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Regularity of area minimizing currents II:
center manifold

By CaMiLLO DE LELLIS and EMANUELE SPADARO

Abstract

This is the second paper of a series of three on the regularity of higher
codimension area minimizing integral currents. Here we perform the second
main step in the analysis of the singularities, namely, the construction of
a center manifold, i.e., an approximate average of the sheets of an almost
flat area minimizing current. Such a center manifold is accompanied by a
Lipschitz multivalued map on its normal bundle, which approximates the
current with a high degree of accuracy. In the third and final paper these
objects are used to conclude the proof of Almgren’s celebrated dimension
bound on the singular set.

0. Introduction

In this second paper on the regularity of area minimizing integer rectifiable
currents (we refer to the foreword of [5] for the precise statement of the final
theorem and on overview of its proof) we address one of the main steps in the
analysis of the singularities, namely, the construction of what Almgren calls
the center manifold. Unlike the case of hypersurfaces, singularities in higher
codimension currents can appear as “higher order” perturbation of smooth
minimal submanifolds. In order to illustrate this phenomenon, we can consider
the examples of area minimizing currents induced by complex varieties of C",
as explained in the foreword of [5]. Take, for instance, the complex curve

V= {(z,w) Sz —w?)? = w5} c C%

The point 0 € V is clearly a singular point. Nevertheless, in every sufficiently
small neighborhood of the origin, V looks like a small perturbation of the
smooth minimal surface {z = w?}; roughly speaking, V = {z = w?+w"?}. One
of the main issues of the regularity of area minimizing currents is to understand
this phenomenon of “higher order singularities.” Following the pioneering work
of Almgren [2], a way to deal with it is to approximate the minimizing current
with the graph of a multiple valued function on the normal bundle of a suitable,
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curved, manifold. Such a manifold must be close to the “average of the sheets”
of the current (from this the name center manifold). The hope is that such a
property will guarantee a singular “first order expansion” of the corresponding
approximating map.

A “center manifold” with such an approximation property is clearly very
far from being uniquely defined and, moreover, the relevant estimates are fully
justified only by the concluding arguments, which will appear in [7]. In this
paper, building upon the works [4], [5], [6], we provide a construction of a
center manifold M and of an associated approximation of the corresponding
area minimizing current via a multiple valued function F : M — Ag(R™*").

The corresponding construction of Almgren is given in [2, Chap. 4]. Un-
fortunately, we do not understand this portion of Almgren’s monograph deeply
enough to make a rigorous comparison between the two constructions. Even a
comparison between the statements is prohibitive, since the main ones of Alm-
gren (cf. [2, 4.30, 4.33]) are rather involved and seem to require a thorough
understanding of most of the chapter (which by itself has the size of a rather
big monograph). At first sight, our approach seems to be much simpler and to
deliver better estimates. In the rest of this introduction we will explain some
of the main aspects of our construction.

0.1. Whitney-type decomposition. The center manifold is the graph of a
classical function over an m-dimensional plane with respect to which the excess
of the minimizing current is sufficiently small. To achieve a suitable accuracy
in the approximation of the average of the sheets of the current, it is necessary
to define the function at an appropriate scale, which varies locally. Around
any given point such scale is morally the first at which the sheets of the current
cease to be close. This leads to a Whitney-type decomposition of the reference
m-plane, where the refining algorithm is stopped according to three conditions.
In each cube of the decomposition the center manifold is then a smoothing of
the average of the Lipschitz multiple valued approximation constructed in [5],
performed in a suitable orthonormal system of coordinates, which changes from
cube to cube.

0.2. C3"-regularity of M. The arguments of [7] require that the center
manifold is at least C3-regular. As it is the case of Almgren’s center mani-
fold, we prove actually C>* estimates, which are a natural outcome of some
Schauder estimates. It is interesting to notice that, if the current has multiplic-
ity one everywhere (i.e., roughly speaking, is made of a single sheet), then the
center manifold coincides with it and, hence, we can conclude directly a higher
regularity than the one given by the usual De Giorgi-type (or Allard-type)
argument. This is already remarked in the introduction of [2], and it has been
proved in our paper [3] with a relatively simple and short direct argument. The
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interested reader might find useful to consult that reference as well, since many
of the estimates of this note appear there in a much more elementary form.

0.3. Approzimation on M. Having defined a center manifold, we then
give a multivalued map F' on its normal bundle which approximates the cur-
rent. The relevant estimates on this map and its approximation properties
are then given locally for each cube of the Whitney decomposition used in the
construction of the center manifold. We follow a simple principle: at each scale
where the refinement of the Whitney decomposition has stopped, the image
of such function coincides (on a large set) with the Lipschitz multiple valued
approximation constructed in [5]; i.e., the same map whose smoothed average
has been used to construct the center manifold. As a result, the graph of F' is
well centered, i.e., the average of F' is very close (compared to its Dirichlet en-
ergy and its L2 norm) to being the manifold M itself. As far as we understand
Almgren is not following this principle and it seems very difficult to separate
his construction of the center manifold from the one of the approximating map.

0.4. Splitting before tilting. The regularity of the center manifold M and
the centering of the approximating map F' are not the only properties needed to
conclude our proof in [7]. Another ingredient plays a crucial role. Assume that
around a certain point, at all scales larger than a given one, say s, the excess
decays and the sheets stay very close. If at scale s the excess is not decaying
anymore, then the sheets must separate as well. In other words, since the
tilting of the current is under control up to scale s, the current must in some
sense “split before tilting.” We borrow the terminology from a remarkable
work of Riviere [10], where this phenomenon was investigated independently of
Almgren’s monograph in the case of 2-dimensional area minimizing currents.
Riviere’s approach relies on a clever “lower epiperimetric inequality,” which
unfortunately seems limited to the 2-d context.

0.5. Acknowledgments. The research of Camillo De Lellis has been sup-
ported by the ERC grant agreement RAM (Regularity for Area Minimizing
currents), ERC 306247. The authors are warmly thankful to Bill Allard and
Luca Spolaor, for several enlightening discussions and for carefully reading a
preliminary version of the paper, and to Francesco Maggi for many useful com-
ments and corrections to our previous paper [3] which have been very valuable
for the preparation of this work.

1. Construction algorithm and main existence theorem
The goal of this section is to specify the algorithm leading to the center
manifold. The proofs of the various statements are all deferred to later sections.

1.1. Notation, height and excess. For open balls in R"™*" we use B,(p).
For any linear subspace m C R™+" 71 is its orthogonal complement, p, the
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orthogonal projection onto 7, B,(q,7) the disk B,(¢) N (¢ + 7) and C,(p,7)
the cylinder {(z +y) : € B,.(p),y € 7*}. (In both cases q is omitted if it is
the origin and 7 is omitted if it is clear from the context.) We also assume that
each 7 is oriented by a k-vector T := vi A+ -+ Avy (thereby making a distinction
when the same plane is given opposite orientations), and with a slight abuse
of notation, we write |my — m| for |7y — 71| (where | - | stands for the norm
associated to the usual inner product of k-vectors).

A primary role will be played by the m-dimensional plane R™ x {0} with
the standard orientation; for this plane, we use the symbol 7wy throughout the
whole paper.

Definition 1.1 (Excess and height). Given an integer rectifiable m-dimen-
sional current 7" in R™*" with finite mass and compact support and m-planes
m, 7, we define the ezcess of T' in balls and cylinders as

(L1) B(T,B, (z),m) = (2 1™) " | (=P T,

(1.2) E(T,C,(x,7),7") == (2wm Tm)fl/ T — & |2d||T|,
r(z,m
and the height function in a set A C R™T™ as
h(Ta A7 7T) = sup |p7rJ- ((L‘) — Prt (y)|
z,yespt(T)NA

In what follows all currents will have compact support and finite mass and
will always be considered as currents defined in the entire Euclidean space. As
a consequence their restrictions to a set A and their pushforward through a
map p are well defined as long as A is a Borel set and the map p is Lipschitz
in a neighborhood of their support.

Definition 1.2 (Optimal planes). We say that an m-dimensional plane 7
optimizes the excess of T in a ball B, (x) if
(1.3) E(T,B,(x)) := mTin E(T,B,(x),7) = E(T,B,(z), ).
Observe that in general the plane optimizing the excess is not unique and
h(T,B,(z), ) might depend on the optimizer 7. Since for notational purposes
it is convenient to define a unique “height” h(7T,B,(z)), we call a plane 7 as
in (1.3) optimal if in addition
(1.4)

h(T,B,(z),7) = min {h(T, B, (x),7) : 7 satisfies (1.3)} =:h(T,B,(x));

i.e., ™ optimizes the height among all planes which optimize the excess. How-
ever, (1.4) does not play any further role apart from simplifying the presenta-
tion.

In the case of cylinders, E(T',C,.(x, 7)) will denote E(T', C,(x, ), w) (which
coincides with the cylindrical excess used in [5] when (pr);TLC,(z,7) =
Q [Br(px(x),m)]), whereas h(T, C,(z,n)) will be used for h(T, C,(z,7), 7).
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We are now ready to formulate the main assumptions of all the statements
in this work.

Assumption 1.3. g €]0,1] is a fixed constant, and ¥ C By 5 C R™™"
is a C30 (m + n)-dimensional submanifold with no boundary in B; Jm- We
moreover assume that, for each p € ¥, ¥ is the graph of a C3%0 map v, :
1,5 N By fm — T,%1. We denote by c(¥) the number suppex [|[DYy |20 -
T? is an m-dimensional integral current of R™*" with support in X N By Jm
and finite mass. It is area minimizing in ¥ (i.e., M(T) < M(T + 0S) for any
current S with spt(S) C X) and, moreover,

(1.5) ©(0,7°) =@ and 9T°LBg 4 =0,

(1.6) 1T (Bg /mp) < (wm@(6v/m)™ +€3) " Vp <1,
(1.7) E (T° By m) = E (7% Bg . m) ,

(1.8) mg := max {C(E)2,E (TO,BG\/E)} <ed <.

€9 is a positive number whose choice will be specified in each statement.

Constants which depend only upon m,n,n and @ will be called geometric
and will usually be denoted by Cj.

Remark 1.4. Note that (1.8) implies A := [[As|/cox) < Com(l)/2, where
Ay denotes the second fundamental form of 3 and Cj is a geometric constant.

Observe further that for p € X, the oscillation of ¥, is controlled in 7,2 NBg Jm

by Comy/”.

In what follows we set [ := n—n. To avoid discussing domains of definitions
it is convenient to extend X so that it is an entire graph over all 7),X. Moreover
we will often need to parametrize ¥ as the graph of a map ¥ : R™+" — RI,
However we do not assume that R™" x {0} is tangent to 3 at any p, and thus
we need the following lemma.

LEMMA 1.5. There are positive constants Co(m,n,n) and co(m,n,n) such
that, provided g9 < ¢y, the following holds. If ¥ is as in Assumption 1.3, then
we can (modify it outside Bs m and) extend it to a complete submanifold of
R™+ which, for every p € X, is the graph of a global C3° map v, :TpX —
T,2% with | DYy 2.0 < C’om(l)/Q. TO is still area minimizing in the extended
manifold and in addition we can apply a global affine isometry which leaves
R™ x {0} fized and maps % onto X' so that

(1.9) IR™7 % {0} — ToY| < Comy?

and ¥ is the graph a C3° map ¥ : R™*" — R with ¥(0) = 0 and || D¥|| 2.
< Com(l] %
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From now on we assume, without loss of generality, that ¥’ = X. The next
lemma is a standard consequence of the theory of area minimizing currents.
(We include the proofs of Lemmas 1.5 and 1.6 in Section 4.1 for the reader’s
convenience. )

LEMMA 1.6. There are positive constants Co(m,n,n, Q) and co(m,n,n, Q)
with the following property. If T° is as in Assumption 1.3, €5 < ¢y and T :=
TOLB23\/E/4, then
(1.10)

8TLCH\/%/2(OJTO) =0, (Pwo)ﬁTLCn\/mm(oﬂTO) =Q [{Bu\/m/z(oﬂm)ﬂ

and
(1.11) h(T, C;5 (0, m0)) < Comy™".

In particular, for each € By sm/2(0,m0), there is a point p € spt(T') with
Pro(p) = -

From now we will always work with the current 7" of Lemma 1.6. Next we
specify some notation which will be recurrent in the paper when dealing with
cubes of my. For each j € N, €7 denotes the family of closed cubes L of my of
the form

(112) [al,al + 26] X oo X [am,am + 2€] X {0} C 7o,

where 2/ = 2177 =: 2/(L) is the side-length of the cube, a; € 2'77Z for all
1 and in addition we require —4 < a; < a; + 2¢ < 4. To avoid cumbersome
notation, we will usually drop the factor {0} in (1.12) and treat each cube, its
subsets and its points as subsets and elements of R”. Thus, for the center x,
of L, we will use the notation xy = (a1 + ¢, ..., an, + £), although the precise
one is (a1 + ¢,...,am + £,0,...,0). Next we set ¢ := [Jjené?. If H and L
are two cubes in ¥ with H C L, then we call L an ancestor of H and H a
descendant of L. When in addition ¢(L) = 2¢(H), H is a son of L and L the
father of H.

Definition 1.7. A Whitney decomposition of [—4,4]™ C my consists of a
closed set I' C [—4,4]™ and a family # C % satisfying the following properties:

(wl) TUUrey L =[—4,4]™, and T does not intersect any element of #;

(w2) the interiors of any pair of distinct cubes Ly, Ly € # are disjoint;

(w3) if L1,Ly € # have nonempty intersection, then %K(Ll) < U(Lg) <
24(Ly).

Observe that (wl)—(w3) imply

(1.13) sep(I',L) :=inf{|lz —y|:x € L,y e '} > 2¢(L) for every L€ ¥ .
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However, we do not require any inequality of the form sep (I', L) < C/(L),
although this would be customary for what is commonly called a Whitney
decomposition in the literature.

1.2. Parameters. The algorithm for the construction of the center man-
ifold involves several parameters which depend in a complicated way upon
several quantities and estimates. We introduce these parameters and specify
some relations among them in the following

Assumption 1.8. Ce, Ch, B2, 02, My are positive real numbers, and Ny a
natural number for which we always assume

1
(1.14) By =402 = min {2—, %} , where 7 is the constant of [5, Th. 1.4],
m

(1.15) My > Co(m,n,7,Q) >4 and mMy2" N <1.

As we can see, 82 and 09 are fixed. The other parameters are not fixed
but are subject to further restrictions in the various statements, respecting
the following “hierarchy.” As already mentioned, “geometric constants” are
assumed to depend only upon m,n,n and ). The dependence of other con-
stants upon the various parameters p; will be highlighted using the notation

C = C(pl,pg, .. )

Assumption 1.9 (Hierarchy of the parameters). In all the statements of
the paper

(a) My is larger than a geometric constant (cf. (1.15)) or larger than a constant
C(d2) (see Proposition 3.4);

(b) Np is larger than C(B2, 92, My) (see for instance (1.15) and Proposition 3.7);

(¢) C. islarger than C(Bs, 02, My, No) (see the statements of Proposition 1.11,
Theorem 1.17 and Proposition 3.4);

(d) C is larger than C(B, 02, My, Ny, Ce) (see Propositions 1.11 and 3.1);

(e) &9 is smaller than ¢(B2, d2, My, Ny, Ce, Cp,) (which will always be positive).

The functions C' and ¢ will vary in the various statements. The hierarchy
above guarantees, however, that there is a choice of the parameters for which
all the restrictions required in the statements of the next propositions are
simultaneously satisfied. In fact it is such a choice which is then made in [7].
To simplify our exposition, for smallness conditions on £9 as in (e) we will use
the sentence “e5 is sufficiently small.”

1.3. The Whitney decomposition. Thanks to Lemma 1.6, for every L € €,
we may choose y;, € Wi‘ so that pr, := (zr,yr) € spt(T). (Recall that zy, is
the center of L.) y, is in general not unique, and we fix an arbitrary choice. A
more correct notation for p; would be xy + yr. This would however become
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rather cumbersome later, when we deal with various decompositions of the

ambient space in triples of orthogonal planes. We thus abuse the notation

slightly in using (z,y) instead of ¥ + y and, consistently, my x 73 instead of

o + 7T(J]‘.

Definition 1.10 (Refining procedure). For L € €, we set rp, := My/m (L)
and By := Bgur, (pr). We next define the families of cubes .¥ C ¥ and
W =W UWUW;, C € with the convention that 7 = . NE7, Wi =W NEI
and # = #5N €7 for O = h,n,e. We define #" = .7* = () for i < Ny. We
proceed with j > Ny inductively: if no ancestor of L € €7 is in #, then
(EX) L € #J if B(T,By) > Comg £(L)?2%;

(HT) L € #; it L ¢ #7 and h(T,Br) > Cpymy*"((L)" 52,
(NN) Lewj it L& #J U but it intersects an element of 77~
If none of the above occurs, then L € .#7. We finally set

(1.16) r=[-44™\JL= U L

Lew j>No Le.sJ

Observe that, if j > Ny and L € .7 U #7, then necessarily its father
belongs to .71,

PROPOSITION 1.11 (Whitney decomposition). Let Assumptions 1.3 and
1.8 hold, and let g5 be sufficiently small. Then (T, %) is a Whitney decom-
position of [—4,4]™ C my. Moreover, for any choice of My and Ny, there is
C* := C*(My, No) such that, if Co > C* and Cp, > C*C., then

(1.17) #Ii=0  forall j < No+6.
Moreover, the following estimates hold with C' = C(2, 62, My, No, Ce, Ch):

(1.18)

E(T,By) < Comy ((J)> 22 and h(T,Bj) < Chym*"0(J)"* V.Je .7,
(1.19)

E(T,B.) < Cmyl(L)*?? and h(T,BL) < Cmy*" (L)% VLew.

1.4. Construction algorithm. Next we fix two important functions 9, o :
R™ — R.

Assumption 1.12. ¢ € C°(By) is radial, [ = 1 and [ |z|?0(x)dx = 0.
For A > 0, o) denotes, as usual, z — A\""p(5). ¥ € C’g"([—%, %]m, [0, 1]) is
identically 1 on [—1,1]™.

o will be used as convolution kernel for smoothing maps z defined on m-
dimensional planes 7 of R™™". In particular, having fixed an isometry A of
7 onto R™, the smoothing will be given by [(z 0 A) x g] o A™L. Observe that
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since g is radial, our map does not depend on the choice of the isometry, and
we will therefore use the shorthand notation z * p.

Definition 1.13 (m-approximations). Let L €. U% and 7 be an m-dimen-
sional plane. If T'L Csgy, (pr, m) fulfills the assumptions of [5, Th. 1.4] in the
cylinder Csa,, (pr, ), then the resulting map f : Bs,, (pr,7) — Ag(mt)
given by [5, Th. 1.4] is a mw-approzimation of T' in Cgy, (pr, 7). The map
h: Bz, (pr, ™) — m* given by b= (mo f) * oyzy will be called the smoothed
average of the m-approximation, where we recall the notation n o f(x) =

Q! ZZ'Q:1 fi(z) for any @-valued map f =3, [fi]-

Definition 1.14 (Reference plane 71,). For each L € . U ¥/, we let 7, be
an optimal plane in By, (cf. Definition 1.2) and choose an m-plane 77, C 1),
which minimizes |7 — 7 |.

In what follows we will deal with graphs of multivalued functions f in
several system of coordinates. These objects can be naturally seen as currents
G (see [6]), and in this respect we will use extensively the notation and results
of [6]. (Therefore Gr will denote the “set-theoretic” graph.)

LEMMA 1.15. Let the assumptions of Proposition 1.11 hold, and assume
C. > C* and Cy, > C*C, (where C* is the constant of Proposition 1.11). For
any choice of the other parameters, if €2 is sufficiently small, then the current
T Csar, (prL, L) satisfies the assumptions of [5, Th. 1.4] for any L € # U.7.
Moreover, if f, is a wp-approzimation, denote by hy, its smoothed average and
by hr, the map prLg(ﬁL), which takes value in the plane s, = T,, ¥ N 7L,
i.e., the orthogonal complement of my, in T),, ¥. If we let hy, be the map =
hi(z) = (hp(z), ¥y, (z,hr (7)) € 2 x Ty, XL, then there is a smooth map
gr, : B47«L(pL,7T0) — Wd‘ such that GgL = GhLLC4rL (pL,']T(]).

Definition 1.16 (Interpolating functions). The maps hy, and g;, given in
Lemma 1.15 will be called, respectively, the tilted L-interpolating function and
the L-interpolating function. For each j, let 27 := .#I U UZ:NO #', and for
L € 27 define 9 (y) == 19(%). Set

i 0
(1.20) Bj = Liep V9L ] — 4,4,
Srewi VL

let @;(y) be the first 7 components of ¢;(y) and ¢;(y) = (gbj (v), ¥(y, ¢; (y))),
where W is the map of Lemma 1.5. ¢; will be called the glued interpolation at

the step j.

THEOREM 1.17 (Existence of the center manifold). Assume that the hy-
potheses of Lemma 1.15 hold, and let k := min{eq/2, B2/4}. For any choice of
the other parameters, if €2 is sufficiently small, then
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() | Dgsllcms < Cmy”® and [lgjlleo < Cmy™", with C = C(Ba, 62, Mo, No,
C67Ch);
(i) if L € #* and H is a cube concentric to L with ((H) = 2((L), then
wj = @i on H for any j, k > i+ 2;
(ili) @; converges in C* to a map ¢, and M := Gr(p||_y4m) is a C** sub-
manifold of 3.

Definition 1.18 (Whitney regions). The manifold M in Theorem 1.17 is
called a center manifold of T relative to o and (', #') the Whitney decomposi-
tion associated to M. Setting ®(y) := (y, ¢(y)), we call ®(I") the contact set.
Moreover, to each L € # we associate a Whitney region £ on M as follows:

(WR) £ = ®(H N [-%,%]™), where H is the cube concentric to L with
((H) = 1e(L).

2. The M-normal approximation and related estimates

In what follows we assume that the conclusions of Theorem 1.17 apply and
denote by M the corresponding center manifold. For any Borel set ¥V C M we
will denote by V| its H™-measure and will write [, f for the integral of f with
respect to H™. B,(q) denotes the geodesic balls in M. Moreover, we refer to
[6] for all the relevant notation pertaining to the differentiation of (multiple
valued) maps defined on M, induced currents, differential geometric tensors
and so on.

Assumption 2.1. We fix the following notation and assumptions:
(U) U:= {a: eR™™: Jly = p(z) € M with [z —y| < 1 and (z —y) J_/\/l};
(P) p: U — M is the map defined by (U);
(R) for any choice of the other parameters, we assume €2 to be so small that
p extends to C*#(U) and p~*(y) = y + B1(0, (T, M)~+) for every y € M;
(L) we denote by 9,U := p~}(dM) the lateral boundary of U.

The following is then a corollary of Theorem 1.17 and the construction
algorithm.

