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Embedded self-similar shrinkers of genus 0

By Simon Brendle

Dedicated to Professor Leon Simon on the occasion of his seventieth birthday

Abstract

We confirm a well-known conjecture that the round sphere is the only

compact, embedded self-similar shrinking solution of mean curvature flow

in R3 with genus 0. More generally, we show that the only properly em-

bedded self-similar shrinkers in R3 with vanishing intersection form are the

sphere, the cylinder, and the plane. This answers two questions posed by

T. Ilmanen.

1. Introduction

This paper is concerned with self-similar shrinking solutions to the mean

curvature flow in R3. A surface M ⊂ R3 is called a self-similar shrinker if it

satisfies the equation H = 1
2 〈x, ν〉, where ν and H denote the unit normal

vector and the mean curvature, respectively. This condition guarantees that

the surface M moves by homotheties when evolved by the mean curvature flow.

The classification of self-similar solutions to geometric flows is a central

problem with important implications for the analysis of singularities. Indeed,

Huisken’s montonicity formula [15] implies that any tangent flow to a compact

solution of mean curvature flow is a self-similar shrinker (see also [10] and

[12]). The simplest example of a compact self-similar shrinker in R3 is the

round sphere of radius 2 centered at the origin. G. Drugan [11] has recently

constructed an example of a self-similar shrinker of genus 0 which is immersed

but fails to be embedded. Angenent [1] has constructed an example of an

embedded self-similar shrinker of genus 1. Moreover, N. Kapouleas, S. Kleene,

and N.M. Møller [18] have constructed new examples of noncompact self-similar

shrinkers using gluing techniques. These examples are embedded and have high

genus.

A well-known conjecture asserts that the round sphere of radius 2 should

be the only embedded self-similar shrinker of genus 0. Our main result confirms

this conjecture:
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Theorem 1. Let M be a compact, embedded self-similar shrinker in R3

of genus 0. Then M is a round sphere.

In view of the examples constructed by Drugan and Angenent, the as-

sumptions that M is embedded and has genus 0 are both necessary. In that

respect, Theorem 1 shares some common features with Lawson’s Conjecture on

embedded minimal tori in S3 (cf. [19]). This conjecture was recently confirmed

in [3]; see [6] for a survey.

In the noncompact case, our arguments imply the following:

Theorem 2. Suppose that M is a properly embedded self-similar shrinker

in R3 with the property that any two loops in M have vanishing intersection

number mod 2. Then M is a round sphere or a cylinder or a plane.

Theorem 2 confirms two conjectures of T. Ilmanen, the Wiggly Plane

Conjecture and the Planar Domain Conjecture (cf. [17]). We note that the

topological assumption in Theorem 2 is equivalent to the condition that M

is homeomorphic to an open subset of S2; this follows, e.g., from the simple

exhaustion theorem in Section 4 in [14].

We next discuss some related results. In 1990, G. Huisken [15] proved

that the round sphere is the only compact self-similar shrinking solution with

positive mean curvature. Using a similar argument, Huisken was able to show

that a noncompact self-similar shrinker which has bounded curvature and pos-

itive mean curvature must be a cylinder (cf. [16]). Moreover, K. Ecker and

G. Huisken proved that a self-similar shrinker which can be written as an en-

tire graph must be a plane (cf. [13, p. 471]). In a remarkable recent work,

T. Colding and W. Minicozzi [9] proved that a self-similar shrinker which is

a stable critical point of a certain entropy functional must be a sphere or a

cylinder or a plane. Furthermore, T. Colding, T. Ilmanen, W. Minicozzi, and

B. White recently showed that the round sphere has smallest entropy among

all compact self-similar shrinkers (see [8]). We note that L. Wang [23] has ob-

tained a classification of self-similar shrinkers which are asymptotic to cones.

