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Regularity of area minimizing currents II:
center manifold

By Camillo De Lellis and Emanuele Spadaro

Abstract

This is the second paper of a series of three on the regularity of higher

codimension area minimizing integral currents. Here we perform the second

main step in the analysis of the singularities, namely, the construction of

a center manifold, i.e., an approximate average of the sheets of an almost

flat area minimizing current. Such a center manifold is accompanied by a

Lipschitz multivalued map on its normal bundle, which approximates the

current with a high degree of accuracy. In the third and final paper these

objects are used to conclude the proof of Almgren’s celebrated dimension

bound on the singular set.

0. Introduction

In this second paper on the regularity of area minimizing integer rectifiable

currents (we refer to the foreword of [5] for the precise statement of the final

theorem and on overview of its proof) we address one of the main steps in the

analysis of the singularities, namely, the construction of what Almgren calls

the center manifold. Unlike the case of hypersurfaces, singularities in higher

codimension currents can appear as “higher order” perturbation of smooth

minimal submanifolds. In order to illustrate this phenomenon, we can consider

the examples of area minimizing currents induced by complex varieties of Cn,

as explained in the foreword of [5]. Take, for instance, the complex curve

V :=
¶

(z, w) : (z − w2)2 = w5
©
⊂ C2.

The point 0 ∈ V is clearly a singular point. Nevertheless, in every sufficiently

small neighborhood of the origin, V looks like a small perturbation of the

smooth minimal surface {z = w2}; roughly speaking, V = {z = w2±w5/2}. One

of the main issues of the regularity of area minimizing currents is to understand

this phenomenon of “higher order singularities.” Following the pioneering work

of Almgren [2], a way to deal with it is to approximate the minimizing current

with the graph of a multiple valued function on the normal bundle of a suitable,

© 2016 Department of Mathematics, Princeton University.

499

http://annals.math.princeton.edu/about
http://dx.doi.org/10.4007/annals.2016.183.2.2


500 CAMILLO DE LELLIS and EMANUELE SPADARO

curved, manifold. Such a manifold must be close to the “average of the sheets”

of the current (from this the name center manifold). The hope is that such a

property will guarantee a singular “first order expansion” of the corresponding

approximating map.

A “center manifold” with such an approximation property is clearly very

far from being uniquely defined and, moreover, the relevant estimates are fully

justified only by the concluding arguments, which will appear in [7]. In this

paper, building upon the works [4], [5], [6], we provide a construction of a

center manifold M and of an associated approximation of the corresponding

area minimizing current via a multiple valued function F :M→AQ(Rm+n).

The corresponding construction of Almgren is given in [2, Chap. 4]. Un-

fortunately, we do not understand this portion of Almgren’s monograph deeply

enough to make a rigorous comparison between the two constructions. Even a

comparison between the statements is prohibitive, since the main ones of Alm-

gren (cf. [2, 4.30, 4.33]) are rather involved and seem to require a thorough

understanding of most of the chapter (which by itself has the size of a rather

big monograph). At first sight, our approach seems to be much simpler and to

deliver better estimates. In the rest of this introduction we will explain some

of the main aspects of our construction.

0.1. Whitney-type decomposition. The center manifold is the graph of a

classical function over an m-dimensional plane with respect to which the excess

of the minimizing current is sufficiently small. To achieve a suitable accuracy

in the approximation of the average of the sheets of the current, it is necessary

to define the function at an appropriate scale, which varies locally. Around

any given point such scale is morally the first at which the sheets of the current

cease to be close. This leads to a Whitney-type decomposition of the reference

m-plane, where the refining algorithm is stopped according to three conditions.

In each cube of the decomposition the center manifold is then a smoothing of

the average of the Lipschitz multiple valued approximation constructed in [5],

performed in a suitable orthonormal system of coordinates, which changes from

cube to cube.

0.2. C3,κ-regularity of M. The arguments of [7] require that the center

manifold is at least C3-regular. As it is the case of Almgren’s center mani-

fold, we prove actually C3,κ estimates, which are a natural outcome of some

Schauder estimates. It is interesting to notice that, if the current has multiplic-

ity one everywhere (i.e., roughly speaking, is made of a single sheet), then the

center manifold coincides with it and, hence, we can conclude directly a higher

regularity than the one given by the usual De Giorgi-type (or Allard-type)

argument. This is already remarked in the introduction of [2], and it has been

proved in our paper [3] with a relatively simple and short direct argument. The
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interested reader might find useful to consult that reference as well, since many

of the estimates of this note appear there in a much more elementary form.

0.3. Approximation on M. Having defined a center manifold, we then

give a multivalued map F on its normal bundle which approximates the cur-

rent. The relevant estimates on this map and its approximation properties

are then given locally for each cube of the Whitney decomposition used in the

construction of the center manifold. We follow a simple principle: at each scale

where the refinement of the Whitney decomposition has stopped, the image

of such function coincides (on a large set) with the Lipschitz multiple valued

approximation constructed in [5]; i.e., the same map whose smoothed average

has been used to construct the center manifold. As a result, the graph of F is

well centered, i.e., the average of F is very close (compared to its Dirichlet en-

ergy and its L2 norm) to being the manifoldM itself. As far as we understand

Almgren is not following this principle and it seems very difficult to separate

his construction of the center manifold from the one of the approximating map.

0.4. Splitting before tilting. The regularity of the center manifold M and

the centering of the approximating map F are not the only properties needed to

conclude our proof in [7]. Another ingredient plays a crucial role. Assume that

around a certain point, at all scales larger than a given one, say s, the excess

decays and the sheets stay very close. If at scale s the excess is not decaying

anymore, then the sheets must separate as well. In other words, since the

tilting of the current is under control up to scale s, the current must in some

sense “split before tilting.” We borrow the terminology from a remarkable

work of Rivière [10], where this phenomenon was investigated independently of

Almgren’s monograph in the case of 2-dimensional area minimizing currents.

Rivière’s approach relies on a clever “lower epiperimetric inequality,” which

unfortunately seems limited to the 2-d context.

0.5. Acknowledgments. The research of Camillo De Lellis has been sup-

ported by the ERC grant agreement RAM (Regularity for Area Minimizing

currents), ERC 306247. The authors are warmly thankful to Bill Allard and

Luca Spolaor, for several enlightening discussions and for carefully reading a

preliminary version of the paper, and to Francesco Maggi for many useful com-

ments and corrections to our previous paper [3] which have been very valuable

for the preparation of this work.

1. Construction algorithm and main existence theorem

The goal of this section is to specify the algorithm leading to the center

manifold. The proofs of the various statements are all deferred to later sections.

1.1. Notation, height and excess. For open balls in Rm+n, we use Br(p).

For any linear subspace π ⊂ Rm+n, π⊥ is its orthogonal complement, pπ the
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orthogonal projection onto π, Br(q, π) the disk Br(q) ∩ (q + π) and Cr(p, π)

the cylinder {(x + y) : x ∈ Br(p), y ∈ π⊥}. (In both cases q is omitted if it is

the origin and π is omitted if it is clear from the context.) We also assume that

each π is oriented by a k-vector ~π := v1∧· · ·∧vk (thereby making a distinction

when the same plane is given opposite orientations), and with a slight abuse

of notation, we write |π2 − π1| for |~π2 − ~π1| (where | · | stands for the norm

associated to the usual inner product of k-vectors).

A primary role will be played by the m-dimensional plane Rm × {0} with

the standard orientation; for this plane, we use the symbol π0 throughout the

whole paper.

Definition 1.1 (Excess and height). Given an integer rectifiable m-dimen-

sional current T in Rm+n with finite mass and compact support and m-planes

π, π′, we define the excess of T in balls and cylinders as

E(T,Br(x), π) := (2ωm r
m)−1

∫
Br(x)

|~T − ~π|2 d‖T‖,(1.1)

E(T,Cr(x, π), π′) := (2ωm r
m)−1

∫
Cr(x,π)

|~T − ~π′|2 d‖T‖,(1.2)

and the height function in a set A ⊂ Rm+m as

h(T,A, π) := sup
x,y ∈ spt(T )∩A

|pπ⊥(x)− pπ⊥(y)|.

In what follows all currents will have compact support and finite mass and

will always be considered as currents defined in the entire Euclidean space. As

a consequence their restrictions to a set A and their pushforward through a

map p are well defined as long as A is a Borel set and the map p is Lipschitz

in a neighborhood of their support.

Definition 1.2 (Optimal planes). We say that an m-dimensional plane π

optimizes the excess of T in a ball Br(x) if

(1.3) E(T,Br(x)) := min
τ

E(T,Br(x), τ) = E(T,Br(x), π).

Observe that in general the plane optimizing the excess is not unique and

h(T,Br(x), π) might depend on the optimizer π. Since for notational purposes

it is convenient to define a unique “height” h(T,Br(x)), we call a plane π as

in (1.3) optimal if in addition
(1.4)

h(T,Br(x), π) = min
¶
h(T,Br(x), τ) : τ satisfies (1.3)

©
=: h(T,Br(x));

i.e., π optimizes the height among all planes which optimize the excess. How-

ever, (1.4) does not play any further role apart from simplifying the presenta-

tion.

In the case of cylinders, E(T,Cr(x, π)) will denote E(T,Cr(x, π), π) (which

coincides with the cylindrical excess used in [5] when (pπ)]T Cr(x, π) =

Q JBr(pπ(x), π)K), whereas h(T,Cr(x, π)) will be used for h(T,Cr(x, π), π).
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We are now ready to formulate the main assumptions of all the statements

in this work.

Assumption 1.3. ε0 ∈]0, 1] is a fixed constant, and Σ ⊂ B7
√
m ⊂ Rm+n

is a C3,ε0 (m + n̄)-dimensional submanifold with no boundary in B7
√
m. We

moreover assume that, for each p ∈ Σ, Σ is the graph of a C3,ε0 map Ψp :

TpΣ ∩ B7
√
m → TpΣ

⊥. We denote by c(Σ) the number supp∈Σ ‖DΨp‖C2,ε0 .

T 0 is an m-dimensional integral current of Rm+n with support in Σ ∩ B̄6
√
m

and finite mass. It is area minimizing in Σ (i.e., M(T ) ≤M(T + ∂S) for any

current S with spt(S) ⊂ Σ) and, moreover,

Θ(0, T 0) = Q and ∂T 0 B6
√
m = 0,(1.5)

‖T 0‖(B6
√
mρ) ≤

Ä
ωmQ(6

√
m)m + ε2

2

ä
ρm ∀ρ ≤ 1,(1.6)

E
Ä
T 0,B6

√
m

ä
= E

Ä
T 0,B6

√
m, π0

ä
,(1.7)

m0 := max
¶
c(Σ)2,E

Ä
T 0,B6

√
m

ä©
≤ ε2

2 ≤ 1.(1.8)

ε2 is a positive number whose choice will be specified in each statement.

Constants which depend only upon m,n, n̄ and Q will be called geometric

and will usually be denoted by C0.

Remark 1.4. Note that (1.8) implies A := ‖AΣ‖C0(Σ) ≤ C0m
1/2
0 , where

AΣ denotes the second fundamental form of Σ and C0 is a geometric constant.

Observe further that for p ∈ Σ, the oscillation of Ψp is controlled in TpΣ∩B6
√
m

by C0m
1/2
0 .

In what follows we set l := n−n̄. To avoid discussing domains of definitions

it is convenient to extend Σ so that it is an entire graph over all TpΣ. Moreover

we will often need to parametrize Σ as the graph of a map Ψ : Rm+n̄ → Rl.
However we do not assume that Rm+n̄×{0} is tangent to Σ at any p, and thus

we need the following lemma.

Lemma 1.5. There are positive constants C0(m, n̄, n) and c0(m, n̄, n) such

that, provided ε2 < c0, the following holds. If Σ is as in Assumption 1.3, then

we can (modify it outside B6
√
m and) extend it to a complete submanifold of

Rm+n which, for every p ∈ Σ, is the graph of a global C3,ε0 map Ψp : TpΣ →
TpΣ

⊥ with ‖DΨp‖C2,ε0 ≤ C0m
1/2
0 . T 0 is still area minimizing in the extended

manifold and in addition we can apply a global affine isometry which leaves

Rm × {0} fixed and maps Σ onto Σ′ so that

(1.9) |Rm+n̄ × {0} − T0Σ′| ≤ C0m
1/2
0

and Σ′ is the graph a C3,ε0 map Ψ : Rm+n̄ → Rl with Ψ(0) = 0 and ‖DΨ‖C2,ε0

≤ C0m
1/2
0 .
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From now on we assume, without loss of generality, that Σ′ = Σ. The next

lemma is a standard consequence of the theory of area minimizing currents.

(We include the proofs of Lemmas 1.5 and 1.6 in Section 4.1 for the reader’s

convenience.)

Lemma 1.6. There are positive constants C0(m,n, n̄, Q) and c0(m,n, n̄, Q)

with the following property. If T 0 is as in Assumption 1.3, ε2 < c0 and T :=

T 0 B23
√
m/4, then

(1.10)

∂T C11
√
m/2(0, π0) = 0, (pπ0)]T C11

√
m/2(0, π0) = Q

r
B11
√
m/2(0, π0)

z

and

(1.11) h(T,C5
√
m(0, π0)) ≤ C0m

1/2m
0 .

In particular, for each x ∈ B11
√
m/2(0, π0), there is a point p ∈ spt(T ) with

pπ0(p) = x.

From now we will always work with the current T of Lemma 1.6. Next we

specify some notation which will be recurrent in the paper when dealing with

cubes of π0. For each j ∈ N, C j denotes the family of closed cubes L of π0 of

the form

(1.12) [a1, a1 + 2`]× · · · × [am, am + 2`]× {0} ⊂ π0,

where 2 ` = 21−j =: 2 `(L) is the side-length of the cube, ai ∈ 21−jZ for all

i and in addition we require −4 ≤ ai ≤ ai + 2` ≤ 4. To avoid cumbersome

notation, we will usually drop the factor {0} in (1.12) and treat each cube, its

subsets and its points as subsets and elements of Rm. Thus, for the center xL
of L, we will use the notation xL = (a1 + `, . . . , am + `), although the precise

one is (a1 + `, . . . , am + `, 0, . . . , 0). Next we set C :=
⋃
j∈N C j . If H and L

are two cubes in C with H ⊂ L, then we call L an ancestor of H and H a

descendant of L. When in addition `(L) = 2`(H), H is a son of L and L the

father of H.

Definition 1.7. A Whitney decomposition of [−4, 4]m ⊂ π0 consists of a

closed set Γ ⊂ [−4, 4]m and a family W ⊂ C satisfying the following properties:

(w1) Γ ∪⋃L∈W L = [−4, 4]m, and Γ does not intersect any element of W ;

(w2) the interiors of any pair of distinct cubes L1, L2 ∈ W are disjoint;

(w3) if L1, L2 ∈ W have nonempty intersection, then 1
2`(L1) ≤ `(L2) ≤

2 `(L1).

Observe that (w1)–(w3) imply

(1.13) sep (Γ, L) := inf{|x− y| : x ∈ L, y ∈ Γ} ≥ 2`(L) for every L ∈ W .
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However, we do not require any inequality of the form sep (Γ, L) ≤ C`(L),

although this would be customary for what is commonly called a Whitney

decomposition in the literature.

1.2. Parameters. The algorithm for the construction of the center man-

ifold involves several parameters which depend in a complicated way upon

several quantities and estimates. We introduce these parameters and specify

some relations among them in the following

Assumption 1.8. Ce, Ch, β2, δ2,M0 are positive real numbers, and N0 a

natural number for which we always assume

β2 = 4 δ2 = min

ß
1

2m
,
γ1

100

™
, where γ1 is the constant of [5, Th. 1.4],(1.14)

M0 ≥ C0(m,n, n̄, Q) ≥ 4 and
√
mM027−N0 ≤ 1.(1.15)

As we can see, β2 and δ2 are fixed. The other parameters are not fixed

but are subject to further restrictions in the various statements, respecting

the following “hierarchy.” As already mentioned, “geometric constants” are

assumed to depend only upon m,n, n̄ and Q. The dependence of other con-

stants upon the various parameters pi will be highlighted using the notation

C = C(p1, p2, . . .).

Assumption 1.9 (Hierarchy of the parameters). In all the statements of

the paper

(a) M0 is larger than a geometric constant (cf. (1.15)) or larger than a constant

C(δ2) (see Proposition 3.4);

(b) N0 is larger than C(β2, δ2,M0) (see for instance (1.15) and Proposition 3.7);

(c) Ce is larger than C(β2, δ2,M0, N0) (see the statements of Proposition 1.11,

Theorem 1.17 and Proposition 3.4);

(d) Ch is larger than C(β2, δ2,M0, N0, Ce) (see Propositions 1.11 and 3.1);

(e) ε2 is smaller than c(β2, δ2,M0, N0, Ce, Ch) (which will always be positive).

The functions C and c will vary in the various statements. The hierarchy

above guarantees, however, that there is a choice of the parameters for which

all the restrictions required in the statements of the next propositions are

simultaneously satisfied. In fact it is such a choice which is then made in [7].

To simplify our exposition, for smallness conditions on ε2 as in (e) we will use

the sentence “ε2 is sufficiently small.”

1.3. The Whitney decomposition. Thanks to Lemma 1.6, for every L ∈ C ,

we may choose yL ∈ π⊥L so that pL := (xL, yL) ∈ spt(T ). (Recall that xL is

the center of L.) yL is in general not unique, and we fix an arbitrary choice. A

more correct notation for pL would be xL + yL. This would however become
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rather cumbersome later, when we deal with various decompositions of the

ambient space in triples of orthogonal planes. We thus abuse the notation

slightly in using (x, y) instead of x + y and, consistently, π0 × π⊥0 instead of

π0 + π⊥0 .

Definition 1.10 (Refining procedure). For L ∈ C , we set rL := M0
√
m`(L)

and BL := B64rL(pL). We next define the families of cubes S ⊂ C and

W = We∪Wh∪Wn ⊂ C with the convention that S j = S ∩C j ,W j = W ∩C j

and W j
� = W� ∩ C j for � = h, n, e. We define W i = S i = ∅ for i < N0. We

proceed with j ≥ N0 inductively: if no ancestor of L ∈ C j is in W , then

(EX) L ∈ W j
e if E(T,BL) > Cem0 `(L)2−2δ2 ;

(HT) L ∈ W j
h if L 6∈ W j

e and h(T,BL) > Chm
1/2m
0 `(L)1+β2 ;

(NN) L ∈ W j
n if L 6∈ W j

e ∪W j
h but it intersects an element of W j−1.

If none of the above occurs, then L ∈ S j . We finally set

(1.16) Γ := [−4, 4]m \
⋃
L∈W

L =
⋂
j≥N0

⋃
L∈S j

L.

Observe that, if j > N0 and L ∈ S j ∪ W j , then necessarily its father

belongs to S j−1.

Proposition 1.11 (Whitney decomposition). Let Assumptions 1.3 and

1.8 hold, and let ε2 be sufficiently small. Then (Γ,W ) is a Whitney decom-

position of [−4, 4]m ⊂ π0. Moreover, for any choice of M0 and N0, there is

C? := C?(M0, N0) such that, if Ce ≥ C? and Ch ≥ C?Ce, then

(1.17) W j = ∅ for all j ≤ N0 + 6.

Moreover, the following estimates hold with C = C(β2, δ2,M0, N0, Ce, Ch):

E(T,BJ) ≤ Cem0 `(J)2−2δ2 and h(T,BJ) ≤ Chm
1/2m
0 `(J)1+β2 ∀J ∈ S ,

(1.18)

E(T,BL) ≤ Cm0 `(L)2−2δ2 and h(T,BL) ≤ Cm1/2m
0 `(L)1+β2 ∀L ∈ W .

(1.19)

1.4. Construction algorithm. Next we fix two important functions ϑ, % :

Rm → R.

Assumption 1.12. % ∈ C∞c (B1) is radial,
∫
% = 1 and

∫
|x|2%(x) dx = 0.

For λ > 0, %λ denotes, as usual, x 7→ λ−m%(xλ). ϑ ∈ C∞c
Ä
[−17

16 ,
17
16 ]m, [0, 1]

ä
is

identically 1 on [−1, 1]m.

% will be used as convolution kernel for smoothing maps z defined on m-

dimensional planes π of Rm+n. In particular, having fixed an isometry A of

π onto Rm, the smoothing will be given by [(z ◦ A) ∗ %] ◦ A−1. Observe that
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since % is radial, our map does not depend on the choice of the isometry, and

we will therefore use the shorthand notation z ∗ %.

Definition 1.13 (π-approximations). Let L∈S ∪W and π be an m-dimen-

sional plane. If T C32rL(pL, π) fulfills the assumptions of [5, Th. 1.4] in the

cylinder C32rL(pL, π), then the resulting map f : B8rL(pL, π) → AQ(π⊥)

given by [5, Th. 1.4] is a π-approximation of T in C8rL(pL, π). The map

ĥ : B7rL(pL, π)→ π⊥ given by ĥ := (η ◦ f) ∗ %`(L) will be called the smoothed

average of the π-approximation, where we recall the notation η ◦ f(x) :=

Q−1∑Q
i=1 fi(x) for any Q-valued map f =

∑
i JfiK.

Definition 1.14 (Reference plane πL). For each L ∈ S ∪W , we let π̂L be

an optimal plane in BL (cf. Definition 1.2) and choose an m-plane πL ⊂ TpLΣ

which minimizes |π̂L − πL|.

In what follows we will deal with graphs of multivalued functions f in

several system of coordinates. These objects can be naturally seen as currents

Gf (see [6]), and in this respect we will use extensively the notation and results

of [6]. (Therefore Gr will denote the “set-theoretic” graph.)

Lemma 1.15. Let the assumptions of Proposition 1.11 hold, and assume

Ce ≥ C? and Ch ≥ C?Ce (where C? is the constant of Proposition 1.11). For

any choice of the other parameters, if ε2 is sufficiently small, then the current

T C32rL(pL, πL) satisfies the assumptions of [5, Th. 1.4] for any L ∈ W ∪S .

Moreover, if fL is a πL-approximation, denote by ĥL its smoothed average and

by h̄L the map pTpLΣ(ĥL), which takes value in the plane κL := TpLΣ ∩ π⊥L ,

i.e., the orthogonal complement of πL in TpLΣ. If we let hL be the map x 7→
hL(x) := (h̄L(x),ΨpL(x, h̄L(x))) ∈ κL × TpLΣ⊥, then there is a smooth map

gL : B4rL(pL, π0)→ π⊥0 such that GgL = GhL C4rL(pL, π0).

Definition 1.16 (Interpolating functions). The maps hL and gL given in

Lemma 1.15 will be called, respectively, the tilted L-interpolating function and

the L-interpolating function. For each j, let Pj := S j ∪ ⋃ji=N0
W i, and for

L ∈Pj , define ϑL(y) := ϑ(y−xL`(L) ). Set

(1.20) ϕ̂j :=

∑
L∈Pj ϑLgL∑
L∈Pj ϑL

on ]− 4, 4[m,

let ϕ̄j(y) be the first n̄ components of ϕ̂j(y) and ϕj(y) =
Ä
ϕ̄j(y),Ψ(y, ϕ̄j(y))

ä
,

where Ψ is the map of Lemma 1.5. ϕj will be called the glued interpolation at

the step j.

Theorem 1.17 (Existence of the center manifold). Assume that the hy-

potheses of Lemma 1.15 hold, and let κ := min{ε0/2, β2/4}. For any choice of

the other parameters, if ε2 is sufficiently small, then



508 CAMILLO DE LELLIS and EMANUELE SPADARO

(i) ‖Dϕj‖C2,κ ≤ Cm
1/2
0 and ‖ϕj‖C0 ≤ Cm

1/2m
0 , with C = C(β2, δ2,M0, N0,

Ce, Ch);

(ii) if L ∈ W i and H is a cube concentric to L with `(H) = 9
8`(L), then

ϕj = ϕk on H for any j, k ≥ i+ 2;

(iii) ϕj converges in C3 to a map ϕ, and M := Gr(ϕ|]−4,4[m) is a C3,κ sub-

manifold of Σ.

Definition 1.18 (Whitney regions). The manifold M in Theorem 1.17 is

called a center manifold of T relative to π0 and (Γ,W ) the Whitney decomposi-

tion associated to M. Setting Φ(y) := (y,ϕ(y)), we call Φ(Γ) the contact set.

Moreover, to each L ∈ W we associate a Whitney region L on M as follows:

(WR) L := Φ(H ∩ [−7
2 ,

7
2 ]m), where H is the cube concentric to L with

`(H) = 17
16`(L).

2. The M-normal approximation and related estimates

In what follows we assume that the conclusions of Theorem 1.17 apply and

denote byM the corresponding center manifold. For any Borel set V ⊂M we

will denote by |V| its Hm-measure and will write
∫
V f for the integral of f with

respect to Hm. Br(q) denotes the geodesic balls in M. Moreover, we refer to

[6] for all the relevant notation pertaining to the differentiation of (multiple

valued) maps defined on M, induced currents, differential geometric tensors

and so on.

Assumption 2.1. We fix the following notation and assumptions:

(U) U :=
¶
x ∈ Rm+n : ∃! y = p(x) ∈M with |x− y| < 1 and (x− y) ⊥M

©
;

(P) p : U→M is the map defined by (U);

(R) for any choice of the other parameters, we assume ε2 to be so small that

p extends to C2,κ(Ū) and p−1(y) = y +B1(0, (TyM)⊥) for every y ∈M;

(L) we denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 1.17 and the construction

algorithm.

Corollary 2.2. Under the hypotheses of Theorem 1.17 and of Assump-

tion 2.1, we have

(i) spt(∂(T U)) ⊂ ∂lU, spt(T [−7
2 ,

7
2 ]m×Rn)⊂U and p](T U)=Q JMK;

(ii) spt(〈T,p,Φ(q)〉)⊂
¶
y : |Φ(q)−y|≤Cm1/2m

0 `(L)1+β2
©

for every q∈L∈W ,

where C = C(β2, δ2,M0, N0, Ce, Ch);

(iii) 〈T,p, p〉 = Q JpK for every p ∈ Φ(Γ).

The main goal of this paper is to couple the center manifold of Theo-

rem 1.17 with a good approximating map defined on it.
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Definition 2.3 (M-normal approximation). AnM-normal approximation

of T is given by a pair (K, F ) such that

(A1) F : M→ AQ(U) is Lipschitz (with respect to the geodesic distance on

M) and takes the special form F (x) =
∑
i Jx+Ni(x)K, with Ni(x) ⊥

TxM and x+Ni(x) ∈ Σ for every x and i;

(A2) K⊂M is closed, contains Φ
Ä
Γ∩[−7

2 ,
7
2 ]m
ä

and TF p−1(K)=T p−1(K).

The map N =
∑
i JNiK :M→AQ(Rm+n) is the normal part of F .

In the definition above it is not required that the map F approximates

efficiently the current outside the set Φ
Ä
Γ∩ [−7

2 ,
7
2 ]m
ä
. However, all the maps

constructed in this paper and used in the subsequent note [7] will approximate

T with a high degree of accuracy in each Whitney region; such estimates are

detailed in the next theorem. In order to simplify the notation, we will use

‖N |V‖C0 (or ‖N |V‖0) to denote the number supx∈V G(N(x), Q J0K).

Theorem 2.4 (Local estimates for the M-normal approximation). Let

γ2 := γ1

4 , with γ1 the constant of [5, Th. 1.4]. Under the hypotheses of The-

orem 1.17 and Assumption 2.1, if ε2 is suitably small (depending upon all

other parameters), then there is anM-normal approximation (K, F ) such that

the following estimates hold on every Whitney region L associated to a cube

L ∈ W , with constants C = C(β2, δ2,M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2
0 `(L)γ2 and ‖N |L‖C0 ≤ Cm1/2m

0 `(L)1+β2 ,(2.1)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2
0 `(L)m+2+γ2 ,(2.2) ∫

L
|DN |2 ≤ Cm0 `(L)m+2−2δ2 .(2.3)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2,M0,

N0, Ce, Ch))

(2.4)∫
V
|η ◦N |≤Cm0

Ä
`(L)m+3+β2/3+a `(L)2+γ2/2|V|

ä
+
C

a

∫
V
G
Ä
N,Q Jη ◦NK

ä2+γ2
.

