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Errata of “Isoparametric hypersurfaces
with (g,m) = (6, 2)”

By Reiko Miyaoka

Abstract

We give a correction of the proof of the homogeneity of isoparametric

hypersurfaces with (g,m) = (6, 2).

1. Introduction

In [2], [3], and [4], we discuss the homogeneity of isoparametric hypersur-

faces M with six principal curvatures by investigating the kernel of the shape

operators of the focal submanifolds. In fact, M is homogeneous if and only

if the kernel is independent of the normal direction [1], [3, §15]. Using this,

we reprove the homogeneity for multiplicity m = 1 in [2], [4] and try to prove

it for m = 2 in [3]. However, in Sections 8 and 13.3 of [3], there are some

inappropriate arguments.

The purpose of this paper is to correct Section 8 and Proposition 13.6 in

[3], where the argument to exclude the case dimK = 1, 2 or dimE(c) = 4 fails.

The correction is now achieved. In Section 3 we rewrite the entire Section 8

[3]. We exclude the case dimE = 4 in Section 5 and the case dimE = 5 in

Section 6. Then in Sections 7 and 8, we settle the case dimE(c) or dimE = 6.

Thus we obtain

Theorem 1.1. Isoparametric hypersurfaces with (g,m) = (6, 2) are ho-

mogeneous.

Remark 1.2. In addition to the revision of Sections 8 and 13.3 of [3], we

need some minor changes as follows: There are typos: In (i) on page 81, Y V
1

and Y V
2 should be Y V

1̄ and Y V
2̄ . In (94) on page 84, 1√

3
in ê2 and ê4 should be

√
3. The notation vi in the fourth to ninth lines of page 95 might be confusing,

and we had better replace it by, say, wi. All other parts of [3] are correct as

they are.

Partly supported by Grants-in-Aid for Scientific Research, 2334012, The Ministry of Ed-

ucation, Japan.

c© 2016 Department of Mathematics, Princeton University.

1057

http://annals.math.princeton.edu/about
http://dx.doi.org/10.4007/annals.2016.183.3.7


1058 REIKO MIYAOKA

Acknowledgements. The author is grateful to Uwe Abresch and Anna Sif-

fert for discovering the error and bringing it to her attention. She really would

like to thank the referees for patient checking and suitable comments on this

Errata. She also would like to express her hearty thanks to Annals of Mathe-

matics for permission to submit the correction.

2. A brief summary of Sections 1–7 in [3]

Let M be an isoparametric hypersurface in S13 with (g,m) = (6, 2), where

g is the number of distinct principal curvatures and m is the multiplicity which

is common among different principal curvatures when g = 6. The ambient

sphere S13 is singularly foliated by parallel hypersurfaces of M and two focal

submanifolds M±. Choosing a unit normal vector field ξ of M , we denote the

principal curvatures by λ1 > · · · > λ6 and their curvature distributions by Di,

i = 1, . . . , 6. We take an orthonormal frame ei, eī of each Di. We write i for

i and ī. Consider the focal submanifold M+ at which each leaf L6(p) of D6

collapses into a point p̄ = cos θ p + sin θ ξp where p ∈ M and θ = cot−1 λ6.

Then Tp̄M+ = ⊕5
i=1Di(q) and T⊥p̄ M+ = Rηq ⊕ D6(q) hold for all q ∈ D6(p)

and ηq = − sin θq + cos θξq. Another focal submanifold M− is obtained by

replacing D6 by D1 and θ by θ̄ = cot−1 λ1. Note that Tp̄M− = ⊕6
i=2Di(q) and

T⊥p̄ M− = Rη̄q ⊕ D1(q) for all q ∈ D1(p) and η̄q = − sin θ̄q + cos θ̄ξq. By the

argument in Sections 1–7 and 15 of [3], we know the following:

Fact. (1) The shape operators Bn of M+ with respect to a unit normal

n ∈ T⊥M+ are isospectral with eigenvalues µ1 =
√

3 = −µ5, µ2 = 1/
√

3 =

−µ4 and µ3 = 0. The eigenspace of µi of Bηp is given by Di(p).

(2) At the focal point p̄, the unit sphere S2 in T⊥p̄ M+ is identified with the

leaf L6(p) of D6. Take ζ = e6(p) in T⊥p̄ M+. The geodesic c = {p(t)} of

S2 = L6(p) through p in the direction ζ corresponds to a one parameter

family of normal vectors cos t η + sin t ζ of M+. Then the shape operator

L(t) = cos tBη + sin tBζ of M+ has kerL(t) = D3(p(t)).

(3) M is homogeneous if and only if kerL(t) is independent of t and ζ , namely,

if and only if D3 is invariant on each L6.

All these hold if we replace M+ by M− and index i by i+ 1 modulo 6.

Now, for a geodesic c of L6(p), put

(1) E(c) = spantkerL(t).

