,∀w ∈W ′F : ϕ(w)ḡϕ(w)−1ḡ−1 = c̄σ(c̄−1)},

where ḡ and c̄ denote the images of g and c in “G and σ ∈ Γ denotes the image

of w. Thus we obtain a continuous map

S+
ϕ → Z1(Γ, Z([“G]der)), g × c 7→ (σ 7→ c̄σ(c̄−1)),

whose kernel is equal to Ssc,+
ϕ × “C+, where Ssc,+

ϕ is the preimage in [“G]sc of

Sϕ. The group Z1(Γ, Z([“G]der)) is finite, and this tells us that this kernel must

contain the neutral component of S+
ϕ . Applying a similar argument to the

group Ssc,+
ϕ , we find that its neutral component is contained in the group Ssc

ϕ

of elements of [“G]sc that are fixed under Ad(ϕ(W ′)). Thus S+,◦
ϕ = Ssc,◦

ϕ × “C+,◦,

and we conclude that we have an injection

π0(Ssc
ϕ )× π0(“C+) ↪→ π0(S+

ϕ ).

We now come to the proof of the lemma.

Proof. First, we will reduce to the case Z(Gder) ⊂ Z so that we can use

the above discussion. Set 1Z = Z(Gder) · Z, and let us temporarily use the

subscript 1 on the left for objects built with respect to 1Z rather than Z. Then

it is not hard to see that the surjection π0(Z(1
“G)+)→ π0(Z(“G)+) restricts to

a surjection from the kernel 1K of the version of (5.12) taken with respect to

1Z to the kernel K of the version of (5.12) taken with respect to Z. Thus

a character of π0(Z(“G)+) kills K if and only if its pullback to π0(1Z(“G)+)
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kills 1K. This reduces the proof to the case Z(Gder) ⊂ Z, which we from now

on assume.

Fix a Borel pair (“T , “B) of “G. Let M̂ be a standard Levi subgroup of “G
with the property that M̂ oWF contains the image of some “G-conjugate ϕ,

and assume that M̂ is minimal with this property. Replace ϕ by a conjugate

whose image lies in M̂ oWF . This does not change the kernel of (5.12). Now

(Sϕ ∩ M̂)◦ is a maximal torus of S◦ϕ and equals Z(M̂)Γ,◦. The cokernel of

Ssc,◦
ϕ → S◦ϕ is a torus, and we conclude that the connected component of the

preimage in Ssc,◦
ϕ of the maximal torus Z(M̂)Γ,◦ is a maximal torus. This

maximal torus is thus equal to Z(M̂sc)
Γ,◦, where M̂sc is the Levi subgroup of

[“G]sc corresponding to M̂ (and not the simply connected cover of M̂).

Now consider the kernel of (5.12). It is represented by elements of

Z(“G)+ ∩ S+,◦
ϕ = (Z([“G]sc)

+ ∩ Ssc,◦
ϕ )× “C+,◦

and hence is equal to Z([“G]sc)
+∩Ssc,◦

ϕ . This group is central in Ssc,◦
ϕ and hence

is contained in every maximal torus of that connected reductive group. We

conclude that the kernel of (5.12) is given by

Z([“G]sc)
+ ∩ Z(M̂sc)

Γ,◦ = Z([“G]sc)
Γ ∩ Z(M̂sc)

Γ,◦.

Applying [Art99, Lemma 1.1] to the group [“G]sc and its Levi M̂sc, we con-

clude that the characters of π0(Z(“G)+) that annihilate the kernel of (5.12) are

precisely those whose restriction to Z([“G]sc)
Γ is the inflation of a character of

π0(Z(M̂sc)
Γ). An application of [Kot86, Th. 1.2] finishes the proof. �

5.6. L-packets and endoscopic transfer for real groups. When the ground

field F is the field of real numbers, the local Langlands correspondence, includ-

ing the internal structure of L-packets and the transfer of distributions, is very

well understood by the work of many mathematicians, including Adams, Bar-

basch, Johnson, Langlands, Shelstad, and Vogan. The purpose of this section

is to show how these results imply the validity of the expectations formulated in

Section 5.4. Given the mature state of the theory there will be little more for us

to do then to combine well-known arguments and give appropriate references.

Our focus in this section will be on tempered L-packets, and we will primar-

ily use the references [Lan89], [She79c], [She79a], [She81], [She82], [She08a],

[She10], [She08b]. Given the comparison between strong real forms and rigid

inner twists of Section 5.2, one could further ask how the exposition of this

section relates to the geometrically constructed parametrization of L-packets

of [ABV92], how the L-packets on certain covering groups introduced in [AV92]

fit into the picture, and how nontempered L-packets on real groups, in partic-

ular, the cohomological ones from [AJ87], can be incorporated. We leave the

discussion of these questions to a separate paper.
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Let G be a connected reductive group defined and quasi-split over R, let

Z ⊂ G be a finite central subgroup, and let ϕ : WR → LG be a tempered

Langlands parameter. We first construct Πϕ. Let (G′, ψ, z) be a rigid inner

twist of G realized by Z. When ϕ is relevant for G′, Langlands has constructed

in [Lan89] the L-packet ΠG′
ϕ for the group G′ corresponding to ϕ. When ϕ is

not relevant, we take ΠG′
ϕ to be the empty set. We obtain a map

ΠG′
ϕ → Πrig

temp(G), π′ 7→ (G′, ψ, z, π′).

According to Fact 5.1, this map is an injection. We define Πϕ to be the union

of the images of these maps for (G′, ψ, z) varying over the (isomorphism classes

of) rigid inner twists of G realized by Z.

Next we turn to the bijection ιw of diagram (5.7). For each π̇=(G′, ψ, z, π′)

∈ Πϕ and ṡ ∈ π0(S+
ϕ ), we will define a complex number 〈ṡ, π̇〉 ∈ C×. We will

then argue that

(1) the function ṡ 7→ 〈ṡ, π̇〉 is a character of π0(S+
ϕ );

(2) the character 〈−, π̇〉 is trivial if and only if π̇ = (G, id, 1, π) and π is w-

generic;

(3) the characters 〈−, π̇1〉 and 〈−, π̇2〉 are equal if and only if π̇1 and π̇2 are

isomorphic as defined in Section 5.4;

(4) all characters of π0(S+
ϕ ) are obtained in this way.

The bijection ιw will then be determined by ιw(π̇)(ṡ) = 〈ṡ, π̇〉. Before we go into

the definition of the pairing 〈−,−〉, let us recall the relationship between G and“G (see, e.g., [Vog93, §3]). For a Γ-invariant Borel pair (T,B) of G we have the

based root datum brd(T,B) = (X,∆, Y,∆∨), where X = X∗(T ), ∆ ⊂ X is the

set of B-simple roots, Y = X∗(T ), and ∆∨ ⊂ Y is the set of B-simple coroots.