From (2.1)–(2.3) it is not difficult to infer analogous “global versions” of

the estimates.

Corollary 2.5 (Global estimates). Let M′ be the domain Φ
Ä
[−7

2 ,
7
2 ]m
ä
,

and let N be the map of Theorem 2.4. Then (again with C = C(β2, δ2,M0, N0,

Ce, Ch))

Lip(N |M′) ≤ Cmγ2
0 and ‖N |M′‖C0 ≤ Cm1/2m

0 ,(2.5)

|M′ \ K|+ ‖TF − T‖(p−1(M′)) ≤ Cm1+γ2
0 ,(2.6) ∫

M′
|DN |2 ≤ Cm0.(2.7)
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3. Additional conclusions upon M and the M-normal

approximation

3.1. Height bound and separation. We now analyze more in detail the

consequences of the various stopping conditions for the cubes in W . We first

deal with L ∈ Wh.

Proposition 3.1 (Separation). There is a constant C](M0) > 0 with the

following property. Assume the hypotheses of Theorem 2.4 and in addition

C2m
h ≥ C]Ce. If ε2 is sufficiently small, then the following conclusions hold

for every L ∈ Wh:

(S1) Θ(T, p) ≤ Q− 1
2 for every p ∈ B16rL(pL);

(S2) L ∩H = ∅ for every H ∈ Wn with `(H) ≤ 1
2`(L);

(S3) G
Ä
N(x), Q Jη ◦N(x)K

ä
≥ 1

4Chm
1/2m
0 `(L)1+β2 ∀ x∈Φ(B2

√
m`(L)(xL, π0)).

A simple corollary of the previous proposition is the following.

Corollary 3.2. Given any H ∈ Wn, there is a chain L = L0, L1, . . . , Lj
= H such that

(a) L0 ∈ We and Li ∈ Wn for all i > 0;

(b) Li ∩ Li−1 6= ∅ and `(Li) = 1
2`(Li−1) for all i > 0.

In particular, H ⊂ B3
√
m`(L)(xL, π0).

We use this last corollary to partition Wn.

Definition 3.3 (Domains of influence). We first fix an ordering of the cubes

in We as {Ji}i∈N so that their side-lengths do not increase. Then H ∈ Wn

belongs to Wn(J0) (the domain of influence of J0) if there is a chain as in

Corollary 3.2 with L0 = J0. Inductively, Wn(Jr) is the set of cubes H ∈
Wn \ ∪i<rWn(Ji) for which there is a chain as in Corollary 3.2 with L0 = Jr.

3.2. Splitting before tilting I. The following proposition contains a “typ-

ical” splitting-before-tilting phenomenon: the key assumption of the theorem

(i.e., L ∈ We) is that the excess does not decay at some given scale (“tilting”),

and the main conclusion (3.2) implies a certain amount of separation between

the sheets of the current (“splitting”).

Proposition 3.4 (Splitting I). There are functions C1(δ2), C2(M0, δ2)

such that, if M0 ≥ C1(δ2), Ce ≥ C2(M0, δ2), if the hypotheses of Theorem 2.4

hold and if ε2 is chosen sufficiently small, then the following holds. If L ∈ We,

q ∈ π0 with dist(L, q) ≤ 4
√
m`(L) and Ω = Φ(B`(L)/4(q, π0)), then (with
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C,C3 = C(β2, δ2,M0, N0, Ce, Ch))

Cem0`(L)m+2−2δ2 ≤ `(L)mE(T,BL) ≤ C
∫

Ω
|DN |2,(3.1) ∫

L
|DN |2 ≤ C`(L)mE(T,BL) ≤ C3`(L)−2

∫
Ω
|N |2.(3.2)

3.3. Persistence of Q points. We next state two important properties trig-

gered by the existence of p ∈ spt(T ) with Θ(p, T ) = Q, both related to the

splitting before tilting.

Proposition 3.5 (Splitting II). Let the hypotheses of Theorem 1.17 hold,

and assume ε2 is sufficiently small. For any α, ᾱ, α̂ > 0, there is ε3 =

ε3(α, ᾱ, α̂, β2, δ2,M0, N0, Ce, Ch) > 0 as follows. If, for some s ≤ 1,

(3.3) sup
¶
`(L) : L ∈ W , L ∩B3s(0, π0) 6= ∅

©
≤ s,

(3.4) Hm−2+α
∞

Ä
{Θ(T, ·) = Q} ∩Bs

ä
≥ ᾱsm−2+α,

and min
¶
s,m0

©
≤ ε3, then

sup
¶
`(L) : L ∈ We and L ∩B19s/16(0, π0) 6= ∅

©
≤ α̂s.

Proposition 3.6. (Persistence of Q-points) Assume the hypotheses of

Proposition 3.4 hold. For every η2 > 0, there are s̄, ¯̀ > 0, depending upon

η2, β2, δ2,M0, N0, Ce and Ch, such that, if ε2 is sufficiently small, then the fol-

lowing property holds. If L ∈ We, `(L) ≤ ¯̀, Θ(T, p) = Q and dist(pπ0(p(p)), L)

≤ 4
√
m`(L), then

(3.5) −
∫
Bs̄`(L)(p(p))

G
Ä
N,Q Jη ◦NK

ä2 ≤ η2

`(L)m−2

∫
B`(L)(p(p))

|DN |2.

3.4. Comparison between different center manifolds. We list here a final

key consequence of the splitting before tilting phenomenon. ι0,r denotes the

map z 7→ z
r .

Proposition 3.7 (Comparing center manifolds). There are a geometric

constant C0 and a function c̄s(β2, δ2,M0, N0, Ce, Ch) > 0 with the following

property. Assume the hypotheses of Proposition 3.4, N0 ≥ C0, cs := 1
64
√
m

and

ε2 is sufficiently small. If for some r ∈]0, 1[,

(a) `(L) ≤ csρ for every ρ > r and every L ∈ W with L ∩Bρ(0, π0) 6= ∅;
(b) E(T,B6

√
mρ) < ε2 for every ρ > r;

(c) there is L ∈ W such that `(L) ≥ csr and L ∩ B̄r(0, π0) 6= ∅,
then

(i) the current T ′ := (ι0,r)]T B6
√
m and the submanifold Σ′ := ι0,r(Σ) ∩

B7
√
m satisfy the assumptions of Theorem 2.4 for some plane π in place

of π0;
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(ii) for the center manifold M′ of T ′ relative to π and the M′-normal approx-

imation N ′ as in Theorem 2.4, we have

(3.6)

∫
M′∩B2

|N ′|2 ≥ c̄s max
¶
E(T ′,B6

√
m), c(Σ′)2

©
.

4. Center manifold’s construction

In this section we lay down the technical preliminaries to prove Theo-

rem 1.17, state the related fundamental estimates and show how the theorem

follows from them.

4.1. Technical preliminaries and proof of (1.17).

Proof of Lemma 1.6. Recalling that T := T 0 B23
√
m/4, we want to show

that the statements in (1.10) hold. To this regard, we can argue by contra-

diction. If for instance the second statement in (1.10) were false, then we

would have a sequence of currents T 0
k in B6

√
m and of submanifolds Σk sat-

isfying Assumption 1.3 with ε2(k) ↓ 0 and (pπ0)]T
0
k (C11

√
m/2 ∩B23

√
m/4) 6=

Q
r
B11
√
m/2

z
. On the other hand, from (1.5), (1.7), (1.8) and the standard

monotonicity formula,

T 0
k⇀T∞ := Q

r
B6
√
m

z
.

Also, by standard regularity theory for area minimizing currents, we con-

clude that spt(T 0
k ) ∩ Br converges to spt(T∞) ∩ Br in the Hausdorff dis-

tance for every r < 6
√
m. Since ∂T 0

k vanishes in B6
√
m, T 0

k (C11
√
m/2 ∩

B23
√
m/4) has no boundary in C11

√
m/2 for k large enough, thereby imply-

ing that (pπ0)]T
0
k (C11

√
m/2∩B23

√
m/4) = Qk

r
B11
√
m/2

z
for some integer Qk.

Since T 0
k⇀T∞, we deduce that Qk = Q for k large enough, giving the desired

contradiction. Note that the argument actually also shows the first statement

in (1.10). The height bound (1.11) now follows from Theorem A.1 because

(pπ0)]T
0 (C11

√
m/2∩B23

√
m/4) = Q

r
B11
√
m/2

z
and Θ(T 0, 0) = Q; in particu-

lar, the latter assumption and Theorem A.1(iii) imply that there is one single

open set S1 as in Theorem A.1(i), which in turn must contain the origin.

By the slicing theory of currents (see [12, §28] or [8, 4.3.8]) and by (1.10),

there is a set A ⊂ B5
√
m of full measure such that

〈T,pπ0 , x〉 =

N(x)∑
i=1

ki(x)δ(x,yi(x)) ∀x ∈ A,

where N(x) ∈ N, ki(x) ∈ Z with
∑
i ki = Q, and (x, yi(x)) ∈ spt(T ) with

|yi(x)| ≤ C0m
1/2m
0 . By the density of A in B5

√
m, we conclude that spt(T ) ∩
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(x + π⊥0 ) 6= ∅ for every x ∈ B5
√
m. This completes the proof of Lemma 1.6.

Observe also that as a consequence, if L ∈ C , then

(4.1) |yL| ≤ Cm
1/2m
0 and |pL| ≤ 4

√
m+ C0m

1/2m
0 .

(Recall that pL = (xL, yL) ∈ π0 × π⊥0 ∩ spt(T ) is the center of BL; cf. Defini-

tion 1.10.) �

Proof of Lemma 1.5. The first part of the statement, i.e., the extension

of the manifold Σ, is a fairly standard fact. It suffices to make the correct

extension of the map Ψ0 to T0Σ and then use the smallness of the norm to

show that Σ is globally graphical over every TpΣ. The fact that T 0 remains

area minimizing is also fairly simple; any area minimizing current T ′ in the

extended manifold Σ with T ′ − T 0 = ∂S must be supported in BC0 for some

geometric constant C0, by the monotonicity formula. On the other hand, for a

sufficiently small ε2, Br∩Σ is geodesically convex in Σ for every r ∈]0, C0], and

thus there is a projection p : BC0 ∩ Σ → B̄6
√
m ∩ Σ which is 1-Lipschitz with

respect to the Riemannian metric on Σ. Since π]T
′ cannot have mass smaller

than T ′, T ′ must be supported in B̄6
√
m. But then T ′ is area minimizing even

in the original (i.e., not extended) Σ and must have the same mass as T 0.

By Assumption 1.3 and Remark 1.4, A ≤ C0m
1/2
0 ≤ C0. Then, by the

monotonicity formula, ‖T 0‖(B1) ≥ c0 > 0 and so there is p ∈ spt(T )∩B1 such

that

|~T (p)− π0|2 = | ~T 0(p)− π0|2 ≤ C0
E(T 0,B1, π0)

‖T‖(B1)
≤ C0m0.

We conclude that, if ε2 is smaller than a geometric constant, pTpΣ(π0) is an

m-dimensional plane with |pTpΣ(π0)− π0| ≤ C0m
1/2
0 . On the other hand,

|pT0Σ − pTpΣ| ≤ C0|TpΣ− T0Σ| ≤ C0A ≤ C0m
1/2
0 ,

and we conclude |pT0Σ(π0)−π0| ≤ C0m
1/2
0 . Therefore there is an n-dimensional

plane κ0 orthogonal to π0 such that |π0 × κ0 − T0Σ| ≤ C0m
1/2
0 . We then find

a rotation which fixes π0 and maps κ0 onto {0} × Rn × {0}. The remaining

statements follows easily from Lemma B.1. �

Proof of (1.17). Fix L ∈ W j with N0 ≤ j ≤ N0 + 6. Since rL ≤ 2−7 (cf.

Assumption 1.8), (4.1) guarantees BL ⊂ B5
√
m if ε2 is small enough. Moreover,

E(T,BL, π0) ≤ 6m

(64M02−N0−6)m
E(T 0,B6

√
m, π0) ≤ 6m

(64M0)m2−(N0+6)m
m0.

For a suitable C?(M0, N0), the inequality Ce ≥ C? implies

E(T,BL) ≤ E(T,BL, π0) ≤ Cem0 `(L)2−2δ2 .

Now let π̂L be an optimal plane in BL. Since the center pL belongs to spt(T ),

by the monotonicity formula, ‖T‖(BL) ≥ c0r
m
L (cf. [12, §17] or [5, App. A]).

Thus

(4.2) |π̂L − π0|2 ≤ C0

Ä
E(T,BL, π0) + E(T,BL, π̂L)

ä
≤ C0Cem0 `(L)2−2δ2 ,



514 CAMILLO DE LELLIS and EMANUELE SPADARO

where C0 is a geometric constant. This in turn implies that

h(T,BL) ≤ C0M0 |π̂L − π0| `(L) + h(T,BL, π0)

≤ C0M0C
1/2
e m

1/2
0 `(L)2−δ2 + h(T,C5

√
m)

(1.11)

≤ C(M0, N0)(C
1/2
e + 1)m

1/2m
0 `(L)1+β2 .

Thus, if C?(M0, N0) is chosen sufficiently large and Ch ≥ C?Ce ≥ (C?)2,

neither condition (EX) nor (HT) applies to L. Therefore, W j = ∅ for every

j ≤ N0 + 6. �

4.2. Tilting of planes and proof of Proposition 1.11. Next we compare

optimal planes and height functions across different cubes of W ∪S .

Proposition 4.1 (Tilting of optimal planes). Assume that the hypothe-

ses of Assumptions 1.3 and 1.8 hold, that Ce ≥ C? and Ch ≥ C?Ce, where

C?(M0, N0) is the constant of the previous section. If ε2 is sufficiently small,

then

(i) BH ⊂ BL ⊂ B5
√
m for all H,L ∈ W ∪S with H ⊂ L.

Moreover, if H,L ∈ W ∪ S and either H ⊂ L or H ∩ L 6= ∅ and `(L)
2 ≤

`(H) ≤ `(L), then the following holds for C̄ = C̄(β2, δ2,M0, N0, Ce) and C =

C(β2, δ2,M0, N0, Ce, Ch):

(ii) |π̂H − πH | ≤ C̄m
1/2
0 `(H)1−δ2 ;

(iii) |πH − πL| ≤ C̄m
1/2
0 `(L)1−δ2 ;

(iv) |πH − π0| ≤ C̄m
1/2
0 ;

(v) h(T,C36rH (pH , π0)) ≤ Cm1/2m
0 `(H) and spt(T ) ∩C36rH (pH , π0) ⊂ BH ;

(vi) for π = πH , π̂H , h(T,C36rL(pL, π)) ≤ Cm
1/2m
0 `(L)1+β2 and spt(T ) ∩

C36rL(pL, π) ⊂ BL.

In particular, the conclusions of Proposition 1.11 hold.

Proof. In this proof we will use the following convention: geometric con-

stants will be denoted by C0 or c0, constants depending upon β2, δ2,M0, N0, Ce
will be denoted by C̄ or c̄ and constants depending upon β2, δ2,M0, N0, Ce and

Ch will be denoted by C or c.

Proof of (i)–(vi) when H ⊂ L. The proof is by induction over the integers

i = − log2(`(H)), where we start with i = N0. For the starting step i = N0, we

need to check (i), (ii), (iv), (v) and (vi), all in the special case H = L. Observe

first that (i) is a consequence of (4.1) and the estimate 64rL ≤M0
√
m2−N0 ≤√

m/2. Since W N0 = ∅, for i = N0 we have H ∈ S N0 , which means that H

satisfies neither condition (EX) nor condition (HT). Since by the monotonicity
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formula ‖T‖(BH) ≥ c0 r
m
H , there exists at least a point p ∈ spt(T ) ∩BH such

that

(4.3) |~T (p)− π̂H |2 ≤ E(T,BH)
C0 r

m
H

‖T‖(BH)
≤ C̄m0 `(H)2−2δ2 .

Since ~T (p) is an m-vector of TpΣ, this implies that

|pTpΣ(π̂H)− π̂H | ≤ C̄m
1/2
0 `(H)1−δ2 .

Recalling that |pTpHΣ − pTpΣ| ≤ C0rHA ≤ C̄m
1/2
0 `(H), we conclude (ii). (iv)

follows simply from (4.2) and (ii). As for (v), observe that the radius of

C36rH (pH , π0) is smaller than
√
m/2 and its center pH = (xH , yH) satisfies

|xH | ≤ 4
√
m. Thus C36rH (pH , π0) ⊂ C5

√
m(0, π0) =: C and the first conclusion

of (v) is a consequence of (1.11). The second conclusion follows from the first

provided ε2 < c. Finally, with regard to (vi), recall that H = L. There are two

cases: π = πH and π = π̂H . Since the arguments are entirely analogous, we just

give it in the first case. The base point pH of the cylinder C′ := C36rH (pH , πH)

satisfies, by (1.11), |pH | ≤ 4
√
m+C0m

1/2m
0 and its radius is smaller than

√
m/2.

By a simple geometric consideration, C′∩B6
√
m ⊂ C holds provided |πH −π0|

and |pH | − 4
√
m are smaller than a geometric constant. This requires ε2 ≤ c̄.

Under this assumption, spt(T )∩C′ ⊂ C, and from (1.11) and (iv) we conclude

h(T,C′, πH) ≤ C0|πH − π0| + h(T,C5
√
m, π0) ≤ C̄m

1/2m
0 . It then follows that

spt(T ) ∩ C′ ⊂ BH , provided ε2 is sufficiently small. Since H 6∈ W , from (ii)

we then conclude that

h(T,C′, πH) ≤ h(T,BH) + C0M0`(H)|πH − π̂H |

≤ Cm1/2m
0 `(H)1+β2 + C̄m

1/2
0 `(H)2−δ2 .

Now we pass to the inductive step. Thus fix some Hi+1 ∈ S i+1 ∪W i+1,

and consider a chain Hi+1 ⊂ Hi ⊂ · · · ⊂ HN0 with Hl ∈ S l for l ≤ i. We

wish to prove all the conclusions (i)–(vi) when H = Hi+1 and L = Hj for some

j ≤ i+1, recalling that, by inductive assumption, all the statements hold when

H = Hk and L = Hl for l ≤ k ≤ i. With regard to (i), it is enough to prove

that BHi+1 ⊂ BHi . By inductive assumption we know (v) holds with H = Hi,

whereas |xHi−xHi+1 | ≤
√
m`(Hi); so |pHi+1−pHi | ≤ (

√
m+Cm

1/2m
0 )2`(H)i+1.

In particular, for ε2 small enough, we conclude |pHi+1 − pHi | ≤ 3
√
m`(Hi+1).

Assuming that the geometric constant in the first inequality of (1.15) is large

enough, we infer BHi+1 ⊂ BHi . We show now (ii). By (i),

(4.4) E(T,BHi+1) ≤ 2m E(T,BHi) ≤ 2m+2−2δ2Cem0 `(Hi+1)2−2δ2 .

Therefore, we can argue as above in the case i = N0 to achieve (ii). We next

come to (iii) and (iv). Fix any l ∈ {N0 + 1, . . . , i+ 1}. By the inclusion in (i),
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we can argue similarly to infer

(4.5)

|π̂Hl−1
− π̂Hl |

2 ≤
Ä
E(T,BHl−1

) + E(T,BHl)
ä C0 r

m
Hl−1

‖T‖(BHl)
≤ C̄m0 `(Hl)

2−2δ2 .

Using the estimate
∑∞
l=j `(Hl)

1−δ2 ≤ C0 `(Hj)
1−δ2 and (ii), we conclude that

(iii) for H = Hi+1 and L = Hj . As for (iv), it follows from (iii) and the

case |πHN0
− π0| ≤ C̄m

1/2
0 . We next come to (v). (v) holds for Hi, and so we

conclude spt(T ) ∩C36rHi
(pHi , π0) ⊂ BHi . Since |pHi+1 − pHi | ≤ 3

√
m`(Hi+1)

and rHi+1 = 1
2rHi , we have C36rHi+1

(pHi+1 , π0) ⊂ C36rHi
(pHi , π0) provided the

geometric constant in the first inequality of (1.15) is large enough. Thus

h(T,C36rHi+1
(pHi+1 , π0)) ≤ h(T,BHi) + C0 rHi |π̂Hi − π0|

(iv)

≤ Chm
1/2m
0 `(Hi)

1+β2 + C̄m
1/2
0 `(Hi)

≤ Cm1/2m
0 `(Hi),

where we used Hi ∈ S i. Thus (v) follows easily for H = Hi+1. The inclusion

spt(T )∩C36rHi+1
(pHi+1 , π0) ⊂ BHi+1 is an obvious corollary of the bound and

of the fact that the center of the ball BHi+1 (i.e., the point pHi+1) belongs to

spt(T ) ∩C36rHi+1
(pHi+1 , π0). We again need to ensure that ε2 is chosen small

enough.

Next we show (vi) for H = Hi+1 and L = Hj with j ≤ i + 1 (including

the case L = Hi+1). The argument is the same in both cases πH and π̂H ,

and we show it in the first case. We first prove the second claim of (vi)

inductively on j. Observe that for j = N0, we can argue as for the inclusion

C36rHN0
(pHN0

, πHN0
)∩B6

√
m ⊂ C5

√
m(0, π0) to infer also C36rHN0

(pHN0
, πH)∩

B5
√
m ⊂ C5

√
m(0, π0). Since |πHN0

− πH | ≤ C̄m
1/2
0 `(HN0)1−δ2 , such inclusion

simply requires a smaller choice of ε2. We can then use (1.11) to infer

h(T,C36rHN0
(pHN0

, πH)) ≤ h(T,C5
√
m(0, π0), π0) + C0rHN0

|π0 − πH |

≤ Cm1/2m
0 `(HN0)1+β2 .

Again the inclusion spt(T )∩C36rHN0
(pHN0

, πH) ⊂ BHN0
follows from assuming

ε2 sufficiently small. Next, assume that the second claim of (vi) holds for H

and L = Hl. Observe that

C36rHl+1
(pHl+1

, πH) ⊂ C36rHl
(pHl , πH).

In fact, arguing as above, we have |pHl+1
− pH | ≤ 3

√
m`(Hl+1), and thus

such inclusion requires only a sufficiently large geometric constant in the first

inequality of (1.15). But then, we know C36rHl+1
(pHl+1

, πH) ⊂ BHl , and we
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can therefore conclude

h(T,C36rHl+1
(pHl+1

, πH), πH) ≤ h(T,BHl) + C0rHl+1
|πH − π̂Hl |.

From this we then conclude the second claim of (vi), i.e.,

spt(T ) ∩C36rHl+1
(pHl+1

, πH) ⊂ BHl+1
.

Next, the first claim of (vi) is an obvious consequence of the second claim when

L = Hj for j ≤ i because L ∈ S . In this case we have, as computed above,

h(T,C36rL(pL, πH)) ≤ h(T,BL) + C0 rL|π̂L − πH |
(iii)&(ii)

≤ Chm
1/2m
0 `(L)1+β2 + C̄m

1/2
0 `(L)2−δ2

≤ Cm1/2m
0 `(L)1+β2 .

Finally, since C36rH (pH , πH) ⊂ C36rHi
(pHi , πH) ⊂ BHi and the side-lengths

`(H) and `(Hi) differ by a factor 2, we conclude as well that the first claim of

(vi) holds for H = L.

Proof of Proposition 1.11. Observe that (1.17) has already been shown

in the previous subsection and that (1.18) is an obvious consequence of the

definition of S . It only remains to show (1.19). Then fix L ∈ W , and recall

that its father J belongs to S . However, having proved (i)–(vi) for pairs of

cubes in which one is the ancestor of the other, we know that BL ⊂ BJ , and

thus we achieve

E(T,BL) ≤ 2mE(T,BJ) ≤ 2mCem0`(J)2−2δ2

≤ 2m+2−2δ2Cem0`(L)2−2δ2 ,
(4.6)

h(T,BL) ≤ h(T,BJ) + C0rL|π̂J − π̂L|
(ii)&(iii)

≤ Cm
1/2m
0 `(L)1+β2 .(4.7)

Proof of (i)–(vi) for neighboring H and L. Observe that in this case we

only have to show (iii) and (vi). The argument for (iii) is entirely analogous

to the case H ⊂ L. Assume first that L 6∈ S N0 . Then L has a father J .

As already seen we have |pL − pJ | ≤ 3
√
m`(J). On the other hand, it is also

easy to see that, with the same argument, we conclude |pH − pL| ≤ 3
√
m`(L)

and thus |pH − pJ | ≤ 5
√
m`(J). We therefore easily conclude BH ∪BL ⊂ BJ ,

provided the geometric constant in the first inequality of (1.15) is large enough.

Therefore, we can estimate

|π̂L − π̂J | ≤ C0(E(T,BJ) + E(T,BL))
1/2

and use (ii) to conclude. In case L ∈ S N0 , we can simply replace BJ with

B5
√
m.

Finally we pass to (vi). We can in fact use the very same argument already

explained when H ⊂ L. Indeed, we claim that (vi) holds not only for L but
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also for all its ancestors J and prove this claim by induction exactly as done

above. �

4.3. Existence of several approximating maps. Next, we prove that the

building blocks for the construction of the center manifold are well defined.

Proposition 4.2 (Existence of interpolating functions). Assume the con-

clusions of Proposition 4.1 apply. The following facts are true provided ε2 is

sufficiently small. Let H,L ∈ W ∪S be such that either H ⊂ L or H ∩L 6= ∅
and `(L)

2 ≤ `(H) ≤ `(L). Then,

(i) For π = πH , π̂H , (pπ)]T C32rL(pL, π) = Q JB32rL(pL, π))K and T satisfies

the assumptions of [5, Th. 1.4] in the cylinder C32rL(pL, π).

(ii) Let fHL be the πH-approximation of T in C8rL(pL, πH) and h := (η ◦
fHL) ∗ %`(L) be its smoothed average. Set κH := π⊥H ∩ TpHΣ, and consider

the maps

x 7→ h̄(x) := pTpHΣ(h) ∈ κH
x 7→ hHL(x) := (h̄(x),ΨpH (x, h̄(x))) ∈ κH × (TpH (Σ))⊥.

Then there is a smooth gHL : B4rL(pL, π0) → π⊥0 such that GgHL =

GhHL C4rL(pL, π0).

Definition 4.3. hHL and gHL will be called, respectively, tilted (H,L)-

interpolating function and (H,L)-interpolating function.

Observe that the tilted (L,L)-interpolating function and the (L,L)-in-

terpolating function correspond to the tilted L-interpolating function and to

the L-interpolating function of Definition 1.16. Obviously, Lemma 1.15 is just

a particular case of Proposition 4.2.

Proof. We use the convention that C0 and c0 denote geometric constants,

C̄ and c̄ denote dependence upon β2, δ2,M0, N0 and Ce, whereas C and c

dependence upon β2, δ2,M0, N0, Ce and Ch. There are two cases: (i) π = πH
and (ii) π = π̂H ; since the argument for case (ii) is entirely analogous to that

for case (i), we only give it for case (i). First recall that, by Proposition 4.1,

(4.8) spt(T C32rL(pL, πH)) ⊂ BL ⊂ B5
√
m.

We thus have ∂T C32rL(pL, πH) = 0 and thus, setting p := pπH , we conclude

(4.9) p]T C32rL(pL, πH) = k JB32rL(p(pL), πH)K

for some integer k. We will show now that Q = k. If J is the father of L,

we then have proved in the previous section that |pL − pJ | ≤ 3
√
m`(L). We

thus conclude C32rL(pL, πH) ⊂ C32rJ (pJ , πH), provided M0 is larger than a

geometric constant. Consider the chain of ancestors J ⊂ · · · ⊂ M of L, until
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M ∈ S N0 . We then have C32rL(pL, πH) ⊂ C32rM (pM , πH), and it suffices to

show

(4.10) p]T C32rM (pM , πH) = Q JB32rM (p(pM ), πH)K .