X. Wang [24] has proved a uniqueness result for convex translating solutions to

the mean curvature flow which can be expressed as graphs over R3. Further-

more, we recently obtained a classification of steady gradient Ricci solitons in

dimension 3 and 4 under a noncollapsing assumption (cf. [4], [5]).

We now sketch the main ideas involved in the proof of Theorem 1. Suppose

that M is a compact, embedded self-similar shrinker in R3 of genus 0. In the

first step, we show that, for any plane P ⊂ R3 which passes through the origin,

the intersection M ∩P consists of a single Jordan curve which is piecewise C1.

This argument is inspired in part by the two-piece property for embedded

minimal surfaces in S3 (cf. Ros [21]). We next prove that M is star-shaped.
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Indeed, if 〈x̄, ν(x̄)〉 = 0 for some point x̄ ∈ M , then we consider the tangent

plane P to M at x̄. Clearly, P passes through the origin, so the intersection

M ∩ P consists of a single Jordan curve. On the other hand, M ∩ P contains

at least two arcs which intersect transversally at x̄. This gives a contradiction.

Having established that M is star-shaped, it follows that the mean curvature

of M does not change sign. Huisken’s theorem then implies that M is a round

sphere, thereby completing the proof of Theorem 1.

The proof of Theorem 2 uses similar techniques; this is discussed in Sec-

tion 4.

The author is grateful to Otis Chodosh and Brian White for comments

on an earlier version of this paper. This work was supported in part by the

National Science Foundation under grant DMS-1201924.

2. The key estimate

We begin by collecting some basic identities for self-similar shrinkers in R3.

Proposition 3. Let Σ be a self-similar shrinker in R3. Moreover, sup-

pose that Ξ is a smooth vector field on R3, and let ξ denote the projection of

Ξ to the tangent plane of Σ. Then

divΣξ −
1

2
〈x, ξ〉 =

2∑
i=1

〈D̄eiΞ, ei〉 −
1

2
〈x,Ξ〉.

Here, D̄ denotes the Levi-Civita connection on the ambient space R3, and

{e1, e2} is a local orthonormal frame on Σ.

Proof. Since Σ is a self-similar shrinker, we have H = 1
2 〈x, ν〉. This

implies

divΣξ −
1

2
〈x, ξ〉 =

2∑
i=1

〈D̄eiΞ, ei〉 −H 〈Ξ, ν〉 −
1

2
〈x, ξ〉

=
2∑
i=1

〈D̄eiΞ, ei〉 −
1

2
〈x, ν〉 〈Ξ, ν〉 − 1

2

2∑
i=1

〈x, ei〉 〈Ξ, ei〉

=
2∑
i=1

〈D̄eiΞ, ei〉 −
1

2
〈x,Ξ〉.

This proves the assertion. �

Corollary 4. Let Σ be a self-similar shrinker in R3. Suppose that F :

R3 → R is a smooth function, and let f : Σ → R denote the restriction of F

to Σ. Then

∆Σf −
1

2
〈x,∇Σf〉 =

2∑
i=1

(D̄2F )(ei, ei)−
1

2
〈x, ∇̄F 〉.
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Here, ∇̄F and D̄2F denote gradient and Hessian of F with respect to the

Euclidean metric, and {e1, e2} is a local orthonormal frame on Σ.

Proof. Apply Proposition 3 to the gradient vector field Ξ = ∇̄F . �

It is well known that self-similar shrinkers can be characterized as critical

points of a functional. More precisely, Σ is a self-similar shrinker if and only

if Σ is a critical point of the functional

F (Σ) =

∫
Σ
e−

|x|2
4 .

Following Colding and Minicozzi, we define a differential operator L on Σ by

Lf = ∆Σf + |A|2 f +
1

2
f − 1

2
〈x,∇Σf〉

(cf. [9, eq. (4.13)]). The second variation of F is given by

−
∫

Σ
e−

|x|2
4 f Lf =

∫
Σ
e−

|x|2
4

(
|∇Σf |2 − |A|2 f2 − 1

2
f2
)
,

where f : Σ̄ → R is a test function which has compact support and vanishes

along the boundary of Σ (see [9, Th. 4.14]).

