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Abstract

For rather general excellent schemes X, K. Kato defined complexes of
Gersten-Bloch-Ogus type involving the Galois cohomology groups of all
residue fields of X. For arithmetically interesting schemes, he developed a
fascinating web of conjectures on some of these complexes, which generalize
the classical Hasse principle for Brauer groups over global fields, and proved
these conjectures for low dimensions. We prove Kato’s conjecture over
number fields in any dimension. This gives a cohomological Hasse principle
for function fields F' over a number field K, involving the corresponding
function fields F, over the completions K, of K. For global function fields
K we prove the part on injectivity for coefficients invertible in K. Assuming
resolution of singularities, we prove a similar conjecture of Kato over finite
fields, and a generalization to arbitrary finitely generated fields.

0. Introduction
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In this paper we prove some conjectures of K. Kato [Kat86] which were

formulated to generalize the classical exact sequence of Brauer groups for a
global field K,

(0.1)

0 — Br(K) — @Br(K,) — Q/Z — 0,
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to function fields F' over K and varieties X over K. In the above sequence,
which is also called the Hasse-Brauer-Noether sequence, the sum runs over all
places v of K, and K, is the completion of K with respect to v. The injectivity
of the restriction map into the sum of local Brauer groups is called the Hasse
principle.

Kato’s generalization does not concern Brauer groups but rather the fol-
lowing cohomology groups. Let L be any field, and let n > 0 be an integer.
Define the following Galois cohomology groups for ¢, j € Z:

(0.2)
H'(L, Z/nZ(j))

[ mi ), char(L) = 0,
C\HU(L ph) @ HIZI(L, W8, ), char(L) = p > 0,n=mp",pfm,

where p, is the Galois module of m-th roots of unity (in the separable closure
L*P of L) and W,Q} log 18 the logarithmic part of the de Rham-Witt sheaf

WTQJL [1179, I 5.7] (an étale sheaf, regarded as a Galois module). It is a fact
that Br(L)[n] = H?(L,Z/nZ(1)), where A[n] = {x € A | nz = 0} denotes the
n-torsion in an abelian group A, so the n-torsion of the sequence (0.1) can be
identified with an exact sequence

(0.3)  0— H*K,Z/nZ(1)) — @ H*(K,,Z/nZ(1)) — Z/nZ — 0.

In fact, this sequence is often used for the Galois cohomology of number fields,
independently of Brauer groups; it is closely related to class field theory and
Tate-Poitou duality.

For the generalization, let F' be a function field in d variables over a global
field K and assume F/K is primary, i.e., that K is separably closed in F'. For
each place v of K, let F, be the corresponding function field over K,: If
F = K(V), the function field of a geometrically integral variety V over K,
then F, = K,(V xx K,). Then Kato [Kat86] conjectured

CONJECTURE 1. The following restriction map is injective:
o . H2(F,Z/nZ(d + 1)) — @ HU2(F,, Z/nZ(d + 1)).
v

Note that this generalizes the injectivity in (0.3), which is the case d =0
and F' = K. On the other hand it is known that the corresponding restriction
map for Brauer groups is not, in general, injective for d > 1: If X is a smooth
projective curve over a number field which has a K-rational point, then for
F = K(X), the kernel of Br(F) — [, Br(F,) is isomorphic to the Tate-
Shafarevich group of the Jacobian Jac(X). Kato [Kat86] proved Conjecture 1
for d = 1. Here we prove

THEOREM 0.4. Conjecture 1 is true if n is invertible in K.
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The proof uses three main ingredients. First we prove the analogue for
infinite coefficients. For a field L, a prime ¢, and integers ¢ and j, we let

(0.5) H'(L, Qe/Z4(j)) = lim H' (L, Z/ (" Z(5)),

where the inductive limit is taken via the obvious monomorphisms Z/¢"Z(j) —
Z/"1(j). Then we prove (see Theorem 2.10)

THEOREM 0.6. Let K be a global field, let ¢ be a prime invertible in K,
and let F be a function field in d variables over K such that F/K is primary.
Then the restriction map

ape : HW2(F,Qu/Zi(d + 1)) — @ H?(F,, Qo/Ze(d + 1))
v
18 injective.

For number fields and d = 2, this result was already proved in [Jan92].
Concerning the case of finite coefficients, i.e., the original Conjecture 1, we use
the following. For any field L, any prime ¢, and any integer ¢t > 0, there is a
symbol map

Wy KM(L) /¢ — HY(L,Z/L(1)),
where KM (L) denotes the t-th Milnor K-group of L ([Mil70] and [BK86, §2]).

Extending an earlier conjecture of Milnor [Mil70] for ¢ = 2 # char(L), Bloch
and Kato stated the following conjecture:

BK(L,t,£): The map hf , is an isomorphism.

This conjecture was proved in recent years. In fact, for £ = char(L) it was
proved by Bloch, Gabber, and Kato [BK86], and for ¢ # char(L) it is classical
for t = 1 (Kummer theory), was proved for ¢t = 2 by Merkurjev and Suslin
[MS83]), for ¢ = 2 by Voevodsky [Voe03], and for arbitrary ¢ and ¢ by work of
Rost and Voevodsky (see [Ros02], [SJ06], [Voell], [VoelO], [HW09]).

Property BK(F,d + 1,¢) for all ¢ dividing n allows us to deduce Theo-
rem 0.4 from Theorem 0.6 for all ¢ dividing n as follows. One has the exact
cohomology sequence

HYYE,Qu/Zo(d + 1)) 25 HY(F,Qp/Zo(d + 1)) — HU2(F,Z/™(d + 1))
Ly H2(F,Qu/Ze(d + 1)),

and it follows from BK(F,t,/) that H9*Y(F,Qy/Zy(d + 1)) is divisible. There-
fore ¢ is injective, and this shows that the injectivity of aye in Theorem 0.4
implies the injectivity of aym in Conjecture 1. It should be noted that Kato
did in fact use BK(K,2,/), i.e., the Merkurjev-Suslin theorem, in his proof of
Conjecture 1 for d = 1.

Finally the proof of Theorem 0.6 uses weights, i.e., Deligne’s proof of the
WEeil conjectures, and some results on resolution of singularities, to control
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the weights. Over number fields the required resolution of singularities holds
by work of Hironaka. For ¢ invertible in K, we observe that a weaker form of
resolution suffices. More precisely we use alterations, as introduced by de Jong,
but in a refined version established by Gabber; see [ILO14] or Theorem 2.11
below.

As in the classical case d = 0 and the case of d = 1 (see the appendix
to [Kat86]) and the case of d = 2 in [Jan92|, Theorem 0.4 has applications to
quadratic forms over F' (see [CTJ91]).

COROLLARY 0.7. If I is a finitely generated field of characteristic zero,
then the Pythagoras number of F is finite. More precisely, if F' is of transcen-
dence degree d over Q, then any sum of squares in F' is a sum of 2471 squares,
provided d > 2.

The proof uses the following instance of Theorem 0.4, which only needs
the proof of the Milnor conjecture, i.e., the theorem of Voevodsky in [Voe03].

COROLLARY 0.8. The restriction map
HYY(F,72)27) — @ H¥(F,,7/27).
v
18 injective.

It should be mentioned that the finiteness of the Pythagoras number, with
the weaker bound 292, can be obtained by some more elementary means, still
using the Milnor conjecture [P£i00].

Kato also stated a conjecture on the cokernel of the above restriction maps,
in the following way. Let L be a global or local field, let X be any variety over

L, and let n be an integer. Then in [Kat86] Kato defined a certain homological
complex C*(X,Z/nZ) of Galois cohomology groups:

C— xg]);{ H " 2(k(z), Z/nZ(a + 1)) xe§_1 H(k(z), Z/nZ(a))

— o — @ H(k(2),Z/nZ(2)) — @ H?*(k(z),Z/nZ(1)).
reX) € Xo
Here X, denotes the set of points x € X of dimension a, the term involving
X, is placed in degree a, and k(z) denotes the residue field of z. A complex of
the same shape can also be defined via the method of Bloch and Ogus, and it
is shown in [JSS14] that these two definitions agree up to (well-defined) signs.
(Also see Section 4 for a discussion of more general complexes C**(X, Z/nZ).)
Now let K be a global field, and let X be a variety over K. Then there are
obvious maps of complexes C%1(X,Z/nZ) — C*1(X,,,Z/nZ) for each place v
of K, where X, = X xg K,, and these induce a map of complexes

axn: C*NX,Z/nZ) — @ C*(X,,Z/nZ).
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Then Kato [Kat86] conjectured the following.

CONJECTURE 2. Let K be a global field, let n > 0 be an integer, and let
X be a connected, smooth proper variety over K. Then the above map induces
isomorphisms

H,(C*YX,Z/nZ)) —> @ H.(C*'(X,,Z/nZ))
for a >0, and an exact sequence
0 — Ho(C*Y(X,Z/nZ)) — @ Ho(C*'(X,,Z/nZ)) — Z/nZ — 0.

Note that we obtain the sequence (0.3) for X = Spec(K), where the
complexes are concentrated in degree zero. Kato [Kat86] proved Conjecture 2
for d = 1. Here we prove (see Theorems 4.8 and 4.19).

THEOREM 0.9. Conjecture 2 is true if K is a number field or if n is in-
vertible in K and resolution of singularities (see Definition 4.18) holds over K.
More precisely, in this case there is an exact sequence of complexes

0— C*(X,2/nZ) — @ C*Y(X,,Z/nZ) — C'(X,Z/nZ) — 0

with Hy(C'(X,Z/nZ)) = Z/nZ, and H,(C'(X,Z/nZ)) =0 for a > 0.

Again this version is deduced from a version with infinite coefficients by us-
ing the property BK(L,d+1, ¢) (for all residue fields of X and all ¢ dividing n),
and the version with infinite coefficients is proved using weight arguments and
resolution of singularities.

For global fields K of positive characteristic, Kerz and Saito [KS12] proved
the same result unconditionally, by using Theorem 0.4, and the weaker result
on resolution of singularities proved by Gabber, quoted above. An alternative
proof, still using Gabber’s result, can be found in [Jan09].

Our techniques also allow us to get results on another conjecture of Kato,
over finite fields. For any variety over a finite field &k and any natural number
n, Kato considered a complex C1(X,Z/nZ) which is of the form

- — xe@)}( HY(k(z), Z/nZ(a)) — xe§_1 H(k(x),Z/nZ(a — 1))

— o @ H(k(2),Z/nZ(1)) — @ H'(k(x),Z/nZ)
zeX] x€Xo
with the term involving X, placed in (homological) degree a. (This is another
special case of the general complexes C%*(X,Z/nZ).) Kato conjectured the
following (where the case a = 0 is easy):
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CONJECTURE 3. If X 1is connected, smooth, and proper over a finite
field k, then one has

H,(CY(X,2/nT)) = {OZ s Y

For dim(X') = 1, this conjecture amounts to the exact sequence (0.3) with
K = Ek(X), and for dim(X) = 2, the conjecture follows from [CTSS83] for n
invertible in £ and from [Gro85b] and [Kat86] if n is a power of char(k). S. Saito
[Sai93] proved that H3(C*(X,Q¢/Z¢)) = 0 for dim(X) = 3 and ¢ # char(k).
For X of any dimension, Colliot-Thélene [CT93] (for ¢ # char(k)) and Suwa
[Suw95] (for ¢ = char(k)) proved that H,(C'9(X,Qy/Z;)) = 0 for 0 < a < 3.
Here we prove the following (see Theorem 4.19 and Lemma 4.20).

