Annals of Mathematics 183 (2016), 1057-1071
http://dx.doi.org/10.4007 /annals.2016.183.3.7

Errata of “Isoparametric hypersurfaces
with (g, m) = (6,2)”

By REIKO MIYAOKA

Abstract

We give a correction of the proof of the homogeneity of isoparametric
hypersurfaces with (g, m) = (6,2).

1. Introduction

In [2], [3], and [4], we discuss the homogeneity of isoparametric hypersur-
faces M with six principal curvatures by investigating the kernel of the shape
operators of the focal submanifolds. In fact, M is homogeneous if and only
if the kernel is independent of the normal direction [1], [3, §15]. Using this,
we reprove the homogeneity for multiplicity m = 1 in [2], [4] and try to prove
it for m = 2 in [3]. However, in Sections 8 and 13.3 of [3], there are some
inappropriate arguments.

The purpose of this paper is to correct Section 8 and Proposition 13.6 in
[3], where the argument to exclude the case dim K = 1,2 or dim E(c) = 4 fails.
The correction is now achieved. In Section 3 we rewrite the entire Section 8
[3]. We exclude the case dim E = 4 in Section 5 and the case dim E = 5 in
Section 6. Then in Sections 7 and 8, we settle the case dim E(c) or dim F = 6.

Thus we obtain

THEOREM 1.1. Isoparametric hypersurfaces with (g,m) = (6,2) are ho-
mogeneous.

Remark 1.2. In addition to the revision of Sections 8 and 13.3 of [3], we
need some minor changes as follows: There are typos: In (i) on page 81, Y}V
and Yy  should be YIV and YQV. In (94) on page 84, %3 in é; and é4 should be

v/3. The notation v; in the fourth to ninth lines of page 95 might be confusing,
and we had better replace it by, say, w;. All other parts of [3] are correct as
they are.
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2. A brief summary of Sections 1-7 in [3]

Let M be an isoparametric hypersurface in S13 with (g, m) = (6,2), where
g is the number of distinct principal curvatures and m is the multiplicity which
is common among different principal curvatures when g = 6. The ambient
sphere S'3 is singularly foliated by parallel hypersurfaces of M and two focal
submanifolds My. Choosing a unit normal vector field ¢ of M, we denote the
principal curvatures by A1 > --- > Ag and their curvature distributions by D;,
1 =1,...,6. We take an orthonormal frame e;, e; of each D;. We write ¢ for
i and 7. Consider the focal submanifold My at which each leaf Lg(p) of Dg
collapses into a point p = cosfp + sinf ¢, where p € M and 0 = cot ™t Xg.
Then TpMy = @2_,Di(q) and T5-M, = Ry, & Dg(q) hold for all ¢ € Dg(p)
and 1y, = —sinfg + cos0¢,;. Another focal submanifold M_ is obtained by
replacing Dg by Dy and 0 by 6 = cot™! A\;. Note that TM_ = ®¢_,D;(q) and
TI%M_ = R#), ® D1(q) for all ¢ € Dy(p) and 7, = —sinfg + cos0¢,. By the
argument in Sections 1-7 and 15 of [3], we know the following:
Fact. (1) The shape operators By, of My with respect to a unit normal
n € T+ M, are isospectral with eigenvalues py = /3 = —ps, po = 1/3/3 =
—pg and pz = 0. The eigenspace of p; of By, is given by D;(p).
(2) At the focal point p, the unit sphere S? in T;]\Lr is identified with the
leaf Le(p) of Dg. Take ¢ = eg(p) in TﬁlM+. The geodesic ¢ = {p(t)} of
S% = Lg(p) through p in the direction ¢ corresponds to a one parameter
family of normal vectors costn + sint ¢ of My. Then the shape operator
L(t) = costB, +sintB¢ of My has ker L(t) = D3(p(t)).
(3) M is homogeneous if and only if ker L(t) is independent of t and {, namely,
if and only if D3 is invariant on each Lg.
All these hold if we replace My by M_ and index i by i + 1 modulo 6.

Now, for a geodesic ¢ of Lg(p), put
(1) E(c) = span,kerL(t).