We next consider a self-similar shrinker whose boundary is contained in

a plane. In this case, we can use the height function as a test function in the

stability inequality. This leads to the following result:

Proposition 5. Let Σ be a smooth surface in R3 with boundary ∂Σ = Γ,

and let k ≥ 4. Suppose that H = 1
2 〈x, ν〉 on Σ∩ {|x| ≤ k}. Moreover, suppose

that the stability inequality

0 ≤ −
∫

Σ
e−

|x|2
4 f Lf

holds for every smooth function f : Σ̄→ R which vanishes on the set Γ ∪ (Σ̄ ∩
{|x| ≥ k}). Finally, we assume that Γ ∩ {|x| ≤ k} ⊂ {x ∈ R3 : 〈a, x〉 = 0} for

some unit vector a ∈ R3. Then∫
Σ∩{|x|≤

√
k}
|A|2 e−

|x|2
4 〈a, x〉2 ≤ C

log k

∫
Σ∩{
√
k≤|x|≤k}

e−
|x|2
4 ,

where C is a positive constant independent of k.

Proof. Let us fix a smooth cutoff function η : (−∞,∞)→ [0, 1] satisfying

η = 1 on (−∞, 1
2 ], η = 0 on [1,∞), and η′ ≤ 0 on (−∞,∞). We define a

smooth function F : R3 → R by

F (x) = 〈a, x〉 η
( log |x|

log k

)
.

Note that

〈x, ∇̄F 〉 = F +
1

log k
〈a, x〉 η′

( log |x|
log k

)
.
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Moreover, we have

|D̄2F | ≤ C

log k

1

|x|
1{
√
k≤|x|≤k},

where C is a positive constant independent of k. This implies

|F | |D̄2F | ≤ C

log k
1{
√
k≤|x|≤k}.

Let f : Σ̄→ R denote the restriction of F to Σ̄. Using Corollary 4, we obtain

− f
(
∆Σf −

1

2
〈x,∇Σf〉

)
= −F

Ç 2∑
i=1

(D̄2F )(ei, ei)−
1

2
〈x, ∇̄F 〉

å
= −F

2∑
i=1

(D̄2F )(ei, ei) +
1

2
F 2 +

1

2 log k
〈a, x〉2 η

( log |x|
log k

)
η′
( log |x|

log k

)
≤ C

log k
1{
√
k≤|x|≤k} +

1

2
f2.

In the last step, we have used the inequality η′ ≤ 0. Consequently,

−f Lf ≤ C

log k
1{
√
k≤|x|≤k} − |A|

2 f2.

Note that f vanishes on the set Γ∪ (Σ̄∩{|x| ≥ k}). Using f as a test function

in the stability inequality gives

0 ≤ −
∫

Σ
e−

|x|2
4 f Lf

≤ C

log k

∫
Σ∩{
√
k≤|x|≤k}

e−
|x|2
4 −

∫
Σ
|A|2 e−

|x|2
4 f2

≤ C

log k

∫
Σ∩{
√
k≤|x|≤k}

e−
|x|2
4 −

∫
Σ∩{|x|≤

√
k}
|A|2 e−

|x|2
4 〈a, x〉2.

This proves the assertion. �

3. Proof of Theorem 1

In this section, we describe the proof of Theorem 1. Let M be a compact,

embedded self-similar shrinker in R3 of genus 0. Moreover, suppose that M

is not a round sphere. By Theorem 4.1 in [15], the mean curvature H must

change sign. In particular, we can find a point x̄ ∈ M such that H(x̄) = 0.

