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Abstract

For rather general excellent schemes X, K. Kato defined complexes of

Gersten-Bloch-Ogus type involving the Galois cohomology groups of all

residue fields of X. For arithmetically interesting schemes, he developed a

fascinating web of conjectures on some of these complexes, which generalize

the classical Hasse principle for Brauer groups over global fields, and proved

these conjectures for low dimensions. We prove Kato’s conjecture over

number fields in any dimension. This gives a cohomological Hasse principle

for function fields F over a number field K, involving the corresponding

function fields Fv over the completions Kv of K. For global function fields

K we prove the part on injectivity for coefficients invertible in K. Assuming

resolution of singularities, we prove a similar conjecture of Kato over finite

fields, and a generalization to arbitrary finitely generated fields.
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0. Introduction

In this paper we prove some conjectures of K. Kato [Kat86] which were

formulated to generalize the classical exact sequence of Brauer groups for a

global field K,

(0.1) 0 −→ Br(K) −→⊕
v

Br(Kv) −→ Q/Z −→ 0,
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to function fields F over K and varieties X over K. In the above sequence,

which is also called the Hasse-Brauer-Noether sequence, the sum runs over all

places v of K, and Kv is the completion of K with respect to v. The injectivity

of the restriction map into the sum of local Brauer groups is called the Hasse

principle.

Kato’s generalization does not concern Brauer groups but rather the fol-

lowing cohomology groups. Let L be any field, and let n > 0 be an integer.

Define the following Galois cohomology groups for i, j ∈ Z:

H i(L,Z/nZ(j))

(0.2)

:=

H i(L, µ⊗jn ), char(L) = 0,

H i(L, µ⊗jm )⊕H i−j(L,WrΩ
j
L,log), char(L) = p > 0, n = mpr, p - m,

where µm is the Galois module of m-th roots of unity (in the separable closure

Lsep of L) and WrΩ
j
L,log is the logarithmic part of the de Rham-Witt sheaf

WrΩ
j
L [Ill79, I 5.7] (an étale sheaf, regarded as a Galois module). It is a fact

that Br(L)[n] = H2(L,Z/nZ(1)), where A[n] = {x ∈ A | nx = 0} denotes the

n-torsion in an abelian group A, so the n-torsion of the sequence (0.1) can be

identified with an exact sequence

(0.3) 0 −→ H2(K,Z/nZ(1)) −→⊕
v
H2(Kv,Z/nZ(1)) −→ Z/nZ −→ 0.

In fact, this sequence is often used for the Galois cohomology of number fields,

independently of Brauer groups; it is closely related to class field theory and

Tate-Poitou duality.

For the generalization, let F be a function field in d variables over a global

field K and assume F/K is primary, i.e., that K is separably closed in F . For

each place v of K, let Fv be the corresponding function field over Kv: If

F = K(V ), the function field of a geometrically integral variety V over K,

then Fv = Kv(V ×K Kv). Then Kato [Kat86] conjectured

Conjecture 1. The following restriction map is injective:

αn : Hd+2(F,Z/nZ(d+ 1)) −→⊕
v
Hd+2(Fv,Z/nZ(d+ 1)).

Note that this generalizes the injectivity in (0.3), which is the case d = 0

and F = K. On the other hand it is known that the corresponding restriction

map for Brauer groups is not, in general, injective for d ≥ 1: If X is a smooth

projective curve over a number field which has a K-rational point, then for

F = K(X), the kernel of Br(F ) → ∏
v Br(Fv) is isomorphic to the Tate-

Shafarevich group of the Jacobian Jac(X). Kato [Kat86] proved Conjecture 1

for d = 1. Here we prove

Theorem 0.4. Conjecture 1 is true if n is invertible in K .
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The proof uses three main ingredients. First we prove the analogue for

infinite coefficients. For a field L, a prime `, and integers i and j, we let

(0.5) H i(L,Q`/Z`(j)) = lim
→
H i(L,Z/`nZ(j)),

where the inductive limit is taken via the obvious monomorphisms Z/`nZ(j) ↪→
Z/`n+1(j). Then we prove (see Theorem 2.10)

Theorem 0.6. Let K be a global field, let ` be a prime invertible in K ,

and let F be a function field in d variables over K such that F/K is primary.

Then the restriction map

α`∞ : Hd+2(F,Q`/Z`(d+ 1)) −→⊕
v
Hd+2(Fv,Q`/Z`(d+ 1))

is injective.

For number fields and d = 2, this result was already proved in [Jan92].

Concerning the case of finite coefficients, i.e., the original Conjecture 1, we use

the following. For any field L, any prime `, and any integer t ≥ 0, there is a

symbol map

htL,` : KM
t (L)/` −→ Ht(L,Z/`Z(t)),

where KM
t (L) denotes the t-th Milnor K-group of L ([Mil70] and [BK86, §2]).

Extending an earlier conjecture of Milnor [Mil70] for ` = 2 6= char(L), Bloch

and Kato stated the following conjecture:

BK(L, t, `): The map htL,` is an isomorphism.

This conjecture was proved in recent years. In fact, for ` = char(L) it was

proved by Bloch, Gabber, and Kato [BK86], and for ` 6= char(L) it is classical

for t = 1 (Kummer theory), was proved for t = 2 by Merkurjev and Suslin

[MS83]), for ` = 2 by Voevodsky [Voe03], and for arbitrary t and ` by work of

Rost and Voevodsky (see [Ros02], [SJ06], [Voe11], [Voe10], [HW09]).

Property BK(F, d + 1, `) for all ` dividing n allows us to deduce Theo-

rem 0.4 from Theorem 0.6 for all ` dividing n as follows. One has the exact

cohomology sequence

Hd+1(F,Q`/Z`(d+ 1))
`m−→Hd+1(F,Q`/Z`(d+ 1))→ Hd+2(F,Z/`m(d+ 1))

i−→Hd+2(F,Q`/Z`(d+ 1)),

and it follows from BK(F, t, `) that Hd+1(F,Q`/Z`(d+ 1)) is divisible. There-

fore i is injective, and this shows that the injectivity of α`∞ in Theorem 0.4

implies the injectivity of α`m in Conjecture 1. It should be noted that Kato

did in fact use BK(K, 2, `), i.e., the Merkurjev-Suslin theorem, in his proof of

Conjecture 1 for d = 1.

Finally the proof of Theorem 0.6 uses weights, i.e., Deligne’s proof of the

Weil conjectures, and some results on resolution of singularities, to control
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the weights. Over number fields the required resolution of singularities holds

by work of Hironaka. For ` invertible in K, we observe that a weaker form of

resolution suffices. More precisely we use alterations, as introduced by de Jong,

but in a refined version established by Gabber; see [ILO14] or Theorem 2.11

below.

As in the classical case d = 0 and the case of d = 1 (see the appendix

to [Kat86]) and the case of d = 2 in [Jan92], Theorem 0.4 has applications to

quadratic forms over F (see [CTJ91]).

Corollary 0.7. If F is a finitely generated field of characteristic zero,

then the Pythagoras number of F is finite. More precisely, if F is of transcen-

dence degree d over Q, then any sum of squares in F is a sum of 2d+1 squares,

provided d ≥ 2.

The proof uses the following instance of Theorem 0.4, which only needs

the proof of the Milnor conjecture, i.e., the theorem of Voevodsky in [Voe03].

Corollary 0.8. The restriction map

Hd+2(F,Z/2Z) −→⊕
v
Hd+2(Fv,Z/2Z).

is injective.

It should be mentioned that the finiteness of the Pythagoras number, with

the weaker bound 2d+2, can be obtained by some more elementary means, still

using the Milnor conjecture [Pfi00].

Kato also stated a conjecture on the cokernel of the above restriction maps,

in the following way. Let L be a global or local field, let X be any variety over

L, and let n be an integer. Then in [Kat86] Kato defined a certain homological

complex C2,1(X,Z/nZ) of Galois cohomology groups:

· · · −→ ⊕
x∈Xa

Ha+2(k(x),Z/nZ(a+ 1))
⊕

x∈Xa−1

Ha+1(k(x),Z/nZ(a))

−→ · · · −→ ⊕
x∈X1

H3(k(x),Z/nZ(2)) −→ ⊕
x∈X0

H2(k(x),Z/nZ(1)).

Here Xa denotes the set of points x ∈ X of dimension a, the term involving

Xa is placed in degree a, and k(x) denotes the residue field of x. A complex of

the same shape can also be defined via the method of Bloch and Ogus, and it

is shown in [JSS14] that these two definitions agree up to (well-defined) signs.

(Also see Section 4 for a discussion of more general complexes Ca,b(X,Z/nZ).)

Now let K be a global field, and let X be a variety over K. Then there are

obvious maps of complexes C2,1(X,Z/nZ)→ C2,1(Xv,Z/nZ) for each place v

of K, where Xv = X ×K Kv, and these induce a map of complexes

αX,n : C2,1(X,Z/nZ) −→⊕
v
C2,1(Xv,Z/nZ).
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Then Kato [Kat86] conjectured the following.

Conjecture 2. Let K be a global field, let n > 0 be an integer, and let

X be a connected, smooth proper variety over K . Then the above map induces

isomorphisms

Ha(C
2,1(X,Z/nZ))

∼−→⊕
v
Ha(C

2,1(Xv,Z/nZ))

for a > 0, and an exact sequence

0 −→ H0(C2,1(X,Z/nZ)) −→⊕
v
H0(C2,1(Xv,Z/nZ)) −→ Z/nZ −→ 0.

Note that we obtain the sequence (0.3) for X = Spec(K), where the

complexes are concentrated in degree zero. Kato [Kat86] proved Conjecture 2

for d = 1. Here we prove (see Theorems 4.8 and 4.19).

Theorem 0.9. Conjecture 2 is true if K is a number field or if n is in-

vertible in K and resolution of singularities (see Definition 4.18) holds over K .

More precisely, in this case there is an exact sequence of complexes

0→ C2,1(X,Z/nZ) −→⊕
v
C2,1(Xv,Z/nZ) −→ C ′(X,Z/nZ)→ 0

with H0(C ′(X,Z/nZ)) = Z/nZ, and Ha(C
′(X,Z/nZ)) = 0 for a > 0.

Again this version is deduced from a version with infinite coefficients by us-

ing the property BK(L, d+1, `) (for all residue fields of X and all ` dividing n),

and the version with infinite coefficients is proved using weight arguments and

resolution of singularities.

For global fields K of positive characteristic, Kerz and Saito [KS12] proved

the same result unconditionally, by using Theorem 0.4, and the weaker result

on resolution of singularities proved by Gabber, quoted above. An alternative

proof, still using Gabber’s result, can be found in [Jan09].

Our techniques also allow us to get results on another conjecture of Kato,

over finite fields. For any variety over a finite field k and any natural number

n, Kato considered a complex C1,0(X,Z/nZ) which is of the form

· · · −→ ⊕
x∈Xa

Ha+1(k(x),Z/nZ(a)) −→ ⊕
x∈Xa−1

Ha(k(x),Z/nZ(a− 1))

−→ · · · −→ ⊕
x∈X1

H2(k(x),Z/nZ(1)) −→ ⊕
x∈X0

H1(k(x),Z/nZ)

with the term involving Xa placed in (homological) degree a. (This is another

special case of the general complexes Ca,b(X,Z/nZ).) Kato conjectured the

following (where the case a = 0 is easy):
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Conjecture 3. If X is connected, smooth, and proper over a finite

field k, then one has

Ha(C
1,0(X,Z/nZ)) =

0, a 6= 0,

Z/nZ, a = 0.

For dim(X) = 1, this conjecture amounts to the exact sequence (0.3) with

K = k(X), and for dim(X) = 2, the conjecture follows from [CTSS83] for n

invertible in k and from [Gro85b] and [Kat86] if n is a power of char(k). S. Saito

[Sai93] proved that H3(C2,1(X,Q`/Z`)) = 0 for dim(X) = 3 and ` 6= char(k).

For X of any dimension, Colliot-Thélène [CT93] (for ` 6= char(k)) and Suwa

[Suw95] (for ` = char(k)) proved that Ha(C
1,0(X,Q`/Z`)) = 0 for 0 < a ≤ 3.

Here we prove the following (see Theorem 4.19 and Lemma 4.20).

Theorem 0.10. Conjecture 3 holds if resolution of singularities holds

over k.

This result also follows from the technique in [JS09]. These techniques

show unconditionally that Ha(C
1,0(X,Z/nZ)) = 0 for X smooth projective of

any dimension, any n, and 0 < a ≤ 4. Moreover, Kerz and Saito [KS12] proved

Conjecture 3 for coefficients invertible in k, by using Gabber’s weak resolution

of singularities quoted above. Another proof can be found in [Jan09]. Finally,

Kato also formulated an arithmetic analogue of Conjecture 3, for regular flat

proper schemes over Spec(Z), and in [JS03] some results on this are obtained

using Theorem 0.6.

Our method of proof is the same for Theorems 0.9 and 0.10. In fact, under

certain conditions, which are always fulfilled in our cases, Kato defined more

general complexes Cr,s(X,Z/nZ) of the form

· · · −→ ⊕
x∈Xa

Hr+a(k(x),Z/nZ(s+ a))

−→ ⊕
x∈Xa−1

Hr+a−1(k(x),Z/nZ(s+ a− 1))

−→ · · · −→ ⊕
x∈X1

Hr+1(k(x),Z/nZ(s+ 1)) −→ ⊕
x∈X0

Hr(k(x),Z/nZ(s)).

For n invertible in K, we construct a canonical quasi-isomorphism between

the complex C ′(X,Z/nZ) in Theorem 0.9 and the complex C0,0(X,Z/nZ)GK
obtained from the Kato complex C0,0(X,Z/nZ) by taking coinvariants un-

der the absolute Galois group GK , where X = X ×K K. On the other

hand, for a finite field k, one has a canonical isomorphism C0,0(X,Z/nZ)Gk
∼=

C1,0(X,Z/nZ) for a variety X over a finite field k. Therefore Theorems 0.9

and 0.10 follow from the following more general result (see Theorem 4.19).
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Theorem 0.11. Let K be a finitely generated field with algebraic closure

K , let X be a smooth proper variety over K , and let n be natural number.

Then

Ha(C
0,0(X ×K K,Z/nZ)GK ) =

Z/nZ, a = 0,

0, a 6= 0

if resolution of singularities holds over K .

This paper had a rather long evolution time. Theorem 0.6 for number

fields was obtained in 1990, rather shortly after the proofs of Theorem 0.6 and

Corollary 0.4 for number fields and d = 2 in [Jan92]. In 1996, right after the

appearance of [GS96], it became clear to me how to obtain Theorem 0.9 (for

number fields and infinite coefficients), but a first account was only written

in 2004. Meanwhile I had also noticed that these methods allow a proof of

Theorem 0.11, i.e., a proof of Kato’s conjecture over finite fields, with infinite

coefficients, assuming resolution of singularities. Part of the delay was caused

by the long time to complete the comparison of Kato’s original complexes

with the complexes of Gersten-Bloch-Ogus type used here, which was recently

accomplished [JSS14].

I dedicate this paper to my teacher and friend Jürgen Neukirch, who

helped and inspired me in so many ways by his support and enthusiasm. I also

thank Jean-Louis Colliot-Thélène for his long lasting interest in this work, for

the discussions on the rigidity Theorems 2.12 and 4.11, and for the proof of

Theorem 2.13. Moreover, I thank Wayne Raskind, Florian Pop, Tamás Sza-

muely and Thomas Geisser for their interest and useful hints and discussions.

In establishing the strategy for proving Theorems 0.11 and 0.9, I profited from

an incomplete preprint by Michael Spieß. My contact with Shuji Saito started

with the subject of this paper, and I thank him for all these years of a wonderful

collaboration and the countless inspirations I got from our discussions.

1. First reductions and a Hasse principle for global fields

Let K be a global field, and let F be a function field of transcendence

degree d over K. We assume that K is separably closed in F . For every place

v of K, let Kv be the completion of K at v, and let Fv be the corresponding

function field over Kv: there exists a geometrically irreducible variety V of

dimension d over K, such that F = K(V ), and then Fv = Kv(Vv), where

Vv = V ×KKv. (This is integral, since F/K is primary and Kv/K is separable;

see [Gro65, (4.3.2) and (4.3.5)].) This definition does not depend on the choice

of V .

Fix a prime ` 6= char(K). We want to study the map

res: Hd+2(F,Q`/Z`(d+ 1))→
∏
v

Hd+2(Fv,Q`/Z`(d+ 1))
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induced by the restrictions from F to Fv. For this it will be useful to first

replace the completions Kv by the Henselizations. For each place v of K,

denote by K(v) the Henselization of K at v. It can be regarded as a subfield

of a fixed separable closure K of K, equal to the fixed field of a decomposition

group Gv at v. For V as above, let F(v) = K(v)(V ×KK(v)) be the corresponding

function field over K(v). Since K(v) is separably algebraic over K and linearly

disjoint from F, F(v) is equal to the composite FK(v) in a fixed separable

closure F of F . We obtain a diagram of fields

(1.1) F

K FK

K(v) F(v)

K F

which identifies GK = Gal(K/K) with Gal(FK/F ) and GK(v)
= Gal(K/K(v))

with Gal(FK/FK(v)).

Proposition 1.2. Let M be a discrete `-primary torsion GF -module.

The restriction map

Hd+2(F,M)→
∏
v

Hd+2(F(v),M)

has image in the direct sum
⊕
v
Hd+2(F(v),M). There is a commutative diagram

f : Hd+2(F,M) −→ ⊕
v
Hd+2(F(v),M)

↓ ↓
g : H2(K,Hd(FK,M)) −→ ⊕

v
H2(K(v), H

d(FK,M)),

in which the horizontal maps are induced by the restrictions and the vertical

maps by the Hochschild-Serre spectral sequences. This diagram is functorial in

M and induces canonical isomorphisms

ker(f)
∼−→ ker(g) and coker(f)

∼−→ coker(g) ∼= Hd(FK,M)(−1)GK .

Here N(n) denotes the n-fold Tate twist of a `-primary discrete torsion

GK-module N , and NGK denotes its cofixed module, i.e., the maximal quotient

on which GK acts trivially.
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Proof. Diagram (1.1) gives Hochschild-Serre spectral sequences

Ep,q2 (K) = Hp(K,Hq(FK,M))⇒ Hp+q(F,M),

Ep,q2 (K(v)) = Hp(K(v), H
q(FK,M))⇒ Hp+q(F(v),M).

Moreover, for each v we obtain a natural map E(K) → E(K(v)) between

the above spectral sequences which gives the restriction maps for K ⊂ K(v)

on the E2-terms and the restriction maps for F ⊂ F(v) on the abutment,

respectively. On the other hand, the field FK has cohomological dimension d,

so that Ep,q2 (K) = 0 = Ep,q2 (K(v)) for q > d. This gives a commutative diagram

Hd+2(F,M) −→ Hd+2(F(v),M)

↓ ↓
H2(K,Hd(FK,M)) −→ H2(K(v), H

d(FK,M)),

where the vertical maps are edge morphisms of the spectral sequences. If v is

not a real archimedean place, or if ` 6= 2, we have cd`(K(v)) ≤ 2 and, hence,

Ep,q2 (K(v)) = 0 for p > 2, and the right vertical edge morphism is an iso-

morphism. This already shows the first claim of the proposition, since the

restriction map

H2(K,N)→
∏
v

H2(K(v), N)

is known to have image in the direct sum
⊕
v

for any torsion GK-module N . If

K has no real archimedean valuations (or if ` 6= 2), then cd`(K) = 2, the left-

hand edge morphism is an isomorphism as well, and the second claim follows.

If this is not the case, we use the following lemma.

Lemma 1.3. If K is a number field, then the above maps between the

spectral sequences induce

(a) surjections for all r ≥ 2 and all p+ q = d+ 1,

Ep,qr (K)�
⊕
v|∞

Ep,qr (K(v));

(b) surjections for all r ≥ 2,

E2,d
r (K)�

⊕
v|∞

E2,d
r (K(v));

(c) isomorphisms between the kernels and between the cokernels of the maps

E2,d
r (K)→⊕

v
E2,d
r (K(v)) and E2,d

r+1(K)→⊕
v
E2,d
r+1(K(v))

for all r ≥ 2;

(d) isomorphisms

Ep,qr (K)
∼−→ ⊕

v|∞
Ep,qr (K(v))

for all r ≥ 2 and all (p, q) 6= (2, d) with p+ q ≥ d+ 2.
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Proof. By induction on r. Recall that Ep,qr (K) = 0 = Ep,qr (K(v)) for all

q > d and all r ≥ 2. Hence, for r = 2, the claims (a), (b), and (d) follow from

the following well-known facts of global Galois cohomology: the maps

H1(K,N)→
⊕
v|∞

H1(K(v), N),

H2(K,N)→
⊕
v|S

H2(K(v), N)

are surjective for any torsion GK-module N and any finite set S of places, and

the maps

H i(K,N)
∼−→ ⊕

v|∞
H i(K(v), N)

are isomorphisms for such N and all i ≥ 3. Note that here we could replace

K(v) by the more common completion Kv, since GK(v)
∼= Gv ∼= GKv .