Then Theorem 1.1 is proved if we show dimE(c) = 2 for any c of any L6 (see

[3, §15]). Recall [3, (42)]

E(c) = span{e3(q),∇ke6e3(q), k = 1, 2, . . . }

W (c) = span{∇̄e3e6(q),∇ke6∇̄e3e6(q), k = 1, 2, . . . },
(2)

which do not depend on the choice of q ∈ c. Note that
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Lemma 2.1 ([3, Lemmas 5.3, 5.4, and (46) of Lemma 6.1]). W (c) ⊂
E(c)⊥. Moreover, L(t) maps E(c) onto W (c) for any t, and dimW (c) =

dimE(c)− 2 holds.

For a fixed L6(p), we put

(3) E = span{E(c) | c : a geodesic of L6(p)}.

3. Dimension of E(c)

To investigate the dimension of E(c) or E under the supposition dimE(c)

> 2, we need a special frame of D3(t) along a geodesic c = {p(t)} of L6(p),

parametrized by t so that p(0) = p(2π). For a vector field v(t) along c, we call

v(t) even when v(t+π) = v(t), and odd when v(t+π) = −v(t). We sometimes

denote p(t) = c(t).

Lemma 3.1. If e3(t) is an even (odd, resp.) vector along c, then e3(t),

∇e6e3(t), ∇2
e6e3(t), . . . are all even (odd, resp.) vectors. On the other hand,

∇̄e3e6(t), ∇e6∇̄e3e6(t), ∇2
e6∇̄e3e6(t), . . . are all odd (even, resp.) vectors.

Proof. The former is clear from∇ke6e3(t+π) = ∇ke6e3(t). The latter follows

from L(t + π) = −L(t) and L(t)(∇e6e3(t)) = c1∇̄e3e6(t) (see [3, Lemma 5.1,

(36)]). Then its derivatives in the direction e6(t) are all odd. The case when

e3(t) is odd is similar. �

Lemma 3.2. dimE(c) must be even.

Proof. There are no odd dimensional subspace of TM+ parallel along c

and consisting of odd vectors, because of the continuity of the determinant of

a moving frame. By [3, Lemma 7.7], we can choose e3(t), e3̄(t) so that E(c)

consists of all even or all odd vectors. By Lemma 3.1, evenness and oddness

of the vectors in E(c) and in W (c) are opposite. Since both E(c) and W (c)

are parallel and dimW (c) = dimE(c) − 2 (Lemma 2.1), dimE(c) must be

even. �

Lemma 3.3. If a differentiable field e3(t) spans a 2-dimensional space

K = span{e3(t)}, then e3(t) is an odd vector.

Remark 3.4. A typical case is when e3(t) = cos tu+sin tv for orthonormal

vectors u and v. Usually, the coefficient functions are general odd functions

and u and v are not necessarily orthonormal.

Proof. Assume dimK = 2; then it follows ∇e6e3(p) 6≡ 0 modulo D3(p) ([3,

Rem. 5.2]). Using q = p(π/2), we can express K = span{e3(p), e3(q)}. Thus

we have

(4) e3(t) = a(t)e3(p) + b(t)e3(q) ∈ K.
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Recall [3, (37)]

Bζ(e3(p)) = −∇̄e3e6(p).

Because e3(q) ∈KerL(π/2) =kerBζ , exchanging p and q, we have

Bη(e3(q)) = ∇̄e3e6(q),

since Bη = −L(π/2 + π/2) and Bζ = L(π/2). Therefore, denoting c(t) = cos t

and s(t) = sin t, by (4) we have

0 = L(t)e3(t) = (c(t)Bη + s(t)Bζ)(a(t)e3(p) + b(t)e3(q))

= b(t)c(t)Bη(e3(q)) + a(t)s(t)Bζ(e3(p))

= b(t)c(t)∇̄e3e6(q)− a(t)s(t)∇̄e3e6(p)

for all t. From this it follows

(5) ∇̄e3e6(q) = u∇̄e3e6(p)

for some nonzero u. Thus W = L(t)K is a 1-dimensional space consisting of

∇̄e3e6(t) which is a nonzero and hence a positive scalar multiple of ∇̄e3e6(p)

(see [3, Rem. 5.2]). Then ∇̄e3e6(t) is an even vector, and so e3(t) is an odd

vector. �

Lemma 3.4. If there exists a constant e3 along two geodesics c and c̄ of

L6(p), then e3 is constant all over L6(p).

Proof. Recall that if e3 coincides at two nonantipodal points on a geodesic

c, then e3 is constant along c ([3, Lemma 7.1]). Thus if e3 is constant along

c ∪ c̄, e3 is constant along any geodesic joining a point on c and a point on c′,

and hence by the continuity, constant all over L6. �

Let e3(t), e3̄(t) be an orthonormal frame of D3(t) along a geodesic c(t).

For each t, put W (t) =span {∇̄e3e6(t), ∇̄e3̄e6(t)} ⊂W (c).

Lemma 3.5. dimW (t) is independent of t and takes values 0, 1 or 2.