Using the shrinker equation, we conclude that 〈x̄, ν(x̄)〉 = 0. For abbreviation,

let a := ν(x̄) and Z := {x ∈M : 〈a, x〉 = 0}. Clearly, x̄ ∈ Z. The structure of

the set Z is described in the following lemma.
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Lemma 6. The set Z = {x ∈ M : 〈a, x〉 = 0} is a union of finitely many

C1-arcs which meet at isolated points. More precisely, for each point x0 ∈ Z ,

there exists an open neighborhood U ⊂M of x0 such that Z ∩ U is a union of

m C1-arcs which intersect transversally at x0. Here, m can be characterized

as the order of vanishing of the function x 7→ 〈a, x〉 at x0.

Proof. The set Z can be viewed as the nodal set of a solution of an elliptic

equation. Indeed, it follows from Corollary 4 that the function f(x) := 〈a, x〉
satisfies the equation

∆Mf −
1

2
〈x,∇Mf〉 = −1

2
f

(see also [9, Lemma 3.20]). This identity can be rewritten as

∆M (e−
|x|2
8 f) = h e−

|x|2
8 f,

where h := e
|x|2
8 ∆M (e−

|x|2
8 )− 1

2 . If we apply Lemma 2.4 and Theorem 2.5 in

[7] to the function e−
|x|2
8 f , the assertion follows. �

We now continue with the proof of Theorem 1. In view of our choice of

x̄ and a, the function x 7→ 〈a, x〉 vanishes to order m ≥ 2 at the point x̄.

Consequently, there exists an open neighborhood U ⊂M of x̄ such that Z ∩U
is a union of at least two C1-arcs which intersect transversally at x0. In

particular, Z cannot be a Jordan curve. Hence, we can find a closed Jordan

curve Γ with the property that Γ is piecewise C1 and Γ ( Z. Since M has

genus 0, Γ bounds a disk in M .

The complement R3 \M has two connected components which we denote

by Ω and Ω̃. To fix notation, let us assume that Ω is unbounded and Ω̃ is

bounded.

Proposition 7. There exists a smooth surface Σ ⊂ Ω such that Σ̄\Σ = Γ

and |A|2 = 〈x, ν〉 = 0 at each point on Σ.

Proof. For k sufficiently large, we denote by Ck the set of all embedded

disks S ⊂ Ω̄ ∩ {|x| ≤ 2k} with the property that ∂S = Γ. The fact that

Γ bounds a disk in M implies that Ck is nonempty if k is sufficiently large.

Moreover, we choose a smooth cutoff function ψk : [0,∞) → [0, 1] satisfying

ψk = 0 on [0, k] and ψ′k(2k) > k. We now consider the functional

Fk(S) =

∫
S
e−

|x|2
4

+ψk(|x|)

for S ∈ Ck. We can interpret Fk as the area functional for the conformal

metric e−
|x|2
4

+ψk(|x|) δij . For k sufficiently large, the region Ω̄ ∩ {|x| ≤ 2k}
is a mean convex domain with respect to this conformal metric. Therefore,

general results from [20] guarantee that there exists a smooth embedded surface
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Σk ∈ Ck which minimizes the functional Fk. Since Σk is a global minimizer

for the functional Fk, it is easy to see that

sup
k

Fk(Σk) <∞.

This implies

sup
k

∫
Σk

e−
|x|2
4 <∞.

Using the first variation formula, we deduce thatH = 1
2 〈x, ν〉 on Σk∩{|x| ≤ k}.

Finally, the stability inequality implies that

0 ≤ −
∫

Σk

e−
|x|2
4 f Lf

for every smooth function f : Σ̄k → R which vanishes on the set

Γ ∪ (Σ̄k ∩ {|x| ≥ k}).
Using Proposition 5, we obtain

lim sup
k→∞

∫
Σk∩{|x|≤

√
k}
|A|2 e−

|x|2
4 〈a, x〉2(1)

≤ lim sup
k→∞

C

log k

∫
Σk∩{

√
k≤|x|≤k}

e−
|x|2
4 = 0.

