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Extremal results for random discrete
structures

By Mathias Schacht

Abstract

We study thresholds for extremal properties of random discrete struc-

tures. We determine the threshold for Szemerédi’s theorem on arithmetic

progressions in random subsets of the integers and its multidimensional

extensions, and we determine the threshold for Turán-type problems for

random graphs and hypergraphs. In particular, we verify a conjecture of

Kohayakawa,  Luczak, and Rödl for Turán-type problems in random graphs.

Similar results were obtained independently by Conlon and Gowers.

1. Introduction

Extremal problems are widely studied in discrete mathematics. Given a

finite set Γ and a family F of subsets of Γ an extremal result asserts that any

sufficiently large (or dense) subset G ⊆ Γ must contain an element from F .

Often all elements of F have the same size, i.e., F ⊆
(Γ
k

)
for some integer k,

where
(Γ
k

)
denotes the family of all k-element subsets of Γ.

For example, if Γn = [n] = {1, . . . , n} and Fn consists of all k-element sub-

sets of [n] which form an arithmetic progression, then Szemerédi’s celebrated

theorem [40] asserts that every subset Y ⊆ [n] with |Y | = Ω(n) contains an

arithmetic progression of length k.

A well-known result from graph theory, which fits this framework, is

Turán’s theorem [41] and its generalization due to Erdős and Stone [11] (see

also [10]). Here Γn = E(Kn) is the edge set of the complete graph with n

vertices, and Fn consists of the edge sets of copies of some fixed graph F

(say with k edges) in Kn. Here the Erdős-Stone theorem implies that every

subgraph H ⊆ Kn which contains at leastÇ
1 +

1

χ(F )− 1
− o(1)

åÇ
n

2

å
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edges must contain a copy of F , where χ(F ) denotes the chromatic number

of F (see, e.g., [2], [3], [5], [7]). The connection with the chromatic number

was explicitly stated in the work of Erdős and Simonovits [10].

We are interested in “random versions” of such extremal results. We

study the binomial model of random substructures. For a finite set Γn and a

probability p ∈ [0, 1], we denote by Γn,p the random subset where every x ∈ Γn
is included in Γn,p independently with probability p. In other words, Γn,p is

the finite probability space on the power set of Γn in which every elementary

event {G} for G ⊆ Γn occurs with probability

P (G = Γn,p) = p|G|(1− p)|Γn|−|G|.

For example, if Γn is the edge set of the complete graph on n vertices, then Γn,p
denotes the usual binomial random graph G(n, p) (see, e.g., [4], [25]).

The deterministic extremal results mentioned earlier can be viewed as

statements which hold with probability 1 for p = 1, and it is natural to in-

vestigate the asymptotic of the smallest probabilities for which those results

hold. In the context of Szemerédi’s theorem for every k ≥ 3 and ε > 0, we

are interested in the smallest sequence p = (pn)n∈N of probabilities such that

the binomial random subset [n]pn has asymptotically almost surely (a.a.s., i.e.,

with probability tending to 1 as n→∞) the following property: Every subset

Y ⊆ [n]pn with |Y | ≥ ε|[n]pn | contains an arithmetic progression of length k.

Similarly, in the context of the Erdős-Stone theorem, for every graph F and

ε > 0 we are interested in the asymptotic of the smallest sequence p = (pn)n∈N
such that the random graph G(n, pn) a.a.s. satisfies: every H ⊆ G(n, p) with

e(H) ≥
Ç

1− 1

χ(F )− 1
+ ε

å
e(G(n, pn))

contains a copy of F .

We determine the asymptotic growth of the smallest such sequence p of

probabilities for those and some related extremal properties including multidi-

mensional versions of Szemerédi’s theorem (Theorem 2.3), solutions of density

regular systems of equations (Theorem 2.4), an extremal version for solutions

of the Schur equation (Theorem 2.5), and extremal problems for hypergraphs

(Theorem 2.7). In other words, we determine the threshold for those properties.

Similar results were obtained by Conlon and Gowers [6].

The new results will follow from a general result (see Theorem 3.3), which

allows us to transfer certain extremal results from the classical deterministic

setting to the probabilistic setting. In Section 4 we deduce the results stated

in the next section from Theorem 3.3.

2. New results

2.1. Szemerédi ’s theorem and its multidimensional extension. We study

extremal properties of random subsets of the first n positive integers. One of
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the best known extremal-type results for the integers is Szemerédi’s theorem.

In 1975 Szemerédi solved a longstanding conjecture of Erdős and Turán [13]

by showing that every subset of the integers of upper positive density contains

an arithmetic progression of any finite length. For a set X ⊆ [n], we write

(1) X →ε [k]

for the statement that every subset Y ⊆ X with |Y | ≥ ε|X| contains an

arithmetic progression of length k. With this notation at hand, we can state

(the finite version of) Szemerédi’s theorem as follows: for every integer k ≥ 3

and ε > 0, there exists n0 such that for every n ≥ n0, we have [n]→ε [k].

For fixed k ≥ 3 and ε > 0 we are interested in the asymptotic behavior of

the threshold sequence of probabilities p = (pn) such that there exist constants

0 < c < C for which

(2) lim
n→∞

P ([n]qn →ε [k]) =

0, if qn ≤ cpn for all n ∈ N,
1, if qn ≥ Cpn for all n ∈ N.

Remark 2.1. We note that the family {X ⊆ [n] : X →ε [k]} is not closed

under supersets. In other words, the property is “X →ε [k]” is not a monotone

property. However, similar arguments as presented in [25, Prop. 8.6] show that

the property “X →ε [k]” and the other properties considered in this section

have a threshold as displayed in (2).

It is easy to see that if the expected number of arithmetic progressions

of length k in [n]qn is asymptotically smaller than the expected number of

elements in [n]qn , then there exists a subset of size (1 − o(1))|[n]qn |, which

contains no arithmetic progressions of length k at all. In other word, if

(3) qknn
2 � qnn ⇐⇒ qn � n−1/(k−1),

then P ([n]qn →ε [k]) → 0 for every ε < 1. Consequently, n−1/(k−1) is a lower

bound on the threshold for Szemerédi’s theorem for arithmetic progressions

of length k. For k = 3, Kohayakawa,  Luczak, and Rödl [28] established a

matching upper bound. Our first result generalizes this for arbitrary k ≥ 3.

Theorem 2.2. For every integer k ≥ 3 and every ε ∈ (0, 1), there exist

constants C > c > 0 such that for any sequence of probabilities q = (qn)n∈N,

we have

lim
n→∞

P ([n]qn →ε [k]) =

0, if qn ≤ cn−1/(k−1) for all n ∈ N,
1, if qn ≥ Cn−1/(k−1) for all n ∈ N.
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We remark that the 0-statement in Theorem 2.2 (and, similarly, the

0-statements of the other results of this section) follows from standard prob-

abilistic arguments. The 1-statement of Theorem 2.2 follows from our main

result, Theorem 3.3.

A multidimensional version of Szeméredi’s density theorem was obtained

by Furstenberg and Katznelson [18]. Those authors showed that for every

integer `, every finite subset F ⊂ N` and every ε > 0, there exists some

integer n0 such that for n ≥ n0, every Y ⊆ [n]` with |Y | ≥ εn` contains a

homothetic copy of F ; i.e., there exist some y0 ∈ N` and λ > 0 such that

y0 + λF = {y0 + λf : f ∈ F} ⊆ Y . Clearly, the case ` = 1 and F = [k]

resembles Szemerédi’s theorem. Generalizing the notation introduced in (1),

for sets X, F ⊆ N` and for ε > 0, we write X →ε F if every subset Y ⊆ X

with |Y | ≥ ε|X| contains a homothetic copy of F .

A simple heuristic, similar to the one in the context of Szeméredi’s the-

orem, suggests that n−1/(|F |−1) is a lower bound on the threshold for the

Furstenberg-Katznelson theorem for a configuration F ⊆ N` in the binomial

random subset [n]`p where elements of [n]` are included with probability p.

Our next result shows that, in fact, this gives the correct asymptotic for the

threshold.

Theorem 2.3. For every integer ` ≥ 1, every finite set F ⊆ N` with

|F | ≥ 3, and every constant ε ∈ (0, 1), there exist C > c > 0 such that for any

sequence of probabilities q = (qn)n∈N, we have

lim
n→∞

P
Ä
[n]`qn →ε F

ä
=

0, if qn ≤ cn−1/(|F |−1) for all n ∈ N,
1, if qn ≥ Cn−1/(|F |−1) for all n ∈ N.

2.2. Density regular matrices. Another extension of Szemerédi’s theorem

leads to the notion of density regular matrices. Arithmetic progressions of

length k can be viewed as the set of distinct-valued solutions of the following

homogeneous system of k − 2 linear equations:

x1 − 2x2 + x3 = 0,

x2 − 2x3 + x4 = 0,
...

...
...

...

xk−2 − 2xk−1 + xk = 0.