Observe also that |π0 − πH | ≤ C̄m
1/2
0 , by Proposition 4.1. Join πH =: π(1)

and π0 =: π(0) with a continuous one-parameter family of planes π(t) with the

property that

(4.11) |π(t)− π0| ≤ C0|πH − π0| ≤ C̄m
1/2
0 ,

where C0 > 0 is some geometric constant. Since C̄ = C̄(β2, δ2,M0, N0, Ce), it

is then clear from (4.11) that, if ε2 is suitably small, then we have B6
√
m ∩

C32rM (pM , πt) ⊂ C5
√
m(0, π0) for every t ∈ [0, 1] (as already argued in the proof

of Proposition 4.1). We consider the currents S(t) :=(pπ(t))]T C32rM (pL, π(t))

and get S(t) = Q(t)
q
B34rM (pπ(t)(pM ), π(t))

y
, where Q(t) is an integer for ev-

ery t by the Constancy Theorem. On the other hand, t 7→ S(t) is weakly

continuous in the space of currents and thus Q(t) must be constant. Since

Q(0) = Q by (1.10), this proves the desired claim.

Observe next that, again from Proposition 4.1,

E(T,C32rL(pL, πH)) ≤ C̄E(T,BL, πH)

≤ C̄E(T,BL) + C̄|πH − π̂L|2 ≤ C̄m0 `(L)2−2δ2 .

If ε2 is sufficiently small, then E(T,C32rL(pL, πH)) < ε1, where ε1 is the con-

stant of [5, Th. 1.4]. Therefore, the current T C32rL(pL, πH) and the subman-

ifold Σ satisfy all the assumptions of [5, Th. 1.4] in the cylinder C32rL(pL, πH);

we apply it to construct the πH -approximation fHL. By [5, Th. 1.4] and the

properties of ΨpH , we have

Lip(hHL) ≤ C0Lip(η ◦ fHL) ≤ C̄ (E(T,C32rL(pL, πH)))γ1 ≤ C̄mγ1
0 `(L)γ1

and

‖hHL − pπ⊥H
(pL)‖C0 ≤ C0‖η ◦ fHL − pπ⊥H

(pL)‖C0

≤ C0‖G
Ä
fHL, Q Jpπ⊥H (pL)K

ä
‖C0

≤ C0h(T,C32rL(pL, πH))

+
Ä
E(T,C32rL(pL, πH))

1/2 + A rL
ä
rL

≤ Cm1/2m
0 `(L)1+β2 .

Since C does not depend on ε2, if the latter is smaller than a suitable positive

constant c(β2, δ2,M0, N0, Ce, Ch), we can apply Lemma B.1 to conclude that

the interpolating function gHL is well defined. �
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4.4. Key estimates and proof of Theorem 1.17. We are now ready to state

the key construction estimates and show how Theorem 1.17 follows easily from

them.

Proposition 4.4 (Construction estimates). Assume that the conclusions

of Propositions 4.1 and 4.2 apply, and set κ = min{β2/4, ε0/2}. Then, the

following holds for any pair of cubes H,L ∈ Pj (cf. Definition 1.16), where

C = C(β2, δ2,M0, N0, Ce, Ch):

(i) ‖gH‖C0(B) ≤ Cm
1/2m
0 and ‖DgH‖C2,κ(B) ≤ Cm

1/2
0 for B = B4rH (xH , π0);

(ii) if H ∩ L 6= ∅, then ‖gH − gL‖Ci(BrL (xL)) ≤ Cm
1/2
0 `(H)3+κ−i for every

i ∈ {0, . . . , 3};
(iii) |D3gH(xH)−D3gL(xL)| ≤ Cm1/2

0 |xH − xL|κ;

(iv) ‖gH − yH‖C0 ≤ Cm1/2m
0 `(H) and |πH − T(x,gH(x))GgH | ≤ Cm

1/2
0 `(H)1−δ2

for all x ∈ H ;

(v) if L′ is the cube concentric to L ∈ W j with `(L′) = 9
8`(L), then

‖ϕi − gL‖L1(L′) ≤ Cm0 `(L)m+3+β2/3 ∀i ≥ j.

Proof of Theorem 1.17. As in all the proofs so far, we will use C0 for

geometric constants and C for constants which depend upon β2, δ2,M0, N0, Ce
and Ch. Define χH := ϑH/(

∑
L∈Pj ϑL) for each H ∈Pj , and observe that

∑
H∈Pj

χH = 1 on [−4, 4]m and ‖χH‖Ci ≤ C0 `(H)−i ∀i ∈ {0, 1, 2, 3, 4}.
(4.12)

Set Pj(H) := {L ∈Pj : L∩H 6= ∅}\{H} for each H ∈Pj . By construction,
1
2`(L) ≤ `(H) ≤ 2 `(L) for every L ∈ Pj(H) and the cardinality of Pj(H)

is bounded by a geometric constant C0. The estimate |ϕ̂j | ≤ Cm
1/2m
0 then

follows immediately from Proposition 4.4(i). For x ∈ H, we write

ϕ̂j(x) =
(
gHχH +

∑
L∈Pj(H)

gLχL
)
(x) = gH(x) +

∑
L∈Pj(H)

(gL − gH)χL (x),

(4.13)

because H does not meet the support of ϑL for any L ∈ Pj which does not

meet H. Using the Leibniz rule, (4.12) and the estimates of Proposition 4.4(i)–

(ii), for i ∈ {1, 2, 3}, we get

‖Diϕ̂j‖C0(H) ≤ ‖DigH‖C0 + C0

∑
0≤l≤i

∑
L∈Pj(H)

‖gL − gH‖Cl(H)`(L)l−i

≤ Cm
1
2
0

Ä
1 + `(H)3+κ−i

ä
.

(Assuming M0 is larger than the geometric constant 2
√
m, we have H ⊂

BrL(xL) and the estimate of Proposition 4.4(ii) can be applied.) Next, also
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using ‖D3gH −D3gL‖Cκ(BrL (xL) ≤ Cm
1/2
0 , we obtain

[D3ϕ̂j ]κ,H ≤ C0

∑
0≤l≤3

∑
L∈Pj(H)

`(H)l−3
(
`(H)−κ‖Dl(gL − gH)‖C0(H)

+ [Dl(gL − gH)]κ,H
)

+ [D3gH ]κ,H ≤ Cm
1/2
0 ,

where [a]κ,D is the usual Hölder seminorm sup{|x − y|−κ|a(x) − a(y)| : x 6=
y, x, y ∈ D}. Now fix x, y ∈ [−4, 4]m, let H,L ∈ Pj be such that x ∈ H and

y ∈ L. If H ∩ L 6= ∅, then

(4.14) |D3ϕ̂j(x)−D3ϕ̂j(y)| ≤ C
Ä
[D3ϕ̂j ]κ,H + [D3ϕ̂j ]κ,L

ä
|x− y|κ.

If H ∩ L = ∅, without loss of generality we assume that `(H) ≤ `(L) and

observe that

max
¶
|x− xH |, |y − xL|

©
≤
√
m`(L) ≤ 2

√
m|x− y|.

Moreover, by construction, ϕ̂j is identically equal to gH in a neighborhood of

its center xH . Thus, we can estimate

|D3ϕ̂j(x)−D3ϕ̂j(y)| ≤ |D3ϕ̂j(x)−D3ϕ̂j(xH)|+ |D3gH(xH)−D3gL(xL)|
+ |D3ϕ̂j(xL)−D3ϕ̂j(y)|

≤ Cm1/2
0 (|x− xH |κ + |xH − xL|κ + |y − xL|κ)

≤ Cm1/2
0 |x− y|

κ,

(4.15)

where we used (4.14) and Proposition 4.4(iii). We have thus shown ‖Dϕ̂j‖C2,κ

≤ Cm
1/2
0 . Since ϕj(x) = (ϕ̄j(x),Ψ(x, ϕ̄j(x))), where ϕ̄j(x) denote the first n̄

components of ϕ̂j(x), Theorem 1.17(i) follows easily from the chain rule.

Let L ∈ W i, and fix j ≥ i+ 2. Observe that, by the inductive procedure

defining S j ∪ W j , we have Pj(L) = P i+2(L) ⊂ W . Let H be the cube

concentric to L with `(H) = 9
8`(L). Then, by Assumption 1.12, spt(ϑM ) ∩H

= ∅ for all M 6∈Pj(L). Thus, Theorem 1.17(ii) follows.

We now show below that ‖ϕj−ϕj+1‖C0(]−4,4[m) ≤ C2−j . This immediately

implies the existence of a continuous ϕ to which ϕj converges uniformly. The

bounds of Theorem 1.17(i) immediately implies Theorem 1.17(iii). Therefore

fix x ∈ [−4, 4]m, and assume that x ∈ L ∩ H with L ∈ Pj and H ∈ Pj+1.

Without loss of generality, we can make the choice of H and L in such a way

that either H = L or H is a son of L. Now, if `(L) ≥ 2−j+2, then by (ii) we

have ϕj(x) = ϕj+1(x). Otherwise, from (i) and Proposition 4.4(iv), we can
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conclude that

|ϕ̂j(x)− ϕ̂j+1(x)| ≤ |ϕ̂j(x)− ϕ̂j(xH)|
+ |gH(xH)− gL(xL)|+ |ϕ̂j+1(xL)− ϕ̂j+1(x)|
≤ C

Ä
‖ϕ̂j‖C1 + ‖ϕ̂j+1‖C1

ä
2−j

+ ‖gH − yH‖C0 + ‖gL − yL‖C0 + |yH − yL|

≤ Cm1/2m
0 2−j + |pH − pL|.

(4.16)

Since BH ⊂ BL, we conclude |ϕ̂j(x) − ϕ̂j+1(x)| ≤ C2−j . Given that Ψ is

Lipschitz, we get ‖ϕj − ϕj+1‖C0 ≤ C 2−j and conclude. �

5. Proof of the three key construction estimates

5.1. Elliptic PDE for the average. This section contains the most impor-

tant computation, namely the derivation via a first variation argument of a

suitable elliptic system for the average of the π-approximations. In order to

simplify the notation we introduce the following definition.

Definition 5.1 (Tangential parts). Having fixed H ∈ Pj and π := πH ⊂
TpHΣ, we let κ be the orthogonal complement of π in TpHΣ. For any given

point q ∈ Rm+n, any set Ω ⊂ π and any map ξ : q+Ω→ π⊥, the map pκ◦ξ will

be called the tangential part of ξ and usually will be denoted by ξ̄. Analogous

notation and terminology will be used for multiple-valued maps.

Proposition 5.2 (Elliptic system). Assume the conclusions of Proposi-

tions 4.1 and 4.2. Let H ∈ W j ∪S j and L be either an ancestor or a cube of

W j ∩S j with H ∩ L 6= ∅ (possibly also H itself ). Let fHL : B8rL(pL, πH) →
AQ(π⊥H) be the πH-approximation of T in C8rL(pL, πH), hHL the tilted (H,L)-

interpolating functions and f̄HL and h̄HL their tangential parts, according to

Definition 5.1. Then, there is a matrix L, which depends on Σ and H but not

on L, such that |L| ≤ C0A
2 ≤ C0m0 for a geometric constant C0 and (for

C = C(β2, δ2,M0, N0, Ce, Ch))∣∣∣∣∫ ÄD(η ◦ f̄HL) : Dζ + (pπ(x− pH))t · L · ζ
ä∣∣∣∣

≤ Cm0 r
m+1+β2

L

Ä
rL ‖ζ‖C1 + ‖ζ‖C0

ä(5.1)

for every ζ ∈ C∞c (B8rL(pL, πL),κ). Moreover,

(5.2) ‖h̄HL − η ◦ f̄HL‖L1(B7rL
(pL,πL)) ≤ Cm0 r

m+3+β2

L

(for C = C(β2, δ2,M0, N0, Ce, Ch)).

Before coming to the proof we introduce the oscillation of a multivalued

function f , which will also play an important role later:

(5.3) osc (f) := sup{|P − P ′| : P ∈ spt(f(x)), P ′ ∈ sptf(y))}.

Observe that the oscillation is comparable to supx,y G(f(x), f(y)).
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Proof. We use the convention that geometric constants are denoted by C0,

whereas C denotes constants depending upon the parameters β2, δ2,M0, N0, Ce
and Ch. Set π = πH . We fix a system of coordinates (x, y, z) ∈ π×κ×(TpHΣ)⊥

so that pH = (0, 0, 0). Also, in order to simplify the notation, although the

domains of the various maps are subsets Ω of pL + π, from now on we will

consider them as functions of x; i.e., we shift their domains to pπ(Ω). We

also use ΨH for the map ΨpH of Assumption 1.3. Recall that ΨH(0, 0) = 0,

DΨH(0, 0) = 0 and ‖DΨH‖C2,ε0 ≤ m
1/2
0 . Finally, to simplify the notation we

also drop the subscripts HL from the functions fHL, f̄HL and h̄HL. (This

notation might generate some confusion since h is used in Proposition 4.2 for

the smoothed average of fHL; observe however that the tangential part of such

smoothed average does coincide with the tangential part of the tilted (H,L)-

approximation.)

Given a test function ζ and any point q = (x, y, z) ∈ Σ, we consider the

vector field χ(q) = (0, ζ(x), DyΨ(x, y) · ζ(x)). χ is tangent to Σ, and therefore

δT (χ) = 0. Thus,

|δGf (χ)| = |δGf (χ)− δT (χ)| ≤ C0

∫
C8rL

(pL,π)
|Dχ| d‖Gf − T‖.(5.4)

Let r = rL and B = B8rL(pL, π). Since ‖DΨH‖0 ≤ m
1/2
0 , for ε2 suffi-

ciently small, we achieve |χ| ≤ 2|ζ| and |Dχ| ≤ 2|ζ| + 2|Dζ|. Now set

E := E
Ä
T,C32r(pL, π)

ä
and recall [5, Th. 1.4] to derive

|Df | ≤ C0E
γ1 + C0rA ≤ Cmγ1

0 r
γ1 ,(5.5)

|f | ≤ C0h(T,C32r(pL, π)) + C0(E
1/2 + rA)r ≤ Cm1/2m

0 r1+β2 ,(5.6) ∫
B
|Df |2 ≤ C0 r

mE ≤ Cm0 r
m+2−2δ2 ,(5.7)

and

|B \K| ≤ C0E
γ1(E + r2A2) ≤ Cm1+γ1

0 rm+2−2δ2+γ1 ,(5.8) ∣∣∣∣‖T‖(C8r(pL, π))− |B| − 1

2

∫
B
|Df |2

∣∣∣∣
≤ C0E

γ1(E + r2A2) ≤ Cm1+γ1
0 rm+2−2δ2+γ1 ,

(5.9)

where K ⊂ B is the set

(5.10) B \K = pπ ((spt(T )∆Gr(f)) ∩C8rL(pL, π)) .

Concerning (5.6) observe that the statement of [5, Th. 1.4] indeed bounds

osc (f). However, in our case we have pH = (0, 0, 0) ∈ spt(T ) and spt(T ) ∩
Gr(f) 6= ∅. Thus we conclude |f | ≤ C0osc (f) + C0h(T,C32r(pL, π)).
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Writing f =
∑
i JfiK and f̄ =

∑
i

q
f̄i

y
, Gr(f) ⊂ Σ implies

f =
∑
i

q
(f̄i,ΨH(x, f̄i))

y
.

From [6, Th. 4.1] we can infer that

δGf (χ) =

∫
B

∑
i

(
DxyΨH(x, f̄i) · ζ︸ ︷︷ ︸

(A)

+ (DyyΨH(x, f̄i) ·Dxf̄i) · ζ︸ ︷︷ ︸
(B)

+DyΨH(x, f̄i) ·Dxζ︸ ︷︷ ︸
(C)

)

:
(
DxΨH(x, f̄i)︸ ︷︷ ︸

(D)

+DyΨH(x, f̄i) ·Dxf̄i︸ ︷︷ ︸
(E)

)

+

∫
B

∑
i

Dxζ : Dxf̄i + Err.

(5.11)

To avoid cumbersome notation we use ‖ · ‖0 for ‖ · ‖C0 and ‖ · ‖1 for ‖ · ‖C1 .

Recalling [6, Th. 4.1], the error term Err in (5.11) satisfies the inequality

(5.12) |Err| ≤ C
∫
|Dχ||Df |3 ≤ ‖ζ‖1

∫
|Df |3 ≤ C‖ζ‖1m1+γ1

0 rm+2−2δ2+γ1 .

The second integral in (5.11) is obviously Q
∫
BDζ : D(η ◦ f̄). We therefore

expand the product in the first integral and estimate all terms separately. We

will greatly profit from the Taylor expansion

DΨH(x, y) = DxDΨH(0, 0) · x+DyDΨH(0, 0) · y +O
Ä
m

1/2
0 (|x|2 + |y|2)

ä
.

In particular, we gather the following estimates:

|DΨH(x, f̄i)| ≤ Cm
1/2
0 r and DΨH(x, f̄i)=DxDΨH(0, 0) · x+O

Ä
m

1/2
0 r1+β2

ä
,

|D2ΨH(x, f̄i)| ≤m
1/2
0 and D2ΨH(x, f̄i)=D2ΨH(0, 0) +O

Ä
m

1/2
0 r
ä
.

We are now ready to compute

∫ ∑
i

(A) : (D)=

∫ ∑
i

(DxyΨH(0, 0) · ζ) : DxΨH(x, f̄i)+O
(
m0 r

2
∫
|ζ|
)(5.13)

=

∫ ∑
i

(DxyΨH(0, 0) · ζ : DxxΨH(0, 0) · x+O
(
m0 r

1+β2

∫
|ζ|
)
.

Obviously the first integral in (5.13) has the form
∫
xt · LAD · ζ, where the

matrix LAD is a quadratic function of D2ΨH(0, 0). Next, we estimate∫ ∑
i

(A) : (E) = O
(
m1+γ1

0 r1+γ1

∫
|ζ|
)
,(5.14)
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i

(B) : ((D) + (E)) = O
(
m1+γ1

0 r1+γ1

∫
|ζ|
)
,(5.15) ∫ ∑

i

(C) : (E) = O
(
m1+γ1

0 r2+γ1

∫
|Dζ|

)
.(5.16)

Finally we compute∫ ∑
i

(C) : (D) =

∫ ∑
i

((DxyΨH(0, 0) · x) ·Dxζ) : DxΨH(x, f̄i)

+O
(
m0 r

2+β2

∫
|Dζ|

)
=

∫ ∑
i

(DxyΨH(0, 0) · x) ·Dxζ) : (DxxΨH(0, 0) · x)

+O
(
m0 r

2+β2

∫
|Dζ|

)
.

Integrating by parts the first integral in the last line we reach

(5.17)

∫ ∑
i

(C) : (D) =

∫
xt · LCD · ζ +O

(
m0 r

2+β2

∫
|Dζ|

)
,

where the matrix LCD is a quadratic function of D2ΨH(0, 0). Set L := LAD +

LCD. Since DΨH(0, 0) = 0, L is in fact a quadratic function of the tensor AΣ

at the point pH . In order to summarize all our estimates we introduce some

simpler notation. We define f = η ◦ f̄ , ` := `(L) and (recalling the set K of

(5.10)) the measure µ on B as

µ(E) := |E \K|+ ‖T‖((E \K)× Rn) for every Borel E ⊂ B.

Since ‖T −Gf‖(E×Rn) ≤ C0µ(E) for every Borel E ⊂ B, we can summarize

(5.4) and (5.11)–(5.17) into the following estimate:

∣∣∣∣ ∫ ÄDf : Dζ + xt · L · ζ
ä ∣∣∣∣ ≤ Cm0 r

1+β2

∫ Ä
r|Dζ(x)|+ |ζ(x)|

ä
dx

(5.18)

+ C

∫ Ä
r|Dζ(x)|+ |ζ(x)|

äÄ
|Df(x)|3dx+ dµ(x)

ä
.

From (5.5) and (5.7) we infer that

(5.19)

∫
|Df |3 ≤ CrmLip(f)E ≤ Cm1+γ1

0 rm+2−2δ2+γ1 .
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Next, observe that

µ(B) = |B \K|+ ‖T‖((B \K)× π⊥)

≤ |B \K|+ |‖T‖(C32rL(pL, π))−M(Gf )|+ ‖Gf‖((B \K)× π⊥)

≤ C0|B \K|(1 + Lip(f))

+

∣∣∣∣‖T‖(C32rL(pL, π))− |B| − 1

2

∫
B
|Df |2

∣∣∣∣+ C0

∫
B
|Df |3,

where in the last line we have used the Taylor expansion of the mass of Gf ;

cf. [6, Cor. 3.3]. Next, using (5.8), (5.9) and (5.19) we conclude

(5.20) µ(B) ≤ Cm0 r
m+2−2δ2+γ1 .

Therefore (5.1) follows from (5.18) and our choice of the parameters in As-

sumption 1.8. (Recall, in particular, γ1 − 2δ2 > β2.)

We next come to (5.2). Fix a smooth radial test function ς ∈ Cc(B`) with

` = `(L), and set ζ(·) := ς(z − ·)ei, where em+1, . . . , em+n̄ is an orthonormal

base of κ. Observe that, if in addition we assume
∫
ς = 0, then

∫
xiς(z− x)dx

= 0. Under these assumptions,
∫
xt · L · ς(z − x)dx = 0, and from (5.18) we

get for z ∈ B7rL(pL, πL),∣∣∣∣∣
∫
B`(z)
〈Df i(x), Dς(z − x)〉 dx

∣∣∣∣∣ ≤ C
∫
B`(z)

|Df |3(x)(|Dς|+ |ς|)(z − x) dx

+ C

∫
B`(z)

(r|Dς|+ |ς|)(z − x) dµ(x) + Cm0r
1+β2

∫
B`

(r|Dς|+ |ς|).

Recall the standard estimate on convolutions ‖a ∗ µ‖L1 ≤ ‖a‖L1µ(B), and

integrate (5.21) in z ∈ B7rL(pL, πL). By (5.19) and (5.20) (and recalling that

γ1 − 2δ2 ≥ β2), we reach

‖Df i ∗Dς‖L1(B7rL
(pL,πL))

≤ Cm0 r
m+1+β2

∫
B`

(r|Dς|+ |ς|) ∀ς ∈ C∞c (B`) with

∫
B`

ς = 0.
(5.21)

By a simple density argument, (5.21) holds also when ς ∈ W 1,1 is supported

in B` and
∫
ς = 0. Next, observe that

h̄(x)− f(x) =

∫
%`(y)(f(x− y)− f(x)) dy

=

∫
%`(y)

∫ 1

0
Df(x− σy) · (−y) dσ dy

=

∫ ∫ 1

0
%`
(w
σ

)
Df(x− w) · −w

σm+1
dw

=

∫
Df(x− w) · (−w)

∫ 1

0
%`
(w
σ

)
σ−m−1 dσ︸ ︷︷ ︸

=:Υ(w)

dw.

(5.22)
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Note that Υ is smooth on Rm \ {0} and unbounded in a neighborhood of 0.

However,

(5.23)

‖Υ‖L1 =

∫ ∫ 1

0
|w|

∣∣∣% ( w`σ )∣∣∣ `−mσ−m−1 dσ dw = `

∫ ∫ 1

0
|u||%(u)| dσ du ≤ Cr.

Observe also that Υ(w) = wψ(|w|). Therefore Υ is a gradient. Since Υ(w)

vanishes outside a compact set, integrating along rays from∞, we can compute

a potential for it:

(5.24)

ς(w) =

∫ ∞
|w|

τ

∫ 1

0
%`
(
wτ
|w|σ

)
σ−m−1 dσ dτ = |w|2

∫ ∞
1

t

∫ 1

0
%`
(wt
σ

)
σ−m−1 dσ dt.

Then, ς is a W 1,1 function, supported in B`(0),
∫
ς = 0 by Assumption 1.12.

Summarizing, h̄i − f i = (Df i) ∗ Dς for a convolution kernel for which (5.21)

holds. Since

‖ς‖L1 ≤
∫ ∫ ∞

1

∫ 1

0
t|w|2

∣∣∣% (wt`σ )∣∣∣ `−mσ−m−1dσ dt dw

= `2
∫ ∞

1

∫ 1

0

∫
|u|2|ρ(u)|duσdσ t−m−1dt ≤ Cr2,

(5.25)

we then conclude from (5.21) that∫
B7rL

(pL,πL)
|h̄− f | ≤ Cm0 r

m+1+β2

∫
B`

(r|Dς|+ |ς|) ≤ Cm0 r
m+3+β2 . �

5.2. Ck estimates for hHL and gHL. Recall the tilted (H,L)-interpolating

function hHL and the interpolating function gHL of Definition 4.3.

Lemma 5.3. Assume that H and L are as in Proposition 5.2 and that

the hypotheses of Proposition 4.4 hold. Set B′ := B5rH (pH , πH) and B :=

B4rH (pH , π0). Then, for C = C(β2, δ2,M0, N0, Ce, Ch),

‖hHL − hH‖Cj(B′) + ‖gHL − gH‖Cj(B)

≤ Cm1/2
0 `(L)3+2κ−j ∀j ∈ {0, . . . , 3},

(5.26)

‖hHL − hH‖C3,κ(B′) + ‖gHL − gH‖C3,κ(B) ≤ Cm
1/2
0 `(L)κ.(5.27)

As a consequence, Proposition 4.4(i) and (iv) hold.

Proof. All the constants C will depend only upon the parameters β2, δ2,

M0, N0, Ce and Ch, unless otherwise specified.

Consider a triple of cubes H, J and L where H ∈ S j ∪W j and

(a) either L is an ancestor of H (possibly H itself) and J is father of L;

(b) or J is the father of H, and L ∈ S j ∪W j is adjacent to H.

In order to simplify the notation let π := πH and r := rL. By Proposi-

tion 4.1(i), up to taking the geometric constant in the first inequality of (1.15)

sufficiently large, we can assume that B[ := B6r(pL, π) ⊂ B] = B13r/2(pL, π) ⊂
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B̄ := B7rJ (pJ , π). Consider the π-approximations fHL and fHJ , respectively

in C8r(pL, π) and C8rJ (pJ , π), and introduce the corresponding maps

f̄L := pκ(η ◦ fHL) and f̄J := pκ(η ◦ fHJ),

h̄HL := f̄L ∗ %`(L) and h̄HJ = f̄J ∗ %`(J),

which are the tangential parts of the corresponding maps according to Defini-

tion 5.1.

If l is an affine function on Rm and ς a radial convolution kernel, then ς∗l =

(
∫
ς) l because l is an harmonic function. This means that

∫
〈(ζ ∗%), l〉 =

∫
〈ζ, l〉

for any test function ζ and any radial convolution kernel % with integral 1.

Similarly,
∫
〈(ζ ∗ ∂I%), l〉 =

∫
〈ζ, ∂I l〉 for any partial derivative ∂I of any order.

Now consider a ball B̂ concentric to B[ and contained in B] in such a way

that, if ζ ∈ C∞c (B̂), then ζ ∗ %`(L) and ζ ∗ %`(J) are both supported in B].

Set ξ := h̄HL − h̄HJ , and (assuming pπ(xH) is the origin of our system of

coordinates) compute∫
〈ζ,∆ξ〉 = −

∫
D(h̄HL − h̄HJ) : Dζ

=

∫
Df̄J : D(ζ ∗ %`(J))−

∫
Df̄L : D(ζ ∗ %`(L))

=

∫ Ä
Df̄J : D(ζ ∗ %`(J)) + xt · L · (ζ ∗ %`(J))

ä
−
∫ Ä

Df̄L : D(ζ ∗ %`(L)) + xt · L · (ζ ∗ %`(L))
ä
,

where the last line holds for any matrix L (with constant coefficients) because

x 7→ xt · L is a linear function. In particular, we can use the matrix of Propo-

sition 5.2 to achieve∫
〈ζ,∆ξ〉 ≤ Cm0 r

m+1+β2

(
r‖ζ ∗ %`(L)‖1 + r‖ζ ∗ %`(J)‖1

+ ‖ζ ∗ %`(J)‖0 + ‖ζ ∗ %`(L)‖0
)
,

where ‖ · ‖0 and ‖ · ‖1 denote the C0 and C1 norms respectively. Recalling the

inequality ‖ψ ∗ ζ‖0 ≤ ‖ψ‖∞‖ζ‖L1 and taking into account that `(L) and `(J)

are both comparable to r (up to a constant depending only on M0 and m), we

achieve
∫
〈ζ,∆ξ〉 ≤ Cm0 r

1+β2‖ζ‖L1 . Taking the supremum over all possible

test functions with ‖ζ‖L1 ≤ 1, we obviously conclude ‖∆ξ‖L∞(B̂) ≤ Cm0 r
1+β2 .

