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Birational boundedness for holomorphic
symplectic varieties, Zarhin’s trick for K3

surfaces, and the Tate conjecture

By François Charles

Abstract

We investigate boundedness results for families of holomorphic symplec-

tic varieties up to birational equivalence. We prove the analogue of Zarhin’s

trick for K3 surfaces by constructing big line bundles of low degree on cer-

tain moduli spaces of stable sheaves, and proving birational versions of

Matsusaka’s big theorem for holomorphic symplectic varieties.

As a consequence of these results, we give a new geometric proof of

the Tate conjecture for K3 surfaces over finite fields of characteristic at

least 5, and a simple proof of the Tate conjecture for K3 surfaces with

Picard number at least 2 over arbitrary finite fields — including fields of

characteristic 2.

1. Introduction

1.1. Main results. The main goal of this paper is to investigate geometric

and arithmetic finiteness results for K3 surfaces and related objects. The

initial inspiration for the results of this text is the paper [Zar74]. The main

insight of Zarhin — ”Zarhin’s trick” — is the fact that if A is an abelian variety

over an arbitrary field k, then (A × “A)4 admits a principal polarization. In

particular, while the set of isomorphism classes of polarized abelian varieties of

fixed dimension g does not form a limited family if g > 1, it does map naturally

to the moduli space of principally polarized abelian varieties of dimension 8g.

As proved by Tate in [Tat66], this implies the Tate conjecture for abelian

varieties over finite fields.

It is well known that the Tate conjecture for divisors in general is related

to finiteness results for certain classes of algebraic varieties over finite fields or

number fields. The aforementioned argument of Zarhin shows that, in the case

of abelian varieties over finite fields, these are consequences of boundedness

results that hold over arbitrary fields.
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The goal of this paper is to discuss an analogue of this circle of ideas for

K3 surfaces, and explain applications to new proofs of the Tate conjecture

for divisors on these surfaces. While some of our results are not new, one of

the goal of this paper is to emphasize the role of certain geometric objects —

moduli spaces of twisted and untwisted sheaves — regarding the existence of

divisors on surfaces. It seems that our results are the first occurrence of new

versions of Zarhin’s trick since Zarhin’s original paper.

We start by investigating Zarhin’s trick for K3 surfaces and proceed in

two steps. The first step is to construct big line bundles on moduli spaces of

sheaves on K3 surfaces. A simplified version of our result, stated in detail in

Theorem 2.10, is the following.

Theorem 1.1. Let k be a field, and let d be a positive integer. Then

there exists a positive integer r such that for infinitely many positive integers

m, if (X,H) is a polarized K3 surface of degree 2md over k, then there exists

a smooth, 4-dimensional, projective moduli space M of stable sheaves on X

and a line bundle L on M satisfying c1(L)4 = r and q(L) > 0, where q is the

Beauville-Bogomolov form on M.

We actually give a congruence condition on m that ensures it satisfies the

property above.

The space M is a natural analogue of the product (A × “A)4 appearing

in Zarhin’s trick. Indeed, at least over C, it is an irreducible holomorphic

symplectic variety — that is, it is simply connected and its space of holo-

morphic 2-forms is spanned by a single symplectic form. Furthermore, it is

deformation-equivalent to the Hilbert scheme X [2] of 2 points on X.

By an important theorem of Huybrechts [Huy99, 3.10], either L or its dual

is big. This means that there exists a power of L that induces a birational map

fromM onto a subvariety of projective space. Another major theme — and the

second step — of this paper is investigating the extent to which a birational

version of Matsusaka’s big theorem holds in this setting. We formulate an

optimistic possible result as a question.

Question. Let M be either a complex projective holomorphic symplectic

variety or — in positive characteristic — a smooth projective moduli space of

stable sheaves of dimension 2n on a K3 surface, and let L be a big line bundle

on M with c1(L)2n = r and q(L) > 0, where q is the Beauville-Bogomolov

form. Do there exist integers N, d and a depending only on r and n such

that the complete linear system |aL| induces a birational map from M onto a

subvariety of degree at most d of Pm with m ≤ N?

One could even ask whether the integer a can be chosen independently

of r. If one could control the singularities of a general member of |L|, this

would follow in characteristic zero from Theorem 1.3 in [HMX14].
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We are not able to answer the question — in positive characteristic, even

the case where L is assumed to be ample is not known — but give partial

results in that direction. For K3 surfaces, geometric considerations following

[SD74] allow us to answer the question in any characteristic, up to replacing L

by a different line bundle L′ with self-intersection bounded in terms of r. This

is Proposition 3.1.

In higher dimension, we do not give a complete answer, as we do not

understand the geometry of linear systems well enough in that case; see however

related considerations in [O’G05]. Over the field of complex numbers, we can

use the period map and the global Torelli theorem of [Ver13] to answer the

question in Theorem 3.3, again possibly changing the bundle L. This has the

following consequence.

Theorem 1.2. Let n and r be two positive integers. Then there exist a

scheme S of finite type over C and a projective morphism X → S such that

if X is a complex irreducible holomorphic symplectic variety of dimension 2n

and L is a line bundle on X with c1(L)2n = r and q(L) > 0, where q is the

Beauville-Bogomolov form, then there exists a complex point s of S such that

Xs is birational to X .

In other words, the holomorphic symplectic varieties as above form a bi-

rationally bounded family.

We deal with finite fields using a similar strategy — in that case, the

period map is replaced by the Kuga-Satake construction. For technical rea-

sons that could be circumvented using heavier machinery as in [KMP15], we

assume that the characteristic is at least 5. The finiteness result we obtain is

Proposition 3.16.

The main application of our results is to the Tate conjecture for K3 sur-

faces over finite fields. In odd characteristic, it has been proved in [Mau14,

Cha13], and independently in [MP15]. The first of these proofs relies on results

of Borcherds on the Picard group of Shimura varieties, while the second one

uses construction of canonical models of certain Shimura varieties. We follow

a different approach that first appeared in spirit in [ASD73] and was discussed

in [LMS14]. In the latter paper, it is proved that the Tate conjecture for K3

surfaces over a finite field k is equivalent to the finiteness of the set of isomor-

phism classes of K3 surfaces over k. By refining the arguments of [LMS14],

we are able to use a version of this criterion, together with both our version

of Zarhin’s trick above and our birational boundedness results, and give a new

proof of the following theorem.

Theorem 1.3. Let X be a K3 surface over a finite field of characteristic

at least 5. Then X satisfies the Tate conjecture.
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It was the hope of the author that the techniques of this paper would be

able to give a proof of the Tate conjecture for K3 surfaces over finite fields

that does not rely on Kuga-Satake varieties. However, our proof of birational

boundedness results for higher-dimensional holomorphic symplectic varieties

in positive characteristic turned out to require this construction. The reason

why it appears is that since the birational geometry of holomorphic symplectic

varieties might be hard to control, it is very helpful to translate the problem

in terms of abelian varieties where the birational geometry is trivial and Mat-

susaka’s big theorem is known even in positive characteristic. It seems possible

that further understanding of the underlying geometry might answer the ques-

tion above along the lines of Proposition 3.1, at least in characteristic zero.

Our last result, which is new only in characteristic 2 but whose proof is in

any case significantly simpler than all the other proofs of the Tate conjecture,

should be seen as a modern rephrasing of the main result of [ASD73] that

dealt with elliptic K3 surfaces. It realizes the hope described in the previous

paragraph, as it does not use the Kuga-Satake construction nor p-adic methods,

making use instead of general geometric results. As opposed to the proofs of the

Tate conjecture for various classes of K3 surfaces that appeared after [ASD73],

it does not rely on the geometry of moduli spaces of K3 surfaces, but rather

on the geometry of the surfaces themselves.

Theorem 1.4. Let X be a K3 surface over a finite field of arbitrary

characteristic. If the Picard number of X is at least 2, then X satisfies the

Tate conjecture.

It is perhaps interesting to notice that, after a finite extension of the base

field, the hypothesis of the theorem above is satisfied as soon as X satisfies the

Tate conjecture. If this holds, the Picard number of Xk should be even; see, for

instance, [dJK00]. It would be very interesting to find a direct proof of this fact.

The paper is split in three parts, which are independent in some respect.

In Section 2, we prove a version of Zarhin’s trick for K3 surfaces over arbitrary

fields. This relies on the study of moduli spaces of stable sheaves onK3 surfaces

and their cohomology, as initiated by Mukai.

Section 3 is devoted to birational versions of Matsusaka’s big theorem for

holomorphic symplectic varieties, over C and finite fields. For K3 surfaces, we

explain how to use results of Saint-Donat to prove the desired results, while

in the other cases we need a finer analysis of some moduli spaces via period

maps. This leads to technical complications in positive characteristic, which

arise, in particular, due to the fact that there does not seem to be a satisfying

definition of holomorphic symplectic varieties over arbitrary fields.

In Section 4, we apply the aforementioned results to the Tate conjecture

for K3 surfaces over finite fields. We follow the strategy of [LMS14] for the
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most part by using moduli spaces of twisted sheaves. We also discuss a simple

proof of Theorem 1.4.

While the last section is arithmetic in nature, we hope that the first two

might be of some interest even for complex geometers.

1.2. A preliminary result. We will need the following lifting result. It is

certainly well known to experts and follows easily from [LM14]; see also [LO15,

Prop. A.1].

Proposition 1.5. Let X be a K3 surface over an algebraically closed field

k of positive characteristic, and let L1, . . . , Lr be line bundles on X . Assume

that L1 is ample, and let W be the ring of Witt vectors of k. If r ≤ 10, there

exists a finite flat morphism S → SpecW , where S is the spectrum of a discrete

valuation ring, and a smooth projective relative K3 surface X → S such that

(i) The special fiber of X → S is isomorphic to X ;

(ii) The image of the specialization map

Pic(X )→ Pic(X)

contains the classes of L1, . . . , Lr.

Proof. If X has finite height, the result follows from [LM14, Cor. 4.2]. In

general, in the deformation space of (X,L1) over k, which has dimension 19,

the complement of the locus of surfaces of finite height has dimension 9 by

[Art74], and the deformation space of (X,L1, . . . , Lr) has codimension r − 1.

As a consequence, (X,L1, . . . , Lr) is a specialization of a K3 surface with finite

height, which allows us to conclude. �
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2. A variant of Zarhin’s trick for K3 surfaces

2.1. Moduli spaces of stable sheaves on K3 surfaces. The goal of this sec-

tion is to describe the geometry of moduli spaces of stable sheaves on K3

surfaces. Over the field of complex numbers, these results are well known due

to the work of Mukai, O’Grady and Yoshioka. We explain below how to extend

them to arbitrary fields.
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If X is a K3 surface over a field k, we denote by NS(X) the group of line

bundles on X modulo numerical equivalence. Since the cohomology groups of

X have no torsion, the first Chern class map induces an injective homomor-

phism

c1 : NS(X)→ H2(Xk,Z`(1))

for any prime number ` different from the characteristic of k, where k denotes

an algebraic closure of k. In particular, NS(X) identifies with a subgroup of

NS(Xk).

Mukai lattices were first defined in [Muk87b] for complex K3 surfaces.

Recently, they have been defined and studied in great generality in the paper

[LO15]. For our purposes, we only need very basic definitions, which recall now.