More generally, for an ` × k integer matrix A, let S(A) ⊆ Rk be the set

of solutions of the homogeneous system of linear equations given by A. Let

S0(A) ⊆ S(A) be those solutions (x1, . . . , xk) with all xi being distinct. We

say A is irredundant if S0(A) 6= ∅. Moreover, an irredundant ` × k integer

matrix A is density regular if for every ε > 0, there exists an n0 such that

for all n ≥ n0 and every Y ⊆ [n] with |Y | ≥ εn, we have Y k ∩ S0(A) 6= ∅.



EXTREMAL RESULTS FOR RANDOM DISCRETE STRUCTURES 337

Szemerédi’s theorem, for example, implies that the following (k−2)×k matrix,

(4)

à
1 −2 1 0 0 · · · 0 0 0

0 1 −2 1 0 · · · 0 0 0
. . .

0 0 0 0 0 · · · 1 −2 1

í
,

is density regular for any k ≥ 3.

Density regular matrices are a subclass of so-called partition regular ma-

trices. This class was studied and characterized by Rado [34] and, for example,

it follows from this characterization that k ≥ `+ 2 (see [22] for details). In [15]

Frankl, Graham, and Rödl characterized irredundant, density regular matrices,

being those partition regular matrices A for which (1, 1, . . . , 1) ∈ S(A).

Similar as in the context of Theorem 2.2 and Theorem 2.3 the following

notation will be useful. For an irredundant, density regular, ` × k integer

matrix A, ε > 0, and X ⊆ [n], we write X →ε A if for every Y ⊆ X with

|Y | ≥ ε|X|, we have Y k ∩ S0(A) 6= ∅. The following parameter in connection

with Ramsey properties of random subsets of the integers with respect to irre-

dundant, partition regular matrices was introduced by Rödl and Ruciński [36].

Let A be an ` × k integer matrix and let the columns be indexed by [k].

For a partition W ∪· W ⊆ [k] of the columns of A, we denote by AW the matrix

obtained from A by restricting to the columns indexed by W . Let rank(AW )

be the rank of AW , where rank(AW ) = 0 for W = ∅. We set

(5) m(A) = max
W∪·W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
.

It was shown in [36, Prop. 2.2(ii)] that for irredundant, partition regular ma-

trices A, the denominator of (5) is always at least 1. For example, for A given

in (4) we have m(A) = k − 1.

It follows from the 0-statement of Theorem 1.1 in [36] that for any irredun-

dant, density regular, `× k integer matrix A of rank ` and every 1/2 > ε > 0

there exist a c > 0 such that for every sequence of probabilities q = (qn) with

qn ≤ cn−1/m(A), we have

(6) lim
n→∞

P ([n]qn →ε A) = 0.

We shall deduce a corresponding upper bound from Theorem 3.3 and obtain

the following result.

Theorem 2.4. For every irredundant, density regular, ` × k integer

matrix A with rank ` and every ε ∈ (0, 1/2), there exist constants C > c > 0

such that for any sequence of probabilities q = (qn)n∈N, we have

lim
n→∞

P ([n]qn →ε A) =

0, if qn ≤ cn−1/m(A) for all n ∈ N,
1, if qn ≥ Cn−1/m(A) for all n ∈ N.
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Note that we restrict ε < 1/2 here. With this restriction the 0-statement

will follow from a result of Rödl and Ruciński from [36]. The proof of the

1-statement presented in Section 4.2 actually works for all ε ∈ (0, 1).

2.3. An extremal problem related to Schur ’s equation. In 1916 Schur [38]

showed that every partition of the positive integers into finitely many classes

contains a class which contains a solution of the single, homogeneous equation

x1 +x2−x3 = 0. Clearly, the corresponding matrix
Ä
1 1 −1

ä
is not density

regular, since the set of all odd integers contains no solution. However, it is

not hard to show that every subset Y ⊆ [n] with |Y | ≥ (1/2 + o(1))n contains

such a solution. Similarly, as above for ε > 0 and X ⊆ [n], we write

X →1/2+ε

Ä
1 1 −1

ä
if every subset Y ⊆ X with |Y | ≥ (1/2 + ε)|X| contains a distinct-valued

solution, i.e.,

Y 3 ∩ S0

ÄÄ
1 1 −1

ää
6= ∅.

We are interested in the threshold for the extremal problem of Schur’s

equation, i.e., for the property X →1/2+ε

Ä
1 1 −1

ä
. In this context the sim-

ple heuristic based on the expected number of solutions of the Schur equation

in random subsets of the integers suggests that n−1/2 is the threshold for this

property. Moreover, for Schur’s theorem, in random subsets of the integers

the threshold turned out to be n−1/2 as shown in [21], [17]. We show that the

threshold of the extremal version of Schur’s equation is the same.

Theorem 2.5. For every ε ∈ (0, 1/2), there exist constants C > c > 0

such that for any sequence of probabilities q = (qn)n∈N, we have

lim
n→∞

P
Ä
[n]qn →1/2+ε

Ä
1 1 −1

ää
=

0, if qn ≤ cn−1/2 for all n ∈ N,
1, if qn ≥ Cn−1/2 for all n ∈ N.

2.4. Extremal problems for hypergraphs. The last result we present here

deals with extremal problems for hypergraphs. An `-uniform hypergraphH is a

pair (V,E), where the vertex set V is some finite set and the edge set E ⊆
(V
`

)
is a subfamily of the `-element subsets of V . As usual we call 2-uniform

hypergraphs simply graphs. For some hypergraph H, we denote by V (H) and

E(H) its vertex set and its edge set, and we denote by v(H) and e(H) the

cardinalities of those sets. For an integer n, we denote by K
(`)
n the complete

`-uniform hypergraph on n vertices, i.e., v(K
(`)
n ) = n and e(K

(`)
n ) =

(n
`

)
. An

`-uniform hypergraph H ′ is a sub-hypergraph of H, if V (H ′) ⊆ V (H) and

E(H ′) ⊆ E(H), and we write H ′ ⊆ H to denote that. For a subset U ⊆ V (H),

we denote by E(U) the edges of H contained in U , and we set e(U) = |E(U)|.
Moreover, we write H[U ] for the sub-hypergraph induced on U , i.e., H[U ] =

(U,E(U)).
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For two `-uniform hypergraphs F and H we say H contains a copy of F

if there exists an injective map ϕ : V (F ) → V (H) such that ϕ(e) ∈ E(H) for

every e ∈ E(F ). If H contains no copy of F , then we say H is F -free. We

denote by ex(H,F ) the maximum number of edges of an F -free sub-hypergraph

of H, i.e.,

ex(H,F ) = max{e(H ′) : H ′ ⊆ H and H ′ is F -free}.
Mantel [33], Erdős [8], and Turán [41] were the first to study this function

for graphs. In particular, Turán determined ex(Kn,Kk) for all integers n

and k. This line of research was continued by Erdős and Stone [11] and Erdős

and Simonovits [10], and those authors showed that for every graph F with

chromatic number χ(F ) ≥ 3, we have

(7) ex(Kn, F ) =

Ç
1− 1

χ(F )− 1)
+ o(1)

åÇ
n

2

å
,

where χ(F ) is minimum r such that there exists a partition V1∪· · · ·∪· Vr = V (F )

such that E(Vi) = ∅ for every i ∈ [r]. Moreover, it follows from the result of

Kövari, Sós, and Turán [31] (see also [11]) that

(8) ex(Kn, F ) = o(n2)

for graphs F with χ(F ) ≤ 2.

For an `-uniform hypergraph F , we define the Turán density

π(F ) = lim
n→∞

ex(K
(`)
n , F )(n
`

) .

For a graph F , the Turán density π(F ) is determined due to (7) and (8).

For hypergraphs, (8) was extended by Erdős [9] to `-partite, `-uniform hy-

pergraphs. Here an `-uniform hypergraph F is `-partite if its vertex set can

be partitioned into ` classes, such that every edge intersects every partition

class in precisely one vertex. Erdős showed that π(F ) = 0 for every `-partite,

`-uniform hypergraph F . For other `-uniform hypergraphs, only a few results

are known and, for example, determining π(K
(3)
4 ) is one of the best known

open problems in the area. However, one can show that π(F ) indeed exists for

every hypergraph F (see, e.g., [26]).

We study the random variable ex(G(`)(n, q), F ) for fixed `-uniform hy-

pergraphs F , where G(`)(n, q) denotes the binomial random `-uniform sub-

hypergraph of K
(`)
n with edges of K

(`)
n included independently with probabil-

ity q. It is easy to show that

ex(H,F ) ≥ π(F )e(H)

for all `-uniform hypergraphs H and F . (See, e.g., [25, Prop. 8.4] for a proof

for graphs.) We are interested in the threshold for the property that a.a.s.

(9) ex(G(`)(n, q), F ) ≤ (π(F ) + o(1))e(G(`)(n, q)).
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Results of that sort appeared in the work of Babai, Simonovits, and

Spencer [1] who showed that (9) holds random graphs when F is a clique and

q = 1/2. Moreover, it follows from an earlier result of Frankl and Rödl [16]

that the same holds for F = K3 as long as q � n−1/2. The systematic study

for graphs was initiated by Kohayakawa and his coauthors. In particular, Ko-

hayakawa,  Luczak, and Rödl formulated a conjecture for the threshold of Turán

properties for random graphs (see Conjecture 2.6 below).