Then Theorem 1.1 is proved if we show dim E(c) = 2 for any c of any Lg (see
[3, §15]). Recall [3, (42)]

- E(c) = span{ez(q), Vies(q), k =1,2,...}
W(e) = Span{@eéeﬁ(q), V’;j@e;e@(q), k=1,2,...},
which do not depend on the choice of ¢ € c. Note that
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LEMMA 2.1 ([3, Lemmas 5.3, 5.4, and (46) of Lemma 6.1]). W(c) C
E(c)t. Moreover, L(t) maps E(c) onto W(c) for any t, and dimW(c) =
dim E(c) — 2 holds.

For a fixed Lg(p), we put
(3) E = span{E(c) | ¢: a geodesic of Lg(p)}.

3. Dimension of E(c)

To investigate the dimension of F(c) or F under the supposition dim E(c)
> 2, we need a special frame of D3(t) along a geodesic ¢ = {p(t)} of Lg(p),
parametrized by ¢ so that p(0) = p(27). For a vector field v(t) along ¢, we call
v(t) even when v(t+m) = v(t), and odd when v(t+ ) = —v(t). We sometimes
denote p(t) = c(t).

LEMMA 3.1. If e3(t) is an even (odd, resp.) wector along c, then es(t),
Veges(t), VZes(t),... are all even (odd, resp.) vectors. On the other hand,
Vese6(t), VegVeses(t), V2, Veses(t), ... are all odd (even, resp.) vectors.

Proof. The former is clear from V¥ es(t+1) = V¥ e3(t). The latter follows
from L(t + ) = —L(t) and L(t)(Vegez(t)) = c1Veses(t) (see [3, Lemma 5.1,
(36)]). Then its derivatives in the direction eg(¢) are all odd. The case when
es(t) is odd is similar. O

LEMMA 3.2. dim E(c) must be even.

Proof. There are no odd dimensional subspace of T M, parallel along ¢
and consisting of odd vectors, because of the continuity of the determinant of
a moving frame. By [3, Lemma 7.7], we can choose e3(t), e3(t) so that E(c)
consists of all even or all odd vectors. By Lemma 3.1, evenness and oddness
of the vectors in E(c) and in W (c) are opposite. Since both E(c) and W (c)
are parallel and dim W (c) = dim F(c¢) — 2 (Lemma 2.1), dim E(c) must be
even. U

LEMMA 3.3. If a differentiable field es(t) spans a 2-dimensional space
K = span{es(t)}, then es(t) is an odd vector.

Remark 3.4. A typical case is when e3(t) = cost u+sin t v for orthonormal
vectors uw and v. Usually, the coefficient functions are general odd functions
and w and v are not necessarily orthonormal.

Proof. Assume dim K = 2; then it follows V,e3(p) # 0 modulo Ds(p) ([3,
Rem. 5.2]). Using g = p(7/2), we can express K = span{es(p),e3(q)}. Thus
we have

(4) e3(t) = alt)es(p) +b(t)es(q) € K.
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Recall [3, (37)]

Be(e3(p)) = =Veses(p).
Because e3(q) €KerL(m/2) =ker B¢, exchanging p and ¢, we have

By (e3(q)) = Veses(q),
since By, = —L(n/2+ m/2) and B¢ = L(n/2). Therefore, denoting c¢(t) = cost
and s(t) = sint, by (4) we have

0 = L{t)es(t) = (c(t) By + s(t) Bo)alt)es(p) + bi(t)eala))
b(t)c(t) Byles (@) + alt)s(t) Bees (v))
= b(t)c(t)Veses(q) — a(t)s(t)Veses(p)

for all t. From this it follows

(5) V63€6(Q) = uVe,ye6(p)

for some nonzero u. Thus W = L(¢)K is a 1-dimensional space consisting of
Vese6(t) which is a nonzero and hence a positive scalar multiple of V,eg(p)
(see [3, Rem. 5.2]). Then V.,eq(t) is an even vector, and so ez(t) is an odd
vector. U

LEMMA 3.4. If there exists a constant es along two geodesics ¢ and ¢ of
Lg(p), then ez is constant all over Lg(p).

Proof. Recall that if e3 coincides at two nonantipodal points on a geodesic
¢, then e3 is constant along ¢ ([3, Lemma 7.1]). Thus if e3 is constant along
cU ¢, e3 is constant along any geodesic joining a point on ¢ and a point on ¢/,
and hence by the continuity, constant all over Lg. U

Let e3(t),e5(t) be an orthonormal frame of Ds(t) along a geodesic ¢(t).
For each t, put W (t) =span {V,es(t), Veses(t)} C W(c).