Definition 2.1. Let k be a field with algebraic closure k, and let X be a

K3 surface over k. Let ` be a prime number that is invertible in k.

(i) The `-adic Mukai lattice of X is the free Z`-module‹H(Xk,Z`) := H0(Xk,Z`)⊕H
2(Xk,Z`(1))⊕H4(Xk,Z`(2))

endowed with the Mukai pairing

〈(a, b, c), (a′, b′, c′)〉 = bb′ − ac′ − a′c.

(ii) Let ω be the numerical equivalence class of a closed point in Xk. A Mukai

vector on X is an element v of

N(X) := Z⊕NS(X)⊕ Zω.

We denote by rk(v) the rank of v, that is, its first component, and by

c1(v) its component in NS(X). We identify a Mukai vector and its image

in the `-adic Mukai lattice under the natural injection

N(X)→ ‹H(Xk,Z`).

(iii) Let F be a coherent sheaf on X. The Mukai vector of F is

v(F) := ch(F)
√
tdX = rk(F) + c1(F) + (χ(F)− rk(F))ω.

If F and G are two coherent sheaves onX, let χ(F ,G)=
∑
i(−1)iExti(F ,G).

If F is locally free, then χ(F ,G) = χ(F∨⊗G). By the Riemann-Roch theorem

(see [Muk87b, Prop. 2.2]) we have the following.

Proposition 2.2. Let F and G be two coherent sheaves on X . Then

χ(F ,G) = −v(F).v(G).

Given a Mukai vector v and a polarization H on X — that is, H is an

isomorphism class of ample line bundles on X — we denote by MH(X, v)

the moduli space of Gieseker-Maruyama H-stable sheaves F on X such that

v(F) = v. This moduli space is well defined as a quasi-projective scheme over
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k in arbitrary characteristic by work of Langer [Lan04, Th. 0.2]. When X is

fixed, we will denote this moduli space by MH(v).

Over the field of complex numbers, it is customary to require the polar-

ization H to be generic with respect to v; see [O’G97, §1]. Over an arbitrary

field, we will state our results under a stronger assumption on v.

Definition 2.3. Let X be a K3 surface over a field k, and let H be a

polarization on X. We say that a Mukai vector v on X satisfies (C) if

(i) the vector v is primitive, rk(v) > 0 and v2 > 0;

(ii) writing v = rk(v) + c1(v) + λω, then

gcd(rk(v), H.c1(v), λ) = 1.

The following theorem describes the geometry of the moduli space in arbi-

trary characteristic. We will refine some of these results below under additional

assumptions.

Theorem 2.4. Let k be a field with algebraic closure k, and let X be a

K3 surface over k. Let v be a Mukai vector on X satisfying condition (C).

(i) The space MH(v) is a smooth, projective, geometrically irreducible va-

riety of dimension v2 + 2 over k. It is deformation-equivalent to the

Hilbert scheme X [n] parametrizing subschemes of dimension 0 and length

n = v2+2
2 in X . It is endowed with a natural symplectic structure up

to homothety ; i.e., the space of global sections of the sheaf Ω2
X/k is 1-

dimensional and is spanned by a form that is everywhere nondegenerate.

(ii) If k is the field C of complex numbers, then MH(v) is an irreducible

holomorphic symplectic variety.

(iii) If ` is a prime number that is invertible in k, then the `-adic cohomology

group H2(MH(v)k,Z`(1)) is endowed with a canonical quadratic form q

satisfying the formula

(2.1) ∀α ∈ H2(MH(v)k,Z`(1)), (2n)!q(α)n = (n!)2nα2n,

where 2n is the dimension of MH(v).

(iv) There exists a canonical quadratic form on NS(MH(v)k). If p = char(k)

> 0, then this quadratic form has values in Z[1/p]. If p = 0, then it has

values in Z. For any ` 6= p, the first Chern class map

c1 : NS(MH(v)k)⊗ Z` → H2(MH(v)k,Z`(1))

is an isometry.

(v) Let ` be a prime number that is invertible in k. Let v⊥ be the orthogonal

complement of v in the `-adic Mukai lattice of X — by a slight abuse of

notation, we do not make explicit the dependence in `. Then there exists
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a canonical, Gal(k/k)-equivariant, isomorphism

θv,` : v⊥ → H2(MH(v)k,Z`(1))

that is an isometry.

(vi) Assume that k is either algebraically closed or finite. Let v⊥ ∩ N(X)

be the orthogonal complement of v in the lattice N(X) of Mukai vectors

on X . There exists an injective isometry

θv : v⊥ ∩N(X)→ NS(MH(v))

such that the following diagram commutes :

v⊥ ∩N(X)
θv //

c1
��

NS(MH(v))

c1
��

v⊥
θv,` // H2(MH(v)k,Z`(1))

for any prime number ` as above.

(vii) Assume that k is either algebraically closed or finite. Then the cokernel

of θv is a p-primary torsion group, where p is the characteristic of k.

Proof. Let F be a semistable torsion-free sheaf of Mukai vector v. Write

v = rk(v) + c1(v) + λω. By Proposition 2.2 we have, for any integer d,

χ(F(d)) =
rk(v)

2
d2H2 + (H.c1(v))d+ λ+ rk(v).

Since H.c1(v), rk(v) and λ are relatively prime, this implies — since F is

semistable — that if G is any coherent subsheaf of F , then

χ(F(d))

rk(F)
>
χ(G(d))

rk(G)

for any large enough integer d. Equivalently, F is stable. As a consequence,

Theorem 0.2 of [Lan04] shows thatMH(v) is projective. By [Muk84, Cor. 0.2],

it is smooth, endowed with a natural symplectic structure and, if nonempty, it

is pure of dimension v2 + 2.

Let n = v2+2
2 . If k = C, [O’G97, Main Theorem] (see also [Yos01, Th. 8.1])

shows that the moduli space MH(v) is an irreducible holomorphic symplectic

variety birational to X [n]. In particular, MH(v) is not empty. By the main

theorem of [Huy99], MH(v) is deformation-equivalent to X [n]. The Lefschetz

principle shows that these statements hold over any algebraically closed field

of characteristic zero.

Now assume k is an arbitrary field. We want to show that MH(v) is

deformation-equivalent to X [n]. For this, we can assume that k is algebraically

closed and, by the discussion above, that k has positive characteristic. By

Proposition 1.5, we can find a finite flat morphism S → SpecW , where W is



ZARHIN’S TRICK FOR K3 SURFACES 495

the ring of Witt vectors of k, and a lifting X → S of X over S such that both

H and c1(v) lift to X . As a consequence, the Mukai vector v also lifts to X .

Consider the relative moduli space MH(X , v), which exists by [Lan04,

Th. 0.2]. By [Muk84, Th. 1.17], it is smooth over S. Since its generic fiber is

deformation-equivalent to X [n]
η , MH(X, v) is deformation-equivalent to X [n].

This shows (i) and (ii).

We now prove items (iii)–(v). For these, we can assume that k is al-

gebraically closed. First assume that k = C. Then the Beauville-Bogomolov

quadratic form on H2(MH(v),Z`(1)), as defined in [Bea83, Rem. 3 after Th. 5],

satisfies equation (2.1) by [O’G05, 4.14]. By the comparison theorem between

singular and `-adic cohomology, this shows (iii) for k = C, hence for k al-

gebraically closed of characteristic zero. For general k, lifting as before by

Proposition 1.5, the smooth base change theorem gives (iii).

Let ` be a prime number invertible in k. The cycle class map gives an

injection

c1 : NS(MH(v))→ H2(MH(v),Z`(1)).

As a consequence, the quadratic form q on H2(MH(v),Z`(1)) induces a qua-

dratic form on NS(MH(v)) with values in Z`, which we denote by q as well.

We show that it actually takes values in Q and is independent of `. This

will imply (iv). If k = C, this holds because the Beauville-Bogomolov form is

actually defined on singular cohomology with integer coefficients. This shows

that the result holds if k has characteristic zero. Assume that k has positive

characteristic, and choose a lifting X → S of X,H and v to characteristic zero

as above.

Let HM ∈ NS(MH(v)) be an ample line bundle on MH(X, v) that lifts

toMH(X , v). Since HM lifts to characteristic zero, the argument above shows

that q(HM) is an integer independent of `.

Let η be a generic geometric point of S. By [Bea83, Th. 5 and end of

p. 775], there exists a rational number λ, independent of `, such that for any

α ∈ H2(MH(Xη, v),Z`(1)) such that α ∪H2n−1
M = 0, we have

(2.2) q(α) = λα2 ∪H2n−2
M .

Indeed, this is true over C by the result of Beauville quoted above, and thus

holds over any algebraically closed field of characteristic zero. Furthermore,

the same formula holds for MH(v) by the smooth base change theorem. This

readily implies that the quadratic form q on NS(MH(v)) takes values in Q and

is independent of `. This proves (iv).

Over the field of complex numbers, the map θv,` is defined on the level of

singular cohomology with coefficients in Z in [Muk87a, 5.14], and (v) holds by

the main theorem of [O’G97]. By the same arguments as above, it holds over
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an arbitrary algebraically closed field. Since the morphism is canonical, it is

Galois-equivariant.

We now prove (vi). The map θv,` is induced by an algebraic correspon-

dence with coefficients in Q; see again [Muk87a, 5.14]. As a consequence, it

induces a map

θv : (v⊥ ∩N(X))⊗Q→ NS(MH(v))⊗Q.

This map is clearly compatible with θv,` via the cycle class map. By the

definition of the quadratic forms involved, this implies that θv is an injective

isometry.

We claim that θv,k is defined over Z, that is, that it sends v⊥ ∩N(Xk) to

NS(MH(v)k). If k has characteristic zero, this is due to the fact that θv,` is

defined over Z` for any prime number ` and that the cokernel of the cycle class

map

c1 : NS(MH(v)k)→ H2(MH(v)k,Z`(1))

has no torsion.

To show that θv,k is defined over Z for arbitrary k, we lift once again

to characteristic zero. Given α ∈ N(Xk), we can lift X, H, v and α to

characteristic zero by Theorem 1.5 and apply the claim to the generic fiber.

This shows (vi) if k is algebraically closed.

Assume now that k is a finite field. Since H1(MH(v)k,Z`) = 0 (as follows

from (ii) if k is the field of complex numbers and from a lifting argument in

general), the Hochschild-Serre spectral sequence shows that the map

H2(MH(v),Z`(1))→ H2(MH(v)k,Z`(1))Gal(k/k)

is an isomorphism, where the left-hand side denotes continuous étale cohomol-

ogy. Furthermore, a classical argument involving the Kummer exact sequence

shows that the cycle class map

Pic(MH(v))→ H2(MH(v),Z`(1))

has a torsion-free cokernel. As a consequence, the cokernel of the map

Pic(MH(v))→ H2(MH(v)k,Zl(1))

is torsion-free.

Now let α ∈ N(X)∩v⊥. By the argument above, some multiple of θv,`(α)

is the Chern class of an element of Pic(MH(v)). This shows that θv,`(α)

belongs to NS(MH(v)).

