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Global solutions of the Euler—Maxwell
two-fluid system in 3D

By YAN Guo, ALEXANDRU D. IONESCU, and BENOIT PAUSADER

Abstract

The fundamental “two-fluid” model for describing plasma dynamics is
given by the Euler—-Maxwell system, in which compressible ion and elec-
tron fluids interact with their own self-consistent electromagnetic field. We
prove global stability of a constant neutral background, in the sense that
irrotational, smooth and localized perturbations of a constant background
with small amplitude lead to global smooth solutions in three space di-
mensions for the Euler—Maxwell system. Our construction is robust in
dimension 3 and applies equally well to other plasma models such as the
Euler—Poisson system for two-fluids and a relativistic Euler-Maxwell sys-
tem for two fluids. Our solutions appear to be the first nontrivial global
smooth solutions in all of these models.
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1. Introduction

A plasma is a collection of fast-moving charged particles. It is believed
that more than 90% of the matter in the universe is in the form of plasma,
from sparse intergalactic plasma, to the interior of stars to neon signs. In
addition, understanding of the instability formation in plasma is one of the
main challenges for nuclear fusion, in which charged particles are accelerated
at high speed to create energy. We refer to [2], [9] for physics references in
book form.

At high temperature and velocity, ions and electrons in a plasma tend to
become two separate fluids due to their different physical properties (inertia,
charge). One of the basic fluid models for describing plasma dynamics is the
so-called “two-fluid” model, in which two compressible ion and electron fluids
interact with their own self-consistent electromagnetic field. Such a Euler—
Maxwell system describes the dynamical evolution of the functions n.,n; :
R3 — R, ve,v;, B, B : R? — R3, which evolve according to the quasi-linear
coupled system,

One + div(neve) = 0,

NeMe [Opve + Ve + V| + Vpe = —nee {E + Ve X B} ,
c
oyn; + div(nwi) =0,
n; M; [(%Ui “+ v; - V’UZ] + Vp; = Zne {E + % X B} ,
8tB +cV X E = 0,
O FE — cV x B = 47e [neve — Zn,v;]
together with the elliptic equations
(1.2) div(B) =0, div(F) =4me(Zn; —n.)
and two equations of state expressing p. and p; in terms of n. and n;. These
equations describe a plasma composed of electrons and one species of ions. The

electrons have charge —e, density n., mass m., velocity ve, and pressure pe,
and the ions have charge Ze, density n;, mass M;, velocity v;, and pressure p;.
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In addition, ¢ denotes the speed of light and E and B denote the electric and
magnetic field. The two equations (1.2) are propagated by the dynamic flow,
provided we assume that they are satisfied at the initial time.

The full Euler—-Maxwell system (1.1) with constraint (1.2) forms the foun-
dation of the “two-fluid” model in the plasma theory, which captures the com-
plex dynamics of a plasma due to electromagnetic interactions present in the
model. Even at the linear level, there are new ion-acoustic waves, Langmuir
waves, as well as light waves etc. At the nonlinear level, the Euler-Maxwell
system is the origin of many well-known dispersive PDE, such as KdV [22], KP
[37], [42], Zakharov [46], Zakharov-Kuznetsov [37], [42] and NLS, which can be
derived from (1.1) and (1.2) via different scaling and asymptotic expansions.
We also refer to [7], [8], [12] for derivation of the cold-ion and quasi-neutral
equations and to [3] for a study of a similar model for semiconductors.

In this paper we consider perturbations of the flat neutral equilibrium,
namely (n%,v%,n?,0?, B9 B®) = (Zny,0,n0,0,0,0), for constant ng > 0 to the
Euler-Maxwell system (1.1) and (1.2). From a PDE viewpoint, the full Euler—
Maxwell system (1.1) with constraint (1.2) can be classified as a system of
nonlinear hyperbolic conservation laws with no dissipation and no relazation
effects.t

In some cases, mostly under suitable irrotationality assumptions, systems
of hyperbolic conservation laws can be reduced to systems of nonlinear wave
equations. In the case of massless wave equations, the global theory for small
data is reasonably well understood in three dimensions. Some key develop-
ments include the work of John [30] showing that blow-up in finite time can
happen even for small smooth localized initial data of a semilinear wave equa-
tion, the construction of “almost global” solutions by John and Klainerman
[31], the introduction of the vector field method by Klainerman [35], and the
understanding of the role of “null structures,” starting with the works of Klain-
erman [33], [36] and Christodoulou [4]. These results eventually led to the
spectacular proof of Christodoulou and Klainerman [6] of the stability of the
Minkowski space-time among solutions of the Einstein vacuum equations. An
alternative, shorter proof of this stability result was given recently by Lindblad
and Rodnianski [40], using the concept of “weak null structures” [39].

On the other hand, a classical result of Sideris [44] demonstrates that, for
the compressible Euler equation for a neutral gas, shock waves will develop
even for smooth irrotational initial data with small amplitude. This shock
formation was recently further described in [5] (see also [1]).

"When dissipation or relaxation is present, one expects stronger decay, even at the level of
the L?-norm; see, e.g., [3], [41] and the references therein. In our case however, the evolution
is time-reversible and we need a different mechanism of decay based on dispersion.
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In our situation, the Euler-Maxwell system (1.1)—(1.2) cannot be reduced
to systems of wave equations, decoupled at the linear level, even under irro-
tationality assumptions. However, in a (highly simplified) approximation, one
can think that the system can be reduced to a coupled system of two Klein—
Gordon equations with different speeds and no null structure and a wave-like
equation with certain null structure at the origin (see (1.3)—(1.5) below).

While global results are classical in the case of scalar Klein—-Gordon equa-
tions, starting with the application of the vector field method by Klainerman
[34] and the introduction of the normal form transformation by Shatah [43]
(see also [45], [10], [11]), it was pointed out by Germain [13] that there are
key new difficulties in the case of two Klein—Gordon equations with different
speeds. In this case, the vector field method does not seem to work well, due
to the absence of a suitable “scaling” vector field, and there are large sets of
space-time resonances (see (1.6)—(1.8)) that contribute in the analysis.

In [13] and [14], the authors study semilinear and quasilinear systems of
two Klein—Gordon equations with different speeds in dimension three, using
the “space-time resonance method,” and prove global existence and scattering
(with weak decay like t~1/2), in certain cases that cover most parameters. A
robust result in this direction, which gives time-integrability of the solution in
L*> and works for all speeds, was obtained by two of the authors in [26]. The
analysis in [26] can be regarded as a highly simplified model for the analysis
in this paper.

The goal of this paper is to develop a flexible method that can be used
to deal systematically with complicated physical coupled systems, such as the
Euler—-Maxwell system, at least in dimension 3. The strategy described here,
initiated in the previous works [25], [26], shares some similarities with the
space-time resonance method of Germain-Masmoudi-Shatah [16] (see also the
recent work of Gustafson—Nakanishi—Tsai [24]). We introduce, however, a new
analytic framework that involves function spaces localized in both space and
frequency, which are naturally compatible with the introduction of fractional
powers of the weights. This framework, which can also be combined naturally
with partial vector field methods and modified scattering (see, for example, the
recent paper [27]), allows us to analyze efficiently bilinear operators such as
those in (1.6), with complicated oscillatory phases and large sets of resonances.
In particular, we are able to describe precisely the geometric structure of sub-
level sets of the space-time gradients of the relevant phase functions (see (1.7))
and use analytic techniques (such as localization in the Fourier space and L?
orthogonality arguments) and the intrinsic curvature of these sets to control our
bilinear operators. We find this approach more precise and flexible analytically,
which is crucial to analyze the complicated phase functions (1.7) arising in the
Euler—-Maxwell system.
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Our approach seems flexible and robust and can be extended to other
quasilinear problems in 3D, such as the Euler—Poisson system for two-fluids
and the relativistic Euler—-Maxwell system for two fluids, which enjoy natural
(Galilean or Lorentz) symmetry. Such models will be discussed in separate
papers [20]. In all of these models, including the Euler-Maxwell model we
consider in this paper, the solutions we construct appear to be the first smooth,
nontrivial global solutions.

1.1. Description of the method. To analyze the global dynamics of solu-
tions of the system (1.1) we use a combination of dispersive analysis and energy
estimates, relying heavily on the Fourier transform. (See [4], [16], [17], [24],
[34], [33], [43] for previous seminal works.) To overcome the quasilinear nature
of the nonlinearity and ensure global existence, we use classical high-order en-
ergy estimates to make up for the loss of derivatives in the nonlinearity. Global
existence follows if a lower regularity L norm decays faster than 1/¢.

This crucial decay property is established by semilinear analysis of systems
of dispersive equations. Assuming also a suitable form of irrotationality, after
normalizations the system (1.1) can be reduced to a system of quasilinear
coupled equations of the form

(1.3) (O +iM)U; = Niy (O +iAe)Ue = N, (9 + i) Uy = M,

where U;, Ue, Uy are complex-valued functions (corresponding roughly to the
ion variables, the electron variables, and the Maxwell field respectively), and
N;, N, N, are quadratic nonlinearities. The operators A;, A, Ay are pseudo-
differential operators obtained by diagonalizing the system at the linear level,
and their symbols are quite complicated. (See (3.4) for the precise formulas.)
In a first approximation, one can think that the operators A;, Ac, Ay are defined
by the symbols?

2
(1) M) = Iy T A9 = CVIT AR, ) = Cy/ 17 BIEE.

where C' is a sufficiently large constant, A, B € [1,00), and B > 2A. In other
words, the system can be thought of as a coupled system of Klein—Gordon

equations with different speeds for the variables U, and U, and a wave-like
equation for the variable U;. The nonlinearities are quasilinear; in a first
approximation one can think of them as semilinear quadratic nonlinearities, of
the form

(15) M = ‘V|(1_A)_1/2FZ(UaU)a Ne :FG(U7U)a Nb:Fb(Uvﬁ)a

2We remark that A; is related to the ion-acoustic waves, A, is related to the Langmuir
waves, and Ay is related to the light (electromagnetic) waves.
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where U = (U;, U, Up). The ion nonlinearity N; has “null structure” at the

—1/2'in front

origin in the frequency space, described by the operator |[V|(1—A)
of the nonlinearity, but no other relevant null structures appear to be present
in the problem.

Expecting some form of scattering, we express the solution as free evo-
lutions from profiles that vary more slowly in time, Uy(t) = e #\V,(t),
o € {e,i,b}. After suitable algebraic manipulations, and appropriate use of

the Fourier transform, we need to study bilinear operators 1" of the form

(16 Tlgl©) = [ [ e mien e —n. 050 Odndt,
with a phase ® that is specific to each interaction and that is of the form

(1.7) (& n) = Mo(§) EA(E —m) £ Ma(n), Ay € {Ay, Ae, A}

As a first approximation, one may think of f, g as being smooth bump functions

and m being essentially a smooth cutoff, and the main challenge is to estimate
efficiently the infinite time integral. It then becomes clear that a key role is
played by the properties of the function ® and, in particular, by the points
where it is stationary,

(1.8) Vi lt®(En)] =0, ie, @& mn)=0and V,®(n) =0.

The collection of such points forms the space-time resonant set. This was
already highlighted in [16] and forms the basis of the “space-time resonance
method,” as developed in several problems in [13], [14], [16], [17], [18]. In
some situations, one has no or few fully stationary points and the task is
mainly to propagate enough smoothness of f, g to exploit (non)stationary-
phase arguments.

However, in our case the space-time resonance set is very rich. It was
already pointed out by Germain [13] that a key new difficulty arises even in
the case of a system of two Klein—-Gordon equations with equal masses and
different speeds. More precisely, one should expect the existence of a finite
number of 2-dimensional sets of space-time resonances of the form {(£,n) =
(Rjw,rjw) : w € S?} for certain values rj, R; that depend on the parameters.

In our case, the space-time resonance set is substantially more compli-
cated. After a careful analysis of the interactions done in Appendix B, we
isolate three different problematic space-time resonant sets S.

e Case A: we have the case of smooth 2-dimensional spheres
Sa={(&n) = (Rjw,rjw), weS*}, R;j #0, 1 #0, j=1,...,N.

This case already appears in the analysis of Klein—-Gordon equations. As
in [26], we can perform an efficient stationary phase analysis and use ad-
ditional refined orthogonality arguments to prove global existence with
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robust (1+4¢)717¢ decay. The analysis in [26] in the case of Klein-Gordon
equations with different speeds can be thought of as a (highly simplified)
version of the analysis needed to cover this case. Our analysis relies on the
fact that the space-time resonances are nondegenerate, in the sense that
det [V%@(f,n)] # 0 on the space-time resonant set. This is used implic-
itly in Lemma 6.2 to give a precise description of the set of points where
|V, ®@(&,m)| < 6. See the discussion in the introduction of [26] on this
nondegeneracy condition.
e Case B: we have a first degenerate sphere

Sp = {(5777) = (RIW,O), w e SQ}? R #0

where, in addition, the phase is not smooth in 5. In this case, we use the
fact that the essential speed of propagation of the singular perturbation is
slower than expected (qualitatively, |[V¢®(£,n)| < 7| < 1 on the space-
time resonant set), and a careful adaptation of the orthogonality analysis
of Case A, keeping track of how the bounds deteriorate as n — 0.

e Case C: the presence of an “ion-like” dispersion relation brings in a strong
degenerate set at 0

SC:{(5777) = (O,r'w), WGSQ}v 7”,7&001" 7“/:0.

Here the problem comes from the strong degeneracy of the phase. Similar
problems already appeared for the Euler—Poisson equation for the ions (see
(1.24)), but for (1.1), we need more refined multiplier estimate and orthog-
onality arguments, combined with additional finite speed of propagation
estimates and use of the null-form structure of the nonlinearity N;. In the
case of pure ion interactions, we also need to exploit the fact that the phase
A; is of the form A;(v) =~ A|v| — BJv|? for |v] < 1, with A, B > 0 (compare
with the simplified formula in (1.4)). This leads to the weak ellipticity
bound (8.27), which plays an important role in the proofs in Section 8.

1.1.1. Choice of the norms. We employ and extend the method developed
in [25], [26]. We seck an appropriate space B satisfying two requirements: (1)
the bilinear operator 7" in (1.6) needs to be bounded

(1.9) T:BnHY xBNnH - B

when applied on solutions of the system, and (2) the free flow of the linearized
Euler—-Maxwell system with initial data in the space B should belong to a
space-like L} LS°, which has sufficiently strong time decay to close the energy
estimate.
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In order to define such a space B, we measure localization both in space
and in frequency. We quantify these “coordinates” all the way to the uncer-
tainty principle and decompose an arbitrary function as a sum of “atoms”:

f= > QxPnf, (Qxf)(®)~lycp<ox(z)f(),

X-N>1

(E\F)(f) >~ 1N§\§|§2N(5)f(5)-

We can then define the norms for the space B on each atom. The simplest
norm giving the appropriate decay would be a weighted space z~!=¢L? and

this is the main motivation for our “strong” norm B!. Unfortunately, some
interactions produce outputs that are not bounded in this norm around a 2D
resonant sphere. To account for this, we also introduce another kind of atoms,
the “weak” atoms, bounded only in B? that barely fail to be in 2~'L?, but are
essentially concentrated on the 2-dimensional resonant spheres. Finally, each
atom is allowed to be a combination of the two above types:

Il = sup [|QxPNfllBxn:
X-N>1
ol = lollsy ez, =, 0f {lonllsy, + o2l )
We refer to Definition 4.1 for the precise definition of the Z norm and to
Lemma A.5 in Appendix A for the proof that these norms yield the desired
integrability upon application of the linear flow.

1.2. Statement of the main result. In order to state our main result, we
normalize the Euler—-Maxwell system in the following way. Assume the pres-
sures are given by the formulas®

2 2
(110) pe:Pe%a pZ:PZZZ%v

with constants P, and P;. The physical parameters are then the effective ion
and electron temperatures

kpTe =noFe, kpTi=noZF;,
where kp denotes the Boltzmann constant, with corresponding electron and

ion thermal speeds*

no P kpTe nolP;Z kpT;
‘/e = = s ‘/Z = = .
Me Me M; M;

3In fact, our approach allows us to treat any sufficiently smooth barotropic pressure law,
in particular, the typical power law p. ~ nJ¢ for some 7. > 0 and similarly for p;. We use
the particular quadratic laws for the pressure here only for the sake of concreteness and since
it minimizes the nonlinear terms we have to consider.

“These correspond to the speed of inertial (linearized) waves if one neglects the electro-
magnetic field.
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We also have the Debye length

1 o Z’I”Lo 2 1 1
-t 2] w0 2]
X, - e T T R TR

The Euler-Maxwell system can be adimensionalized to depend only on
three parameters: the ratio of the electron to ion masses (per charge)

(1.11) €= Zm./M;,
the ratio of the temperatures
(1.12) T:=P./P,=ZT.]T;,

and the (normalized) ratio of the speed of light to the ion velocity

(1.13) C@:s§§:§%wﬁgzigj
More precisely, let
_4me? 4o Ze?
V=T BT

and

ne(z,t) =no[n(Az, Bt) + 1],  mni(a,t) = (no/Z)[p(Az, Bt) + 1],
(1.14)  we(x,t) = (B/Mv(Az, Bt), vi(z,t) = (B/N)u(Az, Bt),

E(z,t) = (4meng/N)E(A\z, Bt),  B(z,t) = (cM;B/(Ze))B(\x, Bt).

The parameter §3 is the ion plasma frequency, and 5/A = V; is the ion thermal
velocity. In terms of n,v, p,u, E, B, the system (1.1)—(1.2) becomes

on +div((n+ 1)v) =0,
e(@w+v-Vo)+TVn+E+vx B=0,
Orp + div((p + 1)u) = 0,
(Opu+u-Vu) +Vp—FE —ux B =0,
4B+V xE=0,

G
€
div(B) =0, div(E)=p—mn,

(1.15)

WE — 2V xB=|[n+1)v—(p+1)u],

where ¢, T and Cj have been defined above. We will assume throughout the
paper that

(1.16) e <1073, T € [1,100], Cy > 6T.
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We will make two additional simplifications. Using the system (1.15) it is
easy to see that

O[B—eV xv] =Vx[vx(B-eVxv),

Hh[B+Vxul =V x[ux(B+Vxu).
Therefore, “generalized irrotational flows” with the property that
(1.17) B=eVxv=-Vxu

are naturally preserved for all time. See Proposition 2.1(iii) below for precise
details.
Our main theorem is as follows:
THEOREM 1.1. Assume (1.16). Let Ng = 10* and assume that
(1.18) 1(n% 0%, 0%, 1, B2, BO) | e + 1|(n°, 0%, p°,u®, E°, BO)[| 2 = 60 <,
. div(E®) +n® — p° =0, B =¢cV x 0¥ = -V xuf,

where § = §(Cy,T,e) > 0 is sufficiently small and the Z norm is defined in
Definition 4.1. Then there ezists a unique global solution (n,v,p,u,E, B) €
C([0,00) : HN0) of the system (1.15) with initial data

(n(0),v(0), p(0), u(0), E(0), B(0)) = (n”,2°, p°, u®, E°, BY).
Moreover, for any t € [0, 00),
div(E)(¢) + n(t) — p(t) = 0,
B(t) = eV x v(t) = =V x u(t) (generalized irrotationality)
and, with = 1/100,
(1.20)
1(n(t), 0(), p(1), ult), E(t), B(E))l| v

+ sup (1+8)72|(Dgn(t), Dg(t), D p(t), Dyu(t), Dy E(t), Dy B(#)| 1 < o-
o] <4

(1.19)

Our main result demonstrates that even though the Euler—-Maxwell sys-
tem (1.1) and (1.2) is much more complicated than the pure Euler system for
a neutral gas, it is in fact more stable in the sense that global smooth solutions
can persist globally without any shock formations. This is a stark and surpris-
ing contrast to Sideris’s result for the pure Euler equations [44]. Our method
is also valid for general pressure laws, the Euler—Poisson system as well as a
relativistic Euler—-Maxwell system.

Remark 1.2. We make a few remarks about the assumptions in Theo-
rem 1.1.
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e Condition (1.16) is needed for our careful analysis of the dispersion rela-
tions that appear in the study of the linearized system (see Lemma A.4
in Appendix A). It is consistent with the relevant physical ranges of the
parameters.

e Our hypotheses imply, in particular, that the perturbation is electrically
neutral, i.e.,

/RB [Zno(1 + p°(@)) = no(1 + n°(2))] dz = 0.

This is, however, forced by (1.2) if we assume that the electric perturbation
is integrable.

e The smallness assumption is needed: large deviations from an equilibrium
do create shocks [23].

1.3. Simplified models. The blow-up result of Sideris for the pure com-
pressible Euler equations [44] can be explained from the fact that small ir-
rotational perturbations of a constant background for the pure compressible
Fuler equations satisfy a quasilinear wave equation without null-structure of
the form

(1.21) (D — A)a = Q(a, Vo, V2a),

where « is related to the unknown and the right-hand side denotes a quadratic
nonlinearity in up to two derivatives of «. This type of equation has slow decay
of linear waves (decay like 1/t) and strong resonances, and therefore blow-up
or formation of shocks is expected.

The Euler-Maxwell system (1.15) contains a nonlinearity Q similar to the
pure compressible Euler case. However, due to self-consistent electromagnetic
interaction, the linearized Euler—-Maxwell system exhibits much more complex
and subtle linear and bilinear dispersive effects than the wave equation. The
main task in the present work is to systematically track down and exploit such
dispersive effects mathematically to preserve smoothness globally in time and
prevent shock formation.

In order to put our result in the right context as well as to understand
the wealth of dynamics involved in small perturbations of (1.1)—(1.2), we need
to introduce some intermediate models. The Euler—-Maxwell system (1.1) and
(1.2) is such a “master equation” describing very rich and complex plasma dy-
namics that it contains several well-known simplified models in plasma physics.
For instance, in all physical situations,®> m, < M;. It is then natural to for-
mally set e = 0 in (1.15), which leads to simplified one fluid models for either

5Indeed, the ratio me/M; is no bigger than the ratio of the electron mass to the proton
mass that equals 1/1836.
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ions (M; = 1, me = 0) or electrons (M; = oo, me, = 1). Moreover, if all the
velocities are much smaller than the speed of light, then Cj, > 1. Formally
setting® C, = co and B = 0 replaces the Maxwell equations by the simpler
Poisson equation. We refer to [7], [8] for other examples.

In the following, we will consider the simplified models in a form that
is consistent with the reformulation (1.15) given appropriate approximations.
This might look somewhat different from the classical form of these models.
However, after an appropriate rescaling the equations should be the same up
to cubic and higher-order terms, which can be treated easily.

1.3.1. Single-fluid models. The simplest model is the Fuler—Poisson model
for the electrons

on + div((1 +n)v) =0,
(1.22) O +v-Vu+Vn=Vo,
A¢p = n.

Here the magnetic field vanishes B = 0, and the ions are treated as motionless
with a constant density and only form a fixed charged background. Such a
simplified system is used for describing Langmuir waves in the two-fluid theory.
After a suitable change of unknown, (1.22) can be reformulated as

(1.23) (O — A +1)a = Q(a, Va, VZa).

The linearized Euler—Poisson system for irrotational flows is no longer the
acoustic (wave) equation as in the pure Euler system (1.21), but the Klein—
Gordon system with “mass term” created by the plasma frequency due to to
the electrostatic interaction. Taking advantage of the much better properties of
=3/2 absence
of quadratic resonances), global smooth irrotational flows were constructed in
[19] via the normal form method of Shatah [43]:

Klein-Gordon equations (faster time decay of linear waves like ¢

THEOREM 1.3 (Stability of a neutral equilibrium solution [19]). Solutions
of equation (1.22) with initial data (n°,v%) that are small, smooth, neutral and
wrrotational in the sense that

/ n®(z)dx = 0, vV x' =
R3

remain globally smooth and decay to 0 in L™ ast — +o0.

The neutral assumption was later removed in [15], and this result was
extended to two spatial dimensions independently in [25], [38] (see also [28],

SThis is called the electrostatic approzimation.
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[29]). Theorem 1.3 was the first positive result indicating that the disper-
sive effect alone in the two-fluid theory may prevent shock formation,” and
it started an investigation to understand to which extent the introduction of
electromagnetic forces could stabilize the full Euler—-Maxwell system.
Recently, further progress was made in this direction in the study of an-

other simplified model: the Euler-Poisson equation for the ions:3

Op + div((1 + p)u) =0,
(1.24) Ou+u-Vu+Vp=-Ve,
—Ap=p—¢.

Here the electron dynamics with constant temperature is decoupled from the
ion dynamics via the Boltzmann relation. The model equation then becomes

(1.25) (0 — A+ (=A)(1—A) ) a =|V|Q(a, Va).

This system has intermediate behavior between (1.21) and (1.23). The lin-
earized solutions decay slowly (like t=4/ 3) and create many strong degeneracies
near the zero frequency, where the dispersion relation is similar to the wave
dispersion up to third order (see \; in Lemma A.4). Nevertheless, the first and
third authors were able to obtain an analogue of Theorem 1.3 for perturbations
of a neutral equilibrium by using a variation on the normal form method, con-
trolling bilinear multipliers with rough coefficients using arguments inspired
by [24]. Here, a crucial property is the fact that the nonlinearity is an exact
derivative, which helps compensate for the degeneracy at the 0 frequency.

1.3.2. One-fluid models with magnetic fields. Both systems (1.22) and
(1.24) can be reduced (under the irrotational assumption) to a scalar quasilin-
ear equation. This is no longer the case for one-fluid models with nontrivial
magnetic fields, which yield quasilinear systems with different speeds. Bilin-
ear interactions in quasilinear systems generically create resonant sets of 2-
dimensional spheres in the phase space, which are very challenging to control.
This was first studied in [13] for the case of semilinear systems of Klein-Gordon
equations with different speeds (see also [11] for a study of a system with differ-
ent masses) and led in [14] to the first construction of global smooth solutions

"Another way to prevent shock formation is to introduce exponential damping of the
perturbation via dissipation or relaxation (see, e.g., [41]). We will not discuss this at all in
this paper.

8In many works (including [21] and [12], [22], [37]), the Poisson relation in (1.24) is replaced
by

—Ap=1+p—e”

but, for small perturbations, this agrees with (1.24) up to nonlinear corrections that can be
easily handled.
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for the Euler-Maxwell equation for electrons,
on + div((1 +n)v) =0,
ov+v-Vo+Vn=—[E+vx B,
OB+ V x E =0,
OWE —CV x B=(1+n)v,

(1.26)

with constraints div(B) = 0 and div(E) = n.

THEOREM 1.4 (Stability in the Euler-Maxwell system for electrons [14],
[26]). A solution of (1.26) with initial data (n°,v°, EY, B®) small, smooth, com-
pactly supported, neutral and irrotational in the sense that

/ n®(z)dz = 0, B2)dz =0, Vxv'+CB"=0
R3 R3

remains global and smooth and decays to 0 in L.

This was first shown in [14] under additional generic conditions on the
parameters. Later in [26], the generic condition was removed and a stronger
(integrable) decay was obtained, providing a robust approach even in the quasi-
linear case. The model system is

(O — A+1)a = Qi(a, B, Va, V3, V3a, V),

(1.27)
(att - CA + 1) ﬁ = Q2(aa Ba VOZ, Vﬂa VQOZ, v26)

It is important to note that the speed of the electron fluids is different from the
speed of the magnetic field, so that new analytical tools are needed to estimate
the 2-dimensional resonant sphere in the phase space. The main result of [26] is
the natural analogue of Theorem 1.3, and it is the foundation of the approach
we use in this work. Note that in this case, we also need to introduce a decay
condition on the initial data in order to be able to perform a more refined
analysis of the solutions.

1.4. Organization of the paper. In Section 2, we obtain a classical local
well-posedness result in the energy space. In Section 3, we reduce the Euler—
Maxwell system (1.15) into a quasilinear dispersive system and identify the
linearized system, together with the main structure of the nonlinearity. In
Section 4, we introduce the function space Z (see 4.5) and prove the main
Theorem 1.1 assuming boundedness of the relevant bilinear integral operators
as in (1.6)—(1.9). In Section 5, we study the case of nonresonant interactions
for localized atoms. Sections 6, 7, and 8 are then devoted to the study of the
resonant interactions.

In Section 6, we study Case A resonant interactions. We first make use of
an efficient parametrization p?#** in (6.5), (6.9)—(6.11), then control precisely
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the output of interactions of “atoms” by carefully designed B,i ; norm defined
in (4.5) as well as additional L? orthogonality argument in the spirit of [26].

In Section 7, we study Case B resonant interactions. We make use of
a precise analytic characterization of Case B (Lemma 7.2), decay estimates
Lemma A.5, as well as an orthogonality argument to control the L? norm to
complete the analysis.

Section 8 is devoted to the study of Case C. We take advantage of the
geometry of angles between 77, £ and £ —n to obtain extra regularity to overcome
the singularity near zero frequency.

Finally, in Appendix A, we isolate relevant information on the structure
of the dispersion relations A;, A and A, and provide various stationary-phase
estimates that are needed throughout the proof, and in Appendix B we classify
the quadratic resonances that may appear.

Acknowledgments. The third author expresses his thanks to B. Texier and
A. Cerfon for interesting discussions and helpful references. We would also like
to thank Yu Deng for valuable discussions that clarified several arguments.

2. Energy estimates and the local existence theory

The local existence theory for (1.15) is based on energy estimates. These
in turn are obtained from the physical energy. The (local) energy identity
reads
Ie + div [Je +Ji + Jp] = 0,

2 2 2 2 £ (2 B2
n w[*  p ul* |E]* Gy |B
=7 e L p BT S [P
¢ 2+5(n+)2+2+(p+)2+2+8 5
v|? ul? Cy ~ =
Je = {Tn+6|2} (n+1)v, J;:= {p—i— |2‘} (p+Du, Jp:= ?bE x B.

From this, we obtain our higher-order energies. For any (n, v, p, u, E, B) e HV,
we define

Evi= Y /R [T1Dnf + &(1 + ) [ Do + | D} pf?
(2.1) [vI<N
S S
+ (o )IDYu? + DYER + \Dy B da.