LEMMA 3.5. dim W (t) is independent of t and takes values 0, 1 or 2.

Proof. If Ve,eg(to) and ?6366(1‘/0) are dependent at some tg, then there
exists e5(to) = aes(to) + bes(to) such that Ve e6 =0, and hence es is constant
along ¢ (see [3, Lemma 7.1]). Thus dim W (t) = 1 unless e5(t), which is or-
thogonal to e5(to), is also constant, in which case dim W (t) = 0. Therefore,
we have dim W (t) = 0, 1 or 2 independent of ¢. O

Let T' be the space of oriented geodesics of Lg(p) for each p, which is
diffeomorphic to S?. Then d : ' 3 ¢ +— d(c) = dimW(t) € {0,1,2} is well
defined by this lemma and is lower-semicontinuous. Thus & = {c € T | d(c) =
maxrp d} is an open subset of I'. When maxrd = 0, D3 = D3(p) is constant
along L3(p). Consider the following cases:

(i) maxpd =1,
(ii) maxpd = 2.
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LEMMA 3.6. When (i) is the case, there exists ez which is constant all
over Lg(p).

Proof. Since U is open, we may assume that a family of geodesics c¢*
through p in the direction e§(p) = cos seg(p) + sin seg(p) belongs to U. Then
for each s, some e5(p) € D3(p) is constant along c®. If e)(p) = €5(p) holds for
some 0 < s < 7, then ez = e3(p) is constant all over Lg(p) by Lemma 3.4.

When €)(p) and e§(p) are independent in D3(p) for all s # 0 modulo T,
e5(p) lies in D3(p) N D3(ps) for each ps € ¢® Ny, where ~ is any fixed geodesic
transversal to ¢®. Hence e3(p) € E(y) spans the 2-dimensional space K =
Ds(p) along v, where K is as in Lemma 3.3. Also, without loss of generality,
we may consider that there exists a constant ez along v, and so E(y) C Ds(p)+
{e3}. However since dim E(7) is even (Lemma 3.2), this implies E(v) = D3(p).
Because 7 is any geodesic transversal to ¢*, E = D3(p) follows from [3, Lemma
7.3], which is not the case. O

PROPOSITION 3.7. If there exists some geodesic ¢ of Lg(p) such that
dim E(c) > 2, then (i) never occurs on M.

Proof. Note that dim F'(y) > 2 also holds by [3, Lemma 7.6]. We may
consider d(vy) defined for a geodesic 7y of L1 (p), where (i) or (ii) occurs similarly.
Assume (i) is the case for M_. Choose any p1 € Lg(p), and let ps be as in
[3, Fig. 1]. Then on Li(p3), there exists es(p3) which is constant all over
Li(p3) by the previous lemma, and so is eg(p1) all over Ls(py). This means
0 = Ve, ea(p3) = Veges(p1), and hence along the geodesic ¢ of Lg(p1) in the
direction eg, D3 is constant ([3, Rem. 5.2]). Since p; € Lg(p) is arbitrarily, this
means that at each point of Lg(p), there exists a geodesic along which Ds is
constant. Thus by [3, Lemma 7.3], dim £ = 2 follows, a contradiction. Thus
(i) cannot occur on M_, and neither on M. O

LEMMA 3.8. When (ii) is the case, the subsetUy = {c € I | d(c) < 1} has
no interior points.

Proof. Lemma 3.6 and the proof of Proposition 3.7 are valid on U; if it
has interior points. O

We call ¢ € U “generic.” Up to here, we do not assume a specific value of
dim E(c).

4. dim E(c) =4

When dim E(c) > 2 for some geodesic ¢ of Lg(p), we only need to consider
the case (ii) by Proposition 3.7.

LEMMA 4.1. When dim E(c) = 4 for ¢ € U, we can take e3(t) so that
Veseo(t) is parallel to Veseq(p), and K = span,{es(t)} is of dimension 2. We
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can express e3(t) = a(t)es(p) + b(t)Veses(p), or a(t)es(p) + b(t)es(q), where

a(t),b(t),a(t),b(t) are odd functions, and q € ¢ is not antipodal to p.