COROLLARY 2.2. Under the hypotheses of Theorem 1.17 and of Assump-
tion 2.1, we have
(i) spt(A(TLU)) C 9U, spt(TL[—1Z, ZI™ x R") C U and py(TLU)=Q [M];
(ii) spt({T,p, ®(q)) C {y : |®(q)—y| <Cmy " €(L)*%) for everyqe Le W,
where C' = C(fy, 02, My, No, Ce, Ch,);
(i) (T, p,p) = Q[p] for every p € ®(T").

The main goal of this paper is to couple the center manifold of Theo-
rem 1.17 with a good approximating map defined on it.
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Definition 2.3 (M-normal approximation). An M-normal approzimation
of T is given by a pair (K, F') such that

(A1) F: M — Ag(U) is Lipschitz (with respect to the geodesic distance on
M) and takes the special form F(x) = >; [z + N;(x)], with N;(z) L
TyM and x + N;(z) € X for every x and i;

(A2) KC M is closed, contains @(I‘ﬂ[—%, %]m> and TrlLp 1 (K)=TLp 1(K).

The map N =3, [N;] : M — Ag(R™*™) is the normal part of F.

In the definition above it is not required that the map F approximates
efficiently the current outside the set <I)(I‘ Nn[-1, %]m) However, all the maps
constructed in this paper and used in the subsequent note [7] will approximate
T with a high degree of accuracy in each Whitney region; such estimates are
detailed in the next theorem. In order to simplify the notation, we will use

IN|vllco (or ||N|yl|lo) to denote the number sup,.,, G(N(x), @ [0]).

THEOREM 2.4 (Local estimates for the M-normal approximation). Let
Yo = A, with y1 the constant of [5, Th. 1.4]. Under the hypotheses of The-
orem 1.17 and Assumption 2.1, if e is suitably small (depending upon all
other parameters), then there is an M-normal approximation (KC, F') such that

the following estimates hold on every Whitney region L associated to a cube
L e W, with constants C = C(Ba, d2, My, No, Ce, Ch):

2.1 Lip(N|z) < CmPUL)? and ||N|zllco < Cmg> (L) 72,
0 0
(2.2) IL\K|+ |Tr — Tl(p~H(£)) < Cmg 20(L)™ T2,

(2.3) / IDN|? < Cmg £(L)™ 225,
L

Moreover, for any a > 0 and any Borel ¥V C L, we have (for C = C(f32, 62, My,
NO; Ce? Ch))
(2.4)

[ ImeNi<cmg (e(L)m+3+52/3+ae(L)2+”2/2M)+S/ G(N,QInoNT )™,
v v

From (2.1)—(2.3) it is not difficult to infer analogous “global versions” of
the estimates.

COROLLARY 2.5 (Global estimates). Let M’ be the domain <I>([—%, %]m),
and let N be the map of Theorem 2.4. Then (again with C = C(f2, d2, Moy, Ny,
Cea Ch))

(2.5) Lip(N|pe) < Cm@  and  [|N|aelleo < Cmy™"
(2.6) M\ K[+ | Tr = T|(p~ (M) < Cmy™™,

2.7) / IDNJ? < Cmy.
MI

)
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3. Additional conclusions upon M and the M-normal
approximation

3.1. Height bound and separation. We now analyze more in detail the
consequences of the various stopping conditions for the cubes in #. We first
deal with L € #,.

PROPOSITION 3.1 (Separation). There is a constant C*(My) > 0 with the
following property. Assume the hypotheses of Theorem 2.4 and in addition
C}%m > C'C,. If ey is sufficiently small, then the following conclusions hold
for every L € #y:

(S1) ©(T,p) < Q — § for every p € Bugr, (pL);
(S2) LNH =0 for every H € #,, with ¢{(H) < 3¢(L);

(83) G(N(2),Qmo N(@)]) > LCumy™ (L) ¥ 2 € ®(By 1) (1. m0)).

A simple corollary of the previous proposition is the following.

COROLLARY 3.2. Given any H € W, there is a chain L = Lo, Ly, ..., L;
= H such that

(a) Lo € #e and L; € #,, for all i > 0;
(b) LiNLi—1 # 0 and ((L;) = 20(L;—1) for alli > 0.

In particular, H C Bs /) (7L, T0).
We use this last corollary to partition #;,.

Definition 3.3 (Domains of influence). We first fix an ordering of the cubes
in #. as {J;}ien so that their side-lengths do not increase. Then H € %,
belongs to #,(Jy) (the domain of influence of Jy) if there is a chain as in
Corollary 3.2 with Ly = Jy. Inductively, #;,(J,) is the set of cubes H €
Wy \ Uicy #7,(J;) for which there is a chain as in Corollary 3.2 with Lo = J,.

3.2. Splitting before tilting 1. The following proposition contains a “typ-
ical” splitting-before-tilting phenomenon: the key assumption of the theorem
(i.e., L € #¢.) is that the excess does not decay at some given scale (“tilting”),
and the main conclusion (3.2) implies a certain amount of separation between
the sheets of the current (“splitting”).

PRrROPOSITION 3.4 (Splitting I). There are functions Ci(d2),Co(My, d2)
such that, if My > C1(02), Ce > Co(Moy, d2), if the hypotheses of Theorem 2.4
hold and if €9 is chosen sufficiently small, then the following holds. If L € #,
q € mo with dist(L,q) < 4y/mé(L) and Q = ®(Byry/4(q,m0)), then (with
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C,C3 = C(Ba, 62, Mo, No, Ce, Cp,))
(3.1) Comol(L)™2~22 < ¢(L)"E(T,B) < C / IDNP2,

(3.2) / IDNJ2 < CO(L)™E(T, By) < Cs(L / NP2

3.3. Persistence of QQ points. We next state two important properties trig-
gered by the existence of p € spt(T') with O(p,T) = @, both related to the
splitting before tilting.

PROPOSITION 3.5 (Splitting IT). Let the hypotheses of Theorem 1.17 hold,
and assume €9 is sufficiently small. For any a,a,& > 0, there is €3 =
es(a, a, &, B2, d2, Mo, Ny, Ce, Cr) > 0 as follows. If, for some s < 1,

(3.3) sup {¢(L) : L € #,L N Bss(0,m) # 0} <'s,

(3.4) HEH e ({O(T, ) = QFNBy) > as™ 2,
and min {s,mo} < &3, then
sup {E(L) 1L € We and LN By 16(0,m0) # (7)} < Gs.

PROPOSITION 3.6. (Persistence of Q-points) Assume the hypotheses of
Proposition 3.4 hold. For every ny > 0, there are 5, > 0, depending upon
N2, B2, 02, My, No, C. and Cy, such that, if €2 is sufficiently small, then the fol-
lowing property holds. If L € #.,¢(L) < £, O(T,p) = Q and dist(px, (p(p)), L)
< 4y/m(L), then

(3.5) ][ G(N, Q[[noN]]) < 2 / |IDN 2.
Bayr)(P(p)) L) 2 JB,0 (p())

3.4. Comparison between different center manifolds. We list here a final
key consequence of the splitting before tilting phenomenon. ¢, denotes the
map z — .

PROPOSITION 3.7 (Comparing center manifolds). There are a geometric
constant Cy and a function ¢s(B2,d2, Mo, No, Ce, Cr) > 0 with the following
property. Assume the hypotheses of Proposition 3.4, Ny > Cy, cs := ﬁ and
g9 is sufficiently small. If for some r €]0, 1],

(a) €(L) < csp for every p > r and every L € W with L N B, (0, m) # 0;
(b) E(T,Bg,/m,) < €2 for every p > r;
(c) there is L € # such that £(L) > csr and L N B.(0,m) # 0,
then
(i) the current T' := (10,)4T B¢ s and the submanifold X' = 10,(¥) N

By s satisfy the assumptions of Theorem 2.4 for some plane 7 in place

of mo;
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(i) for the center manifold M’ of T relative to m and the M'-normal approz-
imation N' as in Theorem 2.4, we have

(3.6) /MQB NP > & max {E(T", B ), ()2},
2

4. Center manifold’s construction

In this section we lay down the technical preliminaries to prove Theo-
rem 1.17, state the related fundamental estimates and show how the theorem
follows from them.

4.1. Technical preliminaries and proof of (1.17).

Proof of Lemma 1.6. Recalling that T' := TOLB23\/R/4, we want to show
that the statements in (1.10) hold. To this regard, we can argue by contra-
diction. If for instance the second statement in (1.10) were false, then we
would have a sequence of currents T} in Bg vm and of submanifolds X sat-
isfying Assumption 1.3 with e2(k) | 0 and (pr, )3T} L(Criymyz N Bosymya) #
Q [[Bn\/mﬂﬂ. On the other hand, from (1.5), (1.7), (1.8) and the standard

monotonicity formula,
T0—To = Q | By

Also, by standard regularity theory for area minimizing currents, we con-
clude that spt(7P) N B, converges to spt(Tx) N B, in the Hausdorff dis-
tance for every r < 6y/m. Since 9T} vanishes in By, TpL(Cyy iz N

Bys /m/4) has no boundary in Cyy /o for k large enough, thereby imply-

ing that (pry )T} L(Criymy2NBag mya) = Qk [{Bllx/mﬂﬂ for some integer Q.
Since TP — T, we deduce that Q) = @ for k large enough, giving the desired

contradiction. Note that the argument actually also shows the first statement
n (1.10). The height bound (1.11) now follows from Theorem A.l because

(Pro )¢ T° L(Cll\/ﬁ/2 mB23m/4) =Q [{Bllmﬂ}] and ©(7°,0) = Q; in particu-
lar, the latter assumption and Theorem A.1(iii) imply that there is one single
open set S; as in Theorem A.1(i), which in turn must contain the origin.

By the slicing theory of currents (see [12, §28] or [8, 4.3.8]) and by (1.10),
there is a set A C Bs_ s of full measure such that

(T, Pry, x Z ki (2) 83,5 Vo e A,

where N(z) € N, ki(z) € Z with Y ; ki = Q, and (z,yi(z)) € spt(T) with
lyi(z)| < C’om(l) *" By the density of A in Bs /m, we conclude that spt(7) N
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(v + mg) # O for every z € Bj vm- This completes the proof of Lemma 1.6.
Observe also that as a consequence, if L € %, then

(4.1) ol < Cmd™™  and  |pL| < 4v/m + Comy™™.

Recall that pr, = (21,yr) € mo x mg Nspt(T) is the center of By; cf. Defini-
0

tion 1.10.) o

Proof of Lemma 1.5. The first part of the statement, i.e., the extension
of the manifold X, is a fairly standard fact. It suffices to make the correct
extension of the map Wy to TyX and then use the smallness of the norm to
show that 3 is globally graphical over every T,%. The fact that T remains
area minimizing is also fairly simple; any area minimizing current 7” in the
extended manifold ¥ with 7" — T? = 95 must be supported in B¢, for some
geometric constant Cy, by the monotonicity formula. On the other hand, for a
sufficiently small 9, B, MY is geodesically convex in ¥ for every r €]0, Cp], and
thus there is a projection p : B¢, N ¥ — BG\/E N X which is 1-Lipschitz with
respect to the Riemannian metric on X. Since myT” cannot have mass smaller
than 7", T’ must be supported in Bg - But then 7" is area minimizing even
in the original (i.e., not extended) ¥ and must have the same mass as T°.

By Assumption 1.3 and Remark 1.4, A < C’Om(l)/ ® < Cp. Then, by the
monotonicity formula, ||7°|/(B1) > co > 0 and so there is p € spt(7) N B; such

that
a - E(T07B177T0)
IT(p) — mo|* = |TO(p) — mo|* < Co—rrr
IT°]|(B1)

We conclude that, if 3 is smaller than a geometric constant, pr,x(mo) is an

S Comg.

m-dimensional plane with [pr,s(m) — mo| < Com(l)/Q. On the other hand,
1
Prox — Pr,x| < Co|TpE — ThX| < CoA < Comy,

and we conclude |p7, (7o) —mo| < C’om(l)/ ®. Therefore there is an n-dimensional
plane s orthogonal to my such that |my X 3¢9 — TpX| < C’omé ®. We then find
a rotation which fixes my and maps > onto {0} x R™ x {0}. The remaining
statements follows easily from Lemma B.1. O

Proof of (1.17). Fix L € #7 with Ny < j < Ny + 6. Since r;, < 277 (cf.
Assumption 1.8), (4.1) guarantees B, C B; /7 if €2 is small enough. Moreover,

6™ 6™
(64M02—N0—6>mE(T07 Bg/m» ) < (640g) 2~ (Mo r0)
For a suitable C*(My, Np), the inequality C. > C* implies
E(T, BL) < E(T, B;, 71'0) < Cemy E(L)27262.

Now let 7, be an optimal plane in By,. Since the center p;, belongs to spt(7),
by the monotonicity formula, ||T||(Br) > corf* (cf. [12, §17] or [5, App. A]).
Thus
(4.2) |7 —mol* < Co(E(T, By, m0) + E(T, B, 7)) < CoCemg ((L)* %2,

E(Tv BLaﬂ—O) S - my.
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where Cj is a geometric constant. This in turn implies that
< Co MyClm*0(L)*~% + h(T, Cs /i7)
(1.11)
< C(Mo, No)(CZ* + 1y 0(L) 2.

Thus, if C*(My, Ng) is chosen sufficiently large and C;, > C*C, > (C*)?,
neither condition (EX) nor (HT) applies to L. Therefore, #7 = () for every
j < Np +6. O

4.2. Tilting of planes and proof of Proposition 1.11. Next we compare
optimal planes and height functions across different cubes of # U ..

PropPOSITION 4.1 (Tilting of optimal planes). Assume that the hypothe-
ses of Assumptions 1.3 and 1.8 hold, that C. > C* and C;, > C*C., where
C*(My, Ny) is the constant of the previous section. If €9 is sufficiently small,
then

(i) By CBL C By forall H,L € W U with H C L.

Moreover, if H/L € # U. and either H C L or HNL # () and @ <

((H) < U(L), then the following holds for C = C(B2,d2, Mo, Ny, Ce) and C
C(ﬁ23627M07N0,Ceach):

(ii) |7 — ma| < Cmg20(H)1 =02

(iii) |m — 7| < Cmg20(L)1—02;

(iv) |mg — mo| < C_'m(l)/2;

(v) (T, Csgyp, (prr, m0)) < Cmy*™€(H) and spt(T) N Csgypy (prr, m0) C By
(vi) for 1 = wg,7g, (T, Cser, (pr,m)) < C’m(l)/zmﬁ([/)prﬁ2 and spt(T) N

Cser, (pr,m) C Bp.

In particular, the conclusions of Proposition 1.11 hold.

)
)
)
)

Proof. In this proof we will use the following convention: geometric con-
stants will be denoted by Cj or ¢y, constants depending upon (s, d2, My, Ng, Ce
will be denoted by C or ¢ and constants depending upon Ba, d2, My, No, C. and
Ch, will be denoted by C or c.

Proof of (1)—(vi) when H C L. The proof is by induction over the integers
i = —logy(¢(H)), where we start with ¢ = Ny. For the starting step i = Ny, we
need to check (i), (ii), (iv), (v) and (vi), all in the special case H = L. Observe
first that (i) is a consequence of (4.1) and the estimate 647y < My,/m2~ N0 <
vm/2. Since #No = (), for i = Ny we have H € .0 which means that H
satisfies neither condition (EX) nor condition (HT). Since by the monotonicity
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formula ||T'||(Bm) > cor}, there exists at least a point p € spt(7') N By such
that
Co Tg

(4.3) IT(p) — #ul* < E(T, Bi) T8

< Cmo f(H)Q_%Q.

Since f(p) is an m-vector of T,,%, this implies that
Pry=(fa) — f| < Comg*e(H)' 2.

Recalling that |pr,, s — pr,s| < CorgA < C’m(l)/Qﬁ(H), we conclude (ii). (iv)
follows simply from (4.2) and (ii). As for (v), observe that the radius of
Cs6ry, (PH, m0) is smaller than /m/2 and its center py = (xg,ym) satisfies
lzm| < 4y/m. Thus Cser, (P, m0) C Cs,/7/(0,m0) =: C and the first conclusion
of (v) is a consequence of (1.11). The second conclusion follows from the first
provided 2 < ¢. Finally, with regard to (vi), recall that H = L. There are two
cases: m = my and m = 7. Since the arguments are entirely analogous, we just
give it in the first case. The base point py of the cylinder C' := Csg,,, (pr, 7rr)
satisfies, by (1.11), |pm| < 4\/E+Cgm(1)/2m and its radius is smaller than \/m/2.
By a simple geometric consideration, C' N Bg vm C C holds provided |rg — mo|
and |[pg| — 4/m are smaller than a geometric constant. This requires g9 < €.
Under this assumption, spt(7)NC’ C C, and from (1.11) and (iv) we conclude
h(T,C',7y) < Colrg — mo| + h(T, Cy s, m0) < C_'m(l] " Tt then follows that
spt(T) N C' C By, provided &9 is sufficiently small. Since H ¢ #/, from (ii)
we then conclude that

h(T,C',7y) < h(T,By) + CoMol(H)|rg — 7y
< Omy*"0(H)HP%2 4 Cmy0(H)? .

Now we pass to the inductive step. Thus fix some H;q € .1 Ui+l
and consider a chain H;y; C H; C --- C Hy, with H; € S for 1 < i. We
wish to prove all the conclusions (i)—(vi) when H = H; 1 and L = H; for some
7 < 1+1, recalling that, by inductive assumption, all the statements hold when
H = Hj and L = H) for | < k < i. With regard to (i), it is enough to prove
that By,,, C By,. By inductive assumption we know (v) holds with H = H;,

i+1
whereas |y, —xp,, | < Vml(H;); s0 |pH,,, —pH;| < (\/ﬁ—l—Cm(l) P™M2U(H )iq 1.
In particular, for e2 small enough, we conclude |pg,., — pm,| < 3vml(Hi1).
Assuming that the geometric constant in the first inequality of (1.15) is large
enough, we infer By,,, C By;,. We show now (ii). By (i),

(4.4) E(T,By

i+1

) <2ME(T,By,) < 227220, myg 0(H; )% 2.

Therefore, we can argue as above in the case ¢ = Ny to achieve (ii). We next
come to (iii) and (iv). Fix any { € {No+1,...,i+ 1}. By the inclusion in (i),



516 CAMILLO DE LELLIS and EMANUELE SPADARO

we can argue similarly to infer

(4.5)
7a,_, — 7m)? < (E(T,Ba,_,) + E(T BH)>%<C’m O(Hy)?~ 202
cr T e B

Using the estimate 72, 0(H;)17%2 < Co £(H;)' 7% and (ii), we conclude that
(iii) for H = H;41 and L = H; . As for (iv), it follows from (iii) and the

case [Ty, — mo| < C’m(l]/Q. We next come to (v). (v) holds for H;, and so we

conclude spt(7") N Cs6ry, (pH;»™0) C Bp,. Since |py,., — pm,| < 3vml(Hiy1)
and g, ,
geometric constant in the first inequality of (1.15) is large enough. Thus

= 1rp,, we have Cs6ry,,, (PHi 115 m0) C Cs6ryy, (PH,, T0) provided the

h(T', Cseryy,, , (PHi115m0)) < DT, Br;) + Corm; [T, — mol

(iv) am

< Cpmy*™0(H) P + Cmyo(H;)
< Cmy*™0(H;),

where we used H; € .%*. Thus (v) follows easily for H = H;,1. The inclusion
spt(T) N Cs6ry,,, (PH;4.»T0) C Bp,,, is an obvious corollary of the bound and
of the fact that the center of the ball By, (i.e., the point py,, ) belongs to
spt(T) N C367’H1‘+1 (PH,.,>T0). We again need to ensure that e is chosen small
enough.

Next we show (vi) for H = H;;1 and L = H; with j < i+ 1 (including
the case L = H;;1). The argument is the same in both cases my and 7y,
and we show it in the first case. We first prove the second claim of (vi)
inductively on j. Observe that for j = Ny, we can argue as for the inclusion
C?’GTHNO (pHNO » TH, ) ﬂB6\/m C C5\/77L(0, 7T()) to infer also CSGTHNO (pHNO , 7TH) N
Bsm C Csym(0,m0). Since |mpy — mu| < C’m(l) *¢(Hp,)' %, such inclusion
simply requires a smaller choice of £5. We can then use (1.11) to infer

(T, Ca6ryyy (Pr, s 1)) < BT, Cs (0, 70), 70) + Corry, [0 — m|
< Cmy* ™ 0(Hpy, ).

Again the inclusion spt(7') N Csg, Hy (p Hygo ) CB Hy, follows from assuming
0

g9 sufficiently small. Next, assume that the second claim of (vi) holds for H
and L = H;. Observe that

Cs6rsr,,, (PH1»TH) C Ca6ry, (PHy, TH)-

In fact, arguing as above, we have |py,,, — pr| < 3v/mf(Hy1), and thus
such inclusion requires only a sufficiently large geometric constant in the first
inequality of (1.15). But then, we know C36TH1+1 (PH,.»7H) C By, and we
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can therefore conclude
h(T, C36TH1+1 (a1 7H),7H) < h(T,By,) + Corm,,, |7H — g, |-
From this we then conclude the second claim of (vi), i.e.,
spt(T) N C36rHl+1 (rH 1> 7™H) C BH,, -

Next, the first claim of (vi) is an obvious consequence of the second claim when
L = Hj for j <i because L € .. In this case we have, as computed above,

h(T,Cs6,, (pr, 7)) < h(T,Br) 4+ Corp|tr — 7|
(i) & (i) ~
< Cpmy*™ (L) 4 Cmy20(L)>
< Cm6/2m€(L)1+62.

Finally, since Csgy,, (pm,mH) C Cs6ry, (pH,, mH) C Bp, and the side-lengths
¢(H) and ¢(H;) differ by a factor 2, we conclude as well that the first claim of
(vi) holds for H = L.

Proof of Proposition 1.11. Observe that (1.17) has already been shown
in the previous subsection and that (1.18) is an obvious consequence of the
definition of .. It only remains to show (1.19). Then fix L € #, and recall
that its father J belongs to .. However, having proved (i)—(vi) for pairs of
cubes in which one is the ancestor of the other, we know that By C B, and
thus we achieve
E(T,B;) < 2™E(T,B;) < 2™C.mgl(J)* %>
(46) < 2m+2_26206m0€(L)2_252,

R ()& o L5,
(4.7) h(T,Br) <h(T,Bj) + Corp|n; — 7] < Cmg (L) .