Proof. If ∇̄e3e6(t0) and ∇̄e3̄e6(t0) are dependent at some t0, then there

exists e′3(t0) = ae3(t0) + be3̄(t0) such that ∇e′3e6 = 0, and hence e′3 is constant

along c (see [3, Lemma 7.1]). Thus dimW (t) = 1 unless e′3̄(t), which is or-

thogonal to e′3(t0), is also constant, in which case dimW (t) = 0. Therefore,

we have dimW (t) = 0, 1 or 2 independent of t. �

Let Γ be the space of oriented geodesics of L6(p) for each p, which is

diffeomorphic to S2. Then d : Γ 3 c 7→ d(c) = dimW (t) ∈ {0, 1, 2} is well

defined by this lemma and is lower-semicontinuous. Thus U = {c ∈ Γ | d(c) =

maxΓ d} is an open subset of Γ. When maxΓ d = 0, D3 = D3(p) is constant

along L3(p). Consider the following cases:

(i) maxΓ d = 1,

(ii) maxΓ d = 2.
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Lemma 3.6. When (i) is the case, there exists e3 which is constant all

over L6(p).

Proof. Since U is open, we may assume that a family of geodesics cs

through p in the direction es6(p) = cos se6(p) + sin se6̄(p) belongs to U . Then

for each s, some es3(p) ∈ D3(p) is constant along cs. If e0
3(p) = es3(p) holds for

some 0 < s < π, then e3 = e0
3(p) is constant all over L6(p) by Lemma 3.4.

When e0
3(p) and es3(p) are independent in D3(p) for all s 6≡ 0 modulo π,

es3(p) lies in D3(p) ∩D3(ps) for each ps ∈ cs ∩ γ, where γ is any fixed geodesic

transversal to cs. Hence es3(p) ∈ E(γ) spans the 2-dimensional space K =

D3(p) along γ, where K is as in Lemma 3.3. Also, without loss of generality,

we may consider that there exists a constant e3̄ along γ, and so E(γ) ⊂ D3(p)+

{e3̄}. However since dimE(γ) is even (Lemma 3.2), this implies E(γ) = D3(p).

Because γ is any geodesic transversal to cs, E = D3(p) follows from [3, Lemma

7.3], which is not the case. �

Proposition 3.7. If there exists some geodesic c of L6(p) such that

dimE(c) > 2, then (i) never occurs on M±.

Proof. Note that dimF (γ) > 2 also holds by [3, Lemma 7.6]. We may

consider d(γ) defined for a geodesic γ of L1(p), where (i) or (ii) occurs similarly.

Assume (i) is the case for M−. Choose any p1 ∈ L6(p), and let p3 be as in

[3, Fig. 1]. Then on L1(p3), there exists e4(p3) which is constant all over

L1(p3) by the previous lemma, and so is e6(p1) all over L3(p1). This means

0 = ∇e1e4(p3) = ∇e3e6(p1), and hence along the geodesic c of L6(p1) in the

direction e6, D3 is constant ([3, Rem. 5.2]). Since p1 ∈ L6(p) is arbitrarily, this

means that at each point of L6(p), there exists a geodesic along which D3 is

constant. Thus by [3, Lemma 7.3], dimE = 2 follows, a contradiction. Thus

(i) cannot occur on M−, and neither on M+. �

Lemma 3.8. When (ii) is the case, the subset U1 = {c ∈ Γ | d(c) ≤ 1} has

no interior points.

Proof. Lemma 3.6 and the proof of Proposition 3.7 are valid on U1 if it

has interior points. �

We call c ∈ U “generic.” Up to here, we do not assume a specific value of

dimE(c).

4. dimE(c) = 4

When dimE(c) > 2 for some geodesic c of L6(p), we only need to consider

the case (ii) by Proposition 3.7.

Lemma 4.1. When dimE(c) = 4 for c ∈ U , we can take e3(t) so that

∇̄e3e6(t) is parallel to ∇̄e3e6(p), and K = spant{e3(t)} is of dimension 2. We
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can express e3(t) = a(t)e3(p) + b(t)∇e6e3(p), or ã(t)e3(p) + b̃(t)e3(q), where

a(t), b(t), ã(t), b̃(t) are odd functions, and q ∈ c is not antipodal to p.

Proof. Since (ii) is the case, dimW (t) = 2 for each t. Since W (t) and

∇̄e3e6(p) are contained in W (c) which is of dimension 2 (Lemma 2.1), we can

find ẽ3(t) so that ∇̄ẽ3e6(t) is parallel to ∇̄e3e6(p). We rewrite ẽ3(t) by e3(t),

and put K = spant{e3(t)}. From dimL(t)K = 1, dimK = 2 or 3 follows.

If dimK = 3, kerL(t) ⊂ K for any t, which contradicts that e3̄(p) is not

contained in K, since ∇̄e3̄e6(p) is independent of ∇̄e3e6(p) (see Lemma 7.1

[3]). The remaining part is as in the proof of Lemma 3.3. �

Remark 4.2. Replacing e3(t) by e3̄(t), we may consider that e3̄(t) also

spans a 2-dimensional subspace K2(c) of E(c). Thus we have E(c) = K1(c) +

K2(c), which is not necessarily an orthogonal decomposition, where

K1(c) = span{e3(p),∇e6e3(p)}, K2(c) = span{e3̄(p),∇e6e3̄(p)}.