The following proposition is our local regularity result:
PROPOSITION 2.1. (i) There is 81 € (0,1] such that if
(2:2) 1(n°, 0%, p%,u%, E°, B%)| s < 61,

then there is a unique solution (n,v,p,u, E, B) € C([0,1] : H*) of the system
(1.15) with

(n(0),v(0), p(0), u(0), E(0), B(0)) = (n°,2°, p°, ", E°, BY).
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Moreover,

Sup 1 (8), v(#), p() u(t), E(t), BE))llga < [[(n,0°, p°u®, B2, B)| g
€|0,

(i) If N >4 and (n°,0°, p°,u%, E°, BY) € HN satisfies (2.2), then
(n,v,p,u, E,B) € C([0,1] : HY),

and /

(2.3) ent) —ex®) < [ A(s)En(s)ds
for any t <t' € [0,1], where t

(2.4)

A(s) s = [[Va(s)|e + [v(s) Lo + [[Vo(s)llLee + [[Vo(s)ll Lo
+llus)llzee + [IVu(s) o + VE(s) ||z + |B(s)]|z + [|[VB(s)] 2.
(iit) If (n°, 29, p°,u°, B0, B®) € H* satisfies (2.2) and, in addition,
div(E®) +n® — p0 =0, B =¢eV x 0¥ = -V xuf,
then, for any t € [0,1],
(2.5)  div(E)(t) +n(t) —pt) =0,  B(t)=eV xv(t) = =V x u(t).

Proof of Proposition 2.1. We multiply each equation by a suitable factor
and rewrite the system (1.15) as a symmetric hyperbolic system,

3 3
TOn+T Z vpOgn + T (1 +n) Z Opvg, = 0,
k=1 k=1
3
e(1+n)0w; +T(1+n)oin+¢e(1+n) Z v OkV;
k=1
3

=—(1+ n)E’j —(14n) Z € jmk Vm B,
k,m=1

3 3
Op+ Y ukOrp+ (1+p) D Orup =0,
k=1 =1
3

(1+ p)Oruj + (L+p)0jp + (L+p) Y upOpu;
k=1

3
(1—|—p)E + 1+p Z Cjmk Um By,
m:

C
—batB —i-? Z Ejmka Ek—O

k,m=1

. O 8 -
oE; — =L > €jmk OmBr = (1+n)v; — (1 + pu,
k,m=1
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Then we apply Theorems II and IIT in [32] to prove the local existence claim

in part (i) and the propagation of regularity claim in part (ii).
To verify the energy inequality (2.3) we let, for P = D), |y| < N,

- C -
g = /3 [T|Pn12+g(1+n)|m|2+|Pp|2+(1+p)ypu|2+|PE|2+?”|PB|2} dz.
R
Then we calculate
d / ! ! !/
2€p =1p +1lp +1lp + Ip + Ip + 1T + IV,

where

Ip = 2T Pn - POyn dx, = / 2Pp - POipdzx,
R3 R3

3 3
IIp .= Zs/ oin - Pvj - Pvjdz, I = Z/ Op - Puj - Pujdx,
=1 'R j=17R
3
IIlp := Ze/ 2(1+n) - Pv; - PO, dx,
=1 7R

3
1y = Z/ 2(1+ p) - Pu; - POy, dx,
j=1"F

3 3
. s Cy =~ .
IVp = ; /]RS 2PE; - PO,E; dx + ; /R3 2—PB; - PO,B; dx.
We use the general bound
(2.6) 1D2f - Dy gliee S IVafllzeellglmm + 1Vagllooe £ ar,

provided that |p| + |p'| < M + 1, M > 1, and |p|,|p/| > 1. Using also the
equations, we estimate

3
1p+z/ 9T Pn - (1 +n) - Poyo dz| < A®t)|(n,v, p,u, B, B)|2,
k=17 R?

Hp\ < AW)(n,v, p, s B, B)|,

3
=17

< AW (n,0, p,u, B, B) |3
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and, similarly,

3
">+ Z /11&3 2Pp - (14 p) - Pogup dz| S A(t)||(n, v, p,u, E, B)H%IN,
k=1

IISD 5 A(t)H(nv v, P, U, E’ B)”%{Nv

3
I + Z/RS [2P8jp- (1+p) - Puj —2PE; - Pu; - (1+ p)] dx
j=1

5 A(t)||(n,v,p,u,E, B)H%IN

In addition,

3
’1vpz/RSQPE]-. (Pv; - (14 1) — Puj - (14 p)] da
=1

S AW®)I(n, v, p,u, B, B)|[3x-

Therefore,
88| S AW (1,020, B, B) By
and the bound (2.3) follows since
En = Z Ep ~ ||(n,v,p,u,E,B)H§{N-
P=Dg, [y|<N

Finally, to verify that the identities (2.5) are propagated by the flow, we let
X :=n—p+div(E), Y :=B—¢eV xu, Z:=B+V xu.
Using the equations in (1.15) we calculate
3
X =0m —Op+ > 00,
j=1

3 3

== 0l +n)v; — (L+p)uy] + D 05[(1 +n)v; — (1 + p)uy] =0,
j=1 i=1

therefore X = (0. Moreover

3
o> 0kBk) =0,
k=1
therefore

3 3 3
S owB=0, Y oYr=0, Y Zp=0.
k=1 k=1
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Finally we notice that
Y =V x(vxY), 0Z =V x (ux2).

Using energy estimates it follows easily that Y = 0, Z = 0, as desired. ([

3. Derivation of the main dispersive system

The main part of this paper is devoted to obtain global time integrability
of the function A defined in (2.4), so as to be able to propagate energy control
using (2.3). In order to do this, one needs to turn the system (1.15)—(1.17)
into a quasilinear system of dispersive equations. This is the purpose of this
section. The main results are summarized in Proposition 3.2.

In the rest of the paper, we use the standard convention that repeated
indices are summed. For £ € R? and a = 1,2, 3, we define

IVIE) ==&l Ralf) :=i&a/lEl,  Qapl(§) =1 €ayp &/I€],

(3.1)  Hy(&):=+1+[¢2%  H.(¢):= Y2 /1+ T
Ap(€) := e V21 + e 4+ Gyle)2.

By a slight abuse of notation, we also let |V|, Ry, @, Hi, He, Ay denote the
operators on R? defined by the corresponding Fourier multipliers. Notice that

Q*=Q and QA = |V|71(V x A) for any vector-field A.

Closer inspection of the system (1.15)—(1.17) shows a decoupling at the
linear level of the magnetic unknowns curl(E), B and the electrostatic (Euler—
Poisson) unknowns n, p, div(v) and div(u). More precisely, we may define

2y == A|V|IQB —iQ*E,  h:=—|V| Mdiv(v), g¢:=—|V| div(u).

Recalling that B = eV xv = —V x u and div(E) = p—mn, the functions Uy, h, g
together with n, p allow us to recover all the physical unknowns, i.e.,

B

20, | V|QRe(Uy),

2
= “Ih+ ZATTRe(U
(3.2) v=V|V] —i—E , Re(Uy),

VIV|Ttg — 2A, 'Re(Uy),
E=-V|V|2[p—n]—2Im(U).

u

Let
Ay = 2A, "Re(Up o).
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In terms of n, h, p, g, Up the system (1.15)—(1.17) becomes
(3.3)
on — |V|h = =04 [nRah] — (1/€)0n [RA4]
Op — |V]g = —0a [pRagl + 9 [pAa] ,
oh + V|7 H2n — e V| p = —(1/2)|V| [Rah Rah)
— e V| [RahAa] = (e72/2)|V| [AaAa]
Qg — V™' + V|7 Hip = —(1/2)|V|[RagRag]
+ V[ [RagAa] — (1/2)|V][AaAd],
OiUpq + iMyUp o = f(i/Q)Qiﬁ[nRﬁh — pRgg + 5_1nA5 + pAgl,

where the left-hand sides of the equations above are linear in the variables
n, h, p, g, Uy and the right-hand sides are quadratic.
We make linear changes of variables to diagonalize this system. Let

N 81/2\/(1+5) (T+)A+/(1—e)— (T —)A) +4e
(3.4) 2
N ._5_1/2\/(1%) T+ = (1—e)— (T —o)A) +4e
1 T 2 b
such that
(3.5) (A2 —H2)(HZ-A})=¢"',  AJ—Hi = HZ—A}.
Let
AZ -
(3.6) R:= my
and notice that
(3.7) A2 H?2=¢"Y2R,  HZ-A2=c"'2R7L
Let
1
Ve = W[— 2V Aen + RIV| T Aep — ie'?h + iRg],
(3.8)
1
Ui == ST [e2RIV|™ A + [V Aip + ie' /2 Rh + ig].

Note that, since R(0) = /z and p — n = div(E), U, is not singular at the 0
frequency, and since A;(0) = 0, neither is U;. Using the system (3.3) it is easy
to check that the complex variables U,, U; and U, satisfy the identities

(8t + ZA@)U@ — Ne,
(3.9) (0 +iM)U; = NG,
(Or + i) Up o = Npa
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where
(3.10)
R(N,) = 2\;\% [e'2(nRah) — R(pRag) + e *(nAq) + R(pAa)|,
I(N) = 4\/1V+|_R2 [e7#2(cRah + Aa)(eRah + Ad)
- R[(Rag - Aa)(Rocg - Aa)]]a
ROVG) = A V2 R(RoR) + (pFag) + <™ R0 da) — ()]
S(WN;) = 4\/% [e7*2R[(eRah + Ad)(Rah + Aq)]
+ (Rag — Aa)(Rag — Aa)}a
§R('/\/'b,oé) = 7

S(MNya) = —(1/2)Q2 ofB {nR/gh pRsg+ e 'nAg +,0A5] .

The system (3.9) is our main dispersive system, which is diagonalized at
the linear level. To analyze it we have to express the nonlinearities N, N,
and N, o in terms of the complex variables Ue, U;, and Up,. Indeed, it follows
from (3.8) that

- T T ),
- T+ T,
(3:11) h= 2%:/;2 (Ue — Te) + _l%/;f(m -y,
9= s (U = T2) + = (U = T,

Ao = Agl(Ub,a + Ub,oz)-
We summarize now the main results we proved in this section. Recall first
the definitions of the main multipliers
(3.12)

Ac(€) = 51/2\/“ )+ (T +)lg2+ =g+ o e

VRPN [t L BT
A(E) = /2T =+ P,

(L—o)+ (T—o)eP)’ 4
; ,
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and
IVI©) =&, Ral&) =i/,

. Qupl€) =1 €ays &/IEl,  Hi(E) == /1 + ¢,
H.(¢) =1+ T[],
R(€) = [Ae(&)® — Ho(§)MV2[H-(€)* — Mi(€)* V2.

The lemma below describes symbol-type properties of some of these mul-
tipliers.

LEMMA 3.1. In R3, we have
(3.14) A2>HZ>Hi > A7 > |V, A7 S|V

and
(3.15)
A2 H?2=¢"'2R, ~ H?-A?=¢"'2R7!

Ae(€)? = Ho(€)” = Hy(£)* — Ai(§)?
2

(1—&) + (T —&)eP+ /(1 = ) + (T - 2)[¢2)” + 4e.

In addition, for a = (a1, a9, as3), we have the symbol-type estimates

IDEAE)| + [DEH(E)] + |DE HL(E)] Sjay (1+ (€)',
(3.16) IDENE)| + [DEIVI(E)] Spay I
IDER(E)] Sjog (1+ €)1,

Proof of Lemma 3.1. The inequalities in (3.14) and the identities in (3.15)
follow directly from definitions. The symbol-type estimates in (3.16) also follow
from definitions and the additional formula

/
R(¢) = 27 . O

(=) + (T —e)e2+ /(1 — &) + (T —o)[¢]2)” + 2

The following proposition is the main result in this section.

PROPOSITION 3.2. With Ny = 10* as in Theorem 1.1, assume that

(n,v, p,u, E,B) € C(I : H0)
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is a solution of the system (1.15)—(1.17), where I C R is an interval. Let
A, Niy Ay, |V, Ro, Q, Hi, H-, R denote the operators defined by the correspond-
ing multipliers in (3.12)~(3.13). Let

h:= —|V| " div(v), g = —|V| tdiv(u), Ay = |V QapBs,

1
Ve i

e2R|V|" Ain + |V Aip + ie'*Rh + ig],

— 2V Aen + RIV| " Ap — ie'/?h + iRg),
(3.17)

U. = 1 [
T 2V1+ R?
Up := [Mp|V| 7' QB — iQ*E] /2

and, for a € {1,2,3},

Uet = U, Ue— = 7@; Uir = U;
Ui- = ﬁia Ubta := Ub,on Up—a := Upa-

)

(i) Then U.,U;, Uy € C(I : HNO) and, for anyt € I,
(3.18) o
[Ue(O) | grvo +[Us (O] grve +Us(8) | gvoe SN (n(2), 0(2), p(2), u(t), E(t), B(£))| grvo-

Moreover, the functions Uo :R3x I = C, U; :R3x I = C, Uy, :R3x I - C?
satisfy the dispersive system

(3.19)  (Or +ihe)Ue =N, (0r +iM)U; = N; (O + iAp)Up = N,

where the quadratic nonlinearities N, N;, Ny are given by

FNNED = X [ meuul&mTue = 0,00, n,t)

)LL:VEIO

(20)  FANED=c X [ miul&nTuE —n. 0T, (n.1) d,

w,vEIpy
FONED =c 3 [ muul& )€ =0, 0T, (0,) dn.
3
M?VGIO R
The set Iy is given by
(3.21) Ty :={e+,e—,i+,i—, b+ 1,b+2,b+3,b—1,b—2,b— 3},

and the multipliers me,, , : R3 x R3 — C, My R3 x R® — C, My -
R3 x R? — C? are as in Lemma 3.3 below.
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(ii) The physical variables (n,p,v,u, E,B) can be expressed in terms of
the complex variables U,, Ui, Uy according to the formulas

—|V[e=1/2 — | |VIET2R —
n=———— (U +U;) + ——=—(U; + Vi),
V14 RQAe( V1+ RZA; ( )
VIR T VI 7
:7U6+Ue JriUi Ui,
P = it Ren, AV e T )
2
v=V|V|th+ gAglRe(Ul,),
s —1/2 o _ie12Rp L
(3.22) h= e (Ue — Ua) + ——— (Ui — Th),
\/1+R2( ) \/1+R2( )
u = V|Vrlg — 2Ab_1Re(Ub),
—iR _ —i —

Q
I

———5Ue = Ue) + ——=; (Ui = U),
\/1+R2( ) \/1+R2( )
E = =V|V|?[p—n] —2Im(Uy),

B =2A,Y|V|IQRe(Uy).

Proof of Proposition 3.2. The claim (3.18) is a consequence of (3.16) and
the observation that R(0) = £!/2. The diagonalized dispersive system (3.19)
and the identities (3.22) were derived earlier; see (3.9)—(3.10), (3.2), and (3.11).
It remains only to prove the formulas (3.20), showing that the nonlinearities
Ne, N;, Ny can be expressed as bilinear forms in terms of the complex variables
Ue, Ui, Up. This is easy to see by inspecting the formulas (3.10) and (3.11). O

The precise formulas of the multipliers me., ., Mi;u,, and my,,,, are com-
plicated. However, we do not use these formulas in the rest of the paper. We
will only use the simple observation that these multipliers can be expressed
as suitable products of multipliers satisfying inequalities of the Hoérmander—
Michlin type. More precisely, for any integer n > 1, let

(323)  8":={q:R*>C: |glsn:= sup sup [¢]1*|Dgq(&)] < oo}
£ER?\{0} |al<n

and
(3.24)

M:={m :R¥xR*—C: m(&n)=q1(€) - q(E—n)-g(n), illlgg}llqnllswoél}.
neql,2,

LEMMA 3.3. The multipliers me,,,(§,m) and my a0 (€,m), o € {1,2,3},
can be written as finite sums of functions of the form

(3.25) A+ [EHY2 - m(E,n), meM.
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Similarly, the multipliers m;.,,,,(€,n) can be written as finite sums of functions
of the form

(3.26) €l -m&m),  meM.

Remark 3.4. We notice that the multipliers m;,, , satisfy better estimates
at £ = 0 than the multipliers me;, , and my q,,,,; in particular, these multipliers
vanish at the origin. This is an indication of a certain null structure of the
system and is important in the analysis in Sections 7 and 8.

Proof of Lemma 3.3. The formulas (3.25) and (3.26) follow from the iden-
tities (3.10)—(3.11) and Lemma 3.1. Indeed, using (3.11) and Lemma 3.1, we
notice first that the functions n, p, h, g, A, can all be written as finite sums of
Calderon—Zygmund operators applied to the complex variables U, Ui+, Up+q,
i.e., finite sums of expressions of the form

TUes, TUis, TUprs, where Tf(€)=q(€)f(€) for some g e S

Then we again use Lemma 3.1 and the identities in (3.10) to complete the
proof of the lemma. O

4. Main definitions and propositions

In this section we define our main function spaces and state two key propo-
sitions that concern properties of solutions of the dispersive system (3.19).
Then we show how to use these propositions, together with the local regularity
theory in Section 2 and linear dispersive bounds, to complete the proof of the
main theorem.

We fix ¢ : R — [0, 1] as an even smooth function supported in [-8/5,8/5]
and equal to 1 in [~5/4,5/4]. For simplicity of notation, we also let ¢ : R? —
[0, 1] denote the corresponding radial function on RY, d = 2,3. Ford € {1,2,3},
let

o) = pr () (2) = p(l2]/2") — (jx|/257) for any k € Z, x € R,

o1 = Z ©m for any I CR.
melnZ

Let

J:={(k,j) €EZXZy: k+j>0}.
The restriction j + k > 0 is consistent with the uncertainty principle. In
addition, we only control j > 0 since we are primarily interested in large
spatial scales. For any (k,j) € J, let

P(—o0,—k] (T) ifk+j=0and k <0,
gE(-k) () == { V(=000 (¥) if j=0and k >0,
wj(x) ifk+j>1andj>1.
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Notice that, for any k € Z fixed,
~(k
> g=1
4>~ min(k,0)

For any interval I C R, let

~(k ~(k

)= Y ).

Jel, (k.j)ed

Let Py, k € Z, denote the operator on R? defined by the Fourier multiplier
€ — (). Similarly, for any I C R, let P; denote the operator on R? defined
by the Fourier multiplier £ — ¢7(&).

Definition 4.1. Let

(4.1) B :=1/100, a:= /2, v:=3/2—4p5.

We define

(42)  Z:={feL’®®): |fllz= suwp |8"(x) Puf(2)|s,, < oo}
(k,)ed

where, with k := min(k, 0) and k. := max(k,0),

(43) lols., = inf [lnllsy, +llozllzz -
(4.4) 1hlgy , = (2% + 210%) [2(H8i ||| 1o 4 2270k | e ]
and

hll gz = 210 (2% 4 21%) 2095 Bl + ]

(45) +27 sup R72|1h| 1 (eo.my) )
Re[279,2k], o eR3

The Z norm is our main tool to capture the dispersive character of solu-
tions. It has been introduced by two of the authors in [26], in the context of
Klein—-Gordon system with different speeds. It has two basic properties: (1)
it gives integrable decay of the solution (see Lemma A.5), and (2) it can be
propagated by the nonlinear flow (see Proposition 4.3). It is also invariant
under the action of Calderéon—Zygmund operators, which is a useful feature
given the structure of the nonlinearities described in Proposition 3.2.

To understand the Z norm, one can think that the Bli, j is the easiest norm
that one would want to use; in particular, its z-integrability of the L?-norm is
sufficient to obtain the needed 1/t decay after we apply the linear flow. How-
ever, the Bl%’ ; norm is forced upon us by the presence of space-time resonances.
It has slightly too weak decay, but this is compensated for by the last term
that captures the 2-dimensional property of the support.
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The component B]%,j is important only at middle frequencies |k| < 1,
when j is large; the factor 21%*l in front of the norm guarantees that the B,i j
norm becomes less and less relevant when |k| increases. One should think that
this norm is used to measure functions that have thin, essentially 2-dimen-
sional Fourier support contained in a neighborhood of the set of space-time
resonances.

Finally, the weights in k in (4.4) are chosen such that at the uncertainty
principle k + 7 = 0, all norms should be comparable for a normalized bump
function supported essentially at frequency ~ 2* and distance < 27 from the
origin.

The definition above shows that if || f||z < 1 then, for any (k,j) € J, one
can decompose

(4.6) B Pf = (2°% 4+ 21%) (g 4 p),
where?

(k) _ 5.5k
(4.7) 9=9 Pla ey h=h @y
and

25 gl 2 + 202K g e S 1,

4.8 _B)i ~ ; o5 _

U8 20D 4+ Bl +29 s Rl s S 270N,
RE[Q_J72k]7€OER3

In some of the easier estimates we will often use the weaker bound, obtained

by setting R = 2*,

2050 gl 2 + 20270 g]| e S 1,

(4.9) . - .
201l 2 + ([P oo + 277 |[B]| 2 < 278,

We are now ready to state our main propositions which concern solutions
U = (U, U;,Up) of the system (3.19)—(3.20) derived in Proposition 3.2. We
claim first that smooth solutions that start with data in the space Z remain
in the space Z, in a continuous way. More precisely:

PROPOSITION 4.2. Assume Ny = 10%, Ty > 1, and U = (U,,U;,U) €
C([0, Ty : HN°) is a solution of the system of equations (3.19)—(3.20). Assume
that, for some ty € [0, Tp),

(4.10) etole 7 (to) € Z for o € {e,i,b}.

9The support condition (4.7) can easily be achieved by starting with a decomposition
&;k) Py f = (2°F +2'%%)71(¢/ 4 A’) that minimizes the By ; norm up to a constant and then
(k) and h:=h'- g%

redefining g := 9"~ 9,7, . li—Lg+1)"
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Then there is
r=7(To, s [ Uy(to)llz, s sup [|Us(t) ) >0

o€{e,i,b} o€{e,i,b} t€[0,To]
such that
(4.11) sup sup Heim"Ug(t)HZ <2 sup HeitOA"Ug(to)Hz,
t€[07T0}m[t07t0+T} Ue{@,i,b} Ue{erivb}

and the mapping t — e U, (t) is continuous from [0,Tp] N [to,to + 7] to Z,
for any o € {e,i,b}.

The proof of Proposition 4.2 is very similar to the proof of Proposition
2.4 in [26]. For any integer J > 0 and f € H°, we define

min —29)n ~(k
Ifllz, == sup 2min©27=20))50) () By f(2)|p, .

k.g)edg
compare with Definition 4.1, and notice that
Ifllz; <Wfllz, W llzs <o 1 o

The main point is show that if t <’ € [0,Tp] N [to,to + 1] and J € Z, then

sSup Heit/Aa Ua(t,) — ¢lthe UO’(t>HZJ
oe{e,ib}

<Ol —t|(1+ sup  sup [ Uy, (s)]2,)%
s€ft,t’'] o€fe,i,b}

with a suitable constant C that may depend only on
To, sup  sup || Us(t)| o, sup || Uy (o) 2.
ocqe,i,b} t€[0,Tp] o€{e,i,b}

This is very similar to the proof of the corresponding estimate (3.2) in [26],
and we refer the reader there for the details.
The key proposition in the paper is the following bootstrap estimate:

PROPOSITION 4.3. Assume Ny = 10%, Ty > 0, and U = (U,,U;,U) €
C([0,Tp] : HN0) is a solution of the system of equations (3.19)(3.20). Assume
that

(4.12) sup  sup \\eitA°Ua(t)]\HNOOZ <4 <1.
t€[0,Tp) o€ {e,i,b}

Then

(4.13) sup sup [T (1) — Uy (0)12 S 62

t€[0,Tp] o€{e,i,b}
where the implicit constant in (4.13) may depend only on the constants T,e,C.
We prove Proposition 4.3 in Sections 5 and 6. In the rest of this section

we show how to use these propositions and the local theory to complete the
proof of Theorem 1.1.
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4.1. Proof of Theorem 1.1. Theorem 1.1 is a consequence of Proposi-
tions 2.1, 3.2, 4.2, 4.3, and a linear dispersive estimate. Indeed, assume that
we start with data (no,vo,po,uo,EO,Bg) as in (1.18), where J is taken suffi-
ciently small. Using first Proposition 2.1, there is 77 > 1 and a unique solution
(n,v, p,u, E,B) € C([0,T1] : H™°) of the system (1.15), such that

(n(0), v(0), p(0), u(0), E(0), B(0)) = (n°,2°, p°,u”, E, By),

(4.14)

div(E)(t) + n(t) — p(t) =0, B(t) =eV xv(t) = =V x u(t), te[0,T1],
and
(4.15) sup [|(n(t), v(t), p(t), u(t), E(t), BE)| ve < 07"

t€[0,T1]

We can now apply Proposition 3.2 and construct the complex variables
U.,U;, Uy, € C([0,T1] : HN0) as in (3.17), which satisfy the dispersive system
(3.19)—(3.20), and the uniform bound

3/4
(4.16) sup (U)o + Vs (Bl o + 1068 1) S 05"

te[0,T1]

Moreover, using the definition (3.17), the assumption (1.18), and Lemmas 3.1
and A.1, we have

(4.17) 1U(0)llz + Ui(0)[| z + [[U(0) ][z < do-

We are now ready to apply Proposition 4.2. Let T3 denote the largest
number in (0,7] with the property that

sup ([l V()2 + N Ui(0) | 2 + [ Un(0)ll 2] < 85"
te[0,T3)
Such a Ty € (0,77] exists, in view of (4.17) and Proposition 4.2. We apply now
Proposition 4.3 on the intervals [0,72(1 — 1/n)], n = 2,3,..., with 6; =~ 68’/4.
It follows that
sup [[le™Ue(t)l|z + e Ui(0) 2 + [le" ™ Up(t)]| 2] S bo-

te[0,1%)
Using again Proposition 4.2, it follows that T5 = 77 and
(4.18) sup ||| Uc(t)]|z + | Ui ()]l 2 + € Up(1) ]| 2] S o

tel0,11

We can now return to the physical variables (n,v, p, u, E, B) Using the
formulas in (3.22), the bounds (4.18), and the dispersive bounds (A.27) it
follows that, for any ¢t € [0,71] and |« < 4,

(1+ )2 Dgn(®) [ + DG p(t) | e + [|Dg ()] o

(4.19) o o a s
+ | Dgu(®) = + | DFE() ]| + | D B(t)] =] < do.
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Recalling the definition (2.4) and the energy estimate (2.3), it follows that

sup En,(t) S (5[2).
tel0,Th]

As a consequence, if the solution (n,v, p, u, E, B) satisfies the bound (4.15) on
some interval [0,77], then it has to satisfy the stronger bound

sup [|(n(t), v(¢), p(t), u(t), E(t), B(t))llrvo S do-

te[()?Tl]

Therefore, the solution can be extended globally, and the desired bound (1.20)
follows using also (4.19). This completes the proof of Theorem 1.1.

5. Proof of Proposition 4.3, I: nonresonant interactions

In this section we start the proof of Proposition 4.3. We derive first several
new formulas describing the solutions U, .

5.1. Renormalizations. Equations (3.19)—(3.20) give
61 0+ iAOTL €D = ¢ X | moynl&mTE — .00, (1) dn

H,VGIO
for o € {i,e,b}. For any u € I, let 1, € {+,—} denote its sign and let
ou € {i,e,b} denote its component, i.e.,

lit = let = Lby1 = Lby2 = Lpy3 =+,

li— = le— = lp—1 = bp—2 = Lp—3 ‘= —,
(5.2) .
Oip = 04— =1, et = O 1= €,
Opy1 = Opyo = Opy3 = Op_1 = Op_2 = Op_3 = b.
Let

Vy(t) := e U,(t), o€ {ieb},
A=l Vu(t) =™ UL(t),  pelo.
Equation (5.1) is equivalent to

(5.3)
d
%[Va(éﬂt)]
—o 30 [ O A Rl € ) V(€ = m Vo 8) di
n,vE€ly
=c 3 FIQOT (Vult), Vou))©)
w,vE€lp

where, by definition,
(5.4)

FIQEH(F ) 1= [, R0 Ae Ol (6 ) € — )
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Therefore, for any t € [0,Tp] and o € {7, e, b},
(5.5)

‘//c\r(g? t) - ‘//;(fa 0)

t , ~ ~ e .
—c Y / / (Ao Rulemn) =Koy, (e VT (¢ . 6V, ) dids.
w,vE€Iy 0 JR3

The desired bound (4.13) is equivalent to proving that

(5.6) Vo (t) = Vo (0)| 2z < 603
for any ¢ € [0,7p] and any o € {i,e,b}. Given t € [0,Tp], we fix a suitable
decomposition of the function 1y ; i.e., we fix functions qo,...,qr+1 : R —
[0,1], |L —logy(2 + t)| < 2, with the properties

L+1

> am(s) =1p4(s), 11 < a0 <1z
m=0

(57) 2m—1’ 2m+1]7

-1 < qr+1 <12y, Suppgm C |
t
gm € C'(R) and / g, (s)]ds <1 form=1,...,L.
0
Recall the conclusions of Lemma 3.3. Using also Lemma A.1 and the

formula (5.5), for (5.6) it suffices to prove the following proposition.

PROPOSITION 5.1. Assume t € [0,Tp] is fized, and define the functions
gm as in (5.7). For any o € {i,e,b}, u,v € Iy, we define the bilinear opera-
tors TZHY by
(5.8)

Flrgme (r.o)(© = [ [ et Ruen-Smlg, (s).Fe—n,5)30n, ) dnds.
R JR3

For any p € Ty, we define functions f, : R3 x [0,Ty] — C,

(5.9) fu=07"QuVy,

where Q. f = }—71(%_]?) for some g, € S0 with ||q,||s100 < 1. We decompose

(5.10) fu= Z Z P[lc’—2,k’+2](95§-i€l) Py fu) = Z fﬂ’,j"
k' €Z j'>max(—k',0) (K.3eg
For any k € Z, let
k; :== min(k, 0), ke = kp :=0.
Then

(5.11) > (1 + 2K)2ke

(klvjl)v(k%j?)ej

<2

~(k) oHs
SOJ' -PkTm/"‘l/(f]l;l,jl7fli)/2,j2) By

for any fized
(5.12) oe{ieb}, pvely (kjeJ, me{0,...,L+1}.
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This formulation and, in particular, the introduction of @, in (5.9) and the
factor (142%)2% in (5.11) are based on the structure of the multiplier in (3.23)-
(3.26) and the fact our norms are invariant under the action of Calderén—
Zygmund operators, as seen from Lemma A.1.

It follows from the definition that

T (f.9) = Aqm(S)i”;”’”(f(S),g(S)) ds,

FITI(f,g"](€) = /R . ¢istho @O =NuEm=Rel . Fr(e — ) g () dy.