THEOREM 0.10. Conjecture 3 holds if resolution of singularities holds
over k.

This result also follows from the technique in [JS09]. These techniques
show unconditionally that H,(C*°(X,Z/nZ)) = 0 for X smooth projective of
any dimension, any n, and 0 < a < 4. Moreover, Kerz and Saito [KS12] proved
Conjecture 3 for coefficients invertible in k, by using Gabber’s weak resolution
of singularities quoted above. Another proof can be found in [Jan09]. Finally,
Kato also formulated an arithmetic analogue of Conjecture 3, for regular flat
proper schemes over Spec(Z), and in [JS03] some results on this are obtained
using Theorem 0.6.

Our method of proof is the same for Theorems 0.9 and 0.10. In fact, under
certain conditions, which are always fulfilled in our cases, Kato defined more
general complexes C™*(X,Z/nZ) of the form

s @ H"k(x),Z/nZ(s + a))

re€X,
— @ H k(@) Z/ni(s +a 1))
N wgﬁ H™ Y (k(z),Z/nZ(s +1)) — xg?(() H"(k(x),Z/nZ(s)).

For n invertible in K, we construct a canonical quasi-isomorphism between
the complex C'(X,Z/nZ) in Theorem 0.9 and the complex C%°(X,Z/nZ)q,
obtained from the Kato complex C%°(X,Z/nZ) by taking coinvariants un-
der the absolute Galois group G, where X = X xx K. On the other
hand, for a finite field k, one has a canonical isomorphism C%°(X,Z/nZ)q, =
Cl19(X,Z/nZ) for a variety X over a finite field k. Therefore Theorems 0.9

and 0.10 follow from the following more general result (see Theorem 4.19).
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THEOREM 0.11. Let K be a finitely generated field with algebraic closure
K, let X be a smooth proper variety over K, and let n be natural number.
Then

H,(COYX xx K,Z/nZ)q,) =

Z/nZ, a=0,
0, a#0

if resolution of singularities holds over K.

This paper had a rather long evolution time. Theorem 0.6 for number
fields was obtained in 1990, rather shortly after the proofs of Theorem 0.6 and
Corollary 0.4 for number fields and d = 2 in [Jan92]. In 1996, right after the
appearance of [GS96], it became clear to me how to obtain Theorem 0.9 (for
number fields and infinite coefficients), but a first account was only written
in 2004. Meanwhile I had also noticed that these methods allow a proof of
Theorem 0.11, i.e., a proof of Kato’s conjecture over finite fields, with infinite
coefficients, assuming resolution of singularities. Part of the delay was caused
by the long time to complete the comparison of Kato’s original complexes
with the complexes of Gersten-Bloch-Ogus type used here, which was recently
accomplished [JSS14].

I dedicate this paper to my teacher and friend Jiirgen Neukirch, who
helped and inspired me in so many ways by his support and enthusiasm. I also
thank Jean-Louis Colliot-Thélene for his long lasting interest in this work, for
the discussions on the rigidity Theorems 2.12 and 4.11, and for the proof of
Theorem 2.13. Moreover, I thank Wayne Raskind, Florian Pop, Tama&s Sza-
muely and Thomas Geisser for their interest and useful hints and discussions.
In establishing the strategy for proving Theorems 0.11 and 0.9, I profited from
an incomplete preprint by Michael SpiefS. My contact with Shuji Saito started
with the subject of this paper, and I thank him for all these years of a wonderful
collaboration and the countless inspirations I got from our discussions.

1. First reductions and a Hasse principle for global fields

Let K be a global field, and let F' be a function field of transcendence
degree d over K. We assume that K is separably closed in F'. For every place
v of K, let K, be the completion of K at v, and let F), be the corresponding
function field over K,: there exists a geometrically irreducible variety V of
dimension d over K, such that F = K(V), and then F, = K,(V,), where
Vi, = V x i K. (This is integral, since F//K is primary and K, /K is separable;
see [Gro65, (4.3.2) and (4.3.5)].) This definition does not depend on the choice
of V.

Fix a prime ¢ # char(K). We want to study the map

res: HY2(F,Qq/Zo(d + 1)) = [[ H**(Fy, Qu/Ze(d + 1))
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induced by the restrictions from F' to F,. For this it will be useful to first
replace the completions K, by the Henselizations. For each place v of K,
denote by K(,) the Henselization of K at v. It can be regarded as a subfield
of a fixed separable closure K of K, equal to the fixed field of a decomposition
group Gy at v. For V as above, let F{,) = K(,,)(V xk K(,)) be the corresponding
function field over K(,). Since K, is separably algebraic over K and linearly
disjoint from F, F{,) is equal to the composite F'K(,) in a fixed separable
closure F of F. We obtain a diagram of fields

(1.1) F
K—FK

K (v)

K F

which identifies G = Gal(K/K) with Gal(FK/F) and Gk, = Gal(K/K(y))
with Gal(FF/FK(v))

PROPOSITION 1.2. Let M be a discrete £-primary torsion Gp-module.
The restriction map

H"2(F, M) = [[H"(F), M)
v
has image in the direct sum @ H+? (Flvy, M). There is a commutative diagram
v

f: Hd+2<F7M) — @Hd+2(F(v)7M)

v

{ +
g: Hz(K7Hd(Ff7M)) — @HQ(K(U)7Hd(Ff7M))7

in which the horizontal maps are induced by the restrictions and the vertical
maps by the Hochschild-Serre spectral sequences. This diagram is functorial in
M and induces canonical isomorphisms

ker(f) — ker(g) and  coker(f) == coker(g) = HYFK,M)(—1)g,-

Here N(n) denotes the n-fold Tate twist of a ¢-primary discrete torsion
G g-module N, and N¢, denotes its cofixed module, i.e., the maximal quotient
on which G acts trivially.
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Proof. Diagram (1.1) gives Hochschild-Serre spectral sequences
EP(K) = HP(K, H'(FK, M)) = H"™(F, M),
ESY(K ) = HP (K, H(FK, M)) = HP*9(F,),M).
Moreover, for each v we obtain a natural map E(K) — E(K(,)) between
the above spectral sequences which gives the restriction maps for K C K,
on the Er-terms and the restriction maps for F' C F(,) on the abutment,

respectively. On the other hand, the field FK has cohomological dimension d,
so that E(K) = 0 = E5(K(,) for ¢ > d. This gives a commutative diagram

HI2(F, M) — HT2(F,, M)

1 I
H*(K,HYFK,M)) — H*(Kg,), H(FK,M)),
where the vertical maps are edge morphisms of the spectral sequences. If v is
not a real archimedean place, or if £ # 2, we have cdy(K(,)) < 2 and, hence,
Eg’q(K(v)) = 0 for p > 2, and the right vertical edge morphism is an iso-
morphism. This already shows the first claim of the proposition, since the
restriction map

H*(K,N) = [[H*(K(). N)

is known to have image in the direct sum p for any torsion Gx-module N. If

v
K has no real archimedean valuations (or if £ # 2), then cdy(K) = 2, the left-
hand edge morphism is an isomorphism as well, and the second claim follows.
If this is not the case, we use the following lemma.

LemMA 1.3. If K is a number field, then the above maps between the
spectral sequences induce

(a) surjections for allr > 2 and allp+q=d+ 1,
EPIK) - @ EP(Kw));

v|oo
(b) surjections for all r > 2,
EX(K) - @ EP(Kw);
v|oo
(c) isomorphisms between the kernels and between the cokernels of the maps
d d
EP(E) = @EP(K () and Y (K) —» @B (K ()

for all v > 2;
(d) isomorphisms
EPUK) — @ EPI(K(,))
v]oo

for allr > 2 and all (p,q) # (2,d) withp+q > d+ 2.
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Proof. By induction on r. Recall that EP¢(K) = 0 = EPI(K,)) for all
g > d and all » > 2. Hence, for r = 2, the claims (a), (b), and (d) follow from
the following well-known facts of global Galois cohomology: the maps
Hl(Kv N) - @HI(K(U),N)’
v]oo
H*(K,N) — @ H*(K,). N)
v|S
are surjective for any torsion Gx-module N and any finite set S of places, and

the maps ‘

v]oo
are isomorphisms for such N and all ¢ > 3. Note that here we could replace
K, by the more common completion K, since G K =G, =Gk,
Now let r > 2. For (a) look at the commutative diagram

Brratl(K) —t ppa(K) T pRraeTH(K)

d d |

@ Ep YK y) — T @ BPUK(,)) —T @ EPTHUK )
v]oo v|oo v]oo
coming from the map of spectral sequences. We may assume p > 1(since
E%4t1 = 0), and hence (p +r,q — 7 + 1) # (2,d). Then B is surjective and
v is an isomorphism, by induction assumption (for (a) and (d)). By taking
homology of both rows, we obtain a surjection EXf, (K) — G|9 El (K(y)) as

(d[ee]
wanted for (a).

For (d), we look at the same diagram where now we may assume that
p>2,(p,q) #(2,d) # (p+r,q—r+1), that § and ~ are bijective, and that «
is surjective (by induction assumption for (a), (b) and (d)). Hence we get the
isomorphism

B () > @ B (Ki)

For (b) and (c), consider the ezxact commutative diagram

dr

2,d —
0 EA(K) E}(K) EFraTH(K)

B’ B LY

1d 0 T,a—7T
0— & EP (K(w) — %,Ef’d(f((u)) . G|9 EFra=r (K )

for any set of places S' O {v | oo} in which 0 = @ d,(K(,)). (Note that
ves’
EP9(K ) = 0for p > 2and v {oc.) The map ~ is an isomorphism by induction
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assumption (for (d).) Hence for S" = {v | oo}, the surjectivity of 3 implies the
one for 3'; i.e., we get (b) for r+1. If S’ is the set of all places, we see that clearly
ker(3') = ker(83) and that coker(8’) = coker(3), since im(9d o 3) = im(9) by
induction assumption for (b). Thus we get (c) for r from (b) and (d) for r. O

We use Lemma 1.3 to complete the proof of Proposition 1.2. From what we
have shown, we have EQ:*™2 = E3:*™ = 0 for K and all K(,), and isomorphisms

ERI(K) — @ ERY(K ()

for all (p, q) with p4+q = d+2,p > 3. (Note that EY/(K,) = 0 for p > 3 and
v 1 00.) Hence kernel and cokernel of

H2(F, M) — < HY2(F,), M)
can be identified with kernel and cokernel of
EZ(K) — @Egéd(ff(u)),
respectively. But these coincide with kernel and cokernel of
EyY(K) = HY(K, H(FK, M)) — @ H* (K, H'(FK, M)) = @ EyY(K )

respectively, by (c) of the lemma. Finally, for any finite /-primary G g-module
N, Poitou-Tate duality gives an exact sequence

H*(K,N) — @ H*(K(,), N) — H(K,N*)¥ — 0,

where N* denotes the finite Gx-module Hom(V, u) where p is the group of
roots of unity in K and MV is the Pontrjagin dual of a finite G x-module. But
then we have canonical identifications

HO(K,Hom(N, )" = Homg, (N, Q¢/Z(1))¥
= Homg, (N (—1),Q¢/Z¢)” = Hom(N(=1)G, Qe/Ze)"
= (N(-1)g)"W 2 N(=1)gg-
This shows the last isomorphism of Proposition 1.2. O

Remarks 1.4. (a) Proposition 1.2 extends to the case where F' is a function
field over K, but K is not necessarily separably closed in I, by replacing F{,
with F @ K, and FK with F @ K. The cohomology groups of these rings
have to be interpreted as the étale cohomology groups of the associated affine
schemes; with this the proof carries over verbatim. In more down-to-earth
(but more tedious) terms, we may note that (F ®x K)req = [[o(F D% o K),
where K is the separable closure of K in F and ¢ runs over the K -embeddings
of K into K. Similarly, F @k Ky = [[,([Tw F ®z 0(K)(5w)), Where w runs
over the places of K above v, ow is the corresponding place of a(f( ) above v,
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and o(K )(ow) i the Henselization of o(K) at ow. The étale cohomology
groups referred to above can thus be identified with sums of Galois cohomology
groups of the fields introduced above, and the claim also follows by applying
Proposition 1.2 to F/K.

