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Defining Z in Q

By Jochen Koenigsmann

Abstract

We show that Z is definable in Q by a universal first-order formula in

the language of rings. We also present an ∀∃-formula for Z in Q with just

one universal quantifier. We exhibit new diophantine subsets of Q like the

complement of the image of the norm map under a quadratic extension,

and we give an elementary proof for the fact that the set of nonsquares is

diophantine.

1. Z is universally definable in Q

Hilbert’s 10th problem was to find a general algorithm for deciding, given

any n and any polynomial f ∈ Z[x1, . . . , xn], whether or not f has a zero in Zn.

Building on earlier work by Martin Davis, Hilary Putnam and Julia Robinson,

Yuri Matiyasevich proved in 1970 that there can be no such algorithm. In

particular, the existential first-order theory Th∃(Z) of Z (in the language of

rings Lring := {+, ·; 0, 1}) is undecidable. Hilbert’s 10th problem over Q, i.e.,

the question whether Th∃(Q) is decidable, is still open.

If one had an existential (or diophantine) definition of Z in Q (i.e., a

definition by an existential first-order Lring-formula), then Th∃(Z) would be

interpretable in Th∃(Q), and the answer would, by Matiyasevich’s Theorem,

again be no. But it is still open whether Z is existentially definable in Q.

The earliest first-order definition of Z in Q, which is due to Julia Robinson

([Rob49]), can be expressed by an ∀∃∀-formula of the shape

φ(t) : ∀x1∀x2∃y1 · · · ∃y7∀z1 · · · ∀z6 f(t;x1, x2; y1, . . . , y7; z1, . . . , z6) = 0

for some f ∈ Z[t;x1, x2; y1, . . . , y7; z1, . . . , z6]; i.e., for any t ∈ Q,

t ∈ Z if and only if φ(t) holds in Q.
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Recently, Bjorn Poonen ([Poo09a]) managed to find an ∀∃-definition with two

universal and seven existential quantifiers. In this paper we present a ∀-defi-

nition of Z in Q. To search for such a creature is motivated by the following

Observation 0. If there is an existential definition of Z in Q, then there

is also a universal one.

Proof. If Z is diophantine in Q, then so is

Q \ Z = {x ∈ Q | ∃m,n, a, b ∈ Z with n 6= 0,±1, am+ bn = 1 and m = xn}.
�

Theorem 1. 1There is, for some positive integer n, a polynomial g ∈
Z[t;x1, . . . , xn] such that, for any t ∈ Q,

t ∈ Z if and only if ∀x1 · · · ∀xn ∈ Q g(t;x1, . . . , xn) 6= 0.

If one measures logical complexity in terms of the number of changes of

quantifiers, then this is a definition of Z in Q of least possible complexity: there

is no quantifier-free definition of Z in Q.

Corollary 2. Q \ Z is diophantine in Q.

In more geometric terms, this says

Corollary 2′. There is a (not necessarily irreducible) affine variety V

over Q and a Q-morphism π : V → A1 such that the image of V (Q) is Q \Z.

Together with the undecidability of Th∃(Z), Theorem 1 immediately im-

plies

Corollary 3. Th∀∃(Q) is undecidable.

Here Th∀∃(Q) is the set of all sentences of the shape

∀x1 · · · ∀xk∃y1 · · · ∃yl φ(x1, . . . , xk; y1, . . . , yl),

where φ is a quantifier-free Lring-formula, that is, a boolean combination of

polynomial equations and inequalities between polynomials in

Z[x1, . . . , xk; y1, . . . , yl].

Corollary 3 was proved conditionally, using a conjecture on elliptic curves, in

[CZ07]. Again, we can phrase this in more geometric terms:

Corollary 3′. There is no algorithm that decides on input a Q-morphism

π : V →W between affine Q-varieties V,W whether or not π : V (Q)→W (Q)

is surjective.

1In the meantime, Theorem 1 has been generalized to arbitrary number fields K: the ring

of integers of K is universally definable in K ([Par13]).
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2. The proof of Theorem 1

Like all previous definitions of Z in Q, we use elementary facts on qua-

dratic forms over R and Qp, together with the Hasse-Minkowski local-global

principle for quadratic forms. What is new in our approach is the use of the

Quadratic Reciprocity Law (e.g., in Propositions 10 or 16) and, inspired by

the model theory of local fields, the transformation of some existential formu-

las into universal formulas (Step 4). A technical key trick is the existential

definition of the Jacobson radical of certain rings (Step 3) that makes implicit

use of so-called ‘rigid elements’ as they occur, e.g., in [Koe95].

Step 1: Diophantine definition of quaternionic semi-local rings à la Poo-

nen. The first step modifies Poonen’s proof ([Poo09a]), thus arriving at a for-

mula for Z in Q that, like the formula in his Theorem 4.1, has two ∀’s followed

by seven ∃’s, but we managed to bring down the degree of the polynomial

involved from 9244 to 8.

Definition 4. Let P be the set of rational primes, and let Q∞ := R. For

a, b ∈ Q×, let

• Ha,b := Q · 1⊕Q ·α⊕Q · β ⊕Q ·αβ be the quaternion algebra over Q with

multiplication defined by α2 = a, β2 = b and αβ = −βα.

• ∆a,b := {p ∈ P ∪ {∞} | Ha,b ⊗ Qp 6∼= M2(Qp)} the set of primes (including

∞) where Ha,b does not split locally — ∆a,b is always finite, and ∆a,b = ∅
if and only if a ∈ N(b), i.e., a is in the image of the norm map Q(

√
b)→ Q.

• Sa,b := {2x1 ∈ Q | ∃x2, x3, x4 ∈ Q : x2
1 − ax2

2 − bx2
3 + abx2

4 = 1} the set of

traces of norm-1 elements of Ha,b.

• Ta,b := Sa,b + Sa,b — note that Ta,b is an existentially defined subset of

Q. Here we deviate from Poonen’s terminology: his Ta,b is Sa,b + Sa,b +

{0, 1, . . . , 2309}.

For each p ∈ P ∪ {∞}, we can similarly define Sa,b(Qp) and Ta,b(Qp) by

replacing Q by Qp.

For each p ∈ P, we will denote the p-adic valuation on Q or on Qp by vp,

and the associated residue map by φp : Z(p) → Fp resp. φp : Zp → Fp.
An explicit criterion for checking whether or not an element p ∈ P ∪ {∞}

belongs to ∆a,b is given in the following
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Observation 5. Assume a, b ∈ Q× and p ∈ P∪ {∞}. Then p ∈ ∆a,b if and

only if

for p = 2: After multiplying by suitable rational squares and integers ≡
1 mod 8 and, possibly, swapping a and b, the pair (a, b) is one of the follow-

ing:

(2, 3) (3, 3) (5, 6) (6, 6) (15, 15)

(2, 5) (3, 10) (5, 10) (6, 15) (15, 30)

(2, 6) (3, 15) (5, 30) (10, 30) (30, 30)

(2, 10);

for 2 6= p ∈ P:

vp(a) is odd, vp(b) is even, and
(
bp−vp(b)

p

)
= −1, or

vp(a) is even, vp(b) is odd, and
(
ap−vp(a)

p

)
= −1 or

vp(a) is odd, vp(b) is odd, and
(
−abp−vp(ab)

p

)
= −1;

for p =∞: a < 0 and b < 0.