5. dimE = 4

In this section, we exclude the case dimE = 4 where E = spancE(c).

Suppose dimE = 4, and let S3
E be the unit sphere of E ∼= R4. For each

x ∈ L6(p), consider the unit circle S1
x ⊂ D3(x) ⊂ E, where D3(x) =kerBηx .

When there is no constant e3 along any geodesic of L6(p), S1
x does not

intersect S1
y for x, y belonging to an open hemisphere U of L6(p), since e3(x) =

e3(y) implies that e3 is constant along the geodesic joining x and y; see [3,

Lemma 7.1]. Thus if y moves in an open neighborhood U ′ ⊂ U of x, namely,

in 2-parameters (s, t), S1
y moves in 2-parameters in S3

E without intersection

continuously and hence generates an open neighborhood Ω ∼= U ′ × S1 of e3(x)

in S3
E .

Lemma 5.1. When dimE = 4, let S = ∪x∈L6(p)S
1
x ⊂ S3

E . If along any

geodesic of L6(p) there is no constant e3, then S = S3
E .

Proof. Obviously, S is a nonempty closed subset of S3
E . On the other

hand, for e3(x) ∈ S at x ∈ L6(p), the above Ω is an open neighborhood of e3(x)

contained in S. Hence S is open. Since S3
E is connected, the lemma follows. �

Lemma 5.2. When dimE = 4, there exists a constant e3 along some

geodesic c.

Proof. We have a rank 2 vector bundle over L6(p) with fiber D3(x) at

x ∈ L6(p). Suppose that along any geodesic of D6(p), there is no constant e3.

Then for any v ∈ S3
E , there exists x ∈ L6(p) such that e3(x) = v by Lemma 5.1.

Here, for any antipodal pair x,−x of L6(p), D3(x) = D3(−x) and so S1
x = S1

−x
holds. On the other hand, under our assumption, D3(y) ∩ D3(x) = {0} if

y 6= −x and so S1
x ∩ S1

y = ∅.
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Thus we can define π : S3
E → L6(p)/Z2 with the local triviality π−1(U ′) ∼=

U ′×S1 where U ′ is as above, and obtain an S1 fibration π : S3
E → L6(p)/Z2

∼=
S2/Z2 = RP 2. However, this is impossible by the Thom-Gysin sequence.

Namely, if there exists an S1 bundle (S3
E ,RP 2, S1), in the exact sequence for

the Z2 homology of this bundle,

→ Hq(S
3
E)→ Hq(RP 2)→ Hq−2(RP 2)→ Hq−1(S3

E)→,

putting q = 3, we have a contradiction. �

Let c be a geodesic appearing in the lemma on which e3(t) is constant,

or equally, ∇e6e3(t) = 0 holds. Let p ∈ c and c be in the direction e6. Along

a generic geodesic cs (s 6= 0, π) in the direction es6 = cos se6 + sin s e6̄ at p,

take es3(t) spanning the 2-dimensional space Ks
1 = {e3(p),∇es6e3(p)}, which is

possible by Proposition 3.7. Here, Ks
1 is independent of s(6= 0, π), because

∇es6e3(p) = cos s∇e6e3(p) + sin s∇e6̄e3(p) = sin s∇e6̄e3(p).

Thus for any s, s′(6= 0, π) and q ∈ cs, there exists x ∈ cs′ such that es3(q) =

es
′

3 (x) (see Lemma 4.1).

Now, take q ∈ L6(p)\ c first, and let cs be the geodesic through p, q. Then

above argument implies that for any s′( 6= 0, π, s), there exists x ∈ cs′ such that

e3(q) = e3(x). Hence e3 is constant along the geodesic γ joining q and x by

[3, Lemma 7.1]. As q is arbitrary, this implies the case (i), which contradicts

Proposition 3.7. Thus we obtain

Proposition 5.3. Neither dimE = 4 nor dimF = 4 can occur.

6. dimE(c) = 4 and dimE > 4

Next, when dimE(c) = 4, we show dimE = 6. Along generic geodesics c

and c̄ through p, put

(6) Ê = E(c)+E(c̄) = D3(p)+span{∇e6e3(p),∇e6e3̄(p),∇e6̄e3(p),∇e6̄e3̄(p)}.

Lemma 6.1. Ê = E and dimE = 6.

Proof. Let cs be the geodesic through p in the direction es6 = cos s e6 +

sin s e6̄. By Proposition 3.7 and Lemma 4.1, it is easy to see E(cs) ⊂ Ê. For any

geodesic γ transversal to cs, take ps ∈ cs ∩ γ. Then from D3(ps) ⊂ E(cs) ⊂ Ê
for every s, we know E(γ) ⊂ Ê. Since γ is arbitrary, we conclude Ê =

E = spanγ E(γ), which is parallel along L6(p). By Lemma 4.1 again, vectors

spanning Ê in (6) are odd. Thus we obtain dimE = 6 by Proposition 5.3. �

Now, put

W = spans,t{∇̄e3es6(t)} = span{∇̄e3e6(p), ∇̄e3̄e6(p), ∇̄e3e6̄(p), ∇̄e3̄e6̄(p)}.
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Proposition 6.2. When dimE(c) = 4, W is orthogonal to E, and all

the shape operators L(s, t) = cos s cos tBη + cos s sin tBζ + sin sBζ̄ map E onto

W , where ζ = e6 and ζ̄ = e6̄.