Let k be as in (vii). To show the result, we need to show that if ` is any

prime number invertible in k, then

θv ⊗ Z` : (v⊥ ∩N(X))⊗ Z` → NS(MH(v))⊗ Z`
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is an isomorphism. We already know that θv ⊗ Z` is injective. Furthermore,

in the commutative diagram

(v⊥ ∩N(X))⊗ Z`
θv⊗Z` //

c1
��

NS(MH(v))⊗ Z`

c1
��

v⊥
θv,` // H2(MH(v)k,Z`(1))

the lower horizontal map is an isomorphism and the cokernel of the two vertical

maps are torsion-free as shown above. This implies that the cokernel of θv⊗Z`
is torsion-free. To show that θv ⊗ Z` is an isomorphism, we now have to show

that

θv ⊗Q` : (v⊥ ∩N(X))⊗Q` → NS(MH(v))⊗Q`

is an isomorphism. Let HM be the homological equivalence class of an ample

divisor on MH(v), and consider the composition φ`

(v⊥ ∩N(X))⊗Q`
θv // NS(MH(v))⊗Q`

c1 // H2(MH(v)k,Q`(1))

∪H2n−2
M

��
v⊥ ⊗Q` H4n−2(MH(v)k,Q`(1)),

θ∨v,`

oo

where

θ∨v,` : H2n−2(MH(v),Z`(1))→ v⊥

is the Poincaré dual of θv,`. Then φ` is injective by the hard Lefschetz theorem,

(v) and (vi). Furthermore, it sends (v⊥ ∩ N(X)) ⊗ Q` into itself since it

is induced by an algebraic correspondence and is Galois-equivariant. As a

consequence, it induces an automorphism of (v⊥ ∩N(X))⊗Q`. Furthermore,

by the same argument, the composition

NS(MH(v))⊗Q` −→ H2(MH(v)k,Q`(1))

−→ H4n−2(MH(v)k,Q`(1)) −→ v⊥` ⊗Q`

is injective and maps into (v⊥ ∩ N(X)) ⊗ Q`. This implies that θv ⊗ Q` is

surjective and concludes the proof. �

Definition 2.5. With the notation of Theorem 2.4, the quadratic forms on

NS(MH(v)k) and H2(MH(v)k,Z`(1)) defined in (iii) and (iv) are called the

Beauville-Bogomolov form.

Under suitable assumptions on the characteristic of the base field and the

K3 surface X, we can also both describe the de Rham cohomology groups of

MH(v) and extend the description of the Néron-Severi group of MH(v) to

some nonalgebraically closed fields.
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Proposition 2.6. Let k be an algebraically closed field of characteristic

p > 0, and let (X,H) be a polarized K3 surface over k. Let v be a Mukai

vector on X satisfying condition (C). Let W be the ring of Witt vectors of k.

Assume that the triple (X, v,H) lifts to a projective K3 surface over W .

Then the Hodge to de Rham spectral sequence of MH(v) degenerates at E1 if

p > v2 +2. In general, the Hodge numbers hp,q = Hq(MH(v),Ωp
X/k) ofMH(v)

satisfy the equalities

(1) h1,0 = h0,1 = 0 if p > 2;

(2) h2,0 = h0,2 = 1 and h1,1 = 21 if p > 3.

Proof. As above, a projective lift of (X, v,H) to W induces a projective

lift MH(X , v) of MH(v) to W . By the main result of [DI87], and since p >

v2+2 = dimMH(v), this implies that the Hodge to de Rham spectral sequence

of MH(v) degenerates at E1.

In characteristic at least 3, the result of [DI87] still shows that Ep,q1 = Ep,q∞
if p+ q = 1. In characteristic at least 5, the equality also holds if p+ q = 2.

The statement regarding the Hodge numbers can be rephrased as saying

that the Hodge numbers ofMH(v) are the same as those ofMH(Xη, v), where

Xη is the generic fiber of X over W . By the universal coefficient theorem

for crystalline cohomology, it is enough to show that the second and third

crystalline cohomology groups of MH(v) are torsion-free. By the integral

comparison theorem of Fontaine-Messing [FM87], this is the case as soon as

the corresponding p-adic cohomology groups of MH(Xη, v) are torsion-free.

Since MH(Xη, v) is deformation-equivalent to a Hilbert scheme of points on a

K3 surface in characteristic zero, it suffices to show that if S is any projective

complex K3 surface, then H2(S[n],Z) and H3(S[n],Z) are both torsion-free.

The fact that H2(S[n],Z) is torsion-free is proved in [Bea83, Rem. after

Prop. 6]. We now show that H3(S[n],Z) = 0.

Following [Bea83], let S(n) be the n-fold symmetric product of S, and let

ε : S[n] → S(n) be the Hilbert-Chow morphism. Let π : Sn → S(n) be the

natural map. Let D be the diagonal in S(n), that is, the locus of elements

x1 + · · · + xn such that xi = xj for some i 6= j, and let D∗ be the open

subset of D consisting of zero-cycles of the form 2x1 + · · · + xn−1 where the

xi are all distinct. We define S
(n)
∗ = S(n) \ (D \ D∗), S[n]

∗ = ε−1(S
(n)
∗ ) and

Sn∗ = π−1(S
(n)
∗ ). Then by [Bea83, §6], S[n] \S[n]

∗ has codimension 2 in S[n] and

S[n] is the quotient by the symmetric group of the blow-up of Sn∗ along the

diagonal ∆∗ = π−1(D∗).

From the description above, it is straightforward to check that H3(S
[n]
∗ ,Z)

= 0. Since S[n] \ S[n]
∗ has codimension 2 in S[n], the restriction morphism

H3(S[n],Z)→ H3(S
[n]
∗ ,Z)

is injective, which shows the result. �
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Corollary 2.7. Let k be a field of characteristic p > 2 that is either

finite or algebraically closed, and let (X,H) be a polarized K3 surface over k.

Let v be a Mukai vector on X satisfying condition (C). Let W be the ring of

Witt vectors of k.

Assume that the triple (X, v,H) lifts to a projective K3 surface X over W .

Let η be the generic point of SpecW .

Then there exists an isometry

θv,η : v⊥ ∩N(Xη)→ NS(MH(Xη, v))

such that the following diagram commutes

v⊥ ∩N(Xη)
θv,η //

��

NS(MH(Xη, v))

��
v⊥ ∩N(X)

θv // NS(MH(X, v)),

where the vertical maps are the specialization maps.

Proof. By the proof of (vi) in Theorem 2.4, we know that there exists an

isometry

θv,η : (v⊥ ∩N(Xη))⊗Q→ NS(MH(Xη, v))⊗Q

making the analog of the diagram above commute. We need to show that θv,η
sends v⊥ ∩N(Xη) to NS(MH(Xη, v)).

By [EJ11] — which is stated over Zp but whose proof extends verbatim

to our setting over W — the equality H1(MH(v),OMH(v)) = 0 proved in

Proposition 2.6 implies that the cokernel of the specialization map

NS(MH(Xη, v))→ NS(MH(X, v))

is torsion-free, which shows the result. �

Corollary 2.8. Let k be an algebraically closed field of characteristic p,

and let X be a K3 surface over k. Let H be a polarization on X , and let v be

a Mukai vector on X that satisfies condition (C) of Definition 2.3. If p > 0,

we can find nonnegative integers λ and t such that 0 < λ ≤ v2 and

|disc(NS(X))| = ptλ|disc(NS(MH(v)))|.

If p = 0, then

|disc(NS(X))| ≤ v2|disc(NS(MH(v)))|.

Proof. We treat the case where p > 0. By Theorem 2.4, (vi) and (vii), we

have an injective isometry

θv : v⊥ ∩N(X)→ NS(MH(v)),
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where v⊥ is the orthogonal of v in N(X) = Z ⊕ NS(X) ⊕ Zω. The cokernel

of the map above is a p-primary torsion group. By [LMS14, Lemma 2.1.1], we

have

|disc(v⊥ ∩N(X))| = pr|disc(NS(MH(v)))|

for some nonnegative integer r. Furthermore, we have a natural injection of

lattices with torsion cokernel

Zv ⊕ (v⊥ ∩N(X)) ↪→ N(X).

Since the discriminant of Zv ⊕ v⊥ is v2disc(v⊥ ∩ N(X)), this implies by the

same argument that

|disc(N(X))| ≤ v2|disc(v⊥ ∩N(X))|.

Finally, since as a lattice, N(X) ' NS(X) ⊕ U , where U is the hyperbolic

plane, we get the result. �

2.2. Low-degree line bundles on moduli spaces of stable sheaves on K3

surfaces. If n is an integer, let Λ2n denote the lattice

Λ2n = 〈2n〉 ⊕ U,

where U is the hyperbolic plane.

Proposition 2.9. Let d be a positive integer, and let Λ be a rank 2 pos-

itive definite sublattice of Λ2d. There exists a positive integer N and nonzero

integers a, b such that if m is any positive integer satisfying

(i) m = 1[N ];

(ii) m is prime to a and b, and both a and b are quadratic residues modulo m;

then there exists a primitive embedding of Λ into Λ2md.

Proof. We use a result of Nikulin that describes primitive embeddings of

even lattices. We describe here its content in our case.

Let Λ be any even positive-definite lattice of rank 2. Fix a positive inte-

ger n. Let AΛ = Λ∗/Λ be the discriminant group of Λ. It is endowed with a

natural quadratic form qΛ with values in Q/2Z. Similarly, let A2n = Z/2nZ
be the discriminant group of the even lattice Λ2n, and let q2n be the natural

quadratic form on A2n. Then q2n(1) = 1
2n ∈ Q/2Z.

It is proved in [Nik79, Prop. 1.15.1] that primitive embeddings of Λ into

Λ2n are in one-to-one correspondence with the tuples (V,W, γ, t), where V ⊂
AΛ and W ⊂ A2n are subgroups, γ : V →W is an isomorphism respecting the

restrictions of qΛ and q2n to V and W respectively and t is a positive integer

such that the quadratic form

(qΛ ⊕ (−q2n))|Γ⊥γ /Γγ
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is isomorphic to the quadratic form on Z/2tZ that sends 1 to 1
2t , where

Γγ = {(a, b) ∈ V ⊕W |γ(a) = b}.

Note that Γγ is a cyclic group as it can be identified to W ⊂ Z/2nZ.

In the setting of the proposition, the primitive embedding of Λ into Λ2d

corresponds to a tuple (V,W, γ, t). Let m be a positive integer such that

m = 1[4dt] and m = 1[|AΛ|]. Assume also that m is prime to (2n)!. Note that

multiplication by m is the identity in AΛ. We will make further assumptions

on m later on.

The map

AΛ ⊕A2d
Id⊕mId // AΛ ⊕A2md

is injective and respects the quadratic forms qΛ ⊕ (−q2d) on the left and qΛ ⊕
(−q2md) on the right. Indeed, since m = 1[4d], we have

q2md(m) =
m2

2md
=
m

2d
=

1

2d
∈ Q/2Z.

Let W ′ be the image of W in A2nd, and let

γ′ : V →W ′

be the isometry induced by γ.

By assumption, the group Γ⊥γ /Γγ is isomorphic to Z/2tZ. We can also

find an element (x0, y0) of Γ⊥γ ⊂ AΛ ⊕A2d that maps to a generator of Γ⊥γ /Γγ
and such that

qλ(x0)− y2
0

2d
=

1

2t
∈ Q/2Z.