Proof. This is an immediate translation of the computation of the Hilbert

symbol (a, b)p (which is 1 or −1 depending on whether or not p ∈ ∆a,b) as in

Theorem 1 of Chapter III in [Ser73]. For finite odd p and a = pαu and b = pβv

(with u, v p-adic units), the formula is

(a, b)p = (−1)αβε(p)
Ç
u

p

åβ Ç
v

p

åα
,

where ε(p) := p−1
2 mod 2.

For p = 2, the formula is

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u),

where ω(u) := u2−1
8 mod 2.

For p =∞, the statement is obvious. �

Proposition 6. For any a, b ∈ Q×,

Ta,b =
⋂

p∈∆a,b

Z(p),

where Z(∞) := {x ∈ Q | −4 ≤ x ≤ 4}.

Here and throughout the rest of the paper, we use the following

Convention. Given an empty collection of subsets of Q, the intersection

is Q.

Proof. For each p ∈ P, let

Up := {s ∈ Fp | x2 − sx+ 1 is irreducible over Fp}.
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We shall use the following

Facts. For any a, b ∈ Q× and for any p ∈ P,

(a) if p 6∈ ∆a,b, then Sa,b(Qp) = Qp;

(b) if p ∈ ∆a,b, then φ−1
p (Up) ⊆ Sa,b(Qp) ⊆ Zp;

(c) Sa,b(R) =

®
R for a > 0 or b > 0,

[ − 2, 2] for a, b < 0;

(d) if p > 11, then Fp = Up + Up.

(e) Sa,b(Q) = Q ∩⋂p∈∆a,b
Sa,b(Qp).

(a) and (b) are [Poo09a, Lemma 2.1], (c) is a straightforward computation,

(d) is [Poo09a, Lemma 2.3] and (e) is a special case of the Hasse-Minkowski

local-global principle for representing rationals by quadratic forms.

(b) and (c) immediately give the inclusion Ta,b ⊆
⋂
p∈∆a,b

Z(p).

To prove the converse inclusion Ta,b ⊇
⋂
p∈∆a,b

Z(p), let us first compute

Up for the primes p ≤ 11:

U2 = {1},
U3 = {0},
U5 = {1, 4},
U7 = {0, 3, 4},
U11 = {0, 1, 5, 6, 10}.

For each p ∈ P ∪ {∞}, define Vp ⊆ Zp as follows:

Vp =


φ−1

2 (U2) ∪ (4 + 8Z2) for p = 2,

φ−1
p (Up) ∪ [(±2 + pZp) \ (±2 + p2Zp)] for 3 ≤ p ≤ 11,

φ−1
p (Up) for 11 < p ∈ P,

[− 2, 2] for p =∞.

(We define Z∞ to be the real interval [−4, 4] ⊆ R.) By Fact (b), Fact (c), Ob-

servation 5 together with an easy direct calculation in the cases p = 3, 5, 7, 11,

and for p = 2, by the table below, one always has

Vp ⊆ Sa,b(Qp) and, for p 6=∞, Vp is open.

The table for p = 2 lists those pairs (a, b) with (a, b)2 = −1 as in Obser-

vation 5 and gives, in each case,

4 + 8Z2 ⊆ Sa,b(Q2)

by assuming that we are given x1 ∈ 2+8Z2 or x1 ∈ 6+8Z2 (which is equivalent

to 2x1 ∈ 4+8Z2) and by specifying elements x2, x3 and x4 that guarantee that

−ax2
2 − bx2

3 + abx2
4 ≡2 1− x2

1 ≡2 −3 mod 8Z2.
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Multiplying x2
2, x

2
3, x

2
4 by a suitable common element from 1 + 8Z2 ⊆ (Q×2 )2

then makes sure that 2x1 ∈ Sa,b(Q2).

(a, b) x2 x3 x4

(2, 3) 0 1 0

(2, 5) 2 1 1

(2, 6) 0 1 1
2

(2, 10) 2 0 1
2

(3, 3) 1 0 0

(3, 10) 1 0 0

(3, 15) 1 0 0

(5, 6) 1 1 0

(5, 10) 1 0 1

(5, 30) 1 1 0

(6, 6) 1
2

1
2 0

(6, 15) 1 1 0

(10, 30) 0 1 1
10

(15, 15) 1 0 2
15

(15, 30) 1 1 1
15

(30, 30) 1 1 1
30

Fact (d) and another elementary case-by-case-check for p ≤ 11 show that

for any p ∈ P ∪ {∞},

Zp = Vp + Vp.

Now pick t ∈ ⋂p∈∆a,b
Z(p). For each p ∈ ∆a,b, there is some sp ∈ Zp such that

sp, t− sp ∈ Vp.
If t = ±4 then, clearly, t = ±2± 2 ∈ Sa,b + Sa,b = Ta,b.

If t 6= ±4 and ∞ ∈ ∆a,b, we can choose s∞ ∈ Z∞ = [−4, 4] ⊆ R such that

s∞, t − s∞ ∈] − 2, 2[. Now approximate the finitely many sp ∈ Zp (p ∈ ∆a,b)

by a single s ∈ Q such that

s− sp ∈


8Z2 if p = 2,

p2Zp if 3 ≤ p ≤ 11,

pZp if 11 < p ∈ P,
]− ε, ε[ if p =∞,

where ε = min{| 2 ± s∞ |, | 2 ± (t − s∞) |}. This guarantees that for all

p ∈ ∆a,b,

s, t− s ∈ Vp ⊆ Sa,b(Qp)

and hence, by Fact (e), that s, t− s ∈ Sa,b = Sa,b(Q). �
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One then obtains an ∀∃-definition of Z in Q from the fact that

Z =
⋂
l∈P

Z(l) =
⋂
a,b>0

Ta,b

as in [Poo09a, Th. 4.1]. With our simplified Ta,b, the formula now becomes,

for any t ∈ Q,

t ∈ Z⇐⇒

∀a, b∃x1, x2, x3, x4, y2, y3, y4

(a+ x2
1 + x2

2 + x2
3 + x2

4) · (b+ x2
1 + x2

2 + x2
3 + x2

4)

·[(x2
1 − ax2

2 − bx2
3 + abx2

4 − 1)2

+ ((t− 2x1)2 − 4ay2
2 − 4by2

3 + 4aby2
4 − 4)2] = 0

Step 2: Towards a uniform diophantine definition of all Z(p)’s in Q. We

will present a diophantine definition for the local rings Z(p) = Zp∩Q depending

on the congruence of the prime p modulo 8 and involving p (and if p ≡ 1

mod 8 an auxiliary prime q) as a parameter. However, since in any first-order

definition of a subset of Q we can only quantify over the elements of Q and

not, e.g., over all primes, we will allow arbitrary nonzero rational numbers p

and q as parameters in the following definition.