For an `-uniform hypergraph F with e(F ) ≥ 1, we set

(10) m(F ) = max
F ′⊆F
e(F ′)≥1

d(F ′) with d(F ′) =


e(F ′)−1
v(F ′)−` , if v(F ′) > `

1/`, if v(F ′) = `.

It follows from the definition of m(F ) that if q = Ω(n−1/m(F )), then a.a.s. the

number of copies of every sub-hypergraph F ′ ⊆ F in the random hypergraph

G(`)(n, q) has at least the same order of magnitude, as the number of edges

of G(`)(n, q). Recall that a similar heuristic gave rise to the thresholds in the

theorem above.

Conjecture 2.6 ([29, Conj. 1(i)]). For every graph F with at least one edge

and every ε > 0, there exists C > 0 such that for every sequence of probabilities

q = (qn)n∈N with qn ≥ Cn−1/m(F ), we have

lim
n→∞

P (ex(G(n, qn), F ) ≤ (π(F ) + ε)e(G(n, qn))) = 1.

Conjecture 2.6 was verified for a few special cases. As already mentioned,

for F = K3, the conjecture follows from a result in [16]. For F being a clique

with 4, 5, or 6 vertices, the conjecture was verified by Kohayakawa,  Luczak,

and Rödl [29], Gerke, Schickinger, and Steger [20] and Gerke [19]. Moreover,

the conjecture is known to be true when F is a cycle due to the work of

Füredi [14] (for the cycle of length four) and Haxell, Kohayakawa, and  Luczak

[23], [24] (see also [27], [32]), and the conjecture is known to be true for trees.

The best current bounds on q for which (9) holds for F being a clique and for

arbitrary F were obtained by Szabó and Vu [39] and Kohayakawa, Rödl, and

Schacht [30].

We verify this conjecture for all graphs F and the natural analogue of

this conjecture for hypergraphs. (For `-partite, `-uniform hypergraphs, such a

conjecture was made in [37, Conj. 15].)

Theorem 2.7. For every `-uniform hypergraph F with at least one vertex

contained in at least two edges and every ε ∈ (0, 1−π(F )), there exist constants
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C > c > 0 such that for any sequence of probabilities q = (qn)n∈N, we have

lim
n→∞

P
Ä
ex
Ä
G(`)(n, qn), F

ä
≤ (π(F ) + ε)e

Ä
G(`)(n, qn)

ää
=

0, if qn ≤ cn−1/m(F ) for all n ∈ N,
1, if qn ≥ Cn−1/m(F ) for all n ∈ N.

In Section 4 we will deduce the 1-statements of Theorems 2.3, 2.4, 2.5,

and 2.7 from the main result, Theorem 3.3, which we present in the next

section. The proofs of the 0-statements will be more elementary and will be

also given in Section 4.

3. Main technical result

The main result will be phrased in the language of hypergraphs. We will

study sequences of hypergraphs H = (Hn = (Vn, En))n∈N. In the context of

Theorem 2.2 one may think of Vn = [n] and En being the arithmetic progres-

sions of length k. In the context of Theorems 2.3, 2.4, and 2.5 the corresponding

hypergraphs the reader should have in mind are defined in a very similar way.

For Theorem 2.7, one should think of Vn = E(K
(`)
n ) being the edge set of the

complete hypergraph K
(`)
n and edges of En correspond to copies of F in K

(`)
n .

In order to transfer an extremal result from the classical, deterministic

setting to the probabilistic setting we will require that a stronger quantitative

version of the extremal result holds (see Definition 3.1 below). Roughly speak-

ing, we will require that a sufficiently dense sub-structure not only contains

one copy of the special configuration (not only one arithmetic progression or

not only one copy of F ), but instead the number of those configurations should

be of the same order as the total number of those configurations in the given

underlying ground set.

Definition 3.1. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs

and α ≥ 0. We say H is α-dense if the following is true.

For every ε > 0, there exist ζ > 0 and n0 such that for every n ≥ n0 and

every U ⊆ V (Hn) with |U | ≥ (α+ ε)|V (Hn)|, we have

|E(Hn[U ])| ≥ ζ|E(Hn)|.

The second condition in Theorem 3.3 imposes a lower bound on the small-

est probability for which we can transfer the extremal result to the probabilistic

setting (see Definition 3.2). For a k-uniform hypergraph H = (V,E), i ∈ [k−1],

v ∈ V , and U ⊆ V , we denote by degi(v, U) the number of edges of H con-

taining v and having at least i vertices in U r {v}. More precisely,

(11) degi(v, U) = |{e ∈ E : |e ∩ (U r {v})| ≥ i and v ∈ e}| .
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For q ∈ (0, 1), we let µi(H, q) denote the expected value of the sum over all

such degrees squared with U = Vq being the binomial random subset of V

µi(H, q) = E

[∑
v∈V

deg2
i (v, Vq)

]
.

Definition 3.2. Let K ≥ 1, let H = (Hn)n∈N be a sequence of k-uniform

hypergraphs, and let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities. We

say H is (K,p)-bounded if the following is true.

For every i ∈ [k−1], there exists n0 such that for every n ≥ n0 and q ≥ pn,

we have

(12) µi(Hn, q) ≤ Kq2i |E(Hn)|2

|V (Hn)|
.

With those definitions at hand, we can state the main result.

Theorem 3.3. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform

hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities satisfying

pkn|En| → ∞ as n → ∞, and let α ≥ 0 and K ≥ 1. If H is α-dense and

(K,p)-bounded, then the following holds.

For every δ > 0 and (ωn)n∈N with ωn →∞ as n→∞, there exists C ≥ 1

such that for every 1/ωn > qn ≥ Cpn, the following holds a.a.s. for Vn,qn . For

every subset W ⊆ Vn,qn with |W | ≥ (α+ δ)|Vn,qn |, we have E(Hn[W ]) 6= ∅.

The proof of Theorem 3.3 is based on induction on k, and for the induction,

we will strengthen the statement (see Lemma 3.4 below).

For a k-uniform hypergraph H = (V,E) subsets W ⊆ U ⊆ V and i ∈
{0, 1, . . . , k}, we consider those edges of H[U ] which have at least i vertices in

W , and we denote this family by

EiU (W ) = {e ∈ E(H[U ]) : |e ∩W | ≥ i}.

Note that

(13) E0
U (W ) = E(H[U ]) and EkU (W ) = E(H[W ])

for every W ⊆ U .

Lemma 3.4. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform

hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities satisfying

pkn|En| → ∞ as n → ∞, and let α ≥ 0 and K ≥ 1. If H is α-dense and

(K,p)-bounded, then the following holds.

For every i ∈ [k], δ > 0, and (ωn)n∈N with ωn →∞ as n→∞, there exist

ξ > 0, b > 0, C ≥ 1, and n0 such that for all β, γ ∈ (0, 1] with βγ ≥ α + δ,

every n ≥ n0, and every q with 1/ωn ≥ q ≥ Cpn, the following holds.
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If U ⊆ Vn with |U | ≥ β|Vn|, then the binomial random subset Uq satisfies

with probability at least

1− 2−bq|Vn|

the following property : For every subset W ⊆ Uq with |W | ≥ γ|Uq|, we have∣∣∣EiU (W )
∣∣∣ ≥ ξqi|En|.

Theorem 3.3 follows from Lemma 3.4 applied with i = k, β = 1, γ = α+δ,

and U = Vn.

3.1. Probabilistic tools. We will use Chernoff’s inequality in the following

form (see, e.g., [25, Cor. 2.3]).

Theorem 3.5 (Chernoff’s inequality). Let X ⊆ Y be finite sets and p ∈
(0, 1]. For every 0 < % ≤ 3/2, we have

P
(∣∣∣|X ∩ Yp| − p|X|∣∣∣ ≥ %p|X|) ≤ 2 exp(−%2p|X|/3).

We also use an approximate concentration result for (K,p)-bounded hy-

pergraphs. The (K,p)-boundedness only bounds the expected value of the

quantity
∑
v deg2

i (v, Vp). In the proof of Lemma 3.4 we need an exponential

upper tail bound and, unfortunately, it is known that such bounds usually not

exist. However, it was shown by Rödl and Ruciński in [35] that at the cost of

deleting a few elements such bound can be obtained. We will again apply this

idea in the proof of Lemma 3.4.

Proposition 3.6 (Upper tail [35, Lemma 4]). Let H=(Hn=(Vn,En))n∈N
be a sequence of k-uniform hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence

of probabilities, and let K ≥ 1. If H is (K,p)-bounded, then the following

holds.

For every i ∈ [k − 1] and every η > 0, there exist b > 0 and n0 such that

for every n ≥ n0 and every q ≥ pn, the binomial random subset Vn,q has the

following property with probability at least 1− 2−bq|Vn|+1+log2 k. There exists a

set X ⊆ Vn,q with |X| ≤ ηq|Vn| such that∑
v∈Vn

deg2
i (v, Vn,q rX) ≤ 4kk2Kq2i |En|2

|Vn|
.

The proof follows the lines of [35, Lemma 4], and we include it for com-

pleteness.

Proof. Suppose H is (K,p)-bounded and i ∈ [k − 1] and η > 0 are given.