Now let r ≥ 2. For (a) look at the commutative diagram

Ep−r,q+r−1
r (K)

dr−−−−→ Ep,qr (K)
dr−−−−→ Ep+r,q−r+1

r (K)

α

y β

y γ

y⊕
v|∞

Ep−r,q+r−1
r (K(v))

dr−−−−→ ⊕
v|∞

Ep,qr (K(v))
dr−−−−→ ⊕

v|∞
Ep+r,q−r+1
r (K(v))

coming from the map of spectral sequences. We may assume p ≥ 1(since

E0,d+1
r = 0), and hence (p + r, q − r + 1) 6= (2, d). Then β is surjective and

γ is an isomorphism, by induction assumption (for (a) and (d)). By taking

homology of both rows, we obtain a surjection Ep,qr+1(K) �
⊕
v|∞

Ep,qr+1(K(v)) as

wanted for (a).

For (d), we look at the same diagram where now we may assume that

p ≥ 2, (p, q) 6= (2, d) 6= (p+ r, q− r+ 1), that β and γ are bijective, and that α

is surjective (by induction assumption for (a), (b) and (d)). Hence we get the

isomorphism

Ep,qr+1(K)
∼−→ ⊕

v|∞
Ep,qr+1(K(v)).

For (b) and (c), consider the exact commutative diagram

0 // E2,d
r+1(K) //

β′

��

E2,d
r (K)

dr //

β

��

E2+r,d−r+1
r (K)

γo

��
0 // ⊕

v∈S′
E2,d
r+1(K(v)) // ⊕

v∈S′
E2,d
r (K(v))

∂ // ⊕
v|∞

E2+r,d−r+1
r (K(v))

for any set of places S′ ⊃ {v | ∞} in which ∂ =
⊕
v∈S′

dr(K(v)). (Note that

Ep,qr (K(v)) = 0 for p > 2 and v -∞.) The map γ is an isomorphism by induction
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assumption (for (d).) Hence for S′ = {v | ∞}, the surjectivity of β implies the

one for β′; i.e., we get (b) for r+1. If S′ is the set of all places, we see that clearly

ker(β′) = ker(β) and that coker(β′) = coker(β), since im(∂ ◦ β) = im(∂) by

induction assumption for (b). Thus we get (c) for r from (b) and (d) for r. �

We use Lemma 1.3 to complete the proof of Proposition 1.2. From what we

have shown, we have E0,d+2
∞ = E0,d+1

∞ = 0 forK and allK(v), and isomorphisms

Ep,q∞ (K)
∼−→⊕

v
Ep,q∞ (K(v))

for all (p, q) with p+ q = d+ 2, p ≥ 3. (Note that Ep,q2 (K(v)) = 0 for p ≥ 3 and

v -∞.) Hence kernel and cokernel of

Hd+2(F,M)→⊕
v
Hd+2(F(v),M)

can be identified with kernel and cokernel of

E2,d
∞ (K)→⊕

v
E2,d
∞ (K(v)),

respectively. But these coincide with kernel and cokernel of

E2,d
2 (K) = H2(K,Hd(FK,M))→⊕

v
H2(K(v), H

d(FK,M)) =
⊕
v
E2,d

2 (K(v))

respectively, by (c) of the lemma. Finally, for any finite `-primary GK-module

N , Poitou-Tate duality gives an exact sequence

H2(K,N) −→⊕
v
H2(K(v), N) −→ H0(K,N∗)∨ −→ 0,

where N∗ denotes the finite GK-module Hom(N,µ) where µ is the group of

roots of unity in K and M∨ is the Pontrjagin dual of a finite GK-module. But

then we have canonical identifications

H0(K,Hom(N,µ))∨ = HomGK (N,Q`/Z`(1))∨

∼= HomGK (N(−1),Q`/Z`)∨ = Hom(N(−1)GK ,Q`/Z`)∨

= (N(−1)GK )∨∨ ∼= N(−1)GK .

This shows the last isomorphism of Proposition 1.2. �

Remarks 1.4. (a) Proposition 1.2 extends to the case where F is a function

field over K, but K is not necessarily separably closed in F , by replacing F(v)

with F ⊗K K(v) and FK with F ⊗K K. The cohomology groups of these rings

have to be interpreted as the étale cohomology groups of the associated affine

schemes; with this the proof carries over verbatim. In more down-to-earth

(but more tedious) terms, we may note that (F ⊗K K)red
∼=
∏
σ(F ⊗K̃, σ K),

where K̃ is the separable closure of K in F and σ runs over the K-embeddings

of K̃ into K. Similarly, F ⊗K K(v)
∼=
∏
σ(
∏
w F ⊗K̃ σ(K̃)(σw)), where w runs

over the places of K̃ above v, σw is the corresponding place of σ(K̃) above v,
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and σ(K̃)(σw) is the Henselization of σ(K̃) at σw. The étale cohomology

groups referred to above can thus be identified with sums of Galois cohomology

groups of the fields introduced above, and the claim also follows by applying

Proposition 1.2 to F/K̃.

(b) A consequence of Proposition 1.2 is that the restriction map

f ′ : Hd+2(F,M)→
∏
v

Hd+2(Fv,M)

has image in the direct sum
⊕
v
⊂ ∏v as well, since it factors through the map

f in 1.2. Moreover, as we shall see in Section 2, the maps Hd+2(F(v),M) →
Hd+2(Fv,M) are injective, so that ker(f ′) = ker(f). For d > 0, however,

Hd+2(Fv,Q`/Z`(d + 1)) is much bigger than Hd+2(F(v),Q`/Z`(d + 1)), and

Proposition 1.2 does not extend to the completions. In particular, everywhere

in [Jan92] the completions Kv should be replaced by the Henselizations K(v).

(In loc. cit., Proof of Th. 1′ and later, the notation FKv and FKv are problem-

atic; they should be interpreted as Fv and FvKv. Even then Gal(FKv/FKv)

= Gal(Fv/FvKv) is not isomorphic to Gal(F/FK), but much bigger, as was

kindly pointed out to me by J.-L. Colliot-Thélène and J.-P. Serre.) The com-

parison of coker(f ′) and coker(f) is more subtle; see Section 4.

By Proposition 1.2, the restriction map

Hd+2(F,Q`/Z`(d+ 1))→⊕
v
Hd+2(F(v),Q`/Z`(d+ 1))

has the same kernel and cokernel as the restriction map

βN : H2(K,N)→⊕
v
H2(K(v), N) ∼=

⊕
v
H2(Kv, N)

for the GK-module N = Hd(FK,Q`/Z`(d+1)). Here we have used the isomor-

phism GKv
∼−→ GK(v)

to rewrite the latter map in terms of the more familiar

completions Kv. Recall that F = K(V ), the function field of a geometrically

irreducible variety V of dimension d over K. From this we obtain

Hd(FK,Q`/Z`(d+ 1)) = lim−−−→
U⊂V

Hd
ét(U ×K K, Q`/Z`(d+ 1)),

where the limit is over all affine open subvarieties U of V . In fact étale co-

homology commutes with this limit ([Mil80, III 1.16]), so that the right-hand

side is the étale cohomology group Hd
ét(Spec(K(V )),Q`/Z`(d+ 1)), which can

be identified with the Galois cohomology group on the left-hand side. Since

H2(K, lim−−−→Ni) = lim−−−→H
2(K,Ni)

for a direct limit ofGK-modulesNi, and since the same holds for
⊕

vH
2(Kv,−),

it thus suffices to study the maps

βB : H2(K,B)→⊕
v
H2(Kv, B)
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for B = Hd(U ×K K,Q`/Z`(d + 1)), where U ⊆ V runs through all open

subvarieties of V or through a cofinal set of them. For this we shall use the

following Hasse principle, which generalizes [Jan88, Th. 3].

Theorem 1.5. Let K be a global field, and let ` 6= char(K) be a prime

number.

(a) Let A be a discrete GK-module which is isomorphic to (Q`/Z`)m for some

m as an abelian group and mixed of weights 6= −2 as a Galois module.

Then the restriction map induces isomorphisms

βA : H2(K,A)
∼−→⊕

v
H2(Kv, A) =

⊕
v∈S or v|`

H2(Kv, A),

where S is a finite set of bad places for A.

(b) Let T be a finitely generated free Z`-module with continuous action of GK
making T mixed of weights 6= 0. Then for any finite set S′ of places of K ,

the restriction map in continuous cohomology

αT : H1(K,T )→
∏
v/∈S′

H1(Kv, T )

is injective.

Before we prove this, let us explain the notion of a mixed GK-represen-

tation and a bad place v for it. A priori, this is defined for a Q`-representation

V of GK (i.e., a finite-dimensional Q`-vector space with a continuous action

of GK); see [Del80, (1.2) and (3.4.10)] and Definition 1.6 below. We extend it

to a module like A above or, more generally, to a discrete `-primary torsion

GK-module of cofinite type (resp. to a finitely generated Z`-module T with

continuous action of GK), by calling A (resp. T ) pure of weight w or mixed,

if this holds for the Q`-representation T`A ⊗Z` Q` (resp. T ⊗Z` Q`), where

T`A = lim←−n
A[`n] is the Tate module of A. In the same way we define the

bad places for A (resp. T ) to be those of the associated Q`-representations. It

remains to recall

Definition 1.6. (a) A Q`-representation V of GK is pure of weight w ∈ Z
if there is a finite set S ⊃ {v | ∞} of places of K such that

(i) V is unramified outside S ∪ {v | `}, i.e., for v /∈ S, v - `, the inertia group

Iv at v acts trivially on V ;

(ii) for every place v /∈ S, v - `, the eigenvalues α of the geometric Frobenius

Frv at v acting on V are pure of weight w, i.e., algebraic numbers with

| ια |= (Nv)
w
2

for every embedding ι : Q(α) ↪→ C, where Nv is the cardinality of the

finite residue field of v.

Every such set S will be called a set of bad places for V ; the places not in S

are called good.
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(b) V is called mixed if it has a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V by

subrepresentations such that every quotient Vi/Vi−1 is pure of some weight wi.

The weights and bad places of V are those present in some nontrivial quotient

Vi/Vi−1.

Remarks and Examples 1.7. For a field L, denote by L its separable clo-

sure, and let GL = Gal(L/L) be its absolute Galois group.

(a) If v is a place of K, then any extension w of v to K determines a

decomposition group Gw ⊂ GK and an inertia group Iw ⊂ Gw. The arith-

metic Frobenius ϕw is a well-defined element in Gw/Iw; under the canonical

isomorphism Gw/Iw
∼−→ Gal(k(w)/k(v)), it corresponds to the automorphism

x 7→ xNv of k(w). The geometric Frobenius Frw is the inverse of ϕw. If Iw
acts trivially on V , then the action of Frw on V is well defined. If we do not

fix a choice of w, everything is well defined up to conjugacy in GK , and we

use the notation Gv, Iv, and Frv. Thus “Iv acts trivially” means that one and

hence any Iw for w | v, acts trivially, and then the eigenvalues of Frv are well

defined, since they depend only on the conjugacy class.

(b) If V is pure of weight w, then the same holds for every Q`-GK-

subquotient. If V ′ is pure of weight w′, then V ⊗Q` V
′ is pure of weight

w + w′.

(c) The representation Q`(1) is unramified outside S = {v | ∞ · `}, and

for v /∈ S, ϕv acts on Q`(1) by multiplication with Nv. Therefore Q`(1) is pure

of weight −2, and Q`(i) is pure of weight −2i.

(d) Let A or T or V be GK-representations as in Definition 1.6, which are

mixed of weights 6= 0. Then V GK = 0 = VGK , TGK = 0, and AGK = 0. The

first statement is easily reduced to the pure case, where it follows from the fact

that the eigenvalues of Frv as in 1.6(ii) are different from 1. The other claims

follow from the injection T ↪→ T ⊗Z` Q` and the surjection T`A⊗Z` Q` � A.

(e) If X is a smooth and proper variety over K, then the i-th étale coho-

mology group H i
ét(X,Q`) of X = X ×K K is pure of weight i by the smooth

and proper base change theorems and by Deligne’s proof of the Weil conjec-

tures over finite fields (cf., e.g., [Jan89, proof of Lemma 3]). The set S can

be taken to be the set of places where X has bad reduction, i.e., such that for

v /∈ S,X has good reduction at v, viz., a smooth proper model Xv over Ov,
the ring of integers in Kv, with Xv ×Ov Kv = Xv.

(f) For later purposes, we note that the whole theory above has a general-

ization to an arbitrary finitely generated field K (see [Del80, (3.4.10)]). A Q`-

representation V of GK (for ` 6= char(K)) is called pure of weight w if there is a

normal scheme T of finite type over Z with fraction field K such that V comes

from a Q`-representation of the algebraic fundamental group π(T, Spec(K)) via

the natural epimorphism GK → π(T, Spec(K)) (i.e., from a smooth Q`-sheaf
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on T ) such that for any closed point t ∈ T with residue field k(t) of charac-

teristic 6= `, the eigenvalues of the geometric Frobenius Frt are pure of weight

w in the sense of 1.6(i). (Replace Nv by Nt, the cardinality of the residue

field k(t) of t, which is finite.) The geometric Frobenius Frt is the image of the

geometric Frobenius under the homomorphism Gk(t) = π(Spec(k(t)), k(t)) →
π(T, Spec(K)) which is well defined up to conjugation. The other notions

(mixed representations, the notions for T and A) extend literally, as well as

the properties (b) to (e) above. In (e) one takes T such that X/K extends to

a smooth proper model π : X → T , and one uses the base change isomorphism

H i(X,Q`) ∼= H i(Xt ×k(t) k(t),Q`),

where Xt = X ×T k(t) is the fiber of π over t ∈ T .

(g) Moreover, we note that there is even an analogue for a finitely gener-

ated field K and ` = p = char(K) > 0. First we note that the notions of pure

and mixed representations still make sense, and that properties (a), (b) and

(d) also hold in this situation, while (c) does not have any counterpart. On

the other hand, one has the following analogue of (e). For a scheme Z of finite

type over a perfect field L and m ∈ N, let

H i(Z,Z/pmZ(j)) := H i−j(Z,WmΩj
X,log)

be the étale cohomology of the logarithmic part WmΩj
X,log of the de Rham-Witt

sheaf WmΩj
X . (See [Ill79, I 5.7] and compare (0.2).) Moreover, let

H i(Z,Qp(j)) = H i(Z,Zp(j))⊗Zp Qp,

where

H i(Z,Zp(j)) = lim
← m

H i(Z,Z/pm(j)),

with the inverse limit taken with respect to the natural epimorphisms

Wm+1Ωj
X,log →WmΩj

X,log.

Then for X smooth and proper over a finite field k of characteristic p, the

Qp-Gk-representation H i(X,Qp(j)) is finite-dimensional, and it follows from

the work of Deligne [Del74], Katz-Messing [KM74], and Milne [Mil86] that it is

pure of weight i− 2j; cf. [Jan10, §3]. If X is smooth and proper over a finitely

generated field K of characteristic p and π : X → T is a smooth proper model

as in (f) (so that T is of finite type over Fp), then Gros and Suwa ([GS88,

Th. 2.1]) established base change isomorphisms

H i(X ×K K,Qp(j)) ∼= H i(Xt ×k(t) k(t),Qp(j))

for all closed points t in a nonempty open U ⊂ T , where K now stands for an

algebraic closure of K. These isomorphisms are compatible with the actions of

the absolute Galois groups GK (on the left) and Gk(t) (on the right), so that

the representation H i(X,Qp(j)) = H i(X×KK,Qp(j)) is pure of weight i−2j
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in exactly the same sense as for the `-adic case in (f). Here we regard GK as

the Galois group Gal(K/K in), where K in is the maximal inseparable extension

of K in K.

Proof of Theorem 1.5. Part (a) is implied by (b). In fact, A is mixed of

weights 6= −2 if and only if its Kummer dual T = Hom(A,µ) (where µ is the

Galois module of roots of unity in K) is mixed of weights 6= 0, and the kernels of

βA and αT for S′ = ∅ are dual to each other by the theorem of Tate-Poitou (and

passing to the limits over the finite modules A[`n] and T/`nT = Hom(A[`n], µ),

respectively). Moreover, by Tate-Poitou, the cokernel of αA is isomorphic to

H0(K,T )∨ ∼= A(−1)Gk , and this is zero by the hypothesis on the weights.

Finally, by local Tate duality, H2(Kv, A) is dual to H0(Kv, T ), and for good

places v - `, this is zero if T is mixed of weights 6= 0.

Part (b) generalizes [Jan88, Th. 3(a)], which covers the case of a pure T .

The generalization follows by induction: Let

0→ T ′ → T → T ′′ → 0

be an exact sequence of Z`-GK-modules as in (b), and let S′ be a finite set of

primes. Then there is a commutative diagram with exact rows∏
v/∈S′

H0(Kv, T
′′) // ∏

v/∈S′
H1(Kv, T

′) // ∏
v/∈S′

H1(Kv, T ) // ∏
v/∈S′

H1(Kv, T
′′)

H0(K,T ′′)

OO

// H1(K,T ′)

βT ′

OO

// H1(K,T )

βT

OO

// H1(K,T ′′).

βT ′′

OO

If βT ′′ is injective and H0(Kv, T
′′) = 0 for all v /∈ S′ (which is the case for

T ′′ pure of weight 6= 0 and S′ containing all bad places for T ′′ and all v | `,
by loc. cit.), then βT is injective if and only if βT ′ is. Since we may always

enlarge the set S′, the proof proceeds by induction on the length of a filtration

with pure quotients, which exists on T ⊗Z` Q`, by definition, and hence on T

by pullback. �

2. Injectivity of the global-local map for coefficients invertible in K

Let K be a global field, let ` 6= char(K) be a prime, and let U be a smooth,

quasi-projective, geometrically irreducible variety of dimension d over K. Fol-

lowing the strategy of Section 1, we study the GK-module Hd(U, Q`/Z`).
Assume the following condition, which holds for number fields by Hironaka’s

resolution of singularities in characteristic zero [Hir64a], [Hir64b].

RS2(U): There is a good compactification for U ; i.e., a smooth projec-

tive variety X over K containing U as an open subvariety such that

Y = X r U , with its reduced closed subscheme structure, is a divisor

with simple normal crossings.
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Recall that Y is said to have simple normal crossings if its irreducible

components Y1, . . . , YN are smooth projective subvarieties Yi ⊂ X such that

for all 1 ≤ i1 < · · · < iν ≤ N , the ν-fold intersection Yi1,...,iν := Yi1 ∩ · · · ∩ Yiν
is empty or smooth projective of pure dimension d− ν, so the same is true for

the disjoint union

Y [ν] :=
∐

1≤i1<···<iν≤N
Yi1,...,iν (1 ≤ ν ≤ d)

and for Y [0] := Y∅ := X.

This geometric situation gives rise to a spectral sequence

(2.1) Ep,q2 = Hp(Y [q],Q`(−q))⇒ Hp+q(U,Q`);

see, e.g., [Jan90, 3.20]. It is called the weight spectral sequence because it

induces the weight filtration on the `-adic representation Hn(U,Q`). In fact,

Ep,q2 is pure of weight p+2q. Therefore the same is true for the Ep,q∞ -terms, and

if W̃q denotes the canonical ascending filtration on the limit term Hn(U,Q`)

for which W̃q/W̃q−1 = En−q,q∞ , then its n-fold shift W· := W̃·[−n] (i.e., Wi =

W̃i−n) is the unique weight filtration, i.e., has the property that the quotient

Wi/Wi−1
∼= E2n−i,i−n

∞ is pure of weight i. Moreover, for r > 3, the differentials

dp,qr : Ep,qr −→ Ep+r,q−r+1
r

are morphisms between Galois Q`-representation of different weights (viz., p+

2q and p+ 2q − r + 2) and hence vanish, so that Ep,q∞ = Ep,q3 .