Definition 7. For p, q ∈ Q×, let

• R[3]
p := T−1,−p + T2,−p;

• R[5]
p := T−2,−p + T2,−p;

• R[7]
p := T−1,−p + T−2,p;

• R[1]
p,q := T−2p,q + T2p,q.

Remark 8.

(a) For any a, b, c, d ∈ Q× with at least one of them positive,

Ta,b + Tc,d =
⋂

l∈∆a,b

Z(l) +
⋂

l∈∆c,d

Z(l) =
⋂

l∈∆a,b∩∆c,d

Z(l).

(b) The R’s are existentially defined, uniformly in p and q, so that for k = 3, 5

or 7, the sets

{(p, x) ∈ Q× ×Q | x ∈ R[k]
p }

and the set

{(p, q, x) ∈ Q× ×Q× ×Q | x ∈ R[1]
p,q}

are diophantine.

Proof. (a) The first equation is from Proposition 6. For the second equa-

tion, the inclusion ‘⊆’ is obvious. For ‘⊇,’ assume x ∈ ⋂l∈∆a,b∩∆c,d
Z(l). By
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approximation, there is y ∈ Q such that

y ∈

x+ lZ(l) for l ∈ ∆c,d,

Z(l) for l ∈ ∆a,b \∆c,d.

Then y ∈ ⋂l∈∆a,b
Z(l) and x − y ∈ ⋂l∈∆c,d

Z(l), so that x = y + (x − y) ∈⋂
l∈∆a,b

Z(l) +
⋂
l∈∆c,d

Z(l).

(b) This is immediate from Definitions 4 and 7. �

Definition 9.

(a) For k = 1, 3, 5 or 7, define P[k] := {l ∈ P | l ≡ k mod 8}.
(b) For p ∈ Q×, define

• P(p) := {l ∈ P | vl(p) is odd};
• P[k](p) := P(p) ∩ P[k], where k = 1, 3, 5 or 7.

(c) For p, q ∈ Q×, define P(p, q) := ∆−2p,q ∩∆2p,q.

Proposition 10.

(a) Z(2) = T3,3 + T2,5.

(b) Suppose that k = 3, 5 or 7. Then, for p ∈ Q×,

R[k]
p =


⋂
l∈P[k](p) Z(l) if p ≡ k (mod 8Z(2)),⋂
l∈P[k](p) Z(l) or

⋂
l∈P[k](p)∪{2} Z(l) otherwise.

(As before,
⋂
l∈∅ Z(l) = Q.) In particular, if p is a prime and p ≡ k mod 8,

then Z(p) = R
[k]
p .

(c) For p, q ∈ Q× with p ≡ 1 (mod 8Z(2)) and q ≡ 3 (mod 8Z(2)),

R[1]
p,q =

⋂
l∈P(p,q)

Z(l).

In particular, if p is a prime ≡ 1 mod 8 and q is a prime ≡ 3 mod 8 withÄ p
q

ä
= −1, then Z(p) = R

[1]
p,q .

Proof. (a) By Observation 5, ∆3,3 = {2, 3} and ∆2,5 = {2, 5}, hence, by

Remark 8(a),

T3,3 + T2,5 =
⋂

l∈∆3,3∩∆2,5

Z(l) = Z(2).

(b) First assume p ∈ Q× with p ≡ 3 (mod 8Z(2)). Then, by Observation 5,

∆−1,−p ∩ P = P[3](p) ∪ P[7](p),

∆2,−p = P[3](p) ∪ P[5](p) ∪ {2},

so ∆−1,−p ∩∆2,−p = P[3](p) and, by Remark 8(a),

R[3]
p := T−1,−p + T2,−p =

⋂
l∈∆−1,−p∩∆2,−p

Z(l) =
⋂

l∈P[3](p)

Z(l).
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If p 6≡ 3 (mod 8Z(2)), the only possible additional prime is 2 (e.g., if p ≡
5 (mod 8Z(2))).

If p ≡ 5 (mod 8Z(2)) then, again by Observation 5,

∆−2,−p ∩ P = P[5](p) ∪ P[7](p),

∆2,−p = P[3](p) ∪ P[5](p) ∪ {2},

so ∆−2,−p ∩∆2,−p = P[5](p), and

R[5]
p := T−2p,−p + T2p,−p =

⋂
l∈∆−2,−p∩∆2,−p

Z(l) =
⋂

l∈P[5](p)

Z(l).

Once more, if p 6≡ 5 (mod 8Z(2)), the prime 2 (and no other prime) may enter.

Finally, if p ≡ 7 (mod 8Z(2)) then, again by Observation 5,

∆−1,−p ∩ P = P[3](p) ∪ P[7](p),

∆−2,p ∩ P = P[5](p) ∪ P[7](p) ∪ {2},

so ∆−1,−p ∩∆−2,p = P[7](p), and

R[7]
p := T−p,−p + T2p,p =

⋂
l∈∆−1,−p∩∆−2,p

Z(l) =
⋂

l∈P[7](p)

Z(l).

As before, 2 may enter if p 6≡ 7 (mod 8Z(2)).

(c) The first statement is immediate from Remark 8(a). For the ‘in par-

ticular,’ assume p and q are primes with p ≡ 1 mod 8, q ≡ 3 mod 8 andÄ
p
q

ä
= −1. Then, by quadratic reciprocity,

Ä
q
p

ä
= −1, and so, from Observa-

tion 5, ∆−2p,q = {p, q} and ∆2p,q = {2, p}. Hence R
[1]
p,q = Z(p). �

Corollary 11.

Z = Z(2) ∩
⋂

p,q∈Q×
(R[3]

p ∩R[5]
p ∩R[7]

p ∩R[1]
p,q).

Proof. By Remark 8(a), all R’s on the right-hand side are semilocal sub-

rings of Q containing Z. On the other hand, by the ‘in particular’ parts of the

proposition, for each prime p, the right-hand side is contained in Z(p); note

that for p ≡ 1 mod 8, one always finds a prime q ≡ 3 mod 8 such that q is

congruent to a nonsquare mod p. �

Step 3: An existential definition for the Jacobson radical. We will show

that, for some rings R occurring in Proposition 10, the Jacobson radical J(R)

can be defined by an existential formula. This will also give rise to new dio-

phantine predicates in Q.