We set

b =
η

4(k − 1)2

and n0 be sufficiently large, so that (12) holds for every n ≥ n0 and q ≥ pn.
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For every j = i, . . . , 2(k−1), we consider the family Sj defined as follows:

Sj =
{

(S, v, e, e′) : S ⊆ Vn, v ∈ Vn, e, e′ ∈ En such that |S| = j,

v ∈ e ∩ e′, S ⊆ (e ∪ e′) r {v}, |e ∩ S| ≥ i and |e′ ∩ S| ≥ i
}
.

Let Sj be the random variable denoting the number of elements (S, v, e, e′)

from Sj with S ∈
(Vn,q

j

)
. By definition we have

∑2k−2
j=i E [Sj ] ≤ 4k−1µi(Hn, q),

and due to the (K,p)-boundedness of H, we have

max
j=i,...,2(k−1)

E [Sj ] ≤
2k−2∑
j=i

E [Sj ] ≤ 4k−1µi(Hn, q) ≤ 4k−1Kq2i |En|2

|Vn|
.

Let Zj be the random variable denoting the number of sequences

((Sr, vr, er, e
′
r))r∈[z] ∈ S z

j

of length

z =

¢
ηq|Vn|

4(k − 1)2

•
≤
¢

ηq|Vn|
2(k − 1)j

•
which satisfy

(i) the sets Sr are contained in Vn,q; and

(ii) the sets Sr are mutually disjoint, i.e., Sr1∩Sr2 = ∅ for all 1 ≤ r1 < r2 ≤ z.
Clearly, we have

E [Zj ] ≤ |Sj |zqjz = (E [Sj ])z ≤
Ç

4k−1Kq2i |En|2

|Vn|

åz
.

On the other hand, if

∑
v∈Vn

deg2
i (v, Vn,q rX) ≥ 4kk2Kq2i |En|2

|Vn|
≥

2k−2∑
j=i

j · 2 · 4k−1Kq2i |En|2

|Vn|

for any X ⊆ Vn,q with |X| ≤ ηq|Vn|, then there exists some j0 ∈ {i, . . . , 2k−2}
such that

Zj0 ≥
Ç

2 · 4k−1Kq2i |En|2

|Vn|

åz
.

Markov’s inequality bounds the probability of this event by

P

Ç
∃j0 ∈ {i, . . . , 2k − 2} : Zj0 ≥ 2z

Ç
4k−1Kq2i |En|2

|Vn|

åzå
≤

2k−2∑
j=i

P

Ç
Zj ≥ 2z

Ç
4k−1Kq2i |En|2

|Vn|

åzå
≤ 2k · 2−z ≤ 2−bq|Vn|+1+log2 k,

which concludes the proof of Proposition 3.6. �
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3.2. Proof of Lemma 3.4. Let H = (Hn = (Vn, En))n∈N be a sequence of

k-uniform hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabil-

ities, and let α ≥ 0 and K ≥ 1 such that H is α-dense and (K,p)-bounded.

We prove Lemma 3.4 by induction on i.

Induction start (i = 1). For δ > 0 and (ωn)n∈N (which plays no role for

the induction start), we appeal to the α-denseness of H and let ζ and n1 be

the constants given by this property for ε = δ/8. We set

ξ =
δζ

8k
, b =

δ3

193
, C = 1, and n0 = n1.

Let β, γ ∈ (0, 1] satisfy βγ ≥ α + δ, let n ≥ n0 be sufficiently large, q ≥ pn,

and let U ⊆ Vn with |U | ≥ β|Vn| be given. We consider the set Y ⊆ U defined

by

Y =

®
u ∈ U : |{e ∈ E(Hn[U ]) : u ∈ e}| ≤ ζ|En|

2|Vn|

´
.

In other words, Y is the set of vertices in U with low degree in Hn[U ]. Due to

the α-denseness of H, we have

|Y | ≤
Å
α+

δ

8

ã
|Vn|.

It follows from Chernoff’s inequality that with probability at least

1− 2 exp(−δ2q|U |/48)− 2 exp(−δ2q|Vn|/192) ≥ 1− 2−bq|Vn|,

we have

|Uq| ≥
Å

1− δ

4

ã
q|U | and |Uq ∩ Y | ≤

Å
α+

δ

4

ã
q|Vn|.

Consequently, for every W ⊆ Uq satisfying |W | ≥ γ|Uq|, we have

|W | ≥ γ|Uq| ≥
Å

1− δ

4

ã
γq|U | ≥

Å
1− δ

4

ã
βγq|Vn|

≥
Å

1− δ

4

ã
(α+ δ) q|Vn| ≥

Å
α+

δ

2

ã
q|Vn| ≥ |Uq ∩ Y |+

δ

4
q|Vn|,

and the definition of Y yields

∣∣∣E1
U (W )

∣∣∣ ≥ |W r Y | · 1

k

ζ|En|
2|Vn|

≥ δ

4
q|Vn| ·

1

k

ζ|En|
2|Vn|

= ξq|En|.

This concludes the proof of the induction start.



346 MATHIAS SCHACHT

Induction step (i −→ i+ 1). Let i ≥ 1, δ > 0, and (ωn)n∈N with ωn →∞
as n→∞ be given. We will expose the random set Uq in several rounds. The

number of “main” rounds R will depend on the constant ξ(i, δ/8), which is

given by the induction assumption. More precisely, let

ξ′ = ξ(i, δ/8), b′ = b(i, δ/8), C ′ = C(i, δ/8), and n′ = n0(i, δ/8)

be given by the induction assumption applied with δ′ = δ/8. We set

(14) R =

¢
4k+2k2K

δ(ξ′)2
+ 1

•
.

Overview. Roughly, speaking our argument is as follows. We will ex-

pose Uq in R main rounds of the same weight; i.e., we will chose qR in such

a way that (1 − q) = (1 − qR)R, and we let Uq = U1
qR
∪ · · · ∪ URqR . Since

every subset W , which we have to consider, contains at least γ ≥ α + δ pro-

portion of the elements of Uq, there must be at least δR/4 rounds such that

|U sqR ∩W | ≥ (α+ δ/2)|UqR |. For those rounds we will appeal to the induction

assumption, which combined with Proposition 3.6, implies that U contains at

least Ω((ξ′)2|Vn|) elements u ∈ U with the property that every such u completes

“many” elements in EiU (W ∩ U sqR) to elements in Ei+1
U (W ∩ U sqR). Moreover,

in each of these “substantial” rounds (ξ′)2|Vn|/(4k+1k2K) new “rich” elements

u will be created. Consequently, after at most δR/4 − 1 of these substantial

rounds all but, say, at most (α + δ/8)|Vn| < γ|Vn| elements of U are rich and

in the final substantial round W ∩ UqR must contain many rich u ∈ Uand

therefore create many elements from Ei+1
U (W ).

However, the error probabilities in the later rounds will have to beat the

number of choices for the elements of W in the earlier rounds. For that we will

split the earlier main rounds into several subrounds. This does not affect the

argument indicated above, since our bound on the number of “rich” elements

will be independent of qR. We now continue with the details of this proof.

Constants. Set

(15) η =
δ2

16
,

and let b̂ and n̂ be given by Proposition 3.6 applied with i and η. We set

(16) b∗ = min

{
δ4

106
,
b′

3
,
b̂

3

}
and B =

¢
1 +

1.012

b∗

•
.
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Finally, let

ξ =
ξ′δ2

18k(RBR−1)i+1
,(17)

b = min

®
δ3

60001RBR−1
,

b∗

2RBR−1

´
,(18)

C = RBR−1C ′,(19)

and let n0 ≥ max{n′, n̂} be sufficiently large.

Suppose β and γ ∈ (0, 1] satisfy

βγ ≥ α+ δ.

Let n ≥ n0, and let q satisfy 1/ωn ≥ q ≥ Cpn. Moreover, let U ⊆ Vn be such

that |U | ≥ β|Vn|. Note that

min{β, γ} ≥ α+ δ ≥ δ > 0 and |U | ≥ (α+ δ)|Vn|.

For a simpler notation, from now on we suppress the subscript n in pn,

Hn, Vn and En.

Details of the induction step. As discussed above we generate the random

set Uq in several rounds. We will haveR main rounds, and for that we choose qR
such that

1− q = (1− qR)R.

For s ∈ [R], we will further split the sth main round into BR−s subrounds.

For s ∈ [R], we set

rs = BR−s

and let qs satisfy

(1− qR) = (1− qs)rs .
Note that for sufficiently large n, due to qn ≤ 1/ωn and ωn →∞, we have

(20)

Å
1 +

δ

100

ã
q

R
≥ qR ≥

q

R
and

Å
1 +

δ

100

ã
qR

BR−s ≥ qs ≥
qR

BR−s ,

and due to the choice of B, we have

(21)
s−1∑
t=1

qt ≤ 1.01
qR
BR

s−1∑
t=1

Bt
(16)

≤ b∗

1.01

qR
BR

Bs ≤ b∗

1.01
qs.

We proceed as follows. We first consider r1 rounds with probability q1,

which all together establish the first main round, and we denote the random

subsets obtained by

U1
qR

= U1,1
q1 ∪ · · · ∪ U

1,r1
q1 .