(b) A consequence of Proposition 1.2 is that the restriction map

froH2(F, M) — [[ H*2(F,, M)

has image in the direct sum @ C [], as well, since it factors through the map
v

f in 1.2. Moreover, as we shall see in Section 2, the maps Hd+2(F(U),M) —
H2(F, M) are injective, so that ker(f’) = ker(f). For d > 0, however,
H™2(F,,Qu/Z¢(d + 1)) is much bigger than Hd+2(F(U),Qg/Zg(d + 1)), and
Proposition 1.2 does not extend to the completions. In particular, everywhere
in [Jan92] the completions K, should be replaced by the Henselizations K.
(In loc. cit., Proof of Th. 1’ and later, the notation F K, and FK, are problem-
atic; they should be interpreted as F, and F,K,. Even then Gal(FK,/FK,)
= Gal(F,/F,K,) is not isomorphic to Gal(F'/FK), but much bigger, as was
kindly pointed out to me by J.-L. Colliot-Thélene and J.-P. Serre.) The com-
parison of coker(f’) and coker(f) is more subtle; see Section 4.

By Proposition 1.2, the restriction map
Hd+2(F, Qg/Zg(d + 1)) — @ Hd+2(F(U), Qg/Zg(d + 1))
v
has the same kernel and cokernel as the restriction map

ﬁN : HQ(KvN) %@H2(K('U)3N) g@H2(Kv7N)

for the G-module N = HY(FK,Q/Z¢(d+1)). Here we have used the isomor-
phism Gg, — G K, to rewrite the latter map in terms of the more familiar
completions K,. Recall that F' = K(V), the function field of a geometrically
irreducible variety V' of dimension d over K. From this we obtain

HY(FR,Qu/Zo(d + 1)) = lim HL(U xx K, Qe/Zo(d + 1)),
ucv

where the limit is over all affine open subvarieties U of V. In fact étale co-
homology commutes with this limit ([Mil80, III 1.16]), so that the right-hand
side is the étale cohomology group Hg (Spec(K(V')),Q;/Z¢(d + 1)), which can
be identified with the Galois cohomology group on the left-hand side. Since

H?*(K,lim N;) = lim H*(K, N;)
— —

for a direct limit of G -modules N;, and since the same holds for @, H?(K,, —),
it thus suffices to study the maps

Bp: HYK,B) — ¢ H*(K,, B)
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for B = HYU xx K,Qu/Z¢(d + 1)), where U C V runs through all open
subvarieties of V' or through a cofinal set of them. For this we shall use the
following Hasse principle, which generalizes [Jan88, Th. 3].

THEOREM 1.5. Let K be a global field, and let ¢ # char(K) be a prime
number.

(a) Let A be a discrete G -module which is isomorphic to (Qu/Zg)™ for some
m as an abelian group and mized of weights # —2 as a Galois module.
Then the restriction map induces isomorphisms

Ba: H*(K,A) = @H*K,,A) = @ H*K, A),
v vES or v|l

where S is a finite set of bad places for A.

(b) Let T be a finitely generated free Zg-module with continuous action of Gk
making T mized of weights # 0. Then for any finite set S” of places of K,
the restriction map in continuous cohomology

ap: HY(K,T) - [] H'(K,.T)
vgS’

18 1njective.

Before we prove this, let us explain the notion of a mixed G g-represen-
tation and a bad place v for it. A priori, this is defined for a Q-representation
V of Gk (i.e., a finite-dimensional Qg-vector space with a continuous action
of Gk ); see [Del80, (1.2) and (3.4.10)] and Definition 1.6 below. We extend it
to a module like A above or, more generally, to a discrete ¢-primary torsion
G g-module of cofinite type (resp. to a finitely generated Zs;-module T with
continuous action of G ), by calling A (resp. T') pure of weight w or mixed,
if this holds for the Q-representation TyA ®z, Q; (resp. T' ®z, Q¢), where
T A = 1<j£1nA[€"] is the Tate module of A. In the same way we define the
bad places for A (resp. T') to be those of the associated Qg-representations. It
remains to recall

Definition 1.6. (a) A Qg-representation V' of Gk is pure of weight w € Z

if there is a finite set S D {v | oo} of places of K such that

(i) V is unramified outside S U {v | £}, i.e., for v ¢ S,v t ¢, the inertia group
I, at v acts trivially on V;

(ii) for every place v ¢ S,v t £, the eigenvalues « of the geometric Frobenius
Fr, at v acting on V are pure of weight w, i.e., algebraic numbers with

ltar|= (Nv)2
for every embedding ¢ : Q(«) — C, where Nv is the cardinality of the
finite residue field of v.

Every such set S will be called a set of bad places for V; the places not in S
are called good.
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(b) V is called mixed if it has a filtration 0 =V, Cc V4 C --- C V,, =V by
subrepresentations such that every quotient V;/V;_1 is pure of some weight w;.
The weights and bad places of V' are those present in some nontrivial quotient
Vi/Vi-1.

Remarks and Examples 1.7. For a field L, denote by L its separable clo-
sure, and let G, = Gal(L/L) be its absolute Galois group.

(a) If v is a place of K, then any extension w of v to K determines a
decomposition group G,, C Gx and an inertia group I, C G,. The arith-
metic Frobenius ¢, is a well-defined element in G, /I,,; under the canonical
isomorphism Gy, /I, — Gal(k(w)/k(v)), it corresponds to the automorphism
x — VY of k(w). The geometric Frobenius Fr,, is the inverse of ¢,,. If I,
acts trivially on V', then the action of Fr,, on V is well defined. If we do not
fix a choice of w, everything is well defined up to conjugacy in Gk, and we
use the notation Gy, I,,, and Fr,. Thus “I, acts trivially” means that one and
hence any I, for w | v, acts trivially, and then the eigenvalues of Fr, are well
defined, since they depend only on the conjugacy class.

(b) If V is pure of weight w, then the same holds for every Q-G k-
subquotient. If V' is pure of weight w', then V ®q, V' is pure of weight
w+w'.

(c) The representation Qy(1) is unramified outside S = {v | oo - £}, and
for v ¢ S, ¢, acts on Qy(1) by multiplication with Nv. Therefore Q,(1) is pure
of weight —2, and Q(7) is pure of weight —2i.

(d) Let A or T or V be Gg-representations as in Definition 1.6, which are
mixed of weights # 0. Then VEK =0 = Vg,., T¢% =0, and Ag, = 0. The
first statement is easily reduced to the pure case, where it follows from the fact
that the eigenvalues of Fr, as in 1.6(ii) are different from 1. The other claims
follow from the injection T — T ®z, Qp and the surjection Ty A ®z, Q, — A.

(e) If X is a smooth and proper variety over K, then the i-th étale coho-
mology group HY (X, Q) of X = X x K is pure of weight i by the smooth
and proper base change theorems and by Deligne’s proof of the Weil conjec-
tures over finite fields (cf., e.g., [Jan89, proof of Lemma 3]). The set S can
be taken to be the set of places where X has bad reduction, i.e., such that for
v ¢ S, X has good reduction at v, viz., a smooth proper model X, over O,,
the ring of integers in K,,, with &, xp, K, = X,.

(f) For later purposes, we note that the whole theory above has a general-
ization to an arbitrary finitely generated field K (see [Del80, (3.4.10)]). A Q-
representation V' of G (for £ # char(K)) is called pure of weight w if there is a
normal scheme 7T of finite type over Z with fraction field K such that V comes

from a Qp-representation of the algebraic fundamental group 7 (7, Spec(K)) via

the natural epimorphism Gx — 7(T,Spec(K)) (i.e., from a smooth Q-sheaf
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on T) such that for any closed point ¢t € T' with residue field k(t) of charac-
teristic # £, the eigenvalues of the geometric Frobenius Fr; are pure of weight
w in the sense of 1.6(i). (Replace Nv by Nt, the cardinality of the residue
field k(t) of ¢, which is finite.) The geometric Frobenius Fr; is the image of the
geometric Frobenius under the homomorphism Gy = 7(Spec(k(t)), k(t)) —
7(T,Spec(K)) which is well defined up to conjugation. The other notions
(mixed representations, the notions for 7" and A) extend literally, as well as
the properties (b) to (e) above. In (e) one takes T such that X/K extends to

a smooth proper model 7 : X — T', and one uses the base change isomorphism
H' (X, Qq) = H'(Xy Xz k(1), Qp),
where X; = X X7 k(t) is the fiber of 7 over t € T
(g) Moreover, we note that there is even an analogue for a finitely gener-
ated field K and ¢ = p = char(K) > 0. First we note that the notions of pure
and mixed representations still make sense, and that properties (a), (b) and
(d) also hold in this situation, while (c¢) does not have any counterpart. On

the other hand, one has the following analogue of (e). For a scheme Z of finite
type over a perfect field L and m € N, let

HY(Z,2/p™(5)) == H (2, Wi 10,)

be the étale cohomology of the logarithmic part WmQ?X log of the de Rham-Witt
sheaf WmQ& (See [11179, I 5.7] and compare (0.2).) Moreover, let

H'(Z,Qp())) = H'(Z,Z,(j)) @2, Qp,
where
HI(Z,2,(j)) = lim H(Z,2/p"(j).
with the inverse limit taken with respect to the natural epimorphisms
Wint 1% 1og — Win% g

Then for X smooth and proper over a finite field k£ of characteristic p, the
Q,-Gj-representation H'(X,Q,(j)) is finite-dimensional, and it follows from
the work of Deligne [Del74], Katz-Messing [KM74], and Milne [Mil86] that it is
pure of weight i — 2j; cf. [Jan10, §3]. If X is smooth and proper over a finitely
generated field K of characteristic p and 7 : X — T is a smooth proper model
as in (f) (so that T is of finite type over F,), then Gros and Suwa ([GSS8S,
Th. 2.1]) established base change isomorphisms

H' (X x5 K, Qp(j)) = H' (X; X0y k(t), Qp(4))

for all closed points ¢ in a nonempty open U C T, where K now stands for an
algebraic closure of K. These isomorphisms are compatible with the actions of
the absolute Galois groups G (on the left) and Gy (on the right), so that
the representation H'(X,Q,(j)) = H (X xx K,Q,(j)) is pure of weight i — 2
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in exactly the same sense as for the ¢-adic case in (f). Here we regard G as
the Galois group Gal(K /K™), where K™ is the maximal inseparable extension
of K in K.