Observe that a similar estimate could be achieved for any partial derivative

Dkξ simply using the identity∫
D(Dk(a ∗ ς)) : Db = −

∫
Da : (Db ∗Dkς).



CENTER MANIFOLD 529

Summarizing, we conclude

(5.28) ‖∆Dk(h̄HL − h̄HJ)‖C0(B̂) ≤ ‖∆D
kξ‖∞ ≤ Cm0r

1+β2−k,

where the constant C depends upon all the parameters and on k ∈ N, but not

on ε2, m0, H, J or L. By [5, Th. 1.4] (cf. also the proof of Proposition 4.2), we

have osc(fHL) + osc(fHJ) ≤ Cm
1/2m
0 r and, setting E := E(T,C32rL(pL, πH))

and E′ := E(T,C32rJ (pJ , πH)),

Hm({fHL 6= fHJ} ∩ B̂) ≤ C [(E + A2r2)Eγ1

+ (E′ + A2r2)E′γ1 ] rm ≤ Cm1+γ1
0 rm+2+γ1/2.

Therefore, taking into account (5.2), we conclude that ‖h̄HL − h̄HJ‖L1(B̂)

≤ Cm0 r
m+3+β2 . Thus, we appeal to Lemma C.1 and use the latter esti-

mate together with (5.28) (in the case k = 0) to get ‖h̄HL − h̄HJ‖Ck(B′) ≤
Cm0r

3+β2−k for k = {0, 1} and for every concentric smaller ball B′ ⊂ B̂

(where the constant depends also on the ratio between the corresponding

radii). This implies ‖D(h̄HL − h̄HJ)‖L1(B′) ≤ Cm0r
m+2+β2 , and hence we

can again use Lemma C.1 (based on the case k = 1 of (5.28)) to conclude

‖h̄HL − h̄HJ‖C2(B′′) ≤ Cm0r
1+β2 . Iterating another two times we can then

conclude ‖h̄HL− h̄HJ‖Ck(B]) ≤ Cm0r
3+β2−k for k ∈ {0, 1, 2, 3, 4}. By interpo-

lation, since κ ≤ β2/4, ‖h̄HL − h̄HJ‖C3,2κ(B]) ≤ Cm0 `(L)2κ.

Observe now that, since we have that hHL = (h̄HL,Ψ(x, h̄HL)) and hHJ =

(h̄HJ ,ΨH(x, h̄HJ)), we deduce the corresponding estimates for hHL and hHJ
from the chain rule, namely,

‖hHL − hHJ‖Cj(B]) ≤ Cm0`(L)3+2κ−j ∀j ∈ {0, . . . , 3}

‖hHL − hHJ‖C3,2κ(B]) ≤ Cm0 `(L)2κ.
(5.29)

We next want to prove the first estimate of (5.26) and the first estimate of

(5.27). We distinguish two cases. In the first, L is adjacent to H and has the

same side-length. Then let J be the father of H. From the argument above

we then know how to bound hH − hHJ = hHH − hHJ and hHJ − hHL. Both

estimates then follow from the triangle inequality. In the second case L is an

ancestor of H. Then let H =: Lj ⊂ Lj−1 ⊂ · · · ⊂ L = Li. We then know how

to bound hHLl−hHLl−1
on the ball Bl := B13/2rLl

(pLl , π). On the other hand,

if the constant in the first inequality of (1.15) is large enough (independently

of l), then B′ ⊂ Bl. Summing the corresponding estimates, we get

‖hH − hHL‖C3,2κ(B′) ≤ C
j−1∑
l=i

‖hHLl − hHLl+1
‖C3,2κ(Bl)

≤ Cm0`(L)2κ
j−i−1∑
l=0

2−2κl ≤ Cm0`
2κ,

(5.30)
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with a constant C independent of i and j. Obviously a similar estimate holds

for ‖hH − hHL‖Cj(B′).
We still need to prove the second estimate of (5.26) and the second es-

timate of (5.27). If H is a fixed cube in the Whitney decomposition and

LN0 ∈ S N0 its biggest ancestor, we then have ‖hH − hHLN0
‖C3,2κ(B′) ≤ Cm0.

On the other hand,

‖DfHLN0
‖2L2(BN0 ) ≤ Dir(fHLN0

) ≤ CE(T,C32rLN0
(pLN0

, πH))

≤ Cm0 + C|πH − π0|2 ≤ Cm0.

Thus, by standard convolution estimates, ‖Dh̄HLN0
‖Ck(BN0 ) ≤ Cm

1/2
0 (where

the constant C depends on k ∈ N and on he various parameters). Using (5.30)

we then get

‖Dh̄H‖C2,2κ(B′) ≤ ‖Dh̄H −Dh̄HLN0
‖C2,2κ(B′) + ‖Dh̄HLN0

‖C2,2κ(BN0 ) ≤ Cm
1/2
0 .

By the chain rule and the regularity of Ψ we then conclude the general bound

‖DhH‖C3,2κ(B′) ≤ Cm
1/2
0 . This implies the existence of a constant ξ such

that ‖hH − ξ‖C3,2κ(B′) ≤ Cm
1/2
0 . Applying Lemma B.1 we achieve the bound

‖gH − ζ‖C3,2κ(B) ≤ Cm
1/2
0 for some other constant ζ. With a similar argument

using the bound ‖h̄HLN0
‖C0(BN0 ) ≤ Cm

1/2m
0 , we achieve ‖h̄H‖C0(B′) ≤ Cm

1/2m
0 .

Hence again by Lemma B.1, ‖gH‖C0(B) ≤ Cm
1/2m
0 . This obviously shows

Proposition 4.4(i).

Next, observe that we have, by the very same arguments, ‖gHL−ζ‖C3,2κ(B)

≤ Cm
1/2
0 , thus concluding that ‖gHL − gH‖C3,2κ(B) ≤ Cm

1/2
0 . On the other

hand, it also follows from the same arguments above that ‖hHL−hH‖L1(B′) ≤
Cm0`

m+3+β2 ≤ Cm0`
m+3+4κ. Applying Lemma B.1(b) we then conclude that

‖gHL − gH‖L1(B) ≤ Cm0`
m+3+4κ. We can now apply Lemma C.2 to conclude

that ‖Di(gHL − gH)‖C0(B) ≤ Cm
1/2
0 `3−i+4κ for every i ∈ {0, 1, 2, 3}, reaching

the second estimate of (5.26). Interpolating between the latter estimates and

‖gHL− gH‖C3,2κ(B) ≤ Cm
1/2
0 , we reach as well the second conclusion of (5.27).

Coming to (iv) in Proposition 4.4, the estimate on gH − yH is a straight-

forward consequence of the height bound, [5, Th. 1.4] and Lemma B.1 (applied

to hH). Next, observe that

‖DhH‖2L2(B′) ≤ C(1 + Lip(ΨH))‖Dh̄H‖2L2(B′) + C‖DxΨH(x, h̄)‖2L2(B′)

and

‖Dh̄H‖2L2(B′) ≤ C‖D(η ◦ fH)‖2L2(B′) ≤ CDir(fH , B
′)) ≤ Cm0`(H)m+2−2δ2 .
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On the other hand, recall that the plane πH is contained in the plane TpHΣ

and thus DxΨH(pH , 0) = 0. Since ‖D2ΨH‖0 ≤ m
1/2
0 , we obviously conclude

that ‖DxΨH(x, h̄)‖2L2 ≤ Cm0`
m+2. Therefore ‖DhH‖2L2(B′) ≤ Cm0`

m+2−2δ2 .

Thus, there is at least one point q ∈ Gr(hH |B′) such that |TqGhH − πH |
≤ Cm1/2

0 `(H)1−δ2 . Since ‖D2hH‖0 ≤ Cm
1/2
0 , we then conclude |Tq′GhH − πH |

≤ Cm
1/2
0 `(H)1−δ2 indeed holds for any point q′ ∈ Gr(hH |B′). Since Gr(gH |B)

is a subset of Gr(hH |B′) (with the same orientation!), the second inequality of

Proposition 4.4(iv) follows. �

5.3. Tilted L1 estimate. In order to achieve Proposition 4.4(ii) and (iii),

we need to compare tilted interpolating functions coming from different coor-

dinates. To this aim, we set the following terminology.

Definition 5.4 (Distant relation). Four cubes H,J, L,M make a distant

relation between H and L if J,M ∈ S j ∪W j have nonempty intersection, H

is a descendant of J (or J itself) and L a descendant of M (or M itself).

Lemma 5.5 (Tilted L1 estimate). Assume that the hypotheses of Propo-

sition 4.4 hold and ε2 is sufficiently small. Let H,J, L and M be a distant

relation between H and L, and let hHJ , hLM be the maps given in Defini-

tion 4.3. Then there is a map ĥLM : B4rJ (pJ , πH) → π⊥H such that GĥLM
=

GhLM C4rJ (pJ , πH) and, for C = C(β2, δ2,M0, N0, Ce, Ch),

(5.31) ‖hHJ − ĥLM‖L1(B2rJ
(pJ ,πH)) ≤ Cm0 `(J)m+3+β2/2.

Proof. As in the previous proofs we follow the convention that C0 de-

notes geometric constants whereas C denotes constants which depend upon

β2, δ2,M0, N0, Ce and Ch. First observe that Lemma B.1 can be applied be-

cause, by Proposition 4.1,

|πH − πL| ≤ |πH − πJ |+ |πJ − πM |+ |πM − πL| ≤ Cm
1/2
0 `(J)1−δ2 .

Set π := πH , and let κ be its orthogonal complement in TpHΣ, and similarly

π̄ = πL and κ̄ its orthogonal in TpLΣ. After a translation we also assume

pJ = 0 and write r = rJ = rM , ` = `(J) = `(M) and E := E(T,C32r(0, π)),

Ē := E(T,C32r(pM , π̄)). Recall that max{E, Ē} ≤ Cm0 `
2−2δ2 . We also fix

the maps ΨH : TpHΣ → TpHΣ⊥ and ΨL : TpLΣ → TpLΣ⊥ whose graphs

coincide with the submanifold Σ. Observe that |π− π̄|+ |κ− κ̄| ≤ Cm1/2
0 `1−δ2 ,

‖DΨH‖C2,ε0 + ‖DΨL‖C2,ε0 ≤ Cm
1/2
0 and

`−1
Ä
‖ΨH‖C0(B8r) + ‖ΨL‖C0(B8r)

ä
+‖DΨH‖C0(B8r) +‖DΨL‖C0(B8r) ≤ Cm

1/2
0 `.

Consider the map f̂LM : B4r(0, π)→ AQ(π⊥) such that

Gf̂LM
= GfLM C4r(0, π),
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which exists by [6, Prop. 5.2]. Recalling the estimates therein and those of [5,

Th. 1.4],

Lip(fHJ) + Lip(f̂LM ) ≤ Cmγ1
0 `

γ1 and |fHJ |+ |f̂LM | ≤ Cm
1/2m
0 `1+β2 ,(5.32)

Dir(fHJ) + Dir(f̂LM ) ≤ Cm0 `
m+2−2δ2 .(5.33)

Next consider the projections A and Â onto π of the Borel sets Gr(fHJ)\spt(T )

and Gr(f̂LM ) \ spt(T ). We know from [5, Th. 1.4] that

|A ∪ Â| ≤ C
î
‖GfHJ − T‖(C32(0, π)) + ‖Gf̂LM

− T‖(C32(pM , π̄))
ó

≤ Cm1+γ1
0 `m+2+γ1 .

(5.34)

Recall that

hHJ = (pκ((η ◦ fHJ) ∗ %`),ΨH(x,pκ((η ◦ fHJ) ∗ %`))),
hLM = (pκ̄((η ◦ fLM ) ∗ %`),ΨL(x,pκ̄((η ◦ fLM ) ∗ %`))),

and define in addition the maps

fHJ = (pκ(η ◦ fHJ),ΨH(x,pκ(η ◦ fHJ))),

fLM = (pκ̄(η ◦ fLM ),ΨL(x,pκ̄(η ◦ fLM ))).

Recall that ĥLM : B4r(0, π) → π⊥ satisfies GĥLM
= GhLM C4r(0, π), and

let f̂LM be such that Gf̂LM
= GfLM C4r(0, π). We use Proposition 5.2, the

Lipschitz regularity of ΨH and Lemma B.1 to conclude

‖ĥLM − f̂LM‖L1 ≤ C‖hLM − fLM‖L1 ≤ Cm0 r
m+3+β2 .

Likewise, ‖hHJ − fHJ‖L1 ≤ Cm0r
m+3+β2 . We therefore need to estimate

‖fHJ−f̂LM‖L1 . Next define the map gLM = (pκ(η◦f̂LM ),ΨH(x,pκ(η◦f̂LM ))),

and observe that ‖gLM − fHJ‖L1 ≤ C‖η ◦ f̂LM − η ◦ fHJ‖L1 . On the other

hand, since the two maps f̂LM and fHJ differ only on A ∪ Ā, we can estimate

‖η◦ f̂LM−η◦fHJ‖L1 ≤ C|A∪Ā|(‖fLM‖∞+‖f̂HJ‖∞) ≤ Cm1+1/2m
0 `3+m+γ1+β2 .

It thus suffices to estimate ‖gLM − f̂LM‖L1 . This estimate is independent of

the rest and it is an easy consequence of (5.35) in Lemma 5.6 below. �

Lemma 5.6. Fix m,n, l and Q. There are geometric constants c0, C0 with

the following property. Consider two triples of planes (π,κ, $) and (π̄, κ̄, $̄),

where

• π and π̄ are m-dimensional ;

• κ and κ̄ are n̄-dimensional and orthogonal, respectively, to π and π̄;

• $ and $̄ l-dimensional and orthogonal, respectively, to π × κ and π̄ × κ̄.

Assume An := |π− π̄|+ |κ− κ̄| ≤ c0, and let Ψ : π×κ → $, Ψ̄ : π̄× κ̄ → $̄ be

two maps whose graphs coincide and such that |Ψ̄(0)| ≤ c0r and ‖DΨ̄‖C0 ≤ c0.

Let u : B8r(0, π̄) → AQ(κ̄) be a map with Lip(u) ≤ c0 and ‖u‖C0 ≤ c0r, and
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set f(x) =
∑
iJ(ui(x), Ψ̄(x, ui(x)))K and f(x) = (η ◦u(x), Ψ̄(x,η ◦u(x))). Then

there are

• a map û : B4r(0, π)→ AQ(κ) such that the map

f̂(x) :=
∑
i

J(ûi(x),Ψ(x, ûi(x)))K

satisfies Gf̂ = Gf C4r(0, π);

• and a map f̂ : B4r(0, π)→ κ ×$ such that Gf̂ = Gf C4r(0, π).

Finally, if g(x) := (η ◦ û(x),Ψ(x,η ◦ û(x))), then

‖f̂ − g‖L1 ≤ C0 (‖f‖C0 + rAn)
Ä
Dir(f) + rm

Ä
‖DΨ̄‖2C0 + An2

ää
.(5.35)

The proof of the lemma is quite long, and we defer it to Appendix D.

5.4. Proof of Proposition 4.4. We are finally ready to complete the proof of

Proposition 4.4. Recall that (i) and (iv) have already been shown in Lemma 5.3.

In order to show (ii) fix two cubes H,L ∈ Pj with nonempty intersection. If

`(H) = `(L), then we can apply Lemma 5.5 to conclude

(5.36)

‖hHH − ĥLL‖L1(B2rH
(pH ,πH)) ≤ Cm0 `(H)m+3+β2/2 ≤ Cm0 `(H)m+3+2κ.

If `(H) = 1
2`(L), then let J be the father of H. Obviously, J ∩ L 6= ∅. We

can therefore apply Lemma 5.5 above to infer ‖hHJ − ĥLL‖L1(B2rJ
(pJ ,πH) ≤

Cm0 `(J)m+3+β2/2. On the other hand, by Lemma 5.3,

‖hHH − hHJ‖L1(B2rH
(pH ,πH)) ≤ Crm‖hH − hHJ‖0 ≤ Cm0 `(J)m+3+2κ.

Thus we conclude (5.36) as well.

Note that GgL CrH (xH , π0) = GĥLL
CrH (xH , π0) and that the same

property holds with gH and hHH . We can thus appeal to Lemma B.1 to

conclude

(5.37) ‖gH − gL‖L1(BrH (pH ,π0)) ≤ Cm0 `(H)m+3+2κ.

However, recall also that ‖D3(gH − gL)‖Cκ(BrH (pH ,π0)) ≤ Cm
1/2
0 . We can then

apply Lemma C.2 to conclude (ii).

Now, if L ∈ W j and i ≥ j, consider the subset P i(L) of all cubes in P i

which intersect L. If L′ is the cube concentric to L with `(L′) = 9
8`(L), we

then have by definition of ϕj that

(5.38)

‖ϕi − gL‖L1(L′) ≤ C
∑

H∈Pi(L)

‖gH − gL‖L1(BrL (pL,π0)) ≤ Cm0 `(H)m+3+2κ,

which is the claim of (v).
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As for (iii), observe first that the argument above applies also when L is the

father of H. Then iterating the corresponding estimates, it is easy to see that

(5.39) |D3gH(xH)−D3gJ(xJ)| ≤ Cm1/2
0 `(J)κ for any ancestor J of H.

Now fix any pair H,L ∈ Pj . Let Hi, Li be the “first ancestors” of H and L

which are adjacent, i.e., among all pairs H ′, L′ of ancestors of H and L with the

same side-length and nonempty intersection, we assume that the side-length `

of Hi, Li is the smallest possible. We can therefore use the estimates obtained

so far to conclude

|D3gH(xH)−D3gL(xL)| ≤ |D3gH(xH)−D3gHi(xHi)|
+ |D3gHi(xHi)−D3gLi(xLi)|

+ |D3gLi(xLi)−D3gL(xL)| ≤ Cm1/2
0 `κ.

A simple geometric consideration shows that |xL − xH | ≥ c0`, where c0 is a

dimensional constant, thus completing the proof.

6. Existence and estimates for the M-normal approximation

In this section we continue using the convention that C denotes constants

which depend upon β2, δ2,M0, N0, Ce and Ch, whereas C0 denotes geometric

constants.

6.1. Proof of Corollary 2.2. The first two statements of (i) follow imme-

diately from Theorem 1.17(i) and Proposition 4.1(v). Coming to the third

claim of (i), we extend the function ϕ to the entire plane π0 by increasing its

C3,κ norm by a constant geometric factor. Let ϕt(x) := tϕ(x) for t ∈ [0, 1],

Mt := Gr(ϕt|]−4,4[m), and set

Ut := {x+ y : x ∈Mt, y ⊥ TxMt, |y| < 1}.

For ε2 sufficiently small, the orthogonal projection pt : Ut → Mt is a well-

defined C2,κ map for every t ∈ [0, 1], which depends smoothly on t. It is

also easy to see that ∂T Ut = 0. Thus, (pt)](T Ut) = Q(t) JMtK for some

integer Q(t). On the other hand, these currents depend continuously on t,

and therefore Q(t) must be a constant. Since M0 =] − 4, 4[m×{0} ⊂ π0 and

p0 = pπ0 , we conclude Q(0) = Q.

With regard to (ii), consider q ∈ L ∈ W , set p := Φ(q) and π := TpM,

whereas πL is as in Definition 1.16. Let J be the cube concentric to L and

with side-length 17
16`(L). By the definition of ϕ, Theorem 1.17(ii) and Propo-

sition 4.4, we have that, denoting by ϕ̄ and ḡL the first n̄ components of the

corresponding maps,

‖ϕ̄− ḡL‖C0(J) ≤
∑

H∈W ,H∩L6=∅
‖gL − gH‖C0(J) ≤ Cm

1/2
0 `(L)3+κ.
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So, since ϕ = (ϕ̄,Ψ(x, ϕ̄)) and gH = (ḡH ,Ψ(x, ḡH)), we conclude ‖gL−ϕ‖C0(J)

≤ Cm1/2
0 `(L)3+κ. On the other hand, the graph of gL coincides with the graph

of the tilted interpolating function hL. Consider in C := C8rL(pL, πL) the

πL-approximation fL used in the construction algorithm, and recall that by [5,

Th. 1.4],

osc (fL) ≤ C0

Ä
h(T,C32rL(pL, πL), πL) + ((E(T,C32rL(pL, πL))

1/2 + rLA)rL
ä

≤ Cm1/2m
0 `(L)1+β2 .

Recall that pL = (zL, wL) ∈ πL × π⊥L belongs to spt(T ), so we easily con-

clude that ‖η ◦ fL − wL‖C0 ≤ Cm
1/2m
0 `(L)1+β2 . This implies ‖hL − wL‖C0 ≤

Cm
1/2m
0 `(L)1+β2 . Putting all these estimates together, we easily conclude

that, for any point p in spt(T ) ∩ C7rL(pL, πL) the distance to the graph of

hL is at most Cm
1/2m
0 `(L)1+β2 . This shows the claim if we can prove that

spt(〈T,p, p) ⊂ BrL(p) ⊂ C7rL(pL, πL), for which we argue by contradiction.

Assuming the opposite, there is a p′ ∈ spt(〈T,p, p) and an ancestor J with

largest sidelength among those for which |p′ − p| ≥ rJ . Let π be the tangent

to M at p, and observe that we have the estimates |π − πJ | ≤ Cm
1/2
0 and

|π − π0| ≤ Cm
1/2
0 . If J were an element of S N0 , the height bound (1.11)

would imply |p′ − p| ≤ Cm
1/2m
0 . If J 6∈ S N0 and we let H be the father of

J , we then conclude that q ∈ BH , and thus we have |p′ − p| ≤ Ch(T,BH) ≤
Cm

1/2m
0 `(H)1+β2 . In both cases this would be incompatible with |p′− p| ≥ rJ ,

provided ε2 ≤ c(β2, δ2,M0, N0, Ce, Ch).

Finally, we show (iii). Fix a point p ∈ Γ. By construction, there is an

infinite chain LN0 ⊃ LN0+1 ⊃ · · · ⊃ Lj ⊃ · · · of cubes Lj ∈ S j such that {p} =⋂
j Lj . Set πj := πLj . From Proposition 4.1 we infer that the planes πj converge

to a plane π with a rate |πj − π| ≤ Cm
1/2
0 2−j(1−δ2). Moreover, the rescaled

currents (ιpLj ,2
−j )]T (where the map ιq,r is given by ιq,r(z) = z−q

r ) converge

to Q JπK. Since |Φ(p)− pLj | ≤ C
√
m 2−j for some constant C independent of

j, we easily conclude that Θ(T,Φ(p)) = Q and Q JπK is the unique tangent

cone to T at Φ(p). We next show that p−1(Φ(p)) ∩ spt(T ) = {Φ(p)}. Indeed,

assume there is q 6= Φ(p) which belongs to spt(T ) and such that p(q) = Φ(p).

Let j be such that 2−j−1 ≤ |Φ(p)− q| ≤ 2−j . Provided ε2 is sufficiently small,

Proposition 4.1(v) guarantees that j ≥ N0. Consider the cube Lj in the chain

above, and recall that h(T,C32rLj
(pLj , πj)) ≤ Cm

1/2m
0 2−j(1+β2). Hence,

2−j−1 ≤ |q −Φ(p)| = |pπ⊥(q −Φ(p))|
≤ C0|q −Φ(p)||π − πj |+ h(T,C32rLj

(pLj , πj))

≤ Cm1/2
0 2−j(1−δ2)2−j + Cm

1/2m
0 2−j(1+β2) ≤ Cε1/2m

2 2−j ,
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which, for an appropriate choice of ε2 (depending only on the various other

parameters β2, δ2, Ce, Ch,M0, N0) is a contradiction.

6.2. Construction of the M-normal approximation and first estimates.

We set F (p) = Q JpK for p ∈ Φ(Γ). For every L ∈ W j , consider the πL-

approximating function fL : C8rL(pL, πL) → AQ(π⊥L ) of Definition 1.13 and

KL ⊂ B8rL(pL, πL) the projection on πL of spt(T ) ∩Gr(fL). In particular, we

have GfL|KL
= T (KL × π⊥L ). We then denote by D(L) the portions of the

supports of T and Gr(fL) which differ:

D(L) := (spt(T ) ∪Gr(fL)) ∩
î
(B8rL(pL, πL) \KL)× π⊥L

ó
.

Observe that, by [5, Th. 1.4] and Assumption 1.8, we have

(6.1)

Hm(D(L)) + ‖T‖(D(L)) ≤ C0E
γ1(E + `(L)2A2)`(L)m ≤ Cm1+γ2

0 `(L)m+2+γ2 ,

where E = E(T,C32rL(pL, πL)) (cf. (5.20)). Let L be the Whitney region in

Definition 1.18, and set L′ := Φ(J), where J is the cube concentric to L with

`(J) = 9
8`(L). Observe that our choice of the constants is done in such a way

that

L ∩H = ∅ ⇐⇒ L′ ∩H′ = ∅ ∀H,L ∈ W ,(6.2)

Φ(Γ) ∩ L′ = ∅ ∀L ∈ W .(6.3)

We then apply [6, Th. 5.1] to obtain maps FL : L′ → AQ(U), NL : L′ →
AQ(Rm+n) with the following properties:

• FL(p) =
∑
i Jp+ (NL)i(p)K,

• (NL)i(p) ⊥ TpM for every p ∈ L′
• and GfL (p−1(L′)) = TFL (p−1(L′)).

For each L, consider the set W (L) of elements in W which have a nonempty

intersection with L. We then define the set K in the following way:

(6.4) K =M\
( ⋃
L∈W

(
L′ ∩

⋃
M∈W (L)

p(D(M))
))
.

In other words, K is obtained from M by removing in each L′ those points

x for which there is a neighboring cube M such that the slice of TFM at x

(relative to the projection p) does not coincide with the slice of T . Observe

that, by (6.3), K necessarily contains Φ(Γ). Moreover, recall that Lip(p) ≤ C,

that the cardinality W (L) is bounded by a geometric constant and that each

element of W (L) has side-length at most twice that of L. Thus (6.1) implies

(6.5) |L \ K| ≤ |L′ \ K| ≤
∑

M∈W (L)

∑
H∈W (M)

p(D(H)) ≤ Cm1+γ2
0 `(L)m+2+γ2 .

On Φ(Γ) we define F (p) = Q JpK. By (6.2), if J and L are such that J ′∩L′ 6= ∅,
then J ∈ W (L) and therefore FL = FJ on K∩(J ′∩L′). We can therefore define
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a unique map on K by simply setting F (p) = FL(p) if p ∈ K∩L′. Our resulting

map has the Lipschitz bound of (2.1) in each L∩K. Indeed, notice that, by the

C2 estimate on ϕ and Proposition 4.4(iv), M is given on CrL(pL, πL) as the

graph of a map ϕ′ : BrL(pL, πL) → π⊥L with ‖Dϕ′‖C0 ≤ Cm
1/2
0 `(H)1−δ1 and

‖D2ϕ′‖C0 ≤ Cm
1/2
0 . Hence, the Lipschitz constant of NL can be estimated

using [6, Th. 5.1] as

(6.6)

Lip(NL) ≤ C
Ä
‖D2ϕ′‖C0 ‖N‖C0 + ‖Dϕ′‖C0 + Lip(fL)

ä
≤ Cmγ2

0 `(L)γ2 .

Moreover, TF = T p−1(K), which implies two facts. First, by Corollary 2.2(ii)

we also have that N(p) :=
∑
i JFi(p)− pK enjoys the bound ‖N |L∩K‖C0 ≤

Cm
1/2m
0 `(L)1+β2 . Secondly,

(6.7) ‖T‖(p−1(L\K)) ≤
∑

M∈W (L)

∑
H∈W (M)

‖T‖(D(H)) ≤ Cm1+γ2
0 `(L)m+2+γ2 .