Proof. Since (ii) is the case, dim W (t) = 2 for each ¢. Since W (t) and
Vese6(p) are contained in W (e) which is of dimension 2 (Lemma 2.1), we can
find é3(t) so that Vzeg(t) is parallel to Ve,eq(p). We rewrite é3(t) by es(t),
and put K = span;{e3(t)}. From dimL(¢)K = 1, dimK = 2 or 3 follows.
If dimK = 3, ker L(t) C K for any t, which contradicts that es(p) is not
contained in K, since V,es(p) is independent of Veyeg(p) (see Lemma 7.1
[3]). The remaining part is as in the proof of Lemma 3.3. O

Remark 4.2. Replacing e3(t) by e3(t), we may consider that ez(t) also
spans a 2-dimensional subspace Ks(c) of E(c). Thus we have E(c) = Ki(c) +
Ks(c), which is not necessarily an orthogonal decomposition, where

Ki(c) = span{e3(p), Veges(p)},  Ka(c) = spanfez(p), Vesez(p)}-
5. dimE =4

In this section, we exclude the case dim E = 4 where E = span, F(c).

Suppose dim E = 4, and let S% be the unit sphere of E = R*. For each
z € Lg(p), consider the unit circle S; C Ds(z) C E, where D3(z) =ker By, .

When there is no constant e3 along any geodesic of Lg(p), St does not
intersect S; for x,y belonging to an open hemisphere U of Lg(p), since e3(z) =
es(y) implies that es is constant along the geodesic joining x and y; see [3,
Lemma 7.1]. Thus if ¥ moves in an open neighborhood U’ C U of x, namely,
in 2-parameters (s,t), S; moves in 2-parameters in S% without intersection
continuously and hence generates an open neighborhood Q =2 U’ x S! of e3(x)
in S%.

LEMMA 5.1. When dimE = 4, let S = UIEL@(}J)S;: C S3. If along any
geodesic of Lg(p) there is no constant e3, then S = S3,.

Proof. Obviously, S is a nonempty closed subset of S%. On the other
hand, for e3(x) € S at x € Lg(p), the above 2 is an open neighborhood of e3(x)
contained in S. Hence S is open. Since S3, is connected, the lemma follows. O

LEMMA 5.2. When dim E = 4, there exists a constant ez along some
geodesic c.

Proof. We have a rank 2 vector bundle over Lg(p) with fiber Ds(x) at
x € Lg(p). Suppose that along any geodesic of Dg(p), there is no constant es.
Then for any v € S%, there exists x € Lg(p) such that e3(z) = v by Lemma 5.1.
Here, for any antipodal pair z, —z of Lg(p), D3(z) = D3(—x) and so SL = St
holds. On the other hand, under our assumption, D3(y) N D3(xz) = {0} if
y# —x and so S} NS, = 0.
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Thus we can define 7 : S3, — Lg(p)/Z2 with the local triviality 7—(U’)
U’ x S1 where U’ is as above, and obtain an S! fibration 7 : S3, — Lg(p)/Zs
S2/7Zy = RP%  However, this is impossible by the Thom-Gysin sequence.
Namely, if there exists an S! bundle (53, RP?, S!), in the exact sequence for
the Zs homology of this bundle,

— H,(S%) — Hy(RP?) — H, 2(RP?) — H, 1(S%) —,

1R

putting ¢ = 3, we have a contradiction. O

Let ¢ be a geodesic appearing in the lemma on which es3(t) is constant,
or equally, V..e3(t) = 0 holds. Let p € ¢ and ¢ be in the direction eg. Along
a generic geodesic ¢® (s # 0,7) in the direction ef§ = cosses + sinseg at p,
take e5(t) spanning the 2-dimensional space K7 = {e3(p), Veses(p)}, which is
possible by Proposition 3.7. Here, K7 is independent of s(# 0, ), because

Veses(p) = cossVeges(p) +sinsVeges(p) = sinsVees(p).

Thus for any s,s'(# 0,7) and ¢ € ¢®, there exists x € ¢* such that e5(q) =
e () (see Lemma 4.1).

Now, take ¢ € Lg(p) \ ¢ first, and let ¢® be the geodesic through p, q. Then
above argument implies that for any s'(# 0,7, s), there exists z € ¢’ such that
e3(q) = es(x). Hence e3 is constant along the geodesic v joining ¢ and = by
[3, Lemma 7.1]. As ¢ is arbitrary, this implies the case (i), which contradicts
Proposition 3.7. Thus we obtain

PROPOSITION 5.3. Neither dim E = 4 nor dim F' = 4 can occur.