Proof of Theorem 1.5. Part (a) is implied by (b). In fact, A is mixed of
weights # —2 if and only if its Kummer dual 7' = Hom(A, ) (where u is the
Galois module of roots of unity in K) is mixed of weights # 0, and the kernels of
Ba and ar for S” = () are dual to each other by the theorem of Tate-Poitou (and
passing to the limits over the finite modules A[¢"] and T'/¢"T = Hom(A[("], 1),
respectively). Moreover, by Tate-Poitou, the cokernel of a4 is isomorphic to
HY(K,T)" = A(-1)g,, and this is zero by the hypothesis on the weights.
Finally, by local Tate duality, H?(K,, A) is dual to H°(K,,T), and for good
places v { ¢, this is zero if T is mixed of weights # 0.

Part (b) generalizes [Jan88, Th. 3(a)], which covers the case of a pure 7'
The generalization follows by induction: Let

0—=T =T —=T"—0

be an exact sequence of Z;-G-modules as in (b), and let S’ be a finite set of
primes. Then there is a commutative diagram with exact rows

[1 HY(K,, T") — [l H'(K,,T') — [] H'(K,,T) — [] H'(K,T")
vgS’ vgS’ vgS’ vgS’

T TﬁT’ TBT T B

HO(K,T") HYK,T") HY (K, T) HY K, T").

If B~ is injective and HO(K,,T") = 0 for all v ¢ S (which is the case for
T" pure of weight # 0 and S’ containing all bad places for 7" and all v | ¢,
by loc. cit.), then fr is injective if and only if G7v is. Since we may always
enlarge the set S’, the proof proceeds by induction on the length of a filtration
with pure quotients, which exists on T' ®z, Q¢, by definition, and hence on T'
by pullback. O

2. Injectivity of the global-local map for coefficients invertible in K

Let K be a global field, let £ # char(K) be a prime, and let U be a smooth,
quasi-projective, geometrically irreducible variety of dimension d over K. Fol-
lowing the strategy of Section 1, we study the Gg-module HY(U, Q;/Zy).
Assume the following condition, which holds for number fields by Hironaka’s
resolution of singularities in characteristic zero [Hir64a|, [Hir64b].

RS2(U): There is a good compactification for U; i.e., a smooth projec-
tive variety X over K containing U as an open subvariety such that
Y = X \ U, with its reduced closed subscheme structure, is a divisor
with simple normal crossings.
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Recall that Y is said to have simple normal crossings if its irreducible
components Y7,..., Yy are smooth projective subvarieties Y; C X such that
forall 1 <4y <--- <14, <N, the v-fold intersection Y;, _;, =Y;; N---NY;,
is empty or smooth projective of pure dimension d — v, so the same is true for
the disjoint union

yM= I Y. (<v<d
1<ig < <iy <N
and for Y := v := X.
This geometric situation gives rise to a spectral sequence

(2.1) ER? = HP (Y1, Qu(—q)) = HPM1(T, Qp);

see, e.g., [Jan90, 3.20]. It is called the weight spectral sequence because it
induces the weight filtration on the f-adic representation H™(U,Qy). In fact,
E®?is pure of weight p+2q. Therefore the same is true for the E2Y-terms, and
if Wq denotes the canonical ascending filtration on the limit term H™(U, Q)
for which W,/W,_1 = E% %9, then its n-fold shift W. := W.[-n] (i.e., W; =
m_n) is the unique weight filtration, i.e., has the property that the quotient
W; /W;_1 & E2=5i=" is pure of weight i. Moreover, for r > 3, the differentials

—r+1
dP? . Py E713+r,q T+
are morphisms between Galois Q-representation of different weights (viz., p+
2¢ and p + 2 — r + 2) and hence vanish, so that F%? = EL.

Note that EY? = 0 for p < 0 or ¢ < 0. Hence the weights occurring in
H™(U,Qy) lie in {n,...,2n}, Wa,_1 is mixed of weights w < 2n — 1, and

HO (T, Q) [ Wan—1 = Wan/Wan_1 = E2"

— ker(HO(VTT, Qy(—n)) 25 HAVFT, Qu(—n + 1))

In particular, the Galois action on (Wa,/Wa,_1)(n) factors through a finite
quotient, since this is the case for HO(Y Q).

We want to say something similar for H™(U,Qy/Z;), at least for n = d
(=dim U). If U is affine, then we have an exact sequence

- — HYU,Zy) — HYU, Q) — HYU,Qu/Z¢) — 0,

since H1(U,Zs) = 0 by weak Lefschetz [Mil80, VI 7.2]. From this we con-
clude that By = HY(U,Qy/Zy) is divisible and that there is an exact sequence

0—A — B —C; —0

in which Ay = im(Waq_1HYU,Q,) — HYU,Q/Zy)) is divisible and of
weights w € {d,...,2d—1}, and in which C is a quotient of H*(U, Q;)/Waq_1,
divisible and pure of weight 2d. We need to know Cj precisely, not just up to
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isogeny, and this requires more arguments — note that in the Q/Zs-analogue
of (2.1), the differentials d}’? will not in general vanish for r > 3.

For better control of this spectral sequence, we replace U by a smaller
variety, as follows. By the Bertini theorem, there is a hyperplane H in the
ambient projective space whose intersection with X and all Y;, _ ;, is transver-
sal, i.e., gives smooth divisors in these. (In particular, the intersection with

- N+1
Yi, .., is empty for all d-tuples (i1,...,i4).) This means that ¥ = ‘Ul Y;,
1=
with Yy41 := H N X, is again a divisor with strict normal crossings on X.

As explained in Section 1, it is possible for our purposes to replace U by the
open subscheme U? = X \Y = U ~ (H NU), because such subschemes form
a cofinal subset in the set of all opens U C V, F = K (V). Now we have the
following description for By := H(U?, Qe/Zy).

PROPOSITION 2.2. There is an exact sequence
0— Ay — HYUY,Q¢/Z¢) — Co — 0
in which Aq is divisible and mized of weights in {d,...,2d — 1}, and
Co =1 ®z Qu/Zi(—d)

for a finitely generated free Z-module I with discrete action of Gx. Moreover,
there is an exact sequence

0—-I'-1T—-1"-0
of Gk -modules with
I" = Zmo(Y)],
I’ = ker(Z[ro(YET 0 )] 5 Z[ro(YE-1)),
where Y- N H = 11 Y;

1<i1 < <ig—1 <N
the inclusions Y;, ., N H <= Y .

N H and where B is induced by

1yeenrbd—1

Proof. For 1 <i; <--- <i, <N, define

YY) . =Y N (Vi N H)

Lyeenly Lyeeey

by removing the smooth hyperplane section with H, and let YO C Y pe
the disjoint union of these open subvarieties for fixed v (with yoll .= x0 .=

N

X~ (XNH)). Then Y" = Y Y is a divisor with (strict) normal crossing on
1=

X% with U? = X\ Y?, and hence there is a spectral sequence

(2.3) ES? = HP (YO, Qp/Ze(—q)) = HPTI(UO, Qp/Zs)

by the same arguments as for (2.1) (the properness is not needed in the proof).
[l
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But now the Y;?Zq are affine varieties, as complements of hyperplane
sections, and of dimension d — ¢, so that

- 0 forp>d—gq
HP(YOld, Zy(—q)) = |
( Qe/Z4(~1)) {divisible forp=d—q

by weak Lefschetz. Moreover, by the Gysin sequences
e Hp(?b Qf) — Hp(?fa @ﬁ) — Hp—l(y'zm Ha@f(_l)) — e,

HP(YOld Q) is mixed with weights p and p + 1, since HP(Y;,Qy) is pure of
weight p and HP~1(Y; N H,Qu(—1)) is pure of weight p+ 1. Hence the spectral
sequence (2.3) is much simpler than (2.1) and has the following Es-layer:

The terms vanish for p + ¢ > d, and on the line p + ¢ = d, the EY-
terms — and hence also the EP:9-terms which are quotients — are divisi-
ble and mixed of the indicated weights. Note that HO(YOldl Qy/Z,(—d)) =
HO (Y1 Qg/Z¢(—d))) is pure of weight 2d.

Let F" be the descending filtration on By = H d(m, Qy/Zy) for which
FY/F¥~! = E%9~V  Then we see that F? is divisible and mixed of weights
< 2d — 1. Next,

F'/F? = By — (YO, Q/Zy(—d + 1))

is the cohomology of a (usually nonconnected) smooth affine curve, and by the
Gysin sequence

0 — H' (Yl-1,Qp/Z) — H (YO, Qy/Zy)
— HO(YU-1UNH,Qu/Z(-1)) = H*(Y1=1,Qq/Z¢) — 0

there is an exact sequence
0— A - F'F? - C' -0,
where A’ is divisible of weight 2d — 1 and where C' = I' ® Qp/Zy, with I’

defined by the exact sequence

0 — I' — Zlmo(Y =111 H)] = Z[mo(YE-1)] = 0.
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Finally,

C" = F°/F' = HO (YU, Q/Z(~d))
is the cohomology of Yl = Y14 which is a union of points, and C” = I" ®
Qu/Zy for

I" = Zmo (Y1),

Let Ag be the preimage of A’ in F'!, and let Cyp = By/Ap. Then we have exact
sequences

0 - Ay — By — Cp — 0,

0 - F?2 — Ay — A — 0,

0 - ¢ —= C — C" = 0.
Hence Ay is divisible and mixed of weights < 2d—1, and Cj is divisible of weight
2d. This determines Ay and Cp uniquely (there is no nontrivial G g-morphism
between such modules), and so the spectral sequence (2.1) for U = X \ Y
instead of U = X \ Y shows that Cj is a quotient of

ker (HO(VI, Qu(—d)) — HA(VI-1, Qu(—d +1))) .

Hence the action of G on Cy(d) factors through a finite quotient G. This in
turn shows that the extension

0—>C"-Cy—C"—=0
comes from an extension
0—-I'-1—-1"-0

of G-modules by tensoring with Q;/Z¢(d). In fact, applying a Tate twist is an
exact functor on Z;-Gi-modules, and one has isomorphisms (where the tensor
products are over Z)

EthG(I”) I/) Rz ZZ — EXt%g[G] (I” ® Z[, I'® ZZ)
= Exth(I" @ Qp/Zy, I' @ Qo) Zy),

since Zy is flat over Z, and since the functor T' +— T'®z, Q;/Z; is an equivalence
between Zg-lattices and divisible /-torsion modules of cofinite type (with action
of G) preserving exact sequences. Finally,

Exts(I", 1) — ExtG(I", 1)@ Zy
Z

is surjective for a finite group G.
We are now ready to prove

THEOREM 2.4. The restriction map

Bp : H*(K,B) — @ H*(K,, B)

is injective for B = HY(UO, Qp/Z¢(d + 1)).
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Proof. We follow the method of [Jan92]. By applying the (d+1)-fold Tate
twist to the sequence 0 — Ay — By — Cy — 0 of Proposition 2.2, we get an
exact sequence

0—-A—B—>C-—=0.