Any two Γ-invariant Borel pairs (T1, B1) and (T2, B2) are conjugate under

G(F ), and any element g ∈ G(F ) with Ad(g)(T1, B1) = (T2, B2) induces the

same Γ-equivariant isomorphism brd(T1, B1)→ brd(T2, B2). We define brd(G)

to be the limit of the system {brd(T,B)}) where (T,B) runs over all Borel

pairs of G. By construction, “G is a complex reductive group, endowed with an

algebraic action of Γ subject to the condition that there exists a Γ-invariant

splitting of “G. It carries the following additional datum that determines its

relationship with G: We construct brd(“G) in the same way as for G. Here

the existence of an element of “GΓ that conjugates two Γ-invariant Borel pairs

follows from [Kot84, Cor. 1.7]. The additional datum is then an isomorphism

brd(G)∨ ∼= brd(“G). We will write brd(G) = (X,∆, Y,∆∨), and consequently

brd(“G) = (Y,∆∨, X,∆).

We now come to the construction of the pairing 〈−,−〉. It will be useful

and instructive to first consider the case of an equivalence class of discrete

parameters {ϕ} : WR → LG. Fix a Γ-invariant Borel pair (“T , “B) of “G. We may
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choose a representative ϕ of its equivalence class so that ϕ(WR) normalizes “T .

There exists µ ∈ X∗(“T ) ⊗ C such that for z ∈ C× ⊂ WR and χ ∈ X∗(“T ), we

have

χ(ϕ(z)) = z〈χ,µ〉 · z̄〈χ,µ̄〉.
Here µ̄ = ϕ(σ)µ, with σ ∈ Γ being complex conjugation. The element µ is

regular, and we may choose ϕ so that it is “B-dominant. Then µ is uniquely

specified by the equivalence class of ϕ, and the representative ϕ is uniquely

determined up to conjugation by “T . Now ϕ(σ) = n o σ, with n ∈ N(“T ).

Choose λ ∈ X∗(“T )⊗C with the property that for all χ ∈ X∗(“G) ⊂ X∗(“T ), the

equality χ(n) = exp(2πi〈χ, λ〉) holds. Then λ is well defined up to an element

of X∗(“T ) + {x − ϕ(σ)x|x ∈ X∗(“T ) ⊗ C}. If we chose a different Borel pair

(“T ′, “B′) and performed these operation based on it, the resulting µ′, λ′ would

coincide with the image of µ, λ under the canonical Γ-invariant isomorphism

(“T , “B)→ (“T ′, “B′). Thus we obtain a canonical pair of elements µ, λ ∈ X ⊗ C,

with λ well defined up to the ambiguity stated above. We furthermore obtain

a new Γ-action on X, where σ acts as Ad(ϕ(σ)). There is a unique real torus

S with X∗(S) = X with the new Γ-action. It is not a priori a maximal torus

of G defined over R, but it does come with a set of simple roots, namely, ∆.

Moreover, it comes with a set of embeddings into any inner form of G as a

maximal torus. To see this, fix any Γ-invariant Borel pair (T,B) of G and

identify brd(G) with brd(T,B). This identifies S with T over C and thus

gives an embedding i : S → G defined over C whose G(C)-conjugacy class is

Γ-invariant. According to [Kot82, Cor. 2.2], there exists a G(C)-conjugate of

this embedding defined over R. The set of embeddings S → G defined over R
and conjugate to i over G(C) is independent of the choice of (T,B). Moreover,

for any inner twist ψ : G → G′, the embedding ψ ◦ i : S → G′ defined over C
also has a G′(C)-conjugate defined over R [She79a, Lemma 2.8], and the set of

embeddings S → G′ satisfying this condition is also independent of the choice

of (T,B). We will call the embeddings S → G′ obtained in this way admissible.

Now fix an inner twist ψ : G → G′. For each embedding η : S → G′

defined over R, we obtain an essentially discrete series representation Θ(ϕ, η).

Namely, the embedding η provides us with the images of µ, λ, and the posi-

tive Weyl chamber Ψ corresponding to the set ∆ of simple roots, and we take

Θ(ϕ, η) to be the unique essentially discrete series representation whose char-

acter restricted to η(S)(R)reg is given by the function Θ(η(µ), η(λ), η(Ψ)) given

in [She82, §4.3]. The representations Θ(ϕ, η1) and Θ(ϕ, η2) are equivalent if

and only if η1, η2 : S → G′ are conjugate under G′(R). Thus η 7→ Θ(ϕ, η) is

a bijection from the set of G′(R)-conjugacy classes of admissible embeddings

η : S → G′ to the L-packet ΠG′
ϕ .

We can now define 〈−,−〉 in the case where ϕ is a discrete parameter. By

results of Kostant [Kos78] and Vogan [Vog78], there exists a unique w-generic
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representation πw in the L-packet ΠG
ϕ . Let π̇w = (G, id, 1, πw) ∈ Πϕ, and let

π̇ = (G′, ψ, z, π′) be a constituent of Πϕ. The representation πw corresponds

to a G(R)-conjugacy class of admissible embeddings ηw : S → G, and the

representation π′ corresponds to a G′(R)-conjugacy class of admissible em-

beddings ηπ̇ : S → G′. Choose g ∈ G(C) such that ηπ̇ = ψ ◦ Ad(g) ◦ ηw,

and set inv(π̇w, π̇) = inv(ηw, ηπ̇) to be the class of w 7→ g−1z(w)w(g) in

H1(u→W,Z → S). Then we obtain a bijection

Πϕ → H1(u→W,Z → S), π̇ 7→ inv(π̇w, π̇).

On the other hand, the regularity of µ implies that Sϕ ⊂ “T and we obtain

Sϕ = ŜΓ, where Ŝ is the dual torus to S, which we identify with the complex

torus “T equipped with the Galois action given by Ad(ϕ(σ)). For an element

ṡ ∈ S+
ϕ = [Ŝ ]+, we set

(5.13) 〈ṡ, π̇〉 = 〈ṡ, inv(π̇w, π̇)〉,

where the pairing on the left is the one we are defining and the pairing on

the right is the perfect pairing of Corollary 5.4. The validity of points (1)–(4)

above is visible from the construction: Point (1) is obvious, point (2) is the

uniqueness of the w-generic constituent of ΠG
ϕ , and points (3)–(4) come from

the bijection between Πϕ and H1(u→W,Z → S), as well as the fact that the

pairing of Corollary 5.4 is perfect.