(5.13)

For o € {i,e,b} and u, v € Ty, we define also the functions ®7i#* : R3xR3 — R

and ZY 1 R3 x R? — R3,

(5.14)

QT (E,m) 1= Ao (€) = (€ —m) — Au(n) = Ao (€) — 1o, (€ — 1) — o, (1),
ERT(E,m) == (V@776 m) = —1u(VAG, ) (n — &) — w(VAs, ) (n).

In view of Lemma A.1 and the main hypothesis (4.12), we have

(5.15) sup || fu(®) |l rvonz S 1
tE[O,To]

for functions f,, defined as in (5.9). Letting

(5.16) Ef,jj,(s) = e_iSAMf]éL/J/(S)’
it follows from Lemma A.5 that for any p € Zy and s € [0, Tp],

(5.17)
Yo B ) + 1 (8)e2) S min(2~(No~F g(IHF=a)ky
j'>max(—k’,0)
S B (sl S min(@ O 202750 (1 4 )18
j'>max(—k’,0)

sup Dé’fﬁ,’j, (€, 5)‘ S (2ak/ + 210k/)—1 o= (1/2-B)F olpls"

€ER3

Sometimes, we will also need the more precise bounds

(5.18) ||Ef15,j/(3)HL2 + Hflg’,j’(S)HL2 < (2ak/ n 210;4),122%/27(175)]4,
and

5.19 Eff (s)|l e < min(28% 276K (1 4 )= (/4-108)9(1/4-118);"
( ) || fk )] ~ 9

for any (K, j') € J. The last bound follows using (A.21)—(A.25) and recalling
that o € [0, 3.
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To integrate by parts in time (the method of normal forms) we need
suitable information on the derivatives 9;f}, - 1t follows from (5.3) and
Lemma A.6 that, for any (¥, ') € J, u € Zy, and s € [0, Tp),

(5:20)  1Off ) ()l < 2% min[(1 + )71, 2%/2) . mmin[1, 2~ (0S¥
Moreover,

(521) if 2¥ e[27P 2P]and o € {e,b} or 2¥ €(0,2”] and o =1,
then

(5.22) 1@l ) (3) |z S (14 s) 7 HH8/109 K

5.2. Proof of Proposition 5.1. We will prove the key bound (5.11) in sev-
eral steps. The main ingredients in the proof are the estimates (5.15)—(5.20)
above. In this subsection we start by considering some of the easier cases. In
particular, we estimate all the interactions that are not space-time resonant and
reduce significantly the range of the main parameters m, j, k, k1, j1, k2, jo. The
goal is to reduce matters to proving Proposition 5.9. In all the cases analyzed
in this subsection we can control the stronger norm B,‘;’;; see Definition 4.1.

In the first two lemmas we use Sobolev regularity to estimate the contri-
butions that correspond to one of the frequencies k, k1, ko being larger than
the parameter j.

LEMMA 5.2. With D = D(e, T, Cy) sufficiently large, the estimate

~ k M 1% 1% — 4
(5.23) S a+2t|e BTt )|, S20
(k1,91),(k2,52)€T k,j
holds if
(5.24) j < Bm/2+ Njky + D?, where N} := 2N,y /3 — 10.

Proof of Lemma 5.2. We observe that, in view of Definition 4.1,
(525) 3 Pehllpr S (27K +210%) . 239/290/2-0K 50 pp .
3]
Therefore, it suffices to prove that
(5.26)

k k 10k\035/20(1/2—8)k (el 5
. ')%:A)ej(lm )(20% - 210)983/2901/2-8 | ppme (e gy )
1,J1),(R2,72

12
<o Fhm
Recalling the definition (5.16), it is easy to see that
FPT (fly 510 flaa) | (6)

= /R - SO]{;(g)eiSAU(g)qm(s)Ef:hjl (f -, S)Efkyg,jz (77, 5) d'r,ds‘
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Therefore, using Plancherel theorem,
(5.27)
| Perge (st )

o Smin ([ au(IEH, 5, () Bf (3) 1 d.

[ B L 5, Ol S 5, (3) 12 ds).
Using now (5.17) and recalling the properties of the functions g, (see (5.7)),

(5'28) Z (1 + Qk)HPkng%V(flgl,jlafIZQJ‘Q)
(k/‘l:jl)y(k‘%jQ)ej

< 9=(No=4)kt 9—Bm.
2~

It follows that the left-hand side of (5.26) is dominated by
9—Bmo(1/2-f+a)kg3j/2
when k£ < 0 and by
9—(No—15)ko—fmo3;/2
when k > 0. The bound (5.26) follows if j < 8m/2+ (2No/3 — 10)k + D?, as
desired. ]
LEMMA 5.3. Assume that
(5.29) j > Bm/2 4+ Njky + D>
Then, with the same notation as before,

(5.30)

> (14 2F)2k

(k1,91),(k2,j2) €T, max(k1,k2)>3/N|

~(k TR v
Spg' z PkT;?Tl’M, (flill,jﬁ sz,]é)

1
Bk,j

<o,
(5.31)
3 (1 + 2528 | g - pergimr (ff o f ) b
(E1.1), (k2,j2) €T, min(ks ks) <—10j "
(5.32) 2,
and
(5.33)

> (14 282k

(k1,51),(k2,j2) €T, max(j1,52)>103

~(k TR v
B BT (f o Fa)

1
Bk,j

< 9 f'm,
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Proof of Lemma 5.3. Using (5.17), (5.25), and (5.27), the left-hand side
of (5.30) is dominated by

Z (1 + 2k)(2ak + 210k)
(k1,91),(k2,j2) €T, max(ki1,k2)>j/N{

. 934/29(1/2-6)k H BT (fL . fhoga)
2—5m2—(N0_6)j/N6 23j/22(1/2_5)z7

L2

S
which clearly suffices, in view of (5.29). Similarly, the left-hand side of (5.31)
is dominated by

(k1,41),(k2,j2) €T, min(ki,k2)<—10j

) 23j/22(1/2—5)kHPkT%;u,V(fﬁml N

7j2) L2

< 9-fmg=3j . (gak | 210k)23j/22(1/2—5)ﬁ7

which clearly suffices. Finally, using the more precise bound (5.18), the left-
hand side of (5.33) is dominated by

(k1,51),(k2,j2) €T, max(j1,j2)>105

' 233'/22(1/2*»6’)1@Hka%;u:V(f]ghjl, Jiz.j2)

L2
< 9—Bmo—3j . (Qalc i 2101@)239‘/22(1/2—5)%’

which clearly suffices. O

We examine the conclusions of Lemmas 5.2 and 5.3, and we notice that
Proposition 5.1 follows from Proposition 5.4 below.

PROPOSITION 5.4. With the same notation as in Proposition 5.1, we have
~(k) SV (f1 —B*(m+j
i Pe T V(fk17j17f]?2,j2) ‘BM <2 (m+j)

for any fired p,v € Iy, (k,j),(k1,51), (k2,72) € J, and m € [0,L + 1] N Z,
satisfying
(5.35)

j > pm/2 + Njk, + D?, —10§ < k1, ko < j/N§,  max(ji,j2) < 105.

(5.34) (1 + 2F)2k-

5.3. Proof of Proposition 5.4. In this subsection we will show that prov-
ing Proposition 5.4 can be further reduced to proving Proposition 5.9 below.
The arguments are more complicated than before, and we need to examine
our bilinear operators more carefully; however, in all cases discussed in this
subsection we can still control the stronger B,i’ ; norms.
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We notice that we are looking to prove the bound (5.34) for fized k, j, k1, j1,
ko, jo, m. We will consider several cases, depending on the relative sizes of these
parameters. First we use the qualitative fact that the speed of propagation is
uniformly bounded to discard regions where |x| > t.

LEMMA 5.5. The bound (5.34) holds provided that (5.35) holds and, in
addition,

(5.36) j > max(m+ D, —k(1 + 8%) + D).
Proof of Lemma 5.5. Using definition (4.4) it suffices to prove that

(5.37)
(1 + 2F)(20k 1 210Ky . 9 o(1+68)j HSO P TU;“’V(fgl,jl’flgz,j2)

(L4 282 4 210%) 9020 (e - pergie (gt
< 9—B*(m+j)

Assume first that

(5.38) min(jy, j2) < (1 - B%)j.

By symmetry, we may assume that j; < (1 — 32)j and write

~(k oL,V v
B\ (@) - PTG (L fe 5)(@)

k) 1;)/ // (pk(g)eiw-ﬁeis[/\o(5)—KH(§—n)—XV(n)]qm(S)
R3 JR JR3
S &=, 8) 1Y, 5, (1, 8) dndsdg.

We examine the integral in £ in the formula above. We recall the assumptions
(5.35), (5.36), and (5.38), and the last bound in (5.17). Notice that, using only
the assumption (5.36) and the definition (3.12) (see also Lemma A.4),

Velo€ 8o €~ Rue—n) - Ko ]| > lel—s|VelAo (€~ Ryl —n)]| = 277
We apply Lemma A.2 (with K ~ 27, € &~ min(277,2¥)) to conclude that

~k o —104 ~(k
|87 @) - BT (f o floin) @) S 27171807 @),

and the desired bounds (5.37) follow easily.
Assume now that

(5.39) min(j1, j2) > (1 — 6%)j.
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By symmetry, we may assume that ky < ky. We prove first the bound on the
second term in the left-hand side of (5.37): using (5.18) we estimate

o _B8)k ~(k 05 1,V v
(1 + 2%)(20% 4 910ky . 9(1/2 ﬁ)ku}-w ). P T (figl,jpsz,jz)]HLoo

S (1428) (2% +219%)20720k com qup | f (5]l 22 1 S0 (9) 1 22
se[am—1,2m+1]

< (1 + 2k)(2ak‘ + 210]6)2(1/2—,3)7{;2‘7 . (20ck‘1 + 210k1)—122ﬁa2—(1—ﬂ)j1
. (2ak2 + 210/62)*122/3%2*(1*[3%'2
<(1+ Qk)2j .9~k min(2(1+/3)k1’2—(1—/3—/32)j) .9~ (1=B-5%)j
This suffices to prove the desired bound in (5.37), as it can be easily seen by
considering the cases k1 < —j and k1 > —j.

Some more care is needed to prove the bound on the first term in the
left-hand side of (5.37). We recall that

(K ” _(k
T = P[kl—Q,k1+2](‘P§‘11) “Pp fu) and  fp L = P[k2—2,k2+2](90§-22) - Py fo)-

. ~(k k
Since |3\ - Py fu(8) 1By, + 1BV - Profu(s)ll5,, 5, S 1, see (5.15), we use
(4.6)—-(4.9) to decompose

~(k o _
BV Py fuls) = (200 4 2100 gh (5) 4 Bl (s)],

(5.40) Try 1 () = Gy, () - @Ejkll)wlm]’ Py 2 (8) = hig, 5, (5) - ~Ejkll)27h+2]7
9(1+8) ]1Hg g 1( )2 + o(1/2—8) kl”ggl,jl(S)HLw <1,
]1||hk1 31( $)|lp2 + Hhkl Jl( $)| e + 2”’91Hhk1 ]1( )| < 9—8lk1]
and
352 L Py £ (s) = (2% 4210 [gr () B (s)],
(5.41) ka2 (%) = Ghaa ) (EEJ’?)ZJQH]’ kaja (8) = Ny 4y (8) - @gj)mwz],

204932 | g ()] g2 +20/277) ’”IIgZQ (e S 1,
202 hy (5|2 + 1R, 5, (8) | Lo + 202 |, ()]0 S 2752l
Using these decompositions and recalling the definition (5.13), to prove the

desired bound on the first term in the left-hand side of (5.37), it suffices to
prove that for any s € [2m~1 2m+1],
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(5.42)
(1 + 2k)(2ak + 210k)2(1+5)j . (2ak1 + 210k1)—1(2ak2 + 210k2)—12m

~(k o
|88 BT (P, ksl 1, (), Piro—iora i)

+ ng ) .Pka’”’V(P[kl—z,klw}gzl,jl(8)7P[k2—2,k2+2]h1?27j2(8))’ L2

+ ng ) 'PkTsa’“’V(P[kl—zlirz}hﬁl,jl(5),P[k2—2,k2+2]922,j2(5))‘ 12

~(k T v
<P§~ ) v (P[k1—2,k1+2}hgl,jl(5)7P[k2—2,k2+2]hk27j2(5))‘ LQ]

< 2—/34(m+j).

+)

Recall that we assumed ki < ko; therefore we may also assume that
k < ko + 4. Using (5.40)—(5.41) and recalling (5.39), we estimate

HPkTso-;lu"V(P[k1—2,k1+2]g£1’j1 (5)7 P[k2—2,k2+2]g;;2,j2 (S))‘ .2

S NF Py —200 42198, 1) ()22 198, 5o (9) ] 2
< 93k1/29=(1+8)j1g=(1+5)52

< 93k1/29=(2+26)(1-5)]

HPka;“’V(P[klfzklw]hgl7]-1 (8), Plro—2,k0+2] hZQ,jQ(S))’

L2
S e, O 1%, 5, (5) ]l 22
< 9=vi19=8[k1|9g—(1-B)j29—8k2|
< 2—8\k1|2—(2+26)(1—62)j7
HPk:TsU;”’V(P[kl—Q,k1+2]hZ1,jl(S)a P[kg—g,k2+2]9/l§2,j2(3))‘ o2

S 10, g, ()L llgg, 5, ()l 22

< 9—7i19=8lk1l9g—(148)j2
< 9~ 8lkilg=(2+28)(1-5%)j

and

HPkTS‘”“’V(P[kl—Q,lirQ]ggl,jl(3)7 P[k2—2,k2+2]hzg,j2(5))’

L2
— —_ —

. Lk o
min (25172 gkt~ (s)|I 2211y, 5, ()2, gl s, ()21, S, ()]l e)

9—(1+8)j19—8lk2| 1in (2—(1—5)j223k1/2’ Q—sz)

N

N

9—(2+28)(1-5?)j93k1 /49 —8|ka|

N
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Since 2™ < 27 and (29F + 210k)(20k2 4 210k2) =1 < 1 the left-hand side of (5.42)
is dominated by
c(1+ Qk)2(1+5)j - (20k1 4 910k1y 197 . 2—(2+25)(1—52)j(23k1/2 + 23k1/42—8\k2|)
S 272081+ 28,
which suffices since 2 < 27/ No. This completes the proof of the lemma. U

We estimate now the contribution at very low frequencies. Here we use
also the null form structure at small frequencies of the multipliers 1., , .

LEMMA 5.6. The bound (5.34) holds provided that (5.35) holds and, in

addition,
(5.43) max(m + D, j) < —k(1+ 82) + D.

Proof of Lemma 5.6. In view of the restrictions (5.43) and (5.35), we may
assume that k < —D?/2. Using the definition, it is easy to see that

~ k . —_—
(544) 118} - Prhllpy S (2% 42109200022 P .
Therefore, it suffices to prove that
j TR v —p* j
(545)  Dhorekd IR FR I (f g ) S 2770,

Using (5.18) and recalling a < 23, we estimate

|FPTg™ (£ 5o Fo)| o S /R G () Ffs 5, ()| 221 FE g () 22 ds

< gl - (295 + 2101{1)7122&?127(17&)3'1 C(29% 2101@)7122&%27(175)3'2

< Nlgml| 1 min(1,275%1)2=(=Air  min(1,275%2)2=(1=0)z,

Recalling the definitions (4.1) and the assumptions, the desired bound (5.45)
follows if

c=1i or m=L+1 or m<(1-0)(j1+72)— (1/2—pB)k.

It remains to prove the bound (5.45) in the case
(5.46)
ce{eb} and me[l,L]NZ and m > —(1/2— B)k+ (1 — B)(j1 + j2).

Since j1 + k1 > 0, jo + kg > 0, and k < —D?/2, the conditions (5.43) and
(5.46) show that ki, ke > k/3 and |k; — k2| < 10. Using also (5.43), for (5.45)
it suffices to prove that, assuming (5.46),

(5.47) H‘FPkTT?@%V(fﬁl,jl 7 f]l'i‘/g,jg) < 27k(1/2+a—572ﬁ2)‘

Lo ™
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Recall the definitions
FPTY (fE s Fra ) ()

(5.48) g — _
= nl6) [ [ e g (5) I (€= . 9) T, (0. 5) dds,

where

OTHV(E,n) = Ao (§) — Au(€ —n) — Au(n).
To prove (5.47) we would like to integrate by parts in 7 and s in formula (5.48).
We decompose

FPIZ (f o f0in)(6) = G (&) + H(§),

G(§) == ¢r(§) /R /R . REL ()

©(220P (1 4 2k2) @i (¢ n))qm(S)ffl,; (€ —mn, S)J@(m s) dnds,

¢) / / RS )
R JR3

(L= o(220P (14 282) 8% (€, ) g (s) 1. (€ — . 8)FF, . (1. 5) dipds.

The function H can be estimated using integration by parts in s, (5.20), the
assumptions (5.7), and the bounds (5.17). Indeed,

HEOISA+2)  sw 56 o)

sg[2m—1 2m+1]

L2 L2

+ 27| @ ) (5)]) +27 || fte . (s)]
< min(1, 27 (N0~ 10k),
Therefore, for (5.47) it suffices to prove that

(5.49) It —k(1/2+a—p-26%)

LOON

(9sFE, 1,)(5)|

f;flz,jz (s) ‘ L2

L2 L2]

Recall the definitions (5.14),
(5:50)  EH(E ) = (Va@7HY) (&) = —uVAg (n = &) = 12V A, (1),

where

u= (01L1)7 V= (02L2)7 01,02 € {iaea b}v L1,l2 € {+7 _}'
For [ € Z, let
(5.51)
Gai®) = 2u(®) [ [ oroen@gm)- e

(2207 (1 + 252) 71 (€, 1) ) (5) 1. (€ — . 8)fF, . (1, 5) dids.

Let G; := G<; — G<;—1. In proving (5.49) we may assume that j; < jo. If
[ > 1y = —20D—4max(ks,0), then we integrate by parts in 7, using Lemma A.2
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with K ~ 2™+ and ¢! ~ 202 4 2~ min(L0)—min(k2,0) 4 9k> ~ Using also the last
bound in (5.17), (5.43), and (5.46) to ensure eK > 28°™ and (201 +202)P < ¢+,
it follows that
(5.52) > Gz~ < (1+2%2)7h

lZlo—l-l

It remains to estimate ||G<y,||z. Since o # i, it follows from Proposition B.2
that G<;, = 0. This completes the proof of the lemma. U

We estimate now the contributions coming from large input parameters
J1 or ja.
LEMMA 5.7. The bound (5.34) holds provided that (5.35) holds and, in

addition,

(5.53) j<m+D and max(ji,j2) > (1 —B/10)m + ks,
or
(5.54) j<m+D and min(ky, k) < —9m/10.

Proof of Lemma 5.7. Assume first that (5.54) holds. We estimate, assum-
ing k1 < ko and using (5.17),

(142528 (20 4 210022 F T (£ A, )

Lo

i k k o
SATM 4 22 sy S () g ()l
se2m—1,2m+1]

< 2(2+,3)m(1 + 211]{:)23](:2/2 . 25]4:1/22—]{32/2'

The desired bound (5.34) follows using also (5.44).
Assume now that (5.53) holds. Using definition (4.4), it suffices to prove
that

(5.55)
. ) k o
(1 4 2¥)2ke (20% 4 210k) . 2(1+5)J”¢§ ) . PkTm’“’V(fﬁl,jl’f;ejz,jg)

L2
a Bk ~(k TR v
(1 4 2¥)2ke (20 4 910k) L 9(1/2 6)1<:”]_-[(p§ ). pro (f:17j1’fk271’2)]HLoo

< o—B*(m+j)

By symmetry, we may assume k; < ko. We prove first the bounds (5.55) in
the case

(5.56) ki1 < —5m/6.

Using (5.17), for any s € [0,¢],

—

L, s Do S 225, (s)llee S 207270,
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Therefore, using (5.17) again, it follows that

1T (fe s fag)]| 2 S 27 sup N ) llfE, 5y (9)] 22
se[am—1 2m+1]

< gmo(6/2=atB)kr i (2= (No—Dka 9(1+F-a)ks)

and
(5.57)
o,V f 1 v m /,u,\ v
P G Fadlo S22 W O

< 2m2(5/2—a+ﬁ)k1 . (2ak2 + 210]472)—12—(1/2—5);{)\2/

Therefore, recalling (5.56), if k& < 0, then the left-hand side of (5.55) is domi-
nated by
2 H+B)Imo(5/2—at+B)ki < 9(=1/12+5a/6+8/6)m

which suffices. Similarly, if £ > 0, then the left-hand side of (5.55) is dominated
by
C2(2+8)mo(5/2—atB)kig—(No=15)k | rgk2gmo(5/2—a+h)ki
< gkag(—1/12+5a/6+8/6)m
which also suffices.
To prove the bound (5.55) when —5m/6 < k1 < ko, we decompose, as in
(5.40)—(5.41), for any s € [2m~ 1 2mF1],

~(k o _
B Py fuls) = (2% 4 2100) gl (5) 4 B (s)],

_ ~(k1) _ ~(k1)
gghjl (S) - ggl»jl (S) (‘O[Jll 2,51+2]° hl/il 31( ) th ]1( ) (‘O[j11—2,j1+2]’

(5.58) ‘ "

2(1+/3)31ng1 1 (9)llg2 +20727F) 1HQZ1 e 1,

TN 5 e+ R, () e + 27 R (s)l]e S 278,

and

~(k _

‘70§22) 'Pkay(S) — (2ak2 4 210k2) 1[.9%2,3'2( ) + hkz,yz( )]

v v ~(k2) v _ v ~(k2)
(5.59) gk27j2(s) = gk2,j2( 5) - 90[]22 2,j2+2] Pz o (s) = k2»j2( 5)- c‘0[122 2,j2+2]

2(”5”2”9%,]'2(3)\&2 T 2(1/2*5)k2|’.g/]’€’2\h7,2(8)||L00 <1,

L, 1 (3) e + (A, (5) e + 2 IR,y () S 2750

We will prove now the L? bound
(5.60)

(L+2¥)28 (2% 4 210%) 20 BT (gl (), S, 5o ()| o S 2720

2"
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for any s € [2m~1, 2™ H1]; see (5.13) for the definition of the bilinear operators
TS"?“’” . In view of the assumption (5.53) this would clearly imply the desired
L? bound in (5.55).

Assume first that min(ji, j2) < (1 —158)m, i.e.,
(5.61)
min(ji, j2) < (1—-158)m, max(ji,j2) > (1—-F/10)m+ky, k2 > ki > —5m/6.

Using (5.18) and (5.19),
| BT (fle (), Flai(3)|
Smin(|BfE 5 ()l | BF, o ()2, | B A 5, )2 B A gy (8) 10e)

< min(2°%k1, 276k1) min (282 2~0k2)
X 2—m(5/4—105)2(1/4—116) min(j1 ,j2)2—(1—,8) max(j1,52)

g 27190(1 + 2162)7627(2+3B/2)m7

which suffices to prove (5.60).
Assume now that min(ji,j2) > (1 — 158)m, i.e.,
(5.62)
min(j1, j2) > (1—-158)m, max(ji,j2) > (1—-F/10)m+kys, k2 > ki > —5m/6.

We recall that
v = P[k1—2,k1+2](<5§]f1) - Pr, fu)
= (2% 4 2" Py o ko190 F Pia—2+2h, ),
Foin = Pltaopas2) (P02 - Py fo)

k 10k2\—1 v v
= (2a 2 + 2 2) [P[k2—27k2+2}gk27‘72 + P[k2—27k2+2]hk27j2]7

and we use the bounds in (5.58)—(5.59). Then we estimate, using also (5.62),

"PkTg;'u’V(P[lﬁ—2,k1+2]hZ17j1(3)7 Plry—2.ky12] hZ2,j2(8))‘ 12
S e, L1, 5, ()1 22

< 9=v519—(1=B)j29—8|k1|9—8]k2|

(5.63)

< 2*('Y+1*255)m2*6\k1|2*8|k2|’
"PkT;WyV(P[h*27k1+2]h11;1,j1 (3)7 P[k2*2,k2+2]922,j2 (S))‘ 12

S ey gy (O zallgr, g, ()l 2

< 9=7719—(14B)j29—8|k1]

< 2—m(7+1—256)2—6\k1|’
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HPkTsU;/M/(P[k1—2,k1+2]g]l;17j1(3)7 P[k2—2,k2+2]h22,j2(8))‘

SNk, g, (Slz2lIhg, 4, ()]l
< 9—(1+8)j19—7i29—8|k2|

L2

< 9—m(y+1-258)9—8|ka|9—ko

and, using also (A.21)—(A.25) (compare with the bounds (5.19)),

‘PkTg;MV(P[k1—2,k1+2]g;:17j1(5)7 P[k2—2,k2+2]9Z2,j2(8))‘ 12

. —ish
< min ([le ™™ P, o k421 (g, (5) 1z 198, 5 ()| 2

gk, 5, ()2 lle™™™ Py ko421 (98 5 ()| o0 )

< 2—(1+B) max(j1,52) . 2—777,(5/4—10,8)2(1/4—116) min(jl,jg)(l + 24k2)

< 2—]{?0 (1 + 24k2)2—(2+19,8/10)m
Therefore, using also « € [0, 5/2] and k1 > —5m/6, the left-hand side of (5.60)
is dominated by

C(l + 25k2)2—ak12—95m/10 < (1 + 25k2)2—29mﬁ/60'
This completes the proof of (5.60).

To complete the proof of (5.55) it remains to prove the L> bound. This

would follow from the estimate
(5.64)

(1428)2% (2%4210%) 202 DRom [ FRTTY (1 (), S, 3o ()]0 S 2770

| %
for all s € [2m72,2m+2] If k; < —2m/5 then, as in (5.57),

e G ON RO Y TN O PO
< 2(5/2—a+,6’)k1(2ak2 i 210k2)—12_(1/2_5)%2
and therefore the left-hand side of (5.64) is dominated by
C(l + 2k)2kg . (2ak + 210k)(2ak2 + 210k2)71 . 2(1/275)(};7’];2) . 2m2(5/27a+ﬁ)k1

which is sufficient.
We now assume that —2m/5 < k; < ko, and we decompose fli,jﬁfl?ma
as in (5.58), (5.59), (5.63). If j1 < ja, we estimate

| FPTEH (Pley a2 (g, 5, () + B, 5, (5)), P[kQ_g,kﬁz]g,Q,p<s>>HLOO

< (llgh, 5, ()2 + Hhkl,ﬁ( $)Iz2) 19, , ()l 2
< 2(1+5)k12—(1+5)j2
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and

|FPTT (Piey 2k 421(9 5y (8) + Rl (9)) Py 221k a ()
/y\

< (95, 2 ()l zoe + 1, 5, ()2 ) I1RE, g, ()] s

< 9—(1/2-B)k1 . 9—8lkalg—ia_

Since —k; < 2m/5, a < B and 272 > 2m(1=B/10)9ks it follows that if j; < jo,
then

aWﬂ@W%ﬂ%%MM@

5.6
( < 2—(1+,@)kg2—(1+ﬁ)(1—ﬁ/10)m X (204k1 4 210k1>—1(2ak2 + 210](22)—1.

Similarly, if j; > ja, we estimate
| F T (Pl s 4218,y (5): Plra-2kav21 (962,32 () + B ()|

—

S gk 2 (lgg, 5, ()2 + 18, 5, (s)12)
< 2—(1+5)j12(1+5)22

and
|FPTT™ (P, ks 421y (), Plts—2,ks21 (9K o (5) + Pl i (D))

S 1y ) (95, o () 1z + [1BF, 4, (8) 222

< 9=Vj19—6lk1|
Since 271 > 2m(1=8/10)9ks it follows that if j; > jo, then

566) |\ PRI (ff 11 (9), Fhn ()]
’ < 9~ (1+B)kag=(1+6)(1=B/10)m _ (gaky | 9l0k1)~1(gaks | 9l0ks)~1,
Using (5.65) and (5.66), the left-hand side of (5.64) is dominated by
C(1 + 2k)2—akig=46m/5

which suffices. This completes the proof of the lemma. O

Now that we have identified m as the largest parameter, we may remove
the nonresonant part of the nonlinearity. For any x € (0,2P / 10], we define
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(5.67)
TS (f,9) = R (f.9) + NET# (. 9) + N2 (£,9),

FInimeegg)] €)= [ [ e G € man(s)

- f(€—n,8)G(n. s) dnds,
<§, ) i Py (2O G € )

f[NQ”’“’ Vim [ e NG € man (o)

- F(& —n,5)g(n, s) dnds,
T (€, m) 1= (2D Tmax Ok iy (¢ o o (IERY(€,m)| /K),

f[R%fis”(f,g) © = [[ [ e e s

- F(€ = n,8)G(n, s) dnds,
XY (€)= (2D maxOkika) @rny (¢ )y (|27 (€, )| / k).

Our last lemma in this section shows that only the resonant part of the inter-
action R7.¥ may produce more problematic outputs not in B;’ I

LEMMA 5.8. Assume that o € {i,e,b}, u,v € Iy, (k,j), (k1,j1), (ke, jo) €
J,me0,L+1]NZ, and
68 —9m/10 < k1, ko < j/N§,  max(j1,J2) < (1 — B/10)m + k,,
(5.68) Bm/2+ Njky + D> <j<m+D, m>—k(1+p%.
Then, assuming m € [0, L] NZ,

kv ~(k) .ot _op4
(2B - PNy (I, Sy, S 277

(5‘69) k ~(k 2;0; ,u 1 v —2B*m
1+ 2B - PNZG(fE )y 52
for any k € (0,2P/10] satisfying
(5.70) My > 252m2maX(j1,j2)7 My > 9f%m .—19—min(k1,k2,0)9—D
Moreover, form =L+ 1,
_(k : _og4
(671) O +2ET PIEE s f )l S 27

Proof of Lemma 5.8. To prove the second inequality in (5.69) we can ap-
ply Lemma A.2 with

K =r2™, e l=901 i g -lgmminOkik)  (fr > ofm
and the assumptions (5.70) to show that
(5.72) | FNZTHY(f )] (€] S 2710
The second inequality in (5.69) follows easily using (5.68).
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To prove the first inequality in (5.69) when m < L, we first integrate by
parts in s and obtain that

214
FNgmm(£,9)](€) = - /R /R ) ”‘I"’“”“")j;i,u,fé%

88 [qm(s) (€ - 777 3)./9\(777 8)] d77d3

(5.73)

Therefore,
‘F[errZU;MV(flghjﬁ f}ZQ,jQ)] =4 [N11 + N2 + N3],

zs@“”” (&, XT”u’ (6 77) !
Nll //]RB " PO (E n)Qm(S)

S €=, )fk2 (1, 8) dnds,

nuz
N12 //R3 Zs@auﬂgn (I)gu, E )) (S)
O )€~y 8) L, (0, 5) dnds,

Zs(I)“ V(€ XT”u V(g 77)
N (€ / /Rs ? Poimv (g, n)qm(s)

’ fk:17j1 (§ - 8)(8sf;:2,j2)(?7, S) dnds.