Proof. From [3, (43)], at any point of L6,

(7) 〈∇e6e3, ∇̄e3e6〉 = 0

holds if two e6 are both e6, or both e6̄, or by the global symmetry (at p3 for

M−), if two e3 are both e3, or both e3̄. Hence we need to show

〈∇e6e3, ∇̄e3̄e6̄〉 = 0,(8)

〈∇e6e3̄, ∇̄e3e6̄〉 = 0.(9)

Since 0 = 〈∇e6+e6̄e3, ∇̄e3̄(e6 + e6̄)〉 = 〈∇e6e3, ∇̄e3̄e6̄〉 + 〈∇e6̄e3, ∇̄e3̄e6〉, it is

sufficient to show either one of (8) or (9). Recall that e3(t) is chosen as in

Lemma 4.1 along c, and we extend e3̄(t), which is orthogonal to e3(t), to

e3̄(s, t) as in Lemma 4.1 along each geodesic c̄t(s) through c(t) in the direction

e6̄(t). Then at pt± ∈ c ∩ c̄t, we have

〈∇e6e3(pt+), ∇̄e3̄e6̄(pt+)〉 = −〈∇e6e3(pt−), ∇̄e3̄e6̄(pt−)〉

since ∇e6e3(t) is odd and ∇̄e3̄e6̄ is even. Thus we have p0 ∈ c at which

〈∇e6e3(p0), ∇̄e3̄e6̄(p0)〉 = 0, namely, (8), and hence (9) hold. Thus W is or-

thogonal to E (by (2) and the statement after it). Since E is parallel and of

dimension 6, W = E⊥ is parallel, and Bη(E) = W .

We know already that L(s, 0) = cos sBη+sin sBζ̄ maps E(c̄) onto W (c̄) ⊂
W ([3, Lemma 5.4]). Thus we need to show that Bζ̄ maps ∇e6e3 into W . Using

[3, (36)], this follows from

Bζ̄(∇e6e3) = c0∇e6̄
(
Bη(∇e6e3)

)
− c0Bη(∇e6̄∇e6e3)

= c0c1∇e6̄∇̄e3e6 − c0Bη(∇e6̄∇e6e3).

In fact, all the second derivatives such as ∇e6̄∇e6e3 are contained in E since

E is parallel, and ∇e6̄∇̄e3e6 ∈W since W = E⊥ is parallel. Hence Bζ̄ maps E

onto W . Similarly, Bζ maps E onto W . �

By this proposition, even when dimE(c) = 4, we can express

(10) L(t) = cos tBη + sin tBζ =

Ç
0 R
tR S

å
, T = tRR,

with respect to the decomposition E6 ⊕W 4 for any ζ ∈ D6(p). In particular,

we can apply the argument [3, §§9–13.2] to this case replacing E(c) by E, and

putting Y = 0 in [3, (106)]. All the results hold as in the case dimE(c) = 6.

Among the most important are Proposition 12.2 and Corollary 12.3, where
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under the assumption ab 6≡ 0, σ and τ become constant along c. The arguments

in [3, §13] are true except for the proof of Proposition 13.6 and Lemma 13.9.

7. Eigenvalues of T

Recall [3, Props. 10.1 and 10.3]. Then in both cases (A) dimE(c) = 6,

and (B) dimE(c) = 4 with dimE = 6, Bη is given by one of the following with

respect to E(c)⊕W (c), and E ⊕W , respectively:

(0) ab 6= 0, T =
Ä
T1 0
0 T2

ä
, T1 =

Ä
σ 0
0 1/σ

ä
, T2 =

Ä
τ 0
0 1/τ

ä
,

S =
Ä
S1 0
0 S2

ä
, S1 = ( 0 a

a 0 ) , S2 =
(

0 b
b 0

)
,

σ +
1

σ
+ a2 =

10

3
, τ +

1

τ
+ b2 =

10

3
.

(I) a = b = 0 and T =
Ä
T̄ 0
0 T̄

ä
, T̄ =

Ä
3 0
0 1/3

ä
, S = 0.

(II) a 6= 0, b = 0 and T =
Ä
T1 0
0 T̄

ä
, S =

Ä
S1 0
0 0

ä
.

In fact, if ab ≡ 0 holds in an open neighborhood of the space of geodesics of

L6(p), either (I) or (II) occurs since σ+ 1/σ+a2 = 10/3 and a similar formula

holds for τ, b [3, (72)]. Note that a 6= 0 is equivalent with αβ 6= 0, as the latter

implies σ 6= 1/3, 3. Similarly, b 6= 0 corresponds to γδ 6= 0 (the last line of [3,

Prop. 11.1]). Therefore, Case (0) occurs only when ab 6≡ 0 which is the case

αβ, γδ 6≡ 0.