We have thus constructed diagram (5.7) for a discrete parameter ϕ. If

Z ⊂ 1Z ⊂ G is a larger finite central subgroup then, using the subscript 1 for

objects built with respect to 1Z rather than Z, we have a diagram

Πϕ
//

� _

��

H1(u→W,Z → S)� _

��

// Irr(S+
ϕ )
� _

��

1Πϕ
// H1(u→W, 1Z → S) // Irr(1S

+
ϕ )

whose commutativity follows from the compatibility of inv with the inclusion

H1(u→ W,Z → S)→ H1(u→ W, 1Z → S) discussed in Section 5.1, and the

functoriality of the pairing of Corollary 5.4. We conclude that diagram (5.7)

for Z embeds into diagram (5.7) for 1Z, as expected.

We now turn to an equivalence class {ϕ} : WR → LG of tempered (but not

necessarily discrete) parameters. We again fix Γ-invariant Borel pairs (“T , “B)

of “G and (T,B) of G. We have a one-to-one correspondence between standard

parabolic subgroups of G and “G, as well as between standard Levi subgroups.

Fix a standard Levi subgroup M̂ ⊂ “G such that some representative ϕ within

its equivalence class has image belonging to LM = M̂ o WR and such that

M̂ is minimal with this property. The corresponding standard Levi subgroup
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M ⊂ G is cuspidal, and ϕ is a discrete parameter for it. We have

R(“T , M̂) = {α∨ ∈ R(“T , “G)|ϕ(σ)α∨ = −α∨}.

Let Sϕ = Cent(ϕ(WR), “G). This is an algebraic subgroup of “G whose connected

component is reductive. Using Langlands’ formulation of the Knapp-Stein

R-group, Shelstad argues in [She82, §5.3] as follows: “Bϕ := (“B∩Sϕ)◦ is a Borel

subgroup of S◦ϕ, and “Tϕ := (“T∩Sϕ)◦ is a maximal torus of S◦ϕ whose Lie-algebra

tϕ is the set of fixed points of Ad(ϕ(WR)) in the Lie algebra t = X∗(“T )⊗C of“T . The subgroup

Ωϕ(“T , “G) =
N(“T , “G) ∩ Sϕ“T ∩ Sϕ

of the Weyl group Ω(“T , “G) acts on “Tϕ and decomposes as a semi-direct product

Ωϕ(“T , “G) = Ω(“Tϕ, S◦ϕ) ·Rϕ,

where Rϕ is the subgroup of Ωϕ(“T , “G) whose action on “Tϕ preserves the “Bϕ-

positive chamber.

The group Rϕ governs the reducibility of the representations induced

parabolically from the constituents of the L-packet of discrete series repre-

sentations of inner forms of M corresponding to ϕ. To facilitate the study

of this reducibility, Shelstad introduces a second Levi subgroup of G, which

contains M , and a second representative of the equivalence class of ϕ. This

construction starts with the root system

∆∨ϕ = {α∨ ∈ R(“T , “G)|〈µ, α∨〉 = 0,
∑
r∈Rϕ

rα∨ = 0}.

Shelstad argues in [She82, Lemma 5.3.13] that this is a root system of type

A1 × · · · × A1, that Ad(ϕ(σ)) fixes each root in it and acts by −1 on the

corresponding root space, and that Rϕ is contained in the Weyl group of that

root system. For each α∨ ∈ ∆∨ϕ, Shelstad chooses root vectors Xα∨ , X−α∨

with [Xα∨ , X−α∨ ] = Hα∨ and sets sα∨ = exp( iπ4 (Xα∨ + X−α∨)) ∈ “G. Then

sα∨ · [Ad(ϕ(σ))sα∨ ] = s2
α∨ = wα∨ , where wα∨ is the reflection with respect to

α∨. Since any two nonproportional roots α∨, β∨ ∈ ∆∨ϕ are strongly orthogonal,

the elements sα∨ and sβ∨ commute. Set s =
∏
α∨∈∆∨ϕ

sα∨ and w = s2. Then

Shelstad defines a new Levi subgroup M̂1 of “G (denoted by LM̃0 in loc. cit.)

by demanding that its root system be given by

{α∨ ∈ R(“T , “G)|ϕ(σ)α∨ = −wα∨}.

Since R(“T , M̂) ⊥ ∆∨ϕ, we see that M̂ ⊂ M̂1. Moreover, she defines a new

representative ϕ1 of {ϕ} (denoted by ϕ̃ in loc. cit.) determined by ϕ1 =

Ad(s)ϕ. Its image belongs to N(“T , M̂1), and ϕ1(σ) acts on all roots of M̂1
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by −1 [She82, Prop. 5.4.3]. The parameter ϕ1 is a limit of discrete series

parameter for M1.

With these constructions, the L-packet associated to {ϕ} can be described

as follows. Let ψ : G → G′ be an inner twist. Then {ϕ} is relevant to G′ if

and only if the Levi subgroup M transfers to G′, i.e., if there exists an equiv-

alent inner twist ψ′ : G → G′ that restricts to an inner twist ψ : M →M ′,

where M ′ ⊂ G′ is a Levi subgroup. Assume that this is the case, for otherwise

ΠG′
ϕ = ∅. Putting M ′1 = ψ(M1), we obtain the inner twist ψ : M1 → M ′1. Let

ΠM ′
ϕ be the L-packet of essentially discrete series representations corresponding

to ϕ. The L-packet Π
M ′1
ϕ , which by construction consists of the irreducible sub-

representations of the parabolic induction to M ′1 of each element of ΠM ′
ϕ , has

the following alternative description: We apply the arguments for the discrete

case to the limit of discrete series parameter ϕ1 for M1 and obtain µ, λ ∈ X.