Finally, it follows from Theorem 3 in [22] that

lim sup
k→∞

sup
Σk∩W

|A|2 <∞

for every compact set W ⊂ R3 \ Γ. Hence, after passing to a subsequence

if necessary, the surfaces Σk converge in C∞loc(R3 \ Γ) to a smooth surface

Σ ⊂ R3 \ Γ which satisfies the shrinker equation H = 1
2 〈x, ν〉. Using (1), we

conclude that Σ is totally geodesic. In particular, 〈x, ν〉 = 0 at each point

on Σ. Moreover, it is easy to see that Σ ⊂ Ω̄. Since M is not totally geodesic,

the strict maximum principle implies that Σ cannot touch M . Consequently,

Σ ⊂ Ω.

We next show that Γ ⊂ Σ̄. If Γ \ Σ̄ 6= ∅, we can construct a one-form α

on R3 such that α has compact support, α = 0 in an open neighborhood of Σ̄,

dα = 0 in an open neighborhood of Γ, and
∫

Γ α 6= 0. This implies
∫

Σk
dα =∫

Γ α 6= 0 for each k, and
∫

Σk
dα→ 0 as k →∞. This is a contradiction. Thus,

Γ ⊂ Σ̄. Since Σ̄\Σ ⊂ Γ, we conclude that Σ̄\Σ = Γ. This completes the proof

of Proposition 7. �

Proposition 8. There exists a smooth surface Σ̃ ⊂ Ω̃ such that ¯̃Σ\Σ̃ = Γ

and |A|2 = 〈x, ν〉 = 0 at each point on Σ̃.

Proof. We consider the set C̃ of all embedded disks S ⊂ ¯̃Ω with boundary

∂S = Γ. As above, C̃ is nonempty since Γ bounds a disk in M . We now

consider the functional F defined in Section 2. The functional F can be

viewed as the area functional for the conformal metric e−
|x|2
4 δij . Clearly, ¯̃Ω
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is a mean convex domain with respect to this conformal metric. Using results

in [20], we can find a smooth embedded surface Σ̃ ∈ C̃ which minimizes the

functional F . The first variation formula implies that the surface Σ̃ satisfies

H = 1
2 〈x, ν〉. Moreover, the stability inequality gives

0 ≤ −
∫

Σ̃
e−

|x|2
4 f Lf

for every smooth function f : ¯̃Σ→ R which vanishes on the boundary Γ. Using

Proposition 5 with k sufficiently large, we obtain∫
Σ̃
|A|2 e−

|x|2
4 〈a, x〉2 = 0.

Consequently, Σ̃ is totally geodesic. This implies 〈x, ν〉 = 0 at each point

on Σ̃. Finally, we clearly have Σ̃ ⊂ ¯̃Ω. Since M is not totally geodesic, the

strict maximum principle implies that Σ̃ cannot touch M . Therefore, Σ̃ ⊂ Ω̃,

as claimed. �

Proposition 9. The unit normal vectors to Σ and Σ̃ are parallel to a at

all points.

Proof. Suppose that there exists a point x ∈ Σ such that ν(x) = b, where

a and b are linearly independent. Let us define

Σ′ = {x ∈ Σ : ν(x) = b} 6= ∅.

By Proposition 7, Σ′ is a subset of {x ∈ R3 : 〈b, x〉 = 0} \ Γ. Moreover,

Proposition 7 implies that Σ′, viewed as a subset of {x ∈ R3 : 〈b, x〉 = 0} \ Γ,

is open and closed. On the other hand, we have

{x ∈ R3 : 〈b, x〉 = 0} ∩ Γ ⊂ {x ∈ R3 : 〈a, x〉 = 〈b, x〉 = 0} =: L.

Hence, the closure of Σ′ is either an entire plane or a halfplane with boundary L.