Note that Ep,q2 = 0 for p < 0 or q < 0. Hence the weights occurring in

Hn(U,Q`) lie in {n, . . . , 2n},W2n−1 is mixed of weights w ≤ 2n− 1, and

Hn(U,Q`)/W2n−1 = W2n/W2n−1 = E0,n
3

= ker(H0(Y [n],Q`(−n))
d0,n2−→ H2(Y [n−1], Q`(−n+ 1)).

In particular, the Galois action on (W2n/W2n−1)(n) factors through a finite

quotient, since this is the case for H0(Y [n],Q`).

We want to say something similar for Hn(U,Q`/Z`), at least for n = d

(= dim U). If U is affine, then we have an exact sequence

· · · → Hd(U,Z`)→ Hd(U,Q`)→ Hd(U,Q`/Z`)→ 0,

since Hd+1(U,Z`) = 0 by weak Lefschetz [Mil80, VI 7.2]. From this we con-

clude that B1 = Hd(U,Q`/Z`) is divisible and that there is an exact sequence

0 −→ A1 −→ B1 −→ C1 −→ 0

in which A1 = im(W2d−1H
d(U,Q`) −→ Hd(U,Q`/Z`)) is divisible and of

weights w ∈ {d, . . . , 2d−1}, and in which C1 is a quotient of Hd(U,Q`)/W2d−1,

divisible and pure of weight 2d. We need to know C1 precisely, not just up to
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isogeny, and this requires more arguments — note that in the Q`/Z`-analogue

of (2.1), the differentials dp,q1 will not in general vanish for r ≥ 3.

For better control of this spectral sequence, we replace U by a smaller

variety, as follows. By the Bertini theorem, there is a hyperplane H in the

ambient projective space whose intersection with X and all Yi1,...,iν is transver-

sal, i.e., gives smooth divisors in these. (In particular, the intersection with

Yi1,...,id is empty for all d-tuples (i1, . . . , id).) This means that Ỹ =
N+1
∪
i=1

Yi,

with YN+1 := H ∩ X, is again a divisor with strict normal crossings on X.

As explained in Section 1, it is possible for our purposes to replace U by the

open subscheme U0 = X r Ỹ = U r (H ∩ U), because such subschemes form

a cofinal subset in the set of all opens U ⊆ V, F = K(V ). Now we have the

following description for B0 := Hd(U0,Q`/Z`).

Proposition 2.2. There is an exact sequence

0→ A0 → Hd(U0,Q`/Z`)→ C0 → 0

in which A0 is divisible and mixed of weights in {d, . . . , 2d− 1}, and

C0 = I ⊗Z Q`/Z`(−d)

for a finitely generated free Z-module I with discrete action of GK . Moreover,

there is an exact sequence

0→ I ′ → I → I ′′ → 0

of GK-modules with

I ′′ = Z[π0(Y [d])],

I ′ = ker(Z[π0(Y [d−1] ∩H)]
β
� Z[π0(Y [d−1])]),

where Y [d−1] ∩ H :=
∐

1≤i1<···<id−1≤N
Yi1,...,id−1

∩ H and where β is induced by

the inclusions Yi1,...,iν ∩H ↪→ Yi1,...,iν .

Proof. For 1 ≤ i1 < · · · < iν ≤ N , define

Y 0
i1,...,iν := Yi1,...,iν r (Yi1,...,iν ∩H)

by removing the smooth hyperplane section with H, and let Y 0[ν] ⊆ Y [ν] be

the disjoint union of these open subvarieties for fixed ν (with Y 0[0] := X0 :=

X r (X ∩H)). Then Y 0 =
N
∪
i=1

Y 0
i is a divisor with (strict) normal crossing on

X0 with U0 = X0 r Y 0, and hence there is a spectral sequence

(2.3) Ep,q2 = Hp(Y 0[q],Q`/Z`(−q))⇒ Hp+q(U0,Q`/Z`)

by the same arguments as for (2.1) (the properness is not needed in the proof).

�
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But now the Y 0
i1,...,iq

are affine varieties, as complements of hyperplane

sections, and of dimension d− q, so that

Hp(Y 0[q],Q`/Z`(−q)) =

0 for p > d− q,
divisible for p = d− q

by weak Lefschetz. Moreover, by the Gysin sequences

· · · → Hp(Yi,Q`)→ Hp(Y 0
i ,Q`)→ Hp−1(Yi ∩H,Q`(−1))→ · · · ,

Hp(Y 0[q],Q`) is mixed with weights p and p + 1, since Hp(Yi,Q`) is pure of

weight p and Hp−1(Yi ∩H,Q`(−1)) is pure of weight p+1. Hence the spectral

sequence (2.3) is much simpler than (2.1) and has the following E2-layer:

q

d 2d

2d−1,2d

2d−2,2d−1

d,d+1

d p

The terms vanish for p + q > d, and on the line p + q = d, the Ep,q2 -

terms — and hence also the Ep,q∞ -terms which are quotients — are divisi-

ble and mixed of the indicated weights. Note that H0(Y 0[d], Q`/Z`(−d)) =

H0(Y [d],Q`/Z`(−d))) is pure of weight 2d.

Let F · be the descending filtration on B0 = Hd(U0,Q`/Z`) for which

F ν/F ν−1 = Eν,d−ν∞ . Then we see that F 2 is divisible and mixed of weights

≤ 2d− 1. Next,

F 1/F 2 ∼= E1,d−1
2 = H1(Y 0[d−1],Q`/Z`(−d+ 1))

is the cohomology of a (usually nonconnected) smooth affine curve, and by the

Gysin sequence

0→ H1(Y [d−1],Q`/Z`)→ H1(Y 0[d−1],Q`/Z`)

→ H0(Y [d−1] ∩H,Q`/Z`(−1))→ H2(Y [d−1],Q`/Z`)→ 0

there is an exact sequence

0→ A′ → F 1/F 2 → C ′ → 0,

where A′ is divisible of weight 2d − 1 and where C ′ = I ′ ⊗ Q`/Z`, with I ′

defined by the exact sequence

0→ I ′ → Z[π0(Y [d−1] ∩H)]→ Z[π0(Y [d−1])]→ 0.
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Finally,

C ′′ := F 0/F 1 ∼= H0(Y 0[d],Q`/Z`(−d))

is the cohomology of Y 0[d] = Y [d] which is a union of points, and C ′′ = I ′′ ⊗
Q`/Z` for

I ′′ = Z[π0(Y [d])].

Let A0 be the preimage of A′ in F 1, and let C0 = B0/A0. Then we have exact

sequences

0 → A0 → B0 → C0 → 0,

0 → F 2 → A0 → A′ → 0,

0 → C ′ → C0 → C ′′ → 0.

Hence A0 is divisible and mixed of weights≤ 2d−1, and C0 is divisible of weight

2d. This determines A0 and C0 uniquely (there is no nontrivial GK-morphism

between such modules), and so the spectral sequence (2.1) for U0 = X r Ỹ

instead of U = X r Y shows that C0 is a quotient of

ker
(
H0(Ỹ [d],Q`(−d))→ H2(Ỹ [d−1],Q`(−d+ 1))

)
.

Hence the action of GK on C0(d) factors through a finite quotient G. This in

turn shows that the extension

0→ C ′ → C0 → C ′′ → 0

comes from an extension

0→ I ′ → I → I ′′ → 0

of G-modules by tensoring with Q`/Z`(d). In fact, applying a Tate twist is an

exact functor on Z`-Gk-modules, and one has isomorphisms (where the tensor

products are over Z)

Ext1
G(I ′′, I ′)⊗Z Z`

∼−→ Ext1
Z`[G](I

′′ ⊗ Z`, I ′ ⊗ Z`)
∼−→ Ext1

G(I ′′ ⊗Q`/Z`, I ′ ⊗Q`/Z`),

since Z` is flat over Z, and since the functor T 7→ T ⊗Z`Q`/Z` is an equivalence

between Z`-lattices and divisible `-torsion modules of cofinite type (with action

of G) preserving exact sequences. Finally,

Ext1
G(I ′′, I ′)→ Ext1

G(I ′′, I ′)⊗
Z
Z`

is surjective for a finite group G.

We are now ready to prove

Theorem 2.4. The restriction map

βB : H2(K,B)→⊕
v
H2(Kv, B)

is injective for B = Hd(U0,Q`/Z`(d+ 1)).
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Proof. We follow the method of [Jan92]. By applying the (d+1)-fold Tate

twist to the sequence 0 → A0 → B0 → C0 → 0 of Proposition 2.2, we get an

exact sequence

0→ A→ B → C → 0.

It induces a commutative diagram with exact rows

· · · // ⊕
v∈S

H1(Kv, C) // ⊕
v
H2(Kv, A) // ⊕

v
H2(Kv, B)

· · · // H1(K,C) //

αC,S (∗)
OO

H2(K,A) //

βAo
OO

H2(K,B)

βB

OO

// ⊕
v
H2(Kv, C) // ⊕

v∞
H3(Kv, A) // · · ·

// H2(K,C) //

βC

OO

H3(K,A) //

o γA

OO

· · ·

for a suitable finite set S of places of K. In fact, if Sbad is a set of bad places

for A, then for any S ⊃ Sbad ∪ {v | `}, H2(Kv, A) = 0 for v /∈ S, and thus (∗)
is commutative. By Theorem 1.5, βA is an isomorphism, since A is divisible

and mixed of weights ≤ −3, and by Tate duality, γA is an isomorphism (for all

torsion modules A). To show the injectivity of βB by the 5-lemma, it therefore

suffices to show that C satisfies

(H) (i) αC,S : H1(K,C) → ⊕
v∈S

H1(Kv, C) is surjective for all finite S;

(ii) βC : H2(K,C) → ⊕
v
H2(Kv, C) is injective.

Let I, I ′ and I ′′ be as in Proposition 2.2, so that C = I⊗Z Q`/Z`(1). We have

exact sequences

0 → I ′ → I → I ′′ → 0,

0 → I ′ → I2 → I3 → 0,

in which I ′′, I2 and I3 are permutation modules, i.e., of the form Z[M ] for a

GK-set M . Thus (H) holds for C by repeated application (first to I ′′, I2, and

I3, then to I ′, and finally to I) of the following result. �

Theorem 2.5. Let I1, I2, and I3 be finitely generated free Z-modules with

discrete GK-action, and let Ci = Ii ⊗Z Q`/Z`(1) for i = 1, 2, 3. Assume that

I3 is a permutation module.

(a) Property (H) holds for C3.

(b) If 0 → I1 → I2 → I3 → 0 is an exact sequence, then (H) holds for C1 if

and only if it holds for C2.

The following observation will help to prove part (b).
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Lemma 2.6. Let I be a finitely generated free Z-module with discrete GK-

action, and let T be the torus over K with cocharacter module X∗(T ) = I .

Then property (H)(i) (resp. (H)(ii)) holds for C = I ⊗Z Q`/Z`(1) if and only

if T satisfies

(H′`)(i): αT,S,` : H1(K,T ){`} → ⊕
v∈S

H1(Kv, T ){`} is surjective

for all finite S,

(resp. (H′`)(ii): βT,` : H2(K,T ){`} → ⊕
v
H2(Kv, T ){`} is injective).

Proof. Recall that T (K) = I ⊗Z K× and H i(K,T ) = H i(K,T (K)) by

definition. Since ` 6= char(K), T (K) is `-divisible, and the Kummer sequences

(2.7) 0→ I ⊗Z µ`n → T (K)
`n−→ T (K)→ 0

identify C with T (K){`}, the `-primary torsion subgroup of T (K). Similar

results hold for the fields Kv, and the cohomology sequences associated to

(2.7) for all n give rise to a commutative diagram with exact rows⊕
v∈S

T (Kv)⊗Q`/Z` // ⊕
v∈S

H1(Kv, C) // ⊕
v∈S

H1(Kv, T ){`} // 0

T (K)⊗Q`/Z` //

ωT,S
OO

H1(K,C) //

αC,S
OO

H1(K,T ){`} //

αT,S,`
OO

0

and to a commutative diagram with horizontal isomorphisms⊕
v
H2(Kv, C)

∼ // ⊕
v
H2(Kv, T ){`}.

H2(K,C)
∼ //

βC

OO

H2(K,T ){`}

βT,`

OO

Here the vertical maps are induced by the various restriction maps, and we

used that T (K) = H0(K,T (K)) and T (Kv) = H0(Kv, T (Kv)) for a separable

closure Kv of Kv. Note that H i(K,T ) and H i(Kv, T ) are torsion groups for

i ≥ 1.

Now the map ωT,S is surjective for any torus T and any finite set of places

S ([Jan92, Lemma 2]). This proves the lemma. �

Proof of Theorem 2.5. Let I3 be a permutation module. Then I3 is a

direct sum of modules of the form I0 = IndKK′(Z) = Z[GK/GK′ ] for some finite

separable extension K ′ of K. Let T0 be the torus with cocharacter module I0.

Then

(2.8) H i(K,T0) ∼= H i(K ′,Gm) = H i(K ′,K
×

)



HASSE PRINCIPLES FOR HIGHER-DIMENSIONAL FIELDS 23

by Shapiro’s lemma, and similarly

(2.9) H i(Kv, T0) ∼= ⊕
w|v

H i(K ′ω,Gm),

where w runs through the places of K ′ above v. Thus

H1(K,T0) = 0 = H1(Kv, T0)

by Hilbert’s Theorem 90, and βT0 : H2(K,T0)
⊕
v
H2(Kv, T0) is injective by the

classical theorem of Brauer-Hasse-Noether for K ′. This shows property (H′`)

for the torus T3 with cocharacter module I3, for all primes `, and hence part

(a) of Theorem 2.5.

For part (b), let Ti be the torus with cocharacter module Ii (i = 1, 2, 3).

Then we have an exact sequence

0→ T1 → T2 → T3 → 0

with H1(K,T3) = 0 = H1(Kv, T3) by assumption and the above. This gives

exact commutative diagrams

⊕
v∈S

T3(Kv)
δ // ⊕

v∈S
H1(Kv, T1) // ⊕

v∈S
H1(Kv, T2) // 0

T3(K) //

ω
OO

H1(K,T1) //

αT1,S
OO

H1(K,T2) //

αT2,S
OO

0

and

0 // ⊕
v
H2(Kv, T1) // ⊕

v
H2(Kv, T2) // ⊕

v
H2(Kv, T3).

0 // H2(K,T1) //

βT1

OO

H2(Kv, T2) //

βT2

OO

H2(Kv, T3)

βT3

OO

Since βT3 is injective by assumption, one has an isomorphism kerβT1
∼−→

kerβT2 . On the other hand, the groups H1(Kv, T1) have finite exponent n.

(By Hilbert’s Theorem 90 we can take n = [K ′ : K], if K ′/K is a finite Galois

extension splitting T1.) Hence δ factors through
⊕
v∈S

T3(Kv)/n. But ω⊗Z/nZ

is surjective for every n: Indeed,

K×/(K×)n →
⊕
v∈S

K×v /(K
×
v )n

is surjective for all n by weak approximation for K, and the same for all finite

extensions K ′ of K gives the result for T3 (cf. (2.8) and (2.9) for i = 0). This

gives an isomorphism coker αT1,S
∼−→ coker αT2,S and hence (b). �
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This completes the proof of Theorem 2.4, and we can now show the fol-

lowing theorem, which is a variant of Theorem 0.6, in which the fields Fv are

replaced by the fields F(v).

Theorem 2.10. Let F be a function field in d variables over K , such

that K is separably closed in F , and let ` be a prime invertible in K . Then the

restriction map

Hd+2(F,Q`/Z`(d+ 1)) −→⊕
v
Hd+2(F(v),Q`/Z`(d+ 1))

is injective.

Proof. Let F = K(V ) for a geometrically integral variety V of dimension

d over K. By Proposition 1.2 it is equivalent to show the injectivity of

α : H2(K,Hd(FK,Q`/Z`(d+ 1))) −→⊕
v
H2(K(v), H

d(FK,Q`/Z`(d+ 1))).

Let x be an element in the kernel of α. By the limit property recalled above

Theorem 1.5, there is an open affine U ⊂ V such that x is the image of an

element y lying in the kernel of

H2(K,Hd(U,Q`/Z`(d+ 1))) −→⊕
v
H2(K(v), H

d(U,Q`/Z`(d+ 1))).

If K is a number field, then we may assume that U is smooth over K, and there

is a good compactification U ⊂ X as in property RS2(U) at the beginning of

this section. Thus the claim follows immediately by restricting to the subset

U0 constructed before Proposition 2.2 and applying Theorem 2.4. �

If K has positive characteristic, we use the following result of Gabber,

which refines de Jong’s theorem on alterations.

Theorem 2.11 (Gabber; see [ILO14]). If X is separated and integral of

finite type over a field L and ` is a prime which is invertible in L, and Y ⊂ X
is a proper closed subscheme, then there exists a finite extension L′/L of degree

prime to ` and a connected, smooth quasi-projective variety X ′ over L′ together

with a proper surjective L-morphism π : X ′ → X such that the extension

of function fields L′(X ′)/L(X) is finite of degree prime to `, and such that

Y ′ = π−1(Y ), with the reduced subscheme structure, is a divisor with strict

normal crossings on X ′.

We apply this to a compactification U ⊂ X for our affine variety with

a proper integral variety X over K and the closed subset Y = X − U . Let

π : X ′ → X and Y ′ = π−1(Y ) be as in (G), so that X ′ is smooth projective,

without loss of generality geometrically irreducible, and Y ′ is a simple normal

crossings divisor. Let U ′ = X ′ − Y ′, and let (U ′)0 ⊂ U ′ be constructed as the

complement of a well-chosen hyperplane section like before Proposition 2.2.
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Then the image y′ of y under the restriction map for U ′ → U lies in the kernel

of

H2(K ′, Hd((U ′)0,Q`/Z`(d+ 1))) −→⊕
w
H2(K ′(w), H

d((U ′)0,Q`/Z`(d+ 1))),

where w runs over all places of K ′. Thus y′ = 0 by Theorem 2.4. By restricting

to F ′K ′ and once more applying Proposition 1.2, this implies that the image

of x under

Hd+2(F,Q`/Z`(d+ 1)) −→ Hd+2(F ′,Q`/Z`(d+ 1))

is zero. It remains to remark that this restriction map is injective, because the

degree [F ′ : F ] is prime to `. In fact, we can decompose the extension F ′/F as

F ′/Fi/F , where Fi is the maximal inseparable extension inside F ′/F . Then

the restriction from F to Fi is an isomorphism, and the restriction Res from

Fi to F ′ is injective, since, for the corestriction Cor from F ′ to Fi, we have

Cor Res = multiplication by [F ′ : Fi], which is prime to `.

To have the same result with Fv in place of F(v), and thus obtain Theo-

rem 0.6, it suffices to show

Theorem 2.12. For any n ∈ N and all i, j ∈ Z, the restriction map

H i(F(v),Z/nZ(j))→ H i(Fv,Z/nZ(j))

is injective.

This is related to a more precise rigidity result (for n invertible in K) on

the Kato complexes recalled in Theorem 4.11, which we shall also need in the

following sections. However, as was pointed out to me by J.-L. Colliot-Thélène,

the injectivity above follows by a simple argument and in the following general

version.

Theorem 2.13. Let K/k be a field extension satisfying the following prop-

erty :

(SD) If a variety Y over k has a K-rational point, then it also has a k-rational

point.

Let F be a set-valued contravariant functor on the category of all k-schemes

such that

(FP) For any inductive system (Ai) of k-algebras and A = lim−→iAi, the natural

map lim−→i F (Ai) ∼= F (A) is an isomorphism. (Here we write F (B) :=

F ( Spec B) for a k-algebra B.)

Let V be a geometrically integral variety over k, and write k(V ) (resp. K(V ))

for the function field of V (resp. V ×k K). Then the map

F (k(V ))→ F (K(V ))

is injective.
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Proof. The field K can be written as the union of its subfields Ki which

are finitely generated (as fields) over k. Every Ki can of course be written as

the fraction field of a finitely generated k-algebra Ai.

Now let α ∈ F (k(V )) and assume that α vanishes in F (K(V )). By (FP),

there is an i such that α already vanishes in F (Ki(V )). Moreover, there is

a nonempty affine open V ′ ⊆ V and a β ∈ F (V ′) mapping to α in F (k(V )).

Finally there is a nonempty affine open U ⊆ Zi ×k V ′, where Zi = Spec Ai,

such that β vanishes under the composite map F (V ′)→ F (Zi×k V ′)→ F (U).