The argument in [3, §§12, 13.1, 13.2], treating the case ab 6≡ 0 are quite

important, and Corollary 12.3 is most notable. Based on these results, we show

Proposition 7.1. When ab 6≡ 0, σ = τ ∈ (1/3, 3) holds.

Proof. In the following, we use the notation in [3, §12] and the orthonormal

basis Xi, Zi given by [3, (91), (92)].

Because σ, τ are constant along the geodesic c by [3, Cor. 12.3], differen-

tiating L(t)Xi(t) = νiZi(t) by t where ν1 =
√
σ, ν2 = 1/

√
σ, ν1̄ =

√
τ , ν2̄ =

1/
√
τ , we obtain

Lt(t)Xi(t) + L(t)Ẋi(t) = νiŻi(t).

Note that Ẋi(t) = H(t)Xi(t), Żi(t) = H(t)Zi(t) by [3, (27)], where we use

again that νi’s are constant. Hence putting t = 0, and denoting Xi(0) = Xi

etc., we have

(11) BζXi = −BηH(0)Xi + νiH(0)Zi.

Since ab 6= 0, using [3, (116)], we may put H(0) =
Ä
J1 0
0 J2

ä
, where

J1 =

Ö
H0 X Y

−tX H1 Z

−tY −tZ H2

è
,

Ç
H1 Z

−tZ H2

å
=

á
0 x y z

−x 0 u v

−y −u 0 w

−z −v −w 0

ë
.
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Then (11) is expressed asÇ
0 M
tM N

åÇ
Xi

0

å
= −

Ç
0 A
tA D

åÇ
J1 0

0 J2

åÇ
Xi

0

å
+ νi

Ç
J1 0

0 J2

åÇ
0

Zi

å
,

and hence we obtain

(12) BζXi = tMXi = −tAJ1Xi + νiJ2Zi.

Here and there, we abuse
(

0
V

)
= V or

(
V
0

)
= V , if V ∈ E or V ∈ W is clear.

Since we can express

(13) A =

Ç
02,4

Ā

å
, Ā = diag

Ä√
σ 1/

√
σ
√
τ 1/

√
τ
ä
,

where 0i,j denote the i× j zero matrix, from Xi⊥D3 we have

tAJ1Xi =
Ä
04,2

tĀ
äÖ H0 X Y

−tX H1 Z

−tY −tZ H2

èÇ
02,1

Xi

å
= tĀ

Ç
H1 Z

−tZ H2

å
Xi =

á
0 x

√
σ y

√
σ z

√
σ

−x/
√
σ 0 u/

√
σ v/

√
σ

−y
√
τ −u

√
τ 0 w

√
τ

−z/
√
τ −v/

√
τ −w/

√
τ 0

ë
Xi.

Now, suppose σ 6= τ , namely, a2 6= b2. Then by [3, Prop. 13.3], [3, (138)]

follows, and hence differentiating U2 at t = 0, we have

J2Zi =

á
0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

ë
Zi.

Substituting these into (12), we obtain

tMX1 = −
√
σZ1̄ + x/

√
σZ2 + y

√
τZ1̄ + z/

√
τZ2̄,

tMX2 = −x
√
σZ1 + u

√
τZ1̄ + v/

√
τZ2̄,

tMX1̄ =
√
τZ1 − y

√
σZ1 − u/

√
σZ2 + w/

√
τZ2̄

tMX2̄ = −z
√
σZ1 − v/

√
σZ2 − w

√
τZ1̄.

Therefore, putting tM =
Ä
l1 l2 l3 l4 l5 l6

ä
, by (12) we have

(14)
Ä
l3 l4 l5 l6

ä
=

á
0 −x

√
σ
√
τ − y

√
σ −z

√
σ

x/
√
σ 0 −u/

√
σ −v/

√
σ

−
√
σ + y

√
τ u

√
τ 0 −w

√
τ

z/
√
τ v/

√
τ w/

√
τ 0

ë
.
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From this and (13), it follows

(15) tMA =

à
0 −x τ − y

√
στ −z

»
σ/τ

x 0 −u
»
τ/σ −v/

√
στ

−σ + y
√
στ u

»
τ/σ 0 −w

z
»
σ/τ v/

√
στ w 0

í
.

Therefore, we obtain

(16) tAM + tMA =

á
0 0 τ − σ 0

0 0 0 0

τ − σ 0 0 0

0 0 0 0

ë
.