Proof of (i)—(vi) for neighboring H and L. Observe that in this case we
only have to show (iii) and (vi). The argument for (iii) is entirely analogous
to the case H C L. Assume first that L ¢ .#No. Then L has a father J.
As already seen we have |pr — ps| < 3y/mf(J). On the other hand, it is also
easy to see that, with the same argument, we conclude |pg — pr| < 3v/mé(L)
and thus |pg — ps| < 5y/ml(J). We therefore easily conclude By UB;, C By,
provided the geometric constant in the first inequality of (1.15) is large enough.
Therefore, we can estimate

|7, — 7] < Co(B(T,By) + E(T,Bp))"?

and use (ii) to conclude. In case L € .#No, we can simply replace B; with

BE)\/E'
Finally we pass to (vi). We can in fact use the very same argument already

explained when H C L. Indeed, we claim that (vi) holds not only for L but
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also for all its ancestors J and prove this claim by induction exactly as done
above. ([

4.3. Existence of several approximating maps. Next, we prove that the
building blocks for the construction of the center manifold are well defined.

PROPOSITION 4.2 (Existence of interpolating functions). Assume the con-
clustons of Proposition 4.1 apply. The following facts are true provided o is
sufficiently small. Let H,L € # U.% be such that either H C L or HNL # ()
and @ < {(H) <{(L). Then,

(i) Form=mg,7H, (Pr)sT L Csor, (pr, ™) = Q [B32,, (pr,m))] and T satisfies
the assumptions of [5, Th. 1.4] in the cylinder Csay, (pL, 7).

(ii) Let fur be the mg-approzimation of T in Csgy, (pr,7x) and h := (no
fHL) * 041y be its smoothed average. Set sy = 771%[ NT,, %, and consider
the maps

x +—  h(x) = pr,,n(h) € xy

r =  hygp(x) :=(h x), Uy, (2, h(z))) € g X (T, (X))

Then there is a smooth gur : Bar,(pL,m0) — 7r0L such that G =

9HL
GhHL L C47”L (pLa 7r0)‘

Definition 4.3. hgr and gmr will be called, respectively, tilted (H,L)-
interpolating function and (H, L)-interpolating function.

Observe that the tilted (L, L)-interpolating function and the (L, L)-in-
terpolating function correspond to the tilted L-interpolating function and to
the L-interpolating function of Definition 1.16. Obviously, Lemma 1.15 is just
a particular case of Proposition 4.2.

Proof. We use the convention that Cy and ¢y denote geometric constants,
C and ¢ denote dependence upon Bs, 2, My, Ng and C,, whereas C and ¢
dependence upon S, da, My, No, Ce and Cp,. There are two cases: (i) m = 7wy
and (ii) m = 7y; since the argument for case (ii) is entirely analogous to that
for case (i), we only give it for case (i). First recall that, by Proposition 4.1,

(4.8) spt(T'L Cs2r, (pr, 7)) C B C By /-

We thus have 0T Csa,, (pr, ) = 0 and thus, setting p := py,,, we conclude

(4.9) p:TL Cs2r, (P, mr) = k [Bszr, (P(pL), h)]

for some integer k. We will show now that Q = k. If J is the father of L,
we then have proved in the previous section that |pr, — ps| < 3v/mé(L). We
thus conclude Csay, (pr,mr) C Csar, (ps, mr), provided My is larger than a
geometric constant. Consider the chain of ancestors J C --- C M of L, until
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M e .#No. We then have Csor, (P, mH) C Cs2ry, (Pv, mH), and it suffices to
show

(4.10) T Caopy, (P11, mr) = Q [B32ry, (P(par), mH)] -

Observe also that |mg — mg| < C’mo/ , by Proposition 4.1. Join g =: 7(1)

and mp =: 7(0) with a continuous one-parameter family of planes 7(¢) with the
property that

(4.11) |7 (t) — mo| < Colmy — mo| < Cmy?,

where Cy > 0 is some geometric constant. Since C' = C(fa, 82, My, No, C.), it
is then clear from (4.11) that, if &2 is suitably small, then we have Bg /m N
Cs2ry, (par, ) C Cy (0, o) for every t € [0, 1] (as already argued in the proof
of Proposition 4.1). We consider the currents S(t) = (Pr(t))tTL Csary, (pL, 7(t))
and get S(t) = Q(t) [Baary (Pr(r)(par), w(t))], where Q(t) is an integer for ev-
ery t by the Constancy Theorem. On the other hand, t — S(t) is weakly
continuous in the space of currents and thus (Q(t) must be constant. Since
Q(0) = @ by (1.10), this proves the desired claim.
Observe next that, again from Proposition 4.1,

E(T,Csar, (pr, 7)) < CE(T, By, mh)
< CE(T,Bp) + Clry — 1 |? < Cmg 0(L)?~ %2,
If 9 is sufficiently small, then E(T, Csg,, (pr, mH)) < €1, where €1 is the con-
stant of [5, Th. 1.4]. Therefore, the current T'L Csg,, (pr,, 7xr) and the subman-
ifold ¥ satisfy all the assumptions of [5, Th. 1.4] in the cylinder Csay, (pr, 75 );

we apply it to construct the mg-approximation frr. By [5, Th. 1.4] and the

properties of ¥, we have

pPH>
Lip(hp1) < CoLip(no fur) < C (E(T, Caar, (pr, wr)))" < Cmd (L)%

and

1L — Pyt (pr)llco < Colmo fur — Pt (pr)llco
< CO||g(fHL7Q[[P7r (p)])llco
< Coh(T, Cs2r, (L, TH))
+ (E(T, Csar, (pr. 7u)) ' + Arp )
< Cmy*" (L)' P,
Since C' does not depend on &9, if the latter is smaller than a suitable positive

constant ¢(fa, 02, My, Ny, Ce, Cp,), we can apply Lemma B.1 to conclude that
the interpolating function ggy, is well defined. O
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4.4. Key estimates and proof of Theorem 1.17. We are now ready to state
the key construction estimates and show how Theorem 1.17 follows easily from
them.

PROPOSITION 4.4 (Construction estimates). Assume that the conclusions
of Propositions 4.1 and 4.2 apply, and set k = min{fBs/4,20/2}. Then, the
following holds for any pair of cubes H,L € 27 (cf. Definition 1.16), where
C= C(ﬂg, da, My, Ng, Ce, Ch):

2m

(i) llgnllcos) < Cmg™™ and | Dgirlicanis) < Cmy® for B = By (wn, m0);
1 .

(ii) if HNL # 0, then |gu — 9illeis,, (@) < CmO/QE(H)3+“_Z for every
i€{0,...,3}

vos 1

(if) |D3gi (211) — D91 (x1)| < Omylay — "

. 1 m

() llgn — yullco < Cmg™"0(H) and |xg ~T,
for all x € H;

(v) if L' is the cube concentric to L € #7 with {(L') = 2¢(L), then

lpi — grll @y < Cmg ((LY™H3+52/3 i > 5.

Gy | < Omy0(H)'

2,95 (z))

Proof of Theorem 1.17. As in all the proofs so far, we will use Cj for
geometric constants and C' for constants which depend upon S, d2, My, Ng, Ce
and Cj,. Define xy := 9y /(X pepi V1) for each H € 27, and observe that
(4.12)

> xg=1on[-44" and |xullc <Col(H)™ Vie{0,1,2,3,4}.
He>i
Set ZI(H) :={L € &7 : LNH # 0}\{H} for each H € 27. By construction,
(L) < ((H) < 24(L) for every L € 2J(H) and the cardinality of 927(H)
is bounded by a geometric constant Cy. The estimate [¢;| < Cm(l) ™ then
follows immediately from Proposition 4.4(i). For x € H, we write

(4.13)

pj(x) = (QHXH+ > QLXL)(HJ) =gu(x)+ > (90— 9u)xc (@),
LeZi(H) LeZi(H)

because H does not meet the support of ¥, for any L € 9?7 which does not
meet H. Using the Leibniz rule, (4.12) and the estimates of Proposition 4.4(i)—
(i), for i € {1,2,3}, we get

ID*@illcoary < ID°grllco +Co Y. > gL — gallerm L)
0<I<i Le 73 (H)

1 .
< Cmg (1+(H)*),

(Assuming My is larger than the geometric constant 2y/m, we have H C
By, (z1) and the estimate of Proposition 4.4(ii) can be applied.) Next, also
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using || D3gy — DggLHCN(BTL(xL) < C’mé/Q, we obtain

[D%leir <Co Y >0 0l (e(H) ™D (g1 — gm)llcoa
0<I<3 Le 23 (H)

+ [D'(gr, — gH)]H,H)
+[DPgu)en < Cm(l)/z,

where [a], p is the usual Holder seminorm sup{|z — y|™*|a(z) — a(y)| : = #
y,x,y € D}. Now fix 2,y € [~4,4]™, let H, L € 27 be such that z € H and
ye L. 1t HN L # 0, then

(4.14) 1D*¢;(x) — D*¢; ()| < C([D*@))wbr + [D*jle )l — yl"

If HN L = ), without loss of generality we assume that ¢(H) < ¢(L) and
observe that

max {|x —zxgl, |y — xL]} < Vml(L) < 2v/ml|x — y|.

Moreover, by construction, ¢; is identically equal to gy in a neighborhood of
its center xy;. Thus, we can estimate

(4.15)
|D3¢;(z) — D*¢i(y)| < |D*¢j(z) — D*¢j(xm)| + |D*gu(zn) — DPgr(zr)]
+|D3¢;(zr) — D*¢;(y)|
< omy* (Jo — ap|" + vy —ar)* + |y — 2Ll

S Cmé2|x - y‘ﬂa

where we used (4.14) and Proposition 4.4(iii). We have thus shown || D@;|| 2.«
< Cm(l)/Q. Since j(z) = (¢;(x), ¥(x, ¢;(x))), where ¢;(x) denote the first n
components of ¢;(z), Theorem 1.17(i) follows easily from the chain rule.

Let L € #*, and fix j > i + 2. Observe that, by the inductive procedure
defining .7 U #7, we have 27(L) = ZP"T2(L) C #. Let H be the cube
concentric to L with /(H) = %E(L). Then, by Assumption 1.12, spt(dyr) N H
= () for all M ¢ 7(L). Thus, Theorem 1.17(ii) follows.

We now show below that [|¢o; —pj+1(|coq—4,apm) < C27J. This immediately
implies the existence of a continuous ¢ to which ¢; converges uniformly. The
bounds of Theorem 1.17(i) immediately implies Theorem 1.17(iii). Therefore
fix z € [—4,4]™, and assume that x € L N H with L € 27 and H € 2711,
Without loss of generality, we can make the choice of H and L in such a way
that either H = L or H is a son of L. Now, if £(L) > 277%2 then by (ii) we
have ¢;(x) = @jt1(x). Otherwise, from (i) and Proposition 4.4(iv), we can
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conclude that
65 (x) — Gjt1(@)| < [B;(x) — ¢j(zm)|
+lgu(zn) — gr(zL)| + [8j41(zL) — G ()|
(4.16) < C(I@jller + lgsaller)27
+ lgr — yullco + lgr — yrllco + lym — yr
< Cmy*"277 + [py — pu.

Since By C By, we conclude |§;(x) — @ji1(z)| < C277. Given that ¥ is
Lipschitz, we get ||¢; — @j+1]/co < C 279 and conclude. O

5. Proof of the three key construction estimates

5.1. Elliptic PDE for the average. This section contains the most impor-
tant computation, namely the derivation via a first variation argument of a
suitable elliptic system for the average of the m-approximations. In order to
simplify the notation we introduce the following definition.

Definition 5.1 (Tangential parts). Having fixed H € 97 and 7 := g C
T,;%, we let 2 be the orthogonal complement of 7 in T},,3. For any given
point ¢ € R™*™ any set Q C 7 and any map ¢ : ¢+ — 7+, the map p,.o& will
be called the tangential part of € and usually will be denoted by £. Analogous
notation and terminology will be used for multiple-valued maps.

ProposITION 5.2 (Elliptic system). Assume the conclusions of Proposi-
tions 4.1 and 4.2. Let H € W7 U.%7 and L be either an ancestor or a cube of
Wi NS with HNL # 0 (possibly also H itself). Let fur, : Bsy, (L, 7H) —
Ag(m#) be the mg-approzimation of T in Cs,, (pL, 7w ), huy the tilted (H, L)-
interpolating functions and frr and hgr their tangential parts, according to
Definition 5.1. Then, there is a matrix L, which depends on ¥ and H but not
on L, such that |L| < CoA? < Comy for a geometric constant Cy and (for
C = C(p2, 92, My, Noy, Ce, Ch))

’/ (D(UofHL) : D¢+ (pr(z —pu))t - L- ()‘

< Cmo PP (Il + ¢l o)
for every ¢ € C°(Bsy,, (pr,7L), 5). Moreover,

(5.1)

(5.2) lher —mo J’THL||L1(B7TL () < O T7Ln+3+52
(fOT’ C - C(/BQ) 527 M07 NO) C€7 Ch))

Before coming to the proof we introduce the oscillation of a multivalued
function f, which will also play an important role later:

(5.3)  osc(f)i=sup{|P— P'| : P € spt(f(x)), P’ € sptf(y))}.
Observe that the oscillation is comparable to sup, , G(f(z), f(y))-
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Proof. We use the convention that geometric constants are denoted by Cy,
whereas C' denotes constants depending upon the parameters 52, d2, My, No, Ce
and C,. Set m = mp. We fix a system of coordinates (x,y,2) € mx 3% (T, X)*+
so that py = (0,0,0). Also, in order to simplify the notation, although the
domains of the various maps are subsets € of py, + 7, from now on we will
consider them as functions of z; i.e., we shift their domains to p,(2). We
also use Wy for the map ¥,, of Assumption 1.3. Recall that ¥ (0,0) = 0,

DV (0,0) =0 and ||D\I’H||CQ s < my e . Finally, to simplify the notation we
also drop the subscripts HL from the functions fur, far and hgr. (This
notation might generate some confusion since h is used in Proposition 4.2 for
the smoothed average of frrr; observe however that the tangential part of such
smoothed average does coincide with the tangential part of the tilted (H, L)-
approximation.)

Given a test function ¢ and any point ¢ = (z,y,2) € X, we consider the
vector field x(q) = (0,{(x), Dy¥(z,y) - {(z)). x is tangent to X, and therefore
0T (x) = 0. Thus,

(G4) 1661001 =16G;(0) — 6T < Co [ DX dIGy — Tl
Csry (PLs

Let » = rp and B = Bs,, (pr,m). Since ||[D¥gllp < m(lj/2, for g9 suffi-
ciently small, we achieve |x| < 2|¢| and |Dx| < 2|¢| + 2|D¢|. Now set
E = E(T, ngr(pL,w)) and recall [5, Th. 1.4] to derive

(5.5) |IDf| < CoE™ + CorA < Cm'r™,
(5.6) /] < Coh(T, Caa,(pr, ) + Co( B2 +rA)r < Cmy"r1+52,
(5.7) / IDJI? < Cor™E < Crmgr™+2-2%2,
B
and
(5.8) |IB\ K| < CoE™(E + r2A2) < cmlﬂlrm*?*%ﬂl,
ITN(Csr(pr, 7)) — Bl - 5
(5.9) ‘

< CoE™(E + 7'2A2) < Cmé*“ ptE A0
where K C B is the set
(5.10) B\ K = pr ((spt(T)AGr(f)) N Csy,, (pL, 7)) -

Concerning (5.6) observe that the statement of [5, Th. 1.4] indeed bounds
osc (f). However, in our case we have pg = (0,0,0) € spt(7T") and spt(7) N
Gr(f) # 0. Thus we conclude |f| < Cyosc (f) + Coh(T, Csa,(pr, m)).
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Writing f = 37; [fi] and f =3 [fi], Gr(f) C & implies
From [6, Th. 4.1] we can infer that

5G100 = [ ¥ (Doy¥u@.J) - ¢+ (Dyy ¥ F) - Dufl) -
' (4) (B)
+ Dy Wy (@, fi) - DiC )
(5.11) (©)
(Do, i) + DyWir(a, £i) - Do )
(D) (E)

—l—/ZDmC:Dxﬁ—I—Err.
B

To avoid cumbersome notation we use || - ||o for || - ||co and || - ||1 for || - |-
Recalling [6, Th. 4.1], the error term Err in (5.11) satisfies the inequality

(5.12) |Em|<C / IDXIIDfI < <l / [Df[* < Cl¢img 2ot

The second integral in (5.11) is obviously @ [z D¢ : D(n o f). We therefore
expand the product in the first integral and estimate all terms separately. We
will greatly profit from the Taylor expansion

DU(z,y) = DyDV¥y(0,0) - + Dy DY (0,0) -y + O(mg (2> + [y]?)).
In particular, we gather the following estimates:
DV (z, fi)] < Cmy’r and Dy (z, f;)=DyDVp(0,0) -z + O(myr1+7%2),
|D2W g (z, fi)| < m(l)/2 and D*Uy(z, f;)=D?*¥5(0,0) + O(m(l]/Qr).
We are now ready to compute
(5.13

)
[ S @ D)= [ YD ¥n(0.0)- ) : Do¥u(e, f)+0(mor? [ 161)
= [ (D2 ¥ (0,0) ¢ Doy (0,0) - 2+0 (o [ ).

Obviously the first integral in (5.13) has the form [xz!-Lap - ¢, where the
matrix Lap is a quadratic function of D?W(0,0). Next, we estimate

(514) [ S B =o(mirtn [ ).
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615) B0+ @) =0(my ™ [ 1d]),
(5.16) [ (@ @) =0(mya [loq)),
Finally we compute
/ (D)= / (D 0:0) ) D) DoV )
+0(mor+ [ D))
= [ (D2 (0,0) ) - Do) (D2aia(0,0) - )
+ OZ(m0 P26 / D¢).

Integrating by parts the first integral in the last line we reach
(5.17) /Z(C) (D) = /xt ‘Lep - ¢+ O(mgr? 4 / 1D¢),

where the matrix Lop is a quadratic function of D?Wg(0,0). Set L := Lap +
Lep. Since DUy (0,0) =0, L is in fact a quadratic function of the tensor Ay
at the point pg. In order to summarize all our estimates we introduce some
simpler notation. We define f = no f, £ := ¢(L) and (recalling the set K of
(5.10)) the measure p on B as

wE) = |E\K|+|T|(EF\K)xR") for every Borel E C B.

Since ||T'— G#[|[(E xR") < Cou(E) for every Borel E C B, we can summarize
(5.4) and (5.11)—(5.17) into the following estimate:

(5.18)
‘/(Df D¢+t L- C) ' < C'myg it / (r|DC(a:)| 4 |C(x)|) dx

+C [ (r1D¢@)] + K@) (1Df (@) o + duz).

From (5.5) and (5.7) we infer that

(5.19) / \Df|3 < Cr™Lip(f)E < Cm(1)+’717ﬂm+2—252+’71‘
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Next, observe that
w(B) = |B\ K|+ |T|((B\ K)x ")
< B\ K[+ [IITI[(Cs2r, (p2, 7)) = M(G )| + |G £ (B\ K) x )
< Go|B\ K|(1 + Lip(f))

1
+ITN(Cs2r, (P, 7)) = 1B = 5 BIDf|2

+Co [ DS
B

where in the last line we have used the Taylor expansion of the mass of G;
cf. [6, Cor. 3.3]. Next, using (5.8), (5.9) and (5.19) we conclude

(5.20) w(B) < Cmygrm+2=204m,

Therefore (5.1) follows from (5.18) and our choice of the parameters in As-
sumption 1.8. (Recall, in particular, v — 253 > 5s.)

We next come to (5.2). Fix a smooth radial test function ¢ € C.(By) with
¢ =/{(L), and set () := ¢(z — -)e;, where €41, ..,€m+sn 1S an orthonormal
base of ». Observe that, if in addition we assume [¢ =0, then [ x;¢(z — z)dx
= 0. Under these assumptions, [z' L -¢(z — x)dz = 0, and from (5.18) we
get for z € By, (pr, L),

| D@ Dsz—w)da| <C [ D@D+ ez~ ) do
By(z) By(z)

0 [ DS IS — @) duta) + Omor+? [ r1Ds] +1s).
(2

)4
Recall the standard estimate on convolutions |la * p| 1 < |la||,1pu(B), and
integrate (5.21) in z € By, (pr, 7). By (5.19) and (5.20) (and recalling that

Y1 — 252 > 62)a we reach
IDE" 5 D<|| 1By, (prmr)

5.21
(5:21) < Cmyg rmHith: / (r|Ds| + |s]) Vs € C°(By) with ¢=0.
By By

By a simple density argument, (5.21) holds also when ¢ € Wh! is supported
in By and [¢ = 0. Next, observe that

h(z) — £(z) = / 0r(y) (E(z — ) — £(x)) dy
= [ o) [ DECe— o) (- do dy
(5.22) _ //01 00 (&) Df(z — w) - % dw

= /Df(x —w) - (—w) /01 0c (%) o™ do dw.

=T (w)
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Note that T is smooth on R™ \ {0} and unbounded in a neighborhood of 0.
However,

(5.23)

1 1
|THL1://O ]w|’Q(%)'E_ma_m_ldadwzﬁ//o lul|o(u)| do du < Cr.

Observe also that T(w) = w(Jw|). Therefore T is a gradient. Since T (w)
vanishes outside a compact set, integrating along rays from oo, we can compute
a potential for it:

(524
/ /@e \ﬁfa - 1OladT—!u)IQ/ /ge () o~ do dt.

Then, ¢ is a W function, supported in By(0), [¢ = 0 by Assumption 1.12.
Summarizing, h' — £/ = (Df?) ¥ Ds for a convolution kernel for which (5.21)
holds. Since

ot < [ [ [ ttol? o ()| e Mt
:52/ / /]u\le(u)\duadat_m_ldtSCTQ,
1 0

we then conclude from (5.21) that
/ Lt omy e [ D]+ [o]) < Omorm 3+, 0
Brr; (pL,7L

4

(5.25)

5.2. C* estimates for hyr and ggr. Recall the tilted (H, L)-interpolating
function hp, and the interpolating function gz, of Definition 4.3.

LEMMA 5.3. Assume that H and L are as in Proposition 5.2 and that
the hypotheses of Proposition 4.4 hold. Set B’ := Bs,, (pg,7) and B =
By (pr,m0). Then, for C' = C(Ba, 62, Mo, No, Ce, Ch),

|her — hallcisy + 9aL — gullci)
< Cmy? (L3270 vj e {o,...,3},
1 K
(5.27) 1L — hallcsspy + gL — g llcsw(z) < Cmy” (L)".
As a consequence, Proposition 4.4(1) and (iv) hold.

(5.26)

Proof. All the constants C will depend only upon the parameters (3o, ds,
My, Ny, Ce and C},, unless otherwise specified.
Consider a triple of cubes H, J and L where H € .7 U #7 and

(a) either L is an ancestor of H (possibly H itself) and J is father of L;

(b) or J is the father of H, and L € .7 U #7 is adjacent to H.

In order to simplify the notation let 7w := 7y and r := r;. By Proposi-
tion 4.1(i), up to taking the geometric constant in the first inequality of (1.15)
sufficiently large, we can assume that B® := Bg,(pr,, ) C Bf = Bisyjo(pr,m) C
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B := By, (py, ). Consider the m-approximations fry and fr, respectively
in Cg,(pr, ) and Csg,,(ps, 7), and introduce the corresponding maps

fL :=p.(no fur) and  f5:=p.(no fus),
hur = L * oy and  hpy = £5 % 041,

which are the tangential parts of the corresponding maps according to Defini-
tion 5.1.