Definition 12. For a, b, c ∈ Q×, we define

• T×a,b := {u ∈ Ta,b | ∃v ∈ Ta,b with uv = 1};
• Ica,b := c ·Q2 · T×a,b ∩ (1−Q2 · T×a,b);
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• Ja,b := (Iaa,b + Iaa,b) ∩ (Iba,b + Iba,b).

Note that the set {(a, b, x) ∈ Q× ×Q× ×Q | x ∈ Ja,b} is diophantine.

Lemma 13. Assume a, b, c ∈ Q×. Then

(a) T×a,b =


⋂
l∈∆a,b

Z×(l) if ∞ 6∈ ∆a,b,

([−4,−1
4 ] ∪ [1

4 , 4]) ∩⋂l∈∆a,b\{∞} Z
×
(l) if ∞ ∈ ∆a,b;

(b) Ica,b = {0} ∪
®
y ∈ Q× vl(y)is odd and positive ∀l ∈ ∆a,b ∩ P(c) and

vl(y), vl(1− y)are even ∀l ∈ ∆a,b \ (P(c) ∪ {∞})

´
;2

(c) Ica,b + Ica,b =
⋂
l∈∆a,b∩P(c) lZ(l);

(d) Ja,b =
⋂
l∈∆ lZ(l), where

∆ =

∆a,b \ {2,∞} if 2 ∈ ∆a,b and v2(a), v2(b) are even,

∆a,b \ {∞} else.

In particular, if ∞ 6∈ ∆a,b, then T×a,b is the group of units of the ring Ta,b and,

if also 2 6∈ ∆a,b or at least one of v2(a), v2(b) is odd, then Ja,b is the Jacobson

radical of Ta,b.

Proof. (a) This is an immediate consequence of Proposition 6.

(b) ‘⊆’: By weak approximation,

Q2 · T×a,b = {0} ∪
⋂

l∈∆a,b\{∞}
v−1
l (2Z).

So if y ∈ Ica,b \ {0} and l ∈ ∆a,b ∩ P(c), then vl(y) is odd and vl(1− y) is even

(as 1 − y ∈ Q2 · T×a,b) which, by the ultrametric inequality, is only possible

when vl(y) > 0. If, on the other hand, l ∈ ∆a,b \ (P(c) ∪ {∞}), then vl(y) and

vl(1− y) are even.

‘⊇’: Clearly, 0 ∈ Ica,b. Now assume y ∈ Q× such that, for all l ∈ ∆a,b∩P(c),

vl(y) is positive and odd. Then

c−1y ∈
⋂

l∈∆a,b∩P(c)

v−1
l (2Z)

and

1− y ∈
⋂

l∈∆a,b∩P(c)

Z×(l) ⊆
⋂

l∈∆a,b∩P(c)

v−1
l (2Z).

If we assume that vl(y) and vl(1 − y) are even for all l ∈ ∆′ := ∆a,b \
(P(c) ∪ {∞}), then both c−1y and 1− y lie in

⋂
l∈∆′ v

−1
l (2Z).

2Here we adopt the convention that ∞ is even (to include the case that y = 1, which can

only happen when ∆a,b ∩ P(c) = ∅, a case which will never be used later).
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So with both assumptions we see that both c−1y and 1− y lie in⋂
l∈∆a,b\{∞}

v−1
l (2Z) ⊆ Q2 · T×a,b.

(c) For any prime l, any x ∈ Q with vl(x) > 0 can be written as the sum

of two elements of odd positive value. And any x ∈ Q can be written as the

sum of two elements y1 and y2 such that vl(yi) and vl(1 − yi) are both even

for both i = 1, 2: choose y1 of even value < min{0, vl(x)}, and let y2 = x− y1;

then vl(1 − y1) = vl(y1) = vl(y2) = vl(1 − y2). Hence the claim follows by

approximation.

(d) By definition, Ja,b = (Iaa,b + Iaa,b) ∩ (Iba,b + Iba,b) so, from (c),

Ja,b =
⋂

l∈∆a,b∩P(a)

lZ(l) ∩
⋂

l∈∆a,b∩P(b)

lZ(l) =
⋂

l∈∆a,b∩(P(a)∪P(b))

lZ(l),

where the second equality is, again, by weak approximation. But now, from

Observation 5,

∆a,b∩(P(a)∪P(b))=

∆a,b \ {2,∞} if 2∈∆a,b and v2(a), v2(b) are even,

∆a,b \ {∞} else.
�

Before we give the existential definition of the Jacobson radical J(R) for

some of the rings R in Definition 7 (Corollary 15 and Proposition 16 below)

we require another easy lemma.

Lemma 14. Let a, b, c, d ∈ Q×, at least one of which positive, let ∆ :=

∆a,b ∩∆c,d, let R =
⋂
l∈∆ Z(l) and assume 2 6∈ ∆. Then

Ja,b + Jc,d =
⋂
l∈∆

lZ(l).

In particular, if ∆ 6= ∅, then Ja,b + Jc,d is the Jacobson radical J(R) of the

semilocal ring R.

Proof. Let

∆′a,b :=

∆a,b \ {2,∞} if 2 ∈ ∆a,b and v2(a), v2(b) are even,

∆a,b \ {∞} else,

and similarly define ∆′c,d. Then, by Lemma 13(d) (for the first equality) and

by weak approximation (for the second),

Ja,b + Jc,d =
⋂

l∈∆′
a,b

lZ(l) +
⋂

l∈∆′
c,d

lZ(l) =
⋂

l∈∆′
a,b
∩∆′

c,d

lZ(l).

By our assumption on a, b, c, d, however, ∆a,b∩∆c,d = ∆′a,b∩∆′c,d, which proves

the first claim. The ‘in particular’ follows immediately. �
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Now let us first turn to the rings R
[k]
p for k = 3, 5 and 7 defined in Defini-

tion 7 and recall that

R[k]
p =


T−1,−p + T2,−p if k = 3,

T−2,−p + T2,−p if k = 5,

T−1,−p + T−2,p if k = 7.

Corollary 15. For k = 1, 3, 5 and 7, define

Φk := {p ∈ Q>0 | p ≡ k (mod 8Z(2)) and P(p) ⊆ P[1] ∪ P[k]},

Ψ := {(p, q) ∈ Φ1 × Φ3 | p ∈ 2 · (Q×)2 · (1 + J(R[3]
q ))}.

(a) Then Φk is diophantine in Q.

(b) If k = 3, 5 or 7 and if p ∈ Φk, then P[k](p) 6= ∅ and

{0} 6= J(R[k]
p ) =


J−1,−p + J2,−p if k = 3,

J−2,−p + J2,−p if k = 5,

J−1,−p + J−2,p if k = 7.