Now it follows from Chevalley’s theorem that the image of U under the

projection p : Zi ×k V ′ → Zi contains a nonempty affine open U ′. (p maps

constructible set to constructible sets, and is dominant.) Now U ′ has a K-point

Spec(K) → Spec(Ki) ↪→ U ′. Hence, by property (SD), U ′ has a k-rational

point Q. Then W = p−1(Q)∩U is open and nonempty in p−1(Q) = Q×k V ′ ∼=
V ′. By functoriality, β vanishes in F (W ) and thus α in F (k(V )). �

Proof of Theorem 2.12. We may apply Theorem 2.13 to the extension

Kv/K(v) and the functor F (X) = H i
ét(X,M) for any fixed discrete GK(v)

-

module M (regarded as étale sheaf by pullback) to get the injectivity of

H i(F(v),M)→ H i(Fv,M).

In fact, property (SD) (for “strongly dense”) is known to hold in this case

(cf. [Gre66, Th. 1]), and the commuting with limits as in (FP) (for “finitely

presented”) is a standard property of étale cohomology (cf. [Mil80, III 1.16]).

�

3. A crucial exact sequence, and a Hasse principle

for unramified cohomology

To investigate the cokernel of βB (notation as in Section 2), we could

follow the method of [Jan92] and show that it is isomorphic to coker(βC). By

describing the edge morphisms in the spectral sequence (2.3) we could prove

the crucial Theorem 3.1 below for global fields. Instead, we prefer to argue

more directly, which allows us to treat arbitrary finitely generated fields and

use 3.1 also for the remaining sections.

We shall make repeated use of the following. Let i : Y ↪→ X be a closed

immersion of smooth varieties over a field L, of pure codimension c. Then, for

every integer n invertible in L and every integer r, one has a long exact Gysin

sequence

· · · → Hν−1(U,Z/nZ(r))
δ→ Hν−2c(Y,Z/nZ(r − c)) i∗→ Hν(X,Z/nZ(r))

j∗→ Hν(U,Z/nZ(r))→ · · · ,

where U = X r Y is the open complement of Y and j : U ↪→ X is the open

immersion. We call i∗ and δ the Gysin map and the residue map for i : Y ↪→ X,
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respectively. If i′ : Y ′ ↪→ Y is another closed immersion, with Y ′ smooth and

of pure codimension c′ in Y , then the diagram of Gysin sequences

Hν−1(U,Z/nZ(r))
δ // Hν−2c(Y,Z/nZ(r − c))

i∗ // Hν(X,Z/nZ(r))
j∗ //

Hν−1(U ′,Z/nZ(r))
δ //

j′∗

OO

Hν−2(c+c′)(Y ′,Z/nZ(r − c− c′))
(i◦i′)∗//

i′∗

OO

Hν(X,Z/nZ(r))
(j◦j′)∗//

is commutative, where j′ : U ↪→ U ′ is the open immersion. In fact, the first se-

quence comes from the long exact relative sequence involvingH∗Y (X,Z/nZ(r))),

together with canonical Gysin isomorphisms

Hν−2c(Y,Z/nZ(r − c)) ∼→Hν
Y (X,Z/nZ(r))).

If L is a perfect field of characteristic p > 0 and n = pm, then the one

has still Gysin morphisms i∗ with the transitivity property, by work of Gros

[Gro85a], but the remaining properties are not in general true anymore, except

for the following special case. If X is smooth of pure dimension d, then one

has canonical Gysin isomorphisms

Hν−2c(Y,Z/pmZ(d− c)) ∼→Hν
Y (X,Z/pmZ(d)))

(see [Suw95, Cor. 2.6.]) and gets an exact Gysin sequence as above for r = d.

With these preparations we can now prove a crucial exact sequence for

a specialization map which is not only used for Theorem 3.8 below, giving a

Hasse principle for unramified cohomology, but is also essential in the proofs

of Theorems 0.9, 0.10, and 0.11.

Theorem 3.1. Let K be a finitely generated field with algebraic closure

K , and let X be a smooth, proper, irreducible variety of dimension d over

K . Let Y =
⋃r
i=1 Yi, with r ≥ 1, be a union of smooth irreducible divisors

on X intersecting transversally such that X r Y1 is affine (this holds, e.g., if

X is projective and Y1 is a smooth hyperplane section), and let U = X r Y .

Then, for any prime `, and with the notation of the beginning of Section 2, the

sequence

0→ Hd(U,Q`/Z`(d))GK
e→ H0(Y [d],Q`/Z`)GK

d2→ H2(Y [d−1],Q`/Z`(1))GK

is exact, where we write X = X ×K K , and similarly for the other varieties,

and where we regard GK as Gal(K/Kper) for the perfect hull Kper of K in

K , which is the maximal inseparable extension of K inside K and is a perfect

field. Moreover, e and d2 are defined as follows. The specialization map e is
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induced by the compositions

Hd(U,Q`/Z`(d))
δ−→ Hd−1(Yid r (

⋃
i 6=id

Yi),Q`/Z`(d− 1))(3.2)

δ−→ Hd−2(Yid−1,id r (
⋃

i 6=id−1,id

Yi),Q`/Z`(d− 2))

−→ · · · δ−→ H1(Yi2,...,id r (
⋃

i 6=i2,...,id
Yi),Q`/Z`(1))

δ→ H0(Yi1,...,id ,Q`/Z`),

where each δ is the connecting morphism in the obvious Gysin sequence. On the

other hand, d2 =
d∑

µ=1
(−1)µ δµ, where δµ is induced by the Gysin map associated

to the inclusions

Yi1,...,id ↪→ Yi1,...,̂iν ,...,id

(and îν means omission of iν , as usual).

Proof. We note that here the absolute Galois group GK of K can be

regarded as the Galois group Gal(K/Kper), where Kper ⊂ K is the perfect

hull of K (the maximal inseparable extension of K in K). For ` invertible in

K, we could replace the algebraic closure of K by its separable closure and,

by a standard property of étale cohomology, we get isomorphic groups above,

which are the ones used in Section 2. For ` = char(K) however, we need K to

be the algebraic closure.

Write H i(Z, j) instead of H i(Z,Q`/Z`(j)), for short, and note that U is

affine, because X \ Y1 is affine and U ↪→ X is an affine morphism, because

Y is defined by a locally principal ideal. Hence Hd(U, d) is divisible, since

Hd+1(U,Z/`Z(d)) = 0 by weak Lefschetz, which also holds for ` = char(K);

see [Suw95, Lemma 2.1]. We now proceed by induction on r, the number of

components of Y . If r = 1, then the Gysin sequence

· · · → Hd(X, d)→ Hd(U, d)→ Hd−1(Y , d− 1)→ · · ·

shows that Hd(U, d) is mixed with weights −d and −d + 1; see 1.7(e)–(f).

Hence, using 1.7(d), we can only have Hd(U, d)GK 6= 0 and Y [d] 6= ∅ for d = 1.

In this case we have an exact sequence

0→ H1(X, 1)→ H1(U, 1)
δ→ H0(Y , 0)→ H2(X, 1)→ 0.

Without loss of generality, we may assume that X is geometrically irreducible

over K. (Otherwise, this is the case over a finite extension K ′ of K, and

everything reduces to this situation, since we have induced modules.) Letting

C = im(δ), we have

H1(U, 1)GK
∼→ CGK
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since H1(X, 1)GK = 0 (H1(X, 1) is divisible and of weight −1), and there is

an exact sequence

0→ C → IndKK(x)(Q`/Z`)→ Q`/Z` → 0,

where K(x) is the residue field of the unique point x ∈ Y , which is a separable

extension of K, by assumption. But this sequence stays exact after taking

cofixed modules: the action of GK factors through a finite quotient G, and

H1(G,Q`/Z`) = 0. (This group is dual to H1(G,Z`) = 0.) Putting things

together, we have an exact sequence

0→ H1(U, 1)GK
e→ H0(Y , 0)GK

d2→ H2(X, 1)GK → 0.

Now let r > 1. Then Z =
⋃r−1
i=1 Yi is a divisor with normal crossings on

X which fulfills all the assumptions of the theorem, and the same is true for

Zr = Yr ∩ Z =
⋃r−1
i=1 (Yr ∩ Yi) on Yr. �

We claim that we obtain a commutative diagram

(3.3)

0

��

0

��

0

��
Hd(X r Z, d)GK

//

e (1)

��

Hd(U, d)GK

δ //

e (2)

��

Hd−1(Yr r (Yr ∩ Z), d− 1)GK
//

e

��

0

0 // H0(Z[d], 0)GK
//

d2 (3)

��

H0(Y [d], 0)GK
//

d2 (4)

��

H0((Yr ∩ Z)[d−1], 0)GK
//

d2

��

0

0 // H2(Z[d−1], 1)GK
// H2(Y [d−1], 1)GK

// H2((Yr ∩ Z)[d−2], 1)GK
// 0

with exact rows. The first row comes from the Gysin sequence for (X r Z,

Yr r Zr),

· · · → Hd(X r Z, d)→ Hd(U, d)
δ→ Hd−1(Yr r Zr, d− 1)→ 0,

in which Hd+1(X r Z, d) = 0 by weak Lefschetz. Next note that

Y [ν] =
∐

1≤i1<···<iν≤r
Yi1,...,iν ,

Z [ν] =
∐

1≤i1<···<iν≤r−1
Yi1,...,iν ,

Yr ∩ Z [ν−1] = (Yr ∩ Z)[ν−1] =
∐

1≤i1<···<iν−1≤r−1
Yr ∩ Yi1,...,iν−1 ,

=
∐

1≤i1<...<iν=r
Yi1,...,iν
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so that Y [ν] = Z [ν] ∐ (Yr ∩ Z)[ν−1]. Hence one has commutative diagrams

(3.4)

0 // Hi(Z[d], j) //

d2 (3′)

��

Hi(Y [d], j) //

d2 (4′)

��

Hi((Yr ∩ Z)[d−1], j) //

d2

��

0

0 // Hi+2(Z[d−1], j + 1) // Hi+2(Y [d−1], j + 1) // Hi+2((Yr ∩ Z)[d−2], j + 1) // 0

with canonically split exact rows, where both left maps are d2 =
ν∑

µ=1
(−1)µδµ,

with δµ being induced by the inclusions

Zi1,...,iν ↪→ Z
i1,...,“iµ,...,iν and Yi1,...,iν ↪→ Y

i1,...,“iµ,...,iν
respectively, and the right-hand d2 is defined as d2 =

ν−1∑
µ=1

(−1)µδµ, with δµ

being induced by the inclusions

Yi1,...,iν−1 ∩ Yr ↪→ Y
i1,...,“iµ,...,iν−1

∩ Yr.

In fact, the commuting of (3′) is trivial, and the square (4′) commutes since

it commutes with δµ, 1 ≤ µ ≤ ν − 1 in place of d2, whereas δν vanishes after

projection onto (Yr ∩ Z)(ν−1) (the last component of (i1 . . . , îν) cannot be r).

This implies the commutativity of (3) and (4), and the exactness of the two

involved rows.

The commutativity of (2) is clear: For 1 ≤ i1 < · · · < id = r, the special-

ization map (3.2) is the composition

Hd(U, d)
δ→Hd−1(YrrZ, d− 1)

δ→ Hd−2(Yiν−1 ∩ Yr r (
⋃

i 6=iν−1,r

(Yi ∩ Yr)), d− 2)

· · · δ→ H1(Yi2 , . . . , r r (
⋃

i 6=i2,...,r
(Yi ∩ Yr), 1)

δ→ H0(Yi1,...,r, 0).

The commutativity of (1) is implied by the commutativity of

e : Hd(U, d)
δ // Hd−1(Yid r ∪

i6=id
Yi, d− 1) // · · · · · · // H0(Yi1,...,id , 0)

e : Hd(X − Z, d)
δ //

OO

Hd−1(Yid r ∪
i6=id,r

Yi, d− 1) //

OO

· · · · · ·

OO

// H0(Yi1,...,id , 0)

for 1 ≤ i1 < · · · < id < r, where the vertical maps are the restriction maps for

the open immersions obtained by deleting Yr everywhere. (Note that Yi1,...,id ∩
Yr = ∅ for id 6= r.) This commutativity follows from the compatibility of the

corresponding Gysin sequences with restriction to open subschemes.

Given the diagram (3.3), we can carry out the induction step. It is easy to

check that the middle column is a complex, and by induction the left and right

column are exact. Hence the middle column is exact, by a straightforward

diagram chase.
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We give a first application to function fields. Recall the following definition

[CT95, 2.1.8 and 4.1.1].

Definition 3.5. Let k be a field, and let F be a function field over k. For

an integer n invertible in k, the unramified cohomology H i
nr(F/k,Z/nZ(j)) ⊆

H i(F,Z/nZ(j)) is defined as the subset of elements lying in the image of

H i
ét(SpecA,Z/nZ(j))→ H i(F,Z/nZ(j))

for all discrete valuation rings A ⊆ F containing k.

If λ is a discrete valuation of F which is trivial on k, and if Aλ and k(λ)

are the associated valuation ring and residue field, respectively, then one has

an exact Gysin sequence

· · ·H i
ét(SpecAλ,Z/nZ(j))→ H i(F,Z/nZ(j))

δλ→H i−1(k(λ),Z/nZ(j − 1))→ · · · ,

since purity is known to hold in this situation. We call the map δλ the residue

map for λ. This shows

Lemma 3.6. One has

H i
nr(F/k,Z/nZ(j)) = ker

(
H i(F,Z/nZ(j))→

∏
λ

H i−1(k(λ),Z/nZ(j − 1))
)
,

where the sum is over all discrete valuations λ of F/k, and the components of

the map are the residue maps δλ.

We will need the following fact (cf. [CT95, 2.1.8 and 4.1.1]).

Proposition 3.7. Let X be a smooth proper variety over k, and let F =

k(X) be its function field. Then

H i
nr(F/k,Z/nZ(j)) = ker

(
H i(F,Z/nZ(j))

δX→
⊕
x∈X1

H i−1(k(x),Z/nZ(j − 1))
)
,

where Xi = {x ∈ X | dimOX,x = i} for i ≥ 0, k(x) is the residue field of

x ∈ X , and δ is the map from the Bloch-Ogus complexes for étale cohomology

[BO74]. In particular,

H i
nr(F/k,Z/nZ(j)) ∼= H0

Zar(X,Hin(j)),

where Hin(j) is the Zariski sheaf on X associated to the presheaf

U 7→ H i
ét(U,Z/nZ(j)).

Proof. Since we need a variant below, we recall the beautiful argument.

First note that, by definition of the Bloch-Ogus sequence, the components of

δX are the residue maps δX,x := δλ(x), where λ(x) is the discrete valuation

associated to x (so that Aλ(x) = OX,x and k(λ(x)) = k(x) ). This shows that
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the kernel of 3.6 is contained in the kernel of 3.7. Conversely, let A ⊂ F be

a discrete valuation ring. Then by properness of X we have a factorization

Spec(F )→ Spec(A)→ X, and hence a factorization

Spec(F )→ Spec(A)→ Spec(OX,x)→ X,

where x ∈ X is the image of the closed point of Spec(A). By the results of

Bloch and Ogus [BO74], since X is smooth, the sequence

H i(Spec(OX,x),Z/nZ(j))
j∗→ H i(Spec(F ),Z/nZ(j))

→⊕
x
H i−1(k(x),Z/nZ(j − 1))

is exact, where x runs over the codimension 1 points of Spec(OX,x). Therefore

any element in the kernel of 3.7 lies in the image of j∗, and hence in the image

of H i(SpecA,Z/nZ(j)) → H i(F,Z/nZ(j)), by the above factorization. Since

A was arbitrary, the element lies in the unramified cohomology. �

The second main result of the present section is now

Theorem 3.8. Let K be a global field, let n ∈ N be invertible in K , and

let F be a function field in d variables over K , d > 0, such that K is separably

closed in F . For every place v of K , let K(v) be the Henselization of K at v,

and let F(v) = FK(v) be the corresponding function field over K(v). Then the

restriction maps induce an isomorphism

Hd+2
nr (F/K,Z/nZ(d+ 1))

∼−−−−→ ⊕
v
Hd+2

nr (F(v)/K(v),Z/nZ(d+ 1)).

Proof. It suffices to consider the case n = `m, where ` is a prime invertible

in K. Moreover, it suffices to show that the map

(3.9) Hd+2
nr (F/K,Q`/Z`(d+ 1)) −−−−→ ⊕

v
Hd+2

nr (F(v)/K(v),Q`/Z`(d+ 1))

is an isomorphism. In fact, if this holds, the bijectivity for n = `m follows from

the commutative diagram with exact columns

Hd+2
nr (F/K,Q`/Z`(d+ 1)) −−−−→ ⊕

v
Hd+2

nr (F(v)/K(v),Q`/Z`(d+ 1)).x`m x`m
Hd+2

nr (F/K,Q`/Z`(d+ 1)) −−−−→ ⊕
v
Hd+2

nr (F(v)/K(v),Q`/Z`(d+ 1))x x
Hd+2

nr (F/K,Z/`mZ(d+ 1)) −−−−→ ⊕
v
Hd+2

nr (F(v)/K(v),Z/`mZ(d+ 1))x x
0 0
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The exactness of the columns follows from Lemma 3.6 and the exactness of

0→ H i+1(L,Z/`mZ(i)) −→ H i+1(L,Q`/Z`(i))
`m−→ H i+1(L,Q`/Z`(i))

for any field L and any natural number i, which in turn follows from the

theorem of Rost and Voevodsky, i.e., the proof of the Bloch-Kato conjecture

BK(L, i, `); see the introduction.

We know already from Theorem 2.10 that (3.9) is injective; therefore it

suffices to show the surjectivity in (3.9).

Case 3.8.A. First assume that there is a smooth projective variety X over

K with function field K(X) = F . This is certainly the case if K is a number

field. In fact, there is a geometrically irreducible variety U overK with K(U) =

F , and after possibly shrinking U we may assume that U is smooth. Then, by

resolution of singularities (more precisely by property RS2(U) from the begin-

ning of Section 2) it can be embedded in a smooth projective variety X over K

as an open subvariety. Then, abbreviating H i(?, j) for H i(?,Q`/Z`(j)), Propo-

sition 3.7 gives a commutative diagram with exact rows and injections j, jν ,

(3.10)⊕
v

Hd+2
nr (F(v)/K(v), d + 1)

� � ⊕vjv //⊕
v

Hd+2(F(v), d)
⊕vδX(v)//⊕

v

⊕
y∈X1

(v)

Hd+1(K(v)(y), d)

Hd+2
nr (F/K, d + 1)

� � j //

β′

OO

Hd+2(F, d + 1)
δX //

β(F/K)

OO

⊕
x∈X1

Hd+2(K(x), d),

β′′

OO

where X(v) = X ×K K(v) and in which β(F/K) is the restriction map, β′′ is

induced by the restrictions for the field extensions K(v)/K(x) for y lying above

x, and β′ is the induced map. Note that F(v)
∼= F ⊗K K(v) is the function

field of X(v) over K(v). The commutativity of the right square is easily checked

(contravariance of Gysin sequences for pro-étale maps). Now, for x ∈ X1 and

a place v of K, every y ∈ X(v) lying above x is again of codimension 1, since

X(v) → X is integral. Hence,

(3.11)
∐

y∈X1
(v)

y|x

Spec(K(v)(y)) =
∐

y∈X(v)
y|x

Spec(K(v)(y)) = X(v) ×X K(x),

the fibre of the pro-étale morphism X(v) → X over x. This is again isomorphic

to

(X ×K K(v))×X K(x) ∼= Spec(K(x)⊗K K(v))(3.12)

∼= Spec(K(x)⊗K{x} (K{x} ⊗K K(v)))

∼=
∐
w|v

Spec(K(x)⊗K{x} K{x}(w)),
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where K{x} is the separable closure of K in K(x) (which is a finite extension

of K) and where w runs over the places w of K{x} above v. This shows that

β′′ can be identified with the map⊕
x∈X1

β(K(x)/K{x}) :
⊕

x∈X1
Hd+1(K(x), d)(3.13)

−→ ⊕
x∈X1

⊕
w∈P (K{x})

Hd+1(K(x)(w), d),

where P (K{x}) is the set of places of the global field K{x}. Hence β′′ is in-

jective as well as β(F/K), by Theorem 2.10. (Note that K(x), for x ∈ X1, is a

function field in d− 1 variables over K{x}.) By diagram (3.10) it now suffices

to show that the following map is injective:

(3.14) coker β(F/K) −→ coker β′′ =
⊕

x∈X1
coker β(K(x)/K{x}).