6. dim F(c) =4 and dim E > 4

Next, when dim F(c) = 4, we show dim E' = 6. Along generic geodesics ¢
and ¢ through p, put

(6) E = E(C) +E(E) = D3(p)+span{ve663(p), Vegeg(P), v€6€3(p)’ Vegeg(P)}-
LEMMA 6.1. E = E and dim E = 6.
Proof. Let ¢® be the geodesic through p in the direction e§ = cossegs +
sin s eg. By Proposition 3.7 and Lemma 4.1, it is easy to see F(c¢®) C E. For any
geodesic v transversal to ¢®, take p® € ¢® N~v. Then from D3(p®) C E(¢®) C E

for every s, we know E(y) C E. Since v is arbitrary, we conclude E =
E = span,, E(y), which is parallel along Lg(p). By Lemma 4.1 again, vectors

spanning E in (6) are odd. Thus we obtain dim F = 6 by Proposition 5.3. O

Now, put
W = Spans,t{vegeg(t)} = Span{v€3€6(p)7 v6366(]9)7 v6366(]3)7 Vegeé(p)}'
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PROPOSITION 6.2. When dim E(c) = 4, W is orthogonal to E, and all
the shape operators L(s,t) = cos s costB,, + cos ssint B + sin sBz map E onto
W, where ¢ = eg and { = eg.

Proof. From [3, (43)], at any point of Lg,

(7) (Veges, Vegeg) =0

holds if two eg are both eg, or both eg, or by the global symmetry (at p3 for
M_), if two e3 are both e3, or both e3. Hence we need to show

(8) (Veges, Veseq)
(9) <v€6637 ?63€6>

0,
0.

ol

Since 0 = (Vegieze3, Ves(es + €5)) = (Veges, Veseg) + (Veses, Vegep), it s
sufficient to show either one of (8) or (9). Recall that e3(t) is chosen as in
Lemma 4.1 along ¢, and we extend e3(t), which is orthogonal to e3(t), to
e3(s,t) as in Lemma 4.1 along each geodesic ¢(s) through c(t) in the direction
eg(t). Then at p!, € cNét, we have

<v66€3(p€r)7 ?egeé(pi» = _<v66€3(pt—)7 ?egeé(pt—»

since Veges(t) is odd and V,eg is even. Thus we have pg € ¢ at which
(Veges(po), Veseg(po)) = 0, namely, (8), and hence (9) hold. Thus W is or-
thogonal to E (by (2) and the statement after it). Since F is parallel and of
dimension 6, W = E is parallel, and B,(E) = W.

We know already that L(s,0) = cos s B, +sin s Bf maps E(¢) onto W (¢) C
W ([3, Lemma 5.4]). Thus we need to show that Bz maps V¢seg into W. Using
[3, (36)], this follows from

Be(Veyes) = oV (By(Veges)) — coBy(Veg Veges)
= Coclve(—;?egeﬁ — c0By(Ve;Veses).

In fact, all the second derivatives such as Veg Veges are contained in E since
E is parallel, and V¢, ?eg% € W since W = E* is parallel. Hence B maps E
onto W. Similarly, B maps E onto W. U

By this proposition, even when dim E(c) = 4, we can express

0 R

(10) L(t) = cost B, + sint B¢ = (tR o

) , T='RR,

with respect to the decomposition E® @ W* for any ¢ € Dg(p). In particular,
we can apply the argument [3, §§9-13.2] to this case replacing F(c) by E, and
putting Y = 0 in [3, (106)]. All the results hold as in the case dim E(c) = 6.
Among the most important are Proposition 12.2 and Corollary 12.3, where
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under the assumption ab # 0, o and 7 become constant along c¢. The arguments
in [3, §13] are true except for the proof of Proposition 13.6 and Lemma 13.9.