We show first that
R 4
(5.74) (14 2F)(2%F + 210 20HAm PN Yoy (f1 L fE e S 2720

We may assume k; < k. Using integration by parts, it is easy to see that

(5.75)

O’l"/7
F-l X7 (&n) B B o B }
H {QUNV(f,n)w[k 4,54+4) ()Pl =1 +4) (€ — M) Plko—4 ko 41 (1) L1 ()

S 220 max(0,k2) ]

Using the decomposition (5.73), Lemma A.3, and (5.75), we see that

(5.76)
1PN (ff oo Fio )22
S 220maX(0,k2) sup [min{HEf]ghjl (S)||Loo||f£27j2 (S)HLz,

sE [2'm72 ’2'm+2]

17t s ) a2 BEE, 5, ()= }

+ 2B S 5 (o Ot ()22 + 21t 5 ) () 2By gy () o]
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It follows from (5.17) and (5.20) that

2" E Sy, g, () Lo 0sfiy 3 ) ()2 + 27 (1 Ds fi, 5, ) () L2l ESE, 5y (9)l] 2o
< 9—6 max(k2,0)2—(1+2,8)m'

Moreover, using (5.17)—(5.18),

min {||Ef 5 ()lze |, 5o (2, 1L 5 ()2l EfE, 4 ()]l noe }
< 276 max(k2,0)27(1+5)m2*(1*5) max(jl,jg)'

Finally, if max(ji1, j2) < 2m then, using (5.18) and (5.19),

min {| Eff 5, (el fly g0 (2 1L ()12 I ESE, g (8] |
< 9—6 max(k2,0)2—(5/4—15,3)m‘

It follows from the last three bounds and (5.76) that
HPkN#U;MV(fIZ j1>fI?2,j2)”L2 5 215max(k2,0)2—(1+26)m’

and the desired bound (5.74) follows since 2F < 2k2 < 2m/No,
We show now that

_ 7 TR v _ 4
(5.77) (14 27)20727Ak 20k 4 21O | FP N (fL - fy o)l S 2720,

We may assume k; < ko and use the Cauchy-Schwartz inequality, (5.17), and
(5.20) to see that

[Nial|Lee + || V13| Lo

< 2mxOklgm - gup [Il(f?sf;éﬁ,jl)(S)lle||f;?2,j2(8)||L2
86[2777,7272777,«&»2}

I e lOsFEy 1)) 2e]
g 275m(1 + 2(N0710)k2)71‘

This implies that N9 and Nj3 give acceptable contributions to (5.77). Pro-
ceeding as above, using (5.18) we also get

N1 ||z < (1 252)20k19=(1=B)i1 iy (2~ (No—B)k 9—(1=F)jz),

~

Therefore, this gives an acceptable contribution to (5.77) unless

(5.78) k| + k1| + |k2| + j1 + j2 < B*m.
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Assuming that (5.78) holds, we need to strenghten the L> bound on Ny
slightly. We decompose

N11 = Ni1;1 + Nio,

o,V
Nina(g) = [ [ evrren e (é Z§¢<a-1raﬂv”<5,n>|>q;n<s>
SR €= 0.9 fE, (0. s) dids,
o,V
Nial) = [ [ et en X200 o5 2 ) i)

—

’ f]l;l,jl (6 - S)fllg;,jg (777 S) deS,

with § := 27™/3. Applying Lemma A.2 with K = 22/3 ¢ = 2-™/3 it is easy
to see that

[Ni12(6)] S 2710,

provided that (5.78) holds, which is clearly sufficient. On the other hand, using
the definition (5.14) and the bounds (A.5), we observe that

= (&) 2 VA ()] - min (|6 =) /1€ =nl = n/Inl|, | =n)/1€=nl+n/Inl|)
2 27 mmin (|(&—=m)/1€ =nl = n/Inl|, |(€=n)/1€=nl +n/In]|)-

Consequently, if €] € 252, 2447, [ — p] € 2472, 261+ and [y] € 2k, 282+,
and |2V (&,n)| < 2’7”/3, then

min (|n/In = &/I&]1, In/Inl + €/1€]1) < 27™/%.
Then, a simple estimate using the L> bounds in (5.17) gives |N11.1(§)| <

277/6 which is sufficient to finish the proof of (5.77). The first bound in
(5.69) follows from (5.74) and (5.77).

The bound (5.71) follows by a similar (in fact easier) argument; since
llgr+1]lr1 < 1, one does not need to integrate by parts in s and one can simply
estimate the appropriate L? and L*™ norms in the same way we estimated the

contributions of the function Np; in the argument above. O

We examine now the conclusions of Lemmas 5.5, 5.6, 5.7, and 5.8. We
notice that to complete the proof of Proposition 5.4, it suffices to prove Propo-
sition 5.9 below.

PROPOSITION 5.9. Assume o € {i,e, b}, u,v € Iy, (k,j), (k1,741), (k2,72)
eJ,mell,LINZ, and
—9m/10 < ki, ko < j/N§, max(j1,J2) < (1 — B/10)m + k,,

(5.79) , s )
Bm/2+ Noky + D <j<m+D, m2>-k(1+3°).
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Then there is
K € (O7 2D/10L K 2 max (2(62m—m)/22— miH(’Cl,k2,0)/22—D/2’ 252m—m2max(j1,j2)>,

such that

(5.80) (1 + 2F)2k < 9 2'm,

~(k SV v
<P§' : 'PkRg#% (flghjl’fk%j?)

‘Bk]'

s

We prove this proposition in the next three sections. We consider several
types of resonant interactions, which involve input and output frequencies lo-
cated on spheres or at the origin, as well as the different phase functions ®7:#".
We classify these interactions into three basic types (see Proposition B.2) and
analyze the contributions separately in the next three sections. The optimal
value of x for which we prove (5.80) depends, of course, on all the other pa-
rameters.

6. Proof of Proposition 4.3, II: Case A resonant interactions

In the following, given a set S, we write ®7#"Y cc § if ®THY € § or
P+ € S. In this section we consider type A interactions (see Proposition B.2)
and prove the following proposition:

PROPOSITION 6.1. Assume that (k,j), (k1,71), (k2,j2) €T, me[l,LINZ,

(6.1)
oY < 7;/‘ — {(I)i;e+,if7 (I)i;b+,i7, (I)i;bf,eJr’ (I)i;bJr,ef’ (I)e;eJr,iJr7 (pe;bJr,iJr’ (De;bJr,if’
(I)e;bJr,ef (I)b;e+,i+ q)b;bJr,iJr @b;e+,e+ (I)b;bJr,eJr (I)b;bJr,ef}
and
—D/ng,kl,kQSD/Q, max(jl,jg) S (1—5/10)771,
6.2
(6.2) Bm/2 + Njky + D* < j <m+ D.

Then there is k € (0,1], K > max (Z(ﬁQm*m)/Q, 252m*m2max(j1:j2)), such that

5k Y v _9p4
(6.3) HSDE' ) PRI (fE ) < 9-2'm

5,

P

The phases in the set T} are the same as the phases in the set Ty, after
interchanging the last two indices. Without loss of generality, we may assume
that ®7#" € T} instead of @7 € Ty.

The rest of the section is concerned with the proof of Proposition 6.1. The
interactions corresponding to Case A are among the most difficult to control.
In particular, they produce outputs that fail to belong to the “strong” Bli, j
spaces. A key element we need is a precise description of the sizes of the various
elements close to the resonant set. This is made possible by the fact that the
Hessian of the phases is nondegenerate. We refer to the introduction of [26]
for more details.
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Recall that Z#¥(&,n) = V, %Y (¢, n). We define first the interaction
functions for the space-resonant phases in 7} given in (6.1), the functions
p7HY and ¢*v defined below. They help us characterize the vanishing set for
=Y through the equality (6.4). Only the functions p?#" play an essential
role, but the functions ¢ appear as simpler intermediate functions. Our goal
is to define these functions such that

(6.4) =g (n),n) = 0 = Z(E, p7H7 (€))-

The first equality holds for all 7, and the second equality holds for all £ where
pitY (€) is well defined.
For this, we first define

(6.5) pretet (€)= €/2, ¢°HT(n) = 2, to(r) == r.

The other functions require a little more care. We first define ¢** and then
invert the process. We define the real-valued functions ¢, ¢, ¢b¢ - [0,00) —
[0,00) by the relation

A (t4(r)) = (7 (r) = Ni(r), - N(t7(r) = Ao(r).

Since X, and )\ are injective (see Lemma A.4) and using also (B.14), these
functions are well defined. We can directly see that t¥(r) < t¢(r), t*(r) < r,
and since

m]

N(r) € N, N 0)] € [N, e

for any r € [0, 00),

we get from Lemma A.4 that

VEN(r)/(2T) < #9(r) < \3e/T,  VEX(r.)/Cy < %(r) < 2/ G,

(6.6) T(1+e¢)

0<te(r) < ———=.
JCE-TC,
More precisely, we have
e(1+e) Xi(r) e(l+e) Ae(r)

() = (r) =

VG G =)

e

VG G

while ¢ has a similar behavior. Note, in particular, that T(t%(r))? < 3¢,
Co(t7(r))? < &, Cp(te(r))2 < T(14¢)/(Cy — T). Let

dtnor(r)

(01772)(r) 1= T,

(01,09) € {(e,e), (e,1), (b,7),(b,e)}.
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Using Lemma A .4,
(6.7)

0] = | i

)\//(tez( ))
" € 12 (
< A7 ()]

1+ Tt (r)?)3/2 _ 8V2v/e(1 + 3¢)%/2T _1

T(1- ) B (1=verT 2

81/2(1 4t Cbtbi(T)2)3/2
Ch(1+¢)

Z )\//
00| = || < o)

- 8f\fT(1+25)3/2 1
- Cb(1+€) - 9’

N (r)
1 < tbe _ e
CCb,e —= (a )( ) )\g(tbe(r))
(L+VOT (L+e+Gt(n?)*? _ (1+ 4/e)TC,? 1
~ (14 Tr2)3/2 Co(1+¢) T (Cy=T)2 T2
We now define ¢" when (01, 02) € {(e,1),(b,i), (b,e)} by the formula
v o110 n Ny Ui
¢ (n) = mn+ (e -2t 2 (Inl) 7 = #"(Inl) 7~
7] 7]
such that Z*Y(¢""(n),n) = 0. Then we define the function r*¥(s) as the
inverse function of t¥(r) := 7 + (11 - 12)t°192(r). Therefore,

Y [1109t7172(0), 00) — [0, 00)

is a well-defined increasing function, and
1
1+ t1e2(0tor92) (riv(s))’
We can now finally define the functions p”#* and x%"" : [0,00) — [0, 1]:
(a) if @7 € T4\ {@40H1}, then we define

17 = [19172(0), 00),  pTRH(E) := rPV(IENE/ €] for [€] € TN,

Xy = 1e102(0) 1220 o0);

(b) if @i = b+~ then we define
787 = [0,8(0)],  pTHr(€) o= —rt¥ (—[E)E/[€] for [¢] € 17,

(6.8) (05T (s) = s € [t112t7172(0), 00).

(6.9)

(6.10) _—
XAM = 1( tbz( ) 272D).
In both cases we also define
(6.11) TV ([E]) = pTH(E) - /1€

The functions p”#" are not defined (and not needed) outside the range
specified above, since we will use them only to study resonant interactions.
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These functions are the key to an efficient analysis of Case A through the use
of the following lemma:

LEMMA 6.2. Assume ®7HY €T} (see (6.1)) and —D/2<k,ki,ke<D/2.

(i) Assume that § € [0,271°P] and assume that (£,1) € R? x R? is a point

such that
A e S 1 e
o B <5, 1@TH(E,n)| < 27100,
Then
(6.13)
xXa™"(I€) = 1, ‘77 - PUW’V(S)‘ < 21005 and  EHV(E,pTHY(€)) =0,
and

min (@7 ) (€])], 11 = (@sr7#)(|€])]) = 277,
(DErr ) (DI < 207, p=0,1,...4.
Moreover, if oo = i, then

(6.15) Inl = 7] 2y 1.

(ii) Let Wot¥ : [7HY — R be defined by

WTHY (5) := QTHY (se, 17 (s)e)

= Ao (8) = 11 Ao, ([77H7 () — 5[) = 12Aey (|77 (5)])

for some e € S%. (The definition, of course, does not depend on the choice
of e.) Then there is some constant ¢ = ¢(o,p,v) € {—1,1} with the
following property:

(6.17)

the set INZW’V::{S € [2F1, oM oy WY (5)| <27119DY s an interval;

E- (DTTHY)(s) > 272D for any s € I,

(6.14)

(6.16)

Proof of Lemma 6.2. Since ®7#" € T, ¢*" is well defined. We start
from the elementary formula

=& n)] = [27(€,m) — E (g™ (n),n)]
Ry [Ny (1€ =nl) = A, ([ () — 0]
+ max(X, (1€ — nl), Ny (1 (n) — )| =L — LW =7 |
I€=nl  [g"¥(n) —nl
Since A, (r) > 2720 and X (r) > 272P(1+r) 3 if r > 2-D/2-10_the condition
|[Z#¥(&,n)| < § shows that

§—n v (n) —n ‘ < 910D
) =1

J— J— lu?l/ J— —
I =l =l ) =l + | e~ T
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This shows that
(6.18) €= ¢ (n)] <2°°P5  and | f7V(|n))| < 2707,

where f7#" :[0,00) — R is defined by
(6.19)
£ (1) 5= @7 ) re) = Ao (T (1)) = 10y (172 ()) = 1201,

We turn now to the proof of the lemma. We observe first that (6.14)
follows from the formula (6.8) and the bounds (6.15), (6.13), and (6.7). We
note also that the conclusion that I’ I7# is a closed interval in the first line of
(6.17) is a consequence of the existence of a constant ¢ satisfying the inequality
DTV (s) > 27200 for any s € I7*" in the second line of (6.17).

We prove the claims in the lemma by analyzing several cases.

Case 1. 71V ¢ {pbidHet phietetl In this case we have

(6.20)
t7192(0) = 0, x5 = = 1(3-2p0 ), Y (r) = r 4 t7192(r), r"Y(s) € [0, 5],
JTHE(r) = Xp(r +1772(r)) = Aqy (27172(r)) = Ae(r),
Yo (5) = Ap(5) = Ay (s — 117 (5)) — Ae(r"(s)),
(0sT7HY)(s) = Np(s) — A1t (s)).

The claims (6.13) and (6.17) with ¢ = 1 follow easily (using, for example,
(B.5)), and the claim (6.15) is trivial.

Case 2. 71V ¢ [peetit gebhit ghietit @bib+i+l  In this case we
have

t7172(0) meye 1, XG"T = = Ljo102(0) 4220 o0)s
Y (r) = r 4 t7192(r),  rHY(s) € [0, 5],
(6.21) JERIr) = Ag(r +17172(r)) — Agy (2772 (r)) — Ai(r),
YT (s) = Ao (s) = Agy (s — 717 (s)) — Ai(r"7(s)),
(0sW7HY)(5) = Ap(s) — Ai(r#"(s))-

Notice that
(O f7HY)(r) = [L+ (0t7172) (1)][NG (r + 7272 (1)) — N, (£7272(1))].

Therefore, using also (6.7) and Lemma A.4, (8, f7#")(r) >¢, . (1 4+ r2)73/2
and foiY(0) > 0 if oV ¢ {Peetit pbietit @bib+it)  Therefore, the in-
equality | f7#¥ (|n])| < 272°P in (6.18) cannot be verified in these cases for any
(&,m) as in (6.12), and the conclusions of the lemma are trivial.

On the other hand, if ®7#¥ = @b+ then the claims in (6.13) follow
easily, using (6.18) and the hypothesis of the lemma. To prove the remaining
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claims we show first that
(6.22) In| < 3771/%/4 < 3r, /4.

Indeed, starting from the inequalities |fe*H(|n)| < 2729P and t¥(r) <
\/€/Cy (see (6.6)), and using also (A.7), it follows that

27700 > Ae(Inl) — &7V 422 = ()

> e V2(V1+ T2 = VI+2e) — (T +1)(e+ 1)nl.

The desired bound (6.22) follows. This clearly implies the bound (6.15).
Finally, to prove (6.17), we calculate

(6.23)
W (1(0)) = A(t(0)) — W(t(0)) < ~CgL
(O, T4+ (11(0)) = A (7(0)) = N(0) = NL(#(0)) — N((0)) < ~C .,
(OPTEH) (5) = Ni(s) — (D H ) ()X (P (s)).

Therefore, (92Web+i+)(s) > C(;bl,e for all s€ [t (0), c0) for which r®+it(s) <r,.
On the other hand, as in the proof of (6.22), if s € [2¥=%, 2¥+4] has the property
that |We0Tit(s)| < 27200 then 7T+ (s) < 4r,/5. The desired conclusion
(6.17) follows with ¢ = 1 by combining the inequalities in (6.23).

Case 3. @7V ¢ {Pib—et gibte— gebre— gbibte=1  In this case we
have

(6.24)
t7172(0) = 0, XG"" =1p-20 oy, H7(r) =1 —17172(r), r"¥(s)€[s, 00),
fERE(r) = Ao (r —t7272(r)) — M (7172 (1)) — tade(r),
VTP (5) = A (s) — t1 M (177 (8) — 5) — taXe(rH7(s)),
(B W7 (5) = N (s) — 1oL (17 (s)).

The claims in (6.13) follow easily, using the hypothesis and (6.18). The claim
(6.15) is trivial. The conclusion (6.17) also follows from the formulas above if
Lty = —, with ¢ = 1.

It remains to prove (6.17) when ®%#¥ = ®%0=¢+ in which case we set
¢ = —1. For s > r,, we estimate

(as\l’i;b_’e—i_)(s) = X(s) = AL(r"Y(s)) <1 —X.(r) < —1,

which gives the desired conclusion (6.17) when s > r,. On the other hand, we
calculate

\Iji;b—,e—&-(O)
(6S\I/i;b—,e+) (0)
(B3WH=T) (s)

Ai(0) + Ap(0) — Ae(0) = 0,
Xi(0) = AL(0) > Cgl,
X! (5) — (D5 H) ()X (rPF (s)).
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Therefore, (92WTH—¢F)(s) < —Cabl’e for s € [0, 7], and the desired conclusion
(6.17) with ¢ = —1 follows in this range as well.

Case 4. 71V ¢ {Pheti= oHd+Hi=1 In this case we have

t7192(0) =y e 1, X3 = = 1(o102(0) 1220 )
Y (r) = r —t7192(r),  rHY(s) € [s,00),
(6.25) Jor(r) = Nillr — t”m( ) = Aoy (E7172(r)) + Xi(r),
W7 (s) = Ai(s) = Ay (177 (s) = s) + Ai(r'"(s)),
(0sT7#)(s) = Ni(s) + Ai(r" (s))-

Recalling that t°1%(r) < 1/3¢/T and \i(r) < V1 +72 for any r € [0,00) (see
(6.6) and (A.4)), we estimate
X[ — 7192 (r)]) = Aoy (17272 () + Ni(r) < —e V2 4 23/1 12

for any r € [0,00). The inequality | f7*¥(|n|)| < 272°P (see (6.18)) then shows
that |n| > (3¢)~Y2. Therefore, |¢"*(n)| = |n| — t°**(jn|) > |n|/2, and the
conclusions in (6.13) follow using also (6.18). The claim (6.15) follows from
In| > (3¢)~'/2. Finally, the conclusion (6.17) with ¢ = 1 follows from the last
formula in (6.25).

Case 5. ®THV = deb+Hi— Tn this case we have

t0'10'2 (0) %Cb: 1, XA"LL’ — 1(0,t0102(0)72_2D)7

P(r) =7 =), (s) € [5,00),
(6:26) FT) = Al = 17(0)]) = M) + M),
W (5) = Ae(s) = Mlr (=) + 5) + Al (<9)),
(0.375)(5) = Xi(s) = M1 (=s) + 5).

Clearly, —f7#"(0) 2¢,,e 1. Extending A. as an even function on R we calcu-
late, for r > 0,

(O, f7HV)(r) = (1 = (D) ()AL (r = t7(r)) = (D7) ()AL (7 (r)) + Ni(r)
= [1 = @) (MINE" (1) + Ne(r = (1))
Let ro € [0,00) denote the unique number with the property that ro = t% (7).
In view of (6.6), 79 < 1/e/Cy < ry/2. Moreover, r — t¥(r) > 0 if r > rg

and r — t"(r) < 0 if < rg. Therefore, (0, f7#V)(r) Zcye 1if r > 1o and
(Or fTHY) (1) 20y, T if 7 € [0, 70). Moreover,

FIHY (1) = Ae(0) — Mo (1) -+ Ni(r0) = /Om [Xi(p) — Ny(p)] dp

0
2mM@®—m%@@+A (o) — Ny(o)] dp Zye 1.
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Therefore, the strictly increasing function f7#* has a unique zero in the
interval (27072, rg — 27P/2). Tt follows from (6.18) that if = re, then
re€ (279, rg—27P) and |~ (r—t"(r))e| < 220P§. The conclusions in (6.13) fol-
low. The conclusion (6.15) follows using also 79 < r./2. The inequality (6.17)
follows using, for example, (B.5). O

Remark. The analysis in Case 2 in the proof of Lemma 6.2 shows that
the phases ®&etit @betit and YbHit are, in fact, nonresonant, in the
sense that there are no points (£,7) € R? x R? satisfying (6.12). Therefore, in
Proposition 6.1 we may assume that

PV 7;11/ — {q)l;eJr,zf’ (I)l;bJr,zf7 @l;b7,6+7 @’L;b+,677 (De;bJr,er’ ®e;b+,17’

(627) (I)e;bJr,ef (I)b;e+,e+ (pb;bJr,eJr (I)b;bJr,ef}'

6.1. Proof of Proposition 6.1. Once the functions p?** have been cre-
ated, the rest of the analysis follows similar lines to the analysis of [26, §4].
The main ingredients we need come from the refined By ; norms and addi-
tional L? orthogonality arguments. We prove Proposition 6.1 in two steps (see
Lemmas 6.3 and 6.4 below) depending on the maximum in the definition of x.

LEMMA 6.3. The bound (6.3) holds provided that (6.2) and (6.27) hold
and, in addition,

(6.28) max(j1,j2) < (m — BQm)/Q,
with
(6.29) ) = 2 m=m)/2

Proof of Lemma 6.3. For simplicity of notation, let
G (&) = FIPRTE" (f1, 1> Jro32)1(E),

(6.30) = (X3 (I€]) /R /R TN (€ 1) g (5)

’ fl/;l,jl (5 -, s)fllng,jQ (777 S) dndS,
where x%""" was defined in Lemma 6.2 and, as before,
a1,V 2 fmax o,V =M,V
XF (&m) = (2P Ok R (¢ ) (12 (€, )|/ k).
Using the L*° bounds in (5.17) and (6.13) (with 6 = 4k), we see easily that
(6.31) |G| 1o < K3 -2m < 97m/2938%m/2,

This suffices to prove (6.3) if, for example, j < m(1/2 — 43). To cover the
entire range j < m + D we integrate by parts in s.

In the argument below we may assume that G # 0; in particular, this
guarantees that the main assumption (6.12) is satisfied. With W7#*¥(|£]) =
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QoY (&, pTiHY (£)), defined as in (6.16), assume that

(6.32) 2wV (E])] € [2,2'1], 1 € [Bm, 00) N Z.
Then, using Lemma 6.2, we see that if |n — p7i#¥ (€)| < 2°°Pk, then
| ®THE(E, n) — WTHE(IE])]| < [n = p7HH ()] - sup Ea(Ne]

[¢—peinr (§)|<2°0P K
< 290 fy — p7Y(€)],
since E#Y (&, p*¥ (€)) = 0. Therefore,
U@ (e m)l € 2702 i XM (6 m) # 0.

After integration by parts in s it follows that

GOIS 2" Menl)] [ [ G (€l ()1 1 (€ = 0. 5)| 1, 1 0.9

I € o (10 )6 = 1.9 1TE, (.9

+ X" (& am ()] 1FE 5, (€ =1, 9105 £, 5,) (0, 5)| dnds.
We use now (5.7), the last bound in (5.17), (5.22), and Lemma 6.2. Tt follows
that
(6:33) 1G(&)] S 2™ en(©IXT" (1€ - £ S len(€)IXG" (I€]) - 2727 m/20Pm/

provided that (6.32) holds.
We can now prove the desired bound (6.3). To make use of (6.32)—(6.33)
we need a good description of the level sets of the functions W7#¥. Let

= Bm+2],
1= {6 € RS 2|0 (g)] < 20 and [on(€) X G ([€]) # 0},
Dy = {€ € R® 2w (fg])| € (21,2

and |gk(€) X" (I€l) £ 0}, 1€ [lg+1,m — 100D N Z,

m—100D

> G, Gi(§) = G(E) - 1p,(€).

l=lo

For (6.3) it remains to prove that for any [ € [lo,m — 100D] N Z,

(6.34) |28 FH @) s, , S 270
Using (6.17) in Lemma 6.2, it follows that there is
O7HY = QTR (1, v, 0,k ke, ke, 1) € 270 00)
with the property that

(6.35) D, C{¢eR?: )yg| — gy
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Therefore, using also (6.33) if I > 1y + 1 and (6.31) if I = ly,
|6 71 @l S 20499 Gullge + Gl
< 9Bmo—lg—m/298m/5 (2(1%3)]'2(1*7")/2 +1)
< 2j—m2—l/22116m/5 + 2—l2—m/2266m/5‘

This clearly suffices to prove (6.34) if [ > 68m or j < m — 35m.
It remains to prove (6.34) in the remaining case
(6.36) 1 €llp,68m|NZ and j €lm—3pm,m+ D|NZ.

For this we need to use the norms B]ij defined in (4.5). Assume first that
[ > 1y + 1. As before we estimate easily

20=PNGy |l 2 + |Gil| e < 27127 /208m/5 (Q(I—B)mg(l—m)/2 +1)
< 271/22745171/5 + 27l27m/22,3m/5‘

Therefore, for (6.34), it suffices to prove that

(637 297 s R|F[EM - FG)|
Re[277,2F] £HeR?

Since (f(qag’“))(g)] < 2% (1 + 29|¢)=5, it follows from (6.33) that

< 2—364m
LY(B(&,R)) ™

FIE - FHE] @] S [ 1GiE =m)]-2¥ (1 + 27 |n)) " dn
R3
52*12*"1/22%/5/ 1p, (& —n) - 27 (1 +2|n) " dn.
R3

Therefore, using now (6.35), for any R € [277,2*] and & € R3,

,2”]—“[@5’6) .]—“fl(Gl)H < 9-lg=m/29Bm/5 gl—m < 9=3m/296m/5.

LY(B(&,R)) ™~
and the bound (6.37) follows.
Similarly, using (6.31) and (6.35),

2003\ Gyo Il 2 + 1Gu I < o(1=B)(j=m)g—Bm+lo/2+38°m | o—m/4 < 9—38'm

and
PP 7 ew)©)] S [ 16uE -l 21+ 2 )
st | ap (6 =) 291+ 2 lal) O dn,
from where we conclude that, for any R € [277,2%] and & € R3,

_QHI[(Egk) _f—l(GlO)] 2—m/2235 m 2l0 m < 92— 3m/2226m

LY(B(&,R) ™~
The desired bound (6.34) follows when [ = [y, which completes the proof of
the lemma. g
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LEMMA 6.4. The bound (6.3) holds provided that (6.2) and (6.27) hold
and, in addition,

(638) max(jl,jz) > (m _ ,32m)/2,
with
(639) K= 252m2max(j1,j2)_m.

Proof of Lemma 6.4. Using definition (4.4), it suffices to prove that

| ~(k o
2B - PRZE (s i)

~(k . _9p34
|78 PR G A ) S 27

Loo ™

(6.40)

Let G = ‘FPkR?riﬁ%i/(fﬁ,jl’fgz,jz) be given as in (6.30). In proving (6.40) we
may assume that G # 0; in particular, this guarantees that the main assump-
tions (6.12) of Lemma 6.2 are satisfied. We prove first the L> bound in (6.40).
Assume that j; < jo. (The case j; > jo is similar.) Then (see (5.17) and

(4.6)-(4.8))

1f7 ()L S 1,
S0, 15, 5 s oy S27OTPRRYE - for any R <1
1S

Using (6.13) in Lemma 6.2 it follows that

|G| oo < 2™ - 27 (1HA)23/2 < 9=m/2926mo(1/2-0)j2 < 926

as desired.
To get the L? bound in (6.40) it suffices to show that

(6.41) 22+20m| |12, < 2748,

To prove this we need first an orthogonality argument. The point of this
argument is to show that the space-time resonant contributions coming from
different values s and s’ in the function G (see definition (6.30)) are essentially
orthogonal, provided that |s — §'| 2 2™k. More precisely, let x : R — [0,1]
denote a smooth function supported in the interval [—2,2] with the property
that

(6.42) Z xX(x—n)=1 for any x € R.
nez

We define the smooth function x’ : R® — [0,1], X/(z,v,2) = x(z)x(y)x(2).
Recall the functions U7#* defined in (6.16). For any v € Z3 and n € Z, we



THE EULER-MAXWELL TWO-FLUID SYSTEM IN 3D 437

define
Gvn =X (K 5 - U)onz(f)

(6.43) / /R N S (6 ) (27 s — 0)gm(s)

fk1 ]1(6 UE )fk:g ]2(777 )dnd&

and we notice that G =Y ,c73 Y ez Gon. In view of Lemma 6.2(i) we notice

also that the functions G, ; are trivial unless

ve ZTP = {w e 7P : klw| € [2F74, 28]
(644) o100 —4D TR —200D
N [t772(0) + 2777, 00), [T (k[w])| < 2 b

We show now that
(6.45) 1GI72 S Y. D IGunll7s +2710
veZI MY nel

1/2

This additional orthogonality in time allows us a crucial gain of £/¢ in the time

integration, compared to the trivial bound. To prove this bound we estimate

HGH%2§ Z ZGvn Z Z vma vn2>|~

veZ WY U nel veZT MY ny, ngGZ
Therefore, for (6.45) it suffices to prove that
(6.46) (G, Gomg)| S 2720 if v e Z7* and |ny — ny| > 21000,

We may rewrite

(FlGunla) = [ [ e (0 — ()
X

X (6 X (571 = )or(E)F . (€ =) FF, (1, s) dnds
and notice that
Ve [z - &+ s@7HY(E n)] = © + ne2™ V@ (kv, p”#" (kv))
+ (sVe®(&,m) — nk2™V (Ko, p7H*" (kv))),
=2+ nr2"Ve®(kv, p7 " (kv)) + O(2MK).
Let w, = nk2™ - (V") (klv|) - v/|v|, and integrate by parts in & using
Lemma A.2 with
Nz 4 wy|, €A 2maxtuiz),
It follows that, for any n € Z,
IFHGon)(@)| S|z +wn| 2% i |z 4 w,| > 250P k2™

Moreover, using Lemma 6.2 and (6.44) we conclude that [(¥7#") (k|v|)| >
27200 " Therefore, if [n1 — na| > 21907 then |w,, — wn,| > 27°PKk2™ and the
bound (6.46) follows. This completes the proof of (6.45).
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In view of (6.45), for (6.41) it remains to prove that
647) 200" > 1Goml?a S 2748,

veZl MY ne[2-10x—1 210,—1]

Let
av,s(g) = X/(l‘ﬁlilg — ’U)(pk(f)/ eis(bom’y(fv??)xng(f? 77)
(6.48) - R3
' f]gl,jl (5 - S)fkyg,jQ (77? 8) dna
such that

Gon(E) = /R G s(OX (2K s — n)gm(s) ds.