The element µ is still Ψ-dominant, where Ψ is the positive chamber determined

by the set ∆ of simple roots, but µ is no longer necessarily regular. We also

obtain the torus S as before, together with a set of admissible embeddings into

all inner forms of M1. In addition to this data, we further obtain a subset ∆ϕ

of the root system contained in X = X∗(S), namely, the set {α|α∨ ∈ ∆∨ϕ}.
For every admissible embedding η : S → M ′1, there is a distribution Θ(ϕ1, η)

defined by coherent continuation, as explained in [She82, §4.3]: Take a suffi-

ciently regular and Ψ-positive ν ∈ X∗(S), transport µ, λ, ν,Ψ to the image of

η, and consider the character Θ(η(µ) + η(ν), η(λ), η(Ψ)) of the corresponding

essentially discrete series representation of M ′1(R). By coherent continuation,

from this we obtain a distribution on M ′1(R), which we call Θ(ϕ, η). Shelstad

shows [She82, Th. 4.3.2] that this distribution is either zero or the charac-

ter of an irreducible representation, and furthermore that the set of nonzero

distributions Θ(ϕ, η) for all admissible embeddings η : S → M ′1 forms the

L-packet on M ′1 corresponding to ϕ. (Note that the group G in the notation

of that theorem is the group M ′1 here.) The discussion after the statement of

that theorem shows that if a distribution Θ(ϕ, η) is nonzero, then it equals

Θ(ϕ, η′) if and only if the embeddings η, η′ : S → M ′1 are conjugate under

M ′1(R). Using a counting argument, Shelstad shows in the discussion following

[She82, Cor. 5.4.13] that the parabolic induction from M ′1(R) to G′(R) of each

nonzero distribution Θ(ϕ, η) is the character of an irreducible representation,

and that the L-packet ΠG′
ϕ consists of the set of these distributions. Note that,

since S/Z(M ′1) is anisotropic, the set of G′(R)-conjugacy classes of admissi-

ble embeddings S → G′ coincides with the set of M ′1(R)-conjugacy classes of

admissible embeddings S → M ′1. Thus η 7→ Θ(ϕ, η) is a bijection between

the set of G′(R)-conjugacy classes of admissible embeddings η : S → G′ for

which Θ(ϕ, η) 6= 0 and the L-packet ΠG′
ϕ . This can be made more precise by

using results of Knapp-Zuckerman and Vogan, e.g., [Vog79, Lemma 7.3]. The
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root system ∆∨ϕ coincides with the set of roots of M̂1 that annihilate µ [She82,

Prop. 5.4.2] and, moreover, the positive roots inside ∆∨ϕ are Ψ-simple, from

which it follows that Θ(ϕ, η) is zero if and only if for some α∨ ∈ ∆∨ϕ, the image

of α under η, which is an imaginary root of η(S) in G′, is compact. We can

summarize the results of this discussion as follows.

Theorem 5.8 (Shelstad). For every inner twist ψ : G→ G′, the map

η 7→ Θ(ϕ, η)

sets up a bijection from the set of G′(R)-conjugacy classes of admissible em-

beddings η : S → G′ having the property that η(∆ϕ) consists entirely of non-

compact roots, to the L-packet ΠG′
ϕ .

Note that this theorem also covers the case when ϕ is not relevant for G′,

because Shelstad shows [She82, Lemma 4.3.5] that in this case every admissible

embedding η carries some root of ∆ϕ to a compact root.

Having recalled Shelstad’s alternative description of the L-packets ΠG′
ϕ ,

we can now describe the pairing 〈−,−〉. For this, again choose a sufficiently

regular Ψ-dominant ν ∈ X, and let Π
M ′1
ϕ1+ν be the L-packet consisting of the

essentially discrete series characters Θ(η(µ)+η(ν), η(λ), η(Ψ)) for all admissible

embeddings η : S →M ′1. By construction we have an injection

ΠG′
ϕ → Π

M ′1
ϕ+ν ,

whose image consists of those essentially discrete series characters that give

nonzero distributions by coherent continuation. These injections for different

G′ can be put together to an injection

Πϕ → Π
(M1)
ϕ1+ν ,

where the right-hand side consists of the equivalence classes of tuples of the

form (G′, ψ, z, πM ′1), where (G′, ψ, z) is a rigid inner twist of G to which M1

transfers, say with image M ′1, and πM ′1 ∈ Π
M ′1
ϕ+ν . Using the inflation-restriction

sequence (3.5) one sees that the map

H1(u→W,Z →M1)→ H1(u→W,Z → G)

is injective, which means that the equivalence classes of rigid inner twists of

G realized by Z to which M1 transfers are in bijection with the equivalence

classes of rigid inner twists of M1 realized by Z. Thus Π
(M1)
ϕ1+ν is simply the

enlarged discrete series L-packet for M1 constructed above, and we have the

bijection

Π
(M1)
ϕ1+ν → H1(u→W,Z → S)
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obtained from the already discussed parametrization of such L-packets. This

provides an injection

(5.14) Πϕ → H1(u→W,Z → S)

whose image we can characterize as follows: If πM1,w is the unique w-generic

constituent of ΠM1
ϕ , then its character is obtained by coherent continuation

from the character of the unique w-generic constituent of ΠM1
ϕ1+ν [She08b, §13],

and hence π̇w = (G, id, 1, IndGP1
(πM1,w)), which is the unique w-generic con-

stituent of ΠG
ϕ , maps to the trivial element of H1(u→ W,Z → S). Moreover,

the corresponding embedding ηw : S → G maps ∆ϕ to a set of noncom-

pact imaginary roots. The other elements π̇ = (G′, ψ, z, π′) ∈ Πϕ correspond

precisely to the embeddings η : S → G′ that have the property that η(∆ϕ)

also consists of noncompact imaginary roots. Using [Kal15a, Prop. 3.2.2] we

see that the image of the injection (5.14) consists precisely of those elements

inv(π̇w, π̇) ∈ H1(u → W,Z → S) whose images in H1(R, Sad) correspond un-

der the Tate-Nakayama isomorphism to elements x ∈ H−1
Tate(R, X∗(Sad)) with

the property 〈x, α〉 ∈ 2Z for all α ∈ ∆ϕ.

Turning to the dual side, for each α ∈ ∆ϕ, we consider the element

α(−1) ∈ “Tsc. We obtain a homomorphism of abelian groups

Ω(∆ϕ)→ “Tsc, sα 7→ α(−1).

Recall that the complex dual Ŝ of the torus S is identified with the complex

torus “T equipped with the Γ-action given by Ad(ϕ(σ)). Recall also from the

above discussion that ϕ(σ) sends α to −α. Thus α(−1) ∈ ŜΓ
sc → [Ŝ ]+. The

group π0([Ŝ ]+) is in perfect duality with H1(u→W,Z → S), and the image of

Ω(∆ϕ) in π0([Ŝ ]+) is precisely the annihilator of the image of Πϕ in H1(u →
W,Z → S). We conclude that the pairing between π0([Ŝ ]+) and H1(u →
W,Z → S) descends to a perfect pairing

〈−,−〉 : Πϕ × coker
(
Ω(∆ϕ)→ π0([Ŝ ]+)

)
→ C×.

This is the pairing we wanted to construct, as the following proposition shows.

Proposition 5.9. We have the exact sequence

Ω(∆ϕ)→ π0([Ŝ ]+)→ π0(S+
ϕ1

)→ 1.

Proof. For exactness at the third spot, we will use the result [She82,

(5.4.5)] of Shelstad that “T ∩ Sϕ1 meets each connected component of Sϕ1 .