Lemma 3.15. The map (3.14) can be identified with the map of cofixed

modules

Hd(FK, d)GK −→
⊕

x∈X1
Hd−1(K(x)⊗K K, d− 1)GK

∼=
( ⊕
y∈X1

Hd−1(K(y), d− 1)
)
GK

induced by the residue map δX for X = X ×K K .

Proof. By (3.11) and (3.12), the map β′′ can also be identified with the

map⊕
x∈X1

[
β(K(x)/K) : Hd+1(K(x), d) −→ ⊕

v∈P (K)
Hd+1(K(x)⊗K K(v), d)

]
.

Therefore the map (3.14) can be identified with the map coker β1 → coker β2

induced by the commutative diagram⊕
v
H2(Kv, H

d(FK, d+ 1)) // ⊕
x∈X1

⊕
v
H2(Kv, H

d−1(K(x)⊗K K, d)),

H2(K,Hd(FK, d+ 1)) //

β1

OO

⊕
x∈X1

H2(K,Hd−1(K(x)⊗K K, d))

β2

OO

where the vertical maps are the obvious restriction maps, and the horizontal

maps are induced by the residue maps

Hd(FK, d+ 1) −→ ⊕
x∈X1

Hd−1(K(x)⊗K K, d) ∼=
⊕
y∈X1

Hd−1(K(y), d)
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for X. This follows from Proposition 1.2, Remark 1.4(a), and the fact that

the Hochschild-Serre spectral sequence is compatible with the connecting mor-

phisms for Gysin sequences. The latter statement follows from the fact that the

Hochschild-Serre spectral sequence for étale (hyper)cohomology of complexes

is functorial with respect to morphisms in the derived category and that the

Gysin isomorphisms are compatible with pro-étale base change.

Finally, for all discrete torsion Z`-GK-modules M , there are canonical

isomorphisms

(3.16) coker
[
βM : H2(K,M)→⊕

v
H2(Kv,M)

] ∼−→ M(−1)GK ,

which are functorial in M ; see (the proof of) Proposition 1.2. This proves

Lemma 3.15. �

We are now ready to prove Theorem 3.8 for Case 3.8.A, which assumes

the existence of X with F = K(X). By Lemma 3.15 it suffices to show the

following more general theorem, which will also be used in the later sections.

Theorem 3.17. Let K be a finitely generated field with perfect hull L and

algebraic closure K , let X be a smooth proper irreducible variety of dimension

d over K , and let ` be a prime. Assume that ` is invertible in K or that condi-

tion RS1(U) (see the beginning of Section 2) holds for any open U ⊂ X ×K L.

Then the map( ⊕
y∈X0

Hd(K(y),Q`/Z`(d))
)
GK
−→

( ⊕
x∈X1

Hd−1(K(x),Q`/Z`(d− 1))
)
GK

induced by the Bloch-Ogus complex for X = X ×K K (via taking coinvariants

under GK) is injective.

Proof. We note that here we regard the absolute Galois group GK of K

as Gal(K/L), and we may replace K by L and call this K again. Moreover,

the above map can be identified with a map

Hd(K(X)⊗K K,Q`/Z`(d))GK −→
⊕

x∈X1
Hd−1(K(x)⊗K K,Q`/Z`(d− 1))GK .

Let a be an element in the kernel of the above map. Then there is an open

U ⊂ X such that a is the image of an element aU ∈ Hd(U,Q`/Z`(d))GK , where

U = U ×K K. We distinguish the following three cases.

Case 3.17.A. First assume that RS1(U) holds and that K is infinite. Then

there exists an open embedding U ⊂ X ′ into a smooth projective variety X ′

such that the complement Y = X ′rU is a divisor with simple normal crossings,

say with smooth components Yi (i = 1, . . . , r). By possibly applying Bertini’s

theorem as in Section 2 (before Proposition 2.2) and removing a suitable hyper-

plane section (which does not matter for our purposes), we may assume that

X ′rY1 is affine, i.e., that U ⊆ X ′ ⊇ Y satisfies the assumptions of Theorem 3.1.
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Next we note that the kernel of the map in 3.17 only depends on F = K(X)

and not on the smooth projective model X of F . In the case of a global field K

and ` invertible in K, this is clear from Lemma 3.15, the diagram (3.10), and

Proposition 3.7 for F and the F(v). In general, the argument is the same as in

the proof of Proposition 3.7, noting the following two facts. By properness, for

any x′ ∈ (X ′)1, the discrete valuation ring OX′,x′ dominates a local ring OX,y
of X. Moreover, for this regular ring and any finite Galois extension M/K,

the Bloch-Ogus sequence of Gal(M/K)-modules

Hd(Spec(OX,y ⊗K M),Λ(d))
j∗→ Hd(K(X)⊗K M),Λ(d))

→ ⊕
x∈X1

Hd−1(K(x)⊗K M,Λ(d− 1))

is exact for Λ = Q`/Z`, by purity for the semi-local ring OX,y ⊗K M . In ad-

dition, it stays exact after taking coinvariants under Gal(M/K), because the

Gersten resolution is universally exact (see [CTHK97, Cor. 6.2.4 together with

Ex. 7.3(1)] (for ` 6= char(K)) and loc. cit. Ex. 7.4(3) (for ` = char(K) and

the Tate twist d). By passing to the inductive limit we get the corresponding

result for K and GK in place of M and Gal(M/K). The same holds for the

discrete valuation ring OX′,x′ . As in the proof of Proposition 3.7 we get that

the kernel of 3.17 for X lies in the kernel of 3.17 for X ′. Interchanging the

roles of X and X ′ we get the wanted equality.

Therefore we may replace X above by X ′ and call it X again. Now we

claim that aU lies in the kernel of the map

e : Hd(U,Q`/Z`(d))GK → H0(Y [d],Q`/Z`(0))GK

introduced in Theorem 3.1. Since the assumptions of 3.1 are fulfilled for U , we

then conclude that aU is zero and hence a is zero as wanted.

With the notation of (3.2), the claimed vanishing of e(aU ) follows from

the following commutative diagram for each (i1, . . . , id) and each y ∈ Yi1,...,id :
(3.18)

Hd(U, d)GK
//

��

Hd−1(Yidr(
⋃
i6=id

Yi), d-1)GK
//

��

Hd−2(Yid−1,idr(
⋃

i 6=id−1,id

Yi), d-2)GK

��
Hd(FK, d)GK

// Hd−1(K(yid)⊗K K, d-1)GK
// Hd−2(K(yid−1,id)⊗K K, d-2)GK

. . . // H1(Yi2,...,idrYi1 , 1)GK
//

��

H0({y}, 0)GK

��
. . . // H1(K(yi2,...,id)⊗K K, 1)GK

// H0(K(yi1,...,id)⊗K K, 0)GK

in which yi is the generic point of the component Y y
i of Yi in which y lies,

for any i = (ir, . . . , id), so that K(yi) is the function field of Y y
i . In fact,
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the maps in the bottom line are all induced by the residue maps, by defini-

tion, and the image of aU under the left vertical map is a. As we have noted,

the image of a in Hd−1(K(yid) ⊗K K, d − 1)GK vanishes for every choice of

(i1, . . . , id), 1 ≤ i1 < · · · < id ≤ r. (Note that yid ∈ X̃1.) Therefore the image

of aU in H0({y}, 0)GK vanishes for every y ∈ Y [d] as claimed. This finishes the

proof of Case 3.17.A. �

Case 3.17.B. For the case of a finite field K, we note the following. First

of all we have canonical functorial isomorphisms MGK
∼= H1(K,M) for all

discrete GK-modules M . Therefore the map in 3.17 can be identified with the

map

Hd+1(K(X),Q`/Z`(d))→ ⊕
x∈X1

Hd(k(x),Q`/Z`(d− 1)),

and it follows directly from Proposition 3.7 that the kernel of this map is

independent of X and, in fact, equal to the unramified cohomology

Hd+1
nr (K(X)/K,Q`/Z`(d)).

If a, U , and aU are as above and we have a good compactification U ⊂ X ⊃ Y
as above, we may not have a suitable hyperplane section defined over K, but

we get one after taking a base extension to a field extension K ′/K of degree

prime to `. Then we conclude that a maps to zero under the restriction Res :

Hd+1(K(X),Q`/Z`(d))→ Hd+1(K ′(X),Q`/Z`(d)). But this map is injective,

by the existence of the corestriction Cor in the other direction with Cor Res =

multiplication with [K ′ : K] which is prime to `. This finishes the proof of

Case 3.17.B. �

Case 3.17.C. Finally consider the case that char(K) = p > 0 and ` 6= p,

and that we have no good compactification of U , where a, U , and aU are as

above. By the weaker resolution of singularities due to Gabber (see Theo-

rem 2.11), we get a diagram

(3.19)

U ′ ⊂ X ′ ⊃ Y ′

↓ ↓ π ↓
U ⊂ X ⊃ Y,

where X ′ is a geometrically irreducible, smooth, and projective variety over a

finite extension K ′ of K with ` not dividing [K ′ : K], π is a proper surjective

morphism which is generically finite of degree prime to `, U ′ = π−1(U), and

Y ′ = π−1(Y ) is a divisor with strict normal crossings on X ′. Since ` 6= p, the

Q`/Z`-cohomology does not change under radicial maps, and we may pass to

the perfect hull of K in K ′ and thus assume that K ′/K is separable. Then X

and X ′ are smooth projective over K.

For any smooth variety V over K, let Hi(d)GK be the Zariski sheaf on V

associated to the presheaf U 7→ H i(U,Q`/Z`(d))GK for U ⊆ V open, where
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U = U ×K K. Then the Bloch-Ogus theory and the universal exactness used

above show that the kernel of the map in Theorem 3.17 is canonically isomor-

phic to H0(X,Hd(d)GK ), and the pull-back maps for étale cohomology induce

a natural pull-back map

π∗ : H0(X,Hd(d)GK )→ H0(X ′,Hd(d)GK ).

We claim that this map is injective. In fact, it embeds into the restriction map

for the function fields, which can be factored as

(3.20) Hd(K(X)⊗KK)GK → Hd(K ′(X)⊗KK)GK → Hd(K ′(X ′)⊗K′K)GK′ ,

where we have omitted the coefficients Q`/Z`(d). Both restriction maps are

injective, because the degrees [K ′(X) : K(X)] and [K ′(X ′) : K ′(X)] are prime

to `. (See the corestriction argument at the end of the proof of Theorem 2.10,

which also works for the modules of coinvariants.) Thus the restriction map is

injective and π∗ is injective as well.

Now for an element a ∈ H0(X,Hi(d)GK ), its image a′ ∈ H0(X ′,Hi(d)GK )

is represented by the image aU ′ of aU under the restriction map

Hd(U,Q`/Z`(d))GK → Hd(U ′,Q`/Z`(d))G′K .

By the choice of U ′, and the Cases 3.17.A and 3.17.B, we get that aU ′ = 0,

hence a′ = 0, and so a = 0 by the injectivity of (3.20). This finishes the proof

of Case 3.17.C and thus Theorem 3.17. �

Case 3.8.B. With similar arguments we can now also complete the proof

of Theorem 3.8, in the case where the function field F over K does not have

any smooth projective model, but the prime ` is invertible in K. Let U be

an affine integral geometrically irreducible variety of dimension d over K with

function field K(U) = F . Then we have an open embedding U ⊂ X into

a projective integral variety, and we get again a diagram as in (3.19). (The

smoothness of U or X was not needed.) Let F ′ = K ′(X ′). It follows from the

definition of unramified cohomology that the morphism F/K → F ′/K ′, i.e.,

the commutative diagram

F → F ′,

↑ ↑
K → K ′

induces a restriction map Hd+1
nr (F/K,Q`/Z`(d)) −→ Hd+1

nr (F ′/K ′,Q`/Z`(d)).

(Any discrete valuation of F ′ over K ′ induces by restriction a discrete valuation

of F over K.) The same holds for the morphism F(v)/K(v) → F ′(w)/K
′
(w) for

a place v of K and a place w of K ′ above v. Moreover, the commutative
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diagrams

F(v)/K(v) → F ′(w)/K
′
(w)

↑ ↑
F/K → F ′/K ′

induce a commutative diagram⊕
v H

d+1
nr (F(v)/K(v),Q`/Z`(d)) −−−−→ ⊕

w Hd+1
nr (F ′(w)/K

′
(w),Q`/Z`(d)).xβ′(F/K)

xβ′(F ′/K′)
Hd+1

nr (F/K,Q`/Z`(d)) −−−−→ Hd+1
nr (F ′/K ′,Q`/Z`(d))

By the first part of the proof (having the existence of the smooth projective

model X ′ of F ′), the cokernel of β′(F ′/K ′) is zero. Now we claim that the

map coker β′(F/K) → coker β′(F ′/K ′) induced by the diagram is injective;

then we have coker β′(F/K) = 0 as wanted. First of all, the above diagram is

obtained from the following commutative diagram of restriction maps:⊕
v H

d+1(F(v)/K(v),Q`/Z`(d)) −−−−→ ⊕
w Hd+1(F ′(w)/K

′
(w),Q`/Z`(d))xβ(F/K)

xβ(F ′/K′)

Hd+1(F/K,Q`/Z`(d)) −−−−→ Hd+1(F ′/K ′,Q`/Z`(d))

by passing to the unramified subgroups, so that we have a commutative dia-

gram

coker β(F/K)
r−−−−→ coker β(F ′/K ′).xi xi′

coker β′(F/K)
r′−−−−→ coker β′(F ′/K ′)

We claim that the maps i and r are injective; then we obtain the injectivity

of r′.

The injectivity of i follows from the commutative diagram with exact rows⊕
v
Hd+2
nr (F(v)/K(v), d+ 1)

� �⊕vjv // ⊕
v
Hd+2(F(v), d+ 1)

⊕vδv // ⊕
v

⊕
µ∈Pv

Hd+1(K(v)(y), d).

Hd+2
nr (F/K, d+ 1)

β′(F/K)

OO

� � j // Hd+2(F, d+ 1)

β(F/K)

OO

δ // ⊕λ∈PHd+1(K(λ), d)

β′′

OO

Here we have omitted the coefficients Q`/Z`, P (resp. Pv) is the set of discrete

valuations of F/K (resp. F(v)/K(v)), and the components of δ (resp. δv) are

the residue maps for the valuations λ ∈ P (resp. µ ∈ Pv). The restriction map

β′′ is defined as follows. If the valuation µ of Fv)/K(v) lies over the valuation

λ of F/K, then the corresponding component is induced by the inclusion of

the corresponding valuation rings; otherwise the component is zero. The map

β′′ is injective, by similar arguments as in the beginning of the proof of 3.8:
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If Aλ is the valuation ring of λ and M/K is a finite separable field extension,

then Aλ ⊗K M is a regular semi-local ring of dimension 1, and hence the

integral closure of Aλ in F ⊗K M . Hence the extensions of the valuation λ

to F ⊗K M correspond to the fiber above the closed point of Aλ, i.e., to the

points of Spec(K(λ)⊗K M). Therefore the extensions of λ to F(v) correspond

to the points of Spec(K(λ)⊗K K(v)) ∼= ⊕w Spec(K{λ}(w)), where K{λ} is the

separable closure of K in K(λ) (which is a finite extension), and w runs over

all places of K{λ} lying above v. Thus the restriction of β′′ to the component

for λ can be identified with the map β(K(λ)/K{λ}), which is injective by

Theorem 2.10. (Note that K(λ) is a geometrically irreducible function field in

d − 1 variables over K{λ}.) The injectivity of β′′ now implies by a diagram

chase that i : coker β′(F/K)→ coker β(F/K) is injective.

Now we consider the injectivity of r. Since the `-adic cohomology does

not change under radicial/inseparable extensions, we may assume that F ′/F

and K ′/K are separable. Then we get a commutative diagram with exact rows

Hd+2(F ′, d+ 1) // ⊕
v
Hd+2(F ′ ⊗K K(v), d+ 1) // // coker β(F ′/K′)

Hd+2(F, d+ 1) //

Res

OO

⊕
v
Hd+2(F ⊗K K(v), d+ 1) //

Res

OO

// // coker β(F/K)

r

OO

induced by the restriction for F ′/F . The cokernel in the upper row can indeed

be identified with coker β(F ′/K ′) (compare Remark 1.4(a)), and then the

right-hand map can be identified with r as indicated. Now the finite étale

map π : Spec(F ′) → Spec(F ) also induces compatible downward maps π∗ in

the left square, such that π∗ is the usual corestriction Cor on the left and

such that π∗Res is the multiplication with [F ′ : F ] in both cases. Since F ′/F

and the extensions K(v)/K are separable, these properties follow from obvious

calculations in Galois cohomology, which are left to the readers. We obtain an

induced map π∗ on the right with π∗r being the multiplication with [F ′ : F ].

Since this degree is prime to `, and we consider Q`/Z`-coefficients, we obtain

the injectivity of r as claimed.

Remark 3.21. In the considerations of this section we have preferred to

work with the explicit descriptions (via Gysin and specialization maps) of

the maps e and d2 in Theorem 3.1, but we note that they coincide with the

corresponding edge morphisms and differentials of the weight spectral sequence

(2.3) for U ⊂ X ⊃ Y , up to signs.

4. A Hasse principle for Bloch-Ogus-Kato complexes

Let X be an excellent scheme, let n ≥ 1 be an integer, and let r, s ∈ Z.

Under some conditions on X, n, and (r, s), there are homological complexes of
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Gersten-Bloch-Ogus-Kato type

Cr,s(X,Z/nZ) : · · · →
⊕
x∈Xi

Hr+i(k(x),Z/nZ(s+ i))

∂→
⊕

x∈Xi−1

Hr+i−1(k(x),Z/nZ(s+ i− 1))

→ · · · →
⊕
x∈Xi

Hr+i · · · →
⊕
x∈X0

Hr(k(x),Z/nZ(s)),

where the term for Xi = {x ∈ X | dim(x) = i} is placed in degree i. If X

is separated of finite type over a field L, n is invertible in L, and (r, s) are

arbitrary, these complexes where defined by Bloch and Ogus [BO74], by using

the étale homology for such schemes, defined by

(4.1) Ha(X,Z/nZ(b)) := H−a(X,Rf !Z/nZ(−b)),

where f : X → Spec L is the structural morphism and Rf ! is the extraordinary

inverse image functor on constructible étale Z/nZ-sheaves defined in [SGA,

XVIII]. In fact, Bloch and Ogus constructed a niveau spectral sequence

E1
p,q(X,Z/nZ(b)) =

⊕
x∈Xp

Hp+q(k(x),Z/nZ(b))⇒ Hp+q(X,Z/nZ(b)),

where, by definition, Ha(k(x),Z/nZ(b)) = lim−→Ha(U,Z/nZ(b)) for x ∈ X,

where the limit is over all open subschemes U ⊆ {x} of the Zariski closure of x.

By purity, there is an isomorphism Ha(U,Z/nZ(b)) ∼= H2p−a(U,Z/nZ(p − b))
for U irreducible and smooth of dimension p over L. Thus one has a canonical

isomorphism

(4.2) E1
p,q(X,Z/nZ(b)) ∼=

⊕
x∈Xp

Hp−q(k(x),Z/nZ(p− b)).

This is clear for a perfect field L, because then {x} is generically smooth. So

the limit can be carried out over the smooth U ⊆ {x}, and

lim−→ H2p−a(U,Z/nZ(p− b)) = H2p−a(k(x),Z/nZ(p− b)),
U⊆{x}

since lim←−U = Spec k(x), and since étale cohomology commutes with this limit.

For a general field L, we may pass to the separable hull, because of invariance

of étale cohomology with respect to base change with radical morphisms.

Using the identification (4.2), one may define

Cr,s(X,Z/nZ) = E1
∗,−r(X,Z/nZ(−s)).