If 1is an affine function on R™ and ¢ a radial convolution kernel, then ¢x1 =
([ )1 because | is an harmonic function. This means that [(({*0),1) = [(¢,1)
for any test function ¢ and any radial convolution kernel ¢ with integral 1.
Similarly, [{(¢ * 8%p), > [{¢,0'1) for any partial derivative &! of any order.
Now consider a ball B concentric to B” and contained in Bf in such a way
that, if ¢ € C°(B), then ¢ * o) and ¢ * ggy) are both supported in Bt
Set € := hyr — hyy, and (assuming pr(zx) is the origin of our system of
coordinates) compute

1688 == [ Dz = by D¢
= [ Dty D¢ oun) — [ DR DG o)
—/ Dfy: D(C * gg()) + 2" - L- (g*gZ(J)))
_/(DfL‘D(C*Qé(L)HCEt'L'(C*@e(L))),

where the last line holds for any matrix L (with constant coefficients) because
x +— ! - L is a linear function. In particular, we can use the matrix of Propo-
sition 5.2 to achieve

J(€.2) < Cmo 12 (vIC 5 oty s + 71 e
+ (1€ * ooy llo + 1€ * Qe(L)Ho),

where || - [lo and || - ||; denote the C° and C! norms respectively. Recalling the
inequality ||¢ * C|lo < [|¥]|o]|C||z1 and taking into account that ¢(L) and £(J)
are both comparable to  (up to a constant depending only on My and m), we
achieve [(C,A¢) < Cmgor'*72||(||;1. Taking the supremum over all possible
test functions with |||/ 1 < 1, we obviously conclude HA&HLOO(B) < Cmgrithz,
Observe that a similar estimate could be achieved for any partial derivative
DF¢ simply using the identity

/D(Dk(a*g)) : Db = —/Da . (Db * D¥¢).
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Summarizing, we conclude
(5.28) IAD*(har = bl cogpy < [ADE]lo0 < Cmgr!+%7F,

where the constant C' depends upon all the parameters and on k& € N, but not
on ey, my, H, J or L. By [5, Th. 1.4] (cf. also the proof of Proposition 4.2), we
have osc(frr) + osc(fruy) < C’m(l) *"r and, setting E := E(T, Csar, (01, TH))
and E' := E(T, Csa,, (ps, 7H)),

H"({fur # fas} N B) <C[(E+ A2r2)E’Y1
+ (E’ + A27,2)E/’Y1] rm < Cm(l)—l—qq Tm+2+'”/2_

Therefore, taking into account (5.2), we conclude that |hyy — BHJHD(B)

< C'mgr™t3+t82, Thus, we appeal to Lemma C.1 and use the latter esti-
mate together with (5.28) (in the case k = 0) to get ||hnr — BHJHCk(B/) <
Cmor3tP2=F for k = {0,1} and for every concentric smaller ball B C B
(where the constant depends also on the ratio between the corresponding
radii). This implies |D(hur — hus)llpipy < Cmor™ 272 and hence we
can again use Lemma C.1 (based on the case k = 1 of (5.28)) to conclude
\her — BHJHCz(Bn) < Cmgr'tP2. Tterating another two times we can then
conclude ||hgy, — EHJ]]Ck(Bu) < Cmor3t2=F for k € {0,1,2,3,4}. By interpo-
lation, since x < Ba2/4, ||hrL — ;LHJ‘|C3,2N(Bﬁ) < Cmyg (L)%

Observe now that, since we have that hyr, = (hgr, V(x, hgr)) and hgy =
(hgry, Yy (2, hyy)), we deduce the corresponding estimates for hyy and hyy
from the chain rule, namely,

HhHL — hHJHCj(Bﬁ) < C’mOE(L)3+2’“‘_j Vj e {0, - ,3}

(5.29) N
|her — haglloses gy < Cmg €(L)™.

We next want to prove the first estimate of (5.26) and the first estimate of
(5.27). We distinguish two cases. In the first, L is adjacent to H and has the
same side-length. Then let J be the father of H. From the argument above
we then know how to bound hy — hgy = hgg — hgy and hgy — hyy. Both
estimates then follow from the triangle inequality. In the second case L is an
ancestor of H. Then let H =: L; C Lj_1 C --- C L = L;. We then know how
to bound hgr, —hpr, , on the ball Bl .= Blg/gml (pr,; 7). On the other hand,
if the constant in the first inequality of (1.15) is large enough (independently
of 1), then B’ ¢ B'. Summing the corresponding estimates, we get

j—1
lhe = harlleseszy < C Y Nhin, — hin, s

I=i
(5.30) i1
< Cmgl(L)* > 272 < Cmgl?,

1=0
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with a constant C independent of ¢ and j. Obviously a similar estimate holds
for |hg — haLllcis)-

We still need to prove the second estimate of (5.26) and the second es-
timate of (5.27). If H is a fixed cube in the Whitney decomposition and
Ly, € N0 its biggest ancestor, we then have ||hy — h-HLNO HC3,2N<B/) < Cmy.
On the other hand,

DSt 15 17230y < Dix(frrry,) < CE(T, Cazrpyy (PLyy>TH))

< Cmo +C’7TH —7'1'0|2 < Cmo.

Thus, by standard convolution estimates, ||DfLHLN0 ek (o) < Cmé/ * (where
the constant C' depends on k € N and on he various parameters). Using (5.30)
we then get

- - - - 1
||DhHHCQ,2m(B/) < HDhH — DhHLNO HCQ,QN(B/) + ||DhHLNO||C2,2n(BN0) < CmO/Q.
By the chain rule and the regularity of ¥ we then conclude the general bound
[ Dhullcsespry < Cmé/ . This implies the existence of a constant ¢ such

that ||hg — &|lcs.2x(pry < Cm(l)/Q. Applying Lemma B.1 we achieve the bound
g —Clles2s(p) < C'm,(l)/2 for some other constant (. With a similar argument

using the bound H?LHLNO lcogvoy < Cmé/m, we achieve [|hg]|co gy < Cm(l]/Qm.
Hence again by Lemma B.1, |[gu|lcom) < Cm(l)/ ™ This obviously shows
Proposition 4.4(i).

Next, observe that we have, by the very same arguments, ||gr . —(||cs.2+(p)
< C’mé/z, thus concluding that ||gur — gullcs2p) < Cm(lj/Q. On the other
hand, it also follows from the same arguments above that ||hyr —hu| sy <
Cmgl™m 382 < Cmgl™+3+4%, Applying Lemma B.1(b) we then conclude that
lgrr — gmllLr sy < Cmel™ 34 We can now apply Lemma C.2 to conclude
that ||D*(gmr — gu)llcom) < C’m(l)/2€3_i+4“ for every i € {0,1,2,3}, reaching
the second estimate of (5.26). Interpolating between the latter estimates and
lguL — gmllcses By < Cmé/2, we reach as well the second conclusion of (5.27).

Coming to (iv) in Proposition 4.4, the estimate on gy — yg is a straight-
forward consequence of the height bound, [5, Th. 1.4] and Lemma B.1 (applied
to hg). Next, observe that

DR |72y < C(L+ Lip(¥ i) |Dhi 725y + CllD2V (2, B) 17251
and

DR |72y < CID(n o fu)llf2(py < CDix(fa, B')) < Cmgl(H)™ 272,
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On the other hand, recall that the plane my is contained in the plane 7, %
and thus D, ¥y (py,0) = 0. Since ||D*¥y|lo < m(l]/Q, we obviously conclude
that || DU g (z, h)[|3, < Cmol™ 2. Therefore HDhHH%Q(B,) < Cmylm+2-20%2,
Thus, there is at least one point ¢ € Gr(hg|p’) such that |T,Gp, — 7|
< Cm(l)/2€(H)1_52. Since || D?hyllo < C’m(l)/g, we then conclude [Ty Gy,, — 7|
< C’Tn(l)/QZ(H)l_‘S2 indeed holds for any point ¢’ € Gr(hg|p/). Since Gr(gm|p)
is a subset of Gr(hg|p/) (with the same orientation!), the second inequality of
Proposition 4.4(iv) follows. O

5.3. Tilted L' estimate. In order to achieve Proposition 4.4(ii) and (iii),
we need to compare tilted interpolating functions coming from different coor-
dinates. To this aim, we set the following terminology.

Definition 5.4 (Distant relation). Four cubes H,J, L, M make a distant
relation between H and L if J,M € .#7 U #7 have nonempty intersection, H
is a descendant of J (or J itself) and L a descendant of M (or M itself).

LeEMMA 5.5 (Tilted L' estimate). Assume that the hypotheses of Propo-
sition 4.4 hold and &9 is sufficiently small. Let H,J,L and M be a distant
relation between H and L, and let hgy, hpy be the maps given in Defini-
tion 4.3. Then there is a map hoa By, (py, ) — 7#] such that GBLM =
Ghyp - Cary (g, mH) and, for C' = C(B2, d2, Mo, No, Ce, Ch),

(5.31) ey = heall s (Ba, oy < Cro (J)™ 372,

Proof. As in the previous proofs we follow the convention that Cy de-
notes geometric constants whereas C' denotes constants which depend upon
B2, 62, My, Ny, Ce and C},. First observe that Lemma B.1 can be applied be-
cause, by Proposition 4.1,

e — 7| < |mg — w4 s — w4 s — o] < Cmgte(g) %,

Set 7 := 7y, and let s be its orthogonal complement in 7},,, 3, and similarly
m = mr, and > its orthogonal in T),, 3. After a translation we also assume
ps =0 and write r = r; =rp, £ = 4(J) = €(M) and E = E(T, Cs32,(0,7)),
E := E(T, Cs2,(pp,7)). Recall that max{FE, E} < Cmg¢>*~2%2. We also fix
the maps Uy : Tp, 2 — T,,5+ and ¥ : T, % — T,, X+ whose graphs
coincide with the submanifold ¥. Observe that |m— 7|+ |2 — x| < Cm[l)/ 2102
IDU gl o + || DUL| 20 < Cmy* and

— 1
1 e llcogpeyy + 1P Lllco(pey) ) + ID¥allcose,) + 1D Ll cogpy,) < Cmyt.
Consider the map fras : Ba(0,7) — Ag(m) such that

G; =Gy, | Cyu(0,m),

fL]\/I
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which exists by [6, Prop. 5.2]. Recalling the estimates therein and those of [5,
Th. 1.4],

(5.32) Lip(frs) + Lip(frar) < Cm 0 and | frrg| + | frar] < Cmyg*" 0 +P2,
(5.33) Dir(fgs) + Dir(frar) < Cmg £mH27202

Next consider the projections A and A onto 7 of the Borel sets Gr(fzr)\spt(T)
and Gr(frar) \ spt(T). We know from [5, Th. 1.4] that

AUA| < C[IGyy, - TI(C2(0,m) + IG5, — TI(Caalpar, 7))

(5'34) < Cm(l)Jr’Yl 2

Recall that

hiy = (Px((mo fuy) * 00), Vu(z, Ps((no fr) * 00))),
hiv = (Pz((mo frar) * 00), (2, P=((m o frar) * 00))),

and define in addition the maps

frus = (Px(mo fus), Yu(z,psx(no fuy))),
frv = (P=(no fum), Yio(x, p=(no fum))).

Recall that hpay : By, (0,m) — 7t satisfies GHLM = Gy, ,, L Cs(0,7), and
let f,,; be such that GfLM = Gy, ,, L Cy4r(0,7). We use Proposition 5.2, the
Lipschitz regularity of W and Lemma B.1 to conclude

||iLLM — fLMHLl < CHhLM — fLM”Ll < Cmy pm3+hz

Likewise, ||hmy — fusllr < Cmor™t3t82. We therefore need to estimate
£ —fLar|[ 1. Next define the map gra = (pPx(m0fLn), Vi (%, Px(nofLar))),
and observe that |gry — fusllr < Clmo foar —mo fryllpi. On the other
hand, since the two maps fry and fy; differ only on AU A, we can estimate

A~ —_ A 1 m
Imo frar—no frsllp < CLAUA|(| fralloo+ || frrsllos) < Cmgt/2mgdtmamtss,

It thus suffices to estimate ||gzas — fras]|z1. This estimate is independent of
the rest and it is an easy consequence of (5.35) in Lemma 5.6 below. (]

LEMMA 5.6. Fix m,n,l and Q. There are geometric constants co, Co with
the following property. Consider two triples of planes (w, »,w) and (T, x,@),
where

e 1 and T are m-dimensional;

e i and x are n-dimensional and orthogonal, respectively, to ™ and T;

e w and @ [-dimensional and orthogonal, respectively, to m X » and T X .
Assume An = | — 7|+ | — 5| < co, and let W : wx 32 — w0, U : T X 3z — @ be
two maps whose graphs coincide and such that |¥(0)| < cor and |DV|co < cp.
Let w : Bg,(0,7) = Ag(3¢) be a map with Lip(u) < ¢o and ||ulco < cor, and
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set f(x) = Yil(ui(2), ¥(z,u;(2)))] and f(z) = (nou(z), ¥(z,nou(z))). Then
there are

e a map U : By (0,7) = Ag(5¢) such that the map
flz) = > (@), ¥ (z, 4(2)))]

satisfies Gf = G L Cyr (0, );
e and a map £ : By, (0,7) — 3 X @ such that G; = GeL Cy, (0, 7).
Finally, if g(x) := (noa(x), ¥(z,noa(x))), then

(535 [F ~gllir < Co(Ifllco +rAn) (Dir(F) + ™ (| DT|0 + An?)).
The proof of the lemma is quite long, and we defer it to Appendix D.

5.4. Proof of Proposition 4.4. We are finally ready to complete the proof of
Proposition 4.4. Recall that (i) and (iv) have already been shown in Lemma 5.3.
In order to show (ii) fix two cubes H, L € &7 with nonempty intersection. If
¢(H) = {(L), then we can apply Lemma 5.5 to conclude
(5.36)

heter = BLLlL By, (o)) < Crro CCH) 322 < Cmg ¢(H) ™20,
If ¢(H) = ${(L), then let J be the father of H. Obviously, J N L # (. We
can therefore apply Lemma 5.5 above to infer ||hg; — iLLL‘|L1(B2rJ(pJ,WH) <
Cm £(J)™ 34722 On the other hand, by Lemma 5.3,

here = PrgllL B, i)y < CT" e = hirgllo < Cmg ()™ 3427,
Thus we conclude (5.36) as well.

Note that Gg, LC,, (xy,m) = G;LLLLCTH(:UH,WO) and that the same
property holds with gy and hpyp. We can thus appeal to Lemma B.1 to
conclude

(5.37) lge = 9Ll 11 (B, (prr moy) < Crrag L(H)™ 425,
However, recall also that || D3(gy — gi)ller ., mmo) < Cmé/z. We can then
apply Lemma C.2 to conclude (ii).

Now, if L € #7 and i > j, consider the subset 2%(L) of all cubes in
which intersect L. If L’ is the cube concentric to L with ¢(L') = 2¢(L), we
then have by definition of ¢; that
(5.38)

loi = grlloeny <C D0 Nlam = gillei(s,, ppm) < Crmo ((H)™ 727,
HeZi(L)

which is the claim of (v).
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As for (iii), observe first that the argument above applies also when L is the
father of H. Then iterating the corresponding estimates, it is easy to see that

(5.39)  |D3gu(zg) — D3gs(zy)| < Cm(l]/QK(J)” for any ancestor J of H.

Now fix any pair H,L € &J. Let H;, L; be the “first ancestors” of H and L
which are adjacent, i.e., among all pairs H’', L’ of ancestors of H and L with the
same side-length and nonempty intersection, we assume that the side-length ¢
of H;, L; is the smallest possible. We can therefore use the estimates obtained
so far to conclude

|D3gp(xn) — D*gr(ar)| < |D?gu(zn) — DPgu, (za,))|
+ ’D39Hi (:EHZ) - D3ng‘ ($L1)|
+|D%gr, (er,) — DPgr(zr)| < Omy*er.

A simple geometric consideration shows that |x;, — zg| > cof, where ¢ is a
dimensional constant, thus completing the proof.

6. Existence and estimates for the M-normal approximation

In this section we continue using the convention that C' denotes constants
which depend upon fs, o2, My, Ny, Ce and Cp, whereas Cy denotes geometric
constants.

6.1. Proof of Corollary 2.2. The first two statements of (i) follow imme-
diately from Theorem 1.17(i) and Proposition 4.1(v). Coming to the third
claim of (i), we extend the function ¢ to the entire plane 7y by increasing its
C3* norm by a constant geometric factor. Let ¢;(z) := tp(z) for t € [0,1],
M = Gr(ptlj_g4pm), and set

U, = {x—|—y1x GMt,yJ—TxMta’y| < 1}-

For &5 sufficiently small, the orthogonal projection p; : Uy — M; is a well-
defined C** map for every t € [0,1], which depends smoothly on ¢. It is
also easy to see that 0T'LU; = 0. Thus, (p:)s(TLU;) = Q(t) [M;] for some
integer Q(t). On the other hand, these currents depend continuously on ¢,
and therefore () must be a constant. Since Mg =| — 4,4["x{0} C 7y and
Po = Py, We conclude Q(0) = Q.

With regard to (ii), consider ¢ € L € #/, set p := ®(q) and 7 := T, M,
whereas 7y, is as in Definition 1.16. Let J be the cube concentric to L and
with side-length %Z(L). By the definition of ¢, Theorem 1.17(ii) and Propo-
sition 4.4, we have that, denoting by ¢ and gy, the first n components of the
corresponding maps,

_ _ 1
lg—agrllcon < S llgr — gulleosy < Cmg*0(L)>.
Hew ,HNL#)
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So, since ¢ = (@, ¥(z,$)) and gu = (gu, ¥(x, gu)), we conclude ||gr, —pl|co( s
< Cmé/ *¢(L)3**. On the other hand, the graph of g, coincides with the graph
of the tilted interpolating function hz. Consider in C := Cg,, (pr,7) the

mr-approximation fr, used in the construction algorithm, and recall that by [5,
Th. 1.4],

osc (1) < Co (B(T, Cszr, (pr,7r), 7L) + (B(T, Cszp, (pr.71))* + rLA)rp)
< Cmy*™ (L),

Recall that p;, = (z1,wr) € 7 x 71 belongs to spt(T), so we easily con-
clude that ||n o f — wrllco < Cmg> ¢(L)**+#2. This implies |[hy — wr|lco <
Cm(l)/ *"0(L)"*P2.  Putting all these estimates together, we easily conclude
that, for any point p in spt(7") N Cr,, (pr,7r) the distance to the graph of
hr, is at most Cm(l]/ *"¢(L)*P2. This shows the claim if we can prove that
spt((T,p,p) C By, (p) C Cr, (pL,7L), for which we argue by contradiction.
Assuming the opposite, there is a p’ € spt((T,p,p) and an ancestor J with
largest sidelength among those for which |p’ — p| > r;. Let 7 be the tangent

to M at p, and observe that we have the estimates |7 — m;| < C’m(l)/ * and

|m — mo| < Cm(l)Q. If J were an element of .0 the height bound (1.11)
would imply |p/ — p| < C’m(lj I J ¢ N0 and we let H be the father of
J, we then conclude that ¢ € By, and thus we have |p’ — p| < Ch(T,By) <
C’m(l)/QmK(H)Hﬂ?. In both cases this would be incompatible with [p’ — p| > r,
pI‘OVided €2 < C(,Bg, 52, Mo, Ng, Ce, Ch)

Finally, we show (iii). Fix a point p € I'. By construction, there is an
infinite chain Ly, D Lyy+1 D -+- D Lj D -+ of cubes L; € .%7 such that {p} =
N; Lj. Set mj := ;. From Proposition 4.1 we infer that the planes 7; converge

1=82)  Moreover, the rescaled

currents (LpLj 72—j)ﬁT (where the map ¢4, is given by ¢4,(2) = %) converge
to Q [x]. Since |®(p) — pr,;| < C/m277 for some constant C independent of
J, we easily conclude that ©(T,®(p)) = Q and Q [n] is the unique tangent
cone to T at ®(p). We next show that p~1(®(p)) Nspt(T) = {®(p)}. Indeed,
assume there is ¢ # ®(p) which belongs to spt(7') and such that p(q) = ®(p).
Let j be such that 277~ < |®(p) — q| < 277. Provided &3 is sufficiently small,
Proposition 4.1(v) guarantees that j > Ny. Consider the cube L; in the chain
above, and recall that h(T, C32rLj (pr; ™)) < Cm[l)/2m2*j(1+52). Hence,

to a plane m with a rate |m; — 7| < Cm(l)/22_j(

27771 < |g— ®(p)| = P (g — ()]
< Colg — @(p)|Im — ;| + h(T, Csar;, (pL; 75))

< Cmé/22—j(1—52)2—j + Cmé/2m2—j(1+,32) < CE;/2m2_j,
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which, for an appropriate choice of 5 (depending only on the various other
parameters (33, 02, Ce, Cp, My, Np) is a contradiction.

6.2. Construction of the M-normal approximation and first estimates.
We set F(p) = Q[p] for p € ®(T'). For every L € #7, consider the -
approximating function fr, : Cg,, (pr,7L) — AQ(WI%) of Definition 1.13 and
K1, C Bgy, (pr,7r) the projection on 7z, of spt(7') N Gr(fr). In particular, we
have Gy, |, = TL(Ky x 7). We then denote by 2(L) the portions of the
supports of T" and Gr(fz) which differ:

(L) := (spt(T) U Gr(f1)) N [(Bsry, (pr,me) \ Kr) x 7L |.
Observe that, by [5, Th. 1.4] and Assumption 1.8, we have
(6.1)
H™(2(L)) + | TII(2(L)) < CoE™ (E + ((L)*A*)U(L)™ < Cmy (L) 472,
where E = E(T, Csa,, (pr, 7)) (cf. (5.20)). Let £ be the Whitney region in
Definition 1.18, and set £’ := ®(J), where J is the cube concentric to L with

oJ) = %K(L). Observe that our choice of the constants is done in such a way
that

(6.2) LNH=0 < LNH =0 VH,L €W,
(6.3) dIC)NnL' =0 VLew.
We then apply [6, Th. 5.1] to obtain maps Fr, : £ — Ag(U), Np : £/ —
Ag(R™™) with the following properties:

o Fi(p) = i lp+ (Np)i(p)],

e (N.)i(p) L T,M for every p € L'

o and Gy, L(p™'(L')) = Tp, L(p~ (L))
For each L, consider the set # (L) of elements in # which have a nonempty
intersection with L. We then define the set X in the following way:

(6.4) k=m\(U (¢n U p@2n))).
Lew Mew (L)

In other words, K is obtained from M by removing in each £’ those points
x for which there is a neighboring cube M such that the slice of Tr,, at x
(relative to the projection p) does not coincide with the slice of T. Observe
that, by (6.3), K necessarily contains ®(I'). Moreover, recall that Lip(p) < C,
that the cardinality #/(L) is bounded by a geometric constant and that each
element of #'(L) has side-length at most twice that of L. Thus (6.1) implies

(65) [C\KI<ILNKI< >0 3 p(Z(H)) < Cmg (L),
Mew (L) HeW (M)

On ®(T') we define F(p) = Q [p]. By (6.2), if J and L are such that J'NL" # 0,
then J € # (L) and therefore F, = F; on KN(J'NL'"). We can therefore define
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a unique map on K by simply setting F'(p) = Fp(p) if p € KNL'. Our resulting
map has the Lipschitz bound of (2.1) in each LNK. Indeed, notice that, by the
C? estimate on ¢ and Proposition 4.4(iv), M is given on C,, (pr,7r) as the
graph of a map ¢’ : By, (pr,71) — 71 with |D¢/||co < C’m(l) *0(H)'~% and
|D2¢/||co < C’m(l)/ ?. Hence, the Lipschitz constant of Ny can be estimated
using [6, Th. 5.1] as

(6.6)

Lip(Ng) < C (|ID*¢co [ Nllco + D¢/ llco + Lip(f1)) < Cm? ¢(L)™.