7. Eigenvalues of T

Recall [3, Props. 10.1 and 10.3]. Then in both cases (A) dim E(c) = 6,
and (B) dim F(c) = 4 with dim F = 6, B, is given by one of the following with
respect to E(c) @ W(c), and E @& W, respectively:

(0) ab#0,T = (OTg) = (Ol?a)vTQZ(gl(/)T)’

S=(35) s=(25), S=(35),

10 1 ., 10
J—{—f—i—a:—,T—i— +b°=—.
AN y
(I)a:b:OandT:(g% (01/3),S=

T =
(II)a;&O,b:OandT—( )
In fact, if ab = 0 holds in an open nelghborhood of the space of geodesics of
Lg(p), either (I) or (II) occurs since o+ 1/0 +a? = 10/3 and a similar formula
holds for 7,b [3, (72)]. Note that a # 0 is equivalent with a3 # 0, as the latter
implies o # 1/3,3. Similarly, b # 0 corresponds to v # 0 (the last line of [3,
Prop. 11.1]). Therefore, Case (0) occurs only when ab # 0 which is the case
af,v0 £ 0.

The argument in [3, §§12, 13.1, 13.2], treating the case ab #Z 0 are quite
important, and Corollary 12.3 is most notable. Based on these results, we show

PROPOSITION 7.1. When ab# 0, 0 =7 € (1/3,3) holds.

Proof. In the following, we use the notation in [3, §12] and the orthonormal
basis X;, Z; given by [3, (91), (92)].

Because o, 7 are constant along the geodesic ¢ by [3, Cor. 12.3], differen-
tiating L(t)X;(t) = v;Z;(t) by t where vy = \/o,1p = 1/\/o,v; = \/T,v5 =
1/4/T, we obtain

Li(#) Xi(t) + L) Xy(t) = viZi(t).
Note that X;(t) = H(t)Xi(t), Zi(t) = H(t)Z;(t) by [3, (27)], where we use
again that v;’s are constant. Hence putting ¢ = 0, and denoting X;(0) = X;
etc., we have

(11) BCXi = —BnH(O)XZ + VEH(O)ZZ

Since ab # 0, using [3, (116)], we may put H(0) = (‘61 })2 ), where

0 = Yy oz

ftfo X Y H, 7 —x 0 u v

So=( X Ho 2, —tZ Hy - -y —u 0 w
-Y Sz H —z —v —w 0
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Then (11) is expressed as
0 MY (X\_ (0 A\(h 0\ (XY, (7 0)(0
tmM N)\o)” " \ta p)\o 1)\o No »)\z)
and hence we obtain

(12) BCXA = tMXE = —tAJlXi—l- ViJQZZ-

Here and there, we abuse () =V or (}) =V, if Ve Eor V e W is clear.
Since we can express

(13) A= (%{), fl:diag(ﬁ /o T 1/\5)7
where 0; ; denote the i x j zero matrix, from X; 1 D3 we have
Hy X Y 0
PALX; = (042 *A) | —'X H1 Z < )2(1)
_tY _tZ H2 z

LT

1 H Z o —x/+/O 0 u/\o v/\o 4

A ) S e )
—2/\T —v/\/T —w/\/T 0

Now, suppose o # 7, namely, a? # b%. Then by [3, Prop. 13.3], [3, (138)]
follows, and hence differentiating Us at t = 0, we have

0 010
0 00 0
RZi=1 1 990 |%
0 00 0

Substituting these into (12), we obtain

'"MX\ = —0Zi + /oo + yJTZ1 + 2/ T Z3,
'MXy = —2\/0Zy +u\TZ7 +v/\/T 25,

"MX1 =121~ yJoZi —u/\oZs +w/VTZ
"MX5 = —2\/07) —v/\0Zy —w\/TZ7.

Therefore, putting ‘M = (l1 lo I3 Iy 5 lg), by (12) we have

0 —2\o VT-y/o —2/0
14) (s U &5 lg)=| _ \gﬁ /7 u?ﬁ _“éﬁ __7;/\/\/;7
ANT O oNT O w/YT 0
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From this and (13), it follows
0 —x  T—yor —z\/o/T
(15) EAfA — x 0 —u\/T/0  —v/\JoT
—o+yJor u\/T/o 0 —w
z\Jo/T v/\[oT w 0

Therefore, we obtain

0 0 7—o O
t t . 0 0 0 0
(16) AM +"'MA = - 0 0 0
0 0 0 0
On the other hand, we know
(17) 'AA = diag (a /o T 1/7') ,
and so
(c+7)/2 0 (oc—7)/2 0
t it oA AtTT 0 1/o 0 0
(18) MM =0 AUz = (5 0 (64+7)/2 0
0 0 0 1/7

follows, where Us is given by [3, (138)]. Thus in !(cA + sM)(cA + sM) =
A(AA) + s2(PMM) + es(*tAM + 'M A), where ¢ = cost, s = sint, the second
and the fourth columns and rows make ( lég 1?7 ) On the other hand, the first
and the third columns and rows yield

o+ s*o+71)/2 s2(c —1)/2+ cs(T — o)
s2(c —7)/2+ cs(T — o) Ar+s%o+71)/2 ’
which has eigenvalues ¢ and 7 for all ¢, s. Then as its determinant
(Po+ 530+ 7)/2) (P14 s (0 +71)/2) — {s*(0 = 7) /2 + cs(T — 0)}?