On the other hand, we know

(17) tAA = diag
Ä
σ 1/σ τ 1/τ

ä
,

and so

(18) tMM = U2
tAAtU2 =

á
(σ + τ)/2 0 (σ − τ)/2 0

0 1/σ 0 0

(σ − τ)/2 0 (σ + τ)/2 0

0 0 0 1/τ

ë
follows, where U2 is given by [3, (138)]. Thus in t(cA + sM)(cA + sM) =

c2(tAA) + s2(tMM) + cs(tAM + tMA), where c = cos t, s = sin t, the second

and the fourth columns and rows make
(

1/σ 0
0 1/τ

)
. On the other hand, the first

and the third columns and rows yieldÇ
c2σ + s2(σ + τ)/2 s2(σ − τ)/2 + cs(τ − σ)

s2(σ − τ)/2 + cs(τ − σ) c2τ + s2(σ + τ)/2

å
,

which has eigenvalues σ and τ for all c, s. Then as its determinant

(c2σ + s2(σ + τ)/2)(c2τ + s2(σ + τ)/2)− {s2(σ − τ)/2 + cs(τ − σ)}2

should be identically στ , noting the coefficient of cs3, we obtain σ = τ , a

contradiction. Thus when ab 6= 0, σ = τ 6= 3, 1/3, occurs. �

8. Proof of Proposition 13.6 of [3]

In the proof of Proposition 13.6 in [3], the exclusion of dimK = 4 or

dimK = 2 fails in Lemma 13.9, where we use an incorrect result in [3, §8]. In

both cases (A) dimE(c) = 6 and (B) dimE(c) = 4 and dimE = 6, we give a

correct proof here.

First, we remark that Case (II) is excluded in [3, Prop. 14.1] independent

of the other argument, and the proof is also applicable to E when (B) occurs.

Therefore, we may consider only the cases (0) and (I).
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We emphasize αβ 6≡ 0 in Case (0). In this case, W (c) (Case (A)), or W

(Case (B)) is contained in the space spanned by vectors given by [3, (92)],

where σ = τ, α = γ, β = δ by Proposition 7.1:

(19)

Z1 = 1√
σ

(√
3α(e1 − e5) + β√

3
(e2 − e4)

)
, Z2 = β(e1 + e5)− α(e2 + e4),

Z1̄ = 1√
σ

(√
3α(e1̄ − e5̄) + β√

3
(e2̄ − e4̄)

)
, Z2̄ = β(e1̄ + e5̄)− α(e2̄ + e4̄).

Here Z2, Z2̄ are parallel along c ([3, Prop. 13.4]).

8.1. Case (A).

Proposition 8.1. When Case (0) occurs, Case (A) is impossible.

Proof. Suppose Case (0) and Case (A) occur. We restate the argument in

the beginning of §13.3 [3]. Since dimW (c) = 4, denoting by Z⊥2̄ the orthogonal

complement of Z2̄ in W (c), we know dim
(
Z⊥2̄ ∩W (t)

)
= 3 + 2− 4 ≥ 1. Thus

we can choose e3(t) so that ∇e3e6(t) ∈ Z⊥2̄ for all t. Then K = span{e3(t)} is

mapped into Z⊥2̄ by L(t), and so dimK ≤ 5. As we know dimK 6= 3, 5 by the

first part of Lemma 13.9, and by Lemma 13.10 of [3], which are correct, we

may consider the case dimK = 4 or 2.

When dimK = 4, L(t)K = span{Z1(t), Z1̄(t), Z2} for each t. Thus K

contains e3(t), X1(t), X1̄(t), X2(t), which implies that

K = span{e3(t), X1(t), X1̄(t), X2(t)}

for each t. Then the orthogonal complement of K in E(c) is given by K⊥ =

span{e3̄(t), X2̄(t)} for each t, which is parallel along c. Thus using a frame

at p, we may express K = span{e3, X1, X2, X1̄} and K⊥ = span{e3̄(t)} =

span{e3̄, X2̄}.
Since Z2 and Z2̄ are constant along c, Zs2̄ = cos sZ2 + sin sZ2̄ is constant

along c for each s. Apply the above argument to Zs2̄ for s 6≡ π/2 modulo π.

Namely, if we take es3(t) along c so that ∇es3e6(t) is orthogonal to Zs2̄ , the space

Ks = span{es3(t)} is of dimension 4 or 2. If dimKs = 4, then es3̄(t) which is

orthogonal to es3(t) spans the 2-dimensional space (Ks)⊥ = {es3̄, X
s
2̄}, where

Xs
2̄ = cos sX2 + sin sX2̄. Since e3̄(t) and es3̄(t) are independent because so are

∇e3̄e6(t) and ∇es
3̄
e6(t), we obtain

D3(t) = span{e3̄(t), es3̄(t)} ⊂ {e3̄, e
s
3̄, X2̄, X

s
2̄},

which implies dimE(c) = 4 because of (1), a contradiction. Thus dimKs = 2,

but again in this case, e3̄(t) and es3(t) are independent, and we have

D3(t) = span{e3̄(t), es3(t)} ⊂ {e3̄, e
s
3, X2̄, X

s
2},

where Xs
2 = − sin sX2 + cos sX2̄, which contradicts dimE(c) = 6. The case

dimK = 2 is similarly excluded. �
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8.2. Case (B).

Proposition 8.2. When (B) occurs, Case (0) is impossible. Hence Case

(0) never occurs.

Proof. When (B) is the case, Lemma 6.1 implies that E = E(c) +E(c̄) is

of dimension 6 and W = W (c) +W (c̄) is of dimension 4, where c̄ is a geodesic

orthogonal to c at p. In fact, this is true for generic c̄ transversal to c.