Moreover, Tr = T p~!(K), which implies two facts. First, by Corollary 2.2(ii)
we also have that N(p) := >, [Fi(p) — p] enjoys the bound ||N|znkllco <
Cmé/QmE(L) 1462 " Secondly,

©.7) T L\K) < > > ITI(Z(H)) < Cmg (L),
Mew (L) HeW (M)

Hence, F' and N satisfy the bounds (2.1) on K. We next extend them to the

whole center manifold and conclude (2.2) from (6.7) and (6.5). The extension

is achieved in three steps:

e we first extend the map F to a map F taking values in Ag(U);

e we then modify F to achieve the form F(z) = Y[z + Ni(z)] with N;(z) L
T, M for every x;

e we finally modify F' to reach the desired extension F(z) = ¥, [« + N;(z)],
with N;(z) L T, M and = 4+ N;(z) € X for every z.

First extension. We use on M the coordinates induced by its graphical
structure; i.e., we work with variables in flat domains. Note that the domain
parametrizing the Whitney region for L € # is then the cube concentric to
L and with side-length 1£¢(L). The multivalued map N is extended to a
multivalued N inductively to appropriate neighborhoods of the skeleta of the
Whitney decomposition. (A similar argument has been used in [4, §1.2.2].) The
extension of F will obviously be F(z) = S;[N;i(z) + z]. The neighborhoods
of the skeleta are defined in this way:

(1) if p belongs to the 0-skeleton, we let L € # be (one of) the smallest cubes
containing it and define U? := Bz /16(p);

(2) if o = [p,q] C L is the edge of a cube and L € # is (one of) the smallest
cube intersecting o, we then define U? to be the neighborhood of size
%% of ¢ minus the closure of the unions of the U"’s, where r runs in the
0-skeleton;

(3) we proceed inductively until the m — 1-skeleton: given a k-dimensional
facet o and (one of) the smallest cube L € % which intersects it, U? is
its neighborhood of size 4*'“% minus the closure of the union of all U™’s,
where 7 runs among all facets of dimension at most k — 1.
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Denote by U the closure of the union of all these neighborhoods, and let {V;}
be the connected components of the complement. For each V;, there is an
L; € W such that V; C L;. Moreover, V; has distance col(L) from OL;, where
co is a geometric constant. It is also clear that if 7 and o are two distinct facets
of the same cube L with the same dimension, then the distance between any
pair of points z,y with x € U™ and y € U? is at least cp/(L). In Figure 1 the
various domains are shown in a piece of a 2-dimensional decomposition.

/ Y [ Y [ \

Va Ur, U9

Vl < . /

Figure 1. The sets UP, U° and V;.

At a first step we extend IV to a new map N separately on each UP, where
p are the points in the 0O-skeleton. Fix p € L, and let St(p) be the union of
all cubes which contain p. Observe that the Lipschitz constant of N|xngy(p)

is smaller than CmJ?¢(L)" and that |[N| < C’m(l)/mé(L)H'B2 on St(p). We
can therefore extend the map N to UP at the price of slightly enlarging this
Lipschitz constant and this height bound, using [4, Th. 1.7]. The UP being
disjoint, the resulting map, for which we use the symbol N, is well defined.

It is obvious that this map has the desired height bound in each Whitney
region. We therefore want to estimate its Lipschitz constant. Consider L € #
and H concentric to L with side-length ((H) = %K(L). Let z,y € H. If
x,y € K, then there is nothing to check. If y € U? for some p and = ¢ | J, UY,
then x € St(p) and G(N(z), N(y)) < CmJ*¢(L)"|x—y|. The same holds when
xz,y € UP. The remaining case is x € UP and y € U? with p # ¢. Observe
however that this would imply that p,q are both vertices of L. Given that
L\ K has much smaller measure than L, there is at least one point z € LN K.
It is then obvious that

G(N(2), N(y) < G(N(2), N(2)) + G(N (=), N(y)) < CmgU(L)*¢(L)
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and, since |x — y| > col(L), the desired bound readily follows. Moreover,
observe that, if z is in the closure of some UY, then we can extend the map
continuously to it. By the properties of the Whitney decomposition it follows
that the union of the closures of the U? and of K is closed and thus, without
loss of generality, we can assume that the domain of this new N is in fact
closed.

This procedure can now be iterated over all skeleta inductively on the
dimension k of the corresponding skeleton, up to kK = m — 1. In the argument
above we simply replace points p with k-dimensional faces o, defining St(o) as
the union of the cubes which contain o. In the final step we then extend over
the domains V;’s. This time St(V;) will be defined as the union of the cubes
which intersect the cube L; D V;. The correct height and Lipschitz bounds
follow from the same arguments. Since the algorithm is applied m + 1 times,
the original constants have been enlarged by a geometric factor.

Second extension: orthogonality. For each x € M, let p(z,-) : R™*" —
R be the orthogonal projection on (T M)™. Set N(x) = S ;[p*(z, Ni(z))].
Obviously |N(z)| < |N(z)|, so the L> bound is trivial. We now want to show
the estimate on the Lipschitz constant. To this aim, fix two points p,q in
the same Whitney region associated to L and parametrize the corresponding
geodesic segment ¢ C M by arc-length v : [0,d(p,q)] — o, where d(p,q)
denotes the geodesic distance on M. Use [4, Prop. 1.2] to select ) Lipschitz
functions N/ : ¢ — U such that N|, = 3 [V/] and Lip(N/) < Lip(N). Fix a
frame vy, ..., v, on the normal bundle of M with the property that || Dv;||co <
Cm(l)/2m (which is possible since M is the graph of a C3* function; cf. [6,
App. A]). We have N(y(t)) = S3;[N;(t)], where

Ni(t) = > _lv; (v(1) - Ni(v()] w5 (8).

Hence we can estimate

J
< CmQPUL)"? + Cmy*" (L) < CmQ20(L)".

Integrating this inequality we find
A A Q A A
G(N(p), N(q)) < Co)_ INi(d(p,q)) — Ni(0)] < Cmg*£(L)2d(p, q).
i=1

Since d(p, q) is comparable to |p — ¢|, we achieve the desired Lipschitz bound.

Third extension and conclusion. For each x € M C X, consider the or-
thogonal complement s, of T, M in T,¥. Let T be the fiber bundle e 72,
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and observe that, by the regularity of both M and ¥ there is a global C%* triv-
ialization. (Argue asin [6, App. A].) It is then obvious that there is a C** map
E: T — R™" with the following property: for each (z,v), ¢ := z + Z(z,v) is
the only point in ¥ which is orthogonal to T, M and such that p,., (¢ —x) = v.
We then set N(z) = Y;[E(z, ps, (Ni(z)))]. Obviously, N(z) = N(x) for
x € IC, simply because in this case = + N;(z) belongs to X.

In order to show the Lipschitz bound, denote the map Z(z, p,,(q)) by
Q(x,q). Qis a C*>* map. Thus

(6.8) €z, q) — Q(x, p)| < Colg —pl.

Moreover, since 2(x,0) = 0 for every =, we have D;Q(x,0) = 0. We therefore
conclude that |D;Q(z, q)| < Cplg| and hence that

(6.9) 12(z, q) — Ly, q)| < Colglly — zI.

Thus, fix two points z,y € L, and let us assume that g(](f(az:),](f(y))2 =
i |Ni(z) — Ni(y)|* (which can be achieved by a simple relabeling). We then
conclude

~

G(N(z), N()* <23 |z, Ni(z)) — Q(a, Ni(y))|*

+2 19z, Ni(y)) — Qy, Ni(y)
(6.10) :

< CoG(N (), N(y))> + C Y INi(y)*|x — y?
< CmZ2U(L)?? |2 — y[? + Cm*™0(L) 2|z — y|2.

This proves the desired Lipschitz bound. Finally, using the fact that Q(z,0)=0,
we have [Q(z,v)| < Cplv|, and the L> bound readily follows.

6.3. Estimates (2.3) and (2.4). Consider the cylinder C := Cg,, (pr, 7L).
Denote by M the unit m-vector orienting T M and by 7 the one orienting
TGy, = TGy, . Recalling that g;, and ¢ coincide in a neighborhood of xy,, we
have

sup | F(wr,g1(x)) — M(p)| < ClD*@llco (L) < Cmy*0(L).
peEMNC

Since |D?hg]|| < C’m(l)/z, we have |T(xp,gr(xr)) — T(q)| < Cm(l) ¢(L) for all
g € M N C. Combining the last two inequalities with Proposition 4.4(iv) we
infer supgau M — 71| < Cm(l]/QE(L)l_‘S?. Thus, since p~1(£) Nspt(T) C C,
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we can estimate

[, [Fr(@) — M) P Tr| )
p (L)
eu) = [T - M) PAITI ) + Omp )

< / () — 71 %d|T||(z) + Cmgl(L)™ 222
p~ (L)

In turn the integral in (6.11) is smaller than C¢(L)"E(T,C, ). By [6,
Prop. 3.4] we then conclude that

[IDNE<Co [ Tete) - Mlp()PdITr] (@) + Coll Apla [ NP
c p—1(L) c
+CoLip(N)2/ |IDN|?
L
< Cmg 6(L)™272% 4 Cmg 0(L)" 2252 1 Cm2? / IDNJ?,
L

where we have used ||Aumllco < C||D?*@llco < Cm(l)/Q. Thus (2.3) follows
provided g5 is sufficiently small
We finally come to (2.4). First observe that, by (2.1) and (2.2),

(6.12) /ﬁ . In oN| < Cmy> (L) L\ K| < O 2T 2 p(pym 348247
Now fix p € K. Recalling that Fr(z) = Y, [p+ (N5)i(p)] is given by 6,
Th. 5.1] applied to the map fr, we can use [6, Th. 5.1(5.4)] to conclude that
o NL(p)| < Clno fi(pr, (p) = Py (p)] + CLip(Ni|c) [TpM — mz| [NL|(p)
< Clno fr(pr,(p) — P, ()]
+ Cmy* (L) 22 (G(NL(p), Q [ 0 Ni(p)])

+Qln o Ni|(p)).

For ey sufficiently small (depending only on fg, 2, My, No, Ce, Ch), we then
conclude that
(6.13)
e NL(p)| < Clno fL(Pr,(p) — Pri(D)]
2+72

+ Cm[l)/z—i-wf(L)1+72—62Q(NL(p), QnoNL(®])
< Cno fr(pr, (p) — P, (p) + Camy™? o(L) 27T

+ S G ), Qo NP,

Our choice of d2 makes the exponent (1 + vy, — (52)%115 larger than 2 + 5 /2.

Next let o' : 7, — 7 be such that G, = M. Applying Lemma B.1 we
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conclude that

| 1m0 e @) =GN SC [ o ful@) - ¢ (@)
Kny pr (KNV)

< Cllgr(z) — (@)l o (L)™,

(L
where H is a cube concentric to L with side-length ¢(H) = 3¢(L). From
Proposition 4.4(v) we get [l —gi || co(mry < Cmol(L)™ 377/ and (2.4) follows
integrating (6.13) over V N K and using (6.12).

6.4. Proof of Corollary 2.2. Observe that N =0 over ®(T') and thus the
second inequality in (2.5) follows easily from the second inequality of (2.1),
recalling that /(L) < 1 for any cube L € # . For the same reasons, from (2.3)
we conclude that

/ IDN|? < Cmyg > ((L)™2722 < Cmyg Y U(L)™ < Cmy.

Lew Lew
Coming to the first inequality in (2.5) fix any two points p = ®(x),q = ®(y)
€ M’. Observe that the length of the geodesic segment joining p and ¢ is
comparable, up to constants, to |z —y|. If z,y € T, then N(p) = N(q) = Q[0]
and so G(N(p),N(q)) = 0. If x € T and y ¢ T, then y belongs to some
L € W and, by the properties of the Whitney decomposition, ¢(L) < %\a: -
y|. Thus, using the second inequality in (2.1) we conclude G(N(q), N(p)) =
G(N(@),Q[0]) < [Nleloo < Cmg™ (L)' < Omy*|a — y|. Finally, if
z,y ¢ I', we analyze two cases. If the geodesic segment [z,y] intersects T,
then we conclude the same inequality as above. Otherwise there are points
T = z0,21,...,2N =y in [z, y] such that each segment [z;_1, z;] is contained in
some single L; € # and Y ; |2; — zi—1| = | — y|. It then follows from the first
bound in (2.1) that

G(N(p),N(q)) < Z G(N(®(2i), N(®(zi-1)))

< Cmf? Z |zi — zi1| = CmP |z —y|.
i
Recalling that 72 < 5, all the cases examined prove the first inequality in (2.5).
7. Separation and splitting before tilting

As in the previous sections, Cy will be used for geometric constants, C
for constants depending on (2, d2, My, Ng and C,, whereas C' will be used for
constants depending on all the latter parameters and also C},.

7.1. Vertical separation. In this section we prove Proposition 3.1 and
Corollary 3.2.

Proof of Proposition 3.1. Let J be the father of L. By Proposition 4.1,
Theorem A.1 can be applied to the cylinder C := Cgg,,(ps, 7). Moreover,
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lps — pr| < 3y/ml(J). Thus, if My is larger than a geometric constant, we
have By, C Cs4r,(ps,ms). Denote by qr, q; the projections Pil and Pri
respectively. Since L € #},, there are two points p1, p2 € spt(T') "By, such that
lar(p1—p2)| > C’hm(l)/Qmﬁ(L)H/BQ. On the other hand, recalling Proposition 4.1,
|mg —7r| < C_’m(l)/Qé(L)l_‘S?, where C' depends upon f3a, 82, My, Ny, C. but not
Ch. Thus,

las(p1 —p2)| > |ar(pr — p2)| — Colr — msl|lp1 — p2
> Chm(lj/Zme(L)lJrﬁz _ C_fm(ljhe(L)Qféz_

Hence, if €5 is sufficiently small, we actually conclude

15 1/am
(7.1) ds(pr = p2)l = 1o Cumg ™" (L) 7%,
Set E := E(T, C), and apply Theorem A.1 to C. The union of the correspond-
ing “stripes” S; contains the set spt(T") N Cyq, ) (1_cyp1/2m | 10g ) (DT 7). We
can therefore assume that they contain spt(7) N Csar, (p.s, ms). The width of
these stripes is bounded as follows:

sup {|CIJ(93 —y)|z,y € Si} < O El/zmTJ
< Co CY2m Mymyg/*™ 0(L)1+(2=202)/2m.

So, if C* is chosen large enough (depending only upon My m, n and Q), we
actually conclude that p; and p, must belong to two different stripes, say S
and Sy. By Theorem A.1(iii) we conclude that all points in Cgs4,,(ps, 7s) have
density © strictly smaller than @ — %, thereby implying (S1). Moreover, by
choosing C* appropriately, we achieve that

(7.2) sz — )| > gChmé/QmE(L)”ﬁ? ¥z €Sy €S,

Assume next there is H € # with ¢{(H) < £¢(L) and HN L # (). From our
construction it follows that £(H) = 1¢(L), By C Caar,(ps,my) and |rg—my| <
C_'mé/ *0(H)'% (see again Proposition 4.1). Arguing as above (and possibly
choosing €y smaller, but only depending upon S, d2, My, No,C. and C},) we
then conclude

(7.3)

P (e —y) > Zchmé/zmﬁ(L)HﬁQ = %Chmé/“am“ﬁ? Va € 81,y €8,

Now, recalling Proposition 4.1, if ey is sufficiently small, Csar, (P, 7H) N
spt(T') C By. Moreover, by Theorem A.1(ii),

(Pr,)s(TL(S; N Cs2ryy (pr, 7)) = Qi [Ba2ry (pr,my)]  for i =1,2, Q; > 1.
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A simple argument already used several other times allows us to conclude that
indeed

(Pry )t (TL(S;iNC32r; (PH-TH))) = Qi [Bs2ry, (pa, )] for i =1,2, Q; > 1.

Thus, By must necessarily contain two points x, y with
3 1/am
[Prg (@ — )| = SCum " (H) 2.

Given that |7y — mg| < C’m(lj/gﬁ(H)1*52, we conclude (again imposing that eo

is sufficiently small) that |p, . (z —y)| > gChm(l)/mE(H)HB?, i.e., the cube H
H

satisfies the stopping condition (HT), which has “priority over the condition

(NN),” and thus it cannot belong to #,,. This shows (S2).
Coming to (S3), set 2 := ®(By, /my(r)(¥L, T0) and observe that

pP:(TL(2NS;)) = Qi [ .
Thus, for each p € KX N, the support of p + N(p) must contain at least one
point p + Ni(p) € S; and at least one point p + No(p) € So. Now, by (7.2)

7 1/m
(T4)  INi) — Na(p)] 2 (Crmmy " UL) P2 = Col(L) | T, M —
Recalling, however, Proposition 4.4 and that M and Gr(gy) coincide on a
nonempty open set, we easily conclude that [Ty M — ;| < Cm(l)/ *0(L)' %2 and,
via (7.4),

G(N(p),QmoN®)]) > %\Nﬂp) — Na(p)| > gCth/Qmﬁ(L)”ﬁz-

Next observe that, by the property of the Whitney decomposition, any cube
touching By /) (2L, T) has sidelength at most 4/(L). Thus

’Q \ /C‘ < Cm(l]-‘rVQE(L)erQJr’yz’

and for every point p € €, there exists ¢ € K N which has geodesic distance
to p at most C’m(l)/erw/mﬁ(L)1+2/m+”2/m. Given the Lipschitz bound for N and
the choice 82 < 5L, we then easily conclude (S3):

3 m m 'm
G(N(@),Qmo N(@)]) > LOwmg" (L)% — Cmy™ (L)
1
> 1 Oy (L),
where again we need g9 < ¢(f2, d2, My, No, Ce, C}) for a sufficiently small c. O

Proof of Corollary 3.2. The proof is straightforward. Consider any H €
#,J. By definition it has a nonempty intersection with some cube J € #7~1,
This cube cannot belong to #}, by Proposition 3.1. It is then either an element
of #. or an element H;_; € #;J~!. Proceeding inductively, we then find a
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chain H = Hj,H;_1,...,H; =: L, where H; N H;_, # 0 for every [, Hj € %
for every | > i and L = H; € #{. Observe also that

Jj—1 00 _
leg — 2] < Z |z H; — le_H\ < \/mE(L)ZQ_l < 2y/m{(L).
I=i 1=0

l=1
It then follows easily that H C Bs, /my(r)(L)- O

7.2. Unique continuation for Dir-minimizers. Proposition 3.4 is based on
a De Giorgi-type decay estimate for Dir-minimizing @-valued maps which are
close to a classical harmonic function with multiplicity ). The argument in-
volves a unique continuation-type result for Dir-minimizers.

LEMMA 7.1 (Unique continuation for Dir-minimizers). For every n €
(0,1) and ¢ > 0, there exists v > 0 with the following property. If w : R™ D
By, — A (R™) is Dir-minimizing, Dir(w, B,) > ¢ and Dir(w, Ba,) = 1, then

Dir(w, Bs(q)) >~ for every Bs(q) C Ba, with s > nr.

Proof. We start showing the following claim:
(UQ) if Q is a connected open set and w € W12(Q, Ag(R™)) is Dir-minimizing
in any open ' CC €, then either w is constant or [; |[Dw[* > 0 on any
open J C €.

We prove (UC) by induction on Q. If @ = 1, this is the classical unique
continuation for harmonic functions. Assume now it holds for all Q* < @ and
we prove it for Q-valued maps. Assume w € W12(Q, Ag(R")) and J C Q is
an open set on which |Dw| = 0. Without loss of generality, we can assume J
connected and w|; = T for some T € Ag. Let J' be the interior of {w = T}
and K := J'NQ. We prove now that K is open, which in turn by connectedness
of © concludes (UC). We distinguish two cases.

Case (a): the diameter of T is positive. Since w is continuous, for every
x € K, there is B,(x) where w separates into [wi] + [wz] and each w; is
a @Q;-valued Dir-minimizer. Since J' N B,(z) # (), each w; is constant in a
(nontrivial) open subset of B,(z). By inductive hypothesis each w; is constant
in By(x), and therefore w = T in B,(z); that is, B,(z) C J' C K.

Case (b): T = Q[p] for some p. In this case let J” be the interior of
{w = Q[now]}. By [4, Def. 0.10], dJ" N Q is contained in the singular set
of w. By [4, Th. 0.11], H™~2+¢(Q2 N &J") = 0 for every ¢ > 0. Now consider a
point p € J" N and a small ball B,(z) C Q. Since K™ 1(8J" N B,(z)) = 0,
by the isoperimetric inequality, either |B,(x)\ J”| =0 or |J”| = 0. The latter
alternative is impossible because J” is open and has nonempty intersection
with B,(z). It then turns out that |B,(z)\ J”| = 0, and thus the closure of J”
contains B,(z). But then w = Q [n o w] on B,(x), and thus « cannot belong



546 CAMILLO DE LELLIS and EMANUELE SPADARO

to J". So 0J" N Q is empty and thus w = Q [pow] on Q. On the other
hand, 1 o w is an harmonic function (cf. [4, Lemma 3.23]). Being now|; = p,
by the classical unique continuation, n ow = p on Q.