Hence, F and N satisfy the bounds (2.1) on K. We next extend them to the

whole center manifold and conclude (2.2) from (6.7) and (6.5). The extension

is achieved in three steps:

• we first extend the map F to a map F̄ taking values in AQ(U);

• we then modify F̄ to achieve the form F̂ (x) =
∑
iJx+ N̂i(x)K with N̂i(x) ⊥

TxM for every x;

• we finally modify F̂ to reach the desired extension F (x) =
∑
i Jx+Ni(x)K,

with Ni(x) ⊥ TxM and x+Ni(x) ∈ Σ for every x.

First extension. We use on M the coordinates induced by its graphical

structure; i.e., we work with variables in flat domains. Note that the domain

parametrizing the Whitney region for L ∈ W is then the cube concentric to

L and with side-length 17
16`(L). The multivalued map N is extended to a

multivalued N̄ inductively to appropriate neighborhoods of the skeleta of the

Whitney decomposition. (A similar argument has been used in [4, §1.2.2].) The

extension of F will obviously be F̄ (x) =
∑
iJN̄i(x) + xK. The neighborhoods

of the skeleta are defined in this way:

(1) if p belongs to the 0-skeleton, we let L ∈ W be (one of) the smallest cubes

containing it and define Up := B`(L)/16(p);

(2) if σ = [p, q] ⊂ L is the edge of a cube and L ∈ W is (one of) the smallest

cube intersecting σ, we then define Uσ to be the neighborhood of size
1
4
`(L)
16 of σ minus the closure of the unions of the U r’s, where r runs in the

0-skeleton;

(3) we proceed inductively until the m − 1-skeleton: given a k-dimensional

facet σ and (one of) the smallest cube L ∈ W which intersects it, Uσ is

its neighborhood of size 4−k `(L)
16 minus the closure of the union of all U τ ’s,

where τ runs among all facets of dimension at most k − 1.
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Denote by Ū the closure of the union of all these neighborhoods, and let {Vi}
be the connected components of the complement. For each Vi, there is an

Li ∈ W such that Vi ⊂ Li. Moreover, Vi has distance c0`(L) from ∂Li, where

c0 is a geometric constant. It is also clear that if τ and σ are two distinct facets

of the same cube L with the same dimension, then the distance between any

pair of points x, y with x ∈ U τ and y ∈ Uσ is at least c0`(L). In Figure 1 the

various domains are shown in a piece of a 2-dimensional decomposition.

V1

V2

V6

Up, Uq

Uσ, Uτ

Figure 1. The sets Up, Uσ and Vi.

At a first step we extend N to a new map N̄ separately on each Up, where

p are the points in the 0-skeleton. Fix p ∈ L, and let St(p) be the union of

all cubes which contain p. Observe that the Lipschitz constant of N |K∩St(p)

is smaller than Cmγ2
0 `(L)γ2 and that |N | ≤ Cm

1/2m
0 `(L)1+β2 on St(p). We

can therefore extend the map N to Up at the price of slightly enlarging this

Lipschitz constant and this height bound, using [4, Th. 1.7]. The Up being

disjoint, the resulting map, for which we use the symbol N̄ , is well defined.

It is obvious that this map has the desired height bound in each Whitney

region. We therefore want to estimate its Lipschitz constant. Consider L ∈ W
and H concentric to L with side-length `(H) = 17

16`(L). Let x, y ∈ H. If

x, y ∈ K, then there is nothing to check. If y ∈ Up for some p and x 6∈ ⋃q U q,
then x ∈ St(p) and G(N̄(x), N̄(y)) ≤ Cmγ2

0 `(L)γ2 |x−y|. The same holds when

x, y ∈ Up. The remaining case is x ∈ Up and y ∈ U q with p 6= q. Observe

however that this would imply that p, q are both vertices of L. Given that

L \ K has much smaller measure than L, there is at least one point z ∈ L∩K.

It is then obvious that

G(N̄(x), N̄(y)) ≤ G(N̄(x), N̄(z)) + G(N̄(z), N̄(y)) ≤ Cmγ2
0 `(L)γ2`(L)
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and, since |x − y| ≥ c0`(L), the desired bound readily follows. Moreover,

observe that, if x is in the closure of some U q, then we can extend the map

continuously to it. By the properties of the Whitney decomposition it follows

that the union of the closures of the U q and of K is closed and thus, without

loss of generality, we can assume that the domain of this new N̄ is in fact

closed.

This procedure can now be iterated over all skeleta inductively on the

dimension k of the corresponding skeleton, up to k = m− 1. In the argument

above we simply replace points p with k-dimensional faces σ, defining St(σ) as

the union of the cubes which contain σ. In the final step we then extend over

the domains Vi’s. This time St(Vi) will be defined as the union of the cubes

which intersect the cube Li ⊃ Vi. The correct height and Lipschitz bounds

follow from the same arguments. Since the algorithm is applied m + 1 times,

the original constants have been enlarged by a geometric factor.

Second extension : orthogonality. For each x ∈ M, let p⊥(x, ·) : Rm+n →
Rm+n be the orthogonal projection on (TxM)⊥. Set N̂(x) =

∑
iJp⊥(x, N̄i(x))K.

Obviously |N̂(x)| ≤ |N̄(x)|, so the L∞ bound is trivial. We now want to show

the estimate on the Lipschitz constant. To this aim, fix two points p, q in

the same Whitney region associated to L and parametrize the corresponding

geodesic segment σ ⊂ M by arc-length γ : [0, d(p, q)] → σ, where d(p, q)

denotes the geodesic distance on M. Use [4, Prop. 1.2] to select Q Lipschitz

functions N ′i : σ → U such that N̄ |γ =
∑

JN ′iK and Lip(N ′i) ≤ Lip(N̄). Fix a

frame ν1, . . . , νn on the normal bundle ofM with the property that ‖Dνi‖C0 ≤
Cm

1/2m
0 (which is possible since M is the graph of a C3,κ function; cf. [6,

App. A]). We have N̂(γ(t)) =
∑
iJN̂i(t)K, where

N̂i(t) =
∑

[νj(γ(t)) ·N ′i(γ(t))] νj(t).

Hence we can estimate∣∣∣∣∣dN̂i

dt

∣∣∣∣∣ ≤ C0Lip(N ′i) + C0

∑
j

‖Dνj‖‖N ′i‖C0

≤ Cmγ2
0 `(L)γ2 + Cm

1/2m
0 `(L)1+β2 ≤ Cmγ2

0 `(L)γ2 .

Integrating this inequality we find

G(N̂(p), N̂(q)) ≤ C0

Q∑
i=1

|N̂i(d(p, q))− N̂i(0)| ≤ Cmγ2
0 `(L)γ2d(p, q).

Since d(p, q) is comparable to |p− q|, we achieve the desired Lipschitz bound.

Third extension and conclusion. For each x ∈ M ⊂ Σ, consider the or-

thogonal complement κx of TxM in TxΣ. Let T be the fiber bundle
⋃
x∈M κx,
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and observe that, by the regularity of bothM and Σ there is a global C2,κ triv-

ialization. (Argue as in [6, App. A].) It is then obvious that there is a C2,κ map

Ξ : T → Rm+n with the following property: for each (x, v), q := x+ Ξ(x, v) is

the only point in Σ which is orthogonal to TxM and such that pκx(q−x) = v.

We then set N(x) =
∑
iJΞ(x,pκx(N̂i(x)))K. Obviously, N(x) = N̂(x) for

x ∈ K, simply because in this case x+Ni(x) belongs to Σ.

In order to show the Lipschitz bound, denote the map Ξ(x,pκx(q)) by

Ω(x, q). Ω is a C2,κ map. Thus

(6.8) |Ω(x, q)− Ω(x, p)| ≤ C0|q − p|.

Moreover, since Ω(x, 0) = 0 for every x, we have DxΩ(x, 0) = 0. We therefore

conclude that |DxΩ(x, q)| ≤ C0|q| and hence that

(6.9) |Ω(x, q)− Ω(y, q)| ≤ C0|q||y − x|.

Thus, fix two points x, y ∈ L, and let us assume that G(N̂(x), N̂(y))2 =∑
i |N̂i(x) − N̂i(y)|2 (which can be achieved by a simple relabeling). We then

conclude

G(N(x), N(y))2 ≤ 2
∑
i

|Ω(x, N̂i(x))− Ω(x, N̂i(y))|2

+ 2
∑
i

|Ω(x, N̂i(y))− Ω(y, N̂i(y))|2

≤ C0G(N̂(x), N̂(y))2 + C
∑
i

|N̂i(y)|2|x− y|2

≤ Cm2γ2
0 `(L)2γ2 |x− y|2 + Cm

1/2m
0 `(L)1+β2 |x− y|2.

(6.10)

This proves the desired Lipschitz bound. Finally, using the fact that Ω(x, 0)=0,

we have |Ω(x, v)| ≤ C0|v|, and the L∞ bound readily follows.

6.3. Estimates (2.3) and (2.4). Consider the cylinder C := C8rL(pL, πL).

Denote by ~M the unit m-vector orienting TM and by ~τ the one orienting

TGhL = TGgL . Recalling that gL and ϕ coincide in a neighborhood of xL, we

have

sup
p∈M∩C

|~τ(xL, gL(xL))− ~M(p)| ≤ C‖D2ϕ‖C0 `(L) ≤ Cm1/2
0 `(L).

Since ‖D2hL‖ ≤ Cm
1/2
0 , we have |~τ(xL, gL(xL)) − ~τ(q)| ≤ Cm

1/2
0 `(L) for all

q ∈ M ∩C. Combining the last two inequalities with Proposition 4.4(iv) we

infer supC∩M | ~M− πL| ≤ Cm
1/2
0 `(L)1−δ2 . Thus, since p−1(L) ∩ spt(T ) ⊂ C,
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we can estimate∫
p−1(L)

|~TF (x)− ~M(p(x))|2d‖TF ‖(x)

≤
∫
p−1(L)

|~T (x)− ~M(p(x))|2d‖T‖(x) + Cm1+γ2
0 `(L)m+2+γ2

≤
∫
p−1(L)

|~T (x)− ~πL|2d‖T‖(x) + Cm0`(L)m+2−2δ2 .

(6.11)

In turn the integral in (6.11) is smaller than C`(L)mE(T,C, πL). By [6,

Prop. 3.4] we then conclude that∫
L
|DN |2 ≤ C0

∫
p−1(L)

|~TF (x)− ~M(p(x))|2d‖TF ‖(x) + C0‖AM‖2C0

∫
L
|N |2

+ C0Lip(N)2
∫
L
|DN |2

≤ Cm0 `(L)m+2−2δ2 + Cm0 `(L)m+2+2β2 + Cm2γ2
0

∫
L
|DN |2,

where we have used ‖AM‖C0 ≤ C ‖D2ϕ‖C0 ≤ Cm
1/2
0 . Thus (2.3) follows

provided ε2 is sufficiently small

We finally come to (2.4). First observe that, by (2.1) and (2.2),

(6.12)

∫
L\K
|η ◦N | ≤ Cm1/2m

0 `(L)1+β2 |L\K| ≤ Cm1+γ2+1/2m
0 `(L)m+3+β2+γ2 .

Now fix p ∈ K. Recalling that FL(x) =
∑
i Jp+ (NL)i(p)K is given by [6,

Th. 5.1] applied to the map fL, we can use [6, Th. 5.1(5.4)] to conclude that

|η ◦NL(p)| ≤ C |η ◦ fL(pπL(p))− p⊥πL(p)|+ C Lip(NL|L) |TpM− πL| |NL|(p)
≤ C|η ◦ fL(pπL(p))− p⊥πL(p)|

+ Cm
1/2+γ2

0 `(L)1+γ2−δ2
(
G(NL(p), Q Jη ◦NL(p)K)

+Q|η ◦NL|(p)
)
.

For ε2 sufficiently small (depending only on β2, γ2,M0, N0, Ce, Ch), we then

conclude that

|η ◦NL(p)| ≤ C |η ◦ fL(pπL(p))− pπ⊥L
(p)|

+ Cm
1/2+γ2

0 `(L)1+γ2−δ2G(NL(p), Q Jη ◦NL(p)K)

≤ C |η ◦ fL(pπL(p))− p⊥πL(p)|+ C am1+γ2
0 `(L)

(1+γ2−δ2)
2+γ2
1+γ2

+
C

a
G(NL(p), Q Jη ◦NL(p)K)2+γ2 .

(6.13)

Our choice of δ2 makes the exponent (1 + γ2 − δ2)2+γ2

1+γ2
larger than 2 + γ2/2.

Next let ϕ′ : πL → π⊥L be such that Gϕ′ = M. Applying Lemma B.1 we



542 CAMILLO DE LELLIS and EMANUELE SPADARO

conclude that∫
K∩V
|η ◦ fL(pπL(p))− pπ⊥L

(p))| ≤ C
∫
pπL (K∩V)

|η ◦ fL(x)− ϕ′(x)|

≤ C‖gL(x)−ϕ(x)‖C0(H)`(L)m,

where H is a cube concentric to L with side-length `(H) = 9
8`(L). From

Proposition 4.4(v) we get ‖ϕ−gL‖C0(H) ≤ Cm0`(L)m+3+β2/3, and (2.4) follows

integrating (6.13) over V ∩ K and using (6.12).

6.4. Proof of Corollary 2.2. Observe that N ≡ 0 over Φ(Γ) and thus the

second inequality in (2.5) follows easily from the second inequality of (2.1),

recalling that `(L) ≤ 1 for any cube L ∈ W . For the same reasons, from (2.3)

we conclude that∫
M′
|DN |2 ≤ Cm0

∑
L∈W

`(L)m+2−2δ2 ≤ Cm0

∑
L∈W

`(L)m ≤ Cm0.

Coming to the first inequality in (2.5) fix any two points p = Φ(x), q = Φ(y)

∈ M′. Observe that the length of the geodesic segment joining p and q is

comparable, up to constants, to |x−y|. If x, y ∈ Γ, then N(p) = N(q) = Q J0K
and so G(N(p), N(q)) = 0. If x ∈ Γ and y 6∈ Γ, then y belongs to some

L ∈ W and, by the properties of the Whitney decomposition, `(L) ≤ 1
2 |x −

y|. Thus, using the second inequality in (2.1) we conclude G(N(q), N(p)) =

G(N(q), Q J0K) ≤ ‖N |L‖C0 ≤ Cm
1/2m
0 `(L)1+β2 ≤ Cm

1/2m
0 |x − y|. Finally, if

x, y 6∈ Γ, we analyze two cases. If the geodesic segment [x, y] intersects Γ,

then we conclude the same inequality as above. Otherwise there are points

x = z0, z1, . . . , zN = y in [x, y] such that each segment [zi−1, zi] is contained in

some single Li ∈ W and
∑
i |zi − zi−1| = |x− y|. It then follows from the first

bound in (2.1) that

G(N(p), N(q)) ≤
∑
i

G(N(Φ(zi), N(Φ(zi−1)))

≤ Cmγ2
0

∑
i

|zi − zi−1| = Cmγ2
0 |x− y|.

Recalling that γ2≤ 1
2m , all the cases examined prove the first inequality in (2.5).

7. Separation and splitting before tilting

As in the previous sections, C0 will be used for geometric constants, C̄

for constants depending on β2, δ2,M0, N0 and Ce, whereas C will be used for

constants depending on all the latter parameters and also Ch.

7.1. Vertical separation. In this section we prove Proposition 3.1 and

Corollary 3.2.

Proof of Proposition 3.1. Let J be the father of L. By Proposition 4.1,

Theorem A.1 can be applied to the cylinder C := C36rJ (pJ , πJ). Moreover,
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|pJ − pL| ≤ 3
√
m`(J). Thus, if M0 is larger than a geometric constant, we

have BL ⊂ C34rJ (pJ , πJ). Denote by qL, qJ the projections pπ̂⊥L
and pπ⊥J

respectively. Since L ∈ Wh, there are two points p1, p2 ∈ spt(T )∩BL such that

|qL(p1−p2)| ≥ Chm
1/2m
0 `(L)1+β2 . On the other hand, recalling Proposition 4.1,

|πJ − π̂L| ≤ C̄m
1/2
0 `(L)1−δ2 , where C̄ depends upon β2, δ2,M0, N0, Ce but not

Ch. Thus,

|qJ(p1 − p2)| ≥ |qL(p1 − p2)| − C0|π̂L − πJ ||p1 − p2|

≥ Chm
1/2m
0 `(L)1+β2 − C̄m1/2

0 `(L)2−δ2 .

Hence, if ε2 is sufficiently small, we actually conclude

(7.1) |qJ(p1 − p2)| ≥ 15

16
Chm

1/2m
0 `(L)1+β2 .

Set E := E(T,C), and apply Theorem A.1 to C. The union of the correspond-

ing “stripes” Si contains the set spt(T ) ∩C36rJ (1−C0E
1/2m| logE|)(pJ , πJ)). We

can therefore assume that they contain spt(T ) ∩C34rJ (pJ , πJ). The width of

these stripes is bounded as follows:

sup
¶
|qJ(x− y)| : x, y ∈ Si

©
≤ C0E

1/2mrJ

≤ C0C
1/2m
e M0m

1/2m
0 `(L)1+(2−2δ2)/2m.

So, if C] is chosen large enough (depending only upon M0 m, n and Q), we

actually conclude that p1 and p2 must belong to two different stripes, say S1

and S2. By Theorem A.1(iii) we conclude that all points in C34rJ (pJ , πJ) have

density Θ strictly smaller than Q − 1
2 , thereby implying (S1). Moreover, by

choosing C] appropriately, we achieve that

(7.2) |qJ(x− y)| ≥ 7

8
Chm

1/2m
0 `(L)1+β2 ∀x ∈ S1, y ∈ S2.

Assume next there is H ∈ W with `(H) ≤ 1
2`(L) and H ∩ L 6= ∅. From our

construction it follows that `(H) = 1
2`(L), BH ⊂ C34rJ (pJ , πJ) and |πH−πJ | ≤

C̄m
1/2
0 `(H)1−δ2 (see again Proposition 4.1). Arguing as above (and possibly

choosing ε2 smaller, but only depending upon β2, δ2,M0, N0, Ce and Ch) we

then conclude

(7.3)

|pπ⊥H (x− y)| ≥ 3

4
Chm

1/2m
0 `(L)1+β2 ≥ 3

2
Chm

1/2m
0 `(H)1+β2 ∀x ∈ S1, y ∈ S2.

Now, recalling Proposition 4.1, if ε2 is sufficiently small, C32rH (pH , πH) ∩
spt(T ) ⊂ BH . Moreover, by Theorem A.1(ii),

(pπJ )](T (Si ∩C32rH (pH , πJ))) = Qi JB32rH (pH , πJ)K for i = 1, 2, Qi ≥ 1.
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A simple argument already used several other times allows us to conclude that

indeed

(pπH )](T (Si∩C32rH (pH , πH))) = Qi JB32rH (pH , πH)K for i = 1, 2, Qi ≥ 1.

Thus, BH must necessarily contain two points x, y with

|pπ⊥H (x− y)| ≥ 3

2
Chm

1/2m
0 `(H)1+β2 .

Given that |π̂H − πH | ≤ C̄m
1/2
0 `(H)1−δ2 , we conclude (again imposing that ε2

is sufficiently small) that |pπ⊥
Ĥ

(x− y)| ≥ 5
4Chm

1/2m
0 `(H)1+β2 , i.e., the cube H

satisfies the stopping condition (HT), which has “priority over the condition

(NN),” and thus it cannot belong to Wn. This shows (S2).

Coming to (S3), set Ω := Φ(B2
√
m`(L)(xL, π0) and observe that

p](T (Ω ∩ Si)) = Qi JΩK .

Thus, for each p ∈ K ∩ Ω, the support of p + N(p) must contain at least one

point p+N1(p) ∈ S1 and at least one point p+N2(p) ∈ S2. Now, by (7.2)

(7.4) |N1(p)−N2(p)| ≥ 7

8
Chm

1/2m
0 `(L)1+β2 − C0`(L) |TpM− πJ |.

Recalling, however, Proposition 4.4 and that M and Gr(gJ) coincide on a

nonempty open set, we easily conclude that |TpM−πJ | ≤ Cm
1/2
0 `(L)1−δ2 and,

via (7.4),

G
Ä
N(p), Q Jη ◦N(p)K

ä
≥ 1

2
|N1(p)−N2(p)| ≥ 3

8
Chm

1/2m
0 `(L)1+β2 .

Next observe that, by the property of the Whitney decomposition, any cube

touching B2
√
m`(L)(xL, π) has sidelength at most 4`(L). Thus

|Ω \ K| ≤ Cm1+γ2
0 `(L)m+2+γ2 ,

and for every point p ∈ Ω, there exists q ∈ K ∩ Ω which has geodesic distance

to p at most Cm
1/m+γ2/m
0 `(L)1+2/m+γ2/m. Given the Lipschitz bound for N and

the choice β2 ≤ 1
2m , we then easily conclude (S3):

G(N(q), Q Jη ◦N(q)K) ≥ 3

8
Chm

1/2m
0 `(L)1+β2 − Cm1/m

0 `(L)1+2/m

≥ 1

4
Chm

1/2m
0 `(L)1+β2 ,

where again we need ε2 < c(β2, δ2,M0, N0, Ce, Ch) for a sufficiently small c. �

Proof of Corollary 3.2. The proof is straightforward. Consider any H ∈
W j
n . By definition it has a nonempty intersection with some cube J ∈ W j−1.

This cube cannot belong to Wh by Proposition 3.1. It is then either an element

of We or an element Hj−1 ∈ W j−1
n . Proceeding inductively, we then find a



CENTER MANIFOLD 545

chain H = Hj , Hj−1, . . . ,Hi =: L, where Hl̄ ∩Hl̄−1 6= ∅ for every l̄, Hl̄ ∈ W l̄
n

for every l̄ > i and L = Hi ∈ W i
e . Observe also that

|xH − xL| ≤
j−1∑
l̄=i

|xHl̄ − xHl̄+1
| ≤
√
m`(L)

∞∑
l̄=0

2−l̄ ≤ 2
√
m`(L).

It then follows easily that H ⊂ B3
√
m`(L)(L). �

7.2. Unique continuation for Dir-minimizers. Proposition 3.4 is based on

a De Giorgi-type decay estimate for Dir-minimizing Q-valued maps which are

close to a classical harmonic function with multiplicity Q. The argument in-

volves a unique continuation-type result for Dir-minimizers.

Lemma 7.1 (Unique continuation for Dir-minimizers). For every η ∈
(0, 1) and c > 0, there exists γ > 0 with the following property. If w : Rm ⊃
B2 r → AQ(Rn) is Dir-minimizing, Dir(w,Br) ≥ c and Dir(w,B2r) = 1, then

Dir(w,Bs(q)) ≥ γ for every Bs(q) ⊂ B2r with s ≥ η r.

Proof. We start showing the following claim:

(UC) if Ω is a connected open set and w ∈W 1,2(Ω,AQ(Rn)) is Dir-minimizing

in any open Ω′ ⊂⊂ Ω, then either w is constant or
∫
J |Dw|2 > 0 on any

open J ⊂ Ω.

We prove (UC) by induction on Q. If Q = 1, this is the classical unique

continuation for harmonic functions. Assume now it holds for all Q∗ < Q and

we prove it for Q-valued maps. Assume w ∈ W 1,2(Ω,AQ(Rn)) and J ⊂ Ω is

an open set on which |Dw| ≡ 0. Without loss of generality, we can assume J

connected and w|J ≡ T for some T ∈ AQ. Let J ′ be the interior of {w = T}
and K := J ′∩Ω. We prove now that K is open, which in turn by connectedness

of Ω concludes (UC). We distinguish two cases.

Case (a): the diameter of T is positive. Since w is continuous, for every

x ∈ K, there is Bρ(x) where w separates into Jw1K + Jw2K and each wi is

a Qi-valued Dir-minimizer. Since J ′ ∩ Bρ(x) 6= ∅, each wi is constant in a

(nontrivial) open subset of Bρ(x). By inductive hypothesis each wi is constant

in Bρ(x), and therefore w = T in Bρ(x); that is, Bρ(x) ⊂ J ′ ⊂ K.

Case (b): T = Q JpK for some p. In this case let J ′′ be the interior of

{w = Q Jη ◦ wK}. By [4, Def. 0.10], ∂J ′′ ∩ Ω is contained in the singular set

of w. By [4, Th. 0.11], Hm−2+ε(Ω ∩ ∂J ′′) = 0 for every ε > 0. Now consider a

point p ∈ ∂J ′′ ∩Ω and a small ball Bρ(x) ⊂ Ω. Since Hm−1(∂J ′′ ∩Bρ(x)) = 0,

by the isoperimetric inequality, either |Bρ(x) \ J ′′| = 0 or |J ′′| = 0. The latter

alternative is impossible because J ′′ is open and has nonempty intersection

with Bρ(x). It then turns out that |Bρ(x) \J ′′| = 0, and thus the closure of J ′′

contains Bρ(x). But then w = Q Jη ◦ wK on Bρ(x), and thus x cannot belong
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to ∂J ′′. So ∂J ′′ ∩ Ω is empty and thus w = Q Jη ◦ wK on Ω. On the other

hand, η ◦w is an harmonic function (cf. [4, Lemma 3.23]). Being η ◦w|J ′ ≡ p,
by the classical unique continuation, η ◦ w ≡ p on Ω.

We now come to the proof of the lemma. Without loss of generality,

we can assume r = 1. Arguing by contradiction, there exists sequences

{wk}k∈N ⊂ W 1,2(B2,AQ(Rn)) and {Bsk(qk)}k∈N with sk ≥ η and such that

Dir(wk, Bsk(qk)) ≤ 1
k . Without loss of generality, after applying a translation,

we can assume that η ◦ wk(0) = 0. Next, passing to a subsequence, we can

either assume that supk G(wk(0), Q J0K) < ∞ or that limk G(wk, Q J0K) = ∞.

In the first case, by [4, Prop. 3.20], a subsequence (not relabeled) converges

to w ∈ W 1,2(B2,AQ(Rn)) Dir-minimizing in every open Ω′ ⊂⊂ B2. Up to

subsequences, we can also assume that qk → q and sk → s ≥ η > 0. Thus,

Bs(q) ⊂ B2 and Dir(w,Bs(q)) = 0. By (UC) this implies that w is constant.

On the other hand, by [4, Prop. 3.20], Dir(w,B1) = limk Dir(wk, B1) ≥ c > 0

gives the desired contradiction. In the second case, by the Hölder continu-

ity of Dir-minimizers, each wk splits in B3/2 as wk = w1
k + w2

k where wik is

Dir-minimizing and Qi-valued. After extracting a subsequence we can assume

that Q1 is independent of k and that Dir(w1
k, B1) ≥ c

2 . We can then repeat

the argument above and either reach a contradiction or split further the se-

quence in the ball B5/4. The splitting procedure must stop after at most Q

iterations. �

Next we show that if the energy of a Dir-minimizer w does not decay

appropriately, then w must split. In order to simplify the exposition, in the

sequel we fix λ > 0 such that

(7.5) (1 + λ)(m+2) < 2δ2 .

Proposition 7.2 (Decay estimate for Dir-minimizers). For every η > 0,

there is γ > 0 with the following property. Let w : Rm ⊃ B2r → AQ(Rn) be

Dir-minimizing in every Ω′ ⊂⊂ B2r such that

(7.6)

∫
B(1+λ)r

G
Ä
Dw,Q JD(η ◦ w)(0)K

ä2 ≥ 2δ2−m−2Dir(w,B2r).

Then, if we set w̄ =
∑
i Jwi − η ◦ wK, the following holds :

γDir(w,B(1+λ)r) ≤ Dir(w̄, B(1+λ)r)

≤ 1

γ r2

∫
Bs(q)

|w̄|2 ∀ Bs(q) ⊂ B2 r with s ≥ η r.
(7.7)

Before coming to the proof of the proposition we point out an elementary

fact which will be used repeatedly in this section.
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Lemma 7.3. Let B ⊂ Rm be a ball centered at 0, w ∈ W 1,2(B,AQ(Rn))

Dir-minimizing and w̄ =
∑
i Jwi − η ◦ wK. We then have

Q

∫
B
|D(η ◦ w)−D(η ◦ w)(0)|2 =

∫
B
G(Dw,Q JD(η ◦ w)(0)K)2 −Dir(w̄, B).