Therefore, for any (v,n),
[Gunlfe S 27 [ 1Guslfax(2 st = ) (o) ds

Therefore, for (6.47) it suffices to prove that for any s € [2m~1 2m+1],

(6.49) 2(F2my N |Gy |2 S 27080,

v
oip,v

VEZ,
Assuming v € ZZ*" fixed, the variables in the definition of the function
G5 are naturally restricted as follows:
E—rolSh - )| S 5

where p?*" is defined as in Lemma 6.2. More precisely, we define the functions
/1 and f3 by the formulas

—

oy 0= TR0 g ) - L (0,9)
F3(0.5) = (2P k(6 — p7H (w0)) - T, 1 (6.5).
Since
[p7# (k1) — 7 (kg)| > 273k
and

‘[m}l — pTHY (kv — [Koe —po;“’”(mvg)]‘ > 27800,

whenever |v; —v2| 2 1 (these inequalities are consequences of the lower bounds
in the first line of (6.14) in Lemma 6.2), it follows by the fact that the support
of the functions have finite overlap that, for any s € R,

S GG S ()72 S 272200,
veEZIHY

ST NG S ()13 < 2722200,
O,V

VEL

(6.51)
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For any v € R? and g1, g2 € L?(R3), let

Aul91,92)(©) == X' (7€ = 0)n(©) [ X7 ()
 F( Py —a iy +4191)(§ — 1)F (Pliy—a,ky+4192) (1) dny.

(6.52)

We observe that

Gua() = MO AESY (5), B (5))(6),

Bfi(s) =M f(s),  Bfy(s) = e Mg (s).
Therefore, for (6.49) it suffices to prove that, for any s € [27~1, 2m+1],
(653) 24 ST AU(ES (). B (s)Ilfa S 27

veEZIHY
We notice now that if p,q € [2,00], 1/p+ 1/q = 1/2, then
(6.54) 14v(91, 92) 2 < Nlgallellg2lle-

Indeed, as in the proof of Lemma A.3, we write

Fl g D@ =c [ @)K ey, 2) dydz,
R3xR3

where

Ki(wig,z)i= [ o eeomany (nte — (e 12 g )

(&) p(2P Ok k) @iy (¢ .y you (€ — )Py ks 14 (1) dED.

Recall that k, ki, ks € [—D/2,D/2], and integrate by parts in £ and 7. Using
Lemma 6.2, it follows that

[Ko(z3y,2)| S &2+ s —y) ™ w20+ r Ty —2)7

and the desired estimate (6.54) follows.

We can now prove the main estimate (6.53). Assume first that
(6.55) max(ji, j2) < (3/5 — B)m.
By symmetry, we may assume again that j; < jo and estimate using (6.50)

IEF ()l S 1) S &%

Therefore, using (6.54) and (6.51), the left-hand side of (6.53) is dominated by

O N KB ()72

veZTHY

S 24m+2,3mﬁ7 . 2—2j2+2/3j2 5 2—3(1—ﬁ)m2(5+2,3)j27

and the desired bound (6.53) follows provided that (6.55) holds.
Assume now that

(6.56) max(j1,J2) > (3/5 — f)m, max(j1,j2) — min(j1,72) > 8Fm.
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By symmetry, we may assume that j; < js and estimate, using (6.15), (5.17),
and either (A.37), (A.42), (A.49) or (A.55),

|EfL(s)|| oo < 273m/22(1/248)0
Therefore, using (6.54) and (6.51), the left-hand side of (6.53) is dominated by
Cdm+2Bm . Z 2—3m2(1+26)j1||Ef%1(8)||%2 < om+2Bm . o(14+2B)j19—2j2+2652
veZgH
< 9i1=5293Bm 92851 22,3j27
and the desired bound (6.53) follows provided that (6.56) holds.

Finally, assume that

(6.57)
max(j1, j2) — min(j1,j2) < 86m and max(j1,Jj2) > (3/5— B)m

In this case we need the more refined decomposition in (4.6)—(4.8). More
precisely, using the definitions, for fixed s € [2™~1 2™+ we decompose

I 31 (8) = Py o kg 121(91 + ha)), Fho.a(8) = Pley—2,kp+2) (92 + h2),
where

_ ~(k1) ~(k2)

(6.58) gL =91 S0[1'11—273'14-2]’ 92 = 92- (‘0[322 2,j2+2]
and

204831 gy || 12 + 207891 || by || 2

4 21 sup th HL1 B(60,R)) ~ ST
Re[2’11,2’“1],90€R3

204832 | go || 12 + 207832 | hg || 2

+ 22 sup B[Rzl 1 (g0, S L
Re[2792,2k2],00€R3

(6.59)

Then, we define the functions g, hY, g3, hs by the formulas (compare with
(6.50))

g7 (6) := (27 R7H(0 — kv + P (k) - F (P, o, 42)91)(0),

Ry (0) = p(27°0P k™ 1(9—/‘6U+pauy(ﬁv))) F (Pey —2,,+21 1) (0),
(6.60) _ s0D 1

73(0) = p(27P k710 — p7H (k) - F(Piy—ops2192)(0),

h5(0) == (270P k(0 — pT (k) - F(Ppy—2,s42)h2) (6).

As in (6.51), using L? orthogonality and (6.59), we have
> llgtlize s 272 S Ikl S 27

661) T veZg""
Yo lgsllfe S 272272 30 ||hy7. S 27
’UEZU sV ’UEZU TR%
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Let EVf = e_isxﬂf. Using (6.15), and either (A.37), (A.42), (A.49) or
(A.55) together with (6.58)—(6.59), we derive the L> bounds

|EEgE o S 2792 gh 0 S 273/ 220/260,

|BERY || e S R L1 S 22709,

6.62 '
. |EZ g8l < 2722 g8 S 270m/200 2Pz,

|EZhS|| e < |1hY]| o S 22775

for any v € Z7#". Using (6.54) and (6.61)—(6.62), we estimate, assuming
J1 < Jo2,

imt20my N || Ay (Bl gy, EX g3z + | Au(EERY, EXg3)|[3]

ez
<20y T g8l (1B gY 1 Ee + 1B 7o)
ez

< 9dm+26m . 9—2j2—2fj2 [2—3m2(1—25)j1 + 542—2’Vj1]
< 93mo(28+6%)mo—(1+2p)j2 . 9—3mo(1-28)j2
<270,

Similarly, we estimate

22 37 [ Au(Bl g, BXRS)Ta + [ Au(BERY, B RS)I7]

vezgtv
S 2dmE2my NN BYRS| 3 (| EY Y |22 + | EVRYI22)
vezZg

< 9dmA42Bm . Ao—2vj>  9—2j1+20
< 2—7’}7,/10

The desired estimate (6.53) follows from the last two bounds and the restriction
(6.57). This completes the proof of the lemma. O

7. Proof of Proposition 4.3, III: Case B resonant interactions

In light of Proposition 5.9, in this section we consider type B interactions
(see Proposition B.2) and prove the following proposition:

PROPOSITION 7.1. Assume that (k,j), (k1,71), (k2,j2) € J, m € [1, L|NZ,

(71) UMY ¢ TB — {(I)e;i+,e+’ (I>e;i—,e—&—7 (I)b;i—l—,b—l-’ (I)b;z'—,b—l—}7
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and

—9m/10 < ki, ko < j/N}, max(j1,52) < (1 — 3/10)m,
(7.2) Bm/2+ Njky + D* < j<m+ D,

k1 < —D/3, k> —-D/4, |k — ko| < 10.

Then there is k € (0,1], kK > max (2(52m_m)/22_k1/2, 252m_m2max(j1,j2)), such
that

~(k O L,V v —28%*m
(7.3) (1+29)(|6%- Pergier (£ 51 fg)|| e S 2720

Bi,j
The rest of the section is concerned with the proof of Proposition 7.1. We
have assumed, without loss of generality, that k1 < ko. Asin Case A, the proof
of the proposition relies on a careful analysis of resonant interactions. For this
analysis, we need to understand well the geometry of almost resonant sets.
For o € {e, b}, let R, denote the unique solutions in (0, co) of the equations

(7.4) No(Ry) = Xi(0) = /(1 +T)/(1 +¢).

The numbers R, are well defined, in view of Lemma A.4, and R, ~. ¢, 1.

For (u,v) € {(i+,e+), (i—, e+), (i+,b+), (i—,b+)}, p = (it1), v = (02+),
oy € {e,b}, we define the functions r** : (R, — 2~P/° R,, + 27P/5) —
(Ry, — 27 P/10 R, 4+ 27P/10) a5 the unique solutions of the equations

(7.5) )\;2 (r*¥(s)) — Ai(s — r¥(s)) = 0.

These functions are the analogues of the functions defined in Section 6 above
(6.8) for ®7#¥ €€ Ty. Notice that these functions are well defined for s €
(Rgy — 27P/5 R,, + 27P/), since the functions r — X, (r) — Xi(s — r) are
strictly increasing and vanish in the appropriate ranges, as a consequence of
Lemma A.4(i) and the observation that A/(0) = 0. Moreover,
(7.6)

(@r4)(s)| ~cy e s — ()| for any s € (Roy — 27215, Ryy +27215),

LEMMA 7.2. Assume that pn = (it1), 11 € {+,—}, v = (02+), 02 € {e, b},
k,ki,ko € Z, k1 < —D/3, k > —D/4, |k — ko| < 10, and 6 € [0,2710P].
Assume that there is a point (€,m) € R? x R3 satisfying
(7.7)

6 € (224,204, gl €[22kt Jep| € [t 2 (e )] < 6

(i) Then

(7.8) k. ks € [-D/100,D/100]  and [|&] = Ro, <epe 2P 46,

+|Inl = Roy
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More precisely, if &€ = se for some s > 0 and some unit vector e € S?, then

|5 - RU2| Scb,f 2k1 +9,

n=re+n, |r — 1Y (s)| Soy.e 6
(7.9) . "
Ir —s| =g, e 27, uls—rl=s-—r,
ne=0, | Sepe 20

(ii) If, in addition, § < 2k1=D/10  4hep
ifti =+, thens— Ry, =g, 2k and Ry, — 17 (s) =¢, ¢ 22k

(7.10) " y 20
if i =—, then Ry, — s =, 2™ and Ry, — r""(s) =c, c 2°.

Proof of Lemma 7.2. (i) We start from the formula

—_ n—=E& / Ui
7.11 2V(E ) = —uXi(In—¢ — Agy () -
(7.11) (&) (I =€ —¢ o \)W
Since |X(|In — €]) = X(0)] Se, 229, the condition [E4¥(&,n)| < & and the

estimates in Lemma A.4(i) show that ‘]n| — Ry, | Seop 2291 + 6. The desired
bounds in (7.8) follow.

We prove now the claims in (7.9). Letting & = se for some s > 0,e € S?
andn =re+n',r € R, n'-e =0, the condition |Z*" (£, n)| < § and the formula

(7.11) show that

(7.12)
T—S T
- X (/= ) S Y Y R
(r— s+ | N
n / '
—uN,(\/(r — 8)2+|n'|2 — A (V242 <
NS e )

Recall that \;(0) > 0 and that A,(0) = A;(0) = 0. Recalling also the assump-
tions (7.7) and the bounds (7.8), the second equation in (7.12) shows that
17| Scpe 2K16 as desired. In addition, |s — r| =, - 2%, therefore

‘8 — Raz Scb,g le + 6.

+ ’7’—R(72

The first equation in (7.12) now gives

r—s
(7.13) LlA;(yr—s|)m+A{,2(r) < 26.
Since X, (1) =¢, e 1, it follows that ¢y (r — s) = —|r — s| and, therefore,

‘ —Ni(s—1)+ )\;2(7“)’ < 20.
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Finally, we notice that the derivative of the map r — —\,(s — r) + A, (r) in
/R, 1 in the appropriate ranges of r, s, therefore |r — 1" (s)| Sc,.c 0. This
completes the proof of (7.12).

(i) If § < 2M1=P/10 then, using (7.9), |s — 7%V (s)| ~¢, . 2". Therefore,
using Lemma A.4(i), X;(0) — Xi(s — r#¥(s)) =, 22F1. Using the definitions
(7.4)—(7.5) it follows that R,, — r*(s) ~¢, . 221, Therefore, |r — Ry,| Sc,e
22k1 4.5, The remaining bounds in (7.10) now follow from the identity ¢1|s—r| =
s —r (see (7.9)) and the assumption § 4+ 221 < 2k1—D/10, O

7.1. Proof of Proposition 7.1. We further divide the proof into several
lemmas.

LEMMA 7.3. The bound (7.3) holds if (7.2) holds and, in addition,

oY ¢ {(I)e;e+,i+, q)e;eJr,if’ (IDb;b+,i+7 (I)b;bJr,if} or

(7.14)

k ¢ [-D/100,D/100] or ko ¢ [—D/100, D/100],
with
(7.15) K= 2710D,

Proof of Lemma 7.3. In any of these cases we have Pka,{ff{’”(f,’:l i fk”MQ)
= 0, using either Lemma A.4(i) (which shows that (1) =¢, . 1, r € [0,00),
and A, (r) = N (r) =¢, e, 7 € [0,1]) or Lemma 7.2.

O

LEMMA 7.4. The bound (7.3) holds if (7.2) holds and, in addition,

oY e;i+,e+ e;i—,e+ byi+,b+ byi—,b+
T € {P P D D 1,

7.16

10 by € [-D/100.D/100],  max(in, o) < (m — Fm) /2 — k2.
with

(7.17) k= 9(BPm—m)/2—k1/2

Proof of Lemma 7.4. Let
G(&) : = @r(&) - F[RGLV (i1 fin) | (©)
(7.18) —n(©) [ [ e NG € )

' flétlajl (5 - n’ S)f;ch,jQ (777 S) dndS

where, as before,

XFY (&) = (2P TRk @7 (¢ )21 (€, )|/ R).

Recalling (4.4), it suffices to prove that

(7.19) 2048160 . FH @) + Gl S 2725
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Using Lemma 7.2 and the L> bounds in (5.17), for any ¢ € R3, we have

(7.20)
GO S 27 2R k2 min(2M, k) - 27972 1 yb i1 1) 95 (901 1) (1€] — Rorn)

2 .
< P9 () 1oty 20301 6] B

The L*> bound in (7.19) follows.

To prove the L? bound in (7.19) we notice first that we may assume that
2 < 2/327”2’”(/{ + 2F1), which is stronger than the assumption j < m + D in
(7.2). Indeed, assuming that & = se, n = re + /' satisfy (7.7) with § = 2k and
using that o = o9, we estimate

(7.21) [(Ve@®) (€ m)] = | (Va7 )(€,m)+ (VAL = VA )] £ 2+
Therefore, we make the change of variables n = £ — 6 in (7.18) and rewrite
(F1G)(z) = c/ / ei[m~§+s<1>0;”’”(§,£—9)]@k(g)xg#ﬂ’(&5 — 0)gm(s)
R JR3xR3
R (0,5)fE, (€~ 0, 5) dedods.

Integrating by parts in £ using (5.17) and Lemma A.2 with K%252m2m(ﬁ;+2k1),
€1~ 2 (k + 2M1), it follows that

2403 FL @)l e S 27 i 2 > 2P (kg 2R,
Therefore, for (7.19) it suffices to prove that

(7.22) 200 (1 4 FYIHB ) Q|| 1 < 27280,

Case 1. Tt follows from (7.20) that the left-hand side of (7.22) is dominated
by

02(1+ﬁ)m2252m2k‘1/22k1ﬁ(zk‘l 4 H)l/Z < 2(1/2+2,8)m(23k1/2 4 2k‘1 51/2).
The desired bound (7.22) follows from (7.17) if k1 < —m/3 — 48m.
Case 2. Assume now that
(7.23) —m/3+pm <k <-D/3.

In this case we need to improve on the bound (7.20). We use Lemma 7.2 with
§ = 2r and notice that, as a consequence of (7.23), § < 2F1~P/10 Assuming
¢ = se and n = re + 7' satisfy (7.7), we estimate, using also Lemma A.4,
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Lemma 7.2, and (7.13),
(7.24)

DTV (E,m) = Agp(8) — 1 Ai(\/ (1 — 8)2 + [[?) — Au (/72 + [1/'[?)
= )‘02(8) - Ll)‘iﬂr - SD — Aoy (T) + 00578(’%2)
= Aoy (8) = Aoy (1) = Ai(s — 1) + Og, < (K7)
= )‘02 (S) - )‘02 (RUQ) - )‘i(s - RU2) + OCb,E(’€2 + 23k1)
= )‘02 (5) - )‘02 (RUQ) - )\iTQ (RUQ) : (S - RO'Q) + 00575(52 + 23k1)
~ 22k1
~Chy,e

More precisely, we use (7.9) in the second equality, (7.10) and (7.4) in the
fourth equality, and (7.4) together with A/(0) = 0 in the fifth equality. We can
now integrate by parts in s in the formula (7.18) to conclude that

(7.25)
1G] < 27 i (9)]

1= €l /0l ()15, (€ = 0:8)] 17 0.9

+ (2 (€)1 am ()| (@S )(E = 0 9)] £, 1, (1:5)]

o= () /) lam (| I (€ =0, 8)| D F7, ) (n, 5)] dds.

We use now (5.7), the last bound in (5.17), and the bound (5.22). In view of
Lemma 7.2, the volume of integration is ~ (2¥' k)2 and it follows that

G £ 27271 90)(27M |s — Ry,|) - 22153 - 2Pm/1037h
5 1[0,2D} (Q_kl ‘3 _ R0_2 ’) . 2—3m/22,6’m/52—5k1/2.

Therefore, the left-hand side of (7.22) is dominated by

9(I+B)moky _ 9=3m/296m/59=2k1 < 9—kig=m/2926m

(7.26)

and the desired bound (7.22) follows using also (7.23).

Case 3. It remains to prove the bound (7.22) in the case
(7.27)
- m/3 — 4Bm < kl < —m/3 + ﬁm and 2—m/3—ﬁm <K< 2—m/3+36m.

We define
G,(f) — ‘Pk(g) /]R /Rd eisq)gw’u(gvn)@(2D2+max(0’k1’kg)q)aw’”(f, U))Qm(s)

I & =n,8)fE, S, (0, s) dnds
and notice that, using integration by parts in 7 as in the proof of Lemma 5.8,

IG = Gllz2 < 270



THE EULER-MAXWELL TWO-FLUID SYSTEM IN 3D 447

Moreover, using Lemma A.3 and the L® bounds (7.57) below,

G2 <27 sup min{HEf,fhjl(3)|]Loo||f}€’27j2(s)HL2,

Se[Qm—l’Qmﬁ—l}

17y 2 | By ()l }
< gm . 2—3m/22— max(j17j2)(1/2_25)‘

The desired bound (7.22) follows if max(j1,j2) > m/2, using also (7.27).
Finally, assume that

—m/3—4pm < ki < -m/3+ pm,

(728) 2—m/3—,3m <K< 2—m/3+35m,

max(ji, j2) < m/2.

In this case we need to improve slightly on the pointwise bound (7.20). As-
suming £ = r'e, 7’ € (0,00), e € S? and letting n = re+1n', ' -e = 0, we define,

for any [ € Z,
=Yk 're//RQ/ is®7Y (r'e,retn’)

.@(2D2+maX0k1,k2)q)a,u,u(,re T6—|—77)) ( )

Sp((r = () [2'R)p (' /(2P R k)

: f/,g;(r'e —re—1, s)f/,é’;h(re +1',8) drdnds.
Clearly, |G — G pllr2 < 27'9; see (7.9). Estimating as in (7.20),

G (O] S 2™ - 22Mk720 - 272 1 op iy 4y 90 (ot 4y (1] — Rors)

2m—m
S 2'2% /2. 1[—2D(2’“1 +k),2D (2F1 +n)}(‘§| — Ry,).

Therefore, setting ly := —[85m | we estimate
(7.29)
2(1+5)m(’€ + 2k1)1+B”G/<IO HL2 < 2m+6m27m/3+36m . 2l02252m7m/227m/6+35m/2

g2

Finally, for (r,7’) in the support of integration of G<;(&), we have from
Lemma 7.2 and (7.5) that

d @U’””(r e,re+n )
dr
!
- T
— \ — X = ) e — N (P2 D)
(r=r")2+n'? VAP
~u(r

— ))\’(r —7) =X\, (r)

19) 2 22k1
|'I" —r | + Cb,€(K/ + )

l
E/Cb,é 2 K/v
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and we may notice that we can integrate by parts in r and use Lemma A.2
with K ~ 2m2!k and e~ ~ 20m[2max(i2) 4 9=L(2k1 4 )1 to show that

(7.30) |G<i41(8) — Ga(@)) s 271
if | € [lp,D]. Indeed, it follows from (7.28) that Ke > 2°™. The desired
estimate (7.22) follows using also (7.29). O

LEMMA 7.5. The bound (7.3) holds if (7.2) holds and, in addition,
I ¢ {q)e;i—&—,e-l—’ (I)e;i—,e—‘r, q)b;i—i—,b—i-’ (I)b;i—,b—i-},
(7.31) )
k, ko € [—D/lOO, D/lOO], max(jl,jg) > (m — ,B m)/2 — k1/2,
with
(7.32) ) 1= 2max(igz)+Fm=m

Proof of Lemma 7.5. We define the function G as in (7.18); it suffices to
prove that

ok B o

(7:33) 20491 FHG) 2 + Gl S 272,

The L bound in (7.33) is easy: if j; < jo, then we use the bounds
I£E 5 ()l S 27872,

[ox()] /R ()| [ = (€m0 L a0 gt ey (1€ = ) i

< 2—(1+ﬂ)j2 (5322’61)1/2’

which follow from Lemma 7.2, the bounds (5.15), and Definition 4.1. Therefore,
in this case,

|G| oo < 2™ - 27 F1/29=(14B)i2 (,392k1)1/2 < 9=Fm/A9(la—m)/8
which suffices by (7.2). Similarly, if j; > jo, then we use the bounds
1, ol 1,
(&) /R A €= m9)| [ U () /9)| g qraeay (I iy
< 2—(1+5)j1(/{322k1)1/2’

and the desired L>° bound on G follows as before.
The L? bound in (7.33) is more complicated. We notice first that the same
argument as in the proof of Lemma 7.4, using the estimate (7.21), shows that

(7.34) 204090 FU@) e S27 i 2 > 2P mam(k 42k,

To continue we consider three cases.
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Case 1. Assume first that
(7.35) ok1=D < .
In view of (7.34), in this case it remains to prove that
(7.36) 20 G 2 S 2720

We argue as in the proof of Lemma 5.7. We define first

G/(f) — ‘Pk(f) /R /R3 eiség‘“’“(ﬁ,n)@(2D2+max(0’kl:k2)(1)‘7§“a”(§’ n))qm(s)

’ f;:lvjl (&=, s)f]?%]é (n,s)dnds

and notice that, using integration by parts in 7 and Lemma A.2 with K ~ 2™k,
6_1 ~ 2max(j1,j2)’

(7.37) |G — G2 < 2710m,

. ~(k
Since |G\ - Py, fu(s)lls,, 5, + 1802 - Py fu(8) 1By, S 1 (see (5.15)), w
use (4.6)—(4.9) to decompose

~(k —
BV - Py fuls) = 27R (gl () + hE L ()],
(7.38) 20D |gkt - (s)] 12 + 2“/2-@’“\\% MOl
20Dt ()52 4 1B, 5, ()l + 290 IRE S ()l < 2

and

(’551262) Py fu(5) = (950 (8) + iy 4y (5)],
(7.39) 20| gt ()12 + IlgE, (8l S 1,

205 5, ()12 + 1B, ()l + 2R, 5, ()]0 S 1.
For f,g € LA(R%), ¢ € R®, and 5 € [2m71,2mH1], et

CL(F.0)(E) = pue) [ 7 E1p(aP rmm(On ko) (g )

- F(€ = m)g(n) dn.
Using also (7.37), for (7.36) it suffices to prove that, for any s € 271 2m+1]
(7.41) 9 mgmeki GO GL(£,9) 112 S 1,

(7.40)

where
f € {P[k172,k21+2}gg17j1 (8)7 P[k172,k1+2]hlk;ll7j1 (8)}7
9 € { Ply—2,k0+21Tks.55 ()5 Plia—2, ko421 Py 55 () }-
Using Lemma A.3 and (3.16) it follows that
(7.42) IGL(f, 9)ll 2 S min (| B fll2ll B gl oo, | BY fll oo I B gl 2),
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where EFf := "M f and EVg := e Mg, In view of Lemma A.5 (see also
(5.19)),

| EX || oo < 28197 m(5/4=108) 951 (1/4=116)

(7.43) |
IESgllLe S 9—m(5/4=108)9ja(1/4-11p)

for
f € {P[k:172,k1+2}g]};1,j1 (8)7 P[k172,k‘1+2] h/];;Lh_jl (S)}7

g € {P[k2—27k2+2}gZ2,j2 (8)7 P[k2—2,k2+2]h227j2 (S)}

If |j1 — j2| > 108m, then we use (7.42)—(7.43), together with the estimate
omax(j1.02) v 1x2m2~A*m and the L2 bounds || f| 2 < 228M12-0-Pir |g|;2 <
2*(1*5)3'2, to estimate

IGL(f, )| 2 < 2Bk19=m(5/4=108) gmin(ji.j2) (1/4=115) . 9—(1=F) max(ji,j2)
< Qﬁkl2—m(5/4—105)2—106m(1/4—116)(szz—/ij)—SM—lOﬁ
< 90k, —lg—2mo—5m/4

for
f € {Pry 204219k, 5, (5) Py —2,042) 0, 4, (8)
9 € {Plka—2,k0+2)90.52 () Pl —2,k2+2) My 5, (8) }-

The desired bound (7.41) follows in this case.
On the other hand, if |j; — j2| < 108m, then we estimate, using (7.38)—
(7.39) and (7.42)—(7.43),

|G (Prtey—2,k0 +219k, 5, (8)s Plka—2,k04+2)Gka o ()] L2

< 9=m(5/4-108) gmin(j1 j2)(1/4-118) . 9—(1+5) max(jr.j2)
< 2—m(5/4—105) (H2m2—,82m)—3/4—12,8
< 57127(2+25)m252m'

Moreover, for g € {P[k272,k2+2}g;c/27j2(5)7-P[k272,k2+2}h%2,j2 (s)}, we estimate, us-
ing also the assumption (7.35),

G (P, —2,ky 121 M0, 5y (8), D2 S I, 5 ($)lellglize S 271198k 9=(1=A)72

< 28k12166m(ﬂ2m)—(1—ﬂ+7) < ok19—m(1-178+7)
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Finally,

G (P, 2,01 +2190, jy (8)s Pika—2,k0421 75 5 ()] L2
S min [[lgk 5 ()22 lRE, 5, (), 2% 2 gl ()l z2lRE, 5, (5)]] 2]
< min [2*(1+ﬁ)j1 92 93k1/29—(14+8)5 2*(1*5)1'2]
< min [zlﬁﬁm(ﬁﬂm)—(l-&-ﬁ-&-’ﬁ’ H3/2216/Bm(/€2m>—2]
< 2165m min [2—(1-{-’7)7’71/1—(14—7)’ 2—2m/€—1/2] )
The desired bound (7.41) follows from these last three estimates, which com-
pletes the proof in Case 1.
Case 2. Assume now that
(7.44) k<2M7Pand g < 27m/BHE/2)
In view of (7.34), in this case it remains to prove that
(7.45) 2(1A)mo(+Ak | G| 1o < 27287,
As in Lemma 7.4 (see (7.24)-(7.26)), we estimate pointwise
’G({)‘ 5 9—2k1  92k1 3 Qﬁm/lDQ—kl . 1[_2k1+D’2k1+D](’5‘ — R@)
< k398m/109—k1 | 1[_2k1+D72k1+D](|§| - R,,).