We now come to the proof of the lemma. Without loss of generality,
we can assume r = 1. Arguing by contradiction, there exists sequences
{witken € WH2(Ba, Ag(R™)) and {Bs, (qk) tken with s > 1 and such that
Dir(wg, Bs, (qx)) < % Without loss of generality, after applying a translation,
we can assume that 1 o wy(0) = 0. Next, passing to a subsequence, we can
either assume that sup, G(wg(0), @ [0]) < oo or that limy G(wg, @ [0]) = oc.
In the first case, by [4, Prop. 3.20], a subsequence (not relabeled) converges
to w € Wh2(Bs, Ag(R")) Dir-minimizing in every open ' CC B;. Up to
subsequences, we can also assume that ¢ — ¢ and s — s > n > 0. Thus,
Bs(q) € Bg and Dir(w, Bs(q)) = 0. By (UC) this implies that w is constant.
On the other hand, by [4, Prop. 3.20], Dir(w, By) = limy, Dir(wg, B1) > ¢ > 0
gives the desired contradiction. In the second case, by the Holder continu-
ity of Dir-minimizers, each wy, splits in B3y as wy = wi + wi where w}C is
Dir-minimizing and @Q;-valued. After extracting a subsequence we can assume
that @ is independent of k and that Dir(wj, By) > 5- We can then repeat
the argument above and either reach a contradiction or split further the se-
quence in the ball Bj/4. The splitting procedure must stop after at most ¢
iterations. ([

Next we show that if the energy of a Dir-minimizer w does not decay
appropriately, then w must split. In order to simplify the exposition, in the
sequel we fix A > 0 such that

(7.5) (14 1)mF2) < 9%,

PROPOSITION 7.2 (Decay estimate for Dir-minimizers). For every n > 0,
there is v > 0 with the following property. Let w : R™ O B, — Ag(R™) be
Dir-minimizing in every Q' CC Bsa, such that

(7.6) /B G(Dw,Q[D(now)(0)] )2 > 2%2-"=2Dir(w, By,).
(1+X)r

Then, if we set w =, [w; — n o w], the following holds:

Y Dir(w, B(1+)\)T‘) < Dir(u?, B(l-‘r)\)T)
7.7 1
(7.7) <— \w|> V Bs(q) C By, with s >nr.
yr Bs (Q)
Before coming to the proof of the proposition we point out an elementary
fact which will be used repeatedly in this section.
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LEMMA 7.3. Let B C R™ be a ball centered at 0, w € WH2(B, Ag(R™))
Dir-minimizing and w = Y_; [w; — now]. We then have

(7.8)

Q [ 1D@mow) = D ow)O)f = [ 6(Dw.Q[D(mew)(O)])? - Dir(w, B).

Proof. Let u := n ow, and observe that it is harmonic. Thus, using the
mean value property of harmonic functions and a straightforward computation
we get

2 _ 2 2
Q /B |Du— Du(0)* = Q /B |Dul? — Q| B|| Du(0) 2.

On the other hand, again using the mean value property of harmonic functions,
it is easy to see that

/90w, QDo) + QIBIDuO) = [ [Duf* = [ 1Daf+ [ 1Dup
B
Combining the last two inequalities we prove the lemma.

Proof of Proposition 7.2. By a simple scaling argument we can assume
= 1 and we argue by contradiction. Let w; be a sequence of local Dir-
minimizers which satisfy (7.6), Dir(wy, B2) = 1 and

(a) either stk(Qk) |wy,|> < ¢ for some ball By, () C Ba, with s > 1,
(b) or Dir(wy, Bi4y) < 1.

Passing to a subsequence, if necessary, we can assume that s — s and ¢ — q.
Moreover, we can normalize the sequence so that fBQ D(nowg) = 0 and, in
particular, passing to a subsequence, assume that 1 o wy converges strongly in
L?. Assume now that (a) holds for an infinite sequence of indices. In that case
we can extract a subsequence, not relabeled, which converges locally in W12 to
a Dir-minimizer w. In fact the Holder bound for Dir-minimizers and (a) imply
necessarily that sup;, G(wi(qr), Q [ o wi(gr)]) < oo, and we can argue as in
the proof of Lemma 7.1. We then conclude that w = ; [w; — 1 o w] vanishes
identically on Bs(q), and we can appeal to Lemma 7.1 to infer that @ vanishes
on By. This means, in particular, that Dir(wy, Biy+y) — Dir(w, Bi4+)) = 0.
Summarizing we conclude that Dir(wy, Bi+y) converges to 0 in any case.

Next let ug := 1 o wg, and recall that we are assuming that u; converges
to an harmonic function u. Thus from (7.6) and Lemma 7.3, we get

QDu, - DuO)f = [ (9(Dwr. QIDun(0))* - D)

(1.9) P
2252*"1*2/ |Dwk\2—/ Dy %
B2 Biia
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Letting k 1 oo, since Dir(wyg, B) < 1 and Dir(wg, B14x) — 0, we conclude

B2

(7.10) / \Du — Du(0)2 > 20272 > 252—m—2/ |Dul?.
By

Since (14+X)™+2 < 2% (7.10) violates the decay estimate for classical harmonic
functions:

1) [ Du=Du@P <220 [P,
Biya B2

thus concluding the proof. In order to show (7.11) it suffices to decompose Du
in series of homogeneous harmonic polynomials Du(x) = Y52, P;(x), where
i is the degree. In particular, the restriction of this decomposition on any
sphere S := 0B, gives the decomposition of Du|g in spherical harmonics; see
[13, Chap. 5, §2]. It turns out, therefore, that the P; are L?(B,) orthogonal.
Since the constant polynomial Py is Du(0) and fBlJr)\ |P|? < 2-m—2 IB, |Pi|%,
(7.11) follows at once. O

7.3. Splitting before tilting 1: Proof of Proposition 3.4. As customary we
use the convention that constants denoted by C' depend upon all the parameters
but €9, whereas constants denoted by Cy depend only upon m,n,n and Q.

Given L € #J, let us consider its ancestors H € .7~ and J € .#776. Set
{={(L),m = 7y and C := Cs,,(ps,7), and let f : Bs,,(ps, ) — Ag(7t) be
the m-approximation of Definition 1.13, which is the result of [5, Th. 1.4] applied
to Csa,,(ps, ™). (Recall that Proposition 4.2(i) ensures the applicability of [5,
Th. 1.4] in the latter cylinder.) We let K C Bg,,(ps, m) denote the set of [5,
Th. 1.4] and recall that Gy, = TL K x 7. Observe that B, ¢ By ¢ C.
(This requires, as usual, g2 < ¢(f2, 02, My, No, Ce,Ch).) The following are
simple consequences of Proposition 4.1:

(7.12) FE = E(T, 0327« (pJ, 7T)) < Cmo 52_262,
J
(7.13) h(T,C, 1) < Cmy*" 5.
In particular, the positive constant C' does not depend on £5. Moreover, since
B, CC,Lc#.andry/r; =275 we have
(7.14) cCemyri? < E,

where c is only a geometric constant. We divide the proof of Proposition 3.4
into three steps.

Step 1: decay estimate for f. Let 2p := 64ry — Cuméﬁmfl*ﬁ?. Since
pr € spt(T), it follows from (7.13) that, upon choosing C* appropriately,
spt(T) N Cop(pa, ) € By C C. (Observe that C* depends upon the param-
eters [32, 02, My, No,Ce and C},, but not on e9.) Setting B = Bg,(z,7) with
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x = px(pm), using the Taylor expansion in [6, Cor. 3.3] and the estimates in
[5, Th. 1.4], we then get

Dir(B, f) < 2|B|E(T, Cap(zm, ™)) + Cm(1)+71£m+2+71/2
(7.15) < % (20)"E(T, Byy) + Crml 11 gt 2412

Next consider the cylinder Cesyr, (pr, 7), and set 2’ := pr(pr). Recall that |z —
2| <|pg—pr| < CU(H), where C' is a geometric constant (cf. Proposition 4.1),
and set 0 := 64ry, + CU(H) = 32ry + C¢(H). If X is the constant in (7.5) and
My is chosen sufficiently large (thus fixing a lower bound for My which depends
only on d2), we reach

1
o< (5 + 2) 64rg < (1 + %) p—f—C’ﬁm(l)/QmEHB?.

In particular, choosing e sufficiently small we conclude o < (1+ \)p and thus
also By, C Ceyrp (2, m) C Cynyp(z,m) =: C'. Define B’ := B(14y),(z, ), set
A= {5 D(mof), let A: 7 — 7t be the linear map z +— A -z and let 7 be
the plane corresponding to G 4. Using [6, Th. 3.5], we can estimate

% /B’ 9(Df,Q [[A]])Q = |B/| E(T, C, T) — Cmé+71€m+2+~n/z

> |B'|E(T, By, 7) — Crft7 240/
(7.16) > win (14 A)p)™E(T,Br) — Cmltrem+2tn/2,

Now let w be the (m+7n)-dimensional plane containing © = 7z so that 7 x s has

the least distance to the plane T},,,¥. From the bound |7y — 7g| < Cm(l)/Qﬁl_‘s

we conclude that |w — 1), 3| < Cm(l)/2€1_52. In particular, we can apply
Lemma B.1 to infer the existence of a C®% map ¥ : w — w™ whose graph
coincides with ¥ and satisfies the bounds || DV|p < Co||DV¥gllo + C’m(l)/2 <
Cm6/2€1*52 <1 and ||D*¥|p < CoA < Com(lj/2. (Recall that A denotes the
C" norm of the second fundamental form of ¥.)

Let s be the orthogonal complement of 7 in w, and establish the no-
tation m x 2 > (y,v) — ¥(y,v) and (v,z) € » x wr. Since the approxi-
mation f takes values in X, we infer the existence of a (J-valued map g =
5 [oi] 5o that f(y) = 5 [0:(»), ¥(y, gi(w)))]. By the chain rule we have
D(¥(y,9(y)) = X [Dy¥(y,9i(y)) + Du¥(y,9:(y)) - Dgi(y)]. Recalling that
osc f < Cm(l)/ “"p1+P2  we obtain the same bound for the oscillation of g and
thus conclude the existence of a constant vector ¥ € » such that |g;(y) — 0] <
C’m(l)/ 2 P1+P2 for every i and every y € B. We thus achieve

G(D(¥(y, 9(1))), Q [DU(y,B)]) < Cmy*" 61452 4 Cmy/*0'=%| Dy|(y)

for all y € B. Next, |[D¥(y,v) — D¥(z,v)| < Comé/Qp, where the latter
constant Cy is indeed independent of (39, do, My, Ng, C. and C},. Therefore, if
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we set A = £ n(D(¥(y,9))) = f5 D(n o U(y,g)), we infer

/B/ G(D(W(y, 9()), QIA])? dy < Comop™ *+CmgDix(B, g)+Cmy /" p" 2.

Next observe that G(Df, Q[A])* = G(Dg,Q [A])* + G(D(¥(y,9)), QLA])?,
where A = 5, D(n 0 g). We thus conclude

(7.17) Dir(B, g) < 2wm(20)™E(T,By) + Cmg ™" p"+2,
/. 6(Dg.QIAD? = 20, ((1+ Np)"B(T. Br) ~ CmoDir(B. 9
(718) _ COmO,Om+2 _ Cmé-l")’l pm+2.

Step 2: harmonic approzimation. From now on, to simplify our notation,
we use Bs(y) in place of Bs(y, 7). Set p := pr(ps). From (7.14) we infer
that 85y A < 8r Jm(l)/ P < E°B for ey sufficiently small. Therefore, for every
positive 77, we can apply [5, Th. 1.6] to the cylinder C and achieve a map
w @ Bg,, (p, ) = Ag(nt) of the form w = (u, ¥(y,u)) for a Dir-minimizer u
and such that

(7.19)  (87,)"? /B LR / UDFI—Dul? <7 B (8r)",

(7.20) [, 1Pme )= Demew) <P (sr)"

Now, since D(now) = no Du is harmonic, we have D(nou)(z) = fg,(no Du).
So we can combine (7.19) and (7.20) with (7.18) to infer

2 m
(7.21) /B(H)\)p(x) G(Du,Qn o Du()])” > 2w, ((1+ \)p)"E(T, Br)

— CmoDir(B,u) — Comop™ ™2 — C’??”L(l)JFA“pm“'2 — Cof PEp™.

Now, recall that E(T,Br) > Comgl(L)?>72%2 > 222=2E(T,By) and that F <
Cmop?~22. We can therefore combine (7.21) with (7.12), (7.17) and (7.19) to
achieve

/ G(Du, QID(n o u)()])’
Biyay,(z)

Co

260—2—m
> (2 -

o —cmy) [ |pul.
B2p($)

It is crucial that the constant C', although depending upon B, d2, My, Nog, Ce

and C}, does not depend on 7 and €9, whereas Cy depends only upon Q,m,n

and n. So, if C, is chosen sufficiently large, depending only upon A (and hence

upon d2), we can require that 9202=2=m _ g—: > 2392/4=2=m W then require 7

and &5 to be sufficiently small so that 2302/4—2-m _ Cm(l)/Qm —Cf'? > 9%-2-m,
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We can now apply Lemma 7.1 and Proposition 7.2 to u and conclude that

o1 /
B

DuP < [ G(Du.QID(moul)?
(z) Bys(q

(1+XN)p

<o [ guQnoul?
Bys(q)

for any ball Bys(q) = Bys(q, ) C Bsy,(p, ), where C depends upon &, and
Mpy. In particular, being these constants independent of €2 and C., we can
use the previous estimates and reabsorb error terms (possibly choosing €5 even
smaller and C, larger) to conclude that

mo ("R <GB BL) <O [ G(DF.Q[D(me )Y
¢/8\q

<ce? G(f,QIno f1)%

Bys(q)

(7.22)

where C, C and C are constants which depend upon &2, My and C¢, but not
on £9.

Step 3: Estimate for the M-normal approximation. Now, consider any
ball By4(q, mo) with dist(L, q) < 4y/m ¢, and let Q := ®(By/4(q,m0)). Observe
that p,(§2) must contain a ball Bys(¢’, ), because of the estimates on ¢ and
|70 — 7|, and in turn it must be contained in Bg,,(p, 7). Moreover, p Q)N
spt(T') O Cys(q’,m) Nspt(T) and, for an appropriate geometric constant Co,
Q2 cannot intersect a Whitney region £’ corresponding to an L' with (L) >
Col(L). In particular, Theorem 2.4 implies that

(7:23)  |Tr = T|(p74(9) + | Tr — Gyll(p™4(2)) < Omf* om0,

Now let F” be the map such that Tp L(p~1(R2)) = G¢L(p~(2)), and let N’
be the corresponding normal part, i.e., F'(z) = 3; [z + N/(z)]. The region
over which F and F’ differ is contained in the projection onto © of (Im(F') \
spt(T)) U (Im(F”) \ spt(T")), and therefore its H™ measure is bounded as in
(7.23). Recalling the height bound on N and f, we easily conclude | N|+|N’| <

Cm(l)/ #mp1+B2 which in turn implies
(7.24) / N2 > / N2 — Cm Tz gt dt 2Bty
Q —Jo 0
On the other hand, let ¢’ : Bs,,(p,m) — 7+ be such that G, = [M] and
®'(2) = (z,4/(2)); then, applying [6, Th. 5.1 (5.3)], we conclude
1

IN'(®'(2))] = mg(f@),@ [¢'(2)]) =

5 9. Qo F))),

3
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which in turn implies

(7.22)
mo €m+27252 < 0672 g(f,Q [[,r] o f]])2 < 0672/ |N/|2
(7.25) By/s(q',m) Q

<cr? / [N+ Cmyg P72t /em g 2428243
Q

For ey sufficiently small, this leads to the second inequality of (3.2), while the
first one comes from Theorem 2.4 and E(T,By) > C.myg (>~2%2,

Next we complete the proof showing (3.1). Since D(no f)(z) = no Df(z)
for a.e. z, we obviously have

) [ GwrQpmenys[ 45Dl
0/8(q’sm

Bé/S(q/Jr)

Now let (_?;f be the orienting tangent m-vector to G and 7 the one to M. For
almost every z, we have the inequality

Cod. G (fi(2)) = (¢ (2)) P 2 G(Df(2), Q [De'(2)] )%,

for some geometric constant Cp, because ]éf(fi(z))—%’(go’(z)ﬂ < Cm{*. (Thus
it suffices to have e2 sufficiently small.) Hence

| amralpg]i<c Gy (=) — 7' (pr(2)) Pl Gy (2)
By/s(q'sm) Cys(d’,m)

(2n)  =C T(2) = 7(# (Pr(2)Pd|TI|(2) + Cg 7074247
CZ/S(q/ﬂT)

Now, thanks to the height bound and to the fact that |7 — 7| < |7 — 7g| +
|mg — 7| < Cm5/2€1_52 in the cylinder C = Cy/s(q', ), we have the inequality

~

D(2)— ¢ (px(2)] < Oy 22402702 < " 22451 v € spy(T)NE.

Using ||¢']|c2 < C’m(l]/ ? we then easily conclude from (7.27) that

Byg(p,m)
= CO L |f(z) - F(p(z))PdHTH(Z) + Cm(1]+71£m+2+ﬁ2/2
: CO/ Q) |TF(Z) — 7(p(2))Pd||Trl|(2) + Cm(l)+72€m+2+v2a
p-

where we used (7.23).
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Since |DN| < Cm{*(2, |N| < Cmé/mél*ﬁ? on Q and || Apm]? < Cmy,
now applying [6, Prop. 3.4] we conclude

/pl(m ITr(x) = 7(p(2))[d| Tr ()
< 1+ Omin [ DN+ Omimias,
Thus, putting all these estimates together we achieve
(7.28)  mg (M+27202 < O(1 + Omg 2 (>72) /ﬂ IDN? + Cm}T2em+2+,

Since the constant C' might depend on the various other parameters but not
on €9, we conclude that for a sufficiently small €5 we have

(7.29) molmtI: < ¢ / IDN?.
Q

But E(T,Br) < Cmyg ?>72%2 and thus (3.1) follows.

8. Persistence of ()-points

8.1. Proof of Proposition 3.5. We argue by contradiction. Assuming the
proposition does not hold, there are sequences T}’s and X;’s satisfying As-
sumption 1.3 and radii s for which

(a) either mg(k) := max{E(Ty, Bg /), c(Xx)?} = 0 and 1 > 5 = limg s, > 0
or si | 0;

(b) the sets Ay, := {O(z, Ty) = Q} N By, satisfy HZ2T(Ag) > asp 2+

(c) denoting by # (k) and . (k) the families of cubes in the Whitney de-
compositions related to Ty with respect to m, sup {E(L) :LeW(k),LN
B (0,m0) # 0} < sp;

(d) there exists Ly € #(k) with LkﬁBlgs/m(OﬂTo) # () and asy, < (L) < sg.

It is not difficult to see that E(T, Bg, /s, ) < C'TTLO(IC)(S?%?7 where the con-
stant C' depends only on fs, d2, My, Ny, Ce, C. Indeed this follows obviously
if sp > ¢(Mo,Ng) > 0. Otherwise there is some ancestor Hj, of Lj with
s < £<H]/c) < Cys; for which Bﬁ\/ESk C BH}Q

Now consider the ancestors Hy and Ji of L as in Section 7.3 and the
corresponding Lipschitz approximations fr. Next consider the radius pi :=
5/4sy + 2rr,, and observe that [5, Th. 1.4] can be applied to the cylinder
Cp = Cs,, (0,7g, ). Again as above, either s, > ¢(My, Np), and the theorem
can be applied using the estimates on the height of T" in Cj \/m(oﬂfo) and of
its excess in Bg /7, or sy is smaller and then we can use the ancestor H .. of
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the argument above. We thus have

E(Ty, Cp, trr,) < Cmo(k) Si_%,
B(Ty, Cr(0, 7m, ), 7, ) < Crg () 27572,
We denote by gj the 7y, approximation in the cylinder Cy := C,, (0,7, ).
Observe that f; and gr are defined on the same plane. We also denote by
By, the ball on which f is defined. On By, which is contained in the domain

of definition of gj, the two maps g and fi coincide outside of a set of mea-
sure at most Cmo(k)1+"/15;”+2—252+71

Cmé/ Qms,?rﬁ . We can therefore conclude that

(8.1)

and their oscillation is estimated with

[ Gk )? < Cmg (i)t fame 22,
k

From Proposition 3.4 (3.1) we easily conclude
Ey, = E(T}, Ck, 7tn,,) > coE(Tk, Bp,)

> coCemo(k)U(Lg)* % > co(@)mo(k)sy 2.

(8.2)

Moreover, applying Proposition 3.4 and arguing as in Step 1 and Step 2 in
Section 7.3, we find a ball B) C 7y, contained in Bj,, /4 and with radius at
least ¢(Ly)/8 such that

(8.3)

/B, G(fr, Qo fil)? > emo(k) £(Ly)™ 4722 > ¢y (&) mo(k) s 47202

cf. (7.22). Since either mg(k) | 0 or s | 0, we obviously conclude from (8.1)
that

(8.4) [, 9o @Imoal)? = (@) sy 2B

where the constant ¢(&) is positive and depends also upon (s, d2, My, No, Ce
and C},.

Next define A} := ||As,nc,||? < Como(k). Note that by (8.2), we have
that Ai sz < C* E), for some C* independent of k. In particular, since either
sk 4 0 or my(k) | 0, it turns out that, for k large enough, Agsy < EZ/S. For any
given 7 > 0, we can then apply [5, Th. 1.6] whenever k is large enough. We thus
find a sequence of multivalued maps wy, = (uy, Vi(z,ux)) on Bsg, /4(0,7m,) so
that each uy is Dir-minimizing and

55) 5 [ Glge,wr?+ (1Dgel ~Dw])? = o(Bi)sE
Bss, 4(0,7 5, ) 5sy,/4 (07 Hy,

where the domain of Wy, is an m 4 n-dimensional plane which includes 7z, but

might change with &k (cf. [5, Rem. 1.5]). Observe also that Lip(¥y) < CE;/z;
again cf. [5, Rem. 1.5].
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Up to rotations (so to get 7y, = mp = R™ x {0} and Dom (V) =
R™*™ x {0}) and dilations (of a factor sj) of the system of coordinates, we
then end up with a sequence of C3° (m + f1)-dimensional submanifolds I'y
of R™* area minimizing currents Sy in I'j, functions h; and @, with the
following properties:

(1) The excess Ej := E(Sk, C5(0, 7)) and the height h(Sj, C5(0, m), mo) con-
verge to 0. (Note that the constant Ej defined here equals the one in
(8.2)).

(2) A2 := || Ar,||? < C*E}, and hence it also converges to 0.

(3) Lip(hy) < CE]".

(4) Gy, = Skll(C5/4(0,m0)) < CE

(5) wx = (Ur, Yi(x,uy)) for some Dir-minimizing ux in Bs/4(0,70) and

(8.6) /B ((IDRe] = | Di])? + Glhg 01)2) = o(By),
5/4

(where with abuse of notation we keep the symbol ¥y for the map whose
graph coincides with I'y);

(6) For some positive constant c¢(&) (depending also upon [, d2, My, No, Ce
and C}),

(8.7) G(hg,m o hy)? > cEy.
Bs 4
(7) Zg := {O(Sk,y) = Q} N By has the property that HZ2%(Z,) > a > 0
and 0 € Zj.