We see y0 as an integer between 1 and 2d. Then we can consider (x0, y0)

as an element of AΛ ⊕A2md.

Let (α, β) be a generator of Γγ , where α ∈ AΛ and β ∈ A2d is considered as

an integer. Then (α,mβ) is a generator of Γγ′ . Let bλ, b2d, b2md be the bilinear

forms with values in Q/Z associated with qΛ, q2d and q2md respectively. We

have

bΛ(x0, α)− b2d(y0, β) = bΛ(x0, α)− y0β

2d
= 0 ∈ Q/Z

since (x0, y0) ∈ Γ⊥γ . This implies that

bΛ(x0, α)− b2md(y0,mβ) = bΛ(x0, α)− my0β

2md
= 0 ∈ Q/Z,

which shows that (x0, y0) belongs to Γ⊥γ′ in AΛ ⊕A2md.

By construction and since m is prime to y0, the order of (x0, y0), seen

as an element of Γ⊥γ′ , in the group Γ⊥γ′/(Γ
⊥
γ′ ∩ Im(AΛ ⊕ A2d)), is exactly m.

Furthermore, m(x0, y0) is the image of the element (mx0, y0) = (x0, y0) ∈
AΛ ⊕A2d, which maps to a generator of Γ⊥γ /Γγ by assumption.
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Since Γγ and Γγ′ are canonically isomorphic, the discussion above shows

that the group Γ⊥γ′/Γγ′ is cyclic of order 2tm and has a generator v such that

q(v) = qλ(x0)− y2
0

2md
=

1

2t
+
y2

0

2d
− y2

0

2md
=

1

2t
+
y2

0(m− 1)

2md
∈ Q/2Z,

where q is the natural quadratic form on Γ⊥γ′/Γγ′ .

To show the result — after adding conditions on m according to the state-

ment of the proposition — we need to find a generator v′ of Γ⊥γ′/Γγ′ such that

q(v′) = 1
2mt ∈ Q/2Z. Writing v′ = λv, we need to find an integer λ such that

(i) λ is prime to 2mt,

(ii) λ2( 1
2t +

y20(m−1)
2md )− 1

2mt ∈ 2Z.
The second condition can be rephrased as the congruence

λ2(md+ ty2
0(m− 1))− d = 0[4mdt].

From now on, we only consider integers λ such that λ = 1[4dt]. Since by

assumption m = 1[4dt], this implies that the condition above is always sat-

isfied modulo 4dt. As a consequence, we only have to consider the condition

modulo m, which becomes

λ2ty2
0 + d = 0[m].

Note that, as above, y0 is prime to m. Choosing m such that both −d and t

are both quadratic residues modulo m, this shows that we can find a suitable

λ, which concludes the proof. �

Theorem 2.10. Let k be a field, and let d be a positive integer. Then

there exist a positive integer r, a positive integer N and nonzero integers a, b

such that if (X,H) is a polarized K3 surface of degree 2md over k, where m

is any positive integer satisfying

(i) m = 1[N ];

(ii) m is prime to a and b, and both a and b are quadratic residues modulo m;

then there exists a Mukai vector v on X satisfying condition (C) such that

(i) c1(v) is proportional to c1(H);

(ii) the moduli space MH(v) has dimension 4;

(iii) there exists a line bundle L on MH(v) satisfying c1(L)4 =r and q(L)>0.

If n is any integer not divisible by 2 or 3, we can assume that q(L) is an

integer prime to n and that there exists an ample line bundle A onMH(v) such

that q(A) is an integer prime to n. Furthermore, if k is algebraically closed or

finite, the same result holds even when n is divisible by 3.

Finally, assume that k has characteristic p > 2, and let W be the ring of

Witt vectors of an algebraic closure k of k. If the pair (Xk, H) lifts to W , then

we can assume that the triple (MH(v)k, L,A) lifts to W .
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Proof. In the lattice Λ2d, consider a positive-definite rank-2 sublattice Λ

containing elements v and w with v2 = 2 and v.w = 1. Let l be an element of

Λ such that l.v = 0, and let r = (4)!
(2!)22

(l2)2 = 3(l2)2. Note that we can indeed

choose l so that l2 is prime to n if n is odd.

By Proposition 2.9, we can find integers N, a and b as above such that if

m is any positive integer satisfying the conditions of the theorem, then Λ2md

contains Λ as a primitive sublattice.

Let X be any K3 surface over k with an ample line bundle H of self-

intersection 2md, with m as above. Then the lattice N(X) of Mukai vectors

on X contains the sublattice Z ⊕ ZH ⊕ Zω ' Λ2md. As a consequence, there

exists an injection

Λ ↪→ Λ2md ↪→ N(X).

Seeing v ∈ Λ as an element of N(X), write v = rk(v) + c1(v) + λω. By

assumption there exists w ∈ Λ ⊂ Z ⊕ ZH ⊕ Zω such that v.w = 1. In

particular, the vector v ∈ N(X) is primitive. Furthermore, we have

gcd(rk(v), c1(v).H, λ) = 1.

In particular, since 2 divides c1(v).H, rk(v) and λ cannot both vanish.

After composing the embedding of Λ into Λ2md by a suitable automorphism of

Λ2md, we can assume that rk(v) > 0. Since v2 > 0, this shows that v satisfies

condition (C). As a consequence of Theorem 2.4(i), the moduli space MH(v)

has dimension v2 + 2 = 4.

We first assume that k is algebraically closed or finite. Let n be an odd

integer. Then the vector l ∈ Λ ⊂ N(X) defined above lies in v⊥ ∩ N(X) by

assumption. By Theorem 2.4(vi), we have an injection of lattices

v⊥ ∩N(X) ↪→ NS(MH(v)).

By (iii) and (iv) of the same theorem, the image of l in NS(MH(v)) is the class

of a line bundle L on MH(v) such that

c1(L)4 = 3(l2)2 = r.

The integer q(L) is prime to n.

Let A0 be an ample divisor on MH(v). We can assume that q(A0) is an

integer after raising A0 to a sufficiently large p-th power. If λ is large enough

and n divides λ, then A = A⊗λ0 ⊗ L is ample and q(A) is congruent to q(L)

modulo n, which implies that q(A) is prime to n.

If k is an arbitrary field, the construction above provides a line bundle L

on MH(v)k with Galois-invariant first Chern class. This implies that L itself

is Galois-invariant.

Consider the exact sequence

Pic(MH(v))→ Pic(MH(v)k)
Gal(k/k) → Br(k)→ Br(MH(v)).
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Since MH(v) is deformation-equivalent to X [2], c4(MH(v)) is a zero-cycle of

degree 324 = 22 × 34; see [EGL01, Rem. 5.5]. Such a zero-cycle induces a

map Br(X) → Br(k) such that the composition Br(k) → Br(X) → Br(k) is

multiplication by 324. In particular, the cokernel of the map Pic(MH(v)) →
Pic(MH(v)k)

Gal(k/k) is killed by multiplication by 324. This shows that L⊗324

satisfies the conclusion of the theorem.

Finally, assume that k has characteristic p > 2, and assume that the pair

(Xk, H) lifts to a projective K3 surface (X , H) over W . Then since c1(v) is a

multiple of c1(H), v lifts to X as well. The result then follows directly from

Corollary 2.7. �

Remark 2.11. Even over an arbitrary field, it is possible to ensure that

q(L) and q(A) are prime to 3 by considering a 6-dimensional moduli space of

sheaves: these have top Chern class of degree 3200 = 27 × 52.

3. Finiteness results for holomorphic symplectic varieties

Theorem 2.10 was devoted to constructing irreducible holomorphic sym-

plectic varieties of dimension 4 — or, in positive characteristic, reduction of

such varieties — together with a line bundle L of low positive self-intersection.

By a theorem of Huybrechts [Huy99, Cor. 3.10], either L or its dual is big. We

now investigate finiteness results for families of such varieties.

In characteristic zero, we prove that given positive integers n and r, the

family of irreducible holomorphic varieties X such that there exists a line

bundle L on X with c1(L)2n = r is birationally bounded. Unfortunately, our

proof does not make explicit any of the natural constants involved. It relies on

the global period map and the local Torelli theorem.

Over finite fields of characteristic p > 3, we show a finiteness result for

Néron-Severi groups of such varieties. The proof relies on the Kuga-Satake

construction as a replacement for the period map.

3.1. The case of K3 surfaces. Before dealing with higher-dimensional va-

rieties below, we treat the much easier case of K3 surfaces. The following

result is certainly well known to experts. The proof is very close to arguments

in [SD74], but since this paper assumes that the characteristic is odd, we make

sure that the statement is correct in arbitrary characteristic.

Proposition 3.1. Let r be a positive integer. Then there exist positive

integers N and d such that if X is a K3 surface over an algebraically closed

field k with a line bundle L such that L2 = r, then there exists a line bundle

L′ on X with h0(X,L′) ≤ N such that the complete linear system |L′| induces

a birational map from X to a subvariety of P|L′| of degree at most d.
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Proof. In this proof, we will identify L and c1(L). We can assume that

L is big and nef. Indeed, by [Ogu79, 1.10 and p.371] (see also [Huy14, Ch. 8,

par. 2]), there exists a line bundle L′ with the same self-intersection as L that

is big and nef. In particular, we have h1(L) = 0 by [Huy14, Prop. 3.1].

By the Riemann-Roch theorem, we have

h0(L) + h0(L∨) =
r

2
+ 2 ≥ 3.

Since L is nef, this shows that L is effective and h0(L) ≥ 3.

We now rephrase the argument of [SD74, Prop. 8.1]. Let F be the fixed

part of the linear system |L|. Assume that F 6= 0. Let M = L⊗O(−F ). Then

M2 ≥ 0. By [SD74, 2.6 and 2.7.4], which does not make use of any hypothesis

on the characteristic, either M2 > 0 or we can find an irreducible curve E on

X with arithmetic genus 1 such that M = O(mE) with m = h0(L) − 1 ≥ 2.

Furthermore, we can then find an irreducible rational curve Γ in F such that

F.E = 1.

Let L′ = M if M2 > 0 and L′ = mE + Γ in the other case. Write

L = L′ + ∆. Assume that ∆ 6= 0. Then by the Hodge index theorem (see

[Huy14, Ch. 1, Rem. 2.4(iii)]), L′.∆ > 0. Now h0(L′) = h0(L) = L2

2 + 2 and

h1(L′) = 0 by [SD74, Lemma 2.2]. This shows that L′.L′ = L.L. In other

words, we have

2L′.∆ + ∆2 = 0.

However, since L′.∆ > 0, this implies that

L.∆ = L′.∆ + ∆2 < 0,

which contradicts the fact that L is nef. This shows that ∆ = 0, i.e., L = L′.

Now up to replacing L by 2L, it is readily seen that we can assume that L

has no fixed part. By [SD74, Prop. 2.6] (see also [Huy14, Ch. 2, Rem. 3.7(ii)]),

we can write L = O(C), where C is an irreducible curve on X. Furthermore,

we have h1(L) = 0 by [Huy14, Prop. 3.1] again.

The discussion above readily implies that the image of the rational map φL
from X to P

r
2

+1 induced by the complete linear system |L| has dimension 2.