Therefore,
o(1+B8)mo(148) k1 1G]z < 2(1+5ﬂ/4)m/<;3,

and the desired estimate (7.45) follows since x < 2-7(1/3+6/2),
Case 3. Finally assume that
(7.46) 9~ m(/3H+8/2) < o < o1=D,
In view of (7.34), in this case it remains to prove that
(747) 2(2+2ﬁ)m2(2+2ﬁ)k1 HGH%Q S 2—4ﬁ2m.
Step 1. We need first a suitable decomposition and an orthogonality ar-
gument, as in the proof of Lemma 6.4. Let y : R — [0, 1] denote the cutoff

function satisfying (6.42), and let x/(z,y,2) := x(z)x(y)x(z). We define, for
any v € Z3 and n € Z,

=X (k1 - s (€1)
Gon(€) =X (8¢ v)sak(é)/R/Rse !
(748) XEE (2T T s — ) g (s)

—

’ f}ljl,jl (5 - S)kaQ,jz (77, 5) d’l’]dS,
and we notice that G = 3", cz3 > ez Gon-
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We show now that

(7.49) 1G22 < 3" S 1G 32 +2710m,

vEZ3 NEZL

Indeed, we clearly have

IG12: < >

veZ3

Z va

ne’

SO Y (Gums Goms)l-

vEZS3 n1,n2€L

Therefore, for (7.49) it suffices to prove that
(7.50) {Gomys Gong)| S 2720 if v € Z3 and |ny — ng| > 21000,

To prove this we need to estimate |F~1(G,.,)(x)]. We would like to integrate
by parts in the formula (7.48). Using Lemmas 7.2 and A.4(i), for £ = se,
n = re + 7' satisfying (7.7) with § = 2k and |{ — kv| < K, we estimate

(Ve@7HY) (& m) = =(Vy@7H7) (€, m) + [VA4 () — VA (n)]

=X, (s)e = X, (1" (s))e + O, (k)

= (Ao, (5[v]) = A5, (" (K[v])] - v/[v] + Ocy (k).
In particular, |V @7 (&, n)| ~ 2F1 - After repeated integration by parts in &
(see (6.43)—(6.47) for a similar argument), it follows that

IF N (Gon)(@)] S |z +wa| 720 i [z +wy| > 27027,
._ m—Fk N7
wn = nk2™ A ([o]) = X, (K" (kv ])] - o/ o]

for any n € Z. Therefore, if [ny —ng| > 2197 then |wy, —wp,| > 279Pk2™ and

the desired bound (7.50) follows. This completes the proof of (7.49).
In view of (7.49) and Lemma 7.2, for (7.47) it remains to prove that

(51) AR S G2, o
(v,n)EZBXZ

Let

= Z Gv,n(f)

vEZ3

= vr(§) /R /R3 eisqw%y(é’”)xgu’”(f, n)x(2k1*mnfls — n)Gm(s)

iy (&= 8) 1, 5, (0, 5) dnds
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and!”
G;L(f) — wk(é) /R /RS 67:8(1)0;”’”(6,77)90(2D2+max(07k1’kQ)QG;‘U”V(é’ 77))

X X(2M T s — ) g (s) - L (&= m,9)f, 5, (0, 8) dnds,
Notice that

(752) S IGunl? S IGalZs  Ga— Gl S 2710
veZ3

for any n € Z. Since G/, = 0 unless n € [2M 4~ 2M+4=1] for (7.51) it
suffices to prove that

. 2(1+B)m2(1+6)k12k1/2 —1/2) v
(7 53) sup K ”Gn

ne[2k1—4x—1 2k1+4 1)

e S 2720,

For f,g € L?*(R3), £ € R3, and s € [2™1, 2] let, as in (7.40),

CLL.0)(E) = pr(©) [ 07 Enp(P* O k) e (¢ )

RS

(€= m)g(n) dn.
The left-hand side of (7.53) is dominated by

UFOmaUrAkigh 212 9™ sup | GL(fhy gy Fho o) lle-
sg[am—1 2m+1]

Therefore, it remains to prove that
(7.54)

EEAMMEEDRL L2 qup | GL(FL S (5), Fhge ()2 S 2720
se[2m—12m+1] ’ ’
Step 2. We decompose gByfl) - Py, fu(s) = 279k [g,‘:hjl(s) + thjjl(s)] and
~§’2€2) *Pi, fu(s) = (95,5, (8) + 1, 5, (s)] as in (7.38)—(7.39). In this proof we will

also need the stronger bounds (4.8) on the functions th,ﬁ (s) and hy, . (s),

277 sup R2|[B, S, ()L Bieo.ry) S 27,

. ki,j )~
(7.55) Re[2791,2%1], §oeR? o

. iy
o2 sup R72|Ihy, 5, ()L (eo,ry) S 1y
Re[2792,2k2], £)€R3

°Tn some arguments that involve the use of Lemma A.3 it is necessary to pass to operators
that contain “smooth” symbols, such as the symbol (£,7) — cp(2D2+max(0’k1’k2><I>"“"”(§,n))
in the operators é; below. Lemma A.3 is not directly compatible with “rough” symbols such
as (&,m) — x5""(&,n) since the L' norm of the inverse Fourier transform of such symbols is
very large.
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and the support properties (4.7). Recall the L? bounds

— y k _ _ .
gty (e S 2700 Ry (s)lle S 2%M2m 0P

(7.56) o ot
9850 ()| g2 S 27 A2 1B, (8) e < 27 O=F2,

With EX f = e‘isxf‘f and E¥Yg = e_iSX”g as in the proof in Case 1, we use the
kernel bounds (A.49), (A.37), and (A.42) (as in the proof of Lemma A.5) to
conclude that

15 Py~ 2k1+2](9k1,31(8) oo < 2k1/2973m/2971(1/2=5)
|ES P[k1—2,k1+2](h 1(

1ES Pliy—2,k5+2] (95,5 (5)
1B Pliy—2,k5-+2] (7 55 (5)

for any s € [2™1,2m*1]. We combine these bounds and Lemma A.3. It follows
from (7.57) that

(7.57)

)

§)) Lo < 251 min[2-37/ 2201 (1/246) =)

) < 2—3m/22j2(1/2_,3),
)

< min[2_3m/22j2(1/2+5), 2—73'2]

1Ef g (e S 272220025 and | BfE, 5, (5)l|pee S 27072272 0/245),

Recalling that 2m2x(71.72) ~ 2m9=F*m (gee (7.32)), we have
||§/S(flgl MONFRONIZS 9—3m/29min(j1,j2)(1/2+8) | 9—(1—p) max(j1,j2)
< 9=1i1=342|(1/248) 9—3m/29(=1/2+25) max(j1,j2)
< 9= lir—52l(1/2+8)9—2m . —1/2  9B*mo2Bm

for any s € [2™~1, 2™+, The desired bound (7.54) follows if 2-17172l2k1 <
2-68m,

It remains to prove (7.54) in the case
(7.58) glin—jzlg=h < 968m
We start by using the bounds (7.56)—(7.57) more carefully. We estimate
1G(f. )l < 2-m/29minGind2)(1/2-8) |y (146) max(si )
< 2—(2—&—25)771/{—1/2’{—262,32771
if (f,9) = (P[kr2,k1+2] (91, 52 (8))s Plky—2,k5 42 (91’22,]'2(3)»- This is consistent

with the desired bound (7.54) if we recall that k=1 < 27/3+5m/2 (see (7.46)).
Therefore, it remains the prove that

(7.59) Aok 2512 sup || GL(f.g)|p2 S 27

86[27"71,2'm+1}
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if (7.58) holds, and

(f,9) € {(P[krz,sz] (G1y 52 (5)), Pity—o.ks121 (R, 5 (5)))
(7.60) (P[kl—z,k1+2](hlli1,jl(3)),P[k2—2,k2+2] (gZQ,jQ(S))>)
(P[kl—Q,kl—}—Z](th,jl(S))7P[k2—27k2+2](h%27j2(3)))}'

One could try arguing as before: recalling that v = 3/2 — 48 and using
(7.58), for (f,g) as in (7.60), we estimate

IGL(f, 9)| 2 < 27y min(nd2) . 9= (1=8) max(ji,j2)
< 9l —j2lg—(v+1=p) max(ji,j2)

< 9—5m/2+156m . —5/2+58935%m

Therefore, the left-hand side of (7.59) is dominated by

C2k1/22(2+5)mﬁ1/2 . 2352m275m/2+155m,{/75/2+56 § 23[32m27m(1/27165)H7(275,B)'

The desired bound (7.59) follows if x~! is sufficiently small, say ! < 27/6
but not in the full range k=1 < 2m(1/3+8/2) (see (7.46)). To cover the full range
we need an additional argument that uses the stronger bounds (7.55).

Step 3. We prove now (7.59). We reinsert first the cutoff function x 7"

i.e., we define

UL 1= n L, e g ) - F(€ ~ mglon) di

X (€)= <2D2+max<°’k1v’f2><1>“;”’"<s,n))souzwan)\/m,

where (f,g) are as in (7.60). As before, integrating by parts in 7, we notice
that ||GY(f,g) — G.(f,9)|lz2 < 2719, Then we decompose

(7.61)

(7.62)
Gl(f.9) = Gi.(f.9).
veZ3
G o(fr9) =X (571€ = v)pr(€) /R SETIIEINGI (€ ) - (€ —m)g(n) dn,

where x’ is as before. For (7.59), it remains to prove that

(7.63) pUmabie 37 G (f 972 S 274
veZ3

for any s € [2771, 2™+ and (f, g) as in (7.60).
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_ In view of Lemma 7.2, the variables in the definition of the function
G 5(f,g) are naturally restricted as follows:

vez?, 'H|’U| — Roy| Scp e ok
g=av+¢, &0=0, [¢ISaen |a—rll| Soen
E-n=bi+60, 0-5=0, |0 <c,e2"k,

b= (5lo] = (5]o]))| Scye 7

where ¥ = v/|v|. More precisely, for any fixed v, we define the functions fv
and ¢¥ by the formulas

F2(0) == 16"/ (x25 ) [[p — wlo] + v (k[o])]/(x27)] - F(6),
g°(0) := (|0l (x27)) [lp — " (s[v])]/ (x27)] - 5(6),

where § = pv+ 6, p € R, ¢ -0 = 0. In view of Lemma 7.2 and (7.6), the
functions fv (respectively ?) have essentially pairwise disjoint supports, i.e.,

_ ~ _ i
(7.65) Yo S U D 19°17e S 27 [gll7.

vEZ3 vEZ3

(7.64)

Moreover, they suffice to determine the functions @)’s( f,9),ie.,

CLa1,9)(8) = X (5 6= )ul€) [ e CONG (€ m)- Fo(s —n)g® () i
We use (7.55), (7.56), and (7.65). For

(f,9) = (P[k1—2,k1+2] (gzl,jl(s))aP[kg—z,k2+2](hzg,j2(5))>
or

(f,9) = (P[k1*27k1+2}(hllil,jl(s))aP[k2*2,k2+2](hzz,jg(s))>7

we estimate
SNGL (932 S 30 P37 13
vEZ3 vEZ3
SN2z sup [|gP)|2, < 272 F2Bng =it
3

VEL

For (f,g) = <P[k1—2,k1+2](h;:17j1(5))7 Pliy—2 ky+2] (QZQ,jz(S»), we estimate

S NIG(f N7 S D 17197172

veZ3 veZsd
S 2G5 sup 17717, < 272 R R

VEL



THE EULER-MAXWELL TWO-FLUID SYSTEM IN 3D 457

Therefore, using also the assumption (7.58), the left-hand side of (7.63) is
dominated by

Co(4+28)m . Ag—2ymin(j1,j2) 9 —(2—25) max(j1j2)
< 9(4+28)m | 5927[j1—j2[9—(2y+2-2f) max(ji,j2) < 2—/37”’

and the desired bound (7.63) follows. This completes the proof of the lemma.
O

8. Proof of Proposition 4.3, IV: Case C resonant interactions

PROPOSITION 8.1. Assume that (k,j), (k1,j1), (k2,j2) € T, m € [1, LINZ,
8.1
EI)UW),V ce To = {@i;i+,i+ Plitsi— Pli—i— phete— phetb— Fle—b+ (I)i;bJr,b*}

and

(8.2)

—9m /10 < ki, kg < j/N}, max(ji,j2) < (1 — B8/10)m+k, m > —k(1+ 5?),
Bm/2+ Njky + D2 <j<m+D, k< -D/4.

Then there is k € (0,2P/10],

K> Ko := max (2(62m—m)/22—min(kl,k‘z,o)/22—D/2’ Qﬁzm—m2max(j1,j2))’
such that

~(k . _9p4
(8.3) 2]{“(‘05 ). PkRZ{fzy(flljhjl’ fllﬂjzdz) S22

1 ~Y
Bk,j

The rest of the section is concerned with the proof of this proposition. We
decompose

(8.4)

R?Tifzy(fvg)_ 'rrzlf{’l(f; ) Trzlu;ﬁVQ(fv )7
d [R"ﬁyl O 1= [ [ e NG (€ () F(E = 950, 5) dnds,
where XG4 1= G (2 HHDBTY) and T = XTI ipp o) (27D

(compare w1th (5.67)).

The proposition follows from Lemmas 8.2, 8.3, 8.4, 8.5, 8.6 below. We

T,V

estimate first the easier contribution of the operators R, 5.

LEMMA 8.2. Assume that (8.2) holds. Then for any & € [ko, 2P/19], we
have

~(k ; —2p4
(85) & PRI o By 527

B .~
k,j
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Proof of Lemma 8.2. This is similar to the proof of the bound (5.69) in
Lemma 5.8 since, on the support of integration, we have that |®7# (¢, n)| 2> 2.
After integration by parts in s, we obtain that

R FIRIY (L Iy o)) =i [Rar + Rap + Ras] |

(TR
diu,v XR2 (&m)
R // isPriH (577) ;n
2 RS G (g, ) 1 (s)
’ fllgl,jl (&—mn, S)f;l;%h(n, s) dnds,
k U,V
iy Xrs (&)
8.6 R // iswi (g 2 Xn2 (&1)
( ) 22 R3 (I)'L,,u,u(g ,’7) q (5)

- (Os i, Jl)(ﬁ n, )f;@m(n, s) dnds,

TR
T,V XRQ (57 )
R // s (577) m
23(§ s S (€, 1) qm (s)

' flgmd & —mn, 5)(asf1;j2,j2)(77, s) dnds.
Recall Definition 4.1. We first show that
(8.7) o(1/2=p+a)k 2k||<,0 . FRUHY (f£17j17f£7/2:j2>”[/00 < 9—28'm

m,k,2

Indeed, using Cauchy-Schwartz inequality, (5.17), and (5.20), we see that
lon - Roallze S2™  sup ([0S, 5, ()2l fE, 4, ()]l 2
S€[2m7272m+2]

< 9—Bmg—10max(k1,k2,0)
(8.8) B

lr - Roslle 2™ sup I ff 5 ($)22ll(9s f, 4, ()l 2
86[27n72’27n+2]
< Q—Bm2—10 max(k1,k2,0)

)

and this gives acceptable contributions. Proceeding as above, using (5.18) we
get

(8.9) ik - Ron|poe S 27 U7PUHR)(1 4 281)710(1 4 22) 710,
Therefore, this gives an acceptable contribution to (8.7) unless
(8.10) k| + k1] + [ka| + j1 + jo < B*m

Now, assuming that (8.10) holds, we can strengthen the L* bound. We
observe that

=¥ (&, m)| 2 27 min (|(€ = n)/1€ — | -

| €= m)/1€ = nl+n/ml|)
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Consequently, if [¢] € [2-2, 2442, ¢ — g € [24172, 201 72), || € [2h-2, 2ho+2]
and [Z*Y(&,n))| < 2’m/3, then

min ([(& —)/1& =l = n/lnl], |6 = m)/lE = nl + /] S 27

A simple estimate using the L*° bounds in (5.17) then gives ||¢k - Ro1|lr~ S
2-/6which suffices to finish the proof of (8.7).
For (8.5), it remains to prove that

_opd
(8.11) (1+a)lc2 (1+8) mHP R IR% (flgl,jl’flgz,jg)HLQ 5 2 28 m

m,K,2
We use again the decomposition (8.6) and notice that
(8.12)
2 (€m)

()
— PHTRY 2 +max(k1,k2,0) i,V
. Pl1,00) (27FFPREY (£ 1)) p (2P Fmax(kr k2 0) @iy (¢ )
= p(|=¥ :
REEID )

= (2 (Enl/r) [ T ED () ax,

where, as a consequence of the Fourier inversion formula

2—k+Dx)SO(2D2+max(k1,kQ,O)x)
2= kg

Simple integration by parts estimates show that, for any integer N > 2,

(8.14) )] S 2728 (L 28 Y

Let

dx.

(8.13) e C/Re—z‘Ax Pl1,00)

Ra(&N) = | /R , XNV (2 () /)1 (5)
fkl,jl(é 7, )fkm(n, s) dnds,

Raa(&N) = | /R , N o (2 (E, ) ) g (5
- (0s [, jl)(f —n,8) ¥, (0. 5) dnds,

Ras(€,0) //R AV ED o7 ()| )i (5

fkhjl (5 n,s )(6 fkg Jz)(na )dﬂds
The formulas (8.12) and (8.6) show that, for [ € {1,2,3},

Ry(€) = /R Rot(€, \)(\) dA

(8.15)
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Recall also that 2m+F > 26°m/2; gee (8.2). In view of the rapid decay in (8.14),
for (8.11) it suffices to prove that, for [ € {1, 2, 3},

516) 2282 o () Ru(6, V2 S 279 i A <2,
| 22K () Ru(€ M2 S 2 i A z2m

The bound in the second line of (8.16) follows easily using L? bounds, as in
(8.8)—(8.9). For the first bound, we define the functions Ry, [ € {1,2,3} as in
(8.15), but without the factor ¢(|Z*"(&,n)|/k). As in the proof of Lemma 5.8
(see (5.72)), integration by parts in 7 shows that the difference between Ry
and }Nfgl is rapidly decreasing in m. It remains to prove that

(8.17)
22520 () Rar (6, M2 S 2797 if A <2771 amd L€ {1,2,3).

We use the L? bounds
£ 5 (9)llzz S (208 4 2100) 1= (=Rhig2fk
(8.18) £, 5o ()l g2 S (2°%2 4 210k2) =1~ (1=F)2 20k
1D £ ) ()2 + 10sfty 1) (5) g2 S 27m0HF)
(see (5.18) and (5.20)) and the L*>® bounds
(8.19)
e R gt (8)ll + [l VR () e S 27D,
”efi(er/\)Kuf];: ; ()| < 9—m(5/4-108)9j1(1/4—118)
1,J1 ~ b
He—z’(sH)KV L (8) | e S 27mB/AT108)9i2(1/4-118),

These L* bounds are similar to the bounds (5.17) and (5.19), once we recall
that |s + A| &= 2. Using Lemma A.3, it follows that

eko(L+0)m| Ry, (€, Mllzz
< o(1+B8)m  g—m(5/4-108) gmin(j1,j2)(1/4—118) 9—(1—B) max(j1j2) < 2-hm
2°k20 48 || Ry (€, M) 2 + | Ras (6, V) 2]
< o(L+B)m | gmg—m(1+8)9—m(1+p) < 9 hm
and the desired bound (8.17) follows. O

We estimate now the contribution of the operators R;’f{ 1, starting with

some of the easier cases.
LEMMA 8.3. Assume that (8.2) holds,
(820) P ce {q)i;i—,i— (I)i;e+,e— (I)i;e—l-,b— (Pi;e—,b—&— (I)i;b—i-,b—}
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and Kk = kg. Then

k|| ~= k S - 4
(8.21) 2 H@ PRGN ) I 264m.
3]
Proof of Lemma 8.3. Clearly, PeR7V" (ff o5 fi, 5,) = 0 if
POV — (I)i;if,if
or if

QT ce (@l @tettm @len bt @it} and 2max(ky, ka) < k—D/10.
Indeed, in this case, since A.(0) = A\p(0) and A,(0) = A, (0) = 0, we see that
D5 (&,m)] = Ai(€) = [Aay (€ = 1) = Aoy ()] 2 1€] = Cey e (1€ =l + n]?) 2 2°.

It remains to prove the lemma in the case
(8.22)
QI ce [Pt hetbm ghembt @ibtb=Y and k < 2max(ki, ko) 4 D/10.

In this case, since k < —D/4 from (8.2), we remark that k£ < min(ky, k2) — 20,

|k1 — ka| < 8, and that

€11+ [ =l + [n]) 2 if 01 = 03,

(Inf+1&=n@+ € =nl+ M) if o1 # 0o,

These inequalities follow from Lemma A.4. Consequently, we see that if
k>2pm —m/2 —min(ky, k2,0)/2 if o1 =09,

max(k1, k2) > 28m —m/2 — min(kq, k2,0)/2 if o1 # 09,

(8:23) [EM(&,n)| Zcye {

(8.24)

then PR"*" = 0. (Recall that

m,k,1 —

K = max(z*(lfﬂQ)m/QQ* min(kl,k‘z,o)/22*D/27 QmaX(J'hJ'Q)*(l*ﬂQ)m)

and max(j1,jo) < (1—3/10)m+k; see (8.2).) The desired bound (8.3) becomes
trivial in this case.
Independently, using Lemma A.3 and (A.37), (A.42), we directly see that

IPCTRMY (fe 5o Frn i) 2
<2m sup  min([[EfL ()]l [l i, (5)] 22,
Se[2m7472m+4]
1k s N L2 E i o (8) ]| 220)
< 2m273m/2
from which we deduce that

2(1+a)k2(1+ﬂ)j”PkTTZZM,l/(fﬁlJl’fllg/Z’jQ)HLQ S 2(1+a)k2(1/2+6)m'
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In addition
_ k HINZ v
9(/2=B+a)k| F p Tiim: (ffhjl,fkg,jz)HL“
S 2(3/2_5+a)k2m sup ||f]51,j1 (5)”L2||f/l€/2,j2 (S)HL2
se[2m—4,2m+4)

< 9(3/2=B+a)kgmeo(ki+k2)/2
Therefore,
k1g®) ihs 1+a)ko(1/2+
28|35 - PRI (ff o fhg)llgy | S 20 edh20/2eam

(8.25)
+ 2(3/2—ﬁ+01)k2m2(k1+k2)/2.

Recall also that T#" = NLH#Y 4 NG +R%"7V1 + RV - see (5.67) and

’H? /,4'11’71“'/727

(8.4). The operators N}GH#Y Nf,gf,g/"” , and R;n“ ;:2 have already been bounded

in Lemmas 5.8 and 8.2. Therefore, using also (8.25),

~(k i v op4
25" PR (Ff o ool S 2720 4 2(redkgi/zedm

(8.26) ot

+ 2(3/275+a)k2m2(k1+k2)/2'
This gives the desired bound (8.21) if o1 # o2 and (8.24) does not hold, using
also (8.22). If 01 = 09 and k < —3m/4, then (8.21) follows also from (8.26).
On the other hand, if k¥ > —3m/4, since A,, is smooth when o1 € {e, b}, we
observe that

Vol 22, o1 € {e,b},  |DjRETEN(E )| S, 2",

as long as |[¢] < 2F*4. Besides, from (8.2), we have that max(ji,j2)
(1 — B/10)m + k. Therefore, we recall (8.23) and use Lemma A.2 with K
o(1=B/20)m+k ¢ — 9-max(j1.j2) to conclude that | BT (fh gy F 3a) ()
274 from which the desired inequality (8.21) follows easily.

CIRA R IN

We consider now the remaining two phases. A key observation is the weak
ellipticity bound

(8.27) | EMZ e e P {1&l5 1€ =l Inl}
This follows from the bound

(8.28)
Ai(a) +Xi(b) = Ni(a+b) ¢, - amin(1,b)> if 0 <a<bandae[0,27P/%

Indeed, using Lemma A.4, if b < r,/2, then

(@) + Ai(B) = Ai(a +b) = /OG[X(T) ~N(b+r)]dr

a b
= / / —\/(r + s)drds ~c, . ab*.
o Jo
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On the other hand, if b > r,/2, then
Ai(@) + Xi(0) = Nfa+b) = [N = X+ 1)) dr
0

> [ +rdr) = aib+ 1) dr ~e 0

and the desired lower bound (8.28) follows.
We prove first the required L bounds.

LEMMA 8.4. Assume that (8.2) holds and
PTHY ce {q)i;iJr,iJr (I)i;z#,if}.
Then, for any k € [ko, 2D/10], we have

m,K,1

a— Y22} v — 4m
(8.29) (/2 ek FP RIS (FL s f )l S 272

Proof of Lemma 8.4. Integration by parts in s, as in Lemma 8.2, gives

f[R%&(fﬁlef/?Q,jQ)] =i [R11 + Ri2 + Ri3,

1//"/7
is®HY (€1) XR1 (&m)
Rll //]R?’ (I)Z#V(g n)qm(s)

fk1 ,J1 (g n, )fk2 ]2(777 )dnd&
1//‘1’7 5 )
8.30 iswinr (g XaL (& 1)
(8.30) Riale) = [ ¢ B (g, n)

) (8ka1,j1)(§ - S)f;ZQ j2(777 s

)
,LM’
is®HY (€ ) XR,1 (&m)
Rule) = [ [ e B (g, n) )

’ fkl,jl (5 -1 S)(asf]lf;’h)(n, S) dnds,
First, using (8.27), (5.17), and (5.20), we see that

) dnds,

2B/2Ha=BR 1o Rys| oo

< 9(3/24+a=B)kg—k—ki—kzgm sup ||(8Sf£17j1)(5)HL2 1, o (8) || 2

86[27n74’27n+4]
< 9(3/2+a—B)kg—k—k1—kagm ok g—(1+B8)mo(1+8—a)ks
< 9=A'm
Similarly, 263/2+2=8k||op - Ryg||pe < 2-5°m_ Morcover, assuming that

k| + k1| + k2| + [j1] + |j2] = B*m
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and using Holder’s inequality, we find that
28/20= 0k Ry || oo

S 20 dkgmkmhle sup I (2, (9]
sg[2m—4 2mH]

SJ 2(3/24ﬂ*ﬁ)k2*k*/k\l/*k\2/22ﬁ(a+;€;)<2ak‘1 +210k1)71(2ak2 +210k‘2)7127(175)(j1+j2)
< 2—2[34777,'
On the other hand, if
k| + k1] + k2| + 1] + [j2] < B°m,

then we can proceed as in the proof of the bound (8.7) in Lemma 8.2 to estimate
also 26/2+=Bk|| . Ryq||pee < 27A*m_ The desired bound (8.29) follows. O

We prove now the weighted L? bounds in two steps.
LEMMA 8.5. Assume that (8.2) holds and
PTHY ce {(I)i;i+,i+ (bi;zﬂr,i—}‘
Then the L? bound
Sk .. opd
(8.31) 20 QUG - PRI (Fhn gy S li2 S 27200

holds for any k € [ko,2P/10], provided that either

(8.32) max(ki, ke) > —D/10,

or

(8.33) max(ki, kz) < —=D/10, 2k + min(ky, k2) < (8%m —m) + 2D,
min(ky, k2) < k — 10,

or

(830  x(kukz) < =D/I0, 2k minlk, k) < (82m —m) + 2D,

k —10 < min(ky, ka) < —35m.

Proof of Lemma 8.5. Using (8.27), PR\ (L, ., L, ;,) = 0 if (8.32) is
satisfied. Assume now that (8.33) holds. In this case k > max(k;, k2) — 4 and
necessarily max(j1,72) > m/8 by (8.33). We may assume that ko < kj. If

Jj1 < ja — 68m then, using Plancherel, (5.18) and (A.49),

LY pI v m © v
1T iy oo Pl g )l 22 S 2 e B IE Sk, gy () Loe | i o () 22

< gm  9=3/2mok1/29(1/2+8)j19—(1-B)j293/2B(k1+k2)
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and, therefore,

k j IR v
X Ny 1

< oIt e)lkthz/29(1/2+8)mo=(1/2+8/4)(j2=11) 93/4851 < 9—B%m

The desired bound (8.31) follows using also (5.69) and (8.5). If j; > jo — 68m
and max(j1,j2) > m/8, then

(1/2+ B)ja = (1 = B)jr < =(1/2 = 2B)j1 + 3Bm + 65%m < —4pm.
Using Plancherel, (5.18) and (A.49), we estimate

T (o frog) 2 S 27 sup (I ()2 1B i 5, (5)]
se[2m—4 2m+4]

< gm  9=3/2mok2/29(1/2+48)j29—(1=5)j193/2B(k1+k2)

and, therefore,

Uk QU Tomw (£ 1 Fh o)l 2

< 9(1ta)[ktkz/2]9(1/2+B)mo—4pmo3 /28 (k1 +k2/2) < 2*53m.

The desired bound (8.31) follows using also (5.69) and (8.5).
Finally, assume that (8.34) holds, so |k1 — k2| < 20. In this case, we may
simply use Plancherel, (5.18), and (A.49) to estimate (assuming for example

J2 < 1)
(8.35)

Tt (s Fha )z S 2™ sup  (IfE S (2l BFE, 4, (5)]l e
sg[2m—4 2m+4)

< om  9=3/2mok2/29(1/2+B)j29—(1-B)j193/28(k1+k2)
The desired bound follows as before, using also (5.69) and (8.5). O

We complete now the proof of the weighted L? bounds, with the remaining
cases.

LEMMA 8.6. Assume that (8.2) holds, ®7*" €€ {®HHi+ dHiTi=Y " gnd
k2 < ki1 < —D/10.
Then the L? bound
(8.36) 2RI G0 PR (F gy ) e S 270
holds provided that either
(837) 2k +ky < (BPm—m)+2D, ky>—-38m, and =210

or
(8.38)
2k +ky > (B2m—m)+2D, j<m+ky(1/2+48)+D, and &=2P/1,



466 YAN GUO, ALEXANDRU D. IONESCU, and BENOIT PAUSADER

or
(8.39) 2k +ky > (B°m—m)+2D, j<ji+m+D, and r=2P/10,
or

2k + ko > (8%m —m) + 2D,
(8.40) ) D4
j > max(m + ka(1/24+48),j1 + f°m) + D, and k = 2"~ /4,

Proof of Lemma 8.6. We will often use the decomposition (8.30) and the
inequality (8.27). As in the proof of Lemma 8.2, we also notice that if |£| €
(2872, 2042 || € [2%272, 272 ¢ — | € [2872,25142] then

SEEn (2D (€, ) p(37° B (€, )
(e ) (124 (&)1 /%) % i (¢ 1)
(8.41) CPl1ee)(27FT TR DT (¢ p))

= (I (€ ml/m) [ N E ()
R
where, as a consequence of the Fourier inversion formula,

C/ —z)\xso(z kD )90(2D )‘10 (Q_k_kl_k2+Dl')d

(8.42) (A . [1.00) z.
Simple integration by parts estimates show that, for any integer N > 2,
(8.43) 2 (V)] S 277 (14 2R A=

Let

Ru(6,0) 1= ou(@) [ [ eI Eo(= 6 )l ) ()
€=, >E§2<n, >dnds,
Ris(€N) i= ul€) [ [ eI Enp 20 )| ) (5)

- (0s fk1 31)(5 n, )fk2 32( s) dnds,
Ria(€. ) = ou(e) [ [ eI o2 ) /) g (s

‘ f],gl,jl (€ —n,5)(0s 1, 5,)(n, s) dnds.
The formulas (8.30) and (8.41) show that, for [ € {1,2,3},

or(6) Ry (€ /Ru (&, A)b2(N) dA

(8.44)

In view of the rapid decay in (8.43), for (8.36) it suffices to prove that, for
le{1,2,3},
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(8.45)

o—(k+k1+k2) o(1+a)koy(148)] ,,@5’“) - FHRu(, )]

] HL2 S 2—3,34771

if |)\| < 2ﬁ2m/22—(k+k1+1€2)7
2+ ek(HAm| By (¢, Mgz S 2%
if A > 28 2gm (kthiths),

Assume first that (8.37) holds. If & < —2m/3, then the desired bound
follows from (8.35). On the other hand, if & > —2m/3, then —(k + k1 + k2) <
3m/4. Notice also that ¢(|Z*¥(&,n)|/k) = 1 in the support of the integrals in
(8.44). Therefore, if |A| < 26*m/29~(F+ki+k2) then |s 4+ A| ~ 2™ and

IF 7 Rz Mlle S 27 sup [[(@sff 5 ) () lz2lle™ VR fE G () e

se[2m—14,2m+4]
< 2*(1+25)m2k12(1/2*2ﬁ)k2’

using (5.17) and (5.20). Similarly, using also (A.49) and recalling that ko < k1,
IF R, Mz + | F R (L A)]|| 2 < 27 AHB+5Imokithag—(1/2+46)kz
Therefore,
(8.46) S IFRuG e S o~ (148482 mok +hs o —(1/2+48)ks
1e{1,2,3}

The desired bound in the first line of (8.45) follows since j < m + D. The
bound in the second line follows as well, since in this case one can simply
estimate |’Rll(§7)\)HLg° S1forle{1,2,3}.