This is followed by r2 rounds with probability q2 establishing the second main

round. This way we have

Uq = U1
qR
∪ · · · ∪ URqR
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and for all s ∈ [R],

U sqR = U s,1qs ∪ · · · ∪ U
s,rs
qs .

Furthermore, let W ⊆ Uq with |W | ≥ γ|Uq| and let

W s = W ∩ U sqR and W s,j = W ∩ U s,jqs
for all s ∈ [R] and j ∈ [rs].

In our analysis we focus on “substantial” rounds. For that let S ⊆ [R] be

the set defined by s ∈ S if and only if

|W s| ≥
Å
γ − δ

2

ã
|U sqR |.

By definition of S, for every s ∈ S, there exists some js ∈ [rs] such that

|W s,js | ≥
Å
γ − δ

2

ã
|U s,jsqs |,

and for the rest of the proof we fix such an js for every s ∈ S. The following

claim is a direct consequence of Chernoff’s inequality.

Claim 1. Let A denote the event |S| ≥ δR/4. Then P (A) ≥ 1−2−2bq|V |.

Proof. Due to Chernoff’s inequality, we have

(22) |U s,jqs | = (1± 0.01δ)qs|U |

for all s ∈ [R] and every j ∈ [rs] with probability at least

1− 2
R∑
s=1

rs exp(−δ2qs|U |/30000) ≥ 1− 2−2bq|V |,

where we used q1 ≤ qs, (20), the choice of b in (18), and the fact that n is

sufficiently large for the last inequality. Since |W | ≥ γ|Uq|, we have

|S| ≥ |W | −R · (1 + δ/100)(γ − δ/2)qR|U |
(1 + δ/100)qR|U |

≥ (1− δ/100)γq

(1 + δ/100)qR
−
Å
γ − δ

2

ã
R

(20)

≥ δ

4
R

with probability at least 1− 2−2bq|V |. �

For the rest of the proof we analyze the rounds indexed by (s, js) for s ∈ S.

For s ∈ S, we set

W (s) =
⋃
t∈S
t≤s

W t,jt and U(s) =
⋃
t∈S
t≤s

U t,jtqt .

Note that W (t) = U(t) = ∅ for all t < mins∈S s. Roughly speaking, we will

show that for every s ∈ S, either Ei+1
U (W (s)) is sufficiently large, or Ω(|V |)
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new “rich” elements in U will be created. More precisely, for s ∈ S, we consider

the following subset Zs ⊆ U of rich elements:

Zs :=

®
u ∈ U : degi(u,W

s,js , U) ≥ ξ′

2
qis
|E|
|V |

´
,

where

degi(u,W
s,js , U) :=

∣∣∣¶e ∈ E : |e ∩ (W s,js r {u})| ≥ i, u ∈ e, and e ⊆ U
©∣∣∣.

Note that degi(u,W
s,js , V ) = degi(u,W

s,js) and, hence, for every set U ⊆ V

and every u ∈ V , we have

(23) degi(u,W
s,js , U) ≤ degi(u,W

s,js).

Similarly, as above we set

Z(s) =
⋃
t∈S
t≤s

Zs.

Claim 2. For every s ∈ S and any choice of W (s − 1) ⊆ U(s − 1), let

BW (s−1) denote the event that U s,jsqs satisfies the following properties :

(i) |U s,jsqs | ≤ 1.01qs|U |; and

(ii) for every W s,js with |W s,js | ≥ (γ − δ/2)|U s,jsqs |, either

(24) |Ei+1
U (W (s))| ≥ ξqi+1|E|,

or

(25) |Z(s) r Z(s− 1)| ≥ (ξ′)2

4k+1k2K
|V |.

Then

P
Ä
BW (s−1) | U(s− 1)

ä
≥ 1− 2−2b∗qs|V |,

where P
Ä
BW (s0−1) | U(s0 − 1)

ä
= P

Ä
BW (s0−1)

ä
for s0 = mins∈S s.

Before we verify Claim 2 we deduce Lemma 3.4 from it. Let C denote the

event that the conclusion of Lemma 3.4 holds. If event A holds and BW (s−1)

holds for every s ∈ S, then C must hold, since (25) in Claim 2 can occur at

most
4k+1k2K

(ξ′)2

(14)
<

δ

4
R ≤ |S|

times and, therefore, (24) in Claim 2 must occur. Below we will verify that

this happens with a sufficiently large probability. Setting P (U(s0 − 1)) = 1

for s0 = mins∈S s, we have

P (¬C) ≤ P (¬A)

+
∑
S⊆[R]

∑
s∈S

∑
U(s−1)

∑
W (s−1)

P
Ä
¬BW (s−1) | U(s− 1)

ä
P (U(s− 1)) ,
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where the first sum runs over all subsets S ⊆ [R] with |S| ≥ δR/4, the third

sum runs over all choices of U(s− 1) =
⋃
t∈S,t<s U

t,jt
qt with |U t,jtqt | ≤ 1.01qt|U |,

and the inner sum runs over all 21.01|V |
∑

t∈S,t<s qt choices of W (s−1) ⊆ U(s−1).

Therefore, Claims 1 and 2 yield

P (¬C) ≤ 2−2bq|V | + 2R
R∑
s=1

21.01|V |
∑s−1

t=1 qt · 2−2b∗qs|V |

(21)

≤ 2−2bq|V | + 2RR2−b
∗q1|V |

(20)

≤ 2−2bq|V | + 2RR2−b
∗q|V |/(RBR−1)

(18)

≤ 2−bq|V |,

where the last inequality holds for sufficiently large n. This concludes the proof

of Lemma 3.4, and it is left to verify Claim 2. �

Proof of Claim 2. Let s ∈ S, W (s − 1) ⊆ U(s − 1) be given. Note that

this also defines Z(s − 1). We first observe that property(i) of Claim 2 holds

with high probability. In fact, due to Chernoff’s inequality, with probability

at least

1− 2 exp(−δ2qs|U |/30000)
(16)

≥ 1− 2−3b∗qs|V |

we even have

(26) |U s,jsqs | = (1± 0.01δ)qs|U |,

and below we assume that (26) holds. We distinguish two cases for prop-

erty (ii).

Case 1 (|U r Z(s − 1)| < (γ − 3δ/4)|U |). Due to Chernoff’s inequality

with probability at least

1− 2 exp(−δ2(α+ δ/4)qs|U |/192)
(16)

≥ 1− 2−3b∗qs|V |,

we have

|U s,jsqs r Z(s− 1)| ≤
Ä
γ − 5

8δ
ä
|U s,jsqs |.

Since s ∈ S, it follows that

|W s,js ∩ Z(s− 1)| ≥ δ

8
|U s,jsqs |

(26)

≥ 0.99
δ

8
qs|U | ≥

δβ

9
qs|V | ≥

δ2

9
qs|V |.

Hence the definition of Z(s− 1) ⊆ ⋃t∈S,t<s Zs and q1 ≤ qt for all t ∈ S yields

|Ei+1
U (W (s))| ≥ δ2

9
qs|V | ·

1

k

ξ′

2
qi1
|E|
|V |

≥ ξ′δ2

18k
qi+1

1 |E|
(20)

≥ ξ′δ2

18k(RBR−1)i+1
qi+1|E|

(17)

≥ ξqi+1|E|.
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In other words, for this case we showed that alternative (24) happens with

probability at least 1− 2 · 2−3b∗qs|V | ≥ 1− 2−2b∗qs|V |.

Case 2 (|U r Z(s− 1)| ≥ (γ − 3δ/4)|U |). In this case we consider

U ′ = U r Z(s− 1).

We set

β′ =
|U ′|
|V |

and γ′ =

Å
γ − 7δ

8

ã |U |
|U ′|

.

Clearly, β′ ∈ (0, 1],

0 < γ′ ≤ γ − 7δ/8

γ − 3δ/4
≤ 1,

and

β′γ′ =

Å
γ − 7δ

8

ã |U |
|V |
≥
Å
γ − 7δ

8

ã
β ≥ γβ − 7δ

8
≥ α+

δ

8
.

Hence, we can apply the induction assumption to U ′. More precisely, the

induction assumption asserts that with probability at least

1− 2b
′qs|V |

every subset Ŵ ′ ⊆ U ′qs with Ŵ ′ ≥ γ′|U ′qs | satisfies

(27)
∣∣∣EiU ′(Ŵ ′)∣∣∣ ≥ ξ′qis|E|.

Note that, in fact,

qs
(20)

≥ q

RBR−1
≥ Cp

RBR−1

(19)

≥ C ′p.

We split the random subset U s,jsqs = U ′qs ∪· U
′′
qs , where

U ′qs = U s,jsqs r Z(s− 1) and U ′′qs = U s,jsqs r U ′qs .

Similarly, we split W s,js = W ′ ∪· W ′′, where W ′ = W s,js ∩ U ′qs and W ′′ =

W s,js ∩ U ′′qs .
It follows again from Chernoff’s inequality that

(28) |U ′qs | =
Å

1± δ

16

ã
qs|U ′|

holds with probability at least

1− 2 exp(−δ2qs|U ′|/768)
(16)

≥ 1− 2−3b∗qs|V |.