With this definition, one obtains the following description of the differential:

∂ :
⊕
x∈Xi

Hr+i(k(x),Z/nZ(s+ i))→ ⊕
x∈Xi−1

Hr+i−1(k(x),Z/nZ(s+ i− 1)).
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We may assume that L is perfect. For y ∈ Xi and x ∈ Xi−1, let ∂y,x = ∂Xy,x be

the (y, x)-component of ∂. If x /∈ {y}, then ∂y,x = 0. If x is a smooth point

of {y}, then there is an open smooth neighbourhood x ∈ U ⊆ {y}. Moreover,

any α ∈ Hr+i(k(x),Z/nZ(s+ i)) lies in the image of Hr+i(V,Z/nZ(s+ i))→
Hr+i(k(x),Z/nZ(s+i)) for some open V ⊆ U . Moreover, by making U (and V )

smaller we may assume that Z = U \ V is irreducible and smooth as well and

that x is the generic point of Z. Then one has a commutative diagram

(4.3) Hr+i(k(y),Z/nZ(s+ i)
∂y,x // Hr+i−1(k(x),Z/nZ(s+ i− 1)),

Hr+i(V,Z/nZ(s+ i)
∂ //

OO

Hr+i−1(Z,Z/nZ(s+ i− 1))

OO

where the vertical maps come from passing to the generic points, and ∂ is

the connecting morphism for the Gysin sequence for (U,Z). This determines

∂y,x(α). If x ∈ {y}, but is not necessarily a smooth point of Y = {y}, let

Ỹ → Y be the normalization of Y . Any point x′ ∈ Ỹ above x has codimension

1 and thus is a regular point in Ỹ . Since the niveau spectral sequence is

covariant with respect to proper morphisms, there is a commutative diagram

(4.4)

Hr+i(k(y),Z/nZ(s+ i))

⊕
x′|x

∂Ỹ
y,x′

// ⊕
x′|x

Hr+i−1(k(x′),Z/nZ(s+ i− 1))

π∗

��
Hr+i(k(y),Z/nZ(s+ i))

∂y,x // Hr+i−1(k(x),Z/nZ(s+ i− 1)),

where π∗ is induced by π : Ỹ → Y ↪→ X. One can check that π∗((αx′)) =∑
x′|x

Corx′|x(αx′), where Corx′|x : Hµ(k(x′),Z/nZ(ν)) → Hµ(k(x),Z/nZ(ν)) is

the corestriction for the finite extension k(x′)/k(x). (This also makes sense if

this extension has some inseparable part.) Since ∂Ỹy,x′ can be treated as before,

this determines ∂y,x.

For a function field L of transcendence degree d over a perfect field k of

characteristic p > 0, a separated scheme X of finite type over L and n a power

of p, it was shown in [JS03] and [JSS14, 3.11.3] that the theory of Bloch and

Ogus can be literally extended to this situation for the case b = −d, where the

cohomology groups H i(X,Z/nZ(j)) and H i(k(x),Z/nZ(j)) are defined as in

(0.2).

For any excellent scheme X and arbitrary n, the complexes Cr,s(X,Z/nZ)

were defined by Kato (and named Cr,sn (X); cf. [Kat86]), in a more direct way, by
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using the Galois cohomology of discrete valuation fields, assuming the following

condition:

(∗) If r = s + 1 and p is a prime dividing n, then for any x ∈ X0 with

char(k(x)) = p, one has [k(x) : k(x)p] ≤ s.
It is shown in [JSS14] that both definitions agree (up to well-defined signs)

for varieties over fields in the cases discussed above.

Now let K be a global field, and let X be a variety over K. For every

place v of K, let Xv = X ×K Kv. Then condition (∗) holds for X and the

Xv for (r, s) = (2, 1) and arbitrary n. Moreover, one has natural restriction

maps αv : Cr,s(X,Z/nZ) → Cr,s(Xv,Z/nZ), and Kato stated the following

conjecture (see Conjecture 2).

Conjecture 4.5. Let X be connected, smooth, and proper. Then the αv
induce isomorphisms

Ha(C
2,1(X,Z/nZ))

∼→⊕
v
Ha(C

2,1(Xv,Z/nZ)) for all a 6= 0,

and an exact sequence

0→ H0(C2,1(X,Z/nZ))→⊕
v
H0(C2,1(Xv,Z/nZ))→ Z/nZ→ 0.

Remark 4.6. (a) For X = Spec (L), L any finite extension of K, the

cohomology groups vanish for a 6= 0, and the sequence for a = 0 becomes the

exact sequence

0→ H2(L,Z/nZ(1))→ ⊕
w∈P (L)

H2(Lw,Z/nZ(1))→ Z/nZ→ 0,

which is the n-torsion of the classical exact sequence

0→ Br(L)→ ⊕
w∈p(L)

Br(Lw)

∑
w

invw

−−−−−→ Q/Z→ 0

for the Brauer groups (where invw : Br(Lw)
∼→ Q/Z is the ‘invariant’ map).

Thus Kato’s conjecture is a generalization of this famous sequence to higher

dimensional varieties.

(b) As we will see below, the αv induce a map

(4.7) αX,n : C2,1(X,Z/nZ) −→⊕
v
C2,1(Xv,Z/nZ).

Let C ′(X,Z/nZ) be its cokernel. Then Conjecture 4.5 is implied by the fol-

lowing two statements:

(i) αX,n is injective;

(ii) H0(C ′(X,Z/nZ)) = Z/nZ, and Ha(C
′(X,Z/nZ)) = 0 for a > 0.
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Conversely, Conjecture 4.5 implies (i) and (ii) by the known case (a) and

induction on dimension, provided the occurring function fields have smooth

and proper models over the perfect hull of K (which holds over number fields).

We prove the following on Conjecture 4.5; compare with Remark 4.6(b).

Theorem 4.8. Let K be a global field, let n ∈ N be invertible in K , and

let X be a connected, smooth proper variety over K .

(a) The map αX,n : C2,1(X,Z/nZ) −→ ⊕
v C2,1(Xv,Z/nZ) is well defined

and injective.

(b) Let C ′(X,Z/nZ) be the cokernel of αX,n. If K is a number field or if

resolution of singularities holds over K (see Definition 4.18), then

Ha(C
′(X,Z/nZ)) =

0, a 6= 0,

Z/nZ, a = 0.

Proof of Theorem 4.8(a). First note that the restriction map αv factors

as

αv : C2,1(X,Z/nZ)
βv−→C2,1(X(v),Z/nZ)→ C2,1(Xv,Z/nZ),

where X(v) = X ×K K(v). These maps of complexes have components⊕
x∈Xi

H i+2(k(x),Z/nZ(i+ 1))→
⊕

x∈(X(v))i

H i+2(k(x),Z/nZ(i+ 1))

→
⊕

x∈(Xv)i

H i+2(k(x),Z/nZ(i)),

which in turn can be written as the sum, over all x ∈ Xi, of maps

H i+2(k(x),Z/nZ(i+ 1))→
⊕

x′∈(X(v))i

x′|x

H i+2(k(x′),Z/nZ(i+ 1))

→
⊕

x′′∈(Xv)i
x′′|x

H i+2(k(x′′),Z/nZ(i+ 1)).

By the same reasoning as in the proof of Theorem 3.8, the first map can be

identified with

H i+2(k(x),Z/nZ(i+ 1))→ ⊕
w|v

H i+2(k(x)K{x}(w),Z/nZ(i+ 1)),

where K{w} is the separable closure of K in k(x), which is a finite extension

of K, and where w runs over all places of K{x} above v. Note that k(x) is a

function field of transcendence degree i over K{x}. Therefore the restriction

maps above induce an injective map into the direct sum

H i+2(k(x),Z/nZ(i+ 1))→ ⊕
w∈P (K{x})

H i+2(k(x)(w),Z/nZ(i+ 1))
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by Proposition 1.2 and Theorem 2.10 (since the latter implies Theorem 0.4;

see the introduction). This shows that we get maps

(4.9) αX,n : C2,1(X,Z/nZ)
βX,n−−−→⊕

v
C2,1(X(v),Z/nZ)→⊕

v
C2,1(Xv,Z/nZ)

of which the first one is injective. The claim of Theorem 4.8(a) therefore follows

from the next claim.

Proposition 4.10. Let K be a global field, and let v be a place of K . For

every variety V over K(v), every integer n invertible in K and all r, s ∈ Z, the

natural map

Cr,s(V,Z/nZ)→ Cr,s(V ×K(v)
Kv,Z/nZ)

is injective.

Proof. In degree i, this map is the sum over all x ∈ Vi of restriction maps

Hr+i(k(x),Z/nZ(s+ i))→ ⊕
x′∈Ṽi
x′|x

Hr+i(k(x′),Z/nZ(s+ i)),

where Ṽ = V ×K(v)
Kv. For x ∈ Vi, k(x) is the function field of the integral

subscheme (of dimension i)Z = {x} ⊆ V . Because Kv/K(v) is separable,

and K(v) is algebraically closed in Kv, Z̃ = Z ×K(v)
Kv ↪→ Ṽ is a closed

integral subscheme whose generic point x̃ is in Ṽi and lies above x. Let L be

the algebraic closure of K(v) in k(x). Then L̃ = L ⊗K(v)
Kv is a field, Z is

geometrically integral over L with function field L(Z) = k(x), and Z̃ = Z×L L̃
with function field L̃(Z̃) = k(x̃). Moreover, L is henselian, with completion L̃.

Thus it follows from Theorem 2.12 that the natural map

Hr+i(k(x),Z/nZ(s+ i))→ Hr+i(k(x̃),Z/nZ(s+ i))

is injective for all r, s, i ∈ Z and all n ∈ N invertible in K(v). This proves

Proposition 4.10 and thus Theorem 4.8(a). �

Now we start the proof of Theorem 4.8(b). The following rigidity result

is shown in [Jan15].

Theorem 4.11. Let K be a global field, and let v be a place of K . For

every variety V over K(v), every integer n invertible in K , and all r, s ∈ Z,

the natural morphism of complexes

Cr,s(V,Z/nZ)→ Cr,s(V ×K(v)
Kv,Z/nZ)

is a quasi-isomorphism, i.e., induces isomorphisms in the homology.
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In view of this result and of the factorization (4.9), it suffices to prove

Theorem 4.8(b) after replacing Xv by X(v) for each v. In fact, by Theorem 4.11

we have a canonical quasi-isomorphism

(4.12) C(X,Q`/Z)
quis−→C ′(X,Z/nZ),

where the complex C(X,Q`/Z) is defined by the exact sequence

(4.13) 0→ C2,1(X,Z/nZ)
βX,n→ ⊕

v
C2,1(X(v),Z/nZ)→ C(X,Z/nZ)→ 0.

So our task is to show H0(C(X,Z/nZ)) = Z/nZ, and Ha(C(X,Z/nZ)) = 0 for

a 6= 0, if X is connected, smooth, and proper over K. Note that all complexes

in (4.12) are concentrated in degrees 0, . . . , d := dim(X).

Next we note the following.

Lemma 4.14. For n ∈ N invertible in K , the complex C(X,Z/nZ) can be

canonically identified with the complex C0,0(X,Z/nZ)GK :

· · · → ⊕
x∈Xr

Hr(K(x)⊗K K,Z/nZ(r))GK

→ · · · → ⊕
x∈X0

H0(K(x)⊗K K,Z/nZ(0))GK ,

obtained from the Kato complex C0,0(X,Z/nZ) by taking coinvariants.

Proof. This follows easily by means of the arguments used in the proof of

Lemma 3.15, together with the explicit description of the differentials in this

complex in (4.4) and the covariance of the Hochschild-Serre spectral sequence

for corestrictions. �

With these tools at hand, we can reduce the proof of Theorem 4.8(b) to

a Q`/Z`-version. Note that it suffices to prove Theorem 4.8(b) for n = `m,

for any prime ` invertible in K and any natural number m. For any prime `

and any integers r, s and any scheme Z where it is defined, define the Kato

complex Cr,s(Z,Q`/Z`) as the direct limit of the complexes Cr,s(Z,Z/`nZ)

via the transition maps induced by the canonical injections Z/`nZ→ Z/`n+1.

Then we have, in fact,

Lemma 4.15. Let K be a global field, let X be a connected, smooth proper

variety over K , and let ` be any prime. Define the map

β`∞ : C2,1(X,Q`/Z`) −→
⊕
v
C2,1(X(v),Q`/Z`)

as the inductive limit of the maps βX,`m for all m ∈ N, and let C(X,Q`/Z`)
be its cokernel.

(a) The injectivity of βX,`∞ is equivalent to the injectivity of the β`m for all m.
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(b) To have H0(C(X,Q`/Z`) = Q`/Z` and Ha(C(X,Q`/Z`)) = 0 for a 6= 0 is

equivalent to having H0(C(X,Z/`mZ)) = Z/`mZ and Ha(C(X,Z/`mZ))

= 0 for all a 6= 0 for all m ∈ N.

Proof. Let F be a function field in d variables over K. Then the theorem

of Rost-Voevodsky, more precisely, the validity of the condition BK(F, d+1, `)

recalled in the introduction, implies that the sequence

0→ Hd+2(F,Z/`nZ(d+ 1))
i−→ Hd+2(F,Q/Z`(d+ 1))

`n→Hd+2(F,Q/Z`(d+ 1))

is exact (see the introduction), and the same holds for the fields Fv, for all

places v of K. By applying this to all residue fields of X and Xv, for all v, we

get a commutative diagram with exact rows

(4.16)

⊕
v
C2,1(X(v),Z/`nZ)

� � i′ // ⊕
v
C2,1(X(v),Q`/Z`)

`n // ⊕
v
C2,1(X(v),Q`/Z`)

C2,1(X,Z/`nZ)

βX,`n

OO

� � i // C2,1(X,Q`/Z`)

βX,`∞

OO

`n // C2,1(X,Q`/Z`)

βX,`∞

OO

with injections i and i′, and we deduce the claim in (a).

Now we consider the cokernels of the vertical maps. First assume that K

is a global function field. Then we claim that we even have an exact sequence

0→ Hd+2(F,Z/`nZ(d+ 1))
i−→ Hd+2(F,Q/Z`(d+ 1))

`n−→ Hd+2(F,Q/Z`(d+ 1))→ 0,

and similarly for all F(v)v. In fact, we have Hd+3(F,Z/`nZ(d + 1)) = 0: If

` 6= char(F ), then F has `-cohomological dimension d + 2, and if ` = p =

char(F ), then we have Hd+3(F,Z/`nZ(d + 1)) = H2(F,WnΩF,log), but F has

p-cohomological dimension 1. Exactly the same reasoning works for F(v). Writ-

ing, for n a positive integer or n =∞,

Cn := coker[Hd+2(F,Z/`nZ(d+ 1)) −→⊕
v H

d+2(F(v),Z/`nZ(d+ 1))],

where we set Z/`∞Z := Q`/Z`, we obtain an exact sequence

0→ Cn → C∞ → C∞ → 0.

Applied to the points of X and the Xv and the morphisms βX,`m for n ∈
N ∪ {∞}, we now get an exact sequence

0→ C(X,Z/`nZ)→ C(X,Q`/Z`)
`n→C(X,Q`/Z`)→ 0,

and the claim of 4.15(b) follows in this case.

Now let K be a number field. If ` 6= 2 or if K has no real places, then F

has `-cohomological dimension d + 2, and we can argue in the same way. In

general, we can argue in the following way. In any case, a function field F of

transcendence degree d over an algebraically closed field has `-cohomological
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dimension d for ` invertible in F . It follows that for any variety X over K the

sequence

(4.17) C0,0(X,Z/`nZ)→ C0,0(X,Q`/Z`)
`n→C0,0(X,Q`/Z`)→ 0

is exact, where X = X ×K K for an algebraic closure K of K. Obviously this

complex stays exact if we pass to the co-invariants under GK , the absolute

Galois group of K.

Now βX,`∞ is injective by Theorem 2.10. (Note that ` is invertible in K.)

By (4.17) and Lemma 4.14, we get the following commmutative diagram with

exact rows and columns:
0x

0 −−−−−−→ C2,1(X,Q`/Z`)
βX,`∞−−−−−−→

⊕
v

C2,1(X(v),Q`/Z`) −−−−−−→ C(X,Q`/Z`) −−−−−−→ 0x`n x`n x`n
0 −−−−−−→ C2,1(X,Q`/Z`)

βX,`∞−−−−−−→
⊕
v

C2,1(X(v),Q`/Z`) −−−−−−→ C(X,Q`/Z`) −−−−−−→ 0x x xi
C2,1(X,Z/`nZ)

βX,`n−−−−−−→
⊕
v

C2,1(X(v),Z/`nZ) −−−−−−→ C(X,Z/`nZ) −−−−−−→ 0x x
0 0

A simple diagram chase now shows that βX,`n and i are injective, which gives

an exact sequence

0 −−−−→ C(X,Z/`nZ) −−−−→ C(X,Q`/Z`) −−−−→ C(X,Q`/Z`) −−−−→ 0.

This implies Lemma 4.15(b). �

Definition 4.18. Let L be a perfect field. We say that resolution of sin-

gularities holds over L, or that (RS)L holds, if the following two conditions

hold:

(RS1)L: For any integral and proper variety X over L, there exists a proper

birational morphism π : X̃ → X such that X̃ is smooth over L.

(RS2)L: For any smooth affine variety U over L, there is an open immersion

U ↪→ X such that X is projective smooth over L and Y = X − U
(with the reduced subscheme structure) is a simple normal crossing

divisor on X.

By Hironaka’s fundamental results [Hir64a], [Hir64b], resolution of singu-

larities holds over fields L of characteristic zero.

Using the quasi-isomorphism (4.12) as well as Lemmas 4.14 and 4.15,

Theorem 4.8(b) is obviously implied by the following result.

Theorem 4.19. Let K be a finitely generated field with algebraic closure

K and perfect hull Kper, let ` be a prime, and let X be an irreducible smooth
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proper variety over K . Assume that resolution of singularities holds over L =

Kper. Then for the Kato complex C(X,Q`/Z`) := C0,0(X,Q`/Z`)GK , one has

Ha(C(X,Q`/Z`)) =

Q`/Z`, a = 0,

0, a 6= 0.

Here GK , the absolute Galois group of K , is regarded as Gal(K/Kper).

Note that Theorem 4.19 implies Theorem 0.11. By the following lemma,

it also implies Theorem 0.10, concerning Kato’s conjecture over finite fields.

Lemma 4.20. Let k be a finite field, and let X be any variety over k.

(a) One has a canonical isomorphism of complexes

C1,0(X,Z/`nZ) ∼= C0,0(X ×k k,Z/`nZ)Gk .

(b) The canonical sequence

0→ C1,0(X,Z/`nZ)→ C1,0(X,Q`/Z`)
`n→C1,0(X,Q`/Z`)→ 0

is exact.

Proof. Let F be a function field of transcendence degree m over k. Then

one has canonical isomorphisms

Hm+1(F,Z/`nZ(m)) ∼= H1(k,Hm(Fk,Z/`nZ(m))) ∼= Hm(Fk,Z/`nZ(m))Gk ,

where Fk is the function field over k deduced from F ; i.e., Fk = F⊗{k}k, where

{K} is the algebraic closure of k in F . In fact, the first isomorphism follows

from the Hochschild-Serre spectral sequence, because Fk has `-cohomological

dimension m, and the second isomorphism comes from the canonical identifica-

tion H1(k,M) = MGk for any Gk-module M if k is a finite field. By applying

this to all fields k(x) for x ∈ X, we obtain (a).

(b) follows from the exact sequence

0→Hm+1(F,Z/`nZ(m))→Hm+1(F,Q`/Z`(m))
`n−→Hm+1(F,Q`/Z`(m))→0,

in which the exactness on the left follows from the results of Bloch-Kato-

Gabber (for ` = p = char(k)) and Merkurjev-Suslin-Rost-Voevodsky (for `

invertible in k) — see the introduction — and the exactness on the right follows

from the cohomological dimension of F ; compare the proof of Theorem 4.15.

�

The proof of Theorem 4.19 will be given in the next section. The idea

is to ‘localize’ the question; but for this we will have to leave the realm of

smooth proper varieties. First recall that the complexes Cr,s(X,Z/nZ) exist

for arbitrary varieties X over a field L, under the conditions on X, n, and (r, s)

stated at the beginning of this section. If K is a global field, the restriction
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map C2,1(X,Q`/Z`) → ΠvC
2,1(X(v),Q`/Z`) still has image in the direct sum

and is injective (by Proposition 1.2 and the same argument as for 4.8 (a)), and

we may define C(X,Q`/Z`) for arbitrary varieties X over K by exactness of

the sequence

(4.21) 0→ C2,1(X,Q`/Z`)→
⊕
v
C2,1(X(v),Q`/Z`)→ C(X,Q`/Z`)→ 0.

At the same time, by the same arguments as in Lemma 4.14, we have a canon-

ical isomorphism

C(X,Q`/Z`) ∼= C0,0(X,Q`/Z`)GK
for ` invertible in K.