should be identically o7, noting the coefficient of cs, we obtain o = 7, a
contradiction. Thus when ab # 0, 0 = 7 # 3,1/3, occurs. O

8. Proof of Proposition 13.6 of [3]

In the proof of Proposition 13.6 in [3], the exclusion of dim K = 4 or
dim K = 2 fails in Lemma 13.9, where we use an incorrect result in [3, §8]. In
both cases (A) dim E(c) = 6 and (B) dim E(c) = 4 and dim F = 6, we give a
correct proof here.

First, we remark that Case (II) is excluded in [3, Prop. 14.1] independent
of the other argument, and the proof is also applicable to F when (B) occurs.
Therefore, we may consider only the cases (0) and (I).
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We emphasize af # 0 in Case (0). In this case, W(c) (Case (A)), or W
(Case (B)) is contained in the space spanned by vectors given by [3, (92)],
where o = 7, = v, 8 = ¢ by Proposition 7.1:

(19)

A %(\/ga(ﬁ —e5) +

Z7 = %(\/ga(ei —e5) +
Here Z,, Z5 are parallel along

8.1. Case (A).

(62 — 64)), Loy = ,3(61 + 65) — 04(62 + 64),
(e2 —€1)), Z3 = Bler + e5) — aleg + eq).
([3, Prop. 13.4]).

Sl &=

o

PROPOSITION 8.1. When Case (0) occurs, Case (A) is impossible.

Proof. Suppose Case (0) and Case (A) occur. We restate the argument in
the beginning of §13.3 [3]. Since dim W (c) = 4, denoting by Z3- the orthogonal

complement of Zz in W(c), we know dim (ZiL N W(t)) =3+2—-4>1. Thus

we can choose e3(t) so that Ve,eq(t) € Z3 for all t. Then K = span{es(t)} is
mapped into Z3 by L(t), and so dim K < 5. As we know dim K # 3,5 by the
first part of Lemma 13.9, and by Lemma 13.10 of [3], which are correct, we
may consider the case dim K =4 or 2.

When dim K = 4, L(t)K = span{Z(t), Zi(t), Z2} for each t. Thus K
contains e3(t), X1(t), X7(t), X2(t), which implies that

K = span{es(t), X1(t), X1(t), Xa(2)}

for each t. Then the orthogonal complement of K in F(c) is given by K+ =
span{es(t), X5(t)} for each t, which is parallel along c¢. Thus using a frame
at p, we may express K = span{es, X1, X2, X7} and K+ = span{e3(t)} =
span{es, X5}.

Since Z2 and Z5 are constant along ¢, Z5 = cos s Zs + sin s Z5 is constant
along c for each s. Apply the above argument to Z3 for s # 7/2 modulo 7.
Namely, if we take e5(t) along c so that Veses(t) is orthogonal to Z3, the space
K*® = span{e5(t)} is of dimension 4 or 2. If dim K* = 4, then e5(t) which is
orthogonal to €5(t) spans the 2-dimensional space (K*®)* = {e$, X5}, where
X5 = coss Xz +sins X3. Since eg(t) and e5(t) are independent because so are
Vese6(t) and Veseg(t), we obtain

D3(t) = spanfes(t), e3(t)} C {es, e3, X5, X5},
which implies dim E(c) = 4 because of (1), a contradiction. Thus dim K* = 2,
but again in this case, e3(t) and e5(¢) are independent, and we have

D3(t) = spanfes(t), e3(t)} C {es, €3, X5, X5},

where X5 = —sin s Xy + cos s X3, which contradicts dim E(c) = 6. The case
dim K = 2 is similarly excluded. O
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8.2. Case (B).

PROPOSITION 8.2. When (B) occurs, Case (0) is impossible. Hence Case
(0) never occurs.