Consider the projections =, := pr,(Zx). We are therefore in the position of
applying [5, Th. 1.7] to conclude that, for every w > 0, there is a §(w) > 0
(which depends also upon the various parameters «, &, &, 32, 62, My, No, C. and
C') such that

(8.8) lim sup m@x][ G(hi, Qo h])? < wEy, Vp < §(w).
k—oco T€EkJBp(z)
Up to subsequences we can assume that =, (and hence also Zj) converges, in
the Hausdorff sense, to a compact set =, which is nonempty. Moreover, con-
sider the Dir-minimizing maps = — ux(x) = Ek_l/2 i [(ag)i(z) —m o ag(x)].
Note that by (8.6) and (8.8), we have
limsup/ i, ? < o0
k Bs(xk)

for some fixed § = 5(1) > 0 and some sequence {x;} C B;. In particular, since
hmsup/ |D|ag|)? < limsup Dir (i, Bs ) < 00,
k Bs 4 k



556 CAMILLO DE LELLIS and EMANUELE SPADARO

we easily conclude that [ By /s |iix|? is bounded independently of k. Thus, by [4,

Prop. 3.20], 4y converges, strongly in L2(B5/4) and up to subsequences, to a
Dir-minimizing function v with 1 ouw = 0. Observe that

G(Vi(x, ), Q[ o Wi(x, up)])?
Bs 4

< CLip(W? [ Gla, Qnoml)? < CEE.
Bs /4
Thus (8.6) and (8.7) easily imply that
(8.9) liminf/ G (g, Q0])? > liminf E,;l/ G(ag,m o uy)? > ¢ > 0.
k Bs 4 Bs)4

From the strong L? convergence of 4, we then conclude that u does not vanish
identically. On the other hand, by (8.8), (8.6) and the strong convergence of
u, we conclude that, for any given § > 0, there is a § > 0 such that

][ G(u,Q0])?* < w VreZ and Vp < 3(w).
B,(x

o
Since u is Dir-minimizing and hence continuous, the arbitrariness of w implies
u = Q[0] on Z. On the other hand, HZ2T*(Z) > limsup, H7Z 2T () >
@ > 0. Then, by [4, Th. 0.11] and Lemma 7.1 we conclude = = Bs 4, which
contradicts u Z 0.

8.2. Proof of Proposition 3.6. We fix the notation as in Section 7.3 and
notice that

E = E(Ta C32’I’J (pJa 7?[-H)) < CmOE(L)2_252 < CmOE?_Q(S?.

By Proposition 3.4 we have

(8.10) / IDN| > & m £(L)™+2>22.
oy (P(P))

Next, let p := (z,y) € Ay x 73, fix a 7 > 0, to be chosen later, and note that
(7.14) allows us to apply [5, Th. 1.7]. Then there exists § > 0 such that

(8.11) [ a.QIme s <us AL E.
Bosor) (@, 7tm)

Observe that, no matter how small 7 is chosen, such estimate holds when s
and FE are appropriately small; the smallness of E is then achieved choosing £
as small as needed.

Now consider the graph Gr(n o f)L Cogr)(z,7y) and project it down

onto M. Since M is a graph over 7 of a function ¢ with ||D@||g2+n < C’m(l)/2
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and since the Lipschitz constant of 5o f is controlled by Cm{", provided e is
smaller than a geometric constant, we have that

Q 1= p (Gr(n o f)L Cogyry (z, 7rr))

contains a ball Bz (p(p))-

Now consider the map F'(q) = 33 [¢ + N/(q)] such that T p~1(Q) =
G;Lp~1(Q) given by [6, Th. 5.1]. Consider also the map & : Bosery (7, TH) 2
z — p((z,mo f(2))) € Q. This map is bilipschitz with controlled constant,
again assuming that €5 is sufficiently small. Now consider 7 :  — R™T" with
the property that n(q) L T,M and {(x) + n(&(z)) = (z,m o f(z)). Applying
the estimate of [6, Th. 5.1 (5.5)] we then get

G(N'(£(2)),Q [mo N'(§(x))]) < G(N'(£(2)), Q [(£())])
<2V/QG(f(2),Qmo f(2)]).

Integrating the latter inequality, changing variable and using By ) (p(p)) C €2,
we then obtain

/ G(N',Q[noN'])* < Cns™UL)™? E < Cimgs™(L)™ 20,
Bsery (P(P))

Next, recalling the height bound and the fact that N and N’ coincide outside
a set of measure my 7 (L) 272 we infer

(8.12) Bsery (P(P))

+ CQm(l)-i-’Yl E(L)m+4+72+252 .

Since the constants ¢;, Cq and Cy in (8.10) and (8.12) are independent of ¢(L)
and 7, we fix ) (and consequently 5) so small that C17) < ¢;%%. We therefore
achieve from (8.12) that

Lo GNQIno NI < Gommo (1)
50(L)\P\P

1+ Cy m(1)+71 gfmg(L)4+’yQ+2,32 )

(8.13)

Having now fixed 5 we choose £ so small that Cys~ 42024724282 < Gy /2. For
these choices of the parameters, under the assumptions of the proposition we
then infer

(8.14) ][ G(N, Qo N])? < ns & mo £(L)*2%.
Bgez) ((p

The latter estimate combined with (8.10) gives the desired conclusion.
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9. Comparison between different center manifolds

Proof of Proposition 3.7. We first verify (i). Observe that

E(T',Bg /m) = E(T,Bg /) < lirlr)liinfE(T, Bg,/mp) < €2

Moreover, since ¥ is a rescaling of X, ¢(¥') < ¢(X) < mé ?. Therefore, (1.8) is
fulfilled by ¥’ and T" as well; (1.7) follows trivially upon substituting mo with
an optimal 7 for 7" in By N (which is an optimal plane for T in By Jmr by
a trivial scaling argument); (1.5) is scaling invariant; whereas 91"l By s =
(t0,7)1(OT L Bg /i) = 0.

We now come to (ii). From now on we assume Ny to be so large that 270
is much smaller than c;. In this way we know that r» must be much smaller
than 1. We have that ¢(L) = csr, otherwise condition (a) would be violated.
Moreover, we can exclude that L € #,. Indeed, in this case there must be a
cube J € W with ¢(J) = 2¢(L) and nonempty intersection with L. It then
follows that, for p := r 4+ 2y/m{(L) = (1 4+ 2y/mc,)r, B,(0,m) intersects J.
Again upon assuming Ny sufficiently large, such p is necessarily smaller than 1.
On the other hand, since 2y/mecs <1, we then have csp<2csr<2L(L)={(]).

Next observe that E(T', Bg, /77,,) < Cmyg p>~2% for some constant C' and for
every p > r. Indeed, if p is smaller than a threshold rg but larger than r, then
Bg,/mp is contained in the ball B for some ancestor J of L with ¢(J) < Cp,
where the constant C' and the threshold rg depend upon the various param-
eters, but not upon e2. Then, E(T,Bg, s,) < CE(T,B;) < Cmyg p2202,
If instead p > 7o, we then simply use E(T,Bg sm,) < C(ro)E(T,Bg m) <
C(rp) mo. This estimate also has the consequence that, if 7(p) is an optimal
m-plane in Bg /), then |7, — 7(p)| < C’m(l)/Qpl_‘sQ.

We next consider the notation introduced in Section 7.3, the corresponding
cubes L C H C J and the 7y-approximation f introduced there. If L € %,
then by (7.22) we get

(9.1) / G(f,Qmo f1)? = cmg 4202 > g pmHA=202
Byg(z,7m)

where z = ps, (zg) and c(S2, d2, My, No, Ce,Cp,) > 0. On the other hand,
if L € #;,, we can argue as in the proof of Proposition 3.1 and use Theo-
rem A.1 to conclude the existence of at least two stripes S; and S, at distance
Em(lj/Q"LEHB? with the property that any slice (T, ps,,, 2) with z € Bys(z, Th)
must intersect both of them. Since for x € K such slice coincides with f(z),



CENTER MANIFOLD 559

we then have

/ g(f, Q [[1’] o f]])Q > Cm;/m£m+2+262 — Cmé)/mgg_,_gﬁQ’K‘
Bys(z,7u

_ Cm(1)+'71+1/mg(m+2*252)(1+“/1)+252
> cmrm ATz,
Next rescale through to,, and consider T" := (10, );7. We also rescale

the graph of the corresponding 7 -approximation f to the graph of a map g,
which then has the following properties. If B C 7y is the rescaling of the ball
Bys(w,7g), then B C Bsjp and the radius of B is larger than ¢;/8. On B we
have the estimate

03) [ 60.QImogl? =" [ G(£.QIno 1) = emor
B BZ/S(xvfrH)

The Lipschitz constant of g is the same of that of f and hence controlled by

Cm{'r"*. On the other hand, we have

My := max {E(T’,B6m), C(E/)Z} < max{Cmor?~22 ¢(x)%r?}

9.4
(9-4) < Cm0r2_252.

Moreover, denoting by C the rescaling of the cylinder Cg,,(ps, 7)), we have
that

(9.5) 1G, — T'||(C) < Cmgt7 2472,

Finally, since |7 — 7| < C’m(l)/ r1792 and because M’ is the graph of a function
@' over ™ with [|[D¢’||c2.x < C’Th(l)/Z and [|¢'[|co < Crh[l)/m, by (9.4) we can
actually conclude that M’ is the graph over 7y of a map ¢ : 7y — 73 with
|ID@|| 2.0 < C’m(l)/er_‘S?. Similarly, the M’-approximating map x — F'(z) :=
>i [z + N/(z)] coincides with T” over a subset X' ¢ M’ with M’ \ K| <
méJFW < Cm(1)+72r(2—252)(1+72).

Now consider the projection p’ over M’ and hence define the sets
(9.6) H = p'(Gr(g)),
(9.7) J={q¢€H :(Tp,p',q) = (Gg, P, q)}.
Since J C p/(Im(F’) \ spt(T)) U p'(Gr(g) \ spt(T)), we have |[H \ J| <
mé+72r(2*252)(1+72). On the other hand, by [6, Th. 5.1] there is a Lipschitz
map G defined on a subset Dom (G) of H C M’ such that Im(G) D Gr(g|p).

We then have G = F’ on any point of 7 NDom (G), which in turn is contained
in Bg N M’ (at least provided my is small enough). Next consider a point
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p € Dom (G) with p = (z,¢(x)), and consider that for this point we have, by
6, Th. 5.1 (5.3)],

G(g9(x),Q[neg(@)]) < G(g(x), Q[H(x)]) < CoG(G(p), Q [p])-

Therefore, using (9.3) we can easily estimate

[ oowe=[  G6m).Qm)
Baon M/ JNDom (G)
(0.8) = £, SCW).QIPY? — O/ 1\ 7
> Cmo,,,_2—252 . Cm(l)/m+1+v2T(2—252)(1+72) > cm0r2_252,

where all the constants are independent of €5 (but depend upon the other
parameters) and as usual e9 is assumed to be sufficiently small. Thus finally,
by (9.4) we conclude

/B N g = e max{ BT, By ). ()7}, 0
oMM/

Appendix A. Height bound revisited

In this section we prove a strengthened version of the so-called “height
bound” (see [8, Lemma 5.3.4]), which appeared first in [1]. Our proof closely
follows that of [11].

THEOREM A.l. Let QQ, m, n and n be positive integers. Then there are
e(Q,m,n,n) > 0 and Cy(Q, m,n,n) with the following property. For r > 0
and C = C,(xg), assume
(h1) XCR™™ 4s an (m+n)-dimensional C? submanifold with A :=||Ax|o <e;
(h2) R is an integer rectifiable m-current with spt(R) C ¥ and area minimizing

m X
(h3) ORLC =0, (pry)tRLC = Q [Br(Pry(20),m)] and E := E(R,C) < ¢.
Then there are k € N\ {0}, points {y1,...,yx} C R™ and positive integers
Q1,...,Qr such that

(i) having set o := CoE'*™, the open sets S; := R™ x (y;+] — ro,ro[") are
pairwise disjoint and spt(R) N C,1_q|10g £|)(T0) C UiSs;
(1) (Pro)t[RL(Cr(1—o|10g £)) (%0) N S:)] = Qi [Br(1-0|10g E[) (Pro (z0), m0)] for

allie{1,... k};

(iii) for every p € spt(R) N Cr(1—g|10g £]) (T0), we have O(R,p) < max; Q; + %

Remark A.2. Obviously, >;Q; = @ and hence 1 < k < ). Most likely
the bound on the radius of the inner cylinder could be improved to 1 — o.
However, this would not give us any advantage in the rest of the paper, and
hence we do not pursue the issue here.
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Proof. We first observe that, without loss of generality, we can assume
xo = 0 and r = 1. Moreover, (iii) follows from (i) and (ii) through the mono-
tonicity formula. Indeed, let p € spt(R) be such that B,(p) := Bgiem(p) C
Ci_s|10g £|(20) =: C'. p must be contained in one of the S;, say S;. Consider
the current Ry = RL(S; N C’). Observe that R; must be area minimizing in
¥, ©(R1,p) = O(R,p) and that E(R;,C’) < E. On the other hand, if [|As]| is

smaller than a geometric constant, the monotonicity formula implies

M(R;1LC,(p)) = M(R1LB,(p)) > wm(O(R,p)—1)p™ = wm(O(R, p) — §)E"2.
On the other hand, M(RLC,(p)) < wmQ1p™ + E = wm@Q1E'? + E. Thus,
if F is smaller than a geometric constant, we ensure ©(R,p) < Q1 + % This
means that, having proved (i) and (ii) for o = CoE"/*™, (iii) would hold if we
redefine o as (Co + 1)E'/>™.

The proof of (i) and (ii) is by induction on Q). The starting step Q = 1
is Federer’s classical statement (cf. [8, Lemma 5.3.4] and [11, Lemma 2]) and
though its proof can be easily concluded from what we describe next, our only
concern will be to prove the inductive step. Hence, from now on we assume
that the theorem holds for all multiplicities up to @ — 1 > 1 and we prove
it for (). Indeed, we will show a slightly weaker assertion, i.e., the existence
of numbers ay,...,a; € R such that the conclusions (i) and (ii) apply when
we replace S; with 3; = R™*"~1x]a; — 0,a; + o[. The general statement is
obviously a simple corollary. To simplify the notation we use p in place of pr,.

Step 1. Let r > % and a — b > 2n = 2C°E'”™, where C” is a constant
depending only on m and n, which will be determined later. We denote by
W, (a,b) the open set B, x R" ! x]a,b[. In this step we show

(A1) |[R[[(Wi(a,b)) < 25t wnr™ = spt(R) N Wy _p(a+n,b—n) = 0.
Without loss of generality, we assume a = 0. For each 7 €]0, %[, consider the
currents R, := RLW,(7,b — 7) and S; := pyR,. It follows from the slicing
theory that S is a locally integral current for almost every 7. There are then
functions f; € BVj,.(B,) which take integer values and such that S; = f; [B;].
Since || fr|l1 = M(S;) < ||R|[(W,(0,b)) < 295107, f, must vanish on a set

2Q
‘5’8 r". By the relative Poincaré inequality,

of measure at least

M(S)! = = || £l < CIUD - (Br) = Cll(B: BR[| (Br) < ClOR,|(Cy).

We introduce the slice (R, 7) relative to the map ;4 : R™*" — R which is
the projection on the last coordinate. Then the usual slicing theory gives that

(A.2) (M(S)'™/™ < C|lOR||(Cy) = CM((R,7) — (R,b—17)) for ae. T.

Now let 7 be the supremum of 7’s such that M(S;) > VE Vt < 7. If M(Sp) <
VE, we then set 7 := 0. If 7 > 0, observe that, for almost every 7 € [0, 7], we
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have

m—1

(A3)  E%

<oM(S) <o (M((R,7) — (R,b—1))).

Integrate (A.3) between 0 and 7 to conclude

FET < C/ M((R,7) — (R,b—17))dr
(A.4) . )
=C ’Rdem—‘rn‘ dHRH

W (0,7)UW, (b—7,b)

We then apply Cauchy-Schwartz and recall

/ \BL il d|[Rl| < E(R,C1) = E
C,

We then conclude 7E %= < CVE for some constant C' depending only on m

and n, i.e., 7 < CE?™. Set C° := C + 2, and recall that n = C’E"2™. Also

observe that there must be a sequence of 74 | 7 with M(S,, ) < V'E. Therefore,

(A.5)

|R||(W,(7,b— 7)) < liminf ||R||(W, (7, b — 7)) < liminf M(S;,) + E < 2WE.
k—o0 k—o0

Assume now the existence of p € spt(T') N W,_,(n,b — n). By the properties
of area minimizing currents, O(T,p) > 1. Set p := 2E"”™ and B’ := B,(p) C
W,(7,¢ — 7). By the monotonicity formula, ||R||(B") > ¢2™w,V'E, where c
depends only on A (recall that p < 1) and approaches 1 as A approaches 0.
Thus, for ey sufficiently small, this would contradict (A.5). We have therefore
proved (A.1).

Step 2. We are now ready to conclude the proof of (i) and (ii). Assume
(A.6) max {||R||(W1(0,00)), | Rl (Wi(~00,0))} < 3M(R).

Divide the interval [0, 1] into Q + 1 intervals [a;, a;+1[. Let W := Wy (a;, a;i1).
For each i, consider S* := py(T'LW?"). Observe that there must be one i for
which M(S%) < (1 — i)wm Otherwise we would have

wn@+ E > M(R) > 221\/1(5@') > 2(Q + Dwm 255+,

which is obviously a contradiction if £ is sufficiently small.

It follows from Step 1 that there must be an ¢ so that spt(7") does not
intersect Wi_y(a; + n,ai4+1 —n). Consider Ry := RLW;_,(—o00,a; +n) and
Ry := RLWi_y X (ai+1 —n,00). By the constancy theorem, pyR; = k; [B1—y],
where both k;’s are integers. Indeed, having assumed that F is sufficiently
small, each k; must be nonnegative and their sum is ). There are now two
possibilities:
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(a) Both k;’s are positive. In this case R; and R again satisfy the assumptions
of the theorem with C;_,(0) in place of C;(0). After a suitable rescaling
we can apply the inductive hypothesis to both currents and hence get the
desired conclusion.

(b) One k; is zero. In this case M(R;) < E and it cannot be Ry, since M(R;) >
%M(R) by (A.6). Thus it is Ry and, arguing as at the end of Step 1, we
conclude RLWi_o,(la;+1 + 21, 00[) = 0.

In case (b) we repeat the argument splitting | — 1,0] into @ + 1 intervals.

Once again, either we can “separate” the current into two pieces and apply

the inductive hypothesis, or we conclude that

Spt(RLCl_4n) C W1_477(—1 -, 14 77) =: W1_477(a0, bo).

If this is the case, once again we apply the argument above and either we
“separate” R! := RL C1_6,xR™ into two pieces, or we conclude that spt(R') C
Wi—en(a1,b1), where
b1 —a1 < (bo—ag) (1—ﬁ+77) §2(1—ﬁ>

(provided ey is smaller than a geometric constant). We now iterate this ar-
gument a finite number of times, stopping if at any step we “separate” the
current and can apply the inductive hypothesis, or if the resulting current is
contained in Wl,(4+2k)n(ak,bk) for some ay, by, with by — ar, < ¢t E'2™. The
constant ¢; is chosen larger than 1 and in such a way that, if £ > ¢; E'/2™, then
6% +n < %6. Observe that, since n = C’E'2™ ¢, depends only upon Q,
m and n. We now want to estimate from above the maximal number of times
k that the procedure above gets iterated. Observe that we must have

QH)‘“‘?

B < by — a1 < (bo — ap) <Q n

Since by — ag = 2 + 21, we get the estimate

1 1
—(k—1)log (812> < —log(2 +2n) —logec — 5 log E.
Since E is assumed to be small, we get the bound ¥ < —C'log E. This com-
pletes the proof. O

Appendix B. Changing coordinates for classical functions

LEMMA B.1. For any m,n € N\ {0}, there are constants cy, Coy > 0 with
the following properties. Assume that
(i) s, 300 C R™™ are m-dimensional planes with |»x—3¢| < cg and 0 < r < 1;
(ii) p = (q,u) € 2 x s and f,g : B¥(q, %) — »* are Lipschitz functions
such that

Lip(f),Lip(g9) < co and [f(q) —u|+|g9(q) —u| < cor.
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Then there are two maps f', g' : Bs,(p, »0) — s such that
) Gf’ = GfLCE)r(pa %0) and Gg/ = GgLCE)r(pa J{0);

(a
() 1" =Gl 1(Bsr(p,00)) < Collf = gl L1 (Bar(p,2))
(c) if f € C3F(Br,(p, %)) then f' € C3*(Bs,(p, »0)) with the estimates

(B.1) 11" = vllco < Cllf = ullco + Clze = alr,
(B.2) IDf'llco < ClIDfllco + Clse — s,
(B.3) 1D fll o1 < @ (|5 = 520, [|D? fl e

where (¢, u') € s X x5 coincides with the point (q,u) € 3 X 3 and ® is

a smooth functions with ®(-,0) = 0;
(@) 1f' = g llwr2(Bs,(pso)) < Co(L + 1D Flloo) | f = gllwr2(ss, (p.e))-
All the conclusions of the lemma still hold if we replace the exterior radius 7r
and interior radius 5r with p and s. The corresponding constants co and Cy
(and functions ®, A and A) will then depend also on the ratio 2.

Proof. The case of two general radii s and p follows easily from that of
= 7r and s = 5r and a simple covering argument. In what follows, given
L we use the notation (z,y) for the vector
x + y. By translation invariance we can assume that (¢,u) = (0,0) (and
hence (¢’,u') = (0,0)). Then consider the maps F,G : Br,(0, ) — > and
I,J: B7,.(0, ) — 5 given by

F(z) =p,((2, f(x))) and G(z) = p,1((z,9(2))),
I(l’) - p%()((.%',f(x))) and J(I‘) = p%o((x7g(x)))‘
With ¢y < 1 we can easily estimate
[(z) = I(y)| = |z — y|(1 — Cols — 30| — CoLip(f))

for some geometric constant Cp. Thus, if ¢y is small enough, I and (for the
same reason) J are injective Lipschitz maps. Therefore, the graphs Gr,, (f)
and Gr,,(g) of f and g in the “original” coordinates system ¢ X s coincide,

a pair of points x € s,y € »

in the new coordinate system s X s, with the graphs Gr,.(f’) and Gr,,(¢") of
the functions f' = F oI ! and ¢ = G o J~! defined respectively in D :=
I(B7,(0,5)) and D := J(Br.(0, )). If ¢y is chosen sufficiently small, then we
also conclude

(B.4) Lip(I), Lip(J), Lip(I™Y), Lip(J ') <1+ Cc
and
(B.5) [1(0)], |J(0)] < Ceor,

where the constant C' is only geometric. Clearly, (B.4) and (B.5) easily imply
that Bs,(0,20) C DN D when cq is smaller than a geometric constant, thereby
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implying (a) if we restrict the domain of definition of f’ and ¢’ to Bs,(0, 5).
We claim next that, for a sufficiently small ¢g,

(B.6)  |f'(z') —g'(a)| < 2|f(I7(2)) =g (a"))| Va2’ € Bs(0,0),

from which, using the change of variables formula for bilipschitz homeomor-
phisms and (B.4), (b) follows.
In order to prove (B.6), consider any 2’ € B,(¢'), set z := I~ 1(2) and

p1 = (xaf(x))G%X%La p2 = (x,g(.j(}))E%X%J'

and

p3 = (2,4 (2) € 20 x %Ol.