In particular, in each of the cases, the Jacobson radical is diophantine in

Q, by a formula that is uniform in p.

(c) Ψ is diophantine in Q.

Proof. (a) It is clear that ‘p > 0’ is diophantine. It is also clear from

Proposition 10(a) that, for k = 1, 3, 5 and 7, the property ‘p ≡ k (mod 8Z(2))’

is diophantine.

Moreover, if v2(p) is even and k′ = 3, 5 or 7 then, by Proposition 10(b),

P[k′](p) = ∅ ⇐⇒ p ∈ (Q×)2 · (R[k′]
p )×.

(Note that we are not assuming that p ≡ k′ (mod 8Z(2)).) So the property on

the left is diophantine. But then so are

Φ1 = {p ≡ 1 (mod 8Z(2)) | p > 0, P3(p) = ∅, P5(p) = ∅ and P7(p) = ∅},

Φ3 = {p ≡ 3 (mod 8Z(2)) | p > 0, P5(p) = ∅ and P7(p) = ∅},

Φ5 = {p ≡ 5 (mod 8Z(2)) | p > 0, P3(p) = ∅ and P7(p) = ∅},

Φ7 = {p ≡ 7 (mod 8Z(2)) | p > 0, P3(p) = ∅ and P5(p) = ∅}.

(b) Assume k = 3, 5 or 7 and that p ∈ Φk. Then p ≡ k (mod 8Z(2)) and so,

by Proposition 10(b), R
[k]
p =

⋂
l∈P[k](p) Z(l). As p > 0 and p ≡ k (mod 8Z(2)),

P[k](p) 6= ∅ and hence J(R
[k]
p ) =

⋂
l∈P[k](p) lZ(l) 6= {0}. The explicit formulas

now follow from Lemma 14, as the assumptions of the lemma are satisfied in

each case.

Part (c) follows directly from (a) and (b). �
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The most difficult case is when p ∈ Φ1. Recall from Definition 7 and from

Proposition 10(c) that, for p, q ∈ Q×, we have defined R
[1]
p,q := T−2p,q + T2p,q

and P(p, q) := ∆−2p,q ∩∆2p,q.

Proposition 16.

(a) If (p, q) ∈ Ψ, then P(p, q) 6= ∅;

(b) if (p, q) ∈ Ψ, then J(R
[1]
p,q) = J−2p,q + J2p,q ;

(c) the set {(p, q, x) ∈ Q3 | (p, q) ∈ Ψ and x ∈ J(R
[1]
p,q)} is diophantine.

Proof. (a) Assume (p, q) ∈ Ψ. Multiplying p or q by nonzero rational

squares does not change R
[1]
p,q or J−2p,q or J2p,q, so we can assume that p

and q are squarefree positive integers. Since p ≡ 1 (mod 8Z(2)) and q ≡ 3

(mod 8Z(2)), we have, by Observation 5, (2p, q)2 = −1. By Hilbert reciprocity,

there must also be an odd prime l such that (2p, q)l = −1. By definition of Ψ

and, again, by Observation 5, this implies that l ∈ {1, 3}+8Z(2) and l 6∈ P[3](q).

These two conditions imply (−1, q)l = 1. Multiplying yields (−2p, q)l = −1.

Thus l ∈ P(p, q).

Part (b) is immediate from (a) and Lemma 14.

Part (c) follows from Corollary 15(c), from (b) and the note preceding

Lemma 13. �

Step 4: From existential to universal. Let R be a semilocal subring of Q;

i.e., R =
⋂
l∈∆ Z(l) for some finite ∆ ⊆ P. Define‹R := {x ∈ Q | ¬∃y ∈ J(R) with xy = 1}.

Lemma 17.

(a) If J(R) is diophantine in Q, then ‹R is defined by a universal formula in Q;

(b) ‹R =
⋃
l∈∆ Z(l), provided ∆ 6= ∅, i.e., provided R 6= Q;

(c) in particular, if R = Z(p) for some p ∈ P, then ‹R = R.

Proof. (a) is obvious from the definition of ‹R, and (c) is a special case

of (b). So we only need to prove (b).

For the inclusion ‘⊆,’ pick x ∈ ‹R and assume that x 6∈ ⋃l∈∆ Z(l). Then for

all l ∈ ∆, vl(x) < 0, and hence y := x−1 ∈ ⋂l∈∆ lZ(l) = J(R), contradicting

our assumption that x ∈ ‹R.

For the converse inclusion ‘⊇,’ assume x ∈ Z(l) for some l ∈ ∆. Then, for

any y ∈ J(R), x · y ∈ lZ(l) so, in particular, x · y 6= 1. �

Now we can give our universal definition of Z in Q.
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Proposition 18.

(a) Z = fiZ(2) ∩
Ç ⋂
k=3,5,7

⋂
p∈Φk

fi
R

[k]
p

å
∩

⋂
(p,q)∈Ψ

fi
R

[1]
p,q,

where Φk and Ψ are the diophantine sets defined in Corollary 15;

(b) for any t ∈ Q,

t ∈ Z⇐⇒ t ∈fiZ(2)

∧ ∀p
∧

k=3,5,7

(t ∈fiR[k]
p ∨ p 6∈ Φk)

∧ ∀p, q(t ∈fiR[1]
p,q ∨ (p, q) 6∈ Ψ);

(c) (Theorem 1) there is, for some positive integer n, a polynomial g ∈
Z[t;x1, . . . , xn] such that, for any t ∈ Q,

t ∈ Z if and only if ∀x1 · · · ∀xn ∈ Q g(t;x1, . . . , xn) 6= 0.

Proof. (a) The equation is valid by Proposition 10, by Lemma 17(b)

(which applies by Corollary 15(b) and Proposition 16(a)) and by Lemma 17(c).

(b) This is a reformulation of (a) revealing that the formula thus obtained

for Z in Q is universal: the ‹R’s are universal by Corollary 15, Proposition 16

and Lemma 17(a); Φk and Ψ are existential by Corollary 15(a) and (c), so their

negation is universal as well.

(c) This is immediate from (b). �

3. More diophantine predicates in Q

From the results and techniques of Section 2, one obtains new diophantine

predicates in Q. They are of interest in their own right, but maybe they can

also be used to show that Hilbert’s 10th problem over Q cannot be solved, not

by defining or interpreting Z in Q but, e.g., by assigning graphs to the various

finite sets of primes encoded in these predicates and using graph theoretic

undecidability results. We will also use some of these new predicates for our

∀∃-definition of Z in Q that uses just one universal quantifier (Corollary 22).

Before listing the new diophantine predicates we shall first introduce one

last notation and prove another technical lemma.