It induces a commutative diagram with exact rows
T @ Hl(KUaC) - @HQ(KMA) - @HQ(KWB)
v v

vES TQC’S (*) ?Tﬁf“ TﬁB
> HY(K,C) H*(K, A) H*(K, B)

HEPHQ(KU,C) H%H?)(KU,A) e

Tﬂc ZT'YA
—— H*(K,0) H3(K, A)
for a suitable finite set S of places of K. In fact, if Spaq is a set of bad places
for A, then for any S D Spaq U {v | £}, H*(K,, A) =0 for v ¢ S, and thus (¥)
is commutative. By Theorem 1.5, 54 is an isomorphism, since A is divisible

and mixed of weights < —3, and by Tate duality, 74 is an isomorphism (for all
torsion modules A). To show the injectivity of Sp by the 5-lemma, it therefore
suffices to show that C' satisfies

H) (i) acs:HYK,C) — @ HY(K,,C) issurjective for all finite S;
vES
(i) Bc:H*K,C) — @H?*K,,C) Iis injective.

Let I, I’ and I” be as in Proposition 2.2, so that C = I ®7 Qy/Z(1). We have
exact sequences

0 - I' - I — I" — 0,

0 - I' - b — I3 — 0,
in which I”, Iy and I3 are permutation modules, i.e., of the form Z[M] for a
Gr-set M. Thus (H) holds for C by repeated application (first to I”, I, and
I3, then to I’, and finally to I) of the following result. O

THEOREM 2.5. Let I, Iz, and I3 be finitely generated free Z-modules with
discrete G -action, and let C; = I; ®z Qp/Ze(1) for i = 1,2,3. Assume that
I3 is a permutation module.

(a) Property (H) holds for Cs.
(b) If 0 = I = Iy — I3 — 0 is an exact sequence, then (H) holds for Cy if
and only if it holds for Cj.

The following observation will help to prove part (b).
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LEMMA 2.6. Let I be a finitely generated free Z-module with discrete G -
action, and let T' be the torus over K with cocharacter module X, (T) = I.
Then property (H)(i) (resp. (H)(ii)) holds for C = I ®z Qu/Z¢(1) if and only
if T satisfies

(H))(1): arse: H(K,T){} — @ HYK,,T){{} is surjective

ves for all finite S,

(resp. (H))(il): Bre: HA(K,T){¢} — @ H?*(K,, T){{} is injective).
Proof. Recall that T(K) = I ®z K* and HY(K,T) = H/(K,T(K)) by

definition. Since ¢ # char(K), T(K) is ¢-divisible, and the Kummer sequences

(2.7) 0= I ®z pem — T(EK) 25 T(K) = 0

identify C' with T'(K){¢}, the ¢-primary torsion subgroup of T'(K). Similar
results hold for the fields K,, and the cohomology sequences associated to
(2.7) for all n give rise to a commutative diagram with exact rows

@ T(K,) @ Q/2Z — @ H'(K,,C) — @ H'(K,,T){{} —=0
veS vES vES

T wr,$ T ac,s T ar.s.e

T(K) ®Q¢/Zy HY(K,C) HY (K, T){¢} 0

and to a commutative diagram with horizontal isomorphisms

@HQ(KUa C) NH. @HQ(KIMT){E}

T Bc T Br.e

H?*(K,C) —= H?(K,T){¢}

Here the vertical maps are induced by the various restriction maps, and we
used that T(K) = H(K,T(K)) and T(K,) = H*(K,,T(K,)) for a separable
closure K, of K,. Note that H (K, T) and H'(K,,T) are torsion groups for
i>1.

Now the map wr g is surjective for any torus 7" and any finite set of places
S ([Jan92, Lemma 2]). This proves the lemma. O

Proof of Theorem 2.5. Let I3 be a permutation module. Then I3 is a
direct sum of modules of the form Iy = Ind%,(Z) = Z[G /G ] for some finite
separable extension K’ of K. Let Ty be the torus with cocharacter module Ij.
Then

(2.8) HY(K,Tp) = H(K',G,,) = H(K',K")
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by Shapiro’s lemma, and similarly
(2.9) H'(Ky, To) = g H'(K,, G),
wlv
where w runs through the places of K’ above v. Thus
HY(K,Ty) = 0 = HY(K,, Tp)
by Hilbert’s Theorem 90, and 7, : H*(K, Ty) @ H?(K,, Tp) is injective by the

classical theorem of Brauer-Hasse-Noether forvK ’. This shows property (H})
for the torus T3 with cocharacter module I3, for all primes ¢, and hence part
(a) of Theorem 2.5.

For part (b), let T; be the torus with cocharacter module I; (i = 1,2, 3).
Then we have an exact sequence

0Ty =15 —>T3—0
wit 3) =0 = vy A3 assumption and the above. 1S gives
ith HY(K,T3) = 0 = HY(K,,T3) by pti d the ab This gi

exact commutative diagrams

® T5(K,) > @ HY (K, T)) — @ H'(K,,Ty) —=0
vES vES vES

Tu} TaTl,S TQTQ,S

T3(K) HY(K,Ty) HY(K,Ty) 0

and

0 — PHYK,,T\) — P H*(K,,Ta) — P H*(K,, T3).

v v v

T Bry T Bry T Bry

0 —— H?*(K,Ty) H?(K,,T3) H?(K,,Ts)

Since fr, is injective by assumption, one has an isomorphism kerfy, —

kerfBr,. On the other hand, the groups H'(K,,Ti) have finite exponent n.

(By Hilbert’s Theorem 90 we can take n = [K' : K|, if K'/K is a finite Galois

extension splitting 7.) Hence § factors through EBS T3(K,)/n. But w® Z/nZ
ve

is surjective for every n: Indeed,
KX J(KX)" — @ K (K"
veS

is surjective for all n by weak approximation for K, and the same for all finite
extensions K’ of K gives the result for T3 (cf. (2.8) and (2.9) for ¢ = 0). This
gives an isomorphism coker ag, ¢ — coker ar, s and hence (b). O
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This completes the proof of Theorem 2.4, and we can now show the fol-
lowing theorem, which is a variant of Theorem 0.6, in which the fields F;, are
replaced by the fields F{,.

THEOREM 2.10. Let F' be a function field in d variables over K, such
that K is separably closed in F', and let £ be a prime invertible in K. Then the
restriction map

H*(F,Qq/Zo(d + 1)) — @ H2(F(y), Qe/Zy(d + 1))
18 injective.

Proof. Let F = K (V) for a geometrically integral variety V' of dimension
d over K. By Proposition 1.2 it is equivalent to show the injectivity of

a: H*(K,HYFK,Qu/Z(d+1))) — @HQ(K(,U), HYFK,Q/Z(d+1))).

Let = be an element in the kernel of a. By the limit property recalled above
Theorem 1.5, there is an open affine U C V such that x is the image of an
element y lying in the kernel of

H(K, HY(U, Qo Zo(d + 1)) — @ H? (K ), H(U, Qu/Ze(d +1))).

If K is a number field, then we may assume that U is smooth over K, and there
is a good compactification U C X as in property RS2(U) at the beginning of
this section. Thus the claim follows immediately by restricting to the subset
U° constructed before Proposition 2.2 and applying Theorem 2.4. O

If K has positive characteristic, we use the following result of Gabber,
which refines de Jong’s theorem on alterations.

THEOREM 2.11 (Gabber; see [ILO14|). If X is separated and integral of
finite type over a field L and ¢ is a prime which is invertible in L, and Y C X
is a proper closed subscheme, then there exists a finite extension L' /L of degree
prime to £ and a connected, smooth quasi-projective variety X' over L' together
with a proper surjective L-morphism m : X' — X such that the extension
of function fields L'(X")/L(X) is finite of degree prime to £, and such that
Y = 771(Y), with the reduced subscheme structure, is a divisor with strict
normal crossings on X'.

We apply this to a compactification U C X for our affine variety with
a proper integral variety X over K and the closed subset Y = X — U. Let
7: X — X and Y/ = 77 1Y) be as in (G), so that X’ is smooth projective,
without loss of generality geometrically irreducible, and Y’ is a simple normal
crossings divisor. Let U’ = X’ — Y/, and let (U’)® C U’ be constructed as the
complement of a well-chosen hyperplane section like before Proposition 2.2.
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Then the image vy’ of y under the restriction map for U’ — U lies in the kernel
of

H*(K', HY((U")°, Qu/Ze(d+ 1)) — @ H*(K(,), HY(U")°,Qu/Ze(d + 1)),

where w runs over all places of K’. Thus ¢y = 0 by Theorem 2.4. By restricting
to F'K’ and once more applying Proposition 1.2, this implies that the image
of x under

H™2(F,Qu/Z¢(d + 1)) — HW2(F',Qu/Zy(d + 1))

is zero. It remains to remark that this restriction map is injective, because the
degree [F' : F] is prime to £. In fact, we can decompose the extension F’/F as
F'/F;/F, where F; is the maximal inseparable extension inside F’/F. Then
the restriction from F' to F; is an isomorphism, and the restriction Res from
F; to F' is injective, since, for the corestriction Cor from F’ to F;, we have
Cor Res = multiplication by [F” : F;], which is prime to /.

To have the same result with F, in place of F{,), and thus obtain Theo-
rem 0.6, it suffices to show

THEOREM 2.12. For any n € N and all i,j € Z, the restriction map
H'(Fo), Z/(5)) — H'(F,, Z/nZ(j))
18 injective.
This is related to a more precise rigidity result (for n invertible in K') on
the Kato complexes recalled in Theorem 4.11, which we shall also need in the
following sections. However, as was pointed out to me by J.-L. Colliot-Thélene,

the injectivity above follows by a simple argument and in the following general
version.

THEOREM 2.13. Let K/k be a field extension satisfying the following prop-
erty:
(SD) If a variety Y over k has a K -rational point, then it also has a k-rational
point.

Let F be a set-valued contravariant functor on the category of all k-schemes
such that

(FP) For any inductive system (A;) of k-algebras and A = hi)niAi, the natural
map hi>an(Al) > F(A) is an isomorphism. (Here we write F(B) =
F( Spec B) for a k-algebra B.)

Let V' be a geometrically integral variety over k, and write k(V') (resp. K(V))
for the function field of V' (resp. V xy K). Then the map

Fk(V)) = F(K(V))

18 injective.
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Proof. The field K can be written as the union of its subfields K; which
are finitely generated (as fields) over k. Every K; can of course be written as
the fraction field of a finitely generated k-algebra A;.

Now let o € F(k(V)) and assume that « vanishes in F(K(V)). By (FP),
there is an i such that « already vanishes in F(K;(V)). Moreover, there is
a nonempty affine open V! C V and a 8 € F(V') mapping to o in F(k(V)).
Finally there is a nonempty affine open U C Z; X, V', where Z; = Spec A;,
such that 8 vanishes under the composite map F (V') — F(Z; xx V') — F(U).

Now it follows from Chevalley’s theorem that the image of U under the
projection p : Z; X V' — Z; contains a nonempty affine open U’. (p maps
constructible set to constructible sets, and is dominant.) Now U’ has a K-point
Spec(K) — Spec(K;) — U’. Hence, by property (SD), U’ has a k-rational
point Q. Then W = p~1(Q)NU is open and nonempty in p~1(Q) = Q x, V' =
V’. By functoriality, 8 vanishes in F(W) and thus a in F(k(V)). O

Proof of Theorem 2.12. We may apply Theorem 2.13 to the extension
Ky/K(, and the functor F(X) = H} (X, M) for any fixed discrete Gk,
module M (regarded as étale sheaf by pullback) to get the injectivity of

H'(F(,), M) — H'(F,,M).