Definition 4.22. Let L be a field, and let C be a category of schemes of

finite type over L such that for each scheme X in C, also every closed immersion

i : Y ↪→ X and every open immersion j : U ↪→ X is in C.
(a) Let C∗ be the category with the same objects as C, but where morphisms

are just the proper maps in C. A homology theory on C is a sequence of

covariant functors

Ha(−) : C∗ → (abelian groups) (a ∈ Z)

satisfying the following conditions:

(i) For each open immersion j : V ↪→ X in C, there is a map j∗ : Ha(X)→
Ha(V ), associated to j in a functorial way.

(ii) If i : Y ↪→ X is a closed immersion in C, with open complement j :

V ↪→ X, there is a long exact sequence (called localization sequence)

· · · δ−→ Ha(Y )
i∗−→ Ha(X)

j∗−→ Ha(V )
δ−→ Ha−1(Y ) −→ · · · .

(The maps δ are called the connecting morphisms.) This sequence

is functorial with respect to proper maps or open immersions, in an

obvious way.

(b) A morphism between homology theoriesH andH ′ is a morphism φ :H→H ′

of functors on C∗, which is compatible with the long exact sequences

from (ii).

Lemma 4.23.

(a) Let L be a field, and let r, s, and n ≥ 1 be fixed integers with n invertible

in L, or r 6= s + 1, or p = char(L) | n and r = s + 1 and [L : Lp] ≤ ps.

There is a natural way to extend the assignments

X p Hr,s
a (X,Z/nZ) := Ha(C

r,s(X,Z/nZ)) (a ∈ Z)

to a homology theory on the category of all varieties over L.
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(b) The same holds for the assignment

X p H
r,s
a (X,Z/nZ) := Ha(C

r,s
(X,Z/nZ)) (a ∈ Z),

where C
r,s

(X,Z/nZ) := Cr,s(X,Z/nZ)GL , with X = X ×L L for a sepa-

rable closure of L.

Proof. (a) The Bloch-Ogus-Kato complexes are covariant with respect to

proper morphisms and contravariant with respect to open immersions. The

localization sequence for a closed immersion i : Y ↪→ X with open complement

j : U = X r Y ↪→ X is obtained by the short exact sequence of complexes

0→ Cr,s(Y,Z/nZ)
i∗−→ Cr,s(X,Z/nZ)

j∗−→ Cr,s(U,Z/nZ)→ 0

which are componentwise canonically split (cf. also [JS03, Cor. 2.10]).

(b) This follows from (a), because the mentioned splitting is equvariant,

so that the sequences stay exact after taking coinvariants. �

The mentioned localization is now obtained by the following observation.

Lemma 4.24. Let L be a perfect field, let C be a category of schemes of

finite type over L as in 4.20, and let ϕ : H → ‹H be a morphism of homology

theories on the category C∗ of all schemes in C with proper morphisms. For

every integral variety Z over L, let L(Z) be its function field. Define

Ha(L(Z)) := lim
−→

Ha(U),

where the limit is over all nonempty open subvarieties U of Z , and define‹Ha(L(Z)) similarly. Suppose the following holds for every integral variety Z

of dimension d over L:

(i) Ha(L(Z)) = 0 for a 6= d,

(ii) ‹Ha(L(Z)) = 0 for a 6= d, and

(iii) the map ϕ : Hd(L(Z))→ ‹Hd(L(Z)) induced by ϕ is an isomorphism.

Then ϕ is an isomorphism of homology theories.

Before we give a proof for this, we note the following.

Remark 4.25. The homology theories of 4.23(a) clearly satisfy condition

4.24(i). In fact, setting

Cr,s(L(X),Z/nZ) = lim
−→

Cr,s(U,Z/nZ)

for an integral X, where the limit is over all nonempty open subvarieties U

of X, we trivially have Cr,sa (L(X),Z/nZ) = 0 for a 6= dimX, because for any

x ∈ X different from the generic point, there is a nontrivial open U ⊂ X

not containing x. Hence 4.24(i) also holds for the homology theories from

4.23(b). The proof of Theorem 4.19 will then be achieved as follows. In the

next section we will define a homology theory HW
∗ (−,Q`/Z`), over any field
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K of characteristic 0, or over a perfect field of positive characteristic assuming

resolution of singularities, which a priori satisfies

(4.26) HW
a (X,Q`/Z`) =

Q`/Z`, a = 0,

0, a 6= 0

if X is smooth, proper and irreducible. Moreover, we will show that 4.22(ii)

holds for HW . Still under the same assumptions we will construct a morphism

ϕ : H∗(−,Q`/Z`) := H
0,0
∗ (−,Q`/Z`)→ HW (−,Q`/Z`)

of homology theories which satisfies 4.24(iii) if K is finitely generated. Thus, by

Lemma 4.24, ϕ is an isomorphism, and hence (4.26) also holds forH∗(−,Q`/Z`),
which proves 4.19.

Proof of Lemma 4.24. For every homology theory H over L, there is a

strongly converging niveau spectral sequence

E1
p,q(X) =

⊕
x∈Xp

Hp+q(k(x))⇒ Hp+q(X)

for every X; cf. [BO74] and [JS03]. If ‹E1
p,q ⇒ ‹Hp+q is associated to another

homology theory ‹H, then every morphism ϕ : H → ‹H induces a morphism

E → ‹E of these spectral sequences, compatible with ϕ on the E1-terms and

limit terms. In the situation of 4.24, conditions (i), (ii), and (iii) imply that ϕ

induces isomorphisms on the E1-terms, and hence ϕ also gives an isomorphism

between the limit terms, i.e., between H and ‹H. �

5. Weight complexes and weight cohomology

Let k be a field. Let X be a smooth, proper variety of dimension d over

k, and let Y =
r⋃
i=1

Yi be a divisor with simple normal crossings in X — with a

fixed ordering of the smooth components as indicated.

Definition 5.1. Let F be a covariant functor on the category SPk of

smooth projective varieties with values in an abelian category A which is ad-

ditive in the sense that the natural arrow

F (X1)
⊕
F (X2)→ F (X1

∐
X2)

is an isomorphism in A, where X1
∐
X2 is the sum (disjoint union) of two

varieties X1, X2 in SPk. Then define LiF (X,Y ) as the i-th homology of the

complex

C.F (X,Y ) : 0→ F (Y [d])→ F (Y [d−1])→ · · · → F (Y [1])→ F (X)→ 0.



HASSE PRINCIPLES FOR HIGHER-DIMENSIONAL FIELDS 53

Here F (Y [j]) is placed in degree j, and the differential ∂ : F (Y [j])→ F (Y [j−1])

is
j∑

ν=1
(−1)νδν , where δν is induced by the inclusions

Yi1,...,ij ↪→ Yi1,...,̂iν ,...,ij

for 1 ≤ i1 < · · · < ij ≤ r (and where Y [0] = X, as usual).

Remark 5.2. There is the dual notion of an additive, contravariant functor

G from SPk to A, and here we define RiG(X,Y ) to be the i-th cohomology

of the complex

C ·G(X,Y ) : G(X)→ G(Y [1])→ · · · → G(Y [d−1])→ G(Y [d]),

with G(Y [j]) placed in degree j.

We may apply this to the following functors. Let Ab be the category of

abelian groups.

Definition 5.3. For any abelian group A, define the covariant functor

H0(−, A) : SPk → Ab and the covariant functor H0(−, A) : SPk → Ab by

H0(X,A) =
⊕

α∈π0(X)
A = A⊗Z Z[π0(X)],

H0(X,A) = Aπ0(X) = Map(π0(X), A),

where Z[M ] is the free abelian group on a set M and Map(M,N) is the set

of maps between two sets M and N . (Hence if A happens to be a ring, then

H0(X,A) is the free A-module on π0(X), and H0(X,A) = HomA(H0(X,A), A)

is its A-dual.) We write CW· (X,Y ;A) for C·H0(−, A)(X,Y ) and call

HW
i (X,Y ;A) := LiH0(−, A)(X,Y ) = Hi(C·(X,Y ;A))

the weight homology of (X,Y ). Similarly define

C ·W (X,Y ;A) = C ·H0(−, A)(X,Y )

and call H i
W (X,Y ;A) = H i(C ·W (X,Y ;A)) the weight cohomology of (X,Y ).

Proposition 5.4. Let Yr+1 be a smooth divisor on X such that the inter-

sections with the connected components of Y [j] are transversal for all j and con-

nected for all j ≤ d−2. (Note: If k is infinite, then by the Bertini theorems such

a Yr+1 exists by taking a suitable hyperplane section, since dimY [j] = d− j ≥ 2

for j ≤ d − 2.) Let Z =
r+1⋃
i=1

Yi (which, by the assumption, is again a divisor

with normal crossings on X). Then, for any abelian group A,

HW
i (X,Z;A) = 0 = H i

W (X,Z;A) for i ≤ d− 1.
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Proof. Fix A, and omit it in the notation. We get a commutative diagram

0 // 0 //

��

H0(Y [d−1] ∩ Yr+1)
δd−1 //

ψd−1����

H0(Y [d−2] ∩ Yr+1) //

ψd−2o
��

· · ·

0 // H0(Y [d])
∂d // H0(Y [d−1])

∂d−1 // H0(Y [d−2]) // · · ·

· · · // H0(Y [1] ∩ Yr+1) //

ψ1o
��

H0(Yr+1) //

ψ0o
��

0

· · · // H0(Y [1]) // H0(X) // 0,

where the bottom line is the complex CW· (X,Y ) and the top line is CW· (Yr+1,

Y ∩ Yr+1) (note that Y ∩ Yr+1 =
r⋃
i=1

(Yi ∩ Yr+1) is a divisor with strict normal

crossings on the smooth, projective variety Yr+1), and where ψν is induced by

the inclusion Y [ν] ∩ Yr+1 ↪→ Y [ν].

By the assumption, ψν is an isomorphism for ν ≤ d− 2 and a (noncanon-

ically) split surjection for ν = d− 1. Hence we have isomorphisms

HW
i (Yr+1, Y ∩ Yr+1)

∼−→ HW
i (X,Y ) for i ≤ d− 2

and a surjection

HW
d−1(Yr+1, Y ∩ Yr+1)� HW

d−1(X,Y ).

Moreover, let C·· be the associated double complex, with H0(X) placed in

degree (0, 0) and ψν being replaced by (−1)νψν . Then the associated total

complex s(C··) is just the complex CW· (X,Z). Hence the result follows, and

we have exact sequences

0→ HW
d (X,Y )→ HW

d (X,Z)→ HW
d−1(Yr+1, Y ∩ Yr+1)→ HW

d−1(X,Y )→ 0,

0→ ker(ψ)d−1 → HW
d (X,Z)→ HW

0 (Y [d])→ 0.

The proof for H i
W (X,Z) is dual. (Note, however, that in general, HW

· (X,Y )

and H ·W (X,Y ) are related by a coefficient theorem in an nontrivial way.) �

Corollary 5.5. HW
d (X,Z;Z) is a finitely generated free Z-module, and

we have an isomorphism HW
d (X,Z;A) ∼= Hd(X,Z; Z) ⊗Z A. The same holds

for Hd
W (X,Z).

Proof. The first statement follows since ker(ψ)d−1 and H0(Y [d]) have this

property for A = Z, and the second claim follows from 5.4 and the universal

coefficient theorem. Similarly for Hd
W (X,Z). �

Corollary 5.6. HW
d (X,Z;Q`/Z`) is divisible.
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Now let U = X r Y .

Proposition 5.7. Let U = U ×k k, where k is the algebraic closure of k.

Then there are canonical homomorphisms

Hd
ét(U,Z/nZ(d))

e−→ HW
d (X,Y ;Z/nZ)

for all n ∈ N. If k is finitely generated and if X r Yν is affine for one ν ∈
{1, . . . , r}, then these induce isomorphisms

Hd
ét(U,Q`/Z`(d))Gk

∼−→ HW
d (X,Y ;Q`/Z`)

for all primes `.

This is just a reformulation of Theorem 3.1, in which the construction of

e does not depend on the assumption that some X r Yν is affine.

Remark 5.8. In particular, with the notation and assumptions of 5.4, this

applies to (X,Z) and U = X r Z.

We want to have these results in a more functorial setting. This is possible

if resolution of singularities holds in a suitable form.

Theorem 5.9. Let k be a field, with perfect hull L = kper, let A be an

abelian group, and assume that condition (RS1)L from 4.18 holds. Then there

exists a homology theory (in the sense of Definition 4.22) (HW
a (−, A), a ∈ Z)

on the category (Vk)∗ of all varieties over k with proper morphisms such that

the following holds :

(i) For any smooth, proper, and connected variety X over k, one has

HW
a (X,A) =

0, a 6= 0,

A, a = 0.

(ii) If X is smooth and proper over k and Y is a divisor with simple normal

crossings on X , then one has a canonical isomorphism for U = X \ Y ,

HW
a (U,A) ∼= HW

a (X,Y ;A) = Ha

( ⊕
π0(Y [e])

A→ · · · → ⊕
π0(Y [1])

A→ ⊕
π0(X)

A
)
,

where the right-hand side is defined in Definition 5.3. We call HW
a (−, A)

the weight homology with coefficients in A.

Proof. First assume that k is perfect. We want to show that the covariant

functor (cf. 5.3)

F : X p H0(X,A) =
⊕
π0(X)

A

on the category SPk of all smooth proper varieties over k extends to a ho-

mology theory on all of Vk and fulfills (ii). By the method of Gillet and Soulé
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([GS96, proof of 3.1.1]) this holds if (RS1)k holds and if F extends to a con-

travariant functor on Chow motives over k, i.e., admits an action of algebraic

correspondences modulo rational equivalence. But the latter is clear — in

fact, one has F (X) = Hom(CH0(X), A), where CHj(X) is the Chow group of

algebraic cycles of codimension j on X, modulo rational equivalence. �

If k is general, we just define

HW
a (Z,A) := HW

a (Z ×k kper),

where the theory on the right is the one existing over kper by our assumptions

and the case of a perfect field. Note that Z ×k kper is again connected for

connected Z.

Theorem 5.10. Let k be a field, and assume that resolution of singulari-

ties holds over the perfect hull L of k (see Definition 4.18). Then the homology

theory HW
∗ (−, A) of Theorem 5.9 has the property 4.24(ii).

Proof. By construction we may assume k is perfect. For every integral

variety Z of dimension d over k, we have to show

(5.11) HW
a (k(Z), A) := lim

−→
HW
a (V,A) = 0 for a 6= d,

where the inductive limit is over all nonempty open subvarieties V ⊂ Z.

Now assume property (RS2)k from 4.18 holds. Then, by perfectness of

k, for every nonempty open subvariety V ⊂ Z, there is a nonempty smooth

open subvariety U ⊂ V , and by (RS2)k, there is an open embedding U ↪→ X

into a smooth projective variety X such that the complement Y = X \ U
is a divisor with strict normal crossings. If k is infinite then, by Bertini’s

theorem, there exists a smooth hyperplane section H of X whose intersection

with all connected components of Y [i] is smooth, and connected for i ≤ d− 2.

Writing Z = Y ∪ H (which is a divisor with strict normal crossings on X)

and U0 = X \ Z ⊂ U ⊂ V , we get HW
a (U0, A) = HW

a (X,Z;A) = 0 for

a 6= d by Property 5.9(ii) and Proposition 5.4. Since V was arbitrary, we get

property (5.11).

If k is finite, we use a suitable norm argument. By what has been shown,

for each prime p, we find such a hyperplane section after base change to an

extension k′/k of degree [k′ : k] = pr, a power of p (the maximal pro-p-extension

of k is an infinite field). Then the map

HW
a (Vk′ , A)→ HW

a (k′(Zk′), A)

is zero.

Now we note that there is a homology theory HW (−, A; k′) on all varieties

over k, defined by HW
a (Z,A; k′) = HW

a (Zk′ , A) and the induced structure



HASSE PRINCIPLES FOR HIGHER-DIMENSIONAL FIELDS 57

maps. This is also the homology theory which is obtained by the method

of Theorem 5.9, by extending the covariant functor

F ′ : SPk −→ Ab , X p 
⊕

π0(Xk′ )

A

to a homology theory on all varieties. There is an obvious morphism of functors

Tr : F ′ → F (trace, or norm), induced by the natural maps π0(Xk′)→ π0(X).

On the other hand there is also a morphism of functors Res : F → F ′ (restric-

tion) such that Tr Res = [k′ : k].

This is best seen by noting that for any smooth proper variety X/k one

has a canonical isomorphism

F (X) =
( ⊕
π0(X×kk)

A
)
Gk

∼−→
⊕
π0(X)

A,

where k is an algebraic closure of k. Similarly, F ′(X) = BGk′ , where

B =
⊕

π0((X×kk′)×k′k)

A =
⊕

π0(X×kk)

A.

In these terms, Tr is induced by the natural map BGk′ → BGk . Conversely, for

any profinite group G, any open subgroup U , and any discrete G-module C,

we have a well-defined functorial map

Cor∨(C) : CG −→ CH , class of a 7→ class of
∑

σ∈G/H
σa,

and the composition Cor∨ ◦ π is the multiplication by (G : H). Applied to

(G,H,C) = (Gk, Gk′ , B), we get the claim.

By the construction of Gillet and Soulé (or by Theorem 5.13 and Re-

mark 5.15 below), Tr extends to morphism of homology theories

Tr : HW (−, A; k′)→ HW (−, A),

and one checks that the induced maps HW
a (Zk′ , A) → HW

a (Z,A) are just the

maps obtained from functoriality for proper morphisms. Similarly, Res extends

to a morphism of homology theories Res : H(−, A) → HW (−, A; k′), and one

has Tr Res = [k′ : k] = pr, because this holds for the restriction to the functors

F and F ′. The outcome is that the kernel of Res is killed by pr. From the

commutative diagram

HW
a (Vk′ , A) → HW

a (k′(Zk′), A),

↑ ↑
HW
a (V,A) → HW

a (k(Z), A)

we then get that the image of HW
a (V,A) in HW

a (k(Z), A) is killed by pr for

a 6= e, because its image in HW
a (k′(Zk′), A) is zero. Since this holds for all

V (with varying powers of p), we conclude that every element in the group

HW
a (k(Z), A) is killed by a power of p. Since this also holds for any second

prime q 6= p, we conclude the vanishing of HW
a (k(Z), A). �
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Theorem 5.12. Let ` be a prime, and let K be a finitely generated field

such that resolution of singularities holds over the perfect hull L = Kper of K .

Let H∗(−,Q`/Z`) = H∗(C
0,0

(−,Q`/Z`)) and HW
∗ (−,Q`/Z`) be the homology

theories on VK defined in 4.23(b) and 5.9, respectively. There exists a mor-

phism

ϕ : H∗(−,Q`/Z`) −→ HW
∗ (−,Q`/Z`)

of homology theories such that properties (i)–(iii) of Lemma 4.24 are fulfilled

for H , HW , and ϕ. Consequently, ϕ is an isomorphism of homology theories.

Evidently this theorem implies Theorem 4.19, in view of 5.9(i). Since

HW
∗ (−,Q`/Z`) is defined via the method of Gillet and Soulé in [GS96, 3.1.1],

we need to analyze the constructions in [GS96] more closely. There functors

on Chow motives with values in abelian categories are extended to homology

theories on all varieties. We give a more general version for complexes in the

following form.

Theorem 5.13. Let k be a perfect field, let C≥0(A) be the category of non-

negative homological complexes · · · → C2 → C1 → C0 in an abelian category A,

and let

C : SPk → C≥0(A)

be a covariant functor on the category SPk of all smooth proper varieties

over k. Assume that the associated functors

HC
a : SPk → A, X p Ha(C(X))

extend to contravariant functors on the category CHMeff(k, d) of effective

Chow motives (i.e., Z-linear motives modulo rational equivalence) generated

by all smooth proper varieties over k. Assume further that resolution of singu-

larities holds over k. Then the above functors HC
a extend in a natural way to

a homology theory ĤC
a on the category Vk of all varieties over k.

Proof (cf. the reasoning in [GS96, 5.3]). For the proof it is better to con-

sider the category (CHMeff(k, d))op of covariant effective Chow motives. By

(RS1) any proper variety Z over k has a smooth proper hyperenvelope, i.e.,

a hyperenvelope (cf. [GS96, 1.4.1 and Lemma 2]) h : Z̃. → Z where the com-

ponents Z̃r of the simplicial scheme Z̃. are smooth and proper, and every

morphism f : Y → X of proper varieties has a smooth proper hyperenvelope,

i.e., there is a commutative square

Y.
f.−−−−→ X.

hY

y yhX
Y

f−−−−→ X,
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in which hY and hX are smooth proper hyperenvelopes. Fixing such a diagram

for every morphism f of proper varieties, we can proceed as follows. If V is

an arbitrary reduced variety over k, fix an open embedding j : V ⊂ Z into a

proper variety, and let Y = Z \ V , so that i : Y ↪→ Z is a closed immersion.