(7.8)

Proof. Let u := η ◦ w, and observe that it is harmonic. Thus, using the

mean value property of harmonic functions and a straightforward computation

we get

Q

∫
B
|Du−Du(0)|2 = Q

∫
B
|Du|2 −Q|B||Du(0)|2.

On the other hand, again using the mean value property of harmonic functions,

it is easy to see that∫
B
G(Dw,Q JDu(0)K)2 +Q|B||Du(0)|2 =

∫
B
|Dw|2 =

∫
B
|Dw̄|2 +

∫
B
|Du|2.

Combining the last two inequalities we prove the lemma. �

Proof of Proposition 7.2. By a simple scaling argument we can assume

r = 1 and we argue by contradiction. Let wk be a sequence of local Dir-

minimizers which satisfy (7.6), Dir(wk, B2) = 1 and

(a) either
∫
Bsk (qk) |w̄k|2 ≤

1
k for some ball Bsk(qk) ⊂ B2r with sk ≥ η,

(b) or Dir(w̄k, B1+λ) ≤ 1
k .

Passing to a subsequence, if necessary, we can assume that sk → s and qk → q.

Moreover, we can normalize the sequence so that −
∫
B2
D(η ◦ wk) = 0 and, in

particular, passing to a subsequence, assume that η ◦wk converges strongly in

L2. Assume now that (a) holds for an infinite sequence of indices. In that case

we can extract a subsequence, not relabeled, which converges locally in W 1,2 to

a Dir-minimizer w. In fact the Hölder bound for Dir-minimizers and (a) imply

necessarily that supk G(wk(qk), Q Jη ◦ wk(qk)K) < ∞, and we can argue as in

the proof of Lemma 7.1. We then conclude that w̄ =
∑
i Jwi − η ◦ wK vanishes

identically on Bs(q), and we can appeal to Lemma 7.1 to infer that w̄ vanishes

on B2. This means, in particular, that Dir(w̄k, B1+λ) → Dir(w̄, B1+λ) = 0.

Summarizing we conclude that Dir(w̄k, B1+λ) converges to 0 in any case.

Next let uk := η ◦ wk, and recall that we are assuming that uk converges

to an harmonic function u. Thus from (7.6) and Lemma 7.3, we get∫
B1+λ

Q|Duk −Duk(0)|2 =

∫
B1+λ

Ä
G(Dwk, Q JDuk(0)K)2 − |Dw̄k|2

ä
≥ 2δ2−m−2

∫
B2

|Dwk|2 −
∫
B1+λ

|Dw̄k|2.
(7.9)
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Letting k ↑ ∞, since Dir(wk, B2) ≤ 1 and Dir(w̄k, B1+λ)→ 0, we conclude

(7.10)

∫
B1+λ

|Du−Du(0)|2 ≥ 2δ2−m−2 ≥ 2δ2−m−2
∫
B2

|Du|2.

Since (1+λ)m+2 < 2δ2 , (7.10) violates the decay estimate for classical harmonic

functions:

(7.11)

∫
B1+λ

|Du−Du(0)|2 ≤ 2−m−2(1 + λ)m+2
∫
B2

|Du|2,

thus concluding the proof. In order to show (7.11) it suffices to decompose Du

in series of homogeneous harmonic polynomials Du(x) =
∑∞
i=0 Pi(x), where

i is the degree. In particular, the restriction of this decomposition on any

sphere S := ∂Bρ gives the decomposition of Du|S in spherical harmonics; see

[13, Chap. 5, §2]. It turns out, therefore, that the Pi are L2(Bρ) orthogonal.

Since the constant polynomial P0 is Du(0) and
∫
B1+λ

|Pi|2 ≤ 2−m−2i
∫
B2
|Pi|2,

(7.11) follows at once. �

7.3. Splitting before tilting I: Proof of Proposition 3.4. As customary we

use the convention that constants denoted by C depend upon all the parameters

but ε2, whereas constants denoted by C0 depend only upon m,n, n̄ and Q.

Given L ∈ W j
e , let us consider its ancestors H ∈ S j−1 and J ∈ S j−6. Set

` = `(L),π = π̂H and C := C8rJ (pJ , π), and let f : B8rJ (pJ , π) → AQ(π⊥) be

the π-approximation of Definition 1.13, which is the result of [5, Th. 1.4] applied

to C32rJ (pJ , π). (Recall that Proposition 4.2(i) ensures the applicability of [5,

Th. 1.4] in the latter cylinder.) We let K ⊂ B8rJ (pJ , π) denote the set of [5,

Th. 1.4] and recall that Gf |K = T K × π⊥. Observe that BL ⊂ BH ⊂ C.

(This requires, as usual, ε2 ≤ c(β2, δ2,M0, N0, Ce, Ch).) The following are

simple consequences of Proposition 4.1:

E := E(T,C32rJ (pJ , π)) ≤ Cm0 `
2−2δ2 ,(7.12)

h(T,C, π) ≤ Cm1/2m
0 `1+β2 .(7.13)

In particular, the positive constant C does not depend on ε2. Moreover, since

BL ⊂ C, L ∈ We and rL/rJ = 2−6, we have

(7.14) cCem0 r
2−2δ
L ≤ E,

where c is only a geometric constant. We divide the proof of Proposition 3.4

into three steps.

Step 1: decay estimate for f . Let 2ρ := 64rH − C]m
1/2m
0 `1+β2 . Since

pH ∈ spt(T ), it follows from (7.13) that, upon choosing C] appropriately,

spt(T ) ∩C2ρ(pH , π) ⊂ BH ⊂ C. (Observe that C] depends upon the param-

eters β2, δ2,M0, N0, Ce and Ch, but not on ε2.) Setting B = B2ρ(x, π) with
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x = pπ(pH), using the Taylor expansion in [6, Cor. 3.3] and the estimates in

[5, Th. 1.4], we then get

Dir(B, f) ≤ 2|B|E(T,C2ρ(xH , π)) + Cm1+γ1
0 `m+2+γ1/2

≤ 2ωm(2ρ)mE(T,BH) + Cm1+γ1
0 `m+2+γ1/2.(7.15)

Next consider the cylinder C64rL(pL, π), and set x′ := pπ(pL). Recall that |x−
x′| ≤ |pH−pL| ≤ C`(H), where C is a geometric constant (cf. Proposition 4.1),

and set σ := 64rL +C`(H) = 32rH +C`(H). If λ is the constant in (7.5) and

M0 is chosen sufficiently large (thus fixing a lower bound for M0 which depends

only on δ2), we reach

σ ≤
Å

1

2
+
λ

4

ã
64 rH ≤

Å
1 +

λ

2

ã
ρ+ C]m

1/2m
0 `1+β2 .

In particular, choosing ε2 sufficiently small we conclude σ ≤ (1 +λ)ρ and thus

also BL ⊂ C64rL(x′, π) ⊂ C(1+λ)ρ(x, π) =: C′. Define B′ := B(1+λ)ρ(x, π), set

A := −
∫
B′ D(η ◦ f), let A : π → π⊥ be the linear map x 7→ A · x and let τ be

the plane corresponding to GA. Using [6, Th. 3.5], we can estimate

1
2

∫
B′
G(Df,Q JAK)2 ≥ |B′|E(T,C′, τ)− Cm1+γ1

0 `m+2+γ1/2

≥ |B′|E(T,BL, τ)− Cm1+γ1
0 `m+2+γ1/2

≥ ωm((1 + λ)ρ)mE(T,BL)− Cm1+γ1
0 `m+2+γ1/2.(7.16)

Now let$ be the (m+n̄)-dimensional plane containing π = π̂H so that π×κ has

the least distance to the plane TpHΣ. From the bound |πH − π̂H | ≤ Cm
1/2
0 `1−δ

we conclude that |$ − TpHΣ| ≤ Cm
1/2
0 `1−δ2 . In particular, we can apply

Lemma B.1 to infer the existence of a C3,ε0 map Ψ : $ → $⊥ whose graph

coincides with Σ and satisfies the bounds ‖DΨ‖0 ≤ C0‖DΨH‖0 + Cm
1/2
0 ≤

Cm
1/2
0 `1−δ2 ≤ 1 and ‖D2Ψ‖0 ≤ C0A ≤ C0m

1/2
0 . (Recall that A denotes the

C0 norm of the second fundamental form of Σ.)

Let κ be the orthogonal complement of π in $, and establish the no-

tation π × κ 3 (y, v) → Ψ(y, v) and (v, z) ∈ κ × $⊥. Since the approxi-

mation f takes values in Σ, we infer the existence of a Q-valued map g =∑
i JgiK so that f(y) =

∑
i Jgi(y),Ψ(y, gi(y)))K. By the chain rule we have

D(Ψ(y, g(y))) =
∑
i JDyΨ(y, gi(y)) +DvΨ(y, gi(y)) ·Dgi(y)K. Recalling that

osc f ≤ Cm
1/2m
0 `1+β2 , we obtain the same bound for the oscillation of g and

thus conclude the existence of a constant vector v̄ ∈ κ such that |gi(y)− v̄| ≤
Cm

1/2m
0 `1+β2 for every i and every y ∈ B. We thus achieve

G(D(Ψ(y, g(y))), Q JDΨ(y, v̄)K) ≤ Cm1/2+1/2m
0 `1+β2 + Cm

1/2
0 `1−δ2 |Dg|(y)

for all y ∈ B. Next, |DΨ(y, v̄) − DΨ(x, v̄)| ≤ C0m
1/2
0 ρ, where the latter

constant C0 is indeed independent of β2, δ2,M0, N0, Ce and Ch. Therefore, if
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we set Ã = −
∫
B′ η(D(Ψ(y, g))) = −

∫
B′ D(η ◦Ψ(y, g)), we infer∫

B′
G(D(Ψ(y, g(y))), QJÃK)2 dy ≤ C0m0ρ

m+2+Cm0Dir(B, g)+Cm
1+1/m
0 ρm+2.

Next observe that G(Df,Q JAK)2 = G(Dg,Q
q
Ā

y
)2 + G(D(Ψ(y, g)), QJÃK)2,

where Ā = −
∫
B′ D(η ◦ g). We thus conclude

Dir(B, g) ≤ 2ωm(2ρ)mE(T,BH) + Cm1+γ1
0 ρm+2,(7.17) ∫

B′
G(Dg,QJĀK)2 ≥ 2ωm((1 + λ)ρ)mE(T,BL)− Cm0Dir(B, g)

− C0m0ρ
m+2 − Cm1+γ1

0 ρm+2.(7.18)

Step 2: harmonic approximation. From now on, to simplify our notation,

we use Bs(y) in place of Bs(y, π). Set p := pπ(pJ). From (7.14) we infer

that 8rJ A ≤ 8rJm
1/2
0 ≤ E3/8 for ε2 sufficiently small. Therefore, for every

positive η̄, we can apply [5, Th. 1.6] to the cylinder C and achieve a map

w : B8rJ (p, π) → AQ(π⊥) of the form w = (u,Ψ(y, u)) for a Dir-minimizer u

and such that

(8 rJ)−2
∫
B8rJ

(p)
G(f, w)2 +

∫
B8rJ

(p)
(|Df | − |Dw|)2 ≤ η̄ E (8 rJ)m,(7.19) ∫

B8rJ
(p)
|D(η ◦ f)−D(η ◦ w)|2 ≤ η̄ E (8 rJ)m.(7.20)

Now, since D(η ◦u) = η ◦Du is harmonic, we have D(η ◦u)(x) = −
∫
B′(η ◦Du).

So we can combine (7.19) and (7.20) with (7.18) to infer∫
B(1+λ)ρ(x)

G
Ä
Du,QJη ◦Du(x)K

ä2 ≥ 2ωm((1 + λ)ρ)mE(T,BL)

− Cm0Dir(B, u)− C0m0ρ
m+2 − Cm1+γ1

0 ρm+2 − C0η̄
1/2Eρm.

(7.21)

Now, recall that E(T,BL) ≥ Cem0`(L)2−2δ2 ≥ 22δ2−2E(T,BH) and that E ≤
Cm0ρ

2−2δ2 . We can therefore combine (7.21) with (7.12), (7.17) and (7.19) to

achieve∫
B(1+λ)ρ(x)

G
Ä
Du,QJD(η ◦ u)(x)K

ä2
≥
Ä
22δ2−2−m − C0

Ce
− Cη̄1/2 − Cmγ1

0

ä ∫
B2ρ(x)

|Du|2.

It is crucial that the constant C, although depending upon β2, δ2,M0, N0, Ce
and Ch, does not depend on η̄ and ε2, whereas C0 depends only upon Q,m, n̄

and n. So, if Ce is chosen sufficiently large, depending only upon λ (and hence

upon δ2), we can require that 22δ2−2−m− C0
Ce
≥ 23δ2/4−2−m. We then require η̄

and ε2 to be sufficiently small so that 23δ2/4−2−m−Cm1/2m
0 −Cη̄1/2 ≥ 2δ2−2−m.
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We can now apply Lemma 7.1 and Proposition 7.2 to u and conclude that

Ĉ−1
∫
B(1+λ)ρ(x)

|Du|2 ≤
∫
B`/8(q)

G(Du,Q JD(η ◦ uK)2

≤ Ĉ`−2
∫
B`/8(q)

G(u,Q Jη ◦ uK)2

for any ball B`/8(q) = B`/8(q, π) ⊂ B8rJ (p, π), where Ĉ depends upon δ2 and

M0. In particular, being these constants independent of ε2 and Ce, we can

use the previous estimates and reabsorb error terms (possibly choosing ε2 even

smaller and Ce larger) to conclude that

m0 `
m+2−2δ2 ≤ C̃`m E(T,BL) ≤ C̄

∫
B`/8(q)

G(Df,Q JD(η ◦ f)K)2

≤ Č`−2
∫
B`/8(q)

G(f,Q Jη ◦ fK)2,
(7.22)

where C̃, C̄ and Č are constants which depend upon δ2, M0 and Ce, but not

on ε2.

Step 3: Estimate for the M-normal approximation. Now, consider any

ball B`/4(q, π0) with dist(L, q) ≤ 4
√
m`, and let Ω := Φ(B`/4(q, π0)). Observe

that pπ(Ω) must contain a ball B`/8(q′, π), because of the estimates on ϕ and

|π0− π̂H |, and in turn it must be contained in B8rJ (p, π). Moreover, p−1(Ω)∩
spt(T ) ⊃ C`/8(q′, π) ∩ spt(T ) and, for an appropriate geometric constant C0,

Ω cannot intersect a Whitney region L′ corresponding to an L′ with `(L′) ≥
C0`(L). In particular, Theorem 2.4 implies that

(7.23) ‖TF − T‖(p−1(Ω)) + ‖TF −Gf‖(p−1(Ω)) ≤ Cm1+γ2
0 `m+2+γ2 .

Now let F ′ be the map such that TF ′ (p−1(Ω)) = Gf (p−1(Ω)), and let N ′

be the corresponding normal part, i.e., F ′(x) =
∑
i Jx+N ′i(x)K. The region

over which F and F ′ differ is contained in the projection onto Ω of (Im(F ) \
spt(T )) ∪ (Im(F ′) \ spt(T )), and therefore its Hm measure is bounded as in

(7.23). Recalling the height bound on N and f , we easily conclude |N |+|N ′| ≤
Cm

1/2m
0 `1+β2 , which in turn implies

(7.24)

∫
Ω
|N |2 ≥

∫
Ω
|N ′|2 − Cm1+1/m+γ2

0 `m+4+2β2+γ2 .

On the other hand, let ϕ′ : B8rJ (p, π) → π⊥ be such that Gϕ′ = JMK and

Φ′(z) = (z,ϕ′(z)); then, applying [6, Th. 5.1 (5.3)], we conclude

|N ′(Φ′(z))| ≥ 1

2
√
Q
G(f(z), Q

q
ϕ′(z)

y
) ≥ 1

4
√
Q
G(f(z), Q Jη ◦ f(z)K),
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which in turn implies

m0 `
m+2−2δ2

(7.22)

≤ C`−2
∫
B`/8(q′,π)

G(f,Q Jη ◦ fK)2 ≤ C`−2
∫

Ω
|N ′|2

≤ C`−2
∫

Ω
|N |2 + Cm

1+γ2+1/2m
0 `m+2+2β2+γ2 .

(7.25)

For ε2 sufficiently small, this leads to the second inequality of (3.2), while the

first one comes from Theorem 2.4 and E(T,BL) ≥ Cem0 `
2−2δ2 .

Next we complete the proof showing (3.1). Since D(η ◦ f)(z) = η ◦Df(z)

for a.e. z, we obviously have

(7.26)

∫
B`/8(q′,π)

G(Df,Q JD(η ◦ f)K)2 ≤
∫
B`/8(q′,π)

G(Df,Q
q
Dϕ′

y
)2.

Now let ~Gf be the orienting tangent m-vector to Gf and τ the one toM. For

almost every z, we have the inequality

C0

∑
i

|~Gf (fi(z))− ~τ(ϕ′(z))|2 ≥ G(Df(z), Q
q
Dϕ′(z)

y
)2,

for some geometric constant C0, because |~Gf (fi(z))−~τ(ϕ′(z))| ≤ Cmγ2
0 . (Thus

it suffices to have ε2 sufficiently small.) Hence∫
B`/8(q′,π)

G(Df,Q
q
Dϕ′

y
)2 ≤ C

∫
C`/8(q′,π)

|~Gf (z)− ~τ(ϕ′(pπ(z))|2d‖Gf‖(z)

≤ C
∫
C`/8(q′,π)

|~T (z)− ~τ(ϕ′(pπ(z))|2d‖T‖(z) + Cm1+γ1
0 `m+2+γ1 .(7.27)

Now, thanks to the height bound and to the fact that |~τ − π| ≤ |~τ − πH | +
|πH − π| ≤ Cm

1/2
0 `1−δ2 in the cylinder Ĉ = C`/8(q′, π), we have the inequality

|p(z)−ϕ′(pπ(z))| ≤ Cm1/2m+1/2
0 `2+β2−δ2 ≤ Cm1/2m+1/2

0 `2+β2/2 ∀z ∈ spt(T )∩Ĉ.

Using ‖ϕ′‖C2 ≤ Cm1/2
0 we then easily conclude from (7.27) that∫

B`/8(p,π)
G(Df,Q

q
Dϕ′

y
)2

≤ C0

∫
Ĉ
|~T (z)− ~τ(p(z))|2d‖T‖(z) + Cm1+γ1

0 `m+2+β2/2

≤ C0

∫
p−1(Ω)

|~TF (z)− ~τ(p(z))|2d‖TF ‖(z) + Cm1+γ2
0 `m+2+γ2 ,

where we used (7.23).
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Since |DN | ≤ Cmγ2
0 `

γ2 , |N | ≤ Cm
1/2m
0 `1+β2 on Ω and ‖AM‖2 ≤ Cm0,

now applying [6, Prop. 3.4] we conclude∫
p−1(Ω)

|~TF (x)− τ(p(x))|2d‖TF ‖(x)

≤ (1 + Cm2γ2
0 `2γ2)

∫
Ω
|DN |2 + Cm

1+1/m
0 `m+2+2β2 .

Thus, putting all these estimates together we achieve

(7.28) m0 `
m+2−2δ2 ≤ C(1 + Cm2γ2

0 `2γ2)

∫
Ω
|DN |2 + Cm1+γ2

0 `m+2+γ2 .

Since the constant C might depend on the various other parameters but not

on ε2, we conclude that for a sufficiently small ε2 we have

(7.29) m0`
m+2−2δ2 ≤ C

∫
Ω
|DN |2.

But E(T,BL) ≤ Cm0 `
2−2δ2 and thus (3.1) follows.

8. Persistence of Q-points

8.1. Proof of Proposition 3.5. We argue by contradiction. Assuming the

proposition does not hold, there are sequences Tk’s and Σk’s satisfying As-

sumption 1.3 and radii sk for which

(a) either m0(k) := max{E(Tk,B6
√
m), c(Σk)

2} → 0 and 1 ≥ s̄ = limk sk > 0

or sk ↓ 0;

(b) the sets Λk := {Θ(x, Tk) = Q} ∩Bsk satisfy Hm−2+α
∞ (Λk) ≥ ᾱsm−2+α

k ;

(c) denoting by W (k) and S (k) the families of cubes in the Whitney de-

compositions related to Tk with respect to π0, sup
¶
`(L) : L ∈ W (k), L ∩

B3s(0, π0) 6= ∅
©
≤ sk;

(d) there exists Lk ∈ We(k) with Lk∩B19s/16(0, π0) 6= ∅ and α̂sk < `(Lk) ≤ sk.

It is not difficult to see that E(Tk,B6
√
msk

) ≤ Cm0(k)s2−2δ2
k , where the con-

stant C depends only on β2, δ2,M0, N0, Ce, Ch. Indeed this follows obviously

if sk ≥ c(M0, N0) > 0. Otherwise there is some ancestor H ′k of Lk with

sk ≤ `(H ′k) ≤ C0sk for which B6
√
msk
⊂ BH′

k
.

Now consider the ancestors Hk and Jk of Lk as in Section 7.3 and the

corresponding Lipschitz approximations fk. Next consider the radius ρk :=

5/4sk + 2rLk , and observe that [5, Th. 1.4] can be applied to the cylinder

Ĉk := C5ρk(0, π̂Hk). Again as above, either sk ≥ c(M0, N0), and the theorem

can be applied using the estimates on the height of T in C5
√
m(0, π0) and of

its excess in B6
√
m, or sk is smaller and then we can use the ancestor H ′k of
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the argument above. We thus have

E(Tk, Ĉk, π̂Hk) ≤ Cm0(k) s2−2δ2
k ,

h(Tk, Ĉk(0, π̂Hk), π̂Hk) ≤ Cm0(k)
1/2ms1+β2

k .
(8.1)

We denote by gk the π̂Hk approximation in the cylinder Ck := Cρk(0, π̂Hk).

Observe that fk and gk are defined on the same plane. We also denote by

Bk the ball on which fk is defined. On Bk, which is contained in the domain

of definition of gk, the two maps gk and fk coincide outside of a set of mea-

sure at most Cm0(k)1+γ1sm+2−2δ2+γ1

k and their oscillation is estimated with

Cm
1/2m
0 s1+β2

k . We can therefore conclude that∫
Bk

G(fk, gk)
2 ≤ Cm0(k)1+γ1+1/2msm+4+2β2−2δ2+γ1

k .

From Proposition 3.4 (3.1) we easily conclude

Ek := E(Tk,Ck, π̂Hk) ≥ c0E(Tk,BLk)

≥ c0Cem0(k)`(Lk)
2−2δ2 ≥ c0(α̂)m0(k)s2−2δ2

k .
(8.2)

Moreover, applying Proposition 3.4 and arguing as in Step 1 and Step 2 in

Section 7.3, we find a ball B′k ⊂ π̂Hk contained in B5sk/4 and with radius at

least `(Lk)/8 such that

(8.3)∫
B′
k

G(fk, Q Jη ◦ fkK)2 ≥ c̄m0(k) `(Lk)
m+4−2δ2 ≥ c1(α̂)m0(k) sm+4−2δ2

k ;

cf. (7.22). Since either m0(k) ↓ 0 or sk ↓ 0, we obviously conclude from (8.1)

that

(8.4)

∫
B′
k

G(gk, Q Jη ◦ gkK)2 ≥ c(α̂) sm+2
k Ek,

where the constant c(α̂) is positive and depends also upon β2, δ2,M0, N0, Ce
and Ch.

Next define A2
k := ‖AΣk∩Ck‖2 ≤ C0m0(k). Note that by (8.2), we have

that A2
k s

2
k ≤ C?Ek for some C? independent of k. In particular, since either

sk ↓ 0 orm0(k) ↓ 0, it turns out that, for k large enough, Aksk ≤ E
3/8
k . For any

given η > 0, we can then apply [5, Th. 1.6] whenever k is large enough. We thus

find a sequence of multivalued maps wk = (uk,Ψk(x, uk)) on B5sk/4(0, π̂Hk) so

that each uk is Dir-minimizing and

(8.5) s−2
k

∫
B5sk/4

(0,π̂Hk )
G(gk, wk)

2 +

∫
B5sk/4

(0,π̂Hk )
(|Dgk|−|Dwk|)2 = o(Ek)s

m
k ,

where the domain of Ψk is an m+ n̄-dimensional plane which includes π̂Hk but

might change with k (cf. [5, Rem. 1.5]). Observe also that Lip(Ψk) ≤ CE
1/2
k ;

again cf. [5, Rem. 1.5].
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Up to rotations (so to get π̂Hk = π0 = Rm × {0} and Dom (Ψk) =

Rm+n̄ × {0}) and dilations (of a factor sk) of the system of coordinates, we

then end up with a sequence of C3,ε0 (m + n̄)-dimensional submanifolds Γk
of Rm+n, area minimizing currents Sk in Γk, functions hk and w̄k with the

following properties:

(1) The excess Ek := E(Sk,C5(0, π0)) and the height h(Sk,C5(0, π0), π0) con-

verge to 0. (Note that the constant Ek defined here equals the one in

(8.2)).

(2) A2
k := ‖AΓk‖2 ≤ C?Ek and hence it also converges to 0.

(3) Lip(hk) ≤ CEγ1

k .

(4) ‖Ghk − Sk‖(C5/4(0, π0)) ≤ CE1+γ1

k ;

(5) w̄k = (ūk,Ψk(x, ūk)) for some Dir-minimizing ūk in B5/4(0, π0) and

(8.6)

∫
B5/4

Ä
(|Dhk| − |Dw̄k|)2 + G(hk, w̄k)

2
ä

= o(Ek),

(where with abuse of notation we keep the symbol Ψk for the map whose

graph coincides with Γk);

(6) For some positive constant c(α̂) (depending also upon β2, δ2,M0, N0, Ce
and Ch),

(8.7)

∫
B5/4

G(hk,η ◦ hk)2 ≥ cEk.

(7) Ξk := {Θ(Sk, y) = Q} ∩ B1 has the property that Hm−2+α
∞ (Ξk) ≥ ᾱ > 0

and 0 ∈ Ξk.

Consider the projections Ξ̄k := pπ0(Ξk). We are therefore in the position of

applying [5, Th. 1.7] to conclude that, for every $ > 0, there is a s̄($) > 0

(which depends also upon the various parameters α, ᾱ, α̂, β2, δ2,M0, N0, Ce and

Ch) such that

(8.8) lim sup
k→∞

max
x∈Ξ̄k

−
∫
Bρ(x)

G(hk, Q Jη ◦ hkK)2 ≤ $Ek ∀ρ < s̄($).

Up to subsequences we can assume that Ξ̄k (and hence also Ξk) converges, in

the Hausdorff sense, to a compact set Ξ, which is nonempty. Moreover, con-

sider the Dir-minimizing maps x 7→ ûk(x) = E
−1/2
k

∑
i J(ūk)i(x)− η ◦ ūk(x)K.

Note that by (8.6) and (8.8), we have

lim sup
k

∫
Bŝ(xk)

|ûk|2 <∞

for some fixed ŝ = s̄(1) > 0 and some sequence {xk} ⊂ B1. In particular, since

lim sup
k

∫
B5/4

|D|ûk||2 ≤ lim sup
k

Dir(ûk, B5/4) <∞,
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we easily conclude that
∫
B5/4
|ûk|2 is bounded independently of k. Thus, by [4,

Prop. 3.20], ûk converges, strongly in L2(B5/4) and up to subsequences, to a

Dir-minimizing function u with η ◦ u = 0. Observe that∫
B5/4

G(Ψk(x, ūk), Q Jη ◦Ψk(x, ūk)K)2

≤ CLip(Ψk)
2
∫
B5/4

G(ūk, Q Jη ◦ ūkK)2 ≤ CE2
k .

Thus (8.6) and (8.7) easily imply that

(8.9) lim inf
k

∫
B5/4

G(ûk, Q J0K)2 ≥ lim inf E−1
k

∫
B5/4

G(ūk,η ◦ ūk)2 ≥ c > 0.