In fact, property (SD) (for “strongly dense”) is known to hold in this case
(cf. [Gre66, Th. 1]), and the commuting with limits as in (FP) (for “finitely
presented”) is a standard property of étale cohomology (cf. [Mil80, III 1.16]).

]

3. A crucial exact sequence, and a Hasse principle
for unramified cohomology

To investigate the cokernel of Sp (notation as in Section 2), we could
follow the method of [Jan92] and show that it is isomorphic to coker(S¢). By
describing the edge morphisms in the spectral sequence (2.3) we could prove
the crucial Theorem 3.1 below for global fields. Instead, we prefer to argue
more directly, which allows us to treat arbitrary finitely generated fields and
use 3.1 also for the remaining sections.

We shall make repeated use of the following. Let ¢ : Y < X be a closed
immersion of smooth varieties over a field L, of pure codimension c¢. Then, for
every integer n invertible in L and every integer r, one has a long exact Gysin
sequence

oo HYN UL Z/Z(r)) S HY 72, 2/ (r — ) 5 HY(X,Z/nZ(r))
5 HY(U,Z/nZ(r)) — -+,

where U = X \ Y is the open complement of Y and j : U — X is the open
immersion. We call i, and § the Gysin map and the residue map fori : Y — X,
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respectively. If i/ : Y/ < Y is another closed immersion, with Y’ smooth and
of pure codimension ¢’ in Y, then the diagram of Gysin sequences

*

HY (X, Z/n(r)) ——>

H"~ YU, Z/nZ(r)) HY~2¢(Y, Z/nZ(r — c))

Tj’* Tii
(i0i)x (joi”)*

HY~Y(U',Z/nZ(r)) LA HY =2+ ) (v 7 na(r — ¢ — ') ——>= HY(X,Z/nZ(r)) ——>=

is commutative, where j' : U < U’ is the open immersion. In fact, the first se-
quence comes from the long exact relative sequence involving Hy- (X, Z/nZ(r))),
together with canonical Gysin isomorphisms

HY7%(Y, Z/nZ(r — ¢)) = HY (X, Z/nZ(r))).

If L is a perfect field of characteristic p > 0 and n = p™, then the one
has still Gysin morphisms i, with the transitivity property, by work of Gros
[Gro85al, but the remaining properties are not in general true anymore, except
for the following special case. If X is smooth of pure dimension d, then one
has canonical Gysin isomorphisms

HY2(Y,Z)p"Z(d — ¢)) = HY(X, Z/p™Z(d)))

(see [Suw95, Cor. 2.6.]) and gets an exact Gysin sequence as above for r = d.

With these preparations we can now prove a crucial exact sequence for
a specialization map which is not only used for Theorem 3.8 below, giving a
Hasse principle for unramified cohomology, but is also essential in the proofs
of Theorems 0.9, 0.10, and 0.11.

THEOREM 3.1. Let K be a finitely generated field with algebraic closure
K, and let X be a smooth, proper, irreducible variety of dimension d over
K. LetY = J;_,Yi, withr > 1, be a union of smooth irreducible divisors
on X intersecting transversally such that X Y1 is affine (this holds, e.g., if
X is projective and Y; is a smooth hyperplane section), and let U = X \Y.
Then, for any prime £, and with the notation of the beginning of Section 2, the
sequence

0 — HYT,Qu/Zo(d)) e < HOY M, Qu/Z0) e, B H2Y T, Qp/Z0(1)) e

is exact, where we write X = X xg K, and similarly for the other varieties,
and where we regard Gk as Gal(K/KP®) for the perfect hull KP® of K in
K, which is the maximal inseparable extension of K inside K and is a perfect
field. Moreover, e and dy are defined as follows. The specialization map e is
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induced by the compositions

(32)  HYU,Qu/Zu(d)) < B (¥ig ~ (U Y0), Qu/Ze(d — 1))

1#ig
) _
> HY 2(md—17id ~ ( U ) E)7Q€/Z€(d_ 2))
i#iq—1,%d
8 1) e
— s — Hl(}/’ig,...,id AN (7£U ) K)?Qf/zf(l)) — HO(}/il,...,idaQZ/ZZ)7
142,014

where each 0 is the connecting morphism in the obvious Gysin sequence. On the

d
other hand, dy = Y~ (—=1)*6,, where 6,, is induced by the Gysin map associated
pn=1
to the inclusions

—Y.

U1 yeeeybyyeenyld

Y;

1yeenld
(and i, means omission of i, as usual).

Proof. We note that here the absolute Galois group Gx of K can be
regarded as the Galois group Gal(K/KP®), where KP® C K is the perfect
hull of K (the maximal inseparable extension of K in K). For ¢ invertible in
K, we could replace the algebraic closure of K by its separable closure and,
by a standard property of étale cohomology, we get isomorphic groups above,
which are the ones used in Section 2. For ¢ = char(K) however, we need K to
be the algebraic closure.

Write H(Z,7) instead of H(Z,Qq/Z(j)), for short, and note that U is
affine, because X \ Y] is affine and U < X is an affine morphism, because
Y is defined by a locally principal ideal. Hence H%(U,d) is divisible, since
HY*YU,Z/tZ(d)) = 0 by weak Lefschetz, which also holds for ¢ = char(K);
see [Suw95, Lemma 2.1]. We now proceed by induction on r, the number of
components of Y. If r = 1, then the Gysin sequence

o > HYX,d) - HYU,d) » H*¥'(Y,d—1) — ---

shows that H%(U,d) is mixed with weights —d and —d + 1; see 1.7(e)—(f).
Hence, using 1.7(d), we can only have H4U,d)q,. # 0 and Y4 #£ () for d = 1.
In this case we have an exact sequence

0— HY(X,1) > H'(U,1) > H(Y,0) —» H2(X,1) = 0.

Without loss of generality, we may assume that X is geometrically irreducible
over K. (Otherwise, this is the case over a finite extension K’ of K, and

everything reduces to this situation, since we have induced modules.) Letting
C = im(6), we have

Hl(ﬁ, 1)GK 5 Cap
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since HY(X,1)g, = 0 (H*(X,1) is divisible and of weight —1), and there is
an exact sequence

0—C — Indﬁ(x) (Qe/Z¢) — Qu/Zy — 0,

where K (x) is the residue field of the unique point € Y, which is a separable
extension of K, by assumption. But this sequence stays exact after taking
cofixed modules: the action of Gk factors through a finite quotient G, and
H1(G,Qq/Zy) = 0. (This group is dual to H'(G,Z,) = 0.) Putting things
together, we have an exact sequence

0= HY (U, 1), % HA(Y,0)¢, B H2(X,1)g, — 0.

Now let » > 1. Then Z = U:;ll Y; is a divisor with normal crossings on
X which fulfills all the assumptions of the theorem, and the same is true for
Z, =Y, NZ=U;{(Y,NY;) on Y,. O

We claim that we obtain a commutative diagram

(3.3)

- — 8
HY XN Z,d)g —> H'(U,d)a,, — > H*" ' (Y, N (Y, NZ),d—1)g,, —>0

K

. 1) . 2) e

0 —> H°(Zl4,0)q,, —> H°(Y4,0)g,, —> H((Y, N 2)l*~1,0)g,, ——>0

da (3) dg 4) da

0 —— H?(zld-1,1)g, —> H3(Yld-1 1)g, — H?>((Y, N Z)[d-2 1)g,, —>0

K K K

with exact rows. The first row comes from the Gysin sequence for (X \ Z,
Y, N Z,),

o HY(X < Z,d) —» HYU,d) > H" (Y, ~ Zy,d — 1) — 0,
in which H¥(X < Z,d) = 0 by weak Lefschetz. Next note that

v = 11 Y;
1<ig <+<ip, <r

17---7iu7

Z[V] = H mlv“wiu?
1< < <4, <r—1
,nzl-l = (v,n2z)k-1 = 11 YO Yir, i
1<i1 <<ty —1<r—1
- H Yvil,'“:iu

1< <..<tp=r
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so that Y = ZIVl 11 (Y, n Z)»=1). Hence one has commutative diagrams
(3.4)

0

H*(Z14], 5) HY(Yld, j) ——————— H* (Y, N 2)ld-1,5) ——>0
idz (3" ldQ

@) idz

0 —— H'*?(zl4-1 j 4+ 1) —— H'T2(Yld-1 j + 1) —— H' 2((Y,n2Z)d-2,j4+1) ——0

with canonically split exact rows, where both left maps are dy = 3 (—=1)*4,,
pn=1
with d,, being induced by the inclusions

Zi17~--,iz/ — 7. -~ and Yvh,...,iu —Y. -~

D1 yeeeslpiyennyly L3 T JYR #93

respectively, and the right-hand dy is defined as dy = Y (—=1)*d,, with ¢,
pn=1
being induced by the inclusions

Y; nNY, =Y. -~ ler-

Loeesty—1 ST N Y
In fact, the commuting of (3') is trivial, and the square (4’) commutes since
it commutes with 9,1 < u < v — 1 in place of dz, whereas ¢, vanishes after
projection onto (Y, N Z)*»~Y (the last component of (i ...,%,) cannot be 7).
This implies the commutativity of (3) and (4), and the exactness of the two
involved rows.

The commutativity of (2) is clear: For 1 <i; < --- < ig = r, the special-
ization map (3.2) is the composition

HYU,d) SH" Y Y, <Z,d—1) > H72Y,_nY,~( U (YinY,)),d—2)

v—1

iy 1
B H (Yigor (LU (N, 1) 5 H(Yi 2, 0).
iz T
The commutativity of (1) is implied by the commutativity of
e: Hd(v,d>—5>del(W,d_1)—>... = HO(Yi i 0)
| |
e: Hd(m,d)—é>1{d*1(w,d—1)—>m <o > H°(Yi;,. iy, 0)

for 1 <41 <--- < ig <r, where the vertical maps are the restriction maps for
cig N
Y, = 0 for iy # r.) This commutativity follows from the compatibility of the

the open immersions obtained by deleting Y, everywhere. (Note that Y;,

corresponding Gysin sequences with restriction to open subschemes.

Given the diagram (3.3), we can carry out the induction step. It is easy to
check that the middle column is a complex, and by induction the left and right
column are exact. Hence the middle column is exact, by a straightforward
diagram chase.
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We give a first application to function fields. Recall the following definition
[CT95, 2.1.8 and 4.1.1].

Definition 3.5. Let k be a field, and let F' be a function field over k. For
an integer n invertible in k, the unramified cohomology H} (F/k,Z/nZ(j)) C
H(F,7Z/nZ(3j)) is defined as the subset of elements lying in the image of

Hgy(Spec A, Z/niZ(j)) — H'(F, Z/nZ(j))
for all discrete valuation rings A C F' containing k.

If X is a discrete valuation of F' which is trivial on k, and if Ay and k(A)
are the associated valuation ring and residue field, respectively, then one has
an exact Gysin sequence

Hiy(SpecAy, Z/nZ(j)) — H'(F,Z/nZ(j))
D H k(N Z/nZ( ~ 1) = -
since purity is known to hold in this situation. We call the map §y the residue
map for A\. This shows
LEMMA 3.6. One has

HY(F/k, Z/nZ(j)) = ker (H'(F, Z/nZ(j)) —~ HH’ H(k(N), Z/nZ(j — 1)),

where the sum is over all discrete valuations A of F/k, and the components of
the map are the residue maps 0y.