620 TASHO KALETHA

Consider the diagram “T ∩ S+
ϕ1

� � //

��

S+
ϕ1

��“T ∩ Sϕ1

� � // Sϕ1 .

Shelstad’s result implies that for any x ∈ S+
ϕ1

, there exists y ∈ “T ∩ S+
ϕ1

such

that the images of x and y in Sϕ1 belong to the same connected component.

The right vertical arrow is an isogeny of algebraic groups and thus restricts to

a surjection on their neutral connected components. It follows that we may

modify x within its connected component to achieve that the images of x and y

in Sϕ1 are equal. Thus y differs from x by an element in the kernel of “G→ “G.

This kernel is a subgroup of “T ∩ S+
ϕ1

, and the exactness at the third spot is

proved.

Now we turn to exactness at the second spot. First, we must show that

for any α∨ ∈ ∆∨ϕ, we have α(−1) ∈ S+,◦
ϕ1

. Recalling that ϕ1 = Ad(s)ϕ, with

s =
∏
β∨∈∆∨ϕ

sβ∨ , this is equivalent to showing Ad(s)−1α(−1) ∈ S+,◦
ϕ . Now

all sβ∨ commute with α(−1), because any β∨ not equal to α∨ is strongly

orthogonal to it. So we need to show α(−1) ∈ S+,◦
ϕ . For this we observe that

α ∈ X∗(“Tsc) is an element fixed by ϕ(σ) and thus α ⊗ (−r) ∈ X∗(“Tsc) ⊗ C
belongs to tϕ for all r ≥ 0. The map r 7→ exp(α⊗ (−r)) is a curve in “Tsc ∩ S+

ϕ

connecting 1 to α(−1), and this implies α(−1) ∈ S+,◦
ϕ .

At this point, we know that the cokernel of the first map surjects onto

the image of the second. To show that this surjection is in fact injective,

we will compare the cardinalities of these two finite groups. Our discussion

above shows that coker(Ω(∆ϕ) → π0([Ŝ ]+)) has cardinality equal to that of

the packet Πϕ. On the other hand, recall the map (5.12)

π0(Z(“G)+)→ π0(S+
ϕ1

).

The cokernel of this map is equal to Shelstad’s group Sad
ϕ1

. In [She08b, §7],

Shelstad defines a (noncanonical) pairing between this group and the disjoint

union of the L-packets ΠG′
ϕ where G′ runs over a set of representatives for any

given K-group. One of her main results, Theorem 7.5, shows that this pairing

is perfect. This disjoint union of L-packets can be noncanonically identified

with a nontrivial fiber of the composition

(5.15) Πϕ → H1
ab(u→W,Z → G)→ π0(Z(“G)+)∗,
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where the first map is (G′, ψ, z, π′) 7→ z and the second map comes from

Corollary 5.4. We conclude that

| coker
(
Ω(∆ϕ)→ π0([Ŝ ]+)

)
| = |Πϕ|

= | coker
(
π0(Z(“G)+)→ π0(S+

ϕ1
)
)
| · |im((5.15))|.

The proof will be complete once we show that the image of (5.15) has the

same cardinality as the image of (5.12). By construction, the image of (5.15)

parametrizes the isomorphism classes of those rigid K-groups that contain at

least one rigid inner twists of G for which ϕ is relevant. By Lemma 5.7 this

image coincides with the group of characters of π0(Z(“G)+) that are trivial on

the kernel of (5.12), and this shows that the cardinalities of the images of

(5.12) and (5.15) coincide. �

This finishes the construction of diagram (5.7). The compatibility of this

diagram with enlargement of Z follows from the already discussed case of

discrete series.

We now turn to the remaining statements in Section 5.4. The stability of

the virtual character (5.8) is one of the main results of Shelstad’s work; see

[She79a, §5] and (for the setting of K-groups) [She08b, §5]. The endoscopic

character identities for tempered L-packets are another fundamental result of

Shelstad. In order to extract them in their current formulation (5.11) from

Shelstad’s work, we will need to review Shelstad’s theory of spectral transfer

factors, following [She10] and [She08b]. Say (G′, ψ) is an inner twist of G,

e = (H,H, s, η) is an endoscopic datum for G, and z = (Hz, ηz) is a z-pair for it.

Let ∆geom be an arbitrary normalization of the absolute transfer factor for the

data (G′, ψ), e, z. Shelstad calls such a transfer factor geometric and constructs

in [She10] a dual notion, called a spectral transfer factor. It is a function ∆spec

that assigns a complex number to a pair (ϕz, π
′), where ϕz : WR → LHz is a

tempered Langlands parameter and π′ is a tempered representation of G′(F ).

The pair (ϕz, π
′) is called related if ϕz = ηz ◦ η−1 ◦ϕ for a tempered Langlands

parameter ϕ : WR → LG whose image belongs to η(H), and furthermore

π′ ∈ ΠG′
ϕ . The value ∆spec(ϕz, π) is zero unless the pair (ϕz, π) is related. We

remark that Shelstad uses the notation ∆spec(π1, π
′), where π1 is an element

of the L-packet Π
Hz
ϕz . Since the value of ∆spec(π1, π

′) does not change when

we vary π1 within its packet, we have chosen the slightly different notation

∆spec(ϕz, π
′). In general, both functions ∆geom and ∆spec are defined up to

constant multiples, but there is a way to normalize them compatibly. For this,

recall that the pair (ϕz, π
′) is called G-regular if Cent(ϕ(C×), “G) is torus. If

(ϕz, π
′) is a G-regular related pair, and (γz, δ

′) is a strongly G-regular related

pair of elements γz ∈ Hz(F ) and δ′ ∈ G′(F ), then in [She10, §12] Shelstad
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constructs a canonical compatibility factor

∆comp(ϕz, π
′; γz, δ

′)

and defines that ∆geom and ∆spec are normalized compatibly if

(5.16) ∆spec(ϕz, π
′) = ∆comp(ϕz, π

′; γz, δ
′)∆geom(γz, δ

′)

for one, hence any choice of related pairs (ϕz, π
′) and (γz, δ

′) as above. Thus

if ∆geom is chosen, this determines ∆spec — a priori for all G-regular related

pairs (ϕz, π
′), but then in fact for all related pairs since the values of ∆spec

on general related pairs are determined from its values on G-regular related

pairs by means of coherent continuation of characters. Shelstad’s theorem

on spectral transfer [She10, Th. 5.1] states that if f e is a function on Hz(R)

and f is a function on G′(R) such that f e and f have ∆geom-matching orbital

integrals, then

SΘϕz,id,1(f e) =
∑

π∈ΠG′ϕ

∆spec(ϕz, π)Θπ(f).