We distinguish two subcases depending on the size of W ′′.



352 MATHIAS SCHACHT

Case 2.1 (|W ′′| > δ|U s,jsqs |/8). It follows from the W ′′ ⊆ Z(s− 1) that

|Ei+1
U (W (s))| ≥ |W ′′| · 1

k

ξ′

2
qi1
|E|
|V |
≥ δ

8
|U s,jsqs | ·

ξ′

2k
qi1
|E|
|V |

(26)

≥ δ

9
qs|U | ·

ξ′

2k
qi1
|E|
|V |
≥ δβ

9
qs ·

ξ′

2k
qi1|E| ≥

δ2ξ′

18k
qi+1

1 |E|

(17)

≥ ξqi+1|E|.

In other words, for this case we showed that alternative (24) happens with

probability at least 1− 2 · 2−3b∗qs|V | ≥ 1− 2−2b∗qs|V |.

Case 2.2 (|W ′′| ≤ δ|U s,jsqs |/8). We appeal to the (K,p)-boundedness of H.

It follows from Proposition 3.6 and the choice of η in (15) that with probability

at least

1− 2−b̂qs|V |+1+log2 k,

there exists a set X ⊆ U ′qs such that

|X| ≤ ηqs|V |
(15)

≤ δ2

16
qs|V | ≤

δ

16
(α+ δ)qs|V |

≤ δ

16
βqs|V | ≤

δ

16
qs|U |

(26)

≤ δ

8
|U s,jsqs |

(29)

and ∑
u∈U ′

deg2
i (u,W

′ rX,U ′)
(23)

≤
∑
u∈U ′

deg2
i (u,W

′ rX)

≤
∑
u∈U ′

deg2
i (u, U

′
qs rX) ≤ 4kk2Kq2i

s

|E|2

|V |
.

(30)

Consider the set

Ŵ ′ = W ′ rX.

Since s ∈ S, it follows from (29) and the assumption of this case that

|Ŵ ′| ≥ |W s,js | − |W ′′| − |X| ≥
Å
γ − δ

2

ã
|U s,jsqs | − 2

δ

8
|U s,jsqs | ≥

Å
γ − 3δ

4

ã
|U s,jsqs |.

Furthermore, assertions (26) and (28) yield

|Ŵ ′|
|U ′qs |

≥
Å
γ − 3δ

4

ã |U s,jsqs |
|U ′qs |

≥ (γ − 3δ/4)(1− δ/100)

1 + δ/16

|U |
|U ′|
≥
Å
γ − 7δ

8

ã |U |
|U ′|

= γ′

In other words, Ŵ ′ satisfies |Ŵ ′| ≥ γ′|U ′qs |, and from the induction assumption

we infer that (27) holds with probability at least 1− 2−b
′qs|V | and then

(31)
∑
u∈U ′

degi(u, Ŵ
′, U ′) ≥ |EiU ′(Ŵ ′)| ≥ ξ′qis|E|.



EXTREMAL RESULTS FOR RANDOM DISCRETE STRUCTURES 353

For

Ẑ =

®
u ∈ U ′ : degi(u, Ŵ

′, U ′) ≥ ξ′

2
qis
|E|
|V |

´
,

it follows from the Cauchy-Schwarz inequality that

4kk2Kq2i
s

|E|2

|V |
(30)

≥
∑
u∈U ′

deg2
i (u, Ŵ

′, U ′) ≥
∑
u∈Ẑ

deg2
i (u, Ŵ

′, U ′)

≥ 1

|Ẑ|

Ñ∑
u∈Ẑ

degi(u, Ŵ
′, U ′)

é2
(31)

≥ 1

|Ẑ|

Ç
ξ′qis|E|

2

å2

.

Consequently,

|Ẑ| ≥ (ξ′)2

4k+1k2K
|V |.

Since Ẑ ⊆ U ′ = U r Z(s − 1), we have that Ẑ is disjoint from Z(s − 1).

Furthermore, by definition of Ẑ, we have Ẑ ⊆ Zs. Therefore, (25) of Claim 2

holds with probability at least

1− 2 · 2−3b∗qs|V | − 2−b̂qs|V |+1+log2 k − 2−b
′qs|V |

(16)

≥ 1− 2−2b∗qs|V |,

which concludes the proof of Claim 2. �

4. Proof of the new results

In this section we prove Theorems 2.2, 2.3, 2.4, 2.5, and 2.7. While the

involved 0-statements will follow from standard probabilistic arguments, the

1-statement of those results will follow from Theorem 3.3.

4.1. Proof of Theorems 2.2 and 2.3. Clearly Theorem 2.2 follows from

Theorem 2.3 applied with ` = 1 and F = [k], and it suffices to verify Theo-

rem 2.3.

The 0-statement of Theorem 2.3. We start with the 0-statement of the

theorem. Let F ⊆ N` be a finite subset with |F | ≥ 3 and ε > 0 be given and

set

c =

Å
1− 2ε

2

ã1/(|F |−1)

.

We distinguish different cases depending on the sequence q = (qn).

Case 1 (qn � n−(`+1)/|F |). In this case the expected number of homothetic

copies of F in [n]`qn tends to 0. Hence, we infer from Markov’s inequality that

a.a.s. [n]`qn contains no homothetic copy of F , which yields the claim in that

range.
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Case 2 (n−` � qn � n−1/(|F |−1)). In this range the expected number of

homothetic copies of F in [n]`qn is asymptotically smaller than the expected

number of elements in [n]`qn . Moreover, it follows from Chernoff’s inequality

that a.a.s. |[n]`qn | is very close to its expectation. Consequently, it follows from

Markov’s inequality that a.a.s. the number of homothetic copies of F in [n]`qn
is o(|[n]`qn |). Therefore, by removing one element from every homothetic copy

of F in |[n]`qn | a.a.s., we obtain a subset Y of size |Y | ≥ ε|[n]`qn |, which contains

no homothetic copy of F at all, which yields the 0-statement in this case.

Note that due to |F | ≥ 3 the ranges considered in Cases 1 and 2 overlap.

Similarly, the range considered in the case below overlaps with the one from

Case 2.

Case 3 (n−(`+1)/|F | � qn ≤ cn−1/(|F |−1)). Again appealing to Chernoff’s

inequality applied to the size of [n]`qn we infer that it suffices to show that a.a.s.

the number of homothetic copies of F in [n]`qn is at most (1− 2ε)qnn
`.

Let ZF be the random variable denoting the number of homothetic copies

of F . Clearly, E [ZF ] ≤ q
|F |
n n`+1, and standard calculations show that the

variance of ZF satisfies

Var [ZF ] = O
Ä
q2|F |−1
n n`+2 + q|F |n n`+1

ä
.

Consequently, Chebyshev’s inequality yields

P
Ä
ZF ≥ 2q|F |n n`+1

ä
≤ Var [ZF ]

q
2|F |
n n2`+2

= O

(
1

qnn`
+

1

q
|F |
n n`+1

)
= o(1),

due to the range of qn we consider in this case. Hence, the claim follows from

the choice of c, which yields

2q|F |n n`+1 ≤ (1− 2ε)qnn
`.

The 1-statement of Theorem 2.3. We now turn to the 1-statement of The-

orem 2.3. We first note that if qn = Ω(1), then the theorem follows directly

from Chernoff’s inequality combined with the original result of Furstenberg and

Katznelson. Hence we can assume without loss of generality that qn = o(1).

Let F ⊆ N` with k = |F | ≥ 3 and ε ∈ (0, 1). We shall apply Theorem 3.3.

For that we consider the following sequence of k-uniform hypergraphs H =

(Hn = (Vn, En))n∈N. Let Vn = [n]`, and let every homothetic copy of F form an

edge in En. In particular, |En| = Θ(n`+1). We set pn = n−1/(k−1), p = (pn)n∈N
and α = 0. Clearly, for those definitions the conclusion of Theorem 3.3 yields

the 1-statement of Theorem 2.3. In order to apply Theorem 3.3 we have to

verify the following three conditions:

(a) pkn|En| → ∞ as n→∞,

(b) H is α-dense, and

(c) H is (K,p)-bounded for some K ≥ 1.
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By definition of pn and Hn, we have

pkn|En| = Ω
Ä
n−k/(k−1)n`+1

ä
= Ω

Ä
n`−1/(k−1)

ä
,

which yields (a), as ` ≥ 1 and k ≥ 3.

Condition (b) holds, due to work of Furstenberg and Katznelson [18]. In

fact, it follows from the result in [18] that for every configuration F ⊆ N` and

every ε > 0, there exist ζ > 0 and n0 such that for every n ≥ n0 every subset

U ⊆ [n]` with |U | ≥ εn` contains at least ζn`+1 homothetic copies of F . In

other words, H is 0-dense.

Hence, it is only left to verify condition (c). We have to show that for

every i ∈ [k − 1] and q ≥ pn = n−1/(k−1), we have

(32) µi(Hn, q) = E

∑
v∈Vn

deg2
i (v, Vq)

 = O
Ä
q2in`+2

ä
= O

Ç
q2i |En|2

|Vn|

å
.