The proof is similar in the case described in (8.38), since the bound (8.46)
still holds and 2(1+8)7 < 2(1+8)moka(1/2458) 'iny view of the stronger assumption
on j. On the other hand, in the case described in (8.39), one can assume
m+ko <j<j1+ B2m + D and prove the stronger bound

) N _ap4
2(1+a)k2(1+ﬁ)]HPkTrzr’L“’V(f/Z,jl’fll@l%jz)”lzz S/ 2730 "

by estimating as in the proof of (5.60).

Finally, assume that (8.40) holds. Notice first that the choice x = 2k—D/4
is acceptable in this case, i.e., kK > k9. We may assume kg < k1 and use the
formula (8.4),

(8.47)

PRI Sl o o) @ = C [ [ [ u@)elesrs €z (e ) /)
(2P (€ ) p (2 O (€,1) (), (€ = 1, 5) T, 1, (n, ) ddsd.
We will show that if (£,7) is in the support of the integral in (8.47), then
(8.48) [Vers(.m)| < 2
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Assuming this bound and (8.40), one would get rapid decay, i.e.,
‘PkR%Zl(fgl,jp Ty i) (@) S 27 4m
if |#| > 2974, using integration by parts in £ and Lemma A.2 with K =~ 27 and
€ ~ min(2771, 22k—D/2)
It remains to prove (8.48). We will use repeatedly the following observa-
tion from the sine law in the triangle formed by &, & —n, #:

(8.49) sin(£(§,m) _ sin(£(&,€ —m)) _ sin(£(€—n,n))

3l 7| €]

Recall the formulas
Y (&,m) = Ni(I€]) = wuhi(1€ = ml) — wwhi(In),

e c—n o
(8.50) 27(Em) = (1€ —nl) =y Lu)\z‘(‘m)m,
(e ) = )\Q(If)é‘ — (€ ) é - Z‘,

where 1,1, € {+,—}. Since [N,(|¢]) — N.(|€ —n])| < 2*2 (see Lemma A.4(i)),
we may assume that |®5#Y (€, n)| < 28D+ and |ERY(€,n)| < 2F-PF1 and it
suffices to prove that

(8.51) 1Z(&,0u(€ —n))| S 27

The condition |[Z#¥(£,n)| < 28-P+1 « 1 together with Lemma A.4(i)
show that

(8:52) |£(eu(€ =), um)| < 2P72,

In particular, using also the identity (8.49),

(8.53) sin(Z(& —n,m) <2V7PR 0 sin(£(€,6 —n)) < 27PN

The desired inequality (8.51) follows if ¢, = + and k; — k2 > 10. Notice also
that (8.51) is trivial if 1, = — and ki1 — ko > 10, since in this case the condition

| @iV (€, m)| < 28=PH! cannot be satisfied.

It remains to prove (8.51) in the case 0 < k1 —ko < 10. If (¢p, 00) = (+,+),
then (8.51) follows easily from (8.52) and (8.49), as before. If (1, ) = (+, —),
then we use the inequality

B (6, m) = M) + M) — NaCle = 1l) = NaClel + Ial) = u(l€ — )

(see (8.27)) together with the assumption |®%i+i- (¢ )| < 28=P+1 to conclude
that max(|¢],|n|) < | —n|. Using also (8.53) it follows that the vectors ¢
and & — n are almost aligned and pointing in the same direction, so (8.51)
follows from (8.53). The proof in the case (,t,) = (—,+) is similar, and this
completes the proof of the lemma. O



THE EULER-MAXWELL TWO-FLUID SYSTEM IN 3D 469

Appendix A. General estimates and the functions A;, A., Ay

In this section we summarize the linear and the bilinear estimates we use
in the paper. We also provide precise descriptions of the eigenvalues A;, Ac, Ay
defined in (3.12).

We note first that Calderén—Zygmund operators are compatible with the
spaces constructed in Definition 4.1. More precisely,

LEMMA A.1. Assume q € S0 (see (3.23)) and T, f = F (q- F). Then
1T4fllz S llallswollfllz — for any f € Z.

We omit the proof of this lemma, since it is identical to the proof of Lemma
5.1 in [26]. The following general oscillatory integral estimate is used often.
(See Lemma 5.4 in [26] for the simple proof.)

LEMMA A.2. Assume that 0 < € < 1/e < K, N > 1 is an integer, and
f,g € CN(R™). Then

/ eingdw

provided that f is real-valued,

(A.1)

v (KN ST elDog| ],
lp|<N

(A2) |Vaif] > Lsupp g and [|DLf - 1suppg||L°° SN 517|p|a 2<[p| <N.

We will often use the following simple bilinear estimate. (See, for example,
[27, Lemma 5.2] for the proof.)

LEMMA A.3. Assume p,q € [2,00] satisfy 1/p+ 1/q = 1/2, and m €
L>®(R3 x R3). Then, for any f,g € L*(R3),

3| [ e fie—matmdn) |

£

Recall the functions A;, A., Ay defined in (3.12). Let Aj, Ae, Ap : [0, 00) —
[0, 00),

SNIF | paggs s If 2o llgll 2o

)\l(T‘) =

?

51/2w1+a>+<T+e>r2—¢<<1 D)+ (T — o)) + e

)

2
A Ae(r) i= 51/2\/(1 +)+ (T+e)r +/( él + (T —)r2)® + 4e

Mo(r) = e Y2\ /14 ¢ + Cyr2,

such that Ay(§) = A\ (€]), o € {i,e,b}. We also define

o= lim M.(r), ci=1, ce=+/T/e, cy =/Cp/c.

r—-+00
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The graphs in Figure 1 below illustrate the qualitative features of the
dispersion relations. The pictures are obtained for the range of parameters
e =0.1, T =1 and C, = 6 that is outside of the range considered in (1.16)
but, as proved in Lemma A.4 below, the qualitative behavior of the functions
Ai, Ae, A\p remains similar, except that the functions become more “separated”
(and do not fit in a common plot). In Figure 2, we also add a graph showing

Dispersion relations
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Figure 1. The graphs above show the dispersion relations and
group velocities that we are considering. The graphs correspond
to the parameters ¢ = 0.1, 7' = 1 and Cp, = 6 other values of
the parameters lead to qualitatively similar graphs.
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Ton group velocity

—

g

)\/,- , close up on the inflexion point

0'07‘“\“‘\“‘\“‘\“‘\“‘\“‘\‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 2. The ion group velocity A, when ¢ = 0.001, 7" = 100.
Note, in particular, the inflection point at r, and the fact that
A; attains its maximum at 0.

A, for an admissible set of parameters (¢ = 1073, T = 1, C, = 6), with a zoom
on the region around 7, where A; has an inflection point.

LEMMA A.4. (i) The functions i, Ae, \p are smooth on [0,00) and satisfy

>

(A5
Z(O) =0, )‘;/<0) =0, /\;H(O) RCy,e -1, )\;(T) RCy,e 1 forany r € [0,00),
(0 =0, N(r) =c,- (1+ 7“2)_3/2 for any r € [0, 00),

) =+Vel+1, X(0)
p(0) = Ve l+1, N(0)=0, \/(r) =, (1+ r2)_3/2 for any r € ]0,00).

> > >
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In addition, there is a constant r, € (T*1/2,4T*1/2 + 4T*1/4) such that

N (re) =0, |N(r)] ROy e min(r,r_3) if |r—ri > 2~ P

A6

o N/ ()| mc, e Lif |r—r| <2707
Moreover,

(A7) r<Ai(r) <V (T + 1)+, >0,

max(As(0),co1) < Ap(r) < A (0) + ¢, o € {e,b}, 7> 0.

(ii) Letting he(r) := e~ Y2\/1+ T2, we have
(A.8) DY (Ae = he)(r)| < VEIDPhe(r)], 0<p<2.

(iii) We have A\i(r) = rqi(r) for some 1 < qi(r) < \/(1+T)/(1+5)a
qi(r) — 1 as r — +o00 such that

1 T?
(A.9) Gr) < —s— "
21+ T+ Tr?
Moreover,
(A.10)

I\ ()| < 8V2T and N (r) < 10,73 for r > 4T7V2 447~ 1/4,

Proof of Lemma A.4. (i) Recall the assumptions (1.16), which are used
implicitly many times in this lemma. The claims in (A.5) and (A.7) are
straightforward consequences of the definitions. To prove (A.6), we use first

the formula
VEAN() =7 [1+ T+ 172

to see that one can extend \;(r) into a smooth odd function of r. Starting
from the relation

1
(A.11) )\f(r):%[1+€+(T+5)7’2—\/u2+45 , u=1—c+ (T —e)?

and taking up to three derivatives, we find that

(A.12)
20 (M) (r) = r :_ Er r 5_ 8ru(u2 +4e)71/2,
200(r))? + 2NN (r) = 5 — TS o o)
— 8(T — &) (u? + 4e) /2,
C24(T —e)*r

6N, ()N (r) + 22;(r) AP (r) = (1 +€)? — (T — &)%) := A(r).

5
2

[u? + 4e]
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In particular, A} > 0. Since ); is odd, its even derivatives vanish at 0. Dividing
by r and letting » — 0 in the first and third lines gives

N0 =1 +T)/(1+¢), 8A;(0)A§3>(0) = —24(T —)*(1 +¢)73.

Since A;(0) > 0, we see that A/ < 0 on some interval (0,9). Let R4 =
\/(1 +¢)/(T —¢) be the positive root of A(r). We claim that A/ < 0 on
(0, R4). Indeed, we see from (A.12) that, on this interval, so long as \/(r) >
A(r)/(12X,(r)), )\,E?’) <0 and )/ is decreasing. Hence \/(R4) <0. If \/(R4) =0,
using (A.12), we see that A§3)(RA) = 0 and Ry, is a single root for )\53) and a
double root for A/. Dividing by r — R4 and letting r — R4, we therefore find
that

2A(RAONY (Ry) = lim Alr)

> 0.
r—Ra1T — Rxg

But then A/(r) > 0 for some r < Ry, a contradiction.
It is clear that the argument above can be made quantitative, and we
prove that
for any ¢ > 0, there is ¢’ = ¢’(4,7,e) > 0 such that \/(r) < —¢' for
any r € [0, Ral.
This suffices to prove the desired claim (A.6) for r € [0, R4].

We now claim that A/ vanishes exactly once on (R4, +00). Indeed, using
again (A.12), we see that if \/(r,) = 0, then

AV () = A(r.)/(22i(r2)) > 0.

Let 7. be the next zero of X/. Since A/ > 0 on (7.,7.), we have that
)\Z@) (resx) < 0. Plugging r = 7., in the third line of (A.12) gives a contra-
diction. Finally, we remark that there exists such r, since we will show below
that A/ > 0 for r large enough.

Indeed, using the second equation in (A.12),

(A.13)
T —¢

Xi(M)N (r)y =1- ()\;(7"))2 + Tg[l — u(u2 —1—45)_1/2] — (T —e)*r? (u? +4£)_3/2.

Therefore, using (A.11) and (A.12) and letting v := (1 — u(u? 4 4e)~1/2) /(2¢),
()N (r) = (Ni(r))? = (Aa(r))2(Ni(r))?
+ N)T = &)v — 4N (1)HT — €)% (u? + 4e)73/2
=2+ 1 —v(w® +4e)Y2 — (1 + (T — e)v)?
+ NENHT = )v — AN ()T — &)%r% (u? + 4e)73/2,
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Notice that v < w2 < (T — &) 2r %, (u? +4e)'/2 < (T —e)r> + 1+ ¢, and
(\i(r)? € [r2, 72 +1]. Therefore, if (T — &)r? > 10(1 + +/T), then
(A.14) (Ni(r))*N/ (r) € [1/10,1],
and the desired conclusion (A.6) follows.
(ii) We calculate
W(r)y=e \PTr(1+Tr)" V2, hl(r) = 'PT(1+Tr%) 32
Start from the formula
1 Vu? +4e —
N(r) = < |1+ Tt Y

where, as before, u=1—¢+ (T — 5)7“2- Therefore, A\¢(r) > he(r) and
N(r)—h2(r) _ ViP+de—u 1

. e - =" < = '

(A.15) Ae(r) = he(r) Ae(r) + he(r) Aeh.(r) 2uh.(r)

The desired bound (A.8) follows for p = 0.
Using the formulas above, we also calculate

2T T— 2+ 4e —

(PN () = r e)r vu? + 4e u
€ € Vu? +4e

Therefore, \.(r) < hL(r) and, using also (A.15),

(A.16)

h(r) — N.(r) = 2he(r)hL(r) — 2&(@%@(; 2hL(r)(Ne(r) — he(r)) - jo; |

The desired bound (A.8) follows for p = 1.

Finally, we calculate
2T
20 (r)X(r) +200(r))2 = = + F,

where
(T —e)Vu?+4e —u N 8(T — ¢)?r?
€ Vu? + 4e (u2 +4€)3/2‘
Therefore, using also (A.15) and (A.16),
|E] + 2{Ae(r) — he(r)[hZ (r) + 2| (hL(r))? — (Ae(r))?]
2Xe

E = —

[Ae(r) = hd(r)] <
20(T + 1)
= w2

The desired bound (A.8) follows for p = 2.

(iii) Starting from the formula

Vere(r)\i(r) = r/1+ T + Tr2,
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we calculate

V1+T 4+ Tr? T VuZ +4e —u 7-1/2
(A17) qi(r) = ——F— = [1— 5 + 3 }
NGY T+ T+ T2 20+ T+ 172

and, with v = (1 — u(u? + 4¢)~1/2)/(2¢) as before,
N w1
q'-(r):—[l— L M +4e u] 3/2
’ 1+T+Tr2 2(1+T+1Tr?
[TQr —Trevvu? +4e — (1 +T +Tr?*)(T — s)rev}
(1+T +Tr2)? '

This suffices to prove (A.9).

The second bound in (A.10) follows from (A.14). To prove the first bound
in (A.10), we notice that it follows from part (i) that there are two values
Tmin € (0,74) and rmax € (74, 00) such that

Aé’(r) € W(Tmin% )\/i/(Tmax)] for any r € [0, oo)

Using the identity in the second line of (A.12), it follows that \;(r)A/(r) <1
for any 7 > /(1 +¢€)/(T — €). Since rmax > 1+ > /(1 +¢)/(T —¢), it follows
that
(A18) A;I(Tmax) S 1/)\1‘(7"1113)() S 1/rmax S \/T
To estimate |\ (rmin)|, we use (A.13) and the observation |A;(r)| < ¢i(r) <

VA +T)/(1+e¢) to write

1+T n T—¢

1+e¢ 2e
— AT — &)%r?(u? + 42) 32
T— 1
> € [ 1 +e€
1+¢ 2e
> —8(T — )3/

i (PN (r) > 1 [1 — u(u? + 4e)"Y?

(1 u(u? +46)71/?)] — 4T - £)¥/2r

Moreover, since )\1(3) (rmin) = 0 and A/ (rmin) < 0, it follows from the identity in
the last line of (A.12) that ryin < R4 = \/(1 +¢)/(T — ¢). Therefore, using
also the fact that ¢; is decreasing on [0, 00) (see (A.9)) and the identity (A.17),
it follows that

8(T — €)3*rimin < 8(T —&)3/?
)\i(rmin) o Qi(RA)
The desired estimate in (A.10) follows using also (A.18). O

_)\;/ (rmin) S

< 8V2(T —¢).

LEMMA A.5. Assume ||f|z <1, t € R, (k,j) € J, and let k = min(k, 0)
and

Jrj = Plr—2.k+2) [@;k) - P f].
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(i) Then

(A.19) [ fr.i

and

(20% 4 910Ky 1 | 928ko—(1-8);j

JERS

~

(A.20) sup
£ER3

Moreover, if k <0 and o € {e, b}, then

Dé’fk,j(ﬁ)\ Sjp) (20F 4 21001 9= (1/2=A)keglels,

(A.21)

e fi ]|, . S 20/ (1 4 9 |gok)=3/2+108,

Lo ™
If k>0 and o € {e, b}, then
ez‘tAafij < 2—6k2—(1+5)j(1 + 2—j|t|)—3/2+10ﬁ'

Lo ™

(A.22)

With r. defined as in (A.6), let ky :=logyrs. If k < ki — 3 and o = i,
then

(A.23)

eltho kaH < 9B3/2-)kg=(148)j (1 4 9~|4|92k/3)=3/2+108

Lo ™

If k € [ky — 3,ky + 3] and o = i, then
(A.24)

eitAgkaH < 9= (H0)i(1 4 9= |¢|)~5/4+108

Lo ™

If k> ki + 3 and o =i, then

(A.25) eitAakaHLoo < 9=Okg—(1+8)j (1 4 9—|[)=3/2+108,
(ii) As a consequence,
(A.26) Yo I frllze S min(2UHImek p710k)
jZmax(fk:,O)

and,** for any o € {i,e, b},

(A.27) S et ], S min(U/2Bmek 970y (1 4 pry 8,
j>max(—k,0)

Proof of Lemma A.5. We start by decomposing, as in (4.6)—(4.8),

~(k -
PV Pof = (2% + 21%) 7 (gy ; + go ),

(8.28) R e o®

g1, = 91,5 90[]',27j+2]7 92,5 = 92,5 So[jfg,]qrgp
such that
(A.29) 20591 gy sl 2 4+ 202 ¥ gl S 1,

"1n many places we will be able to use the simpler bound (A.27), instead of the more
precise bounds (A.21)-(A.25).
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and
(A.30)
223 go il 2 + g2l + 27 sup R\ 52 01 Beo.my S 2710

Re[2-7,2K] ¢0eR3

The bound (A.19) follows easily.
To prove (A.20) we use the formulas in (A.28) to write, for p=1,2,

G5O = [ G FFLy )€ ) dy

Therefore,
(A31) DGO = [ GmF @ Fy, )€~ ndn

The desired bounds (A.20) follow using the bounds ||g, ;|| z~ < 2*(1/2*5)%; see
(A.29)-(A.30).
We consider now the L* bounds (A.21)—(A.25). Using (A.28)—(A.30), we
have
1Feallzs ey S (2°F +21%) 7 min(Ri2-(/2-00F, g/29=09)
for any & € R? and R < 2*. Therefore, for any k € Z and o € {i, e, b},

(A32) eitAo-fk (20ék + 210k)—1 . 23k/22—(1+6)j

Lo ™
Step 1. We consider first the simplest case

(A.33) oc{ebd}, k<O, |t| > 2i—k+D

and prove that, for any x € R3,

(A.34)
/R3 eixfeit/\g(f)ﬁ,\j(g) df‘ S 2(3/2704)’62*(1+5)jp:i/2*10,3’ p1 = 2j*k’|t|fl‘

The bound (A.21) would clearly follow from (A.32) and (A.34). Using the
decomposition (A.28), it suffices to prove that, for p € {1,2},

o — j 3/2—10
ng,j * ch,tHLoo < 25422 (H—ﬁhm/ 57
Kila)i= [ e et s pa(6) e

Recall that the kernel of the operator on R? defined by the radial multiplier
§ = p([¢]) is

(A.35)

00 islz| _ ,—is|z|

(A.36) K(z) = c/ p(s)s S
0 s||

We show that

(A.37) KT e S 187272
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In view of (A.36) it suffices to prove that

—1isr

00 ; . eisr —e B
(A.38) ‘/0 32(:0[1k—2,k+2](3)6t)\0( )Tds < It 3/2

for any 7 € (0,00). Recall the assumption (A.33); in particular, [¢t| > 2P~2F,

Since AL (s) ~ min(s, 1) (see (A.5)), the bound (A.38) follows by integration by
parts unless r & [t|2¥. On the other hand, if r ~ |t|2F then the bound (A.38)
follows by stationary phase, using X’ (s) =~ (1 + s2)~%/2; see (A.5).

In view of (A.37) and the assumptions (A.28)—(A. 30) it follows that

3/2
lons * 20|, . S lgnsllon 1Kl < 259720 (423|437 < 3k/29 (i 5

and

Hg2,j * K’ZtHLoo ~ H92,JHL1
< 93j/29—(1-5 j226k‘t’—3/2 < 23k/22—(1+ﬂ)jpi1’>/2226(j+k)'
The bounds (A.35) follow if 4 = 1 or if 4 = 2 and 27T+ < p1_5. On the other
hand, if 4 = 2 and 277% > p° then, using the L' bounds on g ; in (A.30),

< 93k/20—(148)jg—(r—B—1)(j+K)
i

< 23k/22—(1+ﬁ)jp?(7—5—1),

o5 = 5] .. % 23]

which suffices to prove (A.35) in this case as well.
Step 2. We consider now the case
(A.39) oc{ebl, k>0, |t| > QI HFHD
and prove that, for any x € R3,
[ e s O d&! < 2Ok (WM 32100y 9L,
The bound (A.22) would clearly follow from (A.32) and (A.40). Using the
decomposition (A.28), it suffices to prove that, for u € {1,2},
(A.41) l9ug * KTy, S 2t e pl/210%,

where K7, is defined as in (A.35).
As before, we show that

(A.42) 1EE e S 672227,

(A.40)

In view of (A.36), it suffices to prove that

> ) s)€
(A.43) ‘/0 3290[1k—2,k+2](3)et)\0()

for any r € (0,00). Recall the assumption (A.39), in particular, [t| > 2P+
Since A\, (s) ~ min(s, 1) (see (A.5)), the bound (A.43) follows by integration

isr e—z‘sr
P SJ |t|—3/223kz

sr
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by parts unless &~ [t|. On the other hand, if » ~ |¢|, then the bound (A.43)
follows by stationary phase, using X’ (s) ~ (1 + s2)~%/2; see (A.5).
In view of (A.42) and the assumptions (A.28)7(A.30), it follows that

oy * 24| < lgusllon IEE e S 29722 (49593k 1 3/2 < 99433 3/

and

L[ KE gl S 2%/227 (20938 47372

92 % KT4||, . S g
< 23k27(1+5)jp§/222ﬁj.
The bounds (A.41) follow if 4 = 1 or if u = 2 and 27 < p,°. On the other
hand, if 4 = 2 and 27 > p;° then, using the L' bounds on gz in (A.30),
—(1+B)jg—(v=B-1)j < 2—(1+ﬁ)jpg(7—5—1)

LlN ~Y Y

5 KL . % 2]

which suffices to prove (A.41) in this case as well.
An identical argument shows that

(A.44) if k>ko+3, |t| > 2i+k+D
then, for any z € R3,

(A.45)

/]RS eix-feitAi(f)ﬁ,\j(é) de| < 9-6kg=(1+8)i (93 /|4[)3/2-108.
The bound (A.25) clearly follows from (A.32) and (A.45).

Step 3. We consider now the case
(A.46) k<k,—3, |t|>272k/3+D

and prove that, for any z € R?,
(A.47)

/RB eimfeitAi(g)fk’j(g) df’ < 2(3/2—a)k2—(H—ﬁ)jpg/?*loﬂ’ p3 = 2j—2k/3‘t‘—1'

The bound (A.23) would clearly follow from (A.32) and (A.47). Using the
decomposition (A.28), it suffices to prove that, for u € {1, 2},

Hg”j % KIZHH < 23k/22—(1+6)jp§/2—105

B sU | oo ~ )

Kj (2) = /RB eizf@itl\i(g)@[kfz,mz] (€) ds.
As before, we show that

(A.49) 1 4l S 27287572

(A.48)

In view of (A.36), it suffices to prove that

—1isr

(A.50) ‘ / 824,0[1]{72 k+2](8)eit)\i(s)% ds| < 2k/2|t|—3/2
0 k)
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for any r € (0,00). Recall the assumption (A.33); in particular, [t| > 2P—5%/3,
Since X;(s) &~ 1 (see (A.5)), the bound (A.50) follows by integration by parts
unless 7 ~ |t|. On the other hand, if r & |¢|, then the bound (A.50) follows by
stationary phase, using \/(s) ~ s; see (A.6).

As before, we can now prove (A.48). Using (A.37) and (A.28)—(A.30), it
follows that

o« Bifl|, . S Nlgnllon | llooe S 2997227 Ceighs2p) 572
3k/26—(1 i 3/2
< 23k/29 (1451 3

and

| S ozl | K llpe S 2997227 A Pig20kah/2yy =5/2

Loo ™

ng,j * K,
< 23k/22—(1+ﬂ)jpg/222ﬁ(j+k).
The bounds (A.48) follow if 4 = 1 or if u = 2 and 2/7F < pg‘r’. On the other
hand, if 4 = 2 and 2/7% > pz® then, using the L' bounds on ga; in (A.30),
< 93k/29—(14B)jg—(v=B—-1)(i+k)

o2 * B = 7551 .

< 23k/22—(1+ﬂ)jp§(’7—5—1),

which suffices to prove (A.48) in this case as well.

Step 4. Finally, we consider the case
(A.51) k€ [ks — 3, ks + 3], |t| > 291D
and prove that, for any z € R?,

(A.52) /R e () df] <2 B pSATI00 ) — i)

The bound (A.24) would clearly follow from (A.32) and (A.52).

Using the decomposition (A.28)-(A.30), it suffices to prove that, for p €
{1,2} and = € R3,
(A.53)

/RS N Oy o k(€ 1=l =72/ 0y 1] 53 () d5\52—<1+ﬂ>fp3/4—106
and

(A.54) ‘ /R3 eixfeitm(f)(p[(’g‘ _ ?"*)/,05/2]9/%\]'(5) d{‘ < 2—(1+,8)jpg/4—106'

Letting

Ky p5(x) := /RS el gy o ko (&) [1 —o[(I&] = 7"*)/5]} d§

and arguing as in the proof of (A.49), it is easy to see that
(A.55) 1K pisll e S 1t72/2671/2
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provided that § € [|t|~'/2,27P]. As before, this suffices to prove the bounds
(A.53).

To prove (A.54), we may assume, without loss of generality, that =/t =
(—21,0,0) for some z; € [0,00). The formula (A.31) together with the bounds
n (A.29) and (A.30) show that

(A.56)
1+ﬁJHDp91](€)HL2 + D25 (E) I < 279,
PN DLG; ()12 + 1 D22 ()| o

+27 sup R D2G25 ()l (Bieo,r)) < 2177
Re[277,1],&€R3

With € = (£1,£2,&3) = (&1,¢&') and | € Z N (—o0, D/10], we define

2= [ o/ SOl - n) /oy 55 ) de,
If =10 = Ty
We fix [y € Z sud; tha{
2l < py + [t~ 1/2 < glo+1,
We use (A.56) with |p| = 0 to estimate, if 27 > |¢|1/2,

14, S 2003 IgTs 12 S 2707200 )",
1/2 '
’I<l0’ < p22l .92log—; < 2—(1+5)J2l0p;/2'
On the other hand, if 2/ < [¢|'/2, then
1/2 ) — _ 1/2
ol + 1123, S 22005 2 (a5 2 + 17251 2) < 203",
Therefore, in both cases,
_ i 5/4
(A57) L4y, + |12, ] S 27000 )1,

To estimate |I}*| for [ > lo+1, we integrate by parts in ¢, using Lemma A.2
with K ~ [t[2! and e7! ~ 27 + 27! + 2p, 1/2 . Arguing as before, we estimate,
if 27 = max(27,27! 20py 1/2),

1] S 297/ (1°2%) - 2y 274 PT < pi o= iy,

I S 229 /(|tP2*) - 212" + /)27 S 27 4 py P2 pya .
On the other hand, if 27! = max (27,27, 21p2_1/2), then

I+ 117 S 272 /(1e22%) - 2%y S 2721120y,
Finally, if 2p _1/ = max(27,27 21p2 1/2) then
I+ |12 < (2%py £[222) . 92 1/2 < 92|y 2 71/2
1 i
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Therefore,
(A.58) SC L+l < 2 g,
1>lp+1
The desired bound (A.54) follows from (A.57) and (A.58). O

Our last lemma in this section is a bilinear estimate. Recall the operators
Q7" defined in (5.4),

FIQE(£.9))(€) = [ | O =Reliln (6 i) (€~ m)gn) dn.

R3
LEMMA A.6. Assume s € R, o € {i,e, b}, p,v € Iy, and

(A.59) [fl zamno < 1, 9/l zam~o < 1.