In the latter case, we have L ⊂ Γ ⊂ M , but this is impossible since M is

compact. Consequently, the closure of Σ′ is the entire plane {x∈R3 : 〈b, x〉=0}.
Since Σ′ ⊂ Ω, it follows that the plane {x ∈ R3 : 〈b, x〉 = 0} is contained

in Ω̄, and M lies on one side of this plane. This contradicts the fact that∫
M e−

|x|2
4 〈b, x〉 = 0. Consequently, the normal vector to Σ is parallel to a at

each point on Σ. An analogous argument shows that the normal vector to Σ̃ is

parallel to a at each point on Σ̃. This completes the proof of Proposition 9. �

Combining Propositions 7, 8, and 9, we conclude that the surfaces Σ and

Σ̃ are contained in the plane {x ∈ R3 : 〈a, x〉 = 0}. Moreover, we have Σ ⊂ Ω

and Σ̃ ⊂ Ω̃; in particular, Σ and Σ̃ are disjoint. Finally, Σ and Σ̃ have the

same boundary Γ. Therefore, the union Σ ∪ Σ̃ ∪ Γ, viewed as a subset of
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{x ∈ R3 : 〈a, x〉 = 0}, is open and closed. This implies

{x ∈ R3 : 〈a, x〉 = 0} = Σ ∪ Σ̃ ∪ Γ ⊂ Ω ∪ Ω̃ ∪ Γ = (R3 \M) ∪ Γ.

Consequently,

{x ∈M : 〈a, x〉 = 0} ⊂ Γ.

In other words, the set Z coincides with Γ. This contradicts our choice of Γ.

This completes the proof of Theorem 1. �

4. Proof of Theorem 2

In this final section, we discuss the proof of Theorem 2. Throughout

this section, we assume that M is a properly embedded self-similar shrinker

in R3. We first recall a well-known result, which is an immediate consequence

of Brakke’s local area bound (see [2] or [12, Prop. 4.9]):

Proposition 10. For k large, the area of M∩{|x| ≤ k} is at most O(k2).

Proof. We sketch the proof for the convenience of the reader. By as-

sumption, the surfaces Mt =
√
−tM form a solution of mean curvature flow.

Applying Proposition 4.9 in [12] (with t0 = 0 and ρ = 4) gives

area(Mt ∩ {|x| ≤ 2}) ≤ 8 area(M−1 ∩ {|x| ≤ 4})

for all t ∈ [−1, 0). This implies

area(M ∩ {|x| ≤ 2k}) ≤ 8k2 area(M ∩ {|x| ≤ 4})

for k ≥ 1. From this, the assertion follows. �

We will also need the following result, which is a special case of a much

more general theorem of Brian White (see [25] for an announcement):

Theorem 11 (B. White [25]). Suppose that M contains the line {x ∈ R3 :

x1 = x2 = 0}, and M is disjoint from the halfplane {x ∈ R3 : x1 < 0, x2 = 0}.
Then M is a plane.

Proof. We again sketch an argument for the convenience of the reader.

We define a vector field Ξ on R3 by Ξ(x1, x2, x3) = (−x2, x1, 0), and let ξ

denote the projection of Ξ to the tangent plane of M . By assumption, M

is disjoint from the halfplane {x ∈ R3 : x1 < 0, x2 = 0}. Hence, every

point x ∈ M \ {x ∈ R3 : x1 = x2 = 0} can be uniquely written in the form

x = (
»
x2

1 + x2
2 cos θ,

»
x2

1 + x2
2 sin θ, x3) for some θ ∈ (−π, π). This defines

a smooth function θ : M \ {x ∈ R3 : x1 = x2 = 0} → (−π, π) satisfying

(x2
1 + x2

2)∇Mθ = ξ.
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Using Proposition 3, we obtain

divMξ −
1

2
〈x, ξ〉 =

2∑
i=1

〈D̄eiΞ, ei〉 −
1

2
〈x,Ξ〉 = 0.

In the last step, we have used that Ξ is a Killing vector field in ambient space.