We will need the following fact (cf. [CT95, 2.1.8 and 4.1.1]).

PROPOSITION 3.7. Let X be a smooth proper variety over k, and let F' =
kE(X) be its function field. Then

H},(F/k, Z/nZ(j)) = ker (H'(F, Z/nZ(j) NS P B (k(x), Z/nZ(j - 1)),
zeX!
where X' = {z € X | dimOx, = i} for i > 0, k(z) is the residue field of
x € X, and § is the map from the Bloch-Ogus complexes for étale cohomology
[BO74]. In particular,
H,, (F/k, Z/nZ(j)) 2 Hzop (X, My, (7)),

where H! (j) is the Zariski sheaf on X associated to the presheaf

U H (U, Z/nZ(j)).

Proof. Since we need a variant below, we recall the beautiful argument.
First note that, by definition of the Bloch-Ogus sequence, the components of
dx are the residue maps dx , = Jy(y), where A(z) is the discrete valuation
associated to = (so that Ay,) = Ox, and k(A(x)) = k(z) ). This shows that
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the kernel of 3.6 is contained in the kernel of 3.7. Conversely, let A C F be
a discrete valuation ring. Then by properness of X we have a factorization
Spec(F') — Spec(A) — X, and hence a factorization

Spec(F') — Spec(A) — Spec(Ox ») — X,

where € X is the image of the closed point of Spec(A). By the results of
Bloch and Ogus [BOT74], since X is smooth, the sequence

H'(Spec(Ox ), Z/nZ(j)) & H'(Spec(F), Z/n(j))
— @ H' ' (k(2), Z/nZ(j — 1))
is exact, where  runs over the codimension 1 points of Spec(Ox ;). Therefore
any element in the kernel of 3.7 lies in the image of j*, and hence in the image

of H'(Spec A,Z/nZ(j)) — H(F,Z/nZ(j)), by the above factorization. Since
A was arbitrary, the element lies in the unramified cohomology. U

The second main result of the present section is now

THEOREM 3.8. Let K be a global field, let n € N be invertible in K, and
let F' be a function field in d variables over K, d > 0, such that K is separably
closed in F'. For every place v of K, let K,y be the Henselization of K at v,
and let F(,) = FK(,) be the corresponding function field over K. Then the
restriction maps induce an isomorphism

HSJQ(F/K,Z/RZ(d-F 1)) % Gv} ng2(F(v)/K(v),Z/nZ(d+ 1))

Proof. It suffices to consider the case n = £™, where £ is a prime invertible
in K. Moreover, it suffices to show that the map

(3.9) HEP(F/K,Qu/Zo(d + 1)) —— SH HEP?(Froy /K vy, Qo/Zo(d + 1))

is an isomorphism. In fact, if this holds, the bijectivity for n = ¢™ follows from
the commutative diagram with exact columns

HE (F)K, Qo Ze(d + 1) —— @ HE(F /Ky, Qo/Zeld +1).
Zm [rn

HIPAF/K,Qu/Ze(d + 1)) —— EUBHng(F(v)/K(v),Qé/Zé(d+1))

HiP(F/K,Z/0MZ(d + 1)) —— b H P (Fyy /K ), Z/0Z(d + 1))
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The exactness of the columns follows from Lemma 3.6 and the exactness of
0 — HY(L,Z/t™Z(i)) — HYL, Q) Zo(3)) S HITY(L, Qp/Z0(i))

for any field L and any natural number ¢, which in turn follows from the
theorem of Rost and Voevodsky, i.e., the proof of the Bloch-Kato conjecture
BK(L,i,{); see the introduction.

We know already from Theorem 2.10 that (3.9) is injective; therefore it
suffices to show the surjectivity in (3.9).

Case 3.8.A. First assume that there is a smooth projective variety X over
K with function field K(X) = F. This is certainly the case if K is a number
field. In fact, there is a geometrically irreducible variety U over K with K(U) =
F, and after possibly shrinking U we may assume that U is smooth. Then, by
resolution of singularities (more precisely by property RS2(U) from the begin-
ning of Section 2) it can be embedded in a smooth projective variety X over K
as an open subvariety. Then, abbreviating H'(?,7) for H*(?,Qq¢/Z(5)), Propo-
sition 3.7 gives a commutative diagram with exact rows and injections j, j,,
(3.10)

. Doudx
BovJv (v)
@ ngJr2(F(1))/K(v)a d+ 1)(%. @Hd+2(F(U)7 d) I @ @ Hd+l(K(17)(y)7 d)

v x1
YEX ()

' B(F/K
B (F/K) ﬂ//T

HIF(F/K,d+ 1)% H*2(F,d+1) @ H"*(K(z),d),

zeX!

where X(,) = X X K, and in which B(F/K) is the restriction map, 3" is
induced by the restrictions for the field extensions K,/ K () for y lying above
x, and (3’ is the induced map. Note that Fo) & F ®k K(y) is the function
field of X, over K(,). The commutativity of the right square is easily checked
(contravariance of Gysin sequences for pro-étale maps). Now, for z € X! and
a place v of K, every y € X(,) lying above z is again of codimension 1, since
X(v) = X is integral. Hence,

(3.11) IT Spec(Kwy(w) = JI Spec(Kw)(¥) = X xx K(z),
yex(lu) YEX (4)
ylz yle

the fibre of the pro-étale morphism X,) — X over z. This is again isomorphic
to

(3.12) (X xx K)) xx K(x) = Spec(K (z) @k K(,))
= Spec(K () @2 (K{z} ®K K()))
= [] Spec(K () @k (2 K{z} )

wlv
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where K{z} is the separable closure of K in K(x) (which is a finite extension
of K) and where w runs over the places w of K{z} above v. This shows that
3" can be identified with the map
(3.13) @ B(K(x)/K{z}): @ H"(K(z),d)
zeX1! zeX!
— @ @ HTK@)w)d),
reX! weP(K{z})

where P(K{z}) is the set of places of the global field K{z}. Hence 3" is in-
jective as well as 3(F/K), by Theorem 2.10. (Note that K(x), for z € X1, is a
function field in d — 1 variables over K{z}.) By diagram (3.10) it now suffices
to show that the following map is injective:

(3.14) coker B(F/K) — coker 8" = S?(l coker B(K(x)/K{z}).

LEMMA 3.15. The map (3.14) can be identified with the map of cofized
modules

HYFK,d)g, — @ H7'K(z)ox K,d—1)g,
reX!

~( @ H"'(K(y),d-1))
yeyl GK
induced by the residue map 0 for X = X xg K.

Proof. By (3.11) and (3.12), the map 8" can also be identified with the
map

@ [BK(@)/K): HF K (w),d) — @ H"(K(x) @k Ky,d)-
zeX! veP(K)
Therefore the map (3.14) can be identified with the map coker $; — coker (35
induced by the commutative diagram

@ H2(K,, H(FE,d +1)) —~ @ @H(K, H"(K(z) o K,d)),

zeXl v

Tﬁl Tﬁz
H*(K,HYFK,d+1)) @ H*(K,H¥ ' (K(z) 2k K,d))
reX!

where the vertical maps are the obvious restriction maps, and the horizontal
maps are induced by the residue maps

HYFK,d+1) — @ H ' (K@) oxK.d= @ H"'(K(y),d)
zeX! yeyl
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for X. This follows from Proposition 1.2, Remark 1.4(a), and the fact that
the Hochschild-Serre spectral sequence is compatible with the connecting mor-
phisms for Gysin sequences. The latter statement follows from the fact that the
Hochschild-Serre spectral sequence for étale (hyper)cohomology of complexes
is functorial with respect to morphisms in the derived category and that the
Gysin isomorphisms are compatible with pro-étale base change.

Finally, for all discrete torsion Z,-Gg-modules M, there are canonical
isomorphisms

(3.16) coker| By« H2(K, M) — @ H*(Ky, M)| > M(~1)gy,

which are functorial in M; see (the proof of) Proposition 1.2. This proves
Lemma 3.15. U

We are now ready to prove Theorem 3.8 for Case 3.8.A, which assumes
the existence of X with FF = K(X). By Lemma 3.15 it suffices to show the
following more general theorem, which will also be used in the later sections.

THEOREM 3.17. Let K be a finitely generated field with perfect hull L and
algebraic closure K, let X be a smooth proper irreducible variety of dimension
d over K, and let £ be a prime. Assume that £ is invertible in K or that condi-
tion RS1(U) (see the beginning of Section 2) holds for any open U C X X L.

Then the map
(@ H'Rw).Q/zud)  — (@ H"' (K@) Q/Zd 1))
=0 Gk —1 Gk
yeX zeX
induced by the Bloch-Ogus complex for X = X xx K (via taking coinvariants

under Gg) is injective.

Proof. We note that here we regard the absolute Galois group G of K
as Gal(K/L), and we may replace K by L and call this K again. Moreover,
the above map can be identified with a map
HYK(X) @k K,Qu/Z(d))a,; — 6)9(1 H YK (2) @K K,Qu/Zo(d —1))ay

e
Let a be an element in the kernel of the above map. Then there is an open
U C X such that a is the image of an element ayr € H4(U, Q¢/Z¢(d)) Gy , where
U = U xx, K. We distinguish the following three cases.

Case 3.17.A. First assume that RS1(U) holds and that K is infinite. Then
there exists an open embedding U C X’ into a smooth projective variety X’
such that the complement Y = X'\ U is a divisor with simple normal crossings,
say with smooth components Y; (i = 1,...,7). By possibly applying Bertini’s
theorem as in Section 2 (before Proposition 2.2) and removing a suitable hyper-
plane section (which does not matter for our purposes), we may assume that
X'\Y is affine, i.e., that U C X’ D Y satisfies the assumptions of Theorem 3.1.
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Next we note that the kernel of the map in 3.17 only depends on F' = K (X)
and not on the smooth projective model X of F. In the case of a global field K
and ¢ invertible in K, this is clear from Lemma 3.15, the diagram (3.10), and
Proposition 3.7 for F' and the F{,). In general, the argument is the same as in
the proof of Proposition 3.7, noting the following two facts. By properness, for
any 2’/ € (X’)!, the discrete valuation ring Ox-,» dominates a local ring Ox,
of X. Moreover, for this regular ring and any finite Galois extension M /K,
the Bloch-Ogus sequence of Gal(M /K )-modules

HY(Spec(Ox,y @k M), A(d)) & HUK(X) @x M), A(d))

- @ H"K(r)®x M,A(d—1))
zeX!
is exact for A = Qqy/Zy, by purity for the semi-local ring Ox , @k M. In ad-
dition, it stays exact after taking coinvariants under Gal(M/K), because the
Gersten resolution is universally exact (see [CTHK97, Cor. 6.2.4 together with
Ex. 7.3(1)] (for ¢ # char(K)) and loc. cit. Ex. 7.4(3) (for ¢ = char(K) and
the Tate twist d). By passing to the inductive limit we get the corresponding
result for K and G in place of M and Gal(M/K). The same holds for the
discrete valuation ring Ox /. As in the proof of Proposition 3.7 we get that
the kernel of 3.17 for X lies in the kernel of 3.17 for X’. Interchanging the
roles of X and X’ we get the wanted equality.
Therefore we may replace X above by X’ and call it X again. Now we
claim that a;; lies in the kernel of the map