From the strong L2 convergence of ûk we then conclude that u does not vanish

identically. On the other hand, by (8.8), (8.6) and the strong convergence of

ûk we conclude that, for any given δ > 0, there is a s̄ > 0 such that

−
∫
Bρ(x)

G(u,Q J0K)2 ≤ $ ∀x ∈ Ξ and ∀ρ < s̄($).

Since u is Dir-minimizing and hence continuous, the arbitrariness of $ implies

u ≡ Q J0K on Ξ. On the other hand, Hm−2+α
∞ (Ξ) ≥ lim supkHm−2+α

∞ (Ξk) ≥
ᾱ > 0. Then, by [4, Th. 0.11] and Lemma 7.1 we conclude Ξ̄ = B5/4, which

contradicts u 6≡ 0.

8.2. Proof of Proposition 3.6. We fix the notation as in Section 7.3 and

notice that

E := E(T,C32rJ (pJ , π̂H)) ≤ Cm0`(L)2−2δ2 ≤ Cm0
¯̀2−2δ2 .

By Proposition 3.4 we have

(8.10)

∫
B`(L)(p(p))

|DN |2 ≥ c̄1m0 `(L)m+2−2δ2 .

Next, let p := (x, y) ∈ π̂H × π̂⊥H , fix a η̄ > 0, to be chosen later, and note that

(7.14) allows us to apply [5, Th. 1.7]. Then there exists s̄ > 0 such that

(8.11)

∫
B2s̄`(L)(x,π̂H)

G(f,Q Jη ◦ fK)2 ≤ η̄ s̄m `(L)m+2E.

Observe that, no matter how small η̄ is chosen, such estimate holds when s̄

and E are appropriately small; the smallness of E is then achieved choosing ¯̀

as small as needed.

Now consider the graph Gr(η ◦ f) C2s̄`(L)(x, π̂H) and project it down

ontoM. SinceM is a graph over π̂H of a function ϕ̂ with ‖Dϕ̂‖C2+κ ≤ Cm1/2
0
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and since the Lipschitz constant of η ◦ f is controlled by Cmγ1
0 , provided ε2 is

smaller than a geometric constant, we have that

Ω := p
Ä
Gr(η ◦ f) C2s̄`(L)(x, π̂H)

ä
contains a ball Bs̄`(L)(p(p)).

Now consider the map F ′(q) =
∑
i Jq +N ′i(q)K such that TF ′ p−1(Ω) =

Gf p−1(Ω) given by [6, Th. 5.1]. Consider also the map ξ : B2s̄`(L)(x, π̂H) 3
z 7→ p((z,η ◦ f(z))) ∈ Ω. This map is bilipschitz with controlled constant,

again assuming that ε2 is sufficiently small. Now consider n̂ : Ω→ Rm+n with

the property that n̂(q) ⊥ TqM and ξ(x) + n̂(ξ(x)) = (x,η ◦ f(x)). Applying

the estimate of [6, Th. 5.1 (5.5)] we then get

G(N ′(ξ(x)), Q
q
η ◦N ′(ξ(x))

y
) ≤ G(N ′(ξ(x)), Q Jn̂(ξ(x))K)

≤ 2
√
QG(f(x), Q Jη ◦ f(x)K).

Integrating the latter inequality, changing variable and using Bs̄`(L)(p(p)) ⊂ Ω,

we then obtain∫
Bs̄`(L)(p(p))

G(N ′, Q
q
η ◦N ′

y
)2 ≤ C η̄ s̄m `(L)m+2E ≤ C η̄m0 s̄

m`(L)m+4−2δ2 .

Next, recalling the height bound and the fact that N and N ′ coincide outside

a set of measure m1+γ1
0 `(L)m+2+γ2 , we infer∫

Bs̄`(L)(p(p))
G(N,Q Jη ◦NK)2 ≤ C1 η̄m0 s̄

m`(L)m+4−2δ2

+ C2m
1+γ1
0 `(L)m+4+γ2+2β2 .

(8.12)

Since the constants c̄1, C1 and C2 in (8.10) and (8.12) are independent of `(L)

and η̄, we fix η̄ (and consequently s̄) so small that C1η̄ ≤ c̄1
η2

2 . We therefore

achieve from (8.12) that

−
∫
Bs̄`(L)(p(p))

G(N,Q Jη ◦NK)2 ≤ c̄1

2
η2m0 `(L)4−2δ2

+ C2m
1+γ1
0 s̄−m`(L)4+γ2+2β2 .

(8.13)

Having now fixed s̄ we choose ¯̀ so small that C2s̄
−m ¯̀2δ2+γ2+2β2 ≤ c̄1η2/2. For

these choices of the parameters, under the assumptions of the proposition we

then infer

(8.14) −
∫
Bs̄`(L)(p(p))

G(N,Q Jη ◦NK)2 ≤ η2 c̄1m0 `(L)4−2δ2 .

The latter estimate combined with (8.10) gives the desired conclusion.
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9. Comparison between different center manifolds

Proof of Proposition 3.7. We first verify (i). Observe that

E(T ′,B6
√
m) = E(T,B6

√
mr) ≤ lim inf

ρ↓r
E(T,B6

√
mρ) ≤ ε2.

Moreover, since Σ′ is a rescaling of Σ, c(Σ′) ≤ c(Σ) ≤m1/2
0 . Therefore, (1.8) is

fulfilled by Σ′ and T ′ as well; (1.7) follows trivially upon substituting π0 with

an optimal π for T ′ in B6
√
m (which is an optimal plane for T in B6

√
mr by

a trivial scaling argument); (1.5) is scaling invariant; whereas ∂T ′ B6
√
m =

(ι0,r)](∂T B6
√
mr) = 0.

We now come to (ii). From now on we assume N0 to be so large that 2−N0

is much smaller than cs. In this way we know that r must be much smaller

than 1. We have that `(L) = csr, otherwise condition (a) would be violated.

Moreover, we can exclude that L ∈ Wn. Indeed, in this case there must be a

cube J ∈ W with `(J) = 2`(L) and nonempty intersection with L. It then

follows that, for ρ := r + 2
√
m`(L) = (1 + 2

√
mcs)r, Bρ(0, π0) intersects J .

Again upon assuming N0 sufficiently large, such ρ is necessarily smaller than 1.

On the other hand, since 2
√
mcs<1, we then have csρ<2 cs r≤2 `(L)=`(J).

Next observe that E(T,B6
√
mρ) ≤ Cm0ρ

2−2δ2 for some constant C and for

every ρ ≥ r. Indeed, if ρ is smaller than a threshold r0 but larger than r, then

B6
√
mρ is contained in the ball BJ for some ancestor J of L with `(J) ≤ Cρ,

where the constant C and the threshold r0 depend upon the various param-

eters, but not upon ε2. Then, E(T,B6
√
mr) ≤ CE(T,BJ) ≤ Cm0 ρ

2−2δ2 .

If instead ρ ≥ r0, we then simply use E(T,B6
√
mρ) ≤ C(r0)E(T,B6

√
m) ≤

C(r0)m0. This estimate also has the consequence that, if π(ρ) is an optimal

m-plane in B6
√
mρ, then |π̂L − π(ρ)| ≤ Cm1/2

0 ρ1−δ2 .

We next consider the notation introduced in Section 7.3, the corresponding

cubes L ⊂ H ⊂ J and the π̂H -approximation f introduced there. If L ∈ We,

then by (7.22) we get

(9.1)

∫
B`/8(x,π̂H)

G(f,Q Jη ◦ fK)2 ≥ cm0 `
m+4−2δ2 ≥ cm0 r

m+4−2δ2 ,

where x = pπ̂H (xH) and c(β2, δ2,M0, N0, Ce, Ch) > 0. On the other hand,

if L ∈ Wh, we can argue as in the proof of Proposition 3.1 and use Theo-

rem A.1 to conclude the existence of at least two stripes S1 and S2, at distance

c̄m
1/2m
0 `1+β2 with the property that any slice 〈T,pπ̂H , z〉 with z ∈ B`/8(x, π̂H)

must intersect both of them. Since for x ∈ K such slice coincides with f(x),
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we then have∫
B`/8(x,π̂H)

G(f,Q Jη ◦ fK)2 ≥ cm1/m
0 `m+2+2β2 − Cm1/m

0 `2+2β2 |K|

≥ cm1/m
0 `m+2+2β2

− Cm1+γ1+1/m
0 `(m+2−2δ2)(1+γ1)+2β2

≥ cm0r
m+4−2δ2 .

(9.2)

Next rescale through ι0,r, and consider T ′ := (ι0,r)]T . We also rescale

the graph of the corresponding π̂H -approximation f to the graph of a map g,

which then has the following properties. If B ⊂ π̂H is the rescaling of the ball

B`/8(x, π̂H), then B ⊂ B3/2 and the radius of B is larger than cs/8. On B we

have the estimate

(9.3)

∫
B
G(g,Q Jη ◦ gK)2 = r−m−2

∫
B`/8(x,π̂H)

G(f,Q Jη ◦ fK)2 ≥ c̄m0r
2−2δ2 .

The Lipschitz constant of g is the same of that of f and hence controlled by

Cmγ1
0 r

γ1 . On the other hand, we have

m̂0 := max
¶
E(T ′,B6

√
m), c(Σ′)2

©
≤ max{Cm0r

2−2δ2 , c(Σ)2r2}

≤ Cm0r
2−2δ2 .

(9.4)

Moreover, denoting by Ĉ the rescaling of the cylinder C8rJ (pJ , π̂H), we have

that

(9.5) ‖Gg − T ′‖(Ĉ) ≤ Cm1+γ1
0 r2+γ1/2.

Finally, since |π−π̂H | ≤ Cm
1/2
0 r1−δ2 and becauseM′ is the graph of a function

ϕ′ over π with ‖Dϕ′‖C2,κ ≤ Cm̂
1/2
0 and ‖ϕ′‖C0 ≤ Cm̂

1/2m
0 , by (9.4) we can

actually conclude that M′ is the graph over π̂H of a map ϕ̂ : π̂H → π̂⊥H with

‖Dϕ̂‖C2,α ≤ Cm1/2
0 r1−δ2 . Similarly, theM′-approximating map x 7→ F ′(x) :=∑

i Jx+N ′i(x)K coincides with T ′ over a subset K′ ⊂ M′ with |M′ \ K′| ≤
m̂1+γ2

0 ≤ Cm1+γ2
0 r(2−2δ2)(1+γ2).

Now consider the projection p′ over M′ and hence define the sets

H := p′(Gr(g)),(9.6)

J := {q ∈ H : 〈TF ′ ,p
′, q〉 = 〈Gg,p

′, q〉}.(9.7)

Since J ⊂ p′(Im(F ′) \ spt(T )) ∪ p′(Gr(g) \ spt(T )), we have |H \ J | ≤
m1+γ2

0 r(2−2δ2)(1+γ2). On the other hand, by [6, Th. 5.1] there is a Lipschitz

map G defined on a subset Dom (G) of H ⊂ M′ such that Im(G) ⊃ Gr(g|B).

We then have G ≡ F ′ on any point of J ∩Dom (G), which in turn is contained

in B2 ∩ M′ (at least provided m0 is small enough). Next consider a point
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p ∈ Dom (G) with p = (x, ϕ̂(x)), and consider that for this point we have, by

[6, Th. 5.1 (5.3)],

G(g(x), Q Jη ◦ g(x)K) ≤ G(g(x), Q Jϕ̂(x)K) ≤ C0G(G(p), Q JpK).

Therefore, using (9.3) we can easily estimate∫
B2∩M′

|N ′|2 ≥
∫
J∩Dom (G)

G(G(p), Q JpK)2

≥
∫

Dom (G)
G(G(p), Q JP K)2 − Cm̂1/m

0 |H \ J |

≥ cm0r
2−2δ2 − Cm1/m+1+γ2

0 r(2−2δ2)(1+γ2) ≥ cm0r
2−2δ2 ,

(9.8)

where all the constants are independent of ε2 (but depend upon the other

parameters) and as usual ε2 is assumed to be sufficiently small. Thus finally,

by (9.4) we conclude∫
B2∩M′

|N ′|2 ≥ c̄sm̂0 = c̄s max{E(T ′,B6
√
m), c(Σ′)2}. �

Appendix A. Height bound revisited

In this section we prove a strengthened version of the so-called “height

bound” (see [8, Lemma 5.3.4]), which appeared first in [1]. Our proof closely

follows that of [11].

Theorem A.1. Let Q, m, n̄ and n be positive integers. Then there are

ε(Q,m, n̄, n) > 0 and C0(Q,m, n̄, n) with the following property. For r > 0

and C = Cr(x0), assume

(h1) Σ⊂Rm+n is an (m+n̄)-dimensional C2 submanifold with A :=‖AΣ‖0≤ε;
(h2) R is an integer rectifiable m-current with spt(R) ⊂ Σ and area minimizing

in Σ;

(h3) ∂R C = 0, (pπ0)]R C = Q JBr(pπ0(x0), π0)K and E := E(R,C) < ε.

Then there are k ∈ N \ {0}, points {y1, . . . , yk} ⊂ Rn and positive integers

Q1, . . . , Qk such that

(i) having set σ := C0E
1/2m, the open sets Si := Rm × (yi+ ]− rσ, rσ[n) are

pairwise disjoint and spt(R) ∩Cr(1−σ| logE|)(x0) ⊂ ∪iSi;
(ii) (pπ0)][R (Cr(1−σ| logE|)(x0) ∩ Si)] = Qi

q
Br(1−σ| logE|)(pπ0(x0), π0)

y
for

all i ∈ {1, . . . , k};
(iii) for every p ∈ spt(R)∩Cr(1−σ| logE|)(x0), we have Θ(R, p) < maxiQi + 1

2 .

Remark A.2. Obviously,
∑
iQi = Q and hence 1 ≤ k ≤ Q. Most likely

the bound on the radius of the inner cylinder could be improved to 1 − σ.

However, this would not give us any advantage in the rest of the paper, and

hence we do not pursue the issue here.
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Proof. We first observe that, without loss of generality, we can assume

x0 = 0 and r = 1. Moreover, (iii) follows from (i) and (ii) through the mono-

tonicity formula. Indeed, let p ∈ spt(R) be such that Bρ(p) := BE1/2m(p) ⊂
C1−σ| logE|(x0) =: C′. p must be contained in one of the Si, say S1. Consider

the current R1 = R (S1 ∩C′). Observe that R1 must be area minimizing in

Σ, Θ(R1, p) = Θ(R, p) and that E(R1,C
′) ≤ E. On the other hand, if ‖AΣ‖ is

smaller than a geometric constant, the monotonicity formula implies

M(R1 Cρ(p)) ≥M(R1 Bρ(p)) ≥ ωm(Θ(R, p)− 1
4)ρm = ωm(Θ(R, p)− 1

4)E1/2.

On the other hand, M(R1 Cρ(p)) ≤ ωmQ1ρ
m + E = ωmQ1E

1/2 + E. Thus,

if E is smaller than a geometric constant, we ensure Θ(R, p) ≤ Q1 + 1
2 . This

means that, having proved (i) and (ii) for σ = C0E
1/2m, (iii) would hold if we

redefine σ as (C0 + 1)E1/2m.

The proof of (i) and (ii) is by induction on Q. The starting step Q = 1

is Federer’s classical statement (cf. [8, Lemma 5.3.4] and [11, Lemma 2]) and

though its proof can be easily concluded from what we describe next, our only

concern will be to prove the inductive step. Hence, from now on we assume

that the theorem holds for all multiplicities up to Q − 1 ≥ 1 and we prove

it for Q. Indeed, we will show a slightly weaker assertion, i.e., the existence

of numbers a1, . . . , ak ∈ R such that the conclusions (i) and (ii) apply when

we replace Si with Σi = Rm+n−1× ]ai − σ, ai + σ[. The general statement is

obviously a simple corollary. To simplify the notation we use p̄ in place of pπ0 .

Step 1. Let r ≥ 1
2 and a − b > 2η = 2C[E1/2m, where C[ is a constant

depending only on m and n, which will be determined later. We denote by

Wr(a, b) the open set Br × Rn−1×]a, b[. In this step we show

(A.1) ‖R‖(Wr(a, b)) ≤ 2Q−1
2Q ωmr

m =⇒ spt(R) ∩Wr−η(a+ η, b− η) = ∅.

Without loss of generality, we assume a = 0. For each τ ∈]0, b2 [, consider the

currents Rτ := R Wr(τ, b − τ) and Sτ := p̄]Rτ . It follows from the slicing

theory that Sτ is a locally integral current for almost every τ . There are then

functions fτ ∈ BVloc(Br) which take integer values and such that Sτ = fτ JBrK.
Since ‖fτ‖1 = M(Sτ ) ≤ ‖R‖(Wr(0, b)) ≤ 2Q−1

2Q ωmr
m, fτ must vanish on a set

of measure at least ωm
2Q r

m. By the relative Poincaré inequality,

M(Sτ )1−1/m = ‖fτ‖1−
1/m

L1 ≤ C‖Dfτ‖(Br) = C‖∂(p̄]Rτ )‖(Br) ≤ C‖∂Rτ‖(Cr).

We introduce the slice 〈R, τ〉 relative to the map xm+n : Rm+n → R which is

the projection on the last coordinate. Then the usual slicing theory gives that

(A.2) (M(Sτ ))1−1/m ≤ C‖∂Rτ‖(Cr) = CM
Ä
〈R, τ〉 − 〈R, b− τ〉

ä
for a.e. τ .

Now let τ̄ be the supremum of τ ’s such that M(St) ≥
√
E ∀t < τ . If M(S0) <√

E, we then set τ̄ := 0. If τ̄ > 0, observe that, for almost every τ ∈ [0, τ̄ [, we
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have

E
m−1
2m ≤ C(M(Sτ ))1−1/m ≤ C

Ä
M
Ä
〈R, τ〉 − 〈R, b− τ〉

ää
.(A.3)

Integrate (A.3) between 0 and τ̄ to conclude

τ̄E
m−1
2m ≤ C

∫ τ̄

0
M
Ä
〈R, τ〉 − 〈R, b− τ〉

ä
dτ

= C

∫
Wr(0,τ̄)∪Wr(b−τ̄ ,b)

|~R dxm+n| d‖R‖.
(A.4)

We then apply Cauchy-Schwartz and recall∫
C1

|~R dxm+n|2 d‖R‖ ≤ E(R,C1) = E

We then conclude τ̄E
m−1
2m ≤ C̄

√
E for some constant C̄ depending only on m

and n, i.e., τ̄ ≤ C̄E1/2m. Set C[ := C̄ + 2, and recall that η = C[E1/2m. Also

observe that there must be a sequence of τk ↓ τ̄ with M(Sτk) <
√
E. Therefore,

(A.5)

‖R‖(Wr(τ̄ , b− τ̄)) ≤ lim inf
k→∞

‖R‖(Wr(τk, b− τk)) ≤ lim inf
k→∞

M(Sτk) +E ≤ 2
√
E.

Assume now the existence of p ∈ spt(T ) ∩Wr−η(η, b − η). By the properties

of area minimizing currents, Θ(T, p) ≥ 1. Set ρ := 2E1/2m and B′ := Bρ(p) ⊂
Wr(τ̄ , ` − τ̄). By the monotonicity formula, ‖R‖(B′) ≥ c 2mωm

√
E, where c

depends only on A (recall that ρ ≤ 1) and approaches 1 as A approaches 0.

Thus, for ε2 sufficiently small, this would contradict (A.5). We have therefore

proved (A.1).

Step 2. We are now ready to conclude the proof of (i) and (ii). Assume

(A.6) max
¶
‖R‖(W1(0,∞)), ‖R‖(W1(−∞, 0))

©
≤ 1

2M(R).

Divide the interval [0, 1[ into Q+ 1 intervals [ai, ai+1[. Let W i := W1(ai, ai+1).

For each i, consider Si := p̄](T W i). Observe that there must be one i for

which M(Si) ≤ (1− 1
2Q)ωm. Otherwise we would have

ωmQ+ E ≥M(R) ≥ 2
∑
i

M(Si) ≥ 2(Q+ 1)ωm
2Q−1

2Q ,

which is obviously a contradiction if E is sufficiently small.

It follows from Step 1 that there must be an i so that spt(T ) does not

intersect W1−η(ai + η, ai+1 − η). Consider R1 := R W1−η(−∞, ai + η) and

R2 := R W1−η × (ai+1− η,∞). By the constancy theorem, p̄]Ri = ki JB1−ηK,
where both ki’s are integers. Indeed, having assumed that E is sufficiently

small, each ki must be nonnegative and their sum is Q. There are now two

possibilities:
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(a) Both ki’s are positive. In this case R1 and R2 again satisfy the assumptions

of the theorem with C1−η(0) in place of C1(0). After a suitable rescaling

we can apply the inductive hypothesis to both currents and hence get the

desired conclusion.

(b) One ki is zero. In this case M(Ri) ≤ E and it cannot be R1, since M(R1) ≥
1
2M(R) by (A.6). Thus it is R2 and, arguing as at the end of Step 1, we

conclude R W1−2η(]ai+1 + 2η,∞[) = 0.

In case (b) we repeat the argument splitting ]− 1, 0] into Q+ 1 intervals.

Once again, either we can “separate” the current into two pieces and apply

the inductive hypothesis, or we conclude that

spt(R C1−4η) ⊂W1−4η(−1− η, 1 + η) =: W1−4η(a0, b0).

If this is the case, once again we apply the argument above and either we

“separate” R1 := R C1−6η×Rn into two pieces, or we conclude that spt(R1) ⊂
W1−6η(a1, b1), where

b1 − a1 ≤ (b0 − a0)
Ä
1− 1

Q+1 + η
ä
≤ 2
Ä
1− 1

Q+2

ä
(provided ε2 is smaller than a geometric constant). We now iterate this ar-

gument a finite number of times, stopping if at any step we “separate” the

current and can apply the inductive hypothesis, or if the resulting current is

contained in W1−(4+2k)η(ak, bk) for some ak, bk with bk − ak ≤ c1E
1/2m. The

constant c1 is chosen larger than 1 and in such a way that, if ` > c1E
1/2m, then

` Q
Q+1 + η ≤ Q+1

Q+2`. Observe that, since η = C[E1/2m, c1 depends only upon Q,

m and n. We now want to estimate from above the maximal number of times

k that the procedure above gets iterated. Observe that we must have

c1E
1/2m ≤ bk−1 − ak−1 ≤ (b0 − a0)

Å
Q+ 1

Q+ 2

ãk−1

.

Since b0 − a0 = 2 + 2η, we get the estimate

−(k − 1) log

Å
Q+ 1

Q+ 2

ã
≤ − log(2 + 2η)− log c1 −

1

2m
logE.

Since E is assumed to be small, we get the bound k ≤ −C logE. This com-

pletes the proof. �

Appendix B. Changing coordinates for classical functions

Lemma B.1. For any m,n ∈ N \ {0}, there are constants c0, C0 > 0 with

the following properties. Assume that

(i) κ,κ0 ⊂ Rm+n are m-dimensional planes with |κ−κ0| ≤ c0 and 0 < r ≤ 1;

(ii) p = (q, u) ∈ κ × κ⊥ and f, g : Bm
7r(q,κ) → κ⊥ are Lipschitz functions

such that

Lip(f),Lip(g) ≤ c0 and |f(q)− u|+ |g(q)− u| ≤ c0 r.
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Then there are two maps f ′, g′ : B5r(p,κ0)→ κ⊥0 such that

(a) Gf ′ = Gf C5r(p,κ0) and Gg′ = Gg C5r(p,κ0);

(b) ‖f ′ − g′‖L1(B5r(p,κ0)) ≤ C0 ‖f − g‖L1(B7r(p,κ));

(c) if f ∈ C3,κ(B7r(p,κ)) then f ′ ∈ C3,κ(B5r(p,κ0)) with the estimates

‖f ′ − u′‖C0 ≤ C‖f − u‖C0 + C|κ − κ0|r,(B.1)

‖Df ′‖C0 ≤ C‖Df‖C0 + C|κ − κ0|,(B.2)

‖D2f ′‖C1,κ ≤ Φ(|κ − κ0|, ‖D2f‖C1,κ(B.3)

where (q′, u′) ∈ κ0 ×κ⊥0 coincides with the point (q, u) ∈ κ ×κ⊥ and Φ is

a smooth functions with Φ(·, 0) ≡ 0;

(d) ‖f ′ − g′‖W 1,2(B5r(p,κ0)) ≤ C0(1 + ‖D2f‖C0)‖f − g‖W 1,2(B7r(p,κ)).

All the conclusions of the lemma still hold if we replace the exterior radius 7r

and interior radius 5r with ρ and s. The corresponding constants c0 and C0

(and functions Φ, Λ and Λκ) will then depend also on the ratio ρ
s .

Proof. The case of two general radii s and ρ follows easily from that of

ρ = 7r and s = 5r and a simple covering argument. In what follows, given

a pair of points x ∈ κ, y ∈ κ⊥, we use the notation (x, y) for the vector

x + y. By translation invariance we can assume that (q, u) = (0, 0) (and

hence (q′, u′) = (0, 0)). Then consider the maps F,G : B7r(0,κ) → κ⊥0 and

I, J : B7r(0,κ)→ κ0 given by

F (x) = pκ⊥0
((x, f(x))) and G(x) = pκ⊥0

((x, g(x))),

I(x) = pκ0((x, f(x))) and J(x) = pκ0((x, g(x))).

With c0 ≤ 1 we can easily estimate

|I(x)− I(y)| ≥ |x− y|(1− C0|κ − κ0| − C0Lip(f))

for some geometric constant C0. Thus, if c0 is small enough, I and (for the

same reason) J are injective Lipschitz maps. Therefore, the graphs Grκ0(f)

and Grκ0(g) of f and g in the “original” coordinates system κ0 ×κ0 coincide,

in the new coordinate system κ × κ, with the graphs Grκ(f ′) and Grκ(g′) of

the functions f ′ = F ◦ I−1 and g′ = G ◦ J−1 defined respectively in D :=

I(B7r(0,κ)) and D̄ := J(B7r(0,κ)). If c0 is chosen sufficiently small, then we

also conclude

(B.4) Lip(I), Lip(J), Lip(I−1), Lip(J−1) ≤ 1 + C c0

and

(B.5) |I(0)|, |J(0)| ≤ C c0 r,

where the constant C is only geometric. Clearly, (B.4) and (B.5) easily imply

that B5r(0,κ0) ⊂ D∩ D̄ when c0 is smaller than a geometric constant, thereby
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implying (a) if we restrict the domain of definition of f ′ and g′ to B5r(0,κ0).

We claim next that, for a sufficiently small c0,

(B.6) |f ′(x′)− g′(x′)| ≤ 2 |f(I−1(x′))− g(I−1(x′))| ∀ x′ ∈ B5r(0,κ0),

from which, using the change of variables formula for bilipschitz homeomor-

phisms and (B.4), (b) follows.

In order to prove (B.6), consider any x′ ∈ Br(q′), set x := I−1(x′) and

p1 := (x, f(x)) ∈ κ × κ⊥, p2 := (x, g(x)) ∈ κ × κ⊥

and

p3 := (x′, g′(x′)) ∈ κ0 × κ⊥0 .

Obviously |f ′(x′)− g′(x′)| = |p1 − p3| and |f(x)− g(x)| = |p1 − p2|. Note that

g(x) = f(x) if and only if g′(x′) = f ′(x′), and in this case (B.6) follows trivially.

If this is not the case, the triangle with vertices p1, p2 and p3 is non-degenerate.

Let θi be the angle at pi. Note that Lip(g) ≤ c0 implies |π2 − θ2| ≤ Cc0 and

|κ − κ0| ≤ c0 implies |θ1| ≤ Cc0 for some dimensional constant C. Since

θ3 = π − θ1 − θ2, we conclude as well that |π2 − θ3| ≤ Cc0. Therefore, if c0 is

small enough, we have 1 ≤ 2 sin θ3, so that, by the Sinus Theorem,

|f ′(x′)− g′(x′)| = |p1 − p3| =
sin θ2

sin θ3
|p1 − p2| ≤ 2 |p1 − p2| = 2 |f(x)− g(x)|,

thus concluding the claim.

As for (c), observe that I, F and J,G are obviously as regular as f and g.