Definition 19. For p ∈ Φ1, define

Sp := {x ∈ Q | ∃q with (p, q) ∈ Ψ, q ∈ (R[1]
p,q)
× and x ∈ R[1]

p,q}.
Note that if p ∈ Φ1 is a square, then there is no q with (p, q) ∈ Ψ, and

hence Sp = ∅.

Lemma 20. Assume p ∈ Φ1. Then

(a) Sp is diophantine in Q;
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(b) Sp =
⋃
l∈P(p) Z(l) (which is ∅ if P(p) = ∅, i.e., if p ∈ Q2);

(c) in particular, if p is a prime ≡ 1 mod 8, then Sp = Z(p).

Proof. (a) That Sp is diophantine in Q is immediate from Corollary 15.

(b) To show that Sp ⊆
⋃
l∈P(p) Z(l), assume that x ∈ Sp. So we can choose

q ∈ Q such that (p, q) ∈ Ψ, q ∈ (R
[1]
p,q)× and x ∈ R[1]

p,q. By Proposition 10(c),

R[1]
p,q =

⋂
l∈P(p,q)

Z(l), where P(p, q) = ∆−2p,q ∩∆2p,q.

By Proposition 16(a), P(p, q) 6= ∅, so we may pick some l ∈ P(p, q). As

q ∈ (R
[1]
p,q)×, vl(q) = 0 and so l 6∈ P(q). As (p, q) ∈ Φ1 × Φ3, by Observation 5,

also 2 6∈ P(p, q) and so l 6= 2. Hence, again by Observation 5, l ∈ P(p). As l

was a freely chosen element in P(p, q), this shows that P(p, q) ⊆ P(p). Thus

x ∈ R[1]
p,q =

⋂
l∈P(p,q)

Z(l) ⊆
⋃

l∈P(p)

Z(l).

Conversely, suppose l ∈ P(p) and x ∈ Z(l). Choose a prime q ≡ 3 mod 8

with
Ä
l
q

ä
= −1 and with

Ä
l′

q

ä
= 1 for each l′ ∈ P(p) \ {l}.

Then
(
pq−vq(p)

q

)
=
∏
l′∈P(p)

Ä
l′

q

ä
= −1, so φq(pq

−vq(p)) is a nonsquare in

Fq, i.e., ∈ 2 · (F×q )2. As p ∈ Φ1, vq(p) is even, and so p ∈ 2 · (Q×)2(1 + qZ(q)).

Hence (p, q) ∈ Ψ.

We will now deduce that P(p, q) = {l}. As l ∈ P(p) and p ∈ Φ1, we have

that l ≡ 1 mod 8 and therefore
Ä q
l

ä
=
Ä
l
q

ä
= −1. Hence l ∈ P(p, q). On the

other hand, for any l′ ∈ P(p)\{l},
Ä
l′

q

ä
=
Ä q
l′

ä
= 1, so l′ 6∈ P(p, q). Finally, since

(−1, q)q =
Ä−1
q

ä
= −1, either (2p, q)q or (−2p, q) is 1, so q 6∈ ∆2p,q ∩∆−2p,q =

P(p, q).

Thus R
[1]
p,q = Z(l), so x ∈ R[1]

p,q, q ∈ (R
[1]
p,q)× and hence x ∈ Sp.

(c) This is immediate from part (b). �

Proposition 21. For x, y∈Q×, the following properties are diophantine:

(a) for fixed k ∈ {3, 5, 7}, the property that x, y ∈ Φk and P[k](x)∩P[k](y) = ∅;
(b) x 6∈ Q2;

(c) for fixed k ∈ {1, 3, 5, 7}, the property that x ≡ k (mod 8Z(2)) and x 6∈ Φk;

(d) for fixed k ∈ {3, 5, 7}, the property that P[k](x) = ∅;
(e) x 6∈ N(y), where N(y) is the image of the norm Q(

√
y)→ Q.

Proof. (a) By Corollary 15(a), Φk is diophantine. By Corollary 15(b), for

any x ∈ Φk, P[k](x) 6= ∅ and hence J(R
[k]
x ) is diophantine. Now let x, y ∈ Φk

and recall that, by Proposition 10(b), R
[k]
x =

⋂
l∈P[k](x) Z(l), and likewise for

R
[k]
y . So we have the equivalence

P[k](x) ∩ P[k](y) = ∅ ⇐⇒ 1 ∈ J(R[k]
x ) + J(R[k]

y ).
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(b) The property that ‘v2(x) is odd’ is diophantine: v2(x) is odd if and

only if x = 2yz2 for some y ∈ Z×(2) and some z ∈ Q×. As the property ‘x < 0’

is diophantine as well, by Corollary 15(a) and (b) it suffices to show

x 6∈ Q2 ⇐⇒

x < 0 or v2(x) is odd or,

∃p ∈ Φ3 with x ∈ 2 · (Q×)2 · (1 + J(R
[3]
p )).

‘⇒’: Assume that x 6∈ Q2, that x > 0 and that v2(x) is even. Multiplying

x by a nonzero rational square does not change the truth of either side of

the implication, so we may assume that x = p1 · · · pr for distinct odd primes

p1, . . . , pr where r ≥ 1.

Choose a1 ∈ Z with

Ç
a1

p1

å
=

−1 if p1 ≡ 1 mod 4,

1 if p1 ≡ 3 mod 4,

and for i > 1,

choose ai ∈ Z with

Ç
ai
pi

å
=

1 if pi ≡ 1 mod 4,

−1 if pi ≡ 3 mod 4.

Finally, choose a prime p ≡ 3 mod 8 with p ≡ ai mod pi (i = 1, . . . , r). Then,

by the Quadratic Reciprocity Law,
( x
p

)
= −1.

By definition, p ∈ Φ3. By the last statement in Proposition 10(b), R
[3]
p =

Z(p). Hence x ∈ 2 · (Q×)2 · (1 + J(R
[3]
p )), as

Ä
2
p

ä
= −1.

‘⇐’: If x < 0 or v2(x) is odd, then x 6∈ Q2.

Suppose that p ∈ Φ3 and x ∈ 2 · (Q×)2 · (1 +J(R
[3]
p )). By Corollary 15(b),

P[3](p) contains a prime l, and J(R
[3]
p ) ⊆ lZl. Thus x ∈ 2(Q×l )2. But l ≡ 3

mod 8, so
Ä

2
l

ä
= 1, and hence 2 6∈ (Q×l )2. Thus x 6∈ Q2

l , so x 6∈ Q2.

(c) By Proposition 10(a), x ≡ k (mod 8Z(2)) is diophantine. Let us

first consider the case k = 1. Assume x ≡ 1 (mod 8Z(2)). Then x 6∈ Φ1 if

and only if x ≤ 0, or x > 0 and for some k′ ∈ {3, 5, 7}, P[k′](x) 6= ∅. This

last condition can be expressed diophantinely by distinguishing whether the

number of k′ ∈ {3, 5, 7} with P[k′](x) 6= ∅ is 1, 2 or 3.