This implies

divM (e−
|x|2
4 θ ξ) = e−

|x|2
4 θ

(
divMξ −

1

2
〈x, ξ〉

)
+ e−

|x|2
4 〈∇Mθ, ξ〉

= e−
|x|2
4 (x2

1 + x2
2) |∇Mθ|2

on M \ {x ∈ R3 : x1 = x2 = 0}. Integrating over M \ {x ∈ R3 : x1 = x2 = 0}
gives

0 =

∫
M\{x∈R3:x1=x2=0}

divM (e−
|x|2
4 θ ξ)

=

∫
M\{x∈R3:x1=x2=0}

e−
|x|2
4 (x2

1 + x2
2) |∇Mθ|2.

Consequently, ∇Mθ = 0 at each point x ∈M \ {x ∈ R3 : x1 = x2 = 0}. Thus,

M is a plane. This completes the proof of Theorem 11. �

We now continue with the proof of Theorem 2. Let M be a properly

embedded self-similar shrinker in R3 with the property that any two loops in

M have vanishing intersection number mod 2. Moreover, we assume that M is

neither a round sphere, nor a cylinder, nor a plane. By Proposition 10, M has

polynomial area growth. By a theorem of Colding and Minicozzi, the mean

curvature must change sign (see [9, Th. 10.1]). In particular, we can find a

point x̄ ∈ M such that H(x̄) = 0, and hence 〈x̄, ν(x̄)〉 = 0. As above, we put

a := ν(x̄). We now consider two cases.

Case 1: Suppose that the sets {x∈M : 〈a, x〉>0} and {x∈M : 〈a, x〉<0}
are both connected. In this case, we can construct two loops with the property

that the first loop is contained in {x ∈ M : 〈a, x〉 > 0} ∪ {x̄}, the second

loop is contained in {x ∈ M : 〈a, x〉 < 0} ∪ {x̄}, and the two loops intersect

transversally at x̄. This contradicts our assumption that any two loops in M

have vanishing intersection number mod 2.

Case 2: For the remainder of this section, we will assume that one of the

sets {x ∈M : 〈a, x〉 > 0} and {x ∈M : 〈a, x〉 < 0} is not connected. Without

loss of generality, we may assume that {x ∈ M : 〈a, x〉 > 0} is disconnected.

LetD be an arbitrary connected component of {x ∈M : 〈a, x〉 > 0}. Moreover,

let Ω and Ω̃ denote the connected components of R3 \M .
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Proposition 12. There exists a smooth surface Σ ⊂ Ω such that Σ̄\Σ =

∂D and |A|2 = 〈x, ν〉 = 0 at each point on Σ.

Proof. By Sard’s Lemma, we can find a sequence of numbers rk ∈ (2k, 3k)

such that the sphere {|x| = rk} intersects M transversally. By smoothing out

the domain Ω∩ {|x| < rk}, we can construct an open domain Ωk with smooth

boundary such that Ωk ∩ {|x| ≤ 2k} = Ω ∩ {|x| ≤ 2k} and Ωk ⊂ {|x| ≤ 3k}.
Moreover, we can find a smooth function χk : Ω̄k → [0, 1] such that χk = 0 on

the set Ω̄k ∩ {|x| ≤ k} and Ω̄k is a mean convex domain with respect to the

conformal metric e−
|x|2
4

+χk(x) δij .

By Sard’s Lemma, we can find a real number ρk ∈ (k, 2k) such that

the sphere {|x| = ρk} intersects M and ∂D transversally. Clearly, the curve

Γk = ∂(D ∩ {|x| < ρk}) satisfies Γk ∩ {|x| ≤ k} ⊂ ∂D ⊂ {x ∈ R3 : 〈a, x〉 = 0}.
Let Σk be a surface which minimizes the modified area functional∫

S
e−

|x|2
4

+χk(x)

among all embedded, orientable surfaces S ⊂ Ω̄k with boundary ∂S = Γk.

Clearly,

sup
k

∫
Σk

e−
|x|2
4 <∞.