So, when the latter are C1, I and J are also C1. In the latter case, if we

put suitable coordinates on both κ and κ0 (identifying them with Rm) we can

easily estimate |dI − Id| ≤ C0(‖Df‖0 + |κ − κ0|), where C0 is a geometric

constant, dI the differential of I and Id the identity. Thus for c0 sufficiently

small we can apply the inverse function theorem; so I−1 is as regular as I and

hence as f . Since f ′ = F ◦ I−1, also f ′ is as regular as f . Recall next that

we are assuming q = 0 and u = 0. Define the map Ĩ(x) = I−1(x) − x. Since

f ′ = F ◦ I−1, the bounds claimed in (c) follow easily if we can prove the very

same bounds for the map Ĩ(x). If we set Ī(x) = I(x)− x, the inverse function

theorem gives ‖Ĩ‖C1 ≤ 2‖Ī‖C1 provided c0 is sufficiently small. The bounds on

the higher derivatives can then be easily concluded differentiating the identity

dI−1(x) = [dI]−1(I−1(x)).

We finally come to (d). The estimate ‖f ′−g′‖L2 ≤ C‖f−g‖L2 is an obvious

consequence of (B.6). Given next a point p in the graph of f , resp. in the graph

of g, we denote by σ(p), resp. τ(p), the oriented tangent plane to the corre-

sponding graphs. Observe that the points are described by the pairs (x′, f(x′))

and (x′, g(x′)), in the coordinates κ × κ⊥, and by (I−1(x′), f(I−1(x)′)) and
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(J−1(x′), g(J−1(x′))), in the coordinates κ0 × κ⊥0 . Thus

|∇f ′(x′)−∇g′(x′)| ≤ C|σ(p)− τ(q)| ≤ C|∇f(I−1(x′))−∇g(J−1(x′)|

≤ C|∇f(I−1(x′))−∇f(J−1(x′))|+ C|∇f(J−1(x′))−∇g(J−1(x′))|

≤ C‖D2f‖C0 |I−1(x′)− J−1(x′)|+ C|∇f(J−1(x′))−∇g(J−1(x′))|

≤ C‖D2f‖C0 |f ′(x′)− g′(x′)|+ C|∇f(J−1(x′))−∇g(J−1(x′))|.

(B.7)

Integrating this last inequality in x′ and changing variables we then conclude

‖∇f ′ −∇g′‖2 ≤ C‖∇f −∇g‖L2 + C‖D2f‖C0‖f ′ − g′‖L2

which, together with the L2 estimate, gives (d). �

Appendix C. Two interpolation inequalities

Lemma C.1. Let A > 0 and ψ ∈ C2(Bρ,Rn) satisfy ‖ψ‖L1 ≤ Aρm+1 and

‖∆ψ‖L∞ ≤ ρ−1A. Then, for every r < ρ, there is a constant C > 0 (depending

only on m and ρ
r ) such that

(C.1) ρ−1 ‖ψ‖L∞(Br) + ‖Dψ‖L∞(Br) ≤ C A.

Proof. By a simple covering argument we can, without loss of generality,

assume ρ = 3r. Moreover, if we apply the scaling ψr(x) := r−1ψ(rx), we see

that ‖ψr‖L1(B3) = (ρ/3)−m−1‖ψ‖L1(Bρ), ‖ψr‖∞ = (ρ/3)−1‖ψ‖∞, ‖Dψr‖∞ =

‖Dψ‖∞ and ‖∆ψr‖∞ = (ρ/3)‖∆ψ‖∞. We can therefore assume r = 1. Con-

sider the harmonic function ζ : B2 → R with boundary data ψ|∂B2 ,∆ζ = 0 in B2,

ζ = ψ on ∂B2.

Set u := ψ−ζ, and note that u = 0 on ∂B2, ‖∆u‖C0(B2) ≤ A. Hence, using the

Poincaré inequality, we can estimate the L1-norm of u in the following way:

‖u‖L1 ≤ ‖u‖L2 ≤ C ‖Du‖L2 ≤ C
Ç∫

B2

|∆uu|
å1/2

≤ C ‖∆u‖1/2
C0 ‖u‖

1/2
L1 ≤ CA.

Now choose a ∈]0, 1[ and s ∈]1,∞[ such that 1
m +a

Ä
1
s −

2
m

ä
+1−a < 0 (which

exist because for s → ∞ and a → 1, the expression converges to − 1
m). By a

classical interpolation inequality (see [9]),

‖Du‖L∞ ≤ C ‖D2u‖aLs‖u‖1−aL1 + C‖u‖L1 .

Using the Ls-estimate for the Laplacian, we deduce

‖Du‖L∞ ≤ C ‖∆u‖aLs‖u‖1−aL1 + C‖u‖L1 ≤ C ‖∆u‖a∞‖u‖1−aL1 + ‖u‖L1 ≤ C A.
(C.2)
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From (C.2) and u|∂B2 = 0, it follows trivially that ‖u‖L∞ ≤ A. To infer

(C.1), we observe that, by ‖ζ‖L1(B2) ≤ ‖u‖L1(B2) + ‖ψ‖L1(B2) ≤ C A and the

harmonicity of ζ,

‖ζ‖L∞(B1) + ‖Dζ‖L∞(B1) ≤ C‖ζ‖L1(B2) ≤ C A. �

Lemma C.2. For every m, r < s and κ, there is a positive constant C

(depending on m, κ and s
r ) with the following property. Let f be a C3,κ function

in the ball Bs ⊂ Rm. Then

(C.3)

‖Djf‖C0(Br) ≤ Cr
−m−j‖f‖L1(Bs) + Cr3+κ−j [D3f ]κ,Bs ∀j ∈ {0, 1, 2, 3}.

Proof. A simple covering argument reduces the lemma to the case s = 2r.

Moreover, define fr(x) := f(rx) to see that we can assume r = 1. So our goal

is to show

(C.4)
3∑
j=0

|Djf(y)| ≤ C‖f − g‖L1 + C[D3f ]κ ∀y ∈ B1, ∀f ∈ C3,κ(B2).

By translating it then suffices to prove the estimate

(C.5)
3∑
j=0

|Djf(0)| ≤ C‖f‖L1(B1) + C[D3f ]κ,B1 ∀f ∈ C3,κ(B1).

Now consider the space of polynomials R in m variables of degree at most 3,

which we write as R =
∑3
j=0Ajx

j . This is a finite dimensional vector space

on which we can define the norms |R| := ∑3
j=0 |Aj | and ‖R‖ :=

∫
B1
|R(x)| dx.

These two norms must then be equivalent, so there is a constant C (depending

only on m), such that |R| ≤ C‖R‖ for any such polynomial. In particular, if

P is the Taylor polynomial of third order for f at the point 0, we conclude

3∑
j=0

|Djf(0)| = |P | ≤ C‖P‖ = C

∫
B1

|P (x)| dx ≤ C‖f‖L1(B1) + C‖f − P‖L1(B1)

≤ C‖f‖L1 + C[D3f ]κ. �

Appendix D. Proof of Lemma 5.6

D.1. Reduction to special triples of planes. We first observe that, by a

simple scaling, we can assume r = 1. The rescaling which we apply to any

map ϕ is the usual x 7→ r−1ϕ(rx) =: ϕr. It is easy to see that (5.35) is then

scaling invariant.

We next fix the following terminology. We say that R ∈ SO(m+ n̄+ l) is

a 2d-rotation if there are two orthonormal vectors e1, e2 and an angle θ such

that R(e1) = cos θ e1 + sin θ e2, R(e2) = cos θ e2 − sin θ e1 and R(v) = v for

every v ⊥ span (e1, e2). Given a triple (π̄, κ̄, $̄), we then say that
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• R is of type A with respect to (π̄, κ̄, $̄) if e1 ∈ κ̄ and e2 ∈ $̄;

• R is of type B with respect to (π̄, κ̄, $̄) if e1 ∈ π̄ and e2 ∈ κ̄;

• R is of type C with respect to (π̄, κ̄, $̄) if e1 ∈ π̄ and e2 ∈ $̄.

The following lemma will then allow us to reduce the general case of Lemma 5.6

to the particular ones in which (π̄, κ̄, $̄) is obtained from (π,κ, $) through a

(small) rotation of type A, B or C.

Lemma D.1. There are constants C0(m, n̄, l) and N̄(m, n̄, l) with the fol-

lowing property. If c0 in Lemma 5.6 is sufficiently small, then there are

N≤N̄ triples (πj ,κj , $j) “joining” (π,κ, $) = (πN ,κN , $N ) with (π̄, κ̄, $̄) =

(π0,κ0, $0) such that each (πj ,κj , $j) is the image of (πj−1,κj−1, $j−1) under

a 2d-rotation of type A, B or C and angle θj with |θj | ≤ C0(|π− π̄|+ |κ− κ̄|).

Proof. We first show that, if $ = $̄, or κ = κ̄ or π = π̄, then the claim

can be achieved with small 2d-rotations all of the same type, namely of type

B, C and A, respectively. Assume for instance that $ = $̄. Let ω be the

intersection of π and π̄ and ω′ be the intersection of κ and κ̄. Pick a vector

e ∈ π which is not contained in π̄ and is orthogonal to ω. Let ē := pπ̄(e)
|pπ̄(e)| . Then,

ē is necessarily orthogonal to ω and the angle between ē and e is controlled by

|π − π̄|. There is therefore a 2d-rotation R such that R(e) = ē, and obviously

its angle is controlled by |π − π̄|. It turns out that R keeps $ and ω fixed. So

the new triple (R(π), R(κ), R($)) has the property that R($) = $ = $̄ and

the dimension of R(π) ∩ π̄ is larger than that of π ∩ π̄. This procedure can be

repeated, and after N ≤ m times it leads to a triple of planes (πN ,κN , $N )

with $N = $̄ and πN = π̄. This however necessarily implies κ̄ = κN .

Assume therefore that $ and $̄ do not coincide. Let ω := (κ×π)∩(κ̄×π̄).

There is then a unit vector ē ∈ κ̄ or a unit vector ē ∈ π̄ which does not belong

to π × κ and which is orthogonal to ω. Assume for the moment that we are

in the first case, and consider the vector e := pπ×κ(ē)
|pπ×κ(ē)| . The vector e forms an

angle with the plane κ bounded by C0|κ− κ̄|. Therefore there is a rotation R

with angle smaller than C0|κ − κ̄| of the plane π × κ with the property that

R(κ) contains e and fixes ω, which is orthogonal to e. By the previous step,

R can be written as composition RN ′ ◦ · · · ◦ R1 of small 2d-rotations of type

B keeping $ fixed. Since e ⊥ R(π), we can then find a small 2d-rotation S of

type A with respect to (R(π), R(κ), $) acting on the plane spanned by e and

ē and such that S(R(κ)) 3 ē. S then keeps ω fixed. An analogous argument

works if the vector e ∈ π̄. We therefore conclude that, after applying a finite

number of rotations R1, . . . , RN ′ , RN ′+1 of the three types above, the dimension

of RN ′+1 ◦ RN ′ ◦ · · · ◦ R1(π × κ) ∩ π̄ × κ̄ is larger than that of π × κ ∩ π̄ × κ̄
(where the number N ′ is smaller than a geometric constant depending only on

m and n̄). Obviously, after at most m+ n̄ iterations of this argument, we are

reduced to the situation π × κ = π̄ × κ̄. �
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Now assume that Lemma 5.6 is proven for some constants c0 and C0 and

for all 2d rotations which are of type A, B or C with respect to one of the two

triples of planes. We next claim that, at the price of possibly enlarging the

constants, the lemma holds for any pair of triples. To this purpose we now fix

two triples as in the statement of the lemma and choose a chain (πj ,κj , $j)

as in Lemma D.1. As already observed it suffices to prove the statement when

r = 1, but we assume it has been proven for any radius in the case of small 2d

rotations of type A, B or C. Lemma D.1 implies that |πj−πi|+|κj−κi| ≤ C̄0An

for some geometric constant C̄0. For each i, we therefore have Lipschitz maps

Ψi : πi×κi → $i and Lipschitz maps f i : B4(0, π)→ AQ(κ×$) whose graph

coincides with the ones of Ψ̄ and f (the latter restricted to C4(0, π)). Their

existence is ensured by [6, Prop. 5.2], which also implies

‖DΨi‖C0 ≤ C̄0

Ä
‖DΨ‖C0 + An

ä
,(D.1)

|Ψi(0)| ≤ C̄0

Ä
|Ψ(0)|+ ‖DΨ‖C0 + An

ä
,(D.2)

Lip(f i) ≤ C̄0

Ä
Lip(f) + An

ä
,(D.3)

‖f i‖C0 ≤ C̄0

Ä
‖f‖C0 + An

ä
.(D.4)

Now set ri := 22−i. By assuming the constant c0 sufficiently small we can

therefore assume that the lemma can be applied to the pairs (πi−1,κi−1, $i−1)

and (πi,κi, $i), to the maps Ψi−1,Ψi, f
i−1, f i and to the radius ri/4. In order

to streamline the argument, for j > i, we use the notation f j = Rijf
i to under-

line that the graph of f j coincides, in the cylinder Cri(0, πi), with the graph

of f i. Likewise, if ui is the multivalued map into AQ(κi) such that f i(x) =∑
l

q
(uil(x),Ψi(u

i
l(x)))

y
, we then denote by Av (f i) the map (η ◦ui,Ψi(η ◦ui)).

With this notation we observe that f̂ = RN0(Av (f0)) = RN0(Av (f)) and

g = Av (RN0 (f0)) = Av (RN0 (f)). We can then estimate

‖f̂ − g‖L1(BrN (π,0))

≤ ‖RN(N−1)(R(N−1)0(Av (f)))− RN(N−1)(Av (R(N−1)0(f)))‖L1(BrN (πN ,0))︸ ︷︷ ︸
(I)

+ ‖RN(N−1)(Av (R(N−1)0(f)))−Av (RotN(N−1)(R(N−1)0(f)))‖L1(BrN (πN ,0))︸ ︷︷ ︸
(II)

.

Now, to the first summand we apply Lemma B.1(b), and we bound it with

(I) ≤ C̄0‖R(N−1)0(Av (f))−Av (R(N−1)0(f))‖L1(BrN−1
(0,πN−1)).
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As for the second summand, observing that R(N−1)0(f) = fN−1, we can apply

Lemma 5.6 for the special case of a 2d rotation of type A, B or C and conclude

(II) ≤ C̄0

Ä
‖fN−1‖C0 + |πN − πN−1|+ |κN − κN−1

ä
·
Ä
Dir(fN−1) + ‖DΨN−1‖2C0 + (|πN − πN−1|+ |κN − κN−1|)2

ä
≤ C̄0

Ä
‖fN−1‖C0 + An

äÄ
Dir(fN−1) + ‖DΨ̄‖2C0 + An2

ä
.

On the other hand, by the Taylor expansion of the mass in [6, Cor. 3.3],

Dir(fN−1) ≤ 4E(GfN−1 ,CrN−1(0, πN−1))

≤ 4E(GfN−1 ,CrN−1(0, πN−1), πN ) + C̄0|πN−1 − πN |2

≤ 4E(Gf ,C8(0, π̄)) + C̄0An2 ≤ 8Dir(f) + C̄0An2.

(D.5)

Putting all these estimates together, we then conclude

‖f̂ − g‖L1(BrN (π,0))

≤ C̄0‖R(N−1)0(Av (f))−Av (R(N−1)0(f))‖L1(BrN−1
(0,πN−1))

+ C̄0

Ä
‖f‖C0 + An

äÄ
Dir(f) + ‖DΨ‖2C0 + An2

ä
.

We can now iterate this argument N − 1 more times to finally achieve

‖f̂ − g‖L1(BrN (π,0)) ≤ C̄0

Ä
‖f‖C0 + An

äÄ
Dir(f) + ‖DΨ‖2C0 + An2

ä
.

Of course this is not yet the estimate claimed in Lemma 5.6 since the inner

radius rN equals 22−N rather than 4. However, a simple covering argument al-

lows us to conclude the proof. In the remaining sections we focus our attention

on 2D rotations of coordinates of type A, B and C.

D.2. Type A. As already observed it suffices to show the lemma in the

case r = 1. We use the notation (z, w) ∈ κ × $ and (z̄, w̄) ∈ κ̄ × $̄ for the

same point. In what follows we will drop the · when writing the usual products

between matrices. We then have z̄ = Uz + V w and w̄ = Wz + Zw, where the

orthogonal matrix

L :=

Ç
U V

W Z

å
has the property that |L − Id| ≤ C0An. Clearly, Ψ and Ψ̄ are related by the

identity

(D.6) Wz + ZΨ(x, z) = Ψ̄(x, Uz + VΨ(x, z)).

Fix x and f̂(x) =
∑
i J(ûi(x),Ψ(x, ûi(x)))K =:

∑
i J(zi,Ψ(x, zi))K. We then have

g(x) = (a, b) :=
( 1

Q

∑
zi,Ψ

(
x,

1

Q

∑
zi
))

in κ ×$
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and

f̂(x) = L−1
Ä
U 1
Q

∑
zi + V 1

Q

∑
Ψ(x, zi), Ψ̄

Ä
x, U 1

Q

∑
zi + V 1

Q

∑
Ψ(x, zi)

ää
=: L−1(c, d).

Since L is orthogonal, we have

|f̂(x)− g(x)| = |L(a, b)− (c, d)|

=
∣∣∣ÄV ÄΨ Äx, 1

Q

∑
zi
ä
− 1

Q

∑
i Ψ(x, zi)

ä
,W 1

Q

∑
i zi + ZΨ

Ä
x, 1

Q

∑
i zi
ä

− Ψ̄
Ä
x, U 1

Q

∑
zi + V 1

Q

∑
Ψ(x, zi)

ää∣∣∣
(D.6)
=

∣∣∣ÄV ÄΨ Äx, 1
Q

∑
zi
ä
− 1

Q

∑
i Ψ(x, zi)

ä
, Ψ̄
Ä
x, U 1

Q

∑
zi + VΨ

Ä
1
Q

∑
zi
ää

− Ψ̄
Ä
x, U 1

Q

∑
zi + V 1

Q

∑
Ψ(x, zi)

ää∣∣∣ .
Thus,

|f̂(x)− g(x)| ≤
(
1 + Lip(Ψ̄)

)
|V |

∣∣∣ 1
Q

∑
Ψ(x, zi)−Ψ

Ä
x, 1

Q

∑
zi
ä∣∣∣ .

Observe that |V | ≤ |L − Id| ≤ C|κ − κ̄|. Moreover, with a simple Taylor

expansion around the point (x, 1
Q

∑
zi), we achieve∣∣∣ 1

Q

∑
Ψ(x, zi)−Ψ

Ä
x, 1

Q

∑
zi
ä∣∣∣≤C0‖DΨ‖0

∑
i

∣∣∣zi − 1
Q

∑
zi
∣∣∣≤C0‖DΨ‖0‖û‖C0 .

Since we have ‖DΨ‖0 ≤ C0‖DΨ̄‖0 + C0An and ‖û‖C0 ≤ ‖f̂‖C0 ≤ C‖f‖C0 +

C0An, we conclude the pointwise estimate

|f̂(x)− g(x)| ≤C0An(‖DΨ̄‖0 + An)(‖f‖0 + An),

which obviously implies (5.35).

D.3. Type B. In this case Ψ = Ψ̄ and thus

(D.7) ‖f̂ − g‖L1 ≤ C0(1 + ‖DΨ̄‖0)‖η ◦ û− pκ(f̂)‖L1 .

Next fix an orthonormal base e1, . . . , em, em+1, . . . , em+n̄, where the first m

vectors span π and the remaining span κ. We also assume that the rotation R

acts on the plane spanned by {em, em+1} and set v = R(em) = a em + b em+1

and vm+1 = R(em+1). We then define two systems of coordinates. Given

q ∈ Rm ×Rn̄, we write

q =
∑

1≤i≤m−1

zi(q)ei + t(q)em + τ(q)em+1 +
∑

2≤j≤n̄
yj(q)ej+m

=
∑
i

zi(q)ei + s(q)vm + σ(q)vm+1 +
∑
j

yj(q)ej+m.

The first will be called (t, τ)-coordinates and the second (s, σ)-coordinates.

For the moment we fix x ∈ Rm−1 with |x| ≤ 4 and focus our attention

on the interval Ix = {s : |(x, s)| ≤ 6}. We restrict the map u to this interval
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and, by [4, Prop. 1.2], we know that there is a Lipschitz selection such that

u(x, s) =
∑
i Jθi(s)K in the (s, σ)-coordinates

Gr(θi) = {(x, s, θ1
i (s), . . . , θ

n̄
i (s)) : s ∈ Ix}.

In the (t, τ) coordinates we can choose functions ϑi, also defined on an ap-

propriate interval Jx, whose graphs coincide with the ones of the θi. We then

obviously must have û(x, t) =
∑
i Jϑi(t)K on the domain of definition of f̂ . The

coordinate functions θji and ϑji are linked by the following relations:

(D.8)


Φi(t) = a t+ b ϑ1

i (t),

θ1
i (Φi(t)) = −b t+ aϑ1

i (t),

θli(Φi(t)) = ϑli(t) for l = 2, . . . , n̄.

Observe that Lip(Φi) ≤ (1 + C0|π − π̄|) ≤ 2. Likewise we can assume that

Lip(Φ−1
i ) ≤ 2. Now consider v(s) = η ◦ u(x, s) = 1

Q

∑
i θi(s) and the corre-

sponding t 7→ v̂(t) = pκ ◦ f̂(x, t), linked to v = η ◦ u(x, ·) through a relation as

in (D.8) with a corresponding map Φ:

(D.9)


Φ(t) = a t+ b v̂1(t),
1
Q

∑
i θ

1
i (Φ(t)) = v1(Φ(t)) = −b t+ a v̂1(t),

1
Q

∑
i θ
l
i(Φ(t)) = vl(Φ(t)) = v̂l(t) for l = 2, . . . , n̄.

Moreover, write ṽ(t) = 1
Q

∑
i ϑ(t) = η ◦ û(x, t). We can then compute

η ◦ û(x, t)− pκ(f̂(x, t)) = ṽ(t)− v̂(t) = Q−1
∑
i

(ϑi(t)− v̂(t))

= Q−1
∑
i

(
a−1θ1

i (Φi(t))− a−1θ1
i (Φ(t))︸ ︷︷ ︸

1st component

, . . . , θli(Φi(t))− θli(Φ(t))︸ ︷︷ ︸
lth component

, . . .
)
.

(D.10)

This implies that

(D.11) |η ◦ û(x, t)− pκ(f̂(x, t))| = |ṽ(t)− v̂(t)| ≤ C0

∑
i

∣∣∣∣∣
∫ Φi(t)

Φ(t)
Dθ(τ) dτ

∣∣∣∣∣.
Next we compute

(D.12) Φi(t)− Φ(t) = b
Ä
ϑ1
i (t)− v̂1(t)

ä
= b
Ä
ϑ1
i (t)− ṽ1(t)

ä
+ b
Ä
ṽ1(t)− v̂1(t)

ä
.

Since |b| ≤ CAn, the terms in (D.12) can be estimated respectively as follows:

|b||ϑ1
i (t)− ṽ1(t)| = |b||û1

i (x, t)− (η ◦ û)1(t)| ≤ C0An ‖û‖C0 ,

|ṽ1(t)− v̂1(t)|
(D.11)

≤ ‖Dθ‖L∞
Q∑
i=1

|Φi(t)− Φ(t)| ≤ C0 Lip(u)
Q∑
i=1

|Φi(t)− Φ(t)|.
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Recall that Lip(u) ≤ Lip(f) ≤ C0Lip(f̂) + An. Combining the last two in-

equalities with (D.12), we therefore conclude, when c0 is sufficiently small,

(D.13)
Q∑
i=1

|Φi(t)− Φ(t)| ≤ C0An‖f̂‖C0 =: ρ.

With this estimate at our disposal we can integrate (D.11) in t to conclude∫
Jx

|ṽ(t)− v̂(t)| ≤ C0

∫
Jx

∫ Φ(t)+ρ

Φ(t)−ρ
|Dθ|(τ) dτ dt ≤ C0

∫
Ix

∫ s+ρ

s−ρ
|Du|(x, τ) dτ ds,

where in the latter inequality we have used the change of variables s = Φ(t) and

the fact that both the Lipschitz constants of Φ and its inverse are under control.

Integrating over x and recalling that ṽ(t)− v̂(t) = η ◦ û(x, t)− pκ(f̂(x, t)) we

achieve ∫
B4

|η ◦ û− pκ ◦ f̂ | ≤ C0

∫
B4

∫ √36−|x|2

−
√

36−|x|2

∫ s+ρ

s−ρ
|Du|(x, τ) dτ ds dx

≤ C0ρ

∫
B6+12ρ

|Du| ≤ C0An‖f̂‖C0

Ç∫
B8

|Du|2
å1/2

≤ C0An
Ä
‖f‖C0 + An

ä
Dir(f)

1/2.

(D.14)

Clearly (D.14) and (D.7) imply the desired estimate.

D.4. Type C. Consider η ◦ f and the ξ : B4(0, π) → π⊥ such that Gξ =

Gη◦f C4(0, π). We can then apply the argument of the estimate for type B

to conclude

(D.15) ‖η◦û−pκ(ξ)‖L1(B4) ≤ ‖η◦f̂−ξ‖L1(B4) ≤ CAn
Ä
‖f‖C0 +An

ä
Dir(f)

1/2.

We need only to estimate ‖pκ(ξ)− pκ(f̂)‖L1 . Since g(x) = (η ◦ û(x),Ψ(x,η ◦
û(x))) and f̂(x) = (pκ(f̂(x)),Ψ(x,pκ(f̂(x))), we can then estimate

(D.16) ‖f̂−g‖L1 ≤ C0(1+‖DΨ‖0)
Ä
‖pκ(f̂)− pκ(ξ)‖L1 + ‖pκ(ξ)− η ◦ û‖L1

ä
.

Define the maps v, w and w′ as follows:

f(x̄) =
(
η ◦ u(x̄), Ψ̄ (η ◦ u(x̄))

)
=: (v(x̄), w(x̄)),

η ◦ f(x̄) =
Ä
η ◦ u(x̄), 1

Q

∑
i Ψ̄(x̄, ui(x̄))

ä
=: (v(x̄), w′(x̄)).

Using the Lipschitz bound for Ψ̄, we conclude

(D.17)

‖f − η ◦ f‖C0 = ‖w − w′‖0 ≤ C‖DΨ̄‖C0

∑
i

|ui − η ◦ u| ≤ C‖DΨ̄‖C0‖f‖C0 .

Consider an orthogonal transformation

L =

Ç
U V

W Z

å
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with the properties that (x̄, z̄) ∈ π̄× $̄ corresponds to (Ux̄+ V z̄,Wx̄+Zz̄) ∈
π×$ and |L− Id| ≤ C0An. We then have the following relations: pκ(f̂(x)) =

v(Φ−1(x)) and pκ(ξ(x)) = v((Φ′)−1(x)), where Φ−1 and (Φ′)−1 are the inverse,

respectively, of the maps Φ(x̄) = Ux̄ + V w(x̄) and Φ′(x̄) = Ux̄ + V w′(x̄).

Recalling that |V | ≤ |L− Id| ≤ C0An, we conclude that

|Φ′(x̄)− Φ(x̄)| ≤ |V | |w(x̄)− w′(x̄)| ≤ C0‖DΨ̄‖C0‖f‖C0An for every x̄.

On the other hand, we also know that Φ−1 has Lipschitz constant at most 2

and so we achieve |Φ−1(Φ′(x̄)) − x̄| ≤ C0‖DΨ̄‖C0‖f‖C0An. Being valid for

any x̄, we can apply it to x̄ = (Φ′)−1(x) to conclude |Φ−1(x) − (Φ′)−1(x)| ≤
C0‖DΨ̄‖C0‖f‖C0An. Then using Lip(v) ≤ Lip(u) ≤ c0, we conclude the point-

wise bound

|pκ(f̂(x))− pκ(ξ(x))| = |v(Φ−1(x))− v((Φ′)−1(x))| ≤ C0‖DΨ̄‖C0‖f‖C0An.

After integrating in x, the latter bound combined with (D.15) and (D.16) gives

the desired estimate.
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