By [3, Prop. 13.4] applied to W , Z2, Z2̄ are constant. Also by Lemma 4.1,

we may consider thatK = span{e3(t)} and K̄ = span{e3̄(t)} are 2-dimensional,

and Z2 = ∇e3e6(t)/|∇e3e6(t)|, Z2̄ = ∇e3̄e6(t)/|∇e3̄e6(t)| hold. Thus we obtain

W (c) = span{Z2, Z2̄}.(20)

As we assume Case (0) for generic geodesic cs in the direction es6 = cos s e6 +

sin s e6̄, there exist Zs2 , Z
s
2̄ constant along cs and W (cs) = span{Zs2 , Zs2̄}. Note

that these Zs2 , Z
s
2̄ are different from those in the last subsection (which was

along c). Since W (cs) ⊂W = {Z1, Z2, Z1̄, Z2̄}, we may express

Zs2 = βs(es1 + es5)− αs(es2 + es4) = xsZ1 + ysZ2 + zsZ1̄ + wsZ2̄,

Zs2̄ = βs(es1̄ + es5̄)− αs(es2̄ + es4̄) = x̄sZ1 + ȳsZ2 + z̄sZ1̄ + w̄sZ2̄

(21)

for some esi ∈ Di(p) and αs, βs. As their D1 component and D5 component

have the same length, we obtainÇ
xs
√

3α√
σ

+ ysβ

å2

+

Ç
zs
√

3α√
σ

+ wsβ

å2

=

Ç
−xs
√

3α√
σ

+ ysβ

å2

+

Ç
−zs
√

3α√
σ

+ wsβ

å2

for each s, and a similar formula holds for x̄s etc. Here, σ = 2
(
3α2 + β2/3

)
as

in [3, (99)]. From this and αβ 6= 0, it follows

xsys + zsws = 0, x̄sȳs + z̄sw̄s = 0.

Rotating Zs2 , Z
s
2̄ in W (cs), we may assume ȳs ≡ 0 for each s. Moreover, since

es6 = cos s e6 + sin s e6̄ is odd in s, ys = 〈∇e3es6, Z2〉 is odd in s. Hence there

exists some s0 such that ys0 = 0, and we have

(22) zs0ws0 = 0 and z̄s0w̄s0 = 0.

Lemma 8.3. Under the above assumption, W (cs0) = span{Z1, Z1̄} holds.

Proof. For the moment, we omit s0 in (22). We have four cases. The case

z = z̄ = 0 causes W (cs0) = span{Z1, Z2̄}, which is impossible in view of (21)

(see also (19)). Next, when w = w̄ = 0 holds, the conclusion follows. When
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w = z̄ = 0, we have

Zs02 = xZ1 + zZ1̄, Zs0
2̄

= x̄Z1 + w̄Z2̄.

Since Zs2 andZs2̄ are orthogonal, we have xx̄ = 0. If x̄ = 0, Zs0
2̄

= Z2̄, then by

(21), Zs02 = xZ1 + zZ1̄ is impossible. Thus x = 0 holds, and from (21), we

obtain w̄ = 0, and the conclusion follows. The case z = w̄ = 0 is similar. �

Proof of Proposition 8.2. As we can apply the above argument at any

point q ∈ c, there exists sq such that along the geodesic cq = csq through

q, W (cq) = span{Zsq2 , Z
sq
2̄
} = span{Z1(q), Z1̄(q)} = span{Z2(q), Z2̄(q)}⊥ =

span{Z2, Z2̄}⊥, since {Z2, Z2̄} is parallel along c. Thus putting H = {Z2, Z2̄}⊥,

we obtain W (cq) = H for any q ∈ c.
Now, let c1 = csp and c2 = csq for any q ∈ c, p 6= ±q. Note that

W (c1) = H = W (c2). For x ∈ c1 ∩ c2, we can express E(ci) = D3(x) ⊕ Ji
for some 2-dimensional Ji perpendicular to D3(x), i = 1, 2, which are mapped

by Bηx onto H. Hence, J1 = J2, and so E(c1) = E(c2) holds. Next, for any

geodesic γ transversal to c1 and c2, take xi ∈ γ ∩ ci. Then dimE(γ) = 4

implies E(γ) = D3(x1) + D3(x2) ⊂ E(c1) + E(c2) = E(c1). Thus we obtain

E(γ) = E(c1). Since any point y ∈ L6(p) lies on some geodesic transversal

to c1 and c2 unless y lies on c1 or c2, D3(y) ⊂ E(c1) always holds. Hence

E = E(c1) and dimE = 4 follows, which contradicts Proposition 5.3. �

By this proposition and by the remark in the beginning of this section,

only Case (I) is possible on both M±, which is excluded in [3, Prop. 14.4]. Note

that the argument is available to both cases (A) and (B). Thus we obtain

Theorem 8.4. The focal submanifolds of an isoparametric hypersurface

with (g,m) = (6, 2) have the shape operators Bn whose kernel does not depend

on n.

This proves Theorem 1.1 by the argument in Section 15 of [3].
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