Moreover, the first variation formula implies that H = 1
2 〈x, ν〉 at each point

on Σk ∩ {|x| ≤ k}. Using the stability inequality together with Proposition 5,

we conclude that

lim sup
k→∞

∫
Σk∩{|x|≤

√
k}
|A|2 e−

|x|2
4 〈a, x〉2(2)

≤ lim sup
k→∞

C

log k

∫
Σk∩{

√
k≤|x|≤k}

e−
|x|2
4 = 0.

Finally, it follows from results in [22] that

lim sup
k→∞

sup
Σk∩W

|A|2 <∞

for every compact set W ⊂ R3 \ ∂D. Hence, after passing to a subsequence,

the surfaces Σk converge in C∞loc(R3 \ ∂D) to a smooth surface Σ ⊂ R3 \ ∂D
which satisfies the shrinker equation H = 1

2 〈x, ν〉. Using (2), we conclude that

Σ is totally geodesic. In particular, 〈x, ν〉 = 0 at each point on Σ. Moreover, it

is easy to see that Σ ⊂ Ω̄. Since M is not totally geodesic, the strict maximum

principle implies that Σ cannot touch M . Consequently, Σ ⊂ Ω. Arguing as

above, we obtain Σ̄ \ Σ = ∂D. �

Proposition 13. There exists a smooth surface Σ̃ ⊂ Ω such that ¯̃Σ\ Σ̃ =

∂D and |A|2 = 〈x, ν〉 = 0 at each point on Σ̃.
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Proof. Analogous to Proposition 12. �

Proposition 14. The unit normal vectors to Σ and Σ̃ are parallel to a

at all points.

Proof. Suppose that there exists a point on Σ or Σ̃ where the unit normal

vector is not parallel to a. Without loss of generality, we may assume that

there exists a point x ∈ Σ such that ν(x) = b, where a and b are linearly

independent. Let

Σ′ = {x ∈ Σ : ν(x) = b} 6= ∅.

As above, Σ′ is a subset of {x ∈ R3 : 〈b, x〉 = 0} \ ∂D, which is both open and

closed. Since

{x ∈ R3 : 〈b, x〉 = 0} ∩ ∂D ⊂ {x ∈ R3 : 〈a, x〉 = 〈b, x〉 = 0} =: L,

it follows that the closure of Σ′ is either an entire plane or a halfplane with

boundary L. If the closure of Σ′ is a halfplane with boundary L, then we have

L ⊂ ∂D ⊂ M and Σ′ ⊂ Ω ⊂ R3 \M . In other words, M contains the line L,

and M is disjoint from the halfplane Σ′. Hence, it follows from Theorem 11

that M is a plane, contrary to our assumption. Consequently, the closure of

Σ′ is the entire plane {x ∈ R3 : 〈b, x〉 = 0}. Since Σ′ ⊂ Ω, it follows that

the plane {x ∈ R3 : 〈b, x〉 = 0} is contained in Ω̄, and M lies on one side of

this plane. As above, this contradicts the fact that
∫
M e−

|x|2
4 〈b, x〉 = 0. This

completes the proof. �

It follows from Propositions 12, 13, and 14 that Σ and Σ̃ are contained in

the plane {x ∈ R3 : 〈a, x〉 = 0}. Moreover, Σ and Σ̃ are disjoint, and have the

same boundary ∂D. Putting these facts together, we conclude that

{x ∈ R3 : 〈a, x〉 = 0} = Σ ∪ Σ̃ ∪ ∂D ⊂ Ω ∪ Ω̃ ∪ ∂D = (R3 \M) ∪ ∂D.

Thus, {x ∈ M : 〈a, x〉 = 0} = ∂D. This implies {x ∈ M : 〈a, x〉 > 0} = D.

In particular, the set {x ∈ M : 〈a, x〉 > 0} is connected, contrary to our

assumption. This completes the proof of Theorem 2. �
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