It follows from the definition of degi in (11) that µi(Hn, q) is the expected

number of pairs (F1, F2) of homothetic copies of F which share at least one

point v and at least i points different from v of each copy are contained in [n]`q.

The expected number of such pairs (F1, F2) which share exactly one point can

be bounded by O
Ä
q2in`+2

ä
. Since for every fixed homothetic copy F1 there

exist only constantly many (independent of n) other copies F2, which share two

points with F1, the expected number of such pairs (F1, F2) with |F1 ∩ F2| ≥ 2

is bounded by

O
Ä
qin`+1

ä
= O

Ä
q2in`+2

ä
,

since q ≥ Cpn ≥ Cn−1/(k−1) ≥ Cn−1/i. Consequently, (32) holds, which

concludes the proof of Theorem 2.3. �

4.2. Proof of Theorem 2.4. The proof of the 0-statement follows directly

from the 0-statement of Theorem 1.1 in [36]. Those authors showed that for

every irredundant, density regular ` × k matrix with rank `, there exists a

constant c > 0 such that for qn ≤ cn−m(A) a.a.s., [n]qn can be partitioned

into two classes such that none of them contains a distinct-valued solution of

the homogeneous system given by A. Clearly, this implies the 0-statement of

Theorems 2.4 for every ε ∈ (0, 1/2).

The 1-statement of Theorem 2.4. First we note that if qn = Ω(1), then

the statement follows directly from Chernoff’s inequality combined with the

definition of irredundant, density regular matrix.

Let A be an irredundant, density regular `×k integer matrix of rank ` and

ε > 0. For the application of Theorem 3.3, we consider the following sequence

of k-uniform hypergraphs H = (Hn = (Vn, En))n∈N. Let Vn = [n], and for

every distinct-valued solution (x1, . . . , xk), let {x1, . . . , xk} be an edge of En.

Moreover, we set pn = n−1/m(A), p = (pn)n∈N and α = 0. The 1-statement of
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Theorem 2.4 then follows from the conclusion of Theorem 3.3, and we have to

verify the same three conditions (a)–(c) as in the proof of the 1-statement of

Theorem 2.3.

It was shown in [36, Prop. 2.2(ii)] that m(A) ≥ k − 1, and due to Rado’s

characterization of partition regular matrices (which contains the class of all

density regular matrices) we have k − ` ≥ 2, which yields |En| = Ω(n2).

Therefore, we have

pk|En| = Ω(n−k/(k−1) · n2) = Ω
Ä
n

k−2
k−1

ä
and, hence, condition (a) is satisfied.

Moreover, based on the Furstenberg-Katznelson theorem from [18] it was

shown by Frankl, Graham, and Rödl in [15, Th. 2] that the sequence of hyper-

graphs H defined above is 0-dense; i.e., condition (b) is fulfilled.

Consequently, it suffices to verify that H is (K,p)-bounded for some

K ≥ 1. For i ∈ [k − 1] and q ≥ pn = n−1/m(A), we have to show that

µi(Hn, q) = O

Ç
q2i |En|2

n

å
.

Recalling the definitions of µi(Hn, q) and Hn = ([n], En), we have

(33) µi(Hn, q) = E

∑
x∈[n]

deg2
i (x, Vn,q)

 =
∑
x∈[n]

E
î
deg2

i (x, Vn,q)
ó
.

Note that E
î
deg2

i (x, Vn,q)
ó

is the expected number of pairs (X,Y ) ∈ [n]k× [n]k

such that

(i) x ∈ X ∩ Y ;

(ii) X = {x1, . . . , xk} and Y = {y1, . . . , yk} are solutions of L(A), where

Ax = Ay = 0

for x = (x1, . . . , xk)
t and y = (y1, . . . , yk)

t; and

(iii) |X ∩ ([n]q r {x})| ≥ i and |Y ∩ ([n]q r {x})| ≥ i.
For fixed x and (X,Y ), let w ≥ 1 be the largest integer such that there exist

indices i1, . . . , iw and j1, . . . , jw for which

(34) xi1 = yj1 , . . . , xiw = yjw .

Consequently,

(35) x ∈ {xi1 , . . . , xiw} = {yj1 , . . . , yjw}.

Set W1 = {i1, . . . , iw} and W2 = {j1, . . . , jw}.
For fixed sets W1, W2 ⊆ [k], we are going to describe all (2k − w)-tuples

X∪Y satisfying (ii) and (34). To this end consider the 2`×(2k−w) matrix B,

which arises from two copies A1 and A2 of A with permuted columns. We set

A1 = (AW 1
| AW1) and A2 = (AW2 | AW 2

) where for every α = 1, . . . , w, the
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column of AW1 which is indexed by iα aligns with that column of AW2 which

is indexed by jα. Then let

B =

Ñ
AW 1

AW1 0

0 AW2 AW 2

é
.

Without loss of generality we may assume that rank(AW 1
) ≥ rank(AW 2

) and,

therefore,

rank(B) ≥ rank(A) + rank(AW 1
).

Clearly, the number of (2k − w)-tuples X ∪ Y satisfying (ii) and (34) equals

the number of solutions of the homogeneous system given by B, which is

O(n2k−w−rank(B)). Since A is an irredundant, partition regular matrix, it fol-

lows from [36, Prop. 2.2(i)] that rank(A′) = rank(A) for every matrix A′ ob-

tained from A by removing one column. Consequently, any matrix B′ obtained

from B by removing one of the middle columns (i.e., one of the w columns of B

which consist of a column of AW1 and a column of AW2) satisfies

rank(B′) ≥ rank(A) + rank(AW 1
) = `+ rank(AW 1

).

Therefore, it follows from (35) that the number of such (2k − w)-tuples that

also satisfy condition(i) for some fixed x ∈ [n] is at most

(36) O
(
n

2k−w−1−`−rank(A
W1

)
)
.

Finally, we estimate the probability that a (2k−w)-tuple X∪Y satisfying

(i), (ii), and (34) also satisfies (iii). Since |X ∩ Y ∩ ([n]q r {x})| = j ≤ w − 1

and q ≤ 1, this probability is bounded by

w−1∑
j=0

q2i−j = O(q2i−w+1).

In view of (36) we obtain

∑
x∈[n]

E
î
deg2

i (x, Vn,q)
ó
=
∑
x∈[n]

k∑
w=1

∑
W1,W2⊆[k]
|W1|=|W2|=w

O
(
n

2k−w−1−`−rank(A
W1

)
q2i−w+1

)
.

Note that if w = 1, then again due to [36, Prop. 2.2(i)] we have rank(AW 1
) = `

and, therefore, the contribution of those terms satisfies

(37)
∑
x∈[n]

∑
W1,W2⊆[k]
|W1|=|W2|=1

O(n2k−2`−2q2i) = O(n2k−2`−1q2i) = O

Ç
q2i |En|2

n

å
.

For w ≥ 2 and W1 ⊆ [k] with |W1| = w, we obtain from the definition of m(A)

and q ≥ n−1/m(A) that

qw−1 ≥ n−w+1−rank(A
W1

)+`
.
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Consequently,

(38)
∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n
2k−w−1−`−rank(A

W1
)
q2i−w+1)

=
∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−2−2`q2i)

= O(n2k−2`−1q2i) = O

Ç
q2i |En|2

n

å
.

Finally, combining (33), (37), and (38) we obtain

µi(Hn, q) = O

Ç
q2i |En|2

n

å
,

which concludes the proof of the 1-statement of Theorem 2.4. �

4.3. Proof of Theorem 2.5. The proof is similar to the proof of Theo-

rem 2.3, and we only sketch the main ideas.

The 0-statement of Theorem 2.5. Recall that for the statement X →1/2+εÄ
1 1 −1

ä
, we only consider distinct-valued solutions of the Schur equation

and we call such solutions Schur-triples. The expected number of Schur-triples

contained in [n]qn is bounded by q3
nn

2. Consequently, the 0-statement follows

from Markov’s inequality if qn � n−2/3. In the middle range n−1�qn�n−1/2

it follows, on the one hand, from Chernoff’s inequality that a.a.s. |[n]qn |≥qnn/2.

On the other hand, due to Markov’s inequality a.a.s. the number of Schur-

triples in [n]qn is o(qnn) and, hence, the statement holds in this range of qn.

Finally, if n−2/3 � qn ≤ cn−1/2 for sufficiently small c > 0, then using Cheby-

shev’s inequality one obtains the upper bound of

(1− (1/2 + ε))qnn/2

on the number of Schur-triples in [n]qn , which holds a.a.s. Consequently, in

view of Chernoff’s inequality, a.a.s. the random set [n]qn contains a subset of

size (1/2 + ε)|[n]qn |, which contains no Schur-triple. �

The 1-statement of Theorem 2.5. Here we consider a sequence of 3-uniform

hypergraphs, where Vn = [n] and En corresponds to all Schur-triples in [n],

and we set pn = n−1/2 and α = 1/2. For given ε ∈ (0, 1/2), we want to appeal

to Theorem 3.3, and for that we assume qn = o(1). Again the 1-statement

of Theorem 2.5 follows from Theorem 3.3, and we have to verify the three

conditions (a)–(c) as in the proof of the 1-statement of Theorem 2.3.
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Condition (a) follows from the definition of pn, and condition (c) follows

from similar considerations as in the proof of Theorem 2.3 for ` = 1 and k = 3.