Obviously |f/(z") — ¢'(2")| = |p1 — ps| and |f(z) — g(x)| = |p1 — p2|. Note that
g(z) = f(z) if and only if ¢’(2') = f’(2’), and in this case (B.6) follows trivially.
If this is not the case, the triangle with vertices p1, p2 and p3 is non-degenerate.
Let 0; be the angle at p;. Note that Lip(g) < ¢ implies |5 — 62 < Ccp and
|22 — 50| < ¢p implies |61] < Ccp for some dimensional constant C. Since
3 = ™ — 01 — 02, we conclude as well that |5 — 03] < Ccg. Therefore, if g is
small enough, we have 1 < 2sin 03, so that, by the Sinus Theorem,

sin 02

[f'(2") = g'(a")] = lpr — ps| = 1 = p2| < 2Ip1 — pa| = 2|f(z) — g(=)];

sin 03
thus concluding the claim.

As for (c), observe that I, F' and J, G are obviously as regular as f and g.
So, when the latter are C!, I and J are also C'. In the latter case, if we
put suitable coordinates on both s and s (identifying them with R™) we can
easily estimate |dI — Id| < Co(||Dfllo + |2 — »0]|), where Cp is a geometric
constant, dI the differential of I and Id the identity. Thus for c¢g sufficiently
small we can apply the inverse function theorem; so I~ ! is as regular as I and
hence as f. Since f' = F oI~ ', also f’ is as regular as f. Recall next that
we are assuming ¢ = 0 and u = 0. Define the map I(z) = I~!(x) — z. Since
f' = F oI~ ! the bounds claimed in (c) follow easily if we can prove the very
same bounds for the map I(z). If we set I(z) = I(z) — z, the inverse function
theorem gives ||I||c1 < 2||T]|¢n provided ¢y is sufficiently small. The bounds on
the higher derivatives can then be easily concluded differentiating the identity
a1 (z) = [d1] "1 (I} (x)).

We finally come to (d). The estimate || f'—¢'|| ;2 < C||f—g||12 is an obvious
consequence of (B.6). Given next a point p in the graph of f, resp. in the graph
of g, we denote by o(p), resp. 7(p), the oriented tangent plane to the corre-
sponding graphs. Observe that the points are described by the pairs (2/, f(2))
and (2/,g(2')), in the coordinates x x x*, and by (I™'(z), f(I~'(z)")) and



566 CAMILLO DE LELLIS and EMANUELE SPADARO

(J=Y(a), g(J~1(2"))), in the coordinates »g x s¢5. Thus

IVf'(z') = Vg'(a")| < Clo(p) = m(a)| < CIV I (a") = Vg(J ()|
< CIVfI (@) - Vf( )+ CIVFITH) = V(I @)l
< CIID? flleolI 7M@) = J~H &) + CIVF(I7H(2")) = Vg(J ™
< C|ID*flleolf'(2") — g (w )|+ V(I ") = V(I a")].

Integrating this last inequality in 2’ and changing variables we then conclude

IVf' = Vg'|I? < CIVf = Vg2 + CID* flleoll ' = o'l 2
which, together with the L? estimate, gives (d). O

(B.7)

<

A
f&:
=

Appendix C. Two interpolation inequalities

LEMMA C.1. Let A > 0 and ¢ € C?(B,,R") satisfy ||1||p1 < Ap™ ™! and
|AY|| s < p~t A. Then, for everyr < p, there is a constant C > 0 (depending
only on m and £) such that

(C.1) P Wl oo 8, + 1Dl oo (s, < C A.

Proof. By a simple covering argument we can, without loss of generality,
assume p = 3r. Moreover, if we apply the scaling v,.(z) := r~1(rz), we see

that [[orl L1 (py) = (p/3)"" HIYllLi(s,)s 1Urlle = (/3) Yoo, I1DYr]lc =
|DY||co and [[At¢r|loo = (p/3)]|A%||cc. We can therefore assume r = 1. Con-

sider the harmonic function ¢ : B — R with boundary data ¢|sp,,
AC =0 in BQ,
(=v on 0Bs.

Set u := 9 —(, and note that u = 0 on 9By, [[Au||co(p,) < A. Hence, using the
Poincaré inequality, we can estimate the L!'-norm of u in the following way:

1/2
lullzr < llullz2 < C[1Dullye < € ( / |Auu|) < Cllauf Jull 22 < CA
2

Now choose a €]0, 1] and s €]1, o[ such that = +a (l - l) +1—a < 0 (which
exist because for s — 0o and a — 1, the expression converges to ——) By a
classical interpolation inequality (see [9]),

|Dul| s < C | D?ulgs fluf 7 + Cllull 11
Using the L*-estimate for the Laplacian, we deduce

(C.2)
[1Dul| oo < C [|Aul|Fslull 1% + Clluflr < C | Aullllull 2 + lullpr < C A.
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From (C.2) and u|gpp, = 0, it follows trivially that ||u|r~ < A. To infer
(C.1), we observe that, by [Cll1(g,) < llullzi(sy) + ¥llL1(By) < C A and the
harmonicity of ¢,

¢l zoe(By) + 1€ Loe(By) < ClIClIL1(By) < C A, U

LEMMA C.2. For every m, r < s and k, there is a positive constant C
(depending onm, k and 2) with the following property. Let f be a C3* function
in the ball B C R™. Then
(C.3)

1D fllcos,) < Cr™ 9 llzas, + Cr+ D flop, Vi€ {0,1,2,3}

Proof. A simple covering argument reduces the lemma to the case s = 2r.
Moreover, define f,.(x) := f(rz) to see that we can assume r = 1. So our goal
is to show

3
(C4) YD fW) <Clf =gl +CID*fle Wy € B1,Vf € C¥(By).
=0
By translating it then suffices to prove the estimate
3
(C.5) YD) < Cllfllersy + CID flap V€ C¥F(By).
=0

Now consider the space of polynomials R in m variables of degree at most 3,
which we write as R = Z?:o Ajx?. This is a finite dimensional vector space
on which we can define the norms |R| := Z?:o |A;] and || R]| := [, |R(7)| dz.
These two norms must then be equivalent, so there is a constant C' (depending
only on m), such that |R| < C||R| for any such polynomial. In particular, if
P is the Taylor polynomial of third order for f at the point 0, we conclude

3
d_IDf(O) =Pl < C|P| = C/B |P(z)[dx < Ol fllLr sy + ClIf = Pllorsy
j=0 !

< Clfllp + CID* fa. O

Appendix D. Proof of Lemma 5.6

D.1. Reduction to special triples of planes. We first observe that, by a
simple scaling, we can assume r = 1. The rescaling which we apply to any
map ¢ is the usual z — 7 1p(rz) =: ¢,. It is easy to see that (5.35) is then
scaling invariant.

We next fix the following terminology. We say that R € SO(m +n +1) is
a 2d-rotation if there are two orthonormal vectors ej, e2 and an angle 6 such
that R(e;) = cosfej + sinfeq, R(ez) = cosfey —sinfe; and R(v) = v for
every v | span (e1, e). Given a triple (7, 5, @), we then say that
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e R is of type A with respect to (7, 3, @) if e; € 3 and ey € @;
w) if ey € T and ey € ;
e R is of type C with respect to (7, 5, @) if e; € T and ey € @.

e R is of type B with respect to (7, ,

The following lemma will then allow us to reduce the general case of Lemma 5.6
to the particular ones in which (7, ¢, @) is obtained from (7, ¢, @) through a
(small) rotation of type A, B or C.

LEMMA D.1. There are constants Co(m,n,1) and N(m,n,l) with the fol-
lowing property. If co in Lemma 5.6 is sufficiently small, then there are
N <N triples (7}, »¢j, @;) “joining’ (7, 3,@) = (7N, 2N, @N) with (T, %,@) =
(7o, 20, wo) such that each (7, 525, ;) is the image of (mj—1, »j—1,w;—1) under
a 2d-rotation of type A, B or C and angle 6; with |6;| < Co(|m — 7| + |2¢ — x]).

Proof. We first show that, if @ = @, or > = > or m = 7, then the claim
can be achieved with small 2d-rotations all of the same type, namely of type
B, C and A, respectively. Assume for instance that w = @. Let w be the
intersection of m and 7 and w’ be the intersection of s and 3. Pick a vector
e € 7 which is not contained in 7 and is orthogonal to w. Let € := ‘g:igg'. Then,
€ is necessarily orthogonal to w and the angle between € and e is controlled by
|m — 7|. There is therefore a 2d-rotation R such that R(e) = €, and obviously
its angle is controlled by |7 — 7|. It turns out that R keeps w and w fixed. So
the new triple (R(m), R(5), R(w)) has the property that R(w) = w = @ and
the dimension of R(m) N7 is larger than that of = N 7. This procedure can be
repeated, and after N < m times it leads to a triple of planes (my, 2N, @wN)
with wy = @ and 7y = 7. This however necessarily implies > = sy

Assume therefore that w and @ do not coincide. Let w := (sexm)N(3ex 7).
There is then a unit vector e € > or a unit vector € € © which does not belong
to m X > and which is orthogonal to w. Assume for the moment that we are
in the first case, and consider the vector e := %. The vector e forms an
angle with the plane s bounded by Cy|sc — x|. Therefore there is a rotation R
with angle smaller than Cy|sc — 3| of the plane 7 X > with the property that
R(5¢) contains e and fixes w, which is orthogonal to e. By the previous step,
R can be written as composition Ry o --- o Ry of small 2d-rotations of type
B keeping w fixed. Since e L R(m), we can then find a small 2d-rotation S of
type A with respect to (R(m), R(5),w) acting on the plane spanned by e and
€ and such that S(R(s)) > €. S then keeps w fixed. An analogous argument
works if the vector e € . We therefore conclude that, after applying a finite
number of rotations Ry, ..., Ry/, Rny/41 of the three types above, the dimension
of Rnyig10Ryro---0Ry(m X 2) N7 X 3 is larger than that of 7 x N7 x 3
(where the number N is smaller than a geometric constant depending only on
m and n). Obviously, after at most m + n iterations of this argument, we are
reduced to the situation 7 X sz = T X 3. O
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Now assume that Lemma 5.6 is proven for some constants ¢y and Cy and
for all 2d rotations which are of type A, B or C with respect to one of the two
triples of planes. We next claim that, at the price of possibly enlarging the
constants, the lemma holds for any pair of triples. To this purpose we now fix
two triples as in the statement of the lemma and choose a chain (7}, s, @;)
as in Lemma D.1. As already observed it suffices to prove the statement when
r = 1, but we assume it has been proven for any radius in the case of small 2d
rotations of type A, B or C. Lemma D.1 implies that |7; —m;|+|s;— 34| < CoAn
for some geometric constant Cyy. For each 4, we therefore have Lipschitz maps
W' ; X 3¢, — w; and Lipschitz maps f* : B4(0,7) — Ag(3 x @) whose graph
coincides with the ones of ¥ and f (the latter restricted to Cy4(0,)). Their
existence is ensured by [6, Prop. 5.2], which also implies

(D.1) HD\I/ HCO < Co([|D¥|co + An),

(D.2) )| < Co(|T(0)] + |ID¥||co + An),

(D.3) Llp fz (Ll )+ An)

(D.4) £ llco < Co([lfllco + An).

Now set r; := 227%. By assuming the constant ¢y sufficiently small we can

therefore assume that the lemma can be applied to the pairs (m;—1, 61, @;—1)
and (7;, 7, @;), to the maps ¥; 1, ¥;, f7~1, f* and to the radius r;/4. In order
to streamline the argument, for j > i, we use the notation f/ = Rij f* to under-
line that the graph of f7 coincides, in the cylinder C,.(0,;), with the graph
of fi. Likewise, if u’ is the multivalued map into Ag(»4) such that fi(z) =
S [(ui(z), ¥i(uj(x)))], we then denote by Av (f?) the map (nou’, ¥;(nou’)).
With this notation we observe that f = Ryo(Av (f°)) = Ryo(Av (f)) and
g = Av (Rno () = Av (Ryo (f)). We can then estimate

If = gllri(s,, (ro

< [Ryv—1)Rv-1)0(Av (£))) = Ryv—1) (AV R(v—1y0 ()l 1B,y (en0))
R

+ [Rn(v-1)(Av (Rv—1)0(f))) — Av (Rotny(v—1) Rv—1)0 (/)| 21(B, , (mx.0)) -
an

Now, to the first summand we apply Lemma B.1(b), and we bound it with

(D) < ColRev—1y0(Av () = Av (Rev—1yo (I L1 (B, 0w -1))-
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As for the second summand, observing that Ry N—1)0( ) = fN=1, we can apply
Lemma 5.6 for the special case of a 2d rotation of type A, B or C and conclude

(D) < Co(ISN Moo + Iy — wn—al + |2en — 2ev-1)
(Dir(fNN) + DU 1 llgo + (I — 71| + |sen — 2ev-11)°)
< Co(IlfN oo + An) (Dir(fY71) + | DP|[Z0 + An?).
On the other hand, by the Taylor expansion of the mass in [6, Cor. 3.3],
Dir(f¥~1) <4E(Gyn-1,Cry_, (0,7n-1))
(D.5) <4E(Gn-1,Cry (0, 78-1),TN) + Colrn_1 — mn|?
< 4E(G, Cg(0,7)) + CoAn? < 8Dir(f) + CoAn?.

Putting all these estimates together, we then conclude

If — gHLl(BrN(mo))
< ColRv-1)0(Av (f)) = AV Rv—1)o (L2 (B, 07 -1))
+ Co(|If lco + An) (Dix(f) + | D20 + An?).
We can now iterate this argument N — 1 more times to finally achieve
= 8llL1(B,, (r.0) < Co(llfllco + An) (Dir(f) + | DP|[Z0 + An?).

Of course this is not yet the estimate claimed in Lemma 5.6 since the inner

22*N

radius 7y equals rather than 4. However, a simple covering argument al-

lows us to conclude the proof. In the remaining sections we focus our attention
on 2D rotations of coordinates of type A, B and C.

D.2. Type A. As already observed it suffices to show the lemma in the
case 7 = 1. We use the notation (z,w) € » X w and (Z,w) € »x x w for the
same point. In what follows we will drop the - when writing the usual products
between matrices. We then have Z = Uz + Vw and w = Wz + Zw, where the

orthogonal matrix
u Vv
L= ( W Z )

has the property that |L — Id| < CpAn. Clearly, ¥ and ¥ are related by the
identity

(D.6) Wz+ Z¥(z,2) = ¥(x,Uz + V¥(x,2)).
Fix z and f(z) = 2 [(Gs(x), U (2, 65(x)))] =: 3 [(25, ©(x, ))]. We then have

g(x) = (a,b) := (éZzZ,qf(m,ClQZzl)) in »Xw
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and
f@) =L (U T2+ VX U(2,2), ¥ (2, U5 5+ VEY U, 2)))
=: L™ Y(c, d).
Since L is orthogonal, we have
|£(z) — g(@)| = [L(a,b) — (¢, d)]
= )(V (O (2,5 2) — 50 W@ ) WE Yz + 20 (2,55 2)
— U (2, UL 5+ VE T U(,2)))|
V(U (2,55 2) — 5 X ¥(x, 2) ) U (2, U5 2+ V(53 2))
U (2, UL 2 —l—V%Z‘IJ(x,zi)))‘.

(D-6) )

Thus,

|f(z) — g(x)| < (1 + Lip(D) \V\‘qulmzz)—lll(x,éz,zi) .

Observe that |V| < |L — Id| < C|s — 3|. Moreover, with a simple Taylor
expansion around the point (z, % 3 %), we achieve

‘%Z\Il(:c,zl) —W(m,éZz»

< Coll D¥ o]t co.

< Col[D¥lfo oz
(]

Since we have ||[D¥||o < Co||D¥|jo + CoAn and [|iljco < ||fllco < C|lfllco +
CoAn, we conclude the pointwise estimate

[£(2) — g(x)] <CoAn(||D¥llo + An)(||f[lo + An),
which obviously implies (5.35).
D.3. Type B. In this case ¥ = ¥ and thus
(D.7) If — gl < Co(1+ [1DP]o)|[n o @ — pu(E)] 1

Next fix an orthonormal base e1,...,€m,em+1,---,E€m+n, Where the first m
vectors span m and the remaining span ». We also assume that the rotation R
acts on the plane spanned by {e;,, em+1} and set v = R(ep,) = aepm + bemyn
and vpym+1 = R(em41). We then define two systems of coordinates. Given
g € R™ x R", we write

a= Y. z@e+t@)em+T(@emsr+ Y. ¥ (Q)ejim
1<i<m—1 2<5<n

—Zzl )ei + s(q)vm + o(q vm+1+2y e]+m.

The first will be called (¢, 7)-coordinates and the second (s, o)-coordinates.
For the moment we fix + € R™~! with |z| < 4 and focus our attention
on the interval I, = {s : |(x,s)| < 6}. We restrict the map u to this interval
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and, by [4, Prop. 1.2], we know that there is a Lipschitz selection such that
u(z,s) =5, [0i(s)] in the (s, 0)-coordinates
Gr(6;) = {(z,5,0}(s),...,00(s)) : s € I,}.

In the (¢,7) coordinates we can choose functions ¥;, also defined on an ap-
propriate interval J,, whose graphs coincide with the ones of the 6;. We then
obviously must have a(x,t) = 3, [95(t)] on the domain of definition of f. The
coordinate functions 9? and 19? are linked by the following relations:

®;(t) = at +bI}(t),
(D.8) 07 (®i(t)) = —bt + ad;(t),
0L(®;(1)) = VL(2) for [=2,...,n
Observe that Lip(®;) < (1 4 Co|r — 7|) < 2. Likewise we can assume that
Lip(®; ') < 2. Now consider v(s) = 5o u(z,s) = éZi i(s) and the corre-
sponding ¢ > ©(t) = p,, o f(z,t), linked to v = n o u(x,-) through a relation as
in (D.8) with a corresponding map ®:
O(t) =at+bol(t),
(D.9) g Xibi (2(1) = v (2(t) = ~bt +a?'(t),
éZi 0L(D(t)) = V' (D(t)) = () for 1=2,...,7n
Moreover, write 0(t) = éZz Y(t) =mou(zr,t). We can then compute
(D.10)
noa(x,t) — p,(f(x,t)) =0(t) —o(t) = Q! Z(ﬁ t) — D

= Q" 12( a7 10L(@i(1) — a”1OL(@(1), .., 0H(@i(1) — OL(@(1)), ... ).

18t component Ith component

This implies that

@;(t)
/ DO(T)dr|.
o(t)

(D.11) [ od(z,t) — pa(E(x,1)| = [3(t) — 3(t)] < Co Z

Next we compute

(D.12) ®;(t) — @(t) = b (0} (t) — ' () = b(V} (t) — () + b(3" () — 0 ().

Since |b] < C'An, the terms in (D.12) can be estimated respectively as follows:
\b\lﬁl(t) - 171@)! = |5|W(9€ t) — (noa)'(t)] < CoAn HﬁHco

() — o' (t )I ||D9||Loo Z |@:(t) — @(t)] < Co Lip(u Z |t
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Recall that Lip(u) < Lip(f) < CoLip(f) + An. Combining the last two in-
equalities with (D.12) we therefore conclude, when c¢g is sufficiently small,

(D.13) Z\@ ()] < CoAn||fllco =: p.

With this estimate at our disposal we can integrate (D.11) in ¢ to conclude
(t)+p
|v( —o( |<C’0/ / | DE|(T det<C0/ / |Du|(x, ) dr ds,
o(t)—p
where in the latter inequality we have used the change of variables s = ®(¢) and

the fact that both the Lipschitz constants of ® and its inverse are under control.
Integrating over x and recalling that o(t) — 0(t) = g o u(z,t) — p,.(f(x,t)) we

achieve
. \/36— [z
/ ]noﬂ—p%oﬂgCo/ / / |Du|(z, T) dr ds dz
By 36— \a:|2 s—p

1/2
<Con [ |l < Comnlfles [ 10u)
8

Bg+12p

(D.14)

< CoAn(| fllco + An)Dir(f)".
Clearly (D.14) and (D.7) imply the desired estimate.

D.4. Type C. Consider no f and the & : By(0,m) — 7+ such that G¢ =
Gof L C4(0,m). We can then apply the argument of the estimate for type B
to conclude

(D-15) [[not—p.()ll1(sy) < lImof—EllLr (s, < CAn(||f | co+An)Dir(f)"2.

We need only to estimate ||p,.(€) — ps(f)| 1. Since g(x) = (o a(x), ¥(z,no
a(z))) and f(z) = (p,(f(2)), U(z, p,.(f(z))), we can then estimate

(D.16) [[E—gllzr < Co(1+1DUllo) (IPolE) — PulE) 11 + D) — o 1)
Define the maps v, w and w’ as follows:
f(z) = (nou(@), ¥ (nou))) = (v(z),w()),
no f(z) = (nou@), s X V(@ w(@))) = (v(2),w(2)).

Using the Lipschitz bound for ¥, we conclude
(D.17)
If =m0 flleo = llw—w'lo < CIIDT|lco Y |ui =m0 ul < CIIDT| ol flco-
i

Consider an orthogonal transformation

(w2 )



574 CAMILLO DE LELLIS and EMANUELE SPADARO

with the properties that (Z,z) € T x @ corresponds to (Uz+Vz, Wz + ZZz) €
7 x w and |L —1d| < CyAn. We then have the following relations: p,.(f(z)) =
v(®7(z)) and p,.(&(z)) = v((®')~1(z)), where ®~! and (®')~! are the inverse,
respectively, of the maps ®(z) = Uz + Vw(Z) and ®'(z) = Uz + Vu'(Z).

Recalling that |V| < |L —1Id| < CyAn, we conclude that
|9(z) — @(2)] < |V]|w(@) — w'(Z)| < Col| D¥||coll fllcoAn  for every z.

On the other hand, we also know that ®~! has Lipschitz constant at most 2
and so we achieve |®~1(®'(z)) — z| < Co||D¥||co| fllcoAn. Being valid for
any 7, we can apply it to = (®')~!(z) to conclude |®~1(z) — (&) 1(x)| <
Col|D¥||coll fllcoAn. Then using Lip(v) < Lip(u) < c¢p, we conclude the point-
wise bound

P (E(2)) = Pol€(@)] = [0(@7 (2)) = (@)~} (2))| < Col|D¥|co]| f | coAn.

After integrating in z, the latter bound combined with (D.15) and (D.16) gives
the desired estimate.
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