Then take the corresponding morphism of hypercoverings i. : Y. → Z., and the

associated morphism of complexes of effective (covariant) Chow motives

(i.)∗ : M(Y.) −→M(Z.),

where the differentials are the alternating sums of the simplicial morphisms dj .

Finally take the cone Cone(M(Y.)
i.∗−→M(Z.)), which gives a complex of mo-

tives

M(V ). : · · · →M(Zn)⊕M(Yn−1)→M(Zn−1)⊕M(Yn−2)→ · · · ,

which is called the weight complex of V . It is known that this complex does not

depend on the choices, up to homotopy of complexes, and can be represented

by a finite complex. We can now define the functor C on all varieties by letting

C(V ) be the associated total complex of the double complex C(M(V ).), which

is well defined since, by assumption, C(X) only depends on the motive of X

for a smooth proper variety X. Then we have a convergent spectral sequence

(5.14) E1
p,q(V.) = Hp(Hq(C(V.)))⇒ Hp+q(tC(V.)).

To avoid confusion: E1
p,q is the p-th homology of the complex

Hq(V.) : · · · → Hq(Vr)→ Hq(Vr−1)→ · · · → Hq(V0).

For every morphism g : W. → Z. of smooth proper simplicial schemes, we have

a morphism E(W.) → E(Z.) of spectral sequences. If g is a hyperenvelope

of simplicial schemes (see [GS96, 1.4.1]), then the fundamental result [GS96,

Prop. 2] asserts that the induced morphism

g∗ : M(Z.) −→M(W.)

is a homotopy equivalence. Hence g induces an isomorphism on the E2-terms of

the above spectral sequences, and thus an isomorphism g∗ : Ha(W.)→ Ha(Z.)

for all a.

Using this, we get the functoriality of our homology theory on Vk following

the reasoning in [GS96, 2.3]: If f : V1 → V2 is a proper morphism of varieties

and iν = iVν : Zν \ Vν ↪→ Zν is as chosen above (ν = 1, 2), then there is a

canonical diagram in the category Ar(Pk) of morphisms in the category Pk of

proper varieties over k

if
π2−−−−→ i2

π1

y
i1
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in which π1 is Gersten acyclic (loc. cit.) and hence induces a quasi-isomorphism

C (̃if )→ C (̃i1). (For this one reasons via the spectral sequences (5.14).) This

gives

f∗ := Ha(f) := Ha((π1)∗)
−1Ha((π2)∗) : Ha(Z1)→ Ha(Z2).

This is functorial with the same argument as in [GS96, 2.3].

Moreover, we remark that, for another choice of compactifications jZ and

hence maps iZ , say j′Z and i′Z , the morphisms Ha(idZ) give canonical isomor-

phisms between the different constructions of Ha. Also if we take another

choice for the hyperenvelopes f̃ , then the reasoning in [GS96, 2.2] shows that

the resulting homology theory is canonically isomorphic to the one for the first

choice. In this sense, the homology theory ĤC with ĤC(V )a = Ha(C(V ) is

canonical.

To obtain properties 4.22(a)(i) and (ii) for our homology theory, i.e., con-

travariance for open immersions and the exact localization sequences, we pro-

ceed as in [GS96, 2.4]: For a variety Z and a closed subvariety Z ′ ⊂ Z with

open complement U = Z \ Z ′, choose a compactification Z ↪→ Z, and let

Y = Z \ Z, and Y ′ = Z \ U , so that Z ′ = Y ′ \ Y . Then we choose smooth

projective hyperenvelopes Z̃ → Z, Ỹ → Y and Ỹ ′ → Y ′ such that one has

morphisms

ĩ : Ỹ
k̃−→ Ỹ ′

ĩ′−→ Z̃

lifting the closed immersions i : Y
k
↪→Y ′

i′
↪→Z. We obtain a triangle of mapping

cones

C(k̃) −→ C (̃i) −→ C(ĩ′) −→ C(k̃)[−1],

which represents the desired triangle

C(Z ′) −→ C(Z) −→ C(U) −→ C(Z ′)[−1]

in the derived category which, in turn, gives rise to the exact localization

sequence

· · · → Ha(Z
′)→ Ha(Z)→ Ha(U)→ Ha−1(Z ′)→ · · ·

and thereby also to the pullback j∗ for the open immersion j : U → Z. The

functorial properties are easily checked. �

Remark 5.15. Assume that C ′ : SPk → C≥0(A) is another functor with

the properties required in Theorem 5.13 and ϕ : C → C ′ is a morphism of

functors. Then it is clear from the construction that there is a canonical

induced morphism ϕ : ĤC → ĤC′ of the associated homology theories on Vk.

Proposition 5.16. Let (Vk)∗ be the category of all varieties over k with

all proper morphisms between them. Let

C : (Vk)∗ −→ C≥0(A)
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be a covariant functor which is equipped with the following additional data :

(i) For every open immersion j : U ↪→ Z in (Vk)∗, there is a morphism

j∗ : C(Z)→ C(U), associated to j in a functorial way.

(ii) If i : Y ↪→ Z is a closed immersion in (Vk)∗, with open complement

j : U ↪→ Z , then there is a short exact sequence of complexes

0→ C(Y )
i∗→C(X)

j∗→C(U)→ 0.

This sequence is functorial with respect to proper morphisms and open

immersions, in an obvious way.

Let H be the obvious homology theory on (Vk)∗ deduced from C , with Ha(Z) =

Ha(C(Z)), and let CSP be the restriction of C to SPk. Assume that the asso-

ciated functors

Ha : SPk → A , X p Ha(C(X))

extend to contravariant functors on the category CHMeff(k) of effective Chow

motives, and let Ĥ be the homology theory on Vk derived from CSP via Theo-

rem 5.12. Then Ĥ and H are canonically isomorphic.

Proof. This follows from the following descent lemma (which we only need

for the case that X is proper and Z. is a smooth proper hyperenvelope). �

Lemma 5.17. If Z. → X is a hyperenvelope of a variety X over k, then

the canonical morphism

tC ′(Z.) −→ C ′(X)

(induced by the morphism Z̃0 → X) is a quasi-isomorphism. Here C ′(Z.) and

tC ′(Z.) are defined as in the proof of Theorem 5.13.

Proof. This follows in a similar way as in the descent theorem [Gil84,

Th. 4.1]. Let me very briefly recall the three steps.

(I) If Z. = coskX0 (Z) for an envelope Z → X, and Z → X has a section,

then Z. is homotopy equivalent to the constant simplicial variety X, and the

claim follows via the convergent spectral sequence

(5.18) E1
p,q(Z.) = Hp(Hq(C

′(Z.)))⇒ Hp+q(tC
′(Z.)),

whose existence follows with the same argument as for 5.13. (It is the spectral

sequence for the filtration with respect to the ‘simplicial’ degree of the bi-

complex C ′(Z.).)

(II) If still Z. = coskX0 (Z) for a morphism, then by localization in X, i.e.,

by the exact sequence 5.16(ii) and the induced one for Z, and by noetherian

induction, we may assume that Z → X has a section.

(III) Then, to extend this to the general case it suffices to show that the

morphism of simplicial schemes

(5.19) f : Z.[n+ 1] = coskXn+1skn+1(Z.) −→ coskXn skn(Z.) = Z.[n]
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induces a quasi-isomorphism tC ′(Z.[n+ 1])→ C ′(Z.[n]) for all n ≥ 0, because

Zj [n] = Zj for j ≤ n and hence Hj(tC
′(Z.))

∼→Hj(Z.[n]) for j < n by the

spectral sequence (5.18). To show that the morphism (5.19), abbreviated f :

X ′. → X., induces a quasi-isomorphism, one then follows the proof of [SGA,

(3.3.3.2)]. In fact, as noted in [Gil84], the reasoning of loc. cit. (3.3.3.3) shows

that all morphisms Fi : X ′i = Zi[n+ 1]→ Xi = Zi[n] are envelopes. Note that

the diagram in loc. cit. 3.3.3.3 should read

K ′ι −→
∏

X ′r
pri−→
−→

X′(ι)prj

X ′i

↓ ↓ ↓
Kι −→

∏
Xr

pri−→
−→

X(ι)prj

Xi

for the morphism ι : i→ j in the category ∆+

n+1[p]
of monomorphisms [q]→ [m]

with q ≤ n+ 1 in the category of simplicial sets, and where the product is over

all objects r in ∆+

n+1[p]
. Moreover, the object ∩Kι should rather read

∏
Kι,

which is ×XKι here.

By looking at the bi-simplical scheme [X ′./X.] with components [X ′./X.]p =

X ′. ×X. · · · ×X. X ′. ((p+ 1) times) and its base change with X ′. → X., one sees

that it suffices to replace X ′. → X. by its base change with [X ′./X.]p for all

p ≥ 0. This is again of the form (5.18) and has a section s. So fs = id, and

because sf is the identity on skn(Z.), it is homotopic to the identity ([SGA, 4,

Vbis, (3.0.2.4)]. Therefore f in this situation is a homotopy equivalence, and

hence induces a quasi-isomorphism by (5.18). �

Lemma 5.20.

(a) For a smooth proper variety X over a field k and for integers n, r, s, a ∈ Z,

let

Hr,s
a (X,Z/nZ) := Ha(C

r,s(X,Z/nZ))

be the a-th homology of the Bloch-Ogus-Kato complex Cr,s(X,Z/nZ) when

it is defined. (See the beginning of Section 4.) If n is invertible in k, then

each of the functors

Hr,s
a (−,Z/nZ) : SPk −→ Ab , X p Hr,s

a (X,Z/nZ)

extends to a contravariant functor on the category CHMeff(k) of effective

Chow motives over k. The same holds if k is a perfect field of positive

characteristic p and n is a power of p if (r, s) = (0, 0).

(b) The same holds for the category CHMeff(k) and the functors

X p H
r,s
a (X,Z/nZ) := Ha(C

r,s
(X,Z/nZ)) (a ∈ Z),
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where C
r,s

(X,Z/nZ) := Cr,s(X,Z/nZ)GL , with X = X ×L L for a sepa-

rable closure of L.

Proof. (a) By work of Bloch and Ogus [BO74], one has canonical isomor-

phisms for n invertible in k and X irreducible smooth proper of dimension d,

(5.21) Hr,s
a (X,Z/nZ) := Ha(C

r,s(X,Z/nZ)) ∼= Hd−a(XZar,Hr+dn (s+ d)),

whereHin(j) is the Zariski sheaf associated to the presheaf U 7→H i
ét(U,Z/nZ(j)).

The same holds in the second case of (a) by work of Gros and Suwa [GS88]

for (r, s) = (0, 0). On the other hand, by Barbieri-Viale ([BV97, 5.5]) one has

products (omitting the subscript n)

H i(X,H(a))×Hj(X,H(b)) −→ H i+j(X,H(a+ b))

and a formalism of pullbacks f∗ : H i(Y,Hm(j))→ H i(X,Hm(j)) for arbitrary

morphisms f : X → Y , and pushforwards for proper morphisms of irreducible

varieties f : X → Y ,

(5.22) f∗ : H i(X,Hj(k))→ H i−r(Y,Hj−r(k − r)),

where r = dim(X) − dim(Y ), such that the pair (f∗, f∗) satisfies the projec-

tion formula. With this one can get the usual formalism of correspondences

(contravariant version): Letting X and Y be smooth and proper of dimen-

sions d and e, respectively, the group of correspondences from X to Y is de-

fined as He(Y ×X,H(e)), and the correspondences α induce homomorphisms

α∗ : H i(Y,Hj(k)) → H i(X,Hj(k)) via the formula α∗(β) = p2∗(α · p1
∗(β)) in

the diagram

He(Y ×X,He(e))×H i(Y ×X,Hj(k)) −−−−→ He+i(Y ×X,He+j(e+ k))y=

x(p1)∗

y(p2)∗

He(Y ×X,He(e))× H i(Y,Hj(k)) −−−−→ H i(X,Hj(k)),

and this action is compatible with the composition of correspondences. On the

other hand, from (5.21) we get a canonical isomorphism

He(Y ×X,Hen(e)) ∼= CHe(Y ×X)/n

for any smooth projective varieties Y and X, and these morphisms are com-

patible with pullbacks, pushforwards, and with products after some suitable

sign modifications [Gil87]. So we obtain the wanted action of Chow correspon-

dences, at first in a covariant way. But there is a canonical equivalence between

the category of Chow motives and its dual (see [KMP07, Lemma 1.2]), so that

we obtain the wanted contravariant version as well.

As remarked above, for n = pm and k perfect of characteristic p > 0 and

(r, s) = (0, 0), property (5.21) also holds, moreover, purity holds in this setting,
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and there are canonical pushforward maps like in (5.22). Thus one can apply

the theory of [BV97] and get the same results as above.

(b) By the universal exactness of the Gersten complexes in the situations

above, we get a similar formula

(5.23) H
r,s
a (X,Z/nZ) := Ha(C

r,s
(X,Z/nZ)) ∼= Hd−a(XZar,H

r+d
n (s+ d)),

where H r+d
n (m) is the Zariski sheaf associated to the presheaf

U 7→ Hr+d(U,Z/nZ(m))Gk .

Then we obtain a similar theory as above by replacing the groups H i(Z,Hjn(k))

above by the groups H i(Z,H j
n(k)). So via the obvious morphisms

H i(Z,Hjn(k))→ H i(Z,Hjn(k))

which are compatible with all structures (pullbacks, pushforwards, products

and correspondences) used in (a) we get an extension to a functor on the Chow

correspondences over k as before. �

Proof of Theorem 5.12. Let K be a finitely generated field, and let ` be a

prime. Consider the Kato complex figuring in 5.12 (and 4.19)

C(X,Q`/Z`) = C0,0(X,Q`/Z`)GK ,

where X = X×KK for the algebraic closure K of K and MGK is the module of

coinvariants of a GK-module. By Lemma 5.20 and Theorem 5.13, the covariant

functors

Ha : SPK −→ C≥0(Ab), Ha(X) = Ha(C(X,Q`/Z`))

extend to a homology theory Ĥ on the category VK of all varieties over K.

Next, one has a direct sum decomposition

C(X1

∐
X2,Q`/Z`) ∼= C(X1,Q`/Z`)⊕ C(X2,Q`/Z`)

for varieties X1, X2, and a morphism C(X,Q`/Z`) → C(K,Q`/Z`) = Q`/Z`
induced by the structural morphism X → Spec(K) for any variety. Applying

this to the connected components of each smooth proper variety, we get a

functorial map

C(X,Q`/Z`) −→
⊕
π0(X)

Q`/Z` = CW (X,Q`/Z`)

for all smooth proper varieties over K and hence (cf. Remark 5.15) a morphism

of homology theories

(5.24) φ : H∗(−,Q`/Z`) −→ HW
∗ (−,Q`/Z`)

as wanted. In fact, we first get it for the homology Ĥ constructed above, which

however coincides with H by Lemma 5.17.
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It remains to show property 4.24(iii) for the morphism (5.24). Let Z be an

integral variety of dimension d over K, and let V ⊂ Z be any nonempty smooth

subvariety. Let U ⊂ V and U ⊂ X, Y ⊂ X be as in property (RS2) (which

holds because K has characteristic zero). By possibly removing a further

suitable smooth hyperplane section we may assume that X \ Y1 is affine.

As noted above, the complex C(W,Q`/Z`) exists for any varietyW overK.

If W is irreducible of dimension d, then Hd(W,Q`/Z`) can be identified with

ker(Hd(K(W )⊗KK,Q`/Z`(d))GK→
⊕

x∈W 1
Hd−1(K(x)⊗KK,Q`/Z`(d−1))GK ),

and if W is irreducible and smooth of dimension d, then the Bloch-Ogus spec-

tral sequence ([BO74, 3.9] gives a canonical edge morphism

γW : Hd(W,Q`/Z`(d))GK −→ H0(W,Hd(d)) = Hd(W,Q`/Z`)

(compare (5.23)), which is just induced by the restriction map

Hd(W,Q`/Z`(d)) −→ Hd(K(W )⊗K K,Q`/Z`(d))GK .

Now we have the following result.

Lemma 5.25. There is a commutative diagram

(5.26) 0 // Hd(U,Q`/Z`(d))GK
e //

γU

��

H0(Y [d],Q`/Z`(0))GK
d2 //

γ
Y [d]

��

H2(Y [d−1],Q`/Z`(1))

γ′

��
0 // Hd(U,Q`/Z`)

e //

ϕU

��

H0(Y [d],Q`/Z`)
d2 //

ϕ
Y [d]

��

H0(Y [d−1],Q`/Z`)

ϕ
Y [d−1]

��
0 // H̃d(U,Q`/Z`)

e // H̃0(Y [d],Q`/Z`)
d2 // H̃0(Y [d−1],Q`/Z`).

Here the maps e and d2 in the first row are those occuring in Theorem 3.1.

The maps in the second and third row are the homological analogues : e is the

composition of the morphisms

Hd(U,Q`/Z`)
δ→Hd−1(Yid r ( ∪

i 6=id
Yi),Q`/Z`)

δ→· · · δ→H1(Yi2,...,id r ( ∪
i 6=i2,...,id

Yi),Q`/Z`)
δ→H0(Yi1,...,id ,Q`/Z`),

where each δ is the connecting morphism for the obvious localization sequence

for the homology theory, and d2 =
∑d
µ=1(−1)µδµ, where δµ is induced by the

push-forward morphisms for the inclusions Yi1,...,id ↪→ Yi1,...,îµ,...,id . Finally,

δ′ = γY [d−1] ◦ tr′, where

tr′ : H2(Y [d−1],Q`/Z`(1))GK
∼→H0(Y [d−1],Q`/Z`(0))GK

is the map induced by the trace map.
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Proof. For any smooth irreducible variety W of dimension d over K and

any smooth irreducible divisor i : W ′ ↪→W , we have a commutative diagram

Hd(W rW ′,Q`/Z`(d))
δ→ Hd−1(W ′,Q`/Z`(d− 1))

↓ ↓
Hd(K(W )⊗K K,Q`/Z`(d))

δ→ Hd−1(K(W ′)⊗K K,Q`/Z`(d− 1)),

where the δ in the top line is the connecting morphism for the Gysin sequence

for W ′ ⊆ W ⊇ W r W ′, and the δ in the bottom line is the residue map

for the point in W 1 corresponding to W ′. The latter induces the connecting

morphism

Hd(W rW ′,Q`/Z`)
δ→Hd−1(W ′,Q`/Z`)

for the localization sequence for (W ′,W,W rW ′). This shows the commuta-

tivity of the top left square in (5.26), by definition of the maps e.

On the other hand, for a smooth projective curve C over K and a closed

point P : Spec(K)→ C, the composition

H0(K,Q`/Z`(0))
P∗−→H2(C,Q`/Z`(1))

tr−→H0(K,Q`/Z`(0))

is the identity. This shows the commutativity of the top right square in (5.26).

The two bottom squares commute because ϕ is a morphism of homology the-

ories. �

We proceed with the proof of property 4.24(iii) for the morphism (5.24).

The compositions of the vertical maps in the middle column and the right

column of (5.26) are isomorphisms, and the top row is exact by Theorem 3.1

(and our assumption on U). But the bottom line is exact as well: This follows

in a similar (but simpler) way as in the proof of Theorem 3.1 by noting that

H̃a(T,Q`/Z`) = 0 for a 6= 0 if T is smooth and projective of positive dimen-

sion, by definition. It can also be deduced from the fact that H̃a(U,Q`/Z`) is

computed as the a-th homology of the complex⊕
π0(Y [d])

Q`/Z` →
⊕

π0(Y [d−1])

Q`/Z` → · · · →
⊕

π0(Y [0])

Q`/Z`

as noted before.

This shows that the composition

Hd(U,Q`/Z`(d))GK
γU−→Hd(U,Q`/Z`)

ϕU−→ H̃d(U,Q`/Z`)

figuring in the left column of (5.26) is an isomorphism. Because the subvarieties

U as constructed above form a cofinal family in the set of open subvarieties of

Z, by passing to the limit we get an isomorphism

Hd(K(Z)⊗K K,Q`/Z`(d))GK
γ−→Hd(K(Z),Q`/Z`)

ϕ−→ H̃d(K(Z),Q`/Z`)

in which the first map γ is an isomorphism by definition. Therefore ϕ is an

isomorphism as wanted, and Theorem 5.12 is proved.
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