If it is 1, say P[k′](x) 6= ∅, then #P[k′](x) must be even (in order to get

x ≡ 1 (mod 8Z(2))), so we can choose p ∈ P[k′](x) and let

y := pvp(x) and y′ :=
∏

l∈P[1](x)

lvl(x)
∏

l∈P[k′](x)\{p}

lvl(x).

Then y, y′ ∈ Φk′ , P[k′](y) ∩ P[k′](y′) = ∅ and x = yy′z2 for some z ∈ Q×. By

(a), the condition that there exist such y, y′ and z is diophantine and, when

satisfied, it implies x 6∈ Φ1.
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If {k′ ∈ {3, 5, 7} | P[k′](x) 6= ∅} = {k1, k2} for distinct k1, k2, then both

#P[k1](x) and #P[k2](x) must be even, again, and so one constructs similarly

y1, y
′
1 ∈ Φk1 and y2, y

′
2 ∈ Φk2 with P[ki](yi) ∩ P[ki](y′i) = ∅ for i = 1, 2 such that

x = y1y
′
1y2y

′
2z

2 for some z ∈ Q×.

If P[k′](x) 6= ∅ for all three k′ ∈ {3, 5, 7}, then either all three sets have an

even number of elements or all three have an odd number of elements, and in

either case it is clear how to proceed along the same lines.

Now consider the case k = 3 and assume x ≡ 3 (mod 8Z(2)). Then x 6∈ Φ3

if and only if x ≤ 0, or x > 0 and P[5](x) 6= ∅ or P[7](x) 6= ∅. Here the last

condition can be seen to be diophantine again by distinguishing whether the

number of k′ ∈ {5, 7} with P[k′](x) 6= ∅ is 1 or 2 etc.

It is clear how similar existential formulas can be written down for ‘x ≡ k
(mod 8Z(2)) and x 6∈ Φk’ in case k = 5 or in case k = 7.

To put it all in one we thus see that, for x ∈ Q>0 such that x ≡ k

(mod 8Z(2)), we have x 6∈ Φk if and only if for some r ≥ 1 there exist numbers

k1, . . . , kr ∈ {3, 5, 7} not all equal to k, with each number appearing no more

than twice, and yi ∈ Φki for each i and z ∈ Q×, such that x = y1 · · · yrz2 and

such that, whenever i 6= j and ki = kj , we have P[ki](yi) ∩ P[kj ](yj) = ∅.
(d) P[3](x) = ∅ if and only if, modulo a nonzero rational square factor,

x or −x or 2x or −2x is a product of primes in
⋃
k=1,5,7 P[k]. Note that for

a fixed k ∈ {1, 5, 7}, each product of primes in P[k] ∪ P[1] can be expressed

as a product of one or two elements in Φk. Let Φ′k = Φk ∪ {1}, which is

diophantine by Corollary 15(a). Let Pk be the set of all finite products of

primes in P[k] ∪ P[1]. Then Pk · (Q×)2 = Φ′kΦ
′
k, and

{x : P[3](x) = ∅} = {1,−1, 2,−2}P1P5P7 =
⋃

k=1,5,7

Φ′kΦ
′
k.

Thus the condition P[3](x) = ∅ is diophantine. Similarly, the condition P[k](x)

= ∅ is diophantine for k = 5 and k = 7.

(e) x 6∈ N(y) if and only if

(x < 0 ∧ y < 0)

∨
∨

k=3,5,7

∃p ∈ Φk withÄÄ
x ∈ p · (Q×)2 · (R[k]

p )×
ä
∧
Ä
y or − xy ∈ ak · (Q×)2 · (1 + J(R[k]

p ))
ä

∨
Ä
y ∈ p · (Q×)2 · (R[k]

p )×
ä
∧
Ä
x or − xy ∈ ak · (Q×)2 · (1 + J(R[k]

p ))
ää

∨ ∃(p, q) ∈ Ψ with q ∈ (R[1]
p,q)
× andÄÄ

x ∈ p · (Q×)2 · (R[1]
p,q)
×
ä
∧
Ä
y or − xy ∈ q · (Q×)2 · (1 + J(R[1]

p,q))
ä

∨
Ä
y ∈ p · (Q×)2 · (R[1]

p,q)
×
ä
∧
Ä
x or − xy ∈ q · (Q×)2 · (1 + J(R[1]

p,q))
ää
,

where a3 = a5 = 2 and a7 = −1.



90 JOCHEN KOENIGSMANN

This uses Observation 5(b) and (c), Corollary 15(b) and (c), the previous

parts and the local-global principle for norms.

The first line says that x 6∈ N(y) over R.

Lines 2–4 say that x 6∈ N(y) over Ql for some nonempty set of primes

l ≡ 3, 5 or 7 mod 8: Fix k ∈ {3, 5, 7}. By Corollary 15(b), p ∈ Φk implies that

P[k](p) 6= ∅. We claim that

(x, y)l = −1 for some l ∈ P[k] ⇐⇒ ∃p ∈ Φk with (· · · ) ,

where (· · · ) is the bracket in lines 3 and 4.

‘⇒’: Assume l ∈ P[k] with (x, y)l = −1. Let p = l. Then R
[k]
p = Zl

and ‘(· · · )’ says that vl(x) is odd and yl−vl(y) or −xyl−vl(xy) is a quadratic

nonresidue mod l or the same with x and y swapped. By Observation 5, this

is equivalent to (x, y)l = −1, so it holds by our assumption.

‘⇐’: Suppose p ∈ Φk satisfies ‘(· · · ).’ Then P[k](p) 6= ∅ and, for any

l ∈ P[k](p), vl(x) is odd and, by the choice of ak, either yl−vl(y) or −xyl−vl(xy)

is a quadratic nonresidues mod l or the same with x and y swapped, so

(x, y)l = −1.

Lines 5–7 say that x 6∈ N(y) over Ql for some nonempty set of primes

l ≡ 1 mod 8. As in the proof of Lemma 20, the condition ‘q ∈ (R
[1]
p,q)×’

makes sure that, in the terminology of Proposition 10(c), P(p, q) ∩ P(q) = ∅,
so P(p, q) ⊆ P(p). And, by Proposition 16(a), P(p, q) 6= ∅. Line 6 and 7 then

say that x 6∈ N(y) over Ql for any l ∈ P(p, q). Note that the role of ak in lines

3 and 4 of being a quadratic nonresidue mod l for all l ∈ P[k] is here taken by

q that is a quadratic nonresidue for all l ∈ P[1](p) with (p, q) ∈ Ψ.