€: Hd(Ua QZ/Zf(d))GK - Ho(ﬁv QZ/ZZ(O))GK

introduced in Theorem 3.1. Since the assumptions of 3.1 are fulfilled for U, we
then conclude that ag; is zero and hence a is zero as wanted.
With the notation of (3.2), the claimed vanishing of e(ay) follows from

the following commutative diagram for each (i1,...,74) and each y € Y, ;-
(3.18)
Hd(U7 d)GK I Hdil(ytid \( U Yl)7 d'l)GK - Hd72(Yid71,’id \( U }/’L)a d-Q)GK
iF#ig i#iq—1,td

l -

Hd(Ffv d)GK - Hdil(K(yid) K fv d'l)GK I HdiQ(K(yidfhid) ®k K, d-Q)GK

i H' (Vo g Yy Dse ————— H°({53.0)c

| |

"HHI(K(yiz ----- id)®K Fv l)GK %HO(K(%& ----- id)®K F70)GK

,,,,,

in which y; is the generic point of the component Yiy of Y; in which y lies,
for any i = (ir,...,iq), so that K(y;) is the function field of Y}’. In fact,
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the maps in the bottom line are all induced by the residue maps, by defini-
tion, and the image of ay under the left vertical map is @. As we have noted,
the image of @ in H4 (K (y;,) ®k K,d — 1)g, vanishes for every choice of
(11, ... yiq), 1 < iy < -+ <ig <r. (Note that y;, € Xl.) Therefore the image
of ag in H°({y},0)g, vanishes for every y € Y4 as claimed. This finishes the
proof of Case 3.17.A. O

Case 3.17.B. For the case of a finite field K, we note the following. First
of all we have canonical functorial isomorphisms Mg, = H'(K, M) for all
discrete Gg-modules M. Therefore the map in 3.17 can be identified with the
map

N K(X), Qu/Zu(@) @ H(h(x), Qu/Zald ~ 1)

and it follows directly from Proposition 3.7 that the kernel of this map is
independent of X and, in fact, equal to the unramified cohomology

HENK(X) /K, Qu/Z(d)).

If a, U, and ay are as above and we have a good compactification U C X DY
as above, we may not have a suitable hyperplane section defined over K, but
we get one after taking a base extension to a field extension K'/K of degree
prime to ¢. Then we conclude that a maps to zero under the restriction Res :
H(K(X),Q¢/Z(d)) — HTYK'(X),Q¢/Ze(d)). But this map is injective,
by the existence of the corestriction Cor in the other direction with Cor Res =
multiplication with [K’ : K] which is prime to ¢. This finishes the proof of
Case 3.17.B. (|

Case 3.17.C. Finally consider the case that char(K) = p > 0 and ¢ # p,
and that we have no good compactification of U, where a, U, and ay are as
above. By the weaker resolution of singularities due to Gabber (see Theo-
rem 2.11), we get a diagram

U c X' oY
(3.19) ! b
U c X DY,

where X' is a geometrically irreducible, smooth, and projective variety over a
finite extension K’ of K with ¢ not dividing [K’ : K|, 7 is a proper surjective
morphism which is generically finite of degree prime to ¢, U’ = 7= 1(U), and
Y’ = 771(Y) is a divisor with strict normal crossings on X’. Since ¢ # p, the
Q¢/Z¢-cohomology does not change under radicial maps, and we may pass to
the perfect hull of K in K’ and thus assume that K'/K is separable. Then X
and X’ are smooth projective over K. '

For any smooth variety V over K, let H'(d)g, be the Zariski sheaf on V
associated to the presheaf U — H(U,Q/Z(d))g, for U C V open, where
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U = U xg K. Then the Bloch-Ogus theory and the universal exactness used
above show that the kernel of the map in Theorem 3.17 is canonically isomor-
phic to HY(X, gd(d)GK), and the pull-back maps for étale cohomology induce
a natural pull-back map

™ HOX, HY(d)e,) = HO(X H (d)e, ).

We claim that this map is injective. In fact, it embeds into the restriction map
for the function fields, which can be factored as

(3.20) HYK(X)®xK)a, = HU(K' (X)oxkK)a, = H(K' (X0 K)a,.,

where we have omitted the coefficients Qy/Z¢(d). Both restriction maps are
injective, because the degrees [K'(X) : K(X)] and [K'(X") : K'(X)] are prime
to £. (See the corestriction argument at the end of the proof of Theorem 2.10,
which also works for the modules of coinvariants.) Thus the restriction map is
injective and 7* is injective as well. ‘

Now for an element a € HO(X,H'(d)q, ), its image o’ € HO(X',H'(d)g,)
is represented by the image ay+ of ayy under the restriction map

HY U, Qu/Ze(d))cye = HY T, Qu/Zo(d)) gz, -

By the choice of U’, and the Cases 3.17.A and 3.17.B, we get that ayr = 0,
hence @’ = 0, and so a = 0 by the injectivity of (3.20). This finishes the proof
of Case 3.17.C and thus Theorem 3.17. O

Case 3.8.B. With similar arguments we can now also complete the proof
of Theorem 3.8, in the case where the function field F' over K does not have
any smooth projective model, but the prime ¢ is invertible in K. Let U be
an affine integral geometrically irreducible variety of dimension d over K with
function field K(U) = F. Then we have an open embedding U C X into
a projective integral variety, and we get again a diagram as in (3.19). (The
smoothness of U or X was not needed.) Let F’ = K'(X'). It follows from the
definition of unramified cohomology that the morphism F/K — F'/K’, i.e.,
the commutative diagram

F — F,
) )
K — K

induces a restriction map HEH (F/K,Qu/Z¢(d)) — HIFW(F'/K',Qq/Z4(d)).
(Any discrete valuation of F” over K’ induces by restriction a discrete valuation
of F' over K.) The same holds for the morphism F,)/K ) — F| )/Kéw) for

(w
a place v of K and a place w of K’ above v. Moreover, the commutative
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diagrams
Foy)/Kw) = Fluy/ Kl
T T
FIK — F/K
induce a commutative diagram
Do HE (Floy/ Ky, Qu/Ze(d)) —— @w Hif ™ (F| /K () Qe/Ze(d)).
Iﬁ’(F/K) IB’(F’/K’)

HiNF/K,Q/Ze(d))  ——  HEP(F/K',Q/Z(d))
By the first part of the proof (having the existence of the smooth projective
model X’ of F'), the cokernel of 5'(F'/K') is zero. Now we claim that the
map coker 3'(F/K) — coker §'(F'/K') induced by the diagram is injective;
then we have coker §'(F/K) = 0 as wanted. First of all, the above diagram is
obtained from the following commutative diagram of restriction maps:

Do Hd+1(F(v)/K(v)a Qf/Zﬁ(d)) — Du HdJrl(F(/w)/KEw)y Qé/Zf(d))
Iﬂ(F/K) Iﬁ(F’/K’)
HYYF/K,Qu/Z(d)) — HYYF K, Qo /Zy(d))
by passing to the unramified subgroups, so that we have a commutative dia-

gram
coker B(F/K) —— coker B(F'/K').

P ]

coker f'(F/K) " coker B'(F'/K")
We claim that the maps ¢ and r are injective; then we obtain the injectivity
of r'.
The injectivity of i follows from the commutative diagram with exact rows

Dovjov Dovdy
D, HE (P /Koy d+ ) @), H By d 4 1) ——= @, @), B Ky (). D).

ﬁ'(F/K)T ﬂ(F/K)T ﬂ”T

j s
HEF2(F/K,d+ 1) —————>= H2(F,d+ 1) GrepHIMH(EK(N), d)

Here we have omitted the coefficients Q/Zy, P (resp. P,) is the set of discrete
valuations of F/K (resp. Fi,)/K(,)), and the components of § (resp. d,) are
the residue maps for the valuations A € P (resp. u € P,). The restriction map
B" is defined as follows. If the valuation p of Fyy/K ) lies over the valuation
A of F/K, then the corresponding component is induced by the inclusion of
the corresponding valuation rings; otherwise the component is zero. The map
B" is injective, by similar arguments as in the beginning of the proof of 3.8:
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If A, is the valuation ring of A and M/K is a finite separable field extension,
then Ay ®x M is a regular semi-local ring of dimension 1, and hence the
integral closure of Ay in F ®x M. Hence the extensions of the valuation A
to F ®g M correspond to the fiber above the closed point of Ay, i.e., to the
points of Spec(K (A\) @k M). Therefore the extensions of A to F{,) correspond
to the points of Spec(K(\) @ K(,)) = @y Spec(K{A} (), where K{\} is the
separable closure of K in K(A) (which is a finite extension), and w runs over
all places of K{A} lying above v. Thus the restriction of 5” to the component
for A can be identified with the map B(K(M\)/K{\}), which is injective by
Theorem 2.10. (Note that K(\) is a geometrically irreducible function field in
d — 1 variables over K{\}.) The injectivity of 8” now implies by a diagram
chase that i : coker §/(F/K) — coker B(F/K) is injective.

Now we consider the injectivity of r. Since the ¢-adic cohomology does
not change under radicial/inseparable extensions, we may assume that F’/F
and K'/K are separable. Then we get a commutative diagram with exact rows

HIF2(F' d41) —> h. H¥2(F' @ K(y),d+ 1) —> coker B(F'/K")

HY2(F,d+1) — h. HY2(F @K Ky, d+ 1) —>> coker B(F/K)

induced by the restriction for F’/F. The cokernel in the upper row can indeed
be identified with coker S(F’/K’) (compare Remark 1.4(a)), and then the
right-hand map can be identified with r as indicated. Now the finite étale
map 7 : Spec(F’) — Spec(F') also induces compatible downward maps 7, in
the left square, such that m, is the usual corestriction Cor on the left and
such that m,Res is the multiplication with [F” : F| in both cases. Since F'/F
and the extensions K,/ K are separable, these properties follow from obvious
calculations in Galois cohomology, which are left to the readers. We obtain an
induced map 7, on the right with 7,7 being the multiplication with [F’ : F].
Since this degree is prime to ¢, and we consider Q;/Z-coefficients, we obtain
the injectivity of r as claimed.

Remark 3.21. In the considerations of this section we have preferred to
work with the explicit descriptions (via Gysin and specialization maps) of
the maps e and do in Theorem 3.1, but we note that they coincide with the
corresponding edge morphisms and differentials of the weight spectral sequence
(2.3) for U C X DY, up to signs.

4. A Hasse principle for Bloch-Ogus-Kato complexes

Let X be an excellent scheme, let n > 1 be an integer, and let r,s € Z.
Under some conditions on X, n, and (r, s), there are homological complexes of
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Gersten-Bloch-Ogus-Kato type
CT(X,Z/nZ) - = @) H™(k(2), 2/ (s + )

IEXZ‘
4@ H k), s i 1)
z€X; 1
s @ o @ H (), /s,
(EEX,; ZGXO

where the term for X; = {z € X | dim(x) = i} is placed in degree i. If X
is separated of finite type over a field L, n is invertible in L, and (r,s) are
arbitrary, these complexes where defined by Bloch and Ogus [BO74], by using
the étale homology for such schemes, defined by

(4.1) H,(X,Z/nZ(b)) := H-(X, Rf'Z/nZ(—b)),

where f : X — Spec L is the structural morphism and Rf' is the extraordinary
inverse image functor on