Proof. When (B) is the case, Lemma 6.1 implies that E' = E(c) 4+ E(¢) is
of dimension 6 and W = W(c) + W (¢) is of dimension 4, where ¢ is a geodesic
orthogonal to ¢ at p. In fact, this is true for generic ¢ transversal to c.

By [3, Prop. 13.4] applied to W, Z3, Z5 are constant. Also by Lemma 4.1,
we may consider that K = span{e3(t)} and K = span{es(t)} are 2-dimensional,
and Za = Veges(t)/|Veses(t)|, Zz = Veyes(t)/|Veses(t)| hold. Thus we obtain

(20) W (e) = span{Zs, Z5}.

As we assume Case (0) for generic geodesic ¢® in the direction ef = cos seg +
sin s eg, there exist Z3, Z5 constant along ¢® and W (c®) = span{Z3, Z5}. Note
that these 735,75 are different from those in the last subsection (which was
along ¢). Since W (c®) C W ={Z1, Zs, Z7, Z5}, we may express
) Z5 = p%(ef +ei) —a’(es+ey) =a2°Z1 +y° 2o + 2°Z7 + w'Zs,

1
1) Z5=p(el +ei) —a’(es+e)) =T° 21 +§°Zy + 2° 27 + w23

for some e] € D;(p) and o, 8°. As their D component and Ds component
have the same length, we obtain

(ol (L)

for each s, and a similar formula holds for z° etc. Here, o = 2(3042 + 3%/ 3) as
in [3, (99)]. From this and a5 # 0, it follows
2%y® + 2°w® =0, z°%° + Z°w® = 0.

Rotating Z3, Z5 in W (c®), we may assume §° = 0 for each s. Moreover, since
e; = cosses +sinseg is odd in s, y* = (Ve,ef, Z2) is odd in s. Hence there
exists some sg such that y*© = 0, and we have

(22) 20w =0 and 2w =0.
LEMMA 8.3. Under the above assumption, W (c*0) = span{Zy, Z1} holds.

Proof. For the moment, we omit sg in (22). We have four cases. The case
z =z = 0 causes W(c*0) = span{Z;, Z3}, which is impossible in view of (21)
(see also (19)). Next, when w = w = 0 holds, the conclusion follows. When
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w = Z = 0, we have
Zy =aZy+ 22y, Z3° =37+ wls.

Since Z§ andZ§ are orthogonal, we have xz = 0. If = 0, Z3° = Z3, then by
(21), Z3° = xZy + zZ7 is impossible. Thus 2 = 0 holds, and from (21), we
obtain w = 0, and the conclusion follows. The case z = w = 0 is similar. [

Proof of Proposition 8.2. As we can apply the above argument at any
point ¢ € ¢, there exists s, such that along the geodesic ¢, = c¢°¢ through
g, Wi(cq) = span{Zy’, Z3*} = span{Zi(q), Z1(q)} = span{Za(q), Z3(q)}* =
span{ Zs, Z5}, since { Z5, Z5} is parallel along c. Thus putting H = {Zs, Z5}*,
we obtain W (c,) = H for any ¢ € c.

Now, let ¢; = ¢® and cg = c¢% for any ¢ € ¢, p # +q. Note that
W(e1) = H = W(cz). For © € ¢1 N ey, we can express E(c;) = Ds(x) @ J;
for some 2-dimensional J; perpendicular to Ds(x), i = 1,2, which are mapped
by By, onto H. Hence, J; = Jo, and so E(c1) = E(c2) holds. Next, for any
geodesic 7 transversal to ¢; and co, take z; € yN¢. Then dimE(y) = 4
implies E(y) = Ds(x1) + D3(x2) C E(c1) + E(c2) = E(c1). Thus we obtain
E(y) = E(c1). Since any point y € Lg(p) lies on some geodesic transversal
to ¢; and co unless y lies on ¢; or cg, D3(y) C E(c1) always holds. Hence
E = E(c1) and dim E = 4 follows, which contradicts Proposition 5.3. O

By this proposition and by the remark in the beginning of this section,
only Case (I) is possible on both M., which is excluded in [3, Prop. 14.4]. Note
that the argument is available to both cases (A) and (B). Thus we obtain

THEOREM 8.4. The focal submanifolds of an isoparametric hypersurface
with (g,m) = (6,2) have the shape operators B, whose kernel does not depend
onn.

This proves Theorem 1.1 by the argument in Section 15 of [3].
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