Then, for any k' € Z,

(A.60) [[PeQT* (f,9)|lz2 S 2% min[(1 4 )17, 23%/2] . min[1, 27 (Mo=9K],

Moreover,

(A61) if 28 c[27P.2P] and o € {e,b} or 2 €(0,2°] and o =1,

then
(A.62) | FPe QT (f£.9)llz < (1+5)7HH7/1027K,
Proof of Lemma A.6. Clearly, the left-hand side of (A.60) is dominated

by
(A.63)
C > ew© / el el (8 ) Py F(E— 7, 8) Pryg(n, ) dn‘

k1 ko €Z R? L
Using (A.26)—(A.27) and the assumption (A.59),
(A.64)

1Py £l 2 + | Prorgll 2 S min(20F77 @R 7 Nok),
le™ % Py f [ o + e Prgl e S min(20/27 07 276K (1 4 5)=1-7

for any k” € Z. Using (A.64) and the description of the symbols mg.,,, in
Lemma 3.3, the expression in (A.63) is dominated by

2k 3 min(20+8-ekz 9=(No—2)kz)
k1,k2€7Z, k1<ko, k' <ko+4
. mln(2(1/2757a)k1’ 2*6]?1)(1 + 8)7175
< 2ko (1 4 5)7 1P min(1, 2~ MNo=5k")
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Moreover, if ¥/ < 0, we use again (A.64) and Lemma 3.3 to estimate the
expression in (A.63) by

C Z 23k’/2

k1,ko€Z

< 23k’/22k; Z min(2(1+ﬁfa)k1 , 27(]\/'072)]61) . min(2(1+ﬁfa)k27 27(N072)k2)
k1,k2€Z

< 23]4://22]{:(/7‘

/Rge_is[A”(g_n)—‘rAu(n)]ma;p,,u(& n)Plﬂ f(€ -, S)szg(% 5) d77

Le

The desired bound (A.60) follows.
To prove (A.62) we use first Lemma 3.3 and Lemma A.1 and decompose
the functions f, g in suitable atoms. It suffices to prove that if

(A.65) 1Pl zamo + P2l zagve <1,

and we decompose
hi = Z Pl i s g = P[kz'*lkﬁﬂ((pﬁ’i ). By hi), 1=12,
(kirji)ed
then
(A.66)

o (i) [ O RuEn KA (€~ B, (o)
1,J1),(k2,J2)€

5 (1 + S)fl+ﬁ/1027k’

for any € € R3, p,v € Ty, s € R, and k/, o as in (A.61).
We use first only the L? bounds
ik, ol < min(2 Mok, 228-kig=(1-8)i)

182, .|z S min(2~Nok2 2(28=a)kag—(1-8)j2),

)

(A.67)

see (A.65) and (A.19). The full bound (A.66) follows easily if s'=A/10 <
oD% 9—2k" Assuming s!—#/10 > 2D22_2k/, we estimate easily

>

((k17j1),(k2,j2))€J1

—

o (€) /Rs eiS[Aa(é)*Au(&n)*Au(ﬁ)}hllcm,l = n)hiz,jz (n) dn

< 3_12_]“/,

~

where

Ji = {((k1, 1), (k2,j2)) € T x J - 2max(kika) > 2/No
or 2max(j1,j2) > Sl+452k/}.
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Let

Iy = {((k1, 1), (k2, j2)) € T x J : 2max(kika) < 2/No
and 9max(i1.j2) < 51+452k'}7

and notice that Jo has at most C(Ins)* elements. Therefore, for (A.66) it
suffices to prove that

—

(Pk’(f) /RS zs[A (E—n)+A, (W)]hll J1(€ 77) k27j2(77) dn S 2_2k/8_1+ﬁ/11,

provided that ¢ € R®, p,v € Iy, ¥ € Z N (—oo, D], s'=8/10 > 2D22_2k,, and

((klajl)v (k27j2)) € J2-
Assume first that

(A.68)

(A69) 2max(j17j2) > 2—D281—,3/112k"

Without loss of generality, in proving (A.68) we may assume that j; < jo.
Then, using (4.6), (4.9) and the assumption (A.65), we have

(A.70) ||hk2 gl S 9~ (1+B8)j2g3k2/2(gakz 4 910kz)~1

Using (A.20), ”hkl il S 9-F1/2, Using also (A.67), we estimate the left-
hand side of (A.68) by

Cmm(”hkl g || oo ”hkz,]z 1, Hhkl i HLQHth jQHLZ)
< min(2~F1/29-(1+8)i2 gk (148-0)9=(1-B)j2) < 9=ia,

The desired bound (A.68) follows if we assume (A.69).
Assume now that

(A.71) 92min(ki k2)  9D?9—2k —~1+5/11

Without loss of generality, in proving (A.68) we may assume that ko < kj.
Then, using (A.70) we estimate the left-hand side of (A.68) by

CHhkl,]l [ Hhkzz szLl S 9 ki/295ka/2 < 2%27

as desired
Finally, it remains to prove (A.68) assuming that
(A.72)
gmax(j1.j2) « 27D25176/112k/ and 92min(k1 k2) - 2D2272k’871+[3/11.

In this case we would like to integrate by parts in 7 to estimate the integral in
(A.68). Using the bounds (A.1) and (A.20),
(A.73)

[1— peo(6712 (&, ) e Rue Rl pT L& =mh km(n) dn| S s

R3
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as long as
(A.74) 5 e (0,1], s> 3/322max(j17j2)7 56 > g7 519~ min(kik2,0)
Therefore, letting

D(£,6) == {n e R¥: || € [2F2~4, 2k,

AT5
AT € —n| € (M4 2R =R (¢ )| < 263,

for (A.68) it remains to prove that, for some ¢ satisfying (A.74),

(A.76)

i () /RS (e (n)|hk, 5, (€= m)| B2, ,,(0)] dn’ < 92K g=14B/11,

provided that £ € R3, p,v € Zy, k' € Z N (—o0, D], and ((k1, 1), (k2,2)) € Ja
satisfies (A.72). Without loss of generality, we may assume that ko < k;.

We examine now the sets D(,0) defined in (A.75). Assume that pu =
(o1t1), v = (02t2), 01,02 € {i,e,b}, 11,12 € {+, —}. Notice that

M\ — N
EMW(‘S’U) — _LIW(,O _ g) — 19 02’1(7|’77’)77 _ A(77 . 5) + Bn,
where
A= _LIM’ B :— _L2)‘02(|77|).
In— &l ]

In view of Lemma A.4(i), we have min(|A|,|B|) >¢,. 2~ ™**1.0) Tetting
E=se,eec S se M 2282 andnp =re+n,r €R, e =0, and
assuming n € D(€,0), it follows that

(A+B)f| <25, |(A+ B)r — As| < 26.

We let § := max(s°°~tomax(iij2) ¢(82-1)/29-min(k2,0)/2) " guch that (A.74) is
satisfied. In view of (A.72), it follows that |(A 4+ B)r| >¢, . 2~ mex(k10)9k"
therefore |A + B| 2 ¢, . 2~ 2x(F1.002kK 9=k2  This shows that

~

‘n/| S_, 2max(k1,0)2fk’2k26.
In other words, we proved that if £ = se, e € S?, s € [2]‘3/_2, 2k,+2], then

D(¢,6) C{n=re+n eR®: |r|+|n/|* < 2T

A7
( ) 77/ e — 0’ ’77/| 5 2max(k1,0)2—k’2k25}_

Using (A.77) and the L* bounds H}EHL‘” < 27k/2) Hh/Q\HLoo S

~ k2,j2

27%2/2 we can bound the left-hand side of (A.76) by

02—k1/22—k2/2 . (211’1&)((]{?1,0)2—]{7/2](}25)22]{}2 < 22 min(k2,0)622—2k/58/N0‘
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This suffices to prove (A.76) if 2max(71.72)gmin(k2.0) < §1/2 On the other hand,
if j1 < js and 9J29min(k2,0) > 31/2, then we estimate the left-hand side of (A.76)
by

—

C2 ML pe 5y () - B, 5, (m)lly S 27772 - 2e/2gmaxinO)g=Ngke g 932

< 2—k’8—1+6/11’

which also suffices to prove (A.76). Finally, if j; > jo and 971 gmin(k2,0) > ¢1/2
then we estimate the left-hand side of (A.76) by

—

C2 2 Lp(e gy (n) - B, 5 (€ =)y  27/2 - 2ba/2gmentia Oy gtag . g

< 27k’871+,6’/117

which also suffices to prove (A.76). This completes the proof of the lemma. O

Appendix B. Classification of resonances

We define the order ¢ < e < b. Recall that we introduced a large number
D > (e71 + ()0, depending only on € and Cy. For o € {i,e,b} and u,v € Iy
(see definition (3.21)),

(B.1) p=(o111), v = (o912), 01,09 € {i,e, b}, 11,02 € {4+, -}
Recall the definitions of the smooth functions A, : R3 — (0,00), ®7#HV :
R3 x R? — R and Z*" : R3 x R3 — R3,

DTV (E,m) = Ao(§) — t1he (§ — 1) — t2Aoy (1),

(& m) = (V@7 ") (6,n) = =1V A, (1 = §) — 12V Ag, ().

In this subsection we prove several lemmas describing the structure of almost
resonant sets, which are the sets where both |®7#¥ (£ n)| and |E#Y (€, n)| are
small. Recall the sets
(B.3)

it ) k—4 ok k1—4 ok
o100 = 1(6m) €R? X R? - [¢] € M4, 2] e — | 2174, 2],

] € [25274, 28] |2 (€, )| < b1, [RTHV(E, )| < 6}

(B.2)

defined for o € {i,e, b}, u,v € Iy, k, k1, ko € Z, 01,062 € (0,00). We define also

Lign ks = {(&n) €R* x R |¢] € [2F74, 2FH),
€ — | €[22 || € [2k2 4 gkata)y,

Given a phase ®7#" and a set of phases 7, we denote ®%*" ce T if
either ®7HY € T or ®7¥H € T, and ®7H" ¢¢ T if neither possibility holds.
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We show first that some phases do not contribute in the analysis of res-
onant interactions. We define the 39 strongly elliptic phases (which do not
vanish in R3 x R3),

7éell .= {(I)z;z-l—,e—i—’ (I)z,z-‘,-,e—’ (I)z;z-l—,b-‘r, (I)z;z—l-,b—’ q)z,z—,e—’ q)z;z—,b—’ (I)z,e—i—,e—&—’
iet+,b+ @he—.e— Fie—b— Gibtbt+ Fisb—b— Fesiti— geite—
@Ze ’¢ZC e ’(ble ’(P’L ’él ’¢€Z (2 ’¢€’L e ,
jitb— ei—i— peiTe— peiTb— peet et e— peset b+
(I)ez—‘r ’(I)ez 7 ’(I)ez e ’q)ez ’q)ee—ﬁ-e-l—’q)ee-l—e (I)ee—i— ,
etb— pee—e— pee—b— Febrb+ Feb—b— Fbiti— gbiit.e—
@66 ’®€€ & ’q)ee 7@6 7@6 ’(bl 7 7@1 e ,
biit,b— Fbii—i— gbii—e— Gbi—b— gbet.e— Fhetb— Fhe—e—
@Z ’(bll’(pl€7¢l ’(Pe(i,(be ’QCE’

cI)b;e—,b—7 @b;b—&-,b-l—’ (I)b;b—&-,b—, (I)b;b—,b—}_
We define four additional nonresonant phases (for which |®7#¥| + |V, ®7HY|
does not vanish in R3 x R3):
TNR = {(I)e;i—hi+7 (I)e;b—k,b—7 (I,b;i—&-,i—k’ (I)b;i—,e—i-}.
LEMMA B.1. Assume that ®7HY €€ Tgen U Tnr. If
5, < 2~ Do—tmax(kik20) 5. < 9=Dg—max(kik2,0)

then L35 60,0, = 0-
Proof of Lemma B.1. We claim that if &7 €€ Tgq, then we have
(B4) ’@O’;N,V(é-’ 77) 28 Cy 2" max(kl’kQ’O).

This would clearly suffice to prove the claim for the strongly elliptic phases.
If (¢1,t2) = (—,—), the proof of (B.4) is a direct consequence of the fact

that Ay > Ae > 1. To deal with the remaining 22 phases in Tge we observe

that, as a consequence of Lemma A.4, we have, for any r € [0, c0),

(B.5)

FENE) A S X)) = Alr) Zeoy e Alr) = M) Zec, 147

In addition, for any 71,72 € [0, 00),
Ai(r1) + Xi(re) — Ni(r1 +1r2) >0,

(B.6) Ae(r1) + Ae(r2) = Ae(r1 +12) Ze,c, (1+min(ry,r2)) ",
Ao (r1) + Ap(r2) — Ap(r1 4 72) Ze,cp (14 min(ry, 7))~

Indeed, the first bound in (B.6) follows from the formula \;(r) = rg;(r) in
Lemma A.4 and the fact that ¢; is decreasing. For the second bound in (B.6),
we use the fact that the function r — A\.(r) — h-(r) is nonnegative and decreas-
ing on [0,00) (see (A.15)), and therefore

Ae(r1) + Ae(12) = Ae(r1 4+ 12) > he(11) + he(r2) — he(r1 +172)

Ze.c, (14 min(ry, 7“2))_1.
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The third bound follows directly from the definition.
Using (B.5), (B.6), and the monotonicity of the functions A;, Ac, Ay on
[0,00), we can now prove lower bounds for the absolute values of the 22 phases

in Tgen. If (¢1,02) = (4, 4) and p, 7 € {e, b}, then

[=Ai(&) + Ai(€ —n) + A(m)] + [Ar(n) — Mi(n)] 20, 1,
[=Ai(&) + Ai(§ —n) + Ai(n)]

+ (€ =n) = M€ = )] + [Ar(n) = Ai(n)] Zec 1,
[=Ae(§) + Ac(§ — 1) + Ac(n)]

+[Ap(€ =) = Ae(§ = )] + [Ar () — Ac(n)]
92— max(ki,k2,0)

_(I)i;i+’T+ (57 77) =
(e ) =

—ePHTE(E ) =

Ze,C’b )

— b (g ) = —A(€) + Ap(€ — ) 4+ Ap(n) Zec, 27 max(krk0),

On the other hand, if (¢1,t2) = (4+,—) and p, T € {e, b}, then

T, m) = [Ai(€) — M€ —m) + Ai()] + [Ar(n) — Mi(n)] Zecy 1,
OFTI(E,m) = [Ai(€) — Ai(§ =) + Ai(n)] + [Ap(€) — Ai(9)] 2, 1,
OPTHT(€,m) = [Ai(€) — Ai(€ —n) + Ai(n)]

+ [Ap(©) = A (O] + [Ar(n) — Ai(0)] Zec 1,
OPHT (€ ) = [Ae(€) — Ae(€ — 1) + Ac(n)]

(
) A

+ [Ap(&) = Ac(E)] + [Ar () — Ae(m)] 20, 27 mex(Rrh20)
) = Ap(€ =) + Ap(n)] e, 27 Mk

The desired lower bound (B.4) follows for all phases ®7#" € Tgq.

We now consider the phases ®7#" €& Tyr. Assume first o1 =09=1.
Then, since X} 2 ¢, - 1, we see that smallness of |Z# (&, n)| implies (é—n)-n > 0.
But then |£| > max(|§ — 7|, |n|) and, using (A.7),

min[®% T (€, n), @Y (€ m)] > Ae([€]) — 2Ni([€])
> he(€]) = 2(/(T + 1) (e + D)I¢] Zec, 1,

and the desired conclusion £} ,ZCJ; ,ij 516, = 0, 0 € {e, b}, follows.

Assume now that ®%H ce {®=bH0=) If max(ky, ko) < —D/10 then,
using (A.5), @%b~ (£, 1) > 1. On the other hand, if max(ki, k2) > —D/10,
we see from smallness of |Z0T0~ (&, 7)| that |¢| < 27, But in this case,

As(1€ = nl) = X)) S0, €] < Ae(0)/2,

hence @00~ (¢, 1) > 1.
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Finally, assume that ®7#" cc {®¥—¢+} By symmetry we may assume
that
DT (E ) = DW (€ ) = No(€]) + M€ = nl) = Ae(In])-
The condition |Z#*(¢,n)| < 27P and Lemma A.4(i) show that 2%2 >¢, . 1.
The condition |®7#¥(£,1)| < 27P then shows that |n| > |£|. Since

. JIFT J oy o (L= VAT
N(r) < N and Ae(r) > N

for any r € [0,00) (see Lemma A.4(ii) and (iii)), the restriction |Z*"(£,n)| <

270 shows that |n| < \/e/T. Therefore, |¢| < /e/T and |€ —n| < 2+/¢/T.
Since 7, > T~1/? (see Lemma A.4(i)), it follows that |£ —n| < r,/2. Therefore,
A, is decreasing on the interval [0,]|{ — 7], and we estimate, recalling that

270 > |2 (&, m)| = | Xi(lg = nl) = Xl

€=l 1€l In|
DTV (E, 1) :/0 ! i (s) ds+/0 Ab(s) ds — 0’7 Xe(s) ds
> Cgle + 1€ — nNi(lE — nl) — (inl — [EDAL(In)
2Cy.e 1.

This provides the contradiction. O

e consider now the remainin phases, and define three sets of phases
W id th ining 20 ph d define th ts of ph
(B.7)
7?4 ::{q)i;i—,e—l—’ q)i;i—,b—‘r’ q)i;e—i-,b—, q)i;e—,b—‘r, q)e;i-i—,e—i—, q)e;i—&—,b—i—, (I)e;i—,b—i—’ (I)e;e—,b—‘r,
(I)b;i+,e+7 (I)b;i—&-,b—i-7 (I)b;e—i-,e—‘,-7 q)b;e-‘nb—&—’ q)b;e—,b—i-},

TB ::{q)e;i—&—,e—i-7 (I)e;i—,e—&—’ q)b;i—i—,b-‘r’ (I)b;i—,b—i—}’
Te ::{q)i;i—i—,i—&-’ (I)i;i—i-,i—, (I)i;i—,i—7 q)i;e—&-,e—7 (I)i;e—l—,b—7 (I)z';e—,b—i-7 (I)i§b+7b—}.
Notice that some phases, such as ®¢+¢* belong to more than one set. The set
Ta corresponds to phases having nondegenerate stationary points on spheres,
while the sets Tp, 7o consist of phases with degenerate behavior around 0 (in
n, &€ —n, or £). More precisely,

PROPOSITION B.2. Assume k, ki, ko € Z and that there is a point (§,1) €
Lk ko Satisfying

|Eu,u(€7,’7)‘ < 51 — 2710D274max(0,k1,k2)7

‘(I)UW:V(& 77)‘ < 52 _ 2710D27 max(O,kl,kg).

Then one of the three following possibilities holds:
CASE A: —D/2 < k,ki,ka < D/2 and 7" €€ Ty.
CASE B: min(ky,k2) < —D/3, k > —D/4 and 7" €€ Tp.
CAse C: k < —D/4 and 7" ce€ Te.



490 YAN GUO, ALEXANDRU D. IONESCU, and BENOIT PAUSADER

Proof of Proposition B.2. We divide the proof in several steps.
Step 1. Assume that
(BS) PV cc {@iﬂ"hi-i- Phitii— @i;i—,i—}'

These phases are only in the set T, and we have to prove that if Ezl‘jl”kz 51.62
# (), then
(B.9) k<-D/2.

Assume for contradiction that k > —D/2. Using Lemma A.4(iii) it is easy
to see that if ®7#¥ €€ {@% 1~} then

D7 (&,m)| Zeci, max(E], [nl, € = nl) Zec, 2777,

which is not possible. On the other hand, using Lemma A.4(iii), for any
r,s € [0, 00),
Ai(r) + Ai(s) = Ai(r + 5) = 7(qi(r) — ¢i(r + 5)) + s(ai(s) — qi(r + s))
S min(r, s)(r + s)?
~O 14 (r + 5)2)(1 + min(r, 5)2)
Therefore, if ®7Hv cc {QUiHit iti=1 L > —D/2 and L]4" # 0,

k,k1,k2;61,02
then min(ky, k2) < —5D. On the other hand, if min(k;, k2) < —5D and

max(ki, k2) > —D/2 — 10, then we use the bound
A1) = Xi(8) > qi(0) — Cey e — qi(s) > 272D,

whenever 0<r<274P and s>2"2, which is a consequence of Lemma A 4(iii).
Therefore, in this case |24 (&,n)| > 272 for all (£,n) € Lyk, ky, Which pro-
vides the contradiction.

Step 2. Assume that
(Bl()) (I)cr;,u,l/ ce {@i;6+,e—’ (bi;b—i-,b—}.

These phases are only in the set 7¢, and it suffices to prove that if £717% s o

# (), then
(B.11) k< -D)J2.

Assume for contradiction that k£ > —D/2. Since X (0) =0, o € {e, b}, the
restriction |Z#Y(&,n)| < §; shows that min(ki, k2) > —D. On the other hand,
if min(k, k1, ko) > —D then, for any (§,7) € Lk, k,, We have

=76 Zene | Nolln = €1) = NI

s maxy (= €)X, ()] = = 75| > 276,

which provides a contradiction.
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Step 3. Assume that
(B.12) QI e {Phetd— plembty
These phases are in the sets 7o and T4, and we have to prove that if

ﬁgjgl’ljkmslﬁz 75 Q)’
then
either k<-D/4 or —D/2 <k ki,ka <DJ/2.

This is equivalent to proving that
(B.13)
if k>-D/4 and L’Z;;;’sz,gl 5y 7 0, then —D/2<k ki, ko <D)/2.

Since
(B.14) Jim. N(r) =1, Jim A (r) = /T, Jim My (r) =1/ Cy/e,

it is easy to see that the condition EZ,’;”,Q .5,.5, 7 0 implies that max(k1, k2, k3)
< D/4. Since k > —D/4, it follows that max(k1, ke) > —D/4—10. Recall that
M (0) =0 and N.(r) ~c,e (1+72)732 0 € {e,b} (see Lemma A.4(i)). Since
|=Y(E,m)| < 01 for some (&,7m) € Ly k, &y, it follows that min(ki, k2) > —D/2,
as desired.

Step 4. Assume that
(B.15) QoY ce {PHITET (I)b;i—,b+}.

These phases are only in the set Tp, and we have to prove that if LZ,;IQL{I,ij; 51,6

# (0, then
(B.16) k>—-D/4 and min(k;, k2) < —D/3.

It is easy to see that max(kq, ke, k) > —D/10; otherwise, |2*Y(£,n)| >
2720 for all (&,m) € Lik, .k, in view of the fact that AL(0) = \;(0) = 0 and

T3,V

X(0) =¢, - 1. Therefore, it remains to prove that if L k6160 7 (), then
(B17) min(k'l, ]{72) S —D/3

Assume, for contradiction, that (B.17) fails. We may assume, without loss
of generality, that

DI (E,m) = BT (E, 1) = Ao (1€]) + M€ = nl) = Ao (Inl)

for o € {e,b}. We argue as in the proof of Lemma B.1, ®7#" = dbi—et ¢ Tyg.
The conditions |®7#¥ (&,1)| < 271°P and k; > —D/3 show that || > |¢]. Since

/ vi+T / / (1 — \/E)TT’
Ai(r) < JIte and Ap(r) = Ae(r) > Wa
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for any r € [0,00) (see Lemma A.4(ii) and (iii)), the restriction |[Z*(&,n)| <

27D shows that |n| < y/e/T. Therefore, [¢| < /e/T and |€ —n| < 24/¢/T.
Since 7, > T~'/2 (see Lemma A.4(i)), it follows that | — 5| < r./2. Therefore,
A, is decreasing on the interval [0,|¢ — n|] and we estimate, recalling that

2710 > |=0(¢,m)| > [Ni(I€ = ml) — No(Jn])| and |¢ —n| > 27D/,

| je=nl il
e = [ N ds— [ N(s)ds
0 §

> 2720 € = nIXi(1€ = nl) — (In = [€) A, (Inl) > 2747

This provides the contradiction.

Step 5. Assume that
(B.18) PV cc {q)e%i-i‘,e-*-’ q)b;i-i-,b-i-}_

These phases are in the sets Tp and T4, and we have to prove that if £17", s s

# (), then
(B.19)
either k> —D/4, min(k1,k2) < —-D/3 or —D/2<k,ki,ka <DJ2.

It is easy to see that max(ki, ks, k) > —D/10; otherwise, |E*¥(&,n)| >
272D for all (&,m) € Lik, .k, in view of the fact that AL(0) = \;(0) = 0 and
Xi(0) =¢, « 1. Therefore, for (B.19) it suffices to prove that

(B20) if min(k:l,k:g) > —D/3, then —D/2 < k,k‘l,kﬁg < D/2

In view of (B.14), it is clear that min(ky, k2) < D/10; otherwise, |[=*" (&, n)|
> 2720 for all (&,m) € Lrk k- On the other hand, if k& > D/4, then
max(ki, ks) > D/4—10, and one can use (B.14) again to see easily that this in
contradiction with the assumption L'Z,’;V,Q 51,02 # (). Therefore, max(k, k1, k2)
< D/2, as desired.

Finally, for (B.20) it remains to prove that k > —D/2. Assuming, for con-
tradiction, that k¥ < —D/2, and recalling that max(k1, ke, k) > —D/10, it fol-
lows that max(ki, k) > —D/10, |k1 — k2| < 10. Therefore, | D7 (&,n)| Zc,.e

272D which provides a contradiction.

Step 6. Assume that
(le) oMY ce {(I)e;e—,b+7 (bb;e+,e+’ (I)b;e-i-,b—&-, (I)b;e—,b—i-}.

These phases are only in the set T4, and we have to prove that if E?ﬁl"}kz.& 5

# (0, then
(B.22) —D/2 <k, ky, ko
and

(B.23) k ki, ks < D/2.
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We prove first (B.22). We notice that max(k1,k2) > —D/10; otherwise,
| DT (E,m)| Zcy.e 1 for any (€,1) € Ly gy ke Since Ae(0) = Xp(0) = V1 +e~1
This implies that min(ki, k2) > —D/4; otherwise, |E#(&,1)| 2¢, 270 for
any (£,1) € Ly, ko, since X, (1) =¢, - min(r, 1) and X\, (r) ~¢, . min(r, 1).

To complete the proof of (B.22), assume, for contradiction, that k& <
—D/2 and therefore max(ki,k2) > —D/10, |k1 — ko| < 10. If ®7HY e
[@behet BHHITY then [O7V(E,n)] Zeye 1 for any (6,7) € Liy gy, in
contradiction with the assumption [,Z,‘;VM 5.5, 7 0. On the other hand, if
oy ce {eembt hembty then |2V (E,n)| 2¢,. 2720 for any (&,1) €
Lk k. ky» Which is again in contradiction with the assumption /JZ,’:IVkQ 160 T 0.
This last bound is a consequence of the estimate

(B.24) Xo(r) — AL(7) 20y, min(1,7) for any r > 0,

which follows from Lemma A.4(ii). This completes the proof of (B.22).

We prove now (B.23). We notice first that min(k, k1, ko) < D/10; other-
wise, either |Z#Y(&,n)| 2, 1 or [PV (E,n)| Zc,.c 1 for any (&,71) € Lk, ks,
using (B.14). Assuming, for contradiction, that (B.23) fails, we need to con-
sider two cases:

(B.25)
either £k < D/lO, max(k:l, kg) > D/2, ‘k‘l - k‘g‘ < 10,
or min(ky, ko) < D/10, max(k,k1,ke) > D/2, |k —max(kq,ke2)| < 10.

In the first case, we use (B.14) to see that |2*"(£,n)| 2¢,.e 1 for any (£,7) €
Ly ko 1
UMY ce {ée;ef,bJr (I)b;e+,b+ (I)b;ef,bJr}.

We also notice that |E#Y(€,n)| Z¢,e 1 for any (£,n) € Ly, k, if DT €€
{®Yetet) | which completes the contradiction in this case.

Assume now that the inequalities in the second line of (B.25) hold. By
symmetry we may assume that k1 = min(kq, k2). In view of (B.14), it is clear
that |27 (&, n)| 2, 1 if

(&) € Lk ko
and
I ¢ {Cbe;e—,b—&- (I)b;e+,b+ (I)b;e—,b—i—}
? ) *

Also, using (B.5) it is clear that |®7#¥(&,n)| 2, 1if (§,1) € Lik, k, and
oy ¢ [perbhes gbietet gbibtet gbibte=1  This completes the contradic-
tion in this case as well, and the desired bound (B.23) follows.

Step 7. Assume that

(B26) UMY cc {(Iﬂ';i—,e—l—7 @i;i—,b—i-’ (I)e;i—s—,b—i-7 (I)e;i—,b—i-7 (I)b;z'—l—,e—l-}.



494 YAN GUO, ALEXANDRU D. IONESCU, and BENOIT PAUSADER

These phases are only in the set T4, and we have to prove that if L;"% s s

# (), then

(B.27) —D/2 <k, ky, ko
and
(B.28) k,ki,ke < D/2.

To prove (B.28), assume, for contradiction, that max(ki,k2) > D/4. By
symmetry, we may assume also k1 < k9. Using (B.14) it is easy to see that

(=446 m)| Zcye 1 (€,1) € Liy by and

o,V ii—,e+  Fii—,b+ e;i+,b+ eji—,b+ Fbji+,e+
T € (D P . . D 1.

On the other hand, if

DIV ¢ {(I)i;,eJr,if @i;b+,i7 (I)e;bJr,iJr q)e;bJr,if (I)b;eJr,iJr}
) ) ) )

then, using again (B.14) and the smallness of |=*"(£,n)|, we necessarily have
ki < D/10, |k — k2| < 10. In this case, however, |®7#¥(£,n)| 2, 1, due to
(B.14). This completes the proof of the contradiction.

We prove now (B.27). We notice that max(k1,k2) > —D/10; otherwise,
|EFY(E,m)| 20, 1for any (€,m) € Lk, &y, since A, (0) = A (0) =0, X;(0) =¢, «
1. Assume, for contradiction, that (B.27) fails. We may assume by symmetry

that k1 < k9, and we need to consider two cases:

cither k3 < —D/2, ky>—D/10, |k — ko| < 10,

B.29
(B-29) or  k<—=D/2, ky>-D/10, |k — ks| < 10.

Assume first that the inequalities in the first line of (B.29) hold. Since
Ni(r) =, e Tand A (0) = AL(0) = 0, it is easy to see that |2V (€, n)| 2¢, e 272P
if (€§,n) € Ly ke, and

P {(I)z;e—&—,z—7 (I)z;b—o—,z—’ (I)e;b+,z+’ (I)e;b—&—,z—7 (I)b;e—&—,z—i-7 }

On the other hand, using (B.5), |7 (&, )| 2¢,.c 2720 if (§,1) € Ly, k, and

oV ii—,e+  Fii—,b+ e;i+,b+ eji—,b+ Fbji+,e+
7MY € P P D P D 1.

The desired contradiction follows in this case.

Finally, assume that the inequalities in the second line of (B.29) hold.
Using (B.5) it is easy to see that [®%H¥ (&, n)| 2¢,c 2720 if (£,1) € Liky ko
and @oHv ce {PHimet Qlimbt ettt @bitetl On the other hand, if
ot e {P%—P+1 then the contradiction follows by the same argument as
in Step 4. This completes the proof of the proposition. O
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