Furthermore, φL is either birational or has generic degree 2 onto its image.

Indeed, the degree of the image of φL in projective space is at least r
2 .

It is stated in the literature that φ2L is birational onto its image. If the

characteristic is odd, this follows from the existence of a smooth, irreducible

global section of L as in [SD74]. In general, this is stated as “well known” in

[ASD73, after Lemma 5.17]. We briefly give an argument that shows that φ4L

is birational onto its image.

The line bundle L is big and nef, and the fixed part of L vanishes. By

[Huy14, Chap. 2, Cor. 3.14(i)], L is base point free. We assume that φL is of

generic degree 2 onto its image. Let C be an irreducible curve belonging to |L|.
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Let Cred be the reduced corresponding curve. Then as cycles on X, we have

C = aCred where a = 1 or a = 2; in characteristic 2, it might happen that a is

necessarily 2. By the adjunction formula, dualizing sheaf of C over k is L|C . It

has degree r. The arithmetic genus of C is 1 + r
2 . In the following, we assume

that a = 2, as the generically reduced case is easier.

The exact sequence

0→ (i− 1)L→ iL→ (iL)|C → 0

together with the vanishing of H1(X, (i − 1)L) shows that for any i > 0, we

have a surjection H0(X, iL)→ H0(C, iL).

The integral curve Cred is generically smooth. Let p be a closed point

of Cred lying in the smooth locus. Then there exists a line bundle D(p) of

degree 2 on C that restricts to O(p) on Cred. By Riemann-Roch, for any p

and q as above, the morphism

H0(C, 3L|C)→ 3L|C/(3L|C −D(p)−D(q))

is surjective. Indeed, the degree of 3L|C−D(p)−D(q) is 3r−4 > r = deg(ωC/k);

note that r is even, so that r > 1. As a consequence, we obtain the surjectivity

of the morphism

H0(Cred, 3L)→ 3L|Cred
/3L|Cred

(−p− q).

This shows that the restriction of 3L to C induces an immersion on the smooth

locus of Cred, hence an application of degree 1 onto its image. This shows that

φ4L is birational onto its image.

Since h1(X, 4L) = 0 and 4L is base point free, this shows that φ4L induces

a birational map from X to a subvariety of degree r of PN with N = r
2 +1. �

Since K3 surfaces are minimal, this shows that the surfaces X as in the

proposition above form a bounded family. In particular, we get the following

result.

Corollary 3.2. Let k be a finite field with algebraic closure k, and let r

be a positive integer. Then there exist finitely many k-isomorphism classes of

K3 surfaces X over k such that there exists a line bundle L on Xk with L2 = r.

If the characteristic of k is odd, then there exist only finitely many iso-

morphism classes over k of such K3 surfaces.

Proof. After replacing k by a finite extension K of fixed degree, we can

assume that any line bundle on Xk is defined over X. Let N, d and L′ be as

in Proposition 3.1. Then L′ is defined over K, and so is the image of X under

the rational map defined by the complete linear system associated to L′.

The theory of Chow forms shows that there are only finitely many subvari-

eties of PNK of degree at most d. As a consequence, the number of K-birational
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classes of surfaces X as in the statement is finite. Since K3 surfaces are mini-

mal, this shows the first result. The second statement is a consequence of the

first and of [LMS14, Prop. 2.4.1]. �

3.2. A birational version of Matsusaka’s big theorem for holomorphic sym-

plectic varieties. The goal of this section is to prove the following result. It

should be seen as a — weak — birational version of Matsusaka’s big theorem.

It will not be used in the proof of the Tate conjecture.

Theorem 3.3. Let n and r be two positive integers. Then we can find

constants a,N and d such that if X is a complex irreducible holomorphic sym-

plectic variety of dimension 2n and L is a line bundle on X with c1(L)2n = r

and q(L) > 0, where q is the Beauville-Bogomolov form, then there exists a

line bundle L′ with c1(L′)2n = r such that h0(X, aL′) ≤ N and such that the

complete linear system |aL′| induces a birational map from X to a subvariety

of P|aL′| of degree at most d.

In particular, there exists a scheme S of finite type over C, and a projective

morphism X → S such that if (X,L) is any pair as above, there exists a complex

point s of S such that Xs is birational to X .

Remark 3.4. Our proof relies crucially on the existence of the global period

map. Recent work of Amerik-Verbitsky [AV14] on the cone conjecture for

holomorphic symplectic varieties should make it possible to give a geometric

proof of Theorem 3.3 along the lines of Proposition 3.1.

We start with two lemmas.

Lemma 3.5. There exist finitely many pairs (X1, L1), . . . , (Xs, Ls) where

the Xi are complex irreducible holomorphic symplectic manifolds of dimension

2n and Li is an ample line bundle on Xi with c1(Li)
2n = r such that if (X,L)

is a pair as in Theorem 3.3, then either (X,L) or (X,L⊗−1) is deformation-

equivalent to (Xi, Li) for some i.

In the statement above and in the proof below, we are considering defor-

mations of complex varieties over bases that are complex manifolds that are not

necessarily projective. Finiteness of deformation types for holomorphic sym-

plectic varieties with given topological invariants has been proved in [Huy03b].

Proof. Let (X,L) be a pair as in Theorem 3.3. By [Huy99, Th. 3.11] and

[Huy03a], X is projective. By the local Torelli theorem for X [Bea83, Th. 5],

we can find a small deformation (X ′, L′) of the pair (X,L) such that Pic(X ′)

has rank 1. By the aforementioned theorem of Huybrechts, X ′ is projective,

which implies, up to replacing L by its dual, that L′ is ample.

Consider pairs (X ′, L′) where X ′ is smooth projective of dimension 2n,

KX′ = 0 and L′ is an ample line bundle with c1(L)2n = r. By Kollár-

Matsusaka’s refinement of Matsusaka’s big theorem [KM83], the family of
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such pairs (X,L) is bounded. As a consequence, we can find finitely many

pairs (X1, L1), . . . , (Xs, Ls) where the Xi are complex irreducible holomorphic

symplectic manifolds of dimension 2n and Li is an ample line bundle on Xi

with c1(Li)
2n = r such that any pair (X ′, L′) as in the paragraph above is

deformation-equivalent to one of the (Xi, Li). �

Lemma 3.6. Let S be a noetherian scheme over C, and let X → S be

a projective morphism. Let L be a line bundle over X such that for every

complex point s of S, the restriction Ls of L to Xs is big. Then there exist

integers a,N and d such that for any complex point s of S, h0(Xs, aLs) ≤ N

and the complete linear system |aLs| induces a birational map from Xs to a

subvariety of P|aLs| of degree at most d.

Proof. We use noetherian induction on S. It suffices to show that if S is

nonempty, there exists a nonempty open subset U of S and constants a,N, d

such that the conclusion of the lemma holds on U .

Since Ls is big for any complex point s of S, Baire’s theorem shows that

if η is any generic point of S, then Lη is big. This readily shows the result. �

Proof of Theorem 3.3. By Lemma 3.5, we can restrict our attention to the

pairs (X,L) that are deformation-equivalent to a given (X0, L0) where L0 is

ample. Note that this implies that L is big.

We denote by l ∈ Λ the element c1(L) and by Λ the lattice H2(X0,Z)

endowed with its Beauville-Bogomolov form. Note that l2 > 0. Let Λprim be

the orthogonal complement of l in Λ, and let D be the period domain associated

to Λprim, that is,

D = {x ∈ P(Λprim ⊗ C)|x2 = 0, x.x > 0}.

Let ‹O(Λprim) be the group‹O(Λprim) := {g|Λprim
|g ∈ O(Λ), g(l) = l}.

We will freely identify ‹O(Λprim) with a subgroup of O(Λ) when needed.

Let M be the monodromy group of (X0, L0); see, for instance, [Mar11,

Def. 1.1(5)]. Then M can be identified with a subgroup of ‹O(Λprim). By a

result of Sullivan [Sul77], M has finite index in ‹O(Λprim); the result of Sullivan

deals with the unpolarized case (see the discussion in [Ver13, Th. 3.5]), but

the polarized case follows from [Mar11, Prop. 1.9].

Let Γ be a subgroup of finite index in both M and a torsion-free arithmetic

subgroup of ‹O(Λprim). By the theorem of Baily-Borel [BB66], the quotient Γ\D
is a normal quasi-projective variety.

To any triple (X,L, φ) where X is an irreducible holomorphic symplectic

variety, L is a line bundle on L such that the pair (X,L) is deformation-

equivalent to (X0, L0) and φ is an isomorphism φ : H2(X,Z)→ Λ sending c1(L)
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to l, we can associate its period point P(X,L, φ). The element φ(H2,0(X)) ⊂
Λ⊗ C belongs to D, and we define P(X,L, φ) to be the image of φ(H2,0(X))

in Γ\D. If γ is any element of Γ, then P(X,L, φ) = P(X,L, γ ◦ φ).

Let S be a smooth quasi-projective complex scheme, and let X → S

be a smooth projective morphism whose fibers are irreducible holomorphic

symplectic varieties. Let L be a line bundle on X such that the pairs (Xs, Ls)
are deformation-equivalent to (X0, L0) for any complex point s of S. Assume

for simplicity that S is connected and fix s and such a deformation. Then,

using parallel transport, we can identify Λ and H2(Xs,Z). By definition of

the monodromy group M , the monodromy representation ρ : π1(S, s)→ O(Λ)

factors through M . If ρ factors through the finite index subgroup Γ ⊂M , then

the construction above induces a period map

P : S → Γ\D.

By a result of Borel [Bor72, Th. 3.10], P is algebraic.

Let (X,L, φ) and (X ′, L′, ψ) be two triple as above. Assume that φ

(resp. ψ) is induced by parallel transport along a deformation of (X,L) (resp.

(X ′, L′)) to (X0, L0). Then the global Torelli theorem of Verbitsky [Ver13]

shows that if P(X,L, φ) = P(X ′, L′, ψ), then X and X ′ are birational. In case

L and L′ are ample, this is the statement of [Mar11, Th. 1.10], and the general

case can be deduced either by using a small deformation to the ample case or

by using [Mar11, Prop. 1.9] to reduce to the general global Torelli theorem.

We claim that there exists S,X and L as above such that the monodromy

representation of each connected component of S factors through Γ and such

that the image of P is Γ\D. By noetherian induction, we can find S,X and L,

as well as a Zariski open subset U of Γ\D, such that the image of the period

map P : S → Γ\D contains U and such that U is maximal with respect to this

property. We assume by contradiction that U is strictly contained in Γ\D.

Let Z be an irreducible component of the complement of U in Γ\D, and

let z be a very general complex point of Z. Using the surjectivity of the

period map [Huy99, Th. 8.1], we can find a triple (Xz, Lz, φ), where (Xz, Lz)

is deformation-equivalent to (X0, L0) and φ : H2(Xz, Lz) → Λ is induced by

parallel transport, such that P(Xz, Lz) = z.

By the aforementioned theorem of Huybrechts, Xz is projective. Let Hz

be an ample line bundle on Xz. By the local Torelli theorem [Bea83, Th. 5],

the pair (Xz, Lz) can be deformed over a small open subset of Z(C) — for the

usual topology. Since z is a very general point of Z, the whole Néron-Severi

group of Xz deforms above this open subset, hence so does Hz. This shows

that this deformation can be algebraized.

As a consequence, resolving singularities of the base and passing to a fi-

nite cover, we can find a smooth projective morphism XT → T , where T is a
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smooth complex quasi-projective variety whose fibers are irreducible holomor-

phic symplectic varieties, and L a line bundle on XT where the pairs (Xt, Lt)
are deformation-equivalent to (X0, L0) for any complex point t of T , such that

the modnodromy representation on T factors through Γ and the image of the

period map

P : T → Γ\D

is a Zariski-open subset V of Z. Since Z is an irreducible component of

(Γ\D) \ U , we can shrink V so that V is open in (Γ\D) \ U .

Now taking the disjoint union of the families X → S and XT → T , we get

a family as above such that the image of the period map

P : S t T → Γ\D

contains U ∪ V , which is open in Γ\D and strictly contains U . This is the

desired contradiction.

Now let S,X and L be as above such that the image of the period map

is Γ\D. By Lemma 3.6, we can find integers k,N and d such that for any

complex point s of S, h0(Xs, kLs) ≤ N and the complete linear system |kLs|
induces a birational map from Xs to a subvariety of P|kLs| of degree at most d.

Let (X,L) be any pair as in the theorem that is deformation-equivalent

to (X0, L0). Let φ : H2(X,Z) → Λ be induced by parallel transport. By con-

struction of S, we can find a complex point s of S such that P(X,L, φ) = P(s).

As noted above, this implies by the global Torelli theorem that Xs is birational

to X. Since X and Xs have trivial canonical bundle, such a birational map

is an isomorphism outside a closed subscheme of codimension at least 2. In

particular, it induces an isomorphism between the Picard groups of X and Xs.

Let L′ be the image of Ls in the Picard group of Xs. Then (X,L′) satisfies

the condition of the theorem. �

Remark 3.7. While using it simplifies slightly the phrasing of the proof,

the global Torelli theorem of Verbitsky — as well as the surjectivity of the

period map — could be replaced by the local Torelli theorem.

3.3. A variant of the Kuga-Satake construction and birational bounded-

ness in positive characteristic. The goal of this section is to extend part of

the boundedness result above to positive characteristic. To facilitate the ex-

position, we will prove a weaker result. The proof is very similar to that of

Theorem 3.3, but we replaced the complex period map with the Kuga-Satake

construction.

It is very likely that the construction by Pera in [MP16] of integral models

of Shimura varieties of orthogonal type provides a period map that is sufficient

to translate with only minor changes the proof of Theorem 3.3 to a positive
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characteristic setting — which would also take care of the case of characteris-

tic 3. However, since one of the goals of this paper is to investigate the extent

to which one can refrain from using too much of the theory of integral mod-

els of Shimura varieties, we decided to provide a slightly more elementary —

though certainly related — proof. To simplify certain arguments, we will work

in characteristic at least 5.

The Kuga-Satake construction associates an abelian variety to a polarized

Hodge structure of weight 2 with h2,0 = 1. As shown by Deligne in [Del72],

when applied to the primitive second cohomology group of a K3 surface, it is

given by an absolute Hodge cycle.

At least over the field of complex numbers, the Hodge-theoretic definition

of the Kuga-Satake construction makes it possible to apply it to any irreducible

holomorphic symplectic variety endowed with a line bundle such that q(L) > 0,

q being the Beauville-Bogomolov form; in that case, the orthogonal of c1(L) in

H2(X,Z) is indeed a polarized Hodge structure of weight 2 with h2,0 = 1. Most

of the usual results on the arithmetic of the Kuga-Satake construction extend

to this setting without any change in the proofs, as we explain in this section.

The following is the situation we will be considering.

Setup. Let k be a perfect field of characteristic p > 3, and let W be the

ring of Witt vectors of k. Let K be the fraction field of W . Fix an embedding

of K into the field C of complex numbers. Let T be a smooth, irreducible

W -scheme, and let π :M→ T be a smooth projective morphism. Let L and

H be two line bundles on M. We assume that H is relatively ample. We fix

a k-point 0 of T .

We assume that MC → TC is a family of irreducible holomorphic sym-

plectic manifolds and that for any complex point t of T , the restriction Lt of

L to Mt satisfies q(Lt) > 0, where q is the Beauville-Bogomolov form. We

assume that there is no torsion in the second and third singular cohomology

groups of the fibers of MC → TC.

Let Λ be a lattice isomorphic to H2(Mt,Z) for any complex point t of T .

Let l and h be elements of Λ that are mapped to c1(Lt) and c1(Ht) under such

an isomorphism. Let Λl, Λh and Λl,h be the orthogonal complement of l, h

and Zl+ Zh in Λ respectively. We assume that the reduction modulo p of the

restriction of q to Λl is nondegenerate.

For the sake of later reference, we will turn the preceding situation into a

definition.

Definition 3.8. In the setup above, we say that the triple (M0, H0, L0)

is admissible and that the lattice Λl is a primitive lattice for (M0, L0). The

quadratic form of the lattice is called the Beauville-Bogomolov quadratic form.

It induces a quadratic form on the Néron-Severi group of M0.
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We say that (M0, H0, L0) is strongly admissible if in the setup above, we

can ensure the following condition: let ηk be a geometric generic point of the

special fiber Tk of T above W . Then Mηk is ordinary in degree 2 — that is,

its second crystalline cohomology group has no torsion, and its Newton and

Hodge polygons coincide — and NS(Mηk) ⊗ Q is generated over Q by c1(L)

and c1(H).

Remark 3.9. By [DI87], the Hodge to de Rham spectral sequence of M0

satisfies Ep,q1 = Ep,q∞ if p+q = 1 or p+q = 2. Furthermore, as in Proposition 2.6,

the hypotheses ensure that h2,0(M0) = h0,2(M0) = 1.

The following result shows that moduli spaces of sheaves on K3 surfaces

tend to be strongly admissible. Let k be a field with algebraic closure k, and

let X be a K3 surface over k. Recall from [Ogu79, Ex. 1.10] that X is said

to be superspecial if the Hodge and conjugate filtration of X on H2
dR(Xk/k)

coincide. Superspecial K3 surfaces define isolated points in the moduli space

of polarized K3 surfaces and correspond to the singular locus of this moduli

space; see [Ogu79, Prop. 2.2].

Proposition 3.10. In the situation of Theorem 2.10, assume that k

has characteristic at least 5 and that (X,H) is a polarized, nonsuperspecial

K3 surface over k. Then we can find a polarization A on MH(v) such that

(MH(v), A, L) is strongly admissible.

Proof. Dividing H by an integer if necessary, we can assume that H is

primitive. Let “X → “T be the formal universal deformation of the pair (X,H).

Since X is not superspecial, “T is formally smooth of dimension 19, i.e., “T is

isomorphic to Spf W [[t1, . . . , t19]]. In Theorem 2.10, c1(v) is proportional to

H, so v lifts to “X. Consider the relative moduli space MH(“X, v) over “T . It

is smooth and projective. As a consequence, we can find an ample line bundle

A on MH(v) that lifts to MH(“X, v). Since MH(“X, v) → “T is algebraizable,

and by Proposition 2.6, the only thing that remains to be proved to show that

(MH(v), A, L) is strongly admissible is that L lifts to MH(“X, v).

Let P be the W -point of “T that corresponds to t1 = · · · = t19 = 0. By

Theorem 2.10, we know that L lifts to MH(“X, v)P . We prove by induction

on n that L lifts to the n-th infinitesimal neighborhood of P in “T . Note

that such liftings are unique since H1(MH(v),OMH(v)) = 0. Furthermore,

Proposition 2.6 also shows that the formation of R2π∗OMH(X̂,v)
is compatible

with base change.

We just showed that the result is true for n = 0. Assume that L lifts to

the n-th infinitesimal neighborhood Pn of P in “T . The obstruction to lifting

L to the n+ 1st infinitesimal neighborhood of P belongs to

H2
(
MH(“X, v)Pn ,OMH(X̂,v)P

)
.
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By Proposition 2.6 again, this group is a free W -module of rank 1. However,

Theorem 2.4(vi) shows that some power of L actually lifts to “T , so this ob-

struction is torsion. This shows that the obstruction vanishes and concludes

the proof. �

We now investigate the Kuga-Satake construction in the setup above. If

` is a prime number different from p, we write R2π∗Z`, prim for the orthogonal

of c1(L) in R2π∗Z`. Let n ≥ 3 be an integer prime to p. Up to replacing k by

a finite extension whose degree only depends on n and the pair (Λ, l), we can

assume that the family M → T is endowed with a spin structure of level n

with respect to R2π∗Z`, prim. We refer to [Cha13, 3.2] and to [And96], [Riz10],

[Mau14] for definitions and details.

Let Sn,l,h, Sn,h and Sn,l be the orthogonal Shimura varieties with spin

level n associated to Λl,h, Λh and Λl respectively; see [Cha13, 3.6]. Then these

three varieties are all defined over Q and we have closed embeddings of Sn,l,h
into Sn,h and Sn,l. These are both defined over Q.

The period map P, as defined for instance in the previous section, gives

a morphism

P : TC → Sn,l,h.
By the argument of [Cha13, Prop. 16], which is essentially contained in [And96,

App. 1], the composition

TC
P // Sn,l,h // Sn,h

is defined over K. Since the second map is a closed immersion defined over Q,

this shows that

P : TC → Sn,l,h
is defined over K. Let

Pl : TC → Sn,l
be the composition with Sn,l,h → Sn,l.

The Kuga-Satake construction induces a morphism

(3.1) KS : Sn,l → Ag,d′,n,Q,

where Ag,d′,n,Q is the moduli space over Q of abelian varieties of dimension g

with a polarization of degree d′2 and level n structure, for some integers g and

d′, where d′ is prime to p; see [And96]. Let

κK : TK → Ag,d′,n,K

be the composition of KS with P.

Let ψ : AK → TK be the abelian scheme induced by κK , and let C =

C(Λl) be the Clifford algebra associated to Λl. Then there is a canonical
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injection of C into the ring of endomorphisms of the scheme AK and, as shown

in [Del72, 6.5], we have an isomorphism of `-adic sheaves of algebras on TK

(3.2) C(R2π∗Z`(1)prim) ' EndC(R1ψ∗Z`);

here we are using the Kuga-Satake construction with respect to the full Clifford

algebra.

By [Riz10, 6.1.2], the data above is sufficient to show that the Kuga-Satake

morphism κK can be extended in a unique way to a morphism over W

κ : T → Ag,d′,n

where Ag,d′,n denotes the moduli space over W .

Definition 3.11. The morphism

κ : T → Ag,d′,n

is the Kuga-Satake mapping.

We now recall some properties of the Kuga-Satake construction. Assume

that k is algebraically closed. Recall that 0 is a k-point of T , and let “T be the

formal neighborhood of 0 in T . As in [Mau14, §6], and by the argument of

[Cha13, Prop. 13], we have the following canonical primitive strict embedding

of filtered Frobenius crystals:

(3.3) R2π∗Ω
•
M̂/T̂

(1)prim ↪→ EndC(R1ψ∗Ω
•
Â/T̂ ).

It is compatible with (3.2) and the Beauville-Bogomolov form via the compar-

ison theorems. In particular, we get a primitive isometry

(3.4) H2
cris(M0/W ) ↪→ End(H1

cris(A0/W )).

Lemma 3.12. Let Λl be a lattice, and let A0 be an abelian variety of dimen-

sion g over k, together with a level n structure and a polarization of degree d′.

Then there are only finitely many subspaces V ⊂ End(H1
cris(A0/W )) that arise

as the image of some H2
cris(M0/W ) for some admissible triple (M0, H0, L0)

with primitive lattice Λl.

Proof. By the main construction and result of [Kis10], and since l2 is not

divisible by p, the Shimura variety Sn,l admits a smooth canonical integral

model Sn,l over W , and the Kuga-Satake morphism KS : Sn,l → Ag,d′,n,Q
extends to a finite, unramified morphism

(3.5) KS : Sn,l → Ag,d′,n.

Let P be the canonical locally OSn,l-module endowed with a connection ∇
and a Hodge filtration of weight 0 on Sn,l over K. Denote again by ψ : A → Sn,l
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the abelian scheme induced by KS. Then by definition of the Kuga-Satake

construction, we have a morphism over Sn,l,

(3.6) P ↪→ End(R1ψ∗Ω
•
A/Sn,l),

analogous to (3.3). It is compatible with the Hodge filtrations and the con-

nexions on both sides.

Now let A0 be as in the lemma. It suffices to show that there are a finite

number of subspaces V ′ ⊂ End(H1
cris(A0/W )⊗K) that arise as stated. Such a

V ′ is obtained by first picking a preimage of the point of Ag,d′,n corresponding

to A0, then lifting this preimage to a W -point of Sn,l. If AK is the corre-

sponding abelian variety over K, then the relation (3.6) induces a subspace of

End(H1
dR(AK/K)). Via the comparison theorem between the de Rham coho-

mology of AK and the crystalline cohomology of A0, this induces the subspace

V ′ of End(H1
cris(A0/W )⊗K).

Since (3.6) is compatible with the Gauss-Manin connection, it is readily

seen that the construction above only depends on the choice of a preimage of

the point corresponding to A0 in Sn,l under KS. Since KS is finite, this shows

the result. �

Remark 3.13. The proof of the lemma above is the only appearance in

the text of canonical integral models of Shimura varieties. While they make

the proof more natural, we do not really make full use of their properties, and

they could be replaced by any model that allows us to extend the Kuga-Satake

morphism over W .

Remark 3.14. The idea of the proof could be extended to show that there

are only finitely many birational equivalence classes of varieties M0 as above

that have a given Kuga-Satake variety. We will prove a weaker result instead.

The following lemma appears in the proof of [Cha13, Prop. 22]. For K3

surfaces, it is stated and proved in [MP15, Prop. 4.17 (4)]; see also [Ben15,

Prop. 2.3].

Lemma 3.15. Assume that k is algebraically closed. Let (M0, H0, L0)

be a strongly admissible triple over k, and let A0 be the abelian variety as-

sociated to M0 under the Kuga-Satake mapping. Let i : H2
cris(M0/W ) ↪→

End(H1
cris(A0/W )) be the morphism (3.4).

Then we have an isomorphism of lattices

{α ∈ NS(M0)|q(α, c1(L0)) = 0} ' End(A0) ∩ Im(i).

Proof. The arguments of the proof of [Cha13, Prop. 22] — which are

essentially the same as those of [MP15, Prop. 4.17 (4)] — apply without any

change. For the sake of completeness, we briefly recall the argument. We work

in the setup above.



516 FRANÇOIS CHARLES

Let α be a class in the Néron-Severi group of M0 that is orthogonal to

c1(L0). Since h0,2(M0) = 1, the assumption on the geometric generic fiber

of T ensures that α lifts to characteristic zero. In particular, it lifts to a

Hodge class. Via the Kuga-Satake correspondence and the Hodge conjecture

for endomorphisms of abelian varieties, it induces an endomorphism of a lift

of A0, hence of A0 itself. This endomorphism belongs to the image of i by

construction.

Now let β be a class in End(A0) ∩ Im(i). The argument of [Cha13, end

of Prop. 22], which is a rephrasing of [Ogu79, Th. 2.9], shows that there exists

a lift of M0 parametrized by T such that β lifts to an endomorphism of the

induced Kuga-Satake abelian variety. In particular, it lifts to a Hodge class,

which by the Hodge conjecture for divisors allows us to conclude as before that

β was induced by a line bundle on M0, orthogonal to c1(L). �

The two results above directly imply the following finiteness result, which

is a weak version of Theorem 3.3.

Proposition 3.16. Let k be a finite field of characteristic at least 5.

Let r and n be two positive integers. Then there exist finitely many lattices

Λ1, . . . ,Λr such that if (M0, H0, L0) is a strongly admissible triple over k with

dim(X) = 2n and c1(L0)2n = r, then

NS(M0,k) ' Λi

for some integer i, where the left-hand side is endowed with the Beauville-

Bogomolov form.

Proof. By assumption (M0, H0, L0) lifts to C. We can apply Lemma 3.5

to show that there exist finitely many lattices that can appear as a primitive

lattice for (M0, L0) and that q(L0) is uniformly bounded. As a consequence,

we can restrict our attention to those strongly admissible triple with primitive

lattice Λl for some fixed Λl.

Fix some integer n ≤ 3. After replacing k by a finite extension whose

degree only depends on n and Λl so that spin structures are defined on suitable

deformations of (M0, H0, L0) as before, we can construct the Kuga-Satake

abelian variety A0 together with the canonical morphism

i : H2
cris(M0/W ) ↪→ End(H1

cris(A0/W )).

If d′ is as in Definition 3.11, then A0 is a polarized abelian variety over k of

degree d′, together with a level n structure. Since k is finite, there are only

finitely many such A0. Furthermore, given A0, Lemma 3.12 shows that there

are only finitely many subspaces V ⊂ End(H1
cris(A0/W )) that arise as the

image of a morphism i as above.
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By Lemma 3.15, this discussion shows that the lattice

c1(L0)⊥ := {α ∈ NS(M0,k)|q(α, c1(L0)) = 0}

can take only finitely many values as the strongly admissible triple varies. The

inequality

|disc(NS(M0,k))| ≤ q(L0)|disc(c1(L0)⊥)|
shows that the discriminant of NS(M0,k) is bounded. Since the set of iso-

morphism classes of lattices with bounded rank and discriminant is finite by

[Cas78, Ch. 9, Th. 1.1], this shows the result. �

3.4. Finiteness results for K3 surfaces over finite fields. The following

weak finiteness result for K3 surfaces over finite fields will be the key to the

proof of the Tate conjecture for K3 surfaces.

Proposition 3.17. Let k be a finite field of characteristic at least 5. Let

k be an algebraic closure of k, and let W be the ring of Witt vectors of k.

Let d and t0 be positive integers. Then there exist a positive integer N

and nonzero integers a, b such that there exist only finitely many polarized

nonsuperspecial K3 surfaces (X,H) of degree 2md over k, where m is a positive

integer satisfying

(i) m = 1[N ];

(ii) m is prime to a and b, and both a and b are quadratic residues modulo m;

(iii) the p-adic valuation of the discriminant of NS(Xk) is at most t0.

Proof. We fix integers r, n,N, a, b as in Theorem 2.10. As a consequence,

if (X,H) is a polarized K3 surface over k as above, we can find a Mukai vector

v on X satisfying condition (C) of Definition 2.3 such that the moduli space

MH(v) has dimension 4 and there exists a line bundle L onMH(v) satisfying

c1(L)4 = r and q(L) > 0. Proposition 3.10, there exists an ample line bundle

A on MH(v) such that (MH(v), A, L) is strongly admissible.

As a consequence of Proposition 3.16, we can find finitely many lattices

Λ1, . . . ,Λs, depending only on d,N, a, b, such that if X,H and v are as above,

then

NS(MH(v)k) ' Λi.

Let p be the characteristic of k. By Corollary 2.8, we can write

|disc(NS(Xk))| = ptλ|disc(Λi)|

for some λ ≤ v2 = n − 2 and some nonnegative integer t. Since the p-adic

valuation of disc(NS(Xk)) is bounded by assumption, this shows that the dis-

criminant of NS(Xk) is bounded independently of X. Since the set of lattices

with bounded rank and discriminant is finite by [Cas78, Ch. 9, Th. 1.1], Corol-

lary 3.2 shows that the set of isomorphism classes of K3 surfaces X as in the

statement is finite. �
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4. The Tate conjecture for K3 surfaces over finite fields

Let us first recall the Tate conjecture for varieties over finite fields.

Conjecture 4.1 (Tate conjecture [Tat95]). Let X be a smooth projective

variety over a finite field k with algebraic closure k. Let G be the absolute Galois

group of k, and let ` be a prime number invertible in k. Then the cycle class

map

NS(X)⊗ Z` → H2(Xk,Z`(1))G

is an isomorphism.

As shown in [Tat95, Th. 5.2] and [Mil75, Th. 6.1] (see the addendum

at http://www.jmilne.org/math/articles/add/1975a.pdf for the case of char-

acteristic 2) the validity of this conjecture is independent of `, and is equivalent

to the finiteness of the Brauer group of X.

This section is devoted to the application of moduli spaces of twisted

sheaves to the Tate conjecture for K3 surfaces. This circle of ideas originates

in [LMS14], though it is in the line of [ASD73]. As explained [LMS14], the

failure of the Tate conjecture for a given K3 surface X over a finite field —

equivalently, the failure for the `-primary part of the Brauer group of X to

be finite — can be rephrased as the existence of an infinite family of so-called

twisted Fourier-Mukai partners of X over k. Finiteness results as we proved

above allow us to control such families, thus proving Theorems 1.3 and 1.4.

We will need a variation on the techniques of [LMS14] to adapt their results

to a slightly more flexible setting and make it work in arbitrary characteristic.

After recalling basic facts on moduli spaces of twisted sheaves, we give a very

short proof of Theorem 1.4 and prove Theorem 1.3.

4.1. Moduli spaces on twisted sheaves on K3 surfaces. We briefly recall

the theory of moduli spaces of twisted sheaves on a K3 surface. We refer to

the discussion in [LMS14, 3.1–3.4] for details.

Let X be a K3 surface over a field k. Let ` be a prime number invertible

in k. An `-adic B-field on X is an element

B = α/`n ∈ H2(X,Q`(1)),

where α ∈ H2(X,Z`(1)) is primitive. The Brauer class associated to α is the

image of α under the composition

H2(X,Z`(1))→ H2(X,µ`n)→ Br(X)[`n].

It is denoted by [αn].

Let B = α/`n be an `-adic B-field on X, and write r = `n. Following

[Yos06, (3.4)], we define

T−α/r : ‹H(Xk,Z`)→ ‹H(Xk,Q`), x 7→ x ∪ e−α/r.

http://www.jmilne.org/math/articles/add/1975a.pdf
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Let Nα/r(X) be the preimage of N(X) by T−α/r. This is the group de-

noted by CHα/r(X,Z) in [LMS14]. By [LMS14, Lemma 3.3.3], we have

(4.1) Nα/r(X) = {(ar,D + aα, cω)|(a, c ∈ Z, D ∈ NS(X)} ⊂ ‹H((Xk,Z`).

Elements of Nα/r(X) are called twisted Mukai vectors on X.

Let X → X be a µr-gerbe representing the class [αn]. Given an X -twisted

sheaf on X, we can define its Mukai vector as an element of Nα/r(X). Let v be

a primitive element in Nα/r(X). Assume that rk(v) = r and v2 = 0. Then by

[LMS14, Prop. 3.4.1], the stack of simple X -twisted sheaves on X with Mukai

vector v is a µr-gerbe over a K3 surfaceM(v), denoted by MX (v) in [LMS14].

The discriminant of Nα/r(Xk) is easy to compute.

Lemma 4.2. With the notations above, we have

|disc(Nα/r(Xk))| = r2|disc(NS(Xk))|.

Proof. Let D1, . . . , Ds be a basis of the free Z-module NS(Xk). Then by

(4.1), a basis of Nα/r(Xk)) is given by

(r, α, 0), (0, 0, 1), (0, D1, 0), . . . , (0, Ds, 0).

The result follows immediately. �

We now relate the Néron-Severi group of a 2-dimensional moduli space of

twisted sheaves on a K3 surface with that of the Néron-Severi group of the K3

surface. The following discussion parallels Theorem 2.4. We do not repeat the

arguments allowing us to deduce results over arbitrary fields from the results

over the field of complex numbers.

Let ` be a prime number that is invertible in k. Theorem 3.19(ii) in [Yos06]

shows that there exists a canonical bijective isometry

v⊥,`/Z`v → H2(M(v)k,Z`(1))

induced by an algebraic correspondence, where v⊥,` is the orthogonal of v in

the `-adic Mukai lattice of X. Note that v is isotropic by assumption, so

Z`v ⊂ v⊥,`.
The exact same argument as in the proof of 2.4, (vi) and (vii) shows that,

if k is algebraically closed or finite, there exists an injective isometry

(4.2) θv : v⊥/Zv → NS(M(v)),

where v⊥ is the orthogonal of v in the lattice of twisted Mukai vectors on

Xk, N
α/r(X). Furthermore, the cokernel of θv is a p-primary torsion group,

where p is the characteristic of k.

Proposition 4.3. With the notations above, let nv be the positive integer

defined by

v.Nα/r(Xk) = nvZ.
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If k has positive characteristic p, then there exists a nonnegative integer t such

that

(nv)
2ptdisc(NS(M(v))k) = r2disc(NS(Xk)).

If k has characteristic zero, then

(nv)
2disc(NS(M(v))k) = r2disc(NS(Xk)).

Proof. By (4.2), and as in Corollary 2.8, we can find a nonnegative integer t

such that

|disc(v⊥/Zv)| = pt|disc(NS(M(v)k))|.
We now relate the discriminant of v⊥/Zv to that of Nα/r(Xk). Let e1, . . . , et be

elements of v⊥ that form a basis of v⊥/Zv. Then v, e1, . . . , et is a basis of v⊥.

Let w be an element of Nα/r(Xk) such that v.w = nv. Then w, v, e1, . . . , et is

a basis of Nα/r(Xk). Computing the discriminant of Nα/r(Xk) in this basis,

we get

|disc(Nα/r(Xk))| = (nv)
2|disc(v⊥/Zv)|.

Using Lemma 4.2, we finally get

r2|disc(NS(Xk)| = (nv)
2pt|disc(NS(M(v)k))|. �

4.2. Finiteness statements and the Tate conjecture for K3 surfaces. The

goal of this section is to prove Theorem 1.3. In [LMS14], the authors prove

the following statement.

Theorem 4.4. Let k be a finite field of characteristic at least 5. Assume

that there are only finitely many K3 surfaces defined over each finite extension

of k. Then the Tate conjecture holds for all K3 surfaces over k.

We will not be able to use the theorem above directly, and we will rely

on a simplified version of the argument of [LMS14], which holds in arbitrary

characteristic.

From now on, let X be a K3 surface over a finite field k of characteristic p.

Up to replacing k by a finite extension, we can and will assume that NS(Xk) =

NS(X).

If ` is a prime number different from p, we denote by T (X,Z`) the or-

thogonal complement of NS(X)⊗Z` in H2(X,Z`(1)). Note that by the Hodge

index theorem for surfaces, the intersection form on NS(X) is nondegenerate.

The following is a slightly modified version of Lemma 3.5.1 of [LMS14]

that gets rid of the hypothesis on the characteristic of k and does not make

use of [ASD73].

Lemma 4.5. Assume that Br(X) is infinite. There exist prime numbers

p1, . . . , pr such that if ` is big enough and pi is a square modulo ` for all i, then

there exists α ∈ T (X,Z`) such that α2 = 1.
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Proof. Let k be an algebraic closure of k, and let G be the absolute Galois

group of k. Since k is finite, the group H2(G,H0(Xk,Z`(1))) vanishes. Using

the Hochschild-Serre spectral sequence, this shows that the natural map

H2(X,Z`(1))→ H2(Xk,Z`(1))G

is an isomorphism. By Proposition 2.1.2 of [LMS14] applied to the primitive

inclusion of H2(Xk,Z`(1))G into the unimodular lattice H2(Xk,Z`(1)), we can

assume by choosing ` large enough that the discriminant of H2(X,Z`(1)) has

`-adic valuation zero. As a consequence, again if ` is big enough, the dis-

criminant of T (X,Z`) has `-adic valuation zero. Furthermore, there are only

finitely many prime numbers pi such that the discriminant of T (X,Z`) can

have nonzero pi-adic valuation as `-varies again by [LMS14, Prop. 2.1.2].

By Hensel’s lemma, we can prove the result after tensoring T (X,Z`)
with F`. Again by [Tat95] and [Mil75], the hypothesis on Br(X) implies that

the rank of T (X,Z`) is nonzero for any ` 6= char(k).

If the rank of T (X,Z`) is at least 2, then T (X,Z`) ⊗ F` represents 1 by

general results. If the rank is 1, the result holds since its discriminant is a

square by assumption. �

For the sake of reference, we also state the following easy lemma.

Lemma 4.6. Let x1, . . . , xr be finitely many integers. Then there exist

infinitely many prime numbers ` such that all the xi are quadratic residues

modulo `.

Proof. We can assume that x1 = −1, x2 = 2 and the remaining xi are

distinct odd prime numbers. Then choosing ` to be congruent to 1 modulo 8

ensures that x1 and x2 are quadratic residues modulo `. Using the quadratic

reciprocity law and Dirichlet’s theorem on primes in arithmetic progressions

allows us to conclude. �

Now let D be a line bundle of degree 2d on X, and let t0 be the p-adic

valuation of disc(NS(X)). Let N, a and b be as in Proposition 3.17. Let ` be a

big enough prime number, different from p, such that 2, a, b,−2d are quadratic

residues modulo `.

Assume that X does not satisfy the Tate conjecture, so that Br(X) is

infinite. In addition to the above, choose a prime ` that satisfies the condition

of Lemma 4.5. This is possible by Lemma 4.6. As in [LMS14, Prop. 3.5.4], the

assumptions on ` and Lemma 4.5 show that we can find γ ∈ T (X,Z`) such

that γ2 = −2d.

If n is a positive integer, let

vn = (`n, γ +D, 0) ∈ Nγ/`n(X).

As in [LMS14, Prop. 3.5.4], we have v2
n = 0. As in Section 4.1, the twisted

moduli space Xn :=MHn(vn) is a K3 surface over k.
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By Proposition 4.3,

λ2
np

tdisc(NS((Xn)k)) = `2ndisc(NS(Xk)).

Here λn is an integer such that

vn.N
γ/`n = λnZ.

Since vn.(0, D, 0) = −2d, we have λ2
n ≤ 4d2, so that the `-adic valuation of

disc(NS((Xn)k)) goes to infinity as n goes to infinity.

We now use the surfaces Xn to prove Theorems 1.3 and 1.4, i.e., that X

satisfies the Tate conjecture if the characteristic is at least 5 or if the Picard

number is at least 2. The second one does not rely on Theorem 2.10 and only

uses Proposition 3.1. It should be seen as a modern rephrasing of [ASD73].

Proof of Theorem 1.4. Assume thatX has Picard number at least 2. Then

we can assume that d is negative and find a divisor B on X, orthogonal to D,

such that B2 = 2e > 0.

Let bn = (0, B, 0) ∈ Nγ/`n(X). Then bn.vn = 0 and b2n = 2e. By equa-

tion (4.1), this shows that there exists a divisor Bn on X with B2
n = 2e > 0.

Corollary 3.2 implies that the surfaces Xn,k fall into finitely many isomor-

phism classes, which is in contradiction with the fact that the `-adic valuation

of disc(NS((Xn)k)) goes to infinity as n goes to infinity. �

Proof of Theorem 1.3. Assume that the characteristic of k is at least 5.

We can assume that X is not superspecial. Indeed, these admit supersingular

deformations that are not superspecial by [Ogu79, Rem. 2.7], so the Tate con-

jecture for these follow from the result for nonsuperspecial surfaces and [Art74,

Th. 1.1].

We assume that D is ample. By equation (4.1), we have

hn := (`2n, `nγ,−2d) ∈ Nγ/`n(Xk).

Furthermore, we have

hn.vn = `nγ2 + 2d`n = 0

and

h2
n = `2nγ2 + 4d`2n = 2d`2n.

By equation (4.2), this shows that there exists a line bundle Hn on Xn with

c1(B)2 = 2d`2n. It is easy to show that Hn is ample. Indeed, if X → S is

a deformation of (X,H) over a discrete valuation ring with generic fiber of

Picard rank 1, thenM(v) lifts to a projective scheme over S with generic fiber

of Picard rank 1, generated by a lift of Hn.

Using again the equality

λ2
np

tdisc(NS((Xn)k)) = r2disc(NS(Xk)),
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with λ2
n ≤ 4d2, we get that the p-adic valuation of disc(NS((Xn)k)) is bounded

independently of n.

We now restrict to the positive integers n such that `2n = 1[N ]. By

Proposition 3.17, there exist only finitely many K3 surfaces over k satisfying

the condition above, which is in contradiction with the fact that the `-adic

valuation of disc(NS((Xn)k)) goes to infinity as n goes to infinity and proves

that X satisfies the Tate conjecture. �
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complexe de de Rham, Invent. Math. 89 (1987), 247–270. MR 0894379.

Zbl 0632.14017. http://dx.doi.org/10.1007/BF01389078.
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526 FRANÇOIS CHARLES

[O’G97] K. G. O’Grady, The weight-two Hodge structure of moduli spaces

of sheaves on a K3 surface, J. Algebraic Geom. 6 (1997), 599–644.

MR 1487228. Zbl 0916.14018.

[O’G05] K. G. O’Grady, Involutions and linear systems on holomorphic symplec-

tic manifolds, Geom. Funct. Anal. 15 (2005), 1223–1274. MR 2221247.

Zbl 1093.53081. http://dx.doi.org/10.1007/s00039-005-0538-3.

[Ogu79] A. Ogus, Supersingular K3 crystals, in Journées de Géométrie Algébrique
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