In order to obtain equation (5.11) from this theorem we need to prove the

following proposition.

Proposition 5.10. If we take ∆geom as the geometric transfer factor

∆′[ė, z,w, ψ, z], then the compatibly normalized spectral transfer factor ∆spec

satisfies

∆spec(ϕz, π
′) = e(G′)〈ṡ, π̇〉

for any π′ ∈ ΠG′
ϕ , where π̇ = (G′, ψ, z, π′).

The appearance of the factor e(G′) in the right-hand side of this equation

comes from the fact that this factor also appears in the definition (5.9) of the

right-hand side of equation (5.11), while it does not appear in right-hand side

of Shelstad’s character identity recalled above.

Proof. We need a slight change in notation in order to quote Shelstad’s

results more easily. Recall from [KS12] that there are four different normaliza-

tions of the relative transfer factor, denoted by ∆, ∆′, ∆D, ∆′D. In Section 5.4

we use ∆′, while Shelstad’s results use ∆. The passage from one to the other

is very simple: If ė = (H,H, ṡ, η) is our refined endoscopic datum, and we set

ė′ = (H,H, ṡ−1, η), then ė′ is another refined endoscopic datum, and we have

∆′[ė, z,w, ψ, z] = ∆[ė′, z,w, ψ, z]. In this proof we will work with ∆ and ė′.

The structure of ∆spec(ϕz, π) is interwoven with Shelstad’s arguments that

were recalled during the construction of the pairing 〈−,−〉. Returning to these

arguments, we again take the Levi subgroup M1 of G constructed from the

parameter ϕ. We are assuming that ΠG′
ϕ is nonempty and thus that ϕ is

relevant for G′, which implies that M1 transfers to M ′1. Shelstad explains
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in [She10, §7a] that the data e′ and z descend to data e′M1 and zM1 for the

group M ′1. Moreover, she explains in [She10, §12] that the transfer factor

∆[ė′, z,w, ψ, z] gives rise to a transfer factor ∆M1 [ė′, z,w, ψ, z] for the reductive

group M ′1 and its endoscopic datum e′M1 and z-pair zM1 by the rule

∆M ′1
[ė′, z,w, ψ, z](γz, δ

′) = ∆[ė′, z,w, ψ, z](γz, δ
′) · |det(Ad(δ′)− I)g′/m′1 |.

We can apply the same construction to the Levi subgroup M1 of G and obtain

∆M1 [e′, z,w](γz, δ) = ∆[e′, z,w](γz, δ) · |det(Ad(δ)− I)g/m1
|.

Noting that the second factors on the right of these two equations coincide

when δ ∈ M1(R) and δ′ ∈ M ′1(R) are stably conjugate, and recalling the

definition (5.1) of ∆[ė′, z,w, ψ, z], we see that

∆M ′1
[ė′, z,w, ψ, z](γz, δ

′) = ∆M1 [e′, z,w](γz, δ) · 〈inv(δ, δ̇′), ṡ−1
γ,δ〉
−1.

The Whittaker datum w for G serves M1 as well, and a short argument, con-

tained in the proof of [She08a, Lemma 14.1], reveals that the factor ∆M1 [e′, z,w]

is equal to ∆[e′M1 , zM1 ,w] — the Whittaker normalization corresponding to w

of the absolute transfer factor for M1 and its endoscopic datum e′M1 and z-pair

zM1 . We conclude

(5.17) ∆M ′1
[ė′, z,w, ψ, z](γz, δ

′) = ∆[e′M1 , zM1 ,w](γz, δ) · 〈inv(δ, δ̇′), ṡ−1
γ,δ〉
−1.

Recall the essentially discrete series L-packet Π
M ′1
ϕ1+ν and the injection

ΠG′
ϕ → Π

M ′1
ϕ1+ν .

If π′ ∈ ΠG′
ϕ maps to πM

′
1 ∈ Π

M ′1
ϕ1+ν , then in [She10, §14] Shelstad defines

∆spec(ϕz, π
′) = ∆

M ′1
spec(ϕ1,z + ν, πM

′
1),

where the spectral transfer factor on the right is for the reductive group M ′1
and its endoscopic datum eM1 and z-pair zM1 and is compatibly normalized

with the geometric transfer factor ∆M ′1
[ė, z,w, ψ, z]. Let πw ∈ ΠG

ϕ be the

unique w-generic constituent, and recall that its image πM1
w ∈ ΠM1

ϕ1+ν is the

unique w-generic constituent there. If we denote by ∆M1
spec the spectral transfer

factor for M1 and its endoscopic datum eM1 and z-pair zM1 that is compatibly

normalized with the geometric transfer factor ∆[eM1 , zM1 ,w], then Theorem

11.5 of [She08b] asserts that

1 = ∆M1
spec(ϕ1,z + ν, πM1

w ) = ∆M1
comp(ϕz, π

M1
w , γz, δ)∆[e′M1 , zM1 ,w](γz, δ).

Combining this with (5.16) and (5.17) we arrive at

e(G′)∆spec(ϕz, π
′) = 〈inv(δ, δ̇′), ṡ−1

γ,δ〉
−1 e(G

′)∆
M ′1
comp(ϕ1,z + ν, πM

′
1 ; γz, δ

′)

∆M1
comp(ϕ1,z + ν, πM1

w ; γz, δ)
.
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Recalling the internal structure of ∆comp from [She10, §12] and noting that

the spectral ∆II-terms for M1 and M ′1 differ only by the sign e(M ′1), which

by [Kot83] is equal to e(G′), we see that the right-hand side of the above

expression reduces to

〈inv(δ, δ̇′), ṡ−1
γ,δ〉
−1

∆
M ′1
comp,III(ϕ1,z + ν, πM

′
1 ; γz, δ

′)

∆M1
comp,III(ϕ1,z + ν, πM1

w ; γz, δ)
.

By choosing Shelstad’s “toral data” in the construction of ∆comp,III appropri-

ately, we may arrange the denominator to be equal to 1. Doing so makes the

above expression equal to

〈inv(δ, δ̇′), ṡ−1
γ,δ〉
−1

〈
s−1
U , inv

(
πM1
w , πM

′
1

δ, δ′

)〉
,

where the second factor is constructed in [She10, §12]. Its construction is very

similar to that of the analogous factor of [LS87, §3.4] that was recalled in the

proof of Proposition 5.6. The argument in the proof of that proposition that

was used to prove equation (5.4) can be applied to prove that〈
s−1
U , inv

(
πM1
w , πM

′
1

δ, δ′

)〉
=
〈ṡ−1, inv(πM1

w , πM
′
1)〉−1

〈ṡ−1
γ,δ, inv(δ, δ′)〉−1

.

Recall now that 〈ṡ, π̇〉 was defined to be the pairing of ṡ with the element of

H1(u→W,Z → S) determined by π̇ under the injection (5.14), and that this

element is precisely inv(πM1
w , πM

′
1). �

5.7. Global applications : An overview. In this final section we shall sum-

marize, at the request of the editors, the applications of the local results and

conjectures of this paper to the study of automorphic representations. These

applications are developed in [Kal15b], and we refer the reader to that paper

for proofs and details.

Let F now be a number field, Γ the absolute Galois group of F relative

to some fixed algebraic closure, and AF the ring of adeles of F . Our goal is to

give a conjectural description of the tempered discrete automorphic represen-

tations of connected reductive groups defined over F , which are not necessarily

quasi-split. A central role in this description is played by the local conjecture

formulated in Section 5.4. The conjectural description we give will be accom-

panied by unconditional results concerning transfer factors, which enable the

application of the stable trace formula to the proof of both the local and global

conjectures in important cases, including the (nonquasi-split) classical groups,

following the arguments developed by Arthur [Art13].

Let G be a connected reductive group defined and quasi-split over F . For

the purposes of the current presentation, we shall further assume that Gder is

simply connected. This allows us to use a slightly simpler notation, and we
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refer the reader to [Kal15b] for the description of the general case. We fix

a Whittaker datum w for G, that is, a G(F )-conjugacy class of pairs (B,α),

where B ⊂ G is a Borel subgroup defined over F , whose unipotent radical we

shall call U , and α : U(AF )→ C× is a generic character that is trivial on the

subgroup U(F ) of U(AF ). At each place v of F , by restricting α to U(Fv) we

obtain a Whittaker datum wv = (B,α|U(Fv)) for G× Fv.
Let ψ : G→ G′ be an inner twist. It is the group G′ and its automorphic

representations that are of interest to us. In order to use the local conjecture

of Section 5.4 to study those, we must first endow G′ with the structure of

a global rigid inner form. This structure serves as a bridge between classical

global endoscopy, which governs the stabilization of the trace formula, and

refined local endoscopy, which is part of the local conjecture, and allows us to

use the local conjecture to construct global objects. The function of this bridge

is to ensure that, once constructed, these global objects are independent of the

choice of global rigid inner form structure.

The global rigid inner form structure comes from the functor H1(PV̇ →
Eξ̃,V̇ ) constructed in [Kal15b, §3]. Just like its local analog H1(u → W ) con-

structed in Section 3 of the present paper, the functor H1(PV̇ → Eξ̃,V̇ ) assigns

to each pair Z → G consisting of an affine algebraic group G and a finite cen-

tral subgroup Z, now both defined over the global field F , a cohomology set

H1(PV̇ → Eξ̃,V̇ , Z → G) that containsH1(Γ, G). The subscript V̇ is a set of lifts

to F of the places of F . For each v ∈ V̇ , there is a functorial localization map

locv : H1(PV̇ → Eξ̃,V̇ , Z → G)→ H1(uv →Wv, Z → G),

where we have placed the subcript v on the target of this map to empha-

size which local field we are working with. In fact, and this will be impor-

tant for us, the map locv is well defined not just on the level of cohomol-

ogy sets, but already on the level of cocycles, up to an ambiguity coming

from B1(Γv, Z). When the group G is connected and reductive, which is our

case of interest, there is a global version of the local Tate-Nakayama-type iso-

morphism constructed in Section 4. It relates H1(PV̇ → Eξ̃,V̇ , Z → G) to

a concrete linear-algebraic object coming from the root datum of G and lies

at the heart of the applications that we are about to describe. We refer the

reader to Theorem 3.44 and Corollary 3.45 of [Kal15b] for a precise statement

and limit ourselves here to the vague remark that the global Tate-Nakayama-

type isomorphism allows an explicit description of those collections (xv)v∈V̇ of

classes xv ∈ H1(uv →Wv, Z → G) that are of the form (locv(x))v∈V̇ for some

x ∈ H1(PV̇ → Eξ̃,V̇ , Z → G).

After these introductory remarks, we turn to the description of the global

applications. The inner twist ψ leads to the 1-cocycle ψ−1σ(ψ) ∈ Z1(Γ, Gad).

According to Lemma 3.29 of [Kal15b] there exists z ∈ Z1(PV̇ → Eξ̃,V̇ , Z(Gsc)
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→ Gsc) lifting this 1-cocycle. For each place v ∈ V̇ , we let zv ∈ Z1(uv →
Wv, Z(Gsc) → Gsc) be given by zv = locv(z). As remarked above, zv is well

defined up to multiplication by elements of B1(Γv, Z(Gsc)) and this is sufficient

for our purposes. The pair (ψ, zv) is a rigid inner twist G × Fv→G′ × Fv as

defined in Section 5.1. We have G = G/Z(Gsc) = Gad×Z(G)/Z(Gsc) and

dually “G= “Gsc×Z(“G). The cohomology class [zv]∈H1(uv→Wv, Z(Gsc)→Gsc)

corresponds via Corollary 5.4 to a character of Z(“Gsc), and the image of [zv] in

H1(uv→Wv, Z(Gsc)→G) corresponds to the character of (Z(“Gsc)× Z(“G))+v

that is the pull-back of the character of Z(“Gsc) via the projection Z(“Gsc) ×
Z(“G)→Z(“Gsc) onto the first factor. Here we have decorated the superscript

+ by a subscript v to indicate that the underlying local field we are working

with is Fv.

The first global result is the decomposition of the canonical adelic transfer

factor that governs the stabilization of the trace formula into a product of

the normalized local transfer factors introduced in Section 5.3. For this, let

e = (H,H, s, η) be a global endoscopic datum for G and z = (H1, η1) be a

global z-pair. For the definition of these objects, we refer the reader to [LS87,

§1.2], [KS99, §2.2], or the summary [Kal15b, §4.2]. The adelic transfer factor

is a function
∆A[e, z, ψ] : H1,G−sr(AF )×G′sr(AF )→ C

that associates to a pair of semi-simple and strongly G-regular elements γ1 ∈
H1(AF ) and δ′ ∈ G′(AF ) a complex number ∆A[e, z, ψ](γ1, δ

′) ∈ C. This factor

is defined in [LS87, §6.3], but see also [KS99, §7.3], where z-pairs are explicitly

used. It is identically zero unless there exists a pair of strongly G-regular

related elements γ1,0 ∈ H1(F ) and δ′0 ∈ G′(F ), which we now assume.

The element s of the endoscopic datum e belongs to [Z(“H)/Z(“G)]Γ, where

we have identified Z(“G) as a subgroup of Z(“H) via η. Moreover, the image of

s in H1(WF , Z(“G)) under the connecting homomorphism lies in the kernel of

the restriction map H1(WF , Z(“G))→ H1(WFv , Z(“G)) for each v ∈ V̇ . To sim-

plify notation, we identify elements of “H with their images under η. Choose

a preimage ssc ∈ “Gsc of s ∈ “Gad. For each v ∈ V̇ , there exists yv ∈ Z(“G)

such that sder · yv ∈ Z(“H)Γv , where sder ∈ “G is the image of ssc under the

natural map “Gsc → “G. Then ṡv := (ssc, yv) ∈ “G belongs to Z(“H)+v and

ėv := (H,H, ṡv, η) is a refined endoscopic datum for G×Fv relative to Z(“Gsc).

We now have the local normalized transfer factor ∆[wv, ėv, zv, (ψ, zv)] defined

by (5.1) with respect to the absolute transfer factor for the quasi-split group

G that is normalized using the local Whittaker datum wv as in [KS99, §5.3].

Theorem ([Kal15b, Prop. 4.1]). We have the product decomposition

∆A[e, z, ψ](γ1, δ
′) =

∏
v∈V̇

∆[wv, ėv, zv, (ψ, zv)](γ1,v, δ
′
v)
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for all strongly G-regular γ1 ∈ H1(AF ) and δ′ ∈ G′(AF ).

The next global result is the construction of a canonical pairing between

the group Sϕ associated to a discrete generic global Arthur parameter ϕ and the

corresponding adelic L-packet Πϕ(G′). This result is conditional on the validity

of the local conjecture of Section 5.4, which we now assume. We shall state

the result using the Langlands group LF of the global field F , which is itself

conjectural. In the setting of classical groups, the use of LF can be avoided

by using Arthur’s formal parameters [Art13, §1.4]. Let ϕ : LF → LG be a

discrete generic global Arthur parameter, i.e., a continuous L-homomorphism

whose image consists of semi-simple elements, does not belong to a proper

parabolic subgroup of LG, and projects onto a bounded subset of “G. Let

Sad
ϕ be the subgroup of Cent(ϕ, “Gad) consisting of those elements whose image

in H1(LF , Z(“G)) is locally trivial, and let Sϕ = π0(Sad
ϕ ). For each v ∈ V̇ , let

ϕv = ϕ|LFv denote the localization of ϕ, a tempered local Langlands parameter.

We define the adelic L-packet of representations of G′(AF ) associated to ϕ by

Πϕ(G′) :=
{
π = ⊗′

v∈V̇ πv
∣∣∣π̇v := (G′, ψ, zv, πv) ∈ Πϕv , 〈−, π̇v〉 = 1 for a.a. v

}
.

We are invoking here the local conjecture from Section 5.4, which guarantees

the existence of the local L-packet Πϕv and the pairing 〈−,−〉 between it and

the group π0(S+
ϕv).

As discussed in [BR94, §3.4], following [Kot84, §12], the main ingredient of

the conjectural multiplicity formula for discrete automorphic representations

is a pairing between Sϕ and Πϕ(G′). It is this pairing that we are going to

construct. Given sad ∈ Sad
ϕ , choose an arbitrary lift ssc ∈ “Gsc. For v ∈ V̇ , we

produce ṡv ∈ S+
ϕv in the same way we produced ėv from e above. Namely, we

let sder ∈ “G be the image of ssc and choose yv ∈ Z(“G) so that sder · yv ∈ Sϕv .
Then ṡv := (ssc, yv) ∈ “Gsc × Z(“G) = “G belongs to S+

ϕv .

Theorem ([Kal15b, Prop. 4.2]). Given π = ⊗′
v∈V̇ πv ∈ Πϕ(G′), almost all

terms in the product

〈sad, π〉 =
∏
v∈V̇

〈ṡv, (G′, ψ, zv, πv)〉

are equal to 1, and the product depends only on sad, but not on the choices of

ssc, yv , or z. It is the character of a finite-dimensional representation of Sϕ.

In other words, the character 〈−, π〉 of Sϕ is canonically associated to

the adelic representation π and is independent of the global rigid inner form

structure z that we chose for G′. Following [Kot84, §12] we can now state the

conjectural multiplicity formula as follows.
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Conjecture 5.11. For any irreducible admissible tempered representa-

tion π of G′(AF ), the integer∑
ϕ

|Sϕ|−1
∑
x∈Sϕ
〈x, π〉,

where ϕ runs over the set of equivalence classes of generic discrete global Arthur

parameters with π ∈ Πϕ(G′), is equal to the multiplicity of π in the discrete

spectrum of G′.

Our final results concern a local conjecture put forth by Arthur [Art06,

§3] and a related globalization hypothesis formulated in [Art13, §9]. The lo-

cal conjecture proposes a description of L-packets and character identities for

arbitrary connected reductive groups over the local field Fv, without canon-

ically normalized transfer factors. The missing normalization is reflected in

the appearance of additional conjectural objects — the mediating functions

ρv and the spectral transfer factors ∆(ϕv, πv), whose role it is to encode all

possible choices of the (geometric) transfer factor. Provided these objects can

be shown to exist, there will be multiple choices for them, and the description

of L-packets will depend on these choices.

The normalization of the transfer factor established in Section 5.3 implies

that the mediating function can be specified by the choice of a rigid inner twist

datum zv and given by the simple formula

ρv(∆[wv, ėv, zv, (ψ, zv)], ssc) = 1.

Here the refined local endoscopic data ėv are produced as described above from

the element ssc appearing in the second argument of ρv. More importantly, the

local conjecture of Section 5.4 implies further that the rigid inner twist datum

zv also specifies the spectral transfer factor ∆(ϕv, πv), namely, it is equal to the

pairing 〈ṡv, π̇v〉. This replaces the arbitrary choices of two conjectural objects

(ρv and ∆(φv, πv)) with the arbitrary choice of one nonconjectural object (zv).

The fact that zv can be taken as the localization of the global cohomology class

z implies, together with [Kal15b, Prop. 4.1], the validity of [Art13, Hyp. 9.5.1].

This result does not rely on the local conjecture and is thus unconditional.

For a more detailed discussion of how the local conjecture of Section 5.4

implies a stronger form of Arthur’s conjecture [Art06, §3], we refer the reader

to [Kal15b, §4.6].
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Astérisque 255, Math. Soc. France, Paris, 1999. MR 1687096. Zbl 0958.

22013.

[KS12] R. E. Kottwitz and D. Shelstad, On splitting invariants and sign con-

ventions in endoscopic transfer, 2012. arXiv 1201.5658.
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