In order to verify condition (b) we have to show that for every ε > 0,

there exist ζ > 0 and n0 such that for n ≥ n0, every subset A ⊆ [n] with

|A| ≥ (1/2 + ε)n contains at least ζn2 Schur-triples.

So let A ⊆ [n] satisfy |A| ≥ (1/2 + ε)n, and set A1 = A∩{1, . . . , (1− ε)n}
(ignoring floors and ceilings). It follows that for every z ∈ A r A1, there are

at least Å
1

2
+ ε

ã
n− εn− (1− ε)n

2
=
ε

2
n

pairs x ≤ y with x, y ∈ A such that x + y = z. Hence, if |A r A1| ≥ 3ε2n/2,

then A contains at least 3ε3n2/4− n Schur-triples and the claim follows.

On the other hand, if |ArA1| < 3ε2n/2, then we have

|A1| ≥
Å

1

2
+ ε

ã
n− 3ε2

2
n =

Å
1

2
+

3ε

2

ã
(1− ε)n.

In other words, we obtained a density increment of ε/2 on the interval (1−ε)n,

and the conclusion follows from iterating the above argument.

This concludes the proof of condition (b) and, therefore, Theorem 3.3

yields the proof of the 1-statement of Theorem 2.5 for sequences q satisfying

qn = o(1). The remaining case, when qn = Ω(1), then follows by similar

arguments as given in [25, Prop. 8.6], and we omit the details. �

4.4. Proof of Theorem 2.7.

The 0-statement of Theorem 2.7. Let F be an `-uniform hypergraph with

at least one vertex of degree 2 and ε ∈ (0, 1− π(F )). We set

c =
1− π(F )− ε

4
.

For the proof of the 0-statement, we consider different ranges of q =

(qn)n∈N depending on the density of the densest sub-hypergraph of F and

depending onm(F ). Let F ′ be the densest sub-hypergraph of F with e(F ′) ≥ 1;

i.e., F ′ maximizes e(F ′)/v(F ′). Moreover, let F ′′ be one of those sub-hyper-

graphs for which

d(F ′′) = m(F ).

(See (10) for the definition of those parameters.) Note that e(F ′′) ≥ 2, since F

contains a vertex of degree at least two. We consider the following three ranges

for q.

Case 1 (qn � n−v(F ′)/e(F ′)). In this range the expected number of copies

of F ′ in G(`)(n, qn) tends to 0 and, therefore, the statement follows from

Markov’s inequality.
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Case 2 (n−` � qn � n−1/m(F )). It follows from the definition of m(F )

that in this range the expected number of copies of F ′′ in G(`)(n, qn) is asymp-

totically smaller than the expected number of of edges ofG(`)(n, qn). Therefore,

applying Markov’s inequality to the number of copies of F ′′ and Chernoff’s in-

equality to the number of edges G(`)(n, qn) we obtain that a.a.s. the number of

copies of F ′′ satisfies o(e(G(`)(n, qn))). Hence, a.a.s. we can obtain an F ′′-free,

and consequently, an F ′′-free sub-hypergraph of G(`)(n, qn) by removing only

o(e(G(`)(n, qn))) edges, which yields the statement for this range of qn.

We note that n−` � n−v(F ′)/e(F ′) since F contains a vertex of degree 2. In

other words, the interval considered in Case 2 overlaps with the interval from

Case 1. Similarly, the range considered in the case below overlaps with the one

from Case 2.

Case 3 (n−v(F ′)/e(F ′) � qn ≤ cn−1/m(F )). Applying again Chernoff’s in-

equality to the random variable e(G(`)(n, qn)) we see that it suffices to show

that a.a.s. the number of copies of F ′′ is at most (1− (π(F ) + ε))qnn
`/2.

Let ZF ′′ be the random variable denoting the number of copies of F ′′ in

G(`)(n, qn). Clearly, E [ZF ′′ ] ≤ q
e(F ′′)
n nv(F ′′) and standard calculations show

that the variance of ZF ′′ satisfies

Var [ZF ′′ ] = O

Ñ
q

2e(F ′′)
n n2v(F ′′)

minF ∗⊆F,e(F ∗)≥1 q
e(F ∗)
n nv(F ∗)

é
= O

(
q

2e(F ′′)
n n2v(F ′′)

q
e(F ′)
n nv(F ′)

)
,

due to the choice of F ′ being the densest sub-hypergraph of F .

Since qn � n−v(F ′)/e(F ′), we have q
e(F ′)
n nv(F ′) →∞ and, therefore,

Var [ZF ′′ ] = o
Ä
q2e(F ′′)
n n2v(F ′′)

ä
.

Consequently, Chebyshev’s inequality yields

P
Ä
ZF ′′ ≥ 2qe(F

′′)
n nv(F ′′)

ä
≤ Var [ZF ′′ ]

q
2e(F ′′)
n n2v(F ′′)

= o(1).

Moreover, since qn ≤ cn−1/m(F ) and e(F ′′) ≥ 2, it follows from the choice of c

that

2qe(F
′′)

n nv(F ′′) ≤ 1− (π(F ) + ε)

2
qnn

`,

which yields the 0-statement in this case. �

The 1-statement of Theorem 2.7. Let F be an `-uniform hypergraph with

at least one vertex. For an application of Theorem 3.3, we consider the sequence

of k-uniform hypergraphs H = (Hn = (Vn, En))n∈N, where Vn = E(K
(`)
n ) and

edges of En correspond to copies of F in Kn. Moreover, we set pn = n−1/m(F )

and α = π(F ). Clearly, for this set up, the conclusion of Theorem 3.3 yields

the 1-statement of Theorem 2.7 for sequences q with qn = o(1). In order to
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apply Theorem 3.3 we have to verify the three conditions (a)–(c) stated in the

proof of the 1-statement of Theorem 2.3.

Condition (a) follows from the definitions of pn and En combined. In

fact, since F contains a vertex of degree at least 2, we have m(F ) ≥ 1/(`− 1)

and pn|En| = Ω(n). Such a result was obtained by Erdős and Simonovits [12,

Th. 1] and, hence, it is left to verify condition (c) only.

To this end observe that Hn is a regular hypergraph with
(n
`

)
vertices,

every vertex is contained in Θ(nv(F )−`) edges, and that |En| = Θ(nv(F )). We

will show that for q ≥ n−1/m(F ) and i ∈ [k − 1], we have

µi(Hn, q) = E

∑
v∈Vn

deg2
i (v, Vn,q)

 =
∑
v∈V

E
î
deg2

i (v, Vn,q)
ó

= O

Ç
q2i |En|2

|Vn|

å
.

Due to the definition of H, every v ∈ Vn corresponds to an edge e(v) in K
(`)
n .

Therefore, the number E
î
deg2

i (v, Vn,q)
ó

is the expected number of pairs (F1, F2)

of copies F1 and F2 of F in K
(`)
n satisfying e(v) ∈ E(F1) ∩ E(F2), and both

copies F1 and F2 have at least i edges in E(G(`)(n, q))r{e(v)}. Summing over

all such pairs F1 and F2 we obtain

E
î
deg2

i (v, Vn,q)
ó
≤

∑
F1,F2 : e(v)∈E(F1)∩E(F2)

|E(F1)∩E(F2)|−1∑
j=0

q2i−j

= O

Ñ ∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

é(39)

since q ≤ 1. Furthermore,∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

= O

Ñ ∑
J : e(v)∈E(J)

n2v(F )−2v(J)q2i−(e(J)−1)

é
,

(40)

where the sum on the right-hand side is indexed all hypergraphs J ⊆ K
(`)
n

which contain e(v) and which are isomorphic to a sub-hypergraph of F . It

follows from the definition of m(F ) and q ≥ n−1/m(F ) that nv(J)qe(J) = Ω(qn`).

Combining this with (39) and (40) we obtain

E
î
deg2

i (v, Vn,q)
ó

= O

Ñ ∑
J : e(v)∈E(J)

n2v(F )−2v(J)q2i−(e(J)−1)

é
= O

Ñ ∑
J : e(v)∈E(J)

n2v(F )−v(J)−`q2i

é
.
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Moreover, since v(J) ≥ `, we have

E
î
deg2

i (v, Vn,q)
ó

= O

Ñ ∑
J : e(v)∈E(J)

n2v(F )−2`q2i

é
,

and, consequently,

µi(Hn, q) =
∑
v∈Vn

O(n2v(F )−2`q2i) = O(n2v(F )−`q2i) = O

Ç
q2i |En|2

|Vn|

å
.

This concludes the proof of condition (c) and, therefore, Theorem 3.3 yields the

proof of the 1-statement of Theorem 2.7 for sequences q satisfying qn = o(1).

The remaining case, when qn = Ω(1), then follows by similar arguments as

given in [25, Prop. 8.6], and we omit the details. �
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graphs, Combinatorica 17 (1997), 173–213. MR 1479298. Zbl 0889.05068. http:

//dx.doi.org/10.1007/BF01200906.
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