We could disregard the prime p = 2, as ‘x 6∈ N(y)’ either happens nowhere

locally, or at least at two primes in P ∪ {∞}. �

The result in (b) was also obtained in [Poo09b], using a deep result on

Châtelet surfaces from [CTCS80]. Our proof is elementary. It has recently

been generalized in [CTVG14] to all n-th powers: for any natural number n,

the set of non-n-th powers is diophantine in Q.

Let us also mention that (b) follows from (e): x 6∈ Q2 ⇔ ∃y x 6∈ N(y)

(and we did not use (b) in order to prove (e)).

We close this section by showing that there is an ∀∃-definition of Z in Q
with just one universal quantifier.

Corollary 22. For all t ∈ Q, t ∈ Z if and only if

∀p

Ü
t ∈ Z(2) ∧


(
p ∈ Q2 · (2 + 4Z(2))

)
∨
∨

k=1,3,5,7

{(
p 6= 0 ∧ p ∈ Q2 · (k + 8Z(2))

)
∧
Ä
(p 6∈ Φk) ∨ p ∈ Q2 ∨

Ä
p ∈ Φk \Q2 ∧ t ∈ R[k]

p

ääê.
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Proof. This follows from Proposition 10(a) and (b) and by Lemma 20.

That the resulting formula is of the shape ∀∃ with just one universal quantifier

‘∀p’ follows from Proposition 10, Corollary 15, Lemma 20 and Proposition 21.

Note that, under the assumption ‘p ∈ Q2 · (k + 8Z(2)),’ the property ‘p 6∈ Φk’

is equivalent to ‘p 6∈ Z×(2) or (p ∈ k + Z(2) and p 6∈ Φk),’ which is diophantine

by Proposition 21(c). And ‘p 6∈ Q2’ is diophantine by 21(b). �

4. A model theoretic outlook

If Q? is a field elementarily equivalent to Q (in the first-order language

of rings, Lring := {+, ·; 0, 1}) or, equivalently, if Q? is a model of Th(Q), the

first-order theory of Q, then it makes sense to speak of the ring of integers

Z? of Q?: Z? = φ(Q?), where φ(x) is any Lring-formula in one free variable

defining Z in Q. It is part of Th(Q) that any two such formulas define the same

set. So it does not make a difference whether φ is Julia Robinson’s formula or

Bjorn Poonen’s or ours.

There is a well-known general model theoretic criterion for definable sub-

sets of first-order structures to be existentially definable. (It follows immedi-

ately from, e.g., Lemma 3.1.6 in [PD11].) For Z in Q, this criterion reads as

follows:

Z is diophantine in Q if and only if, for any two models Q?, Q?? of

Th(Q) with Q? ⊆ Q?? and with rings of integers Z?, Z?? respectively,

the inclusion Z? ⊆ Z?? also holds.

Let us conclude with a collection of closure properties for pairs of models

of Th(Q), one a substructure of the other, which might have a bearing on the

question whether or not Z is diophantine in Q.

Proposition 23. Let Q?,Q?? be models of Th(Q) (i.e., elementary ex-

tensions of Q) with Q? ⊆ Q?? (as Lring-substructure, so Q? is a subfield of

Q??), and let Z? and Z?? be their rings of integers. Then

(a) Z?? ∩Q? ⊆ Z?;
(b) Z?? ∩Q? is integrally closed in Q?;

(c) for each n ∈ N, (Q??)n ∩Q? = (Q?)n — i.e., Q? is radically closed in Q??;

(d) if Z is diophantine in Q, then Z?? ∩Q?=Z? and Q? is algebraically closed

in Q??.

Proof. (a) is an immediate consequence of our universal definition of Z in

Q. The very same definition holds for Z? in Q? and for Z?? in Q??. So if this

universal formula holds for x ∈ Z??∩Q? in Q??, it also holds in Q?, i.e. x ∈ Z?.
(b) is true because Z?? is integrally closed in Q??.

(c) The nontrivial inclusion follows since the property of not being an

n-th power is, by the main result in [CTVG14], diophantine in Q. (For n = 2,
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this was shown in [Poo09b], an elementary proof being given in our Proposi-

tion 21(b).)

(d) If Z is diophantine in Q, then Z??∩Q? ⊇ Z? and hence by (a), equality

holds.

To show that Q? is then also algebraically closed in Q??, let us observe

that, for each n ∈ N,

An := {(a0, . . . , an−1) ∈ Zn | ∃x ∈ Z with xn + an−1x
n−1 + · · ·+ a0 = 0}

is decidable: zeros of polynomials in one variable are bounded in terms of their

coefficients, so one only has to check finitely many x ∈ Z. In particular, by (for

short) Matiyasevich’s Theorem, there is an ∃-formula φ(t0, . . . , tn−1) such that

Z |= ∀t0 · · · tn−1

Ä
{∀x[xn + tn−1x

n−1 + · · ·+ t0 6= 0]} ↔ φ(t0, . . . , tn−1)
ä
.

Since both An and its complement in Zn are diophantine in Z, the same holds

in Q, by our assumption of Z being diophantine in Q: both An and its com-

plement in Qn are diophantine in Q, and so A??n ∩ (Q?)n = A?n. As any finite

extension of Q? is generated by an element integral over Z?, this implies that

Q? is relatively algebraically closed in Q??. �

The strongest closure property a complete first-order theory (whose mod-

els are infinite) might have is that it is model complete, that is, that if one

model of the theory is a substructure of another model, it is an elementary

substructure or, equivalently, that the smaller model is existentially closed in

the larger model. Let us show that Th(Q) does not have this strong closure

property.

Remark 24. Q is not model complete; i.e., there are models Q? and Q??

of Th(Q) with Q? ⊆ Q?? such that Q? is not existentially closed in Q??.

Proof. Choose a recursively enumerable subset A ⊆ Z that is not decid-

able. Then B := Z\A is definable in Z and hence in Q. If B were diophantine

in Q, it would be recursively enumerable. But then A would be decidable:

contradiction.

So not every definable subset of Q is diophantine in Q, and hence Q is not

model complete. Or, in other words, there are models Q?,Q?? of Th(Q) with

Q? ⊆ Q?? where Q? is not existentially closed in Q??. �

Replacing the condition that a model of Th(Q) that is a substructure of

another model should be existentially closed with respect to arbitrary existen-

tial formulas by the weaker condition where only existential formulas with one

existential quantifier are considered amounts to asking the smaller model to be

relatively algebraically closed in the larger model. While we know, by Propo-

sition 23(c), that the smaller model is radically closed in the larger model, we

have no answer to the following:
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Question 25. For Q? ≡ Q?? ≡ Q with Q? ⊆ Q??, is Q? always algebraically

closed in Q???

By Proposition 23(d), a negative answer would imply that Z is not dio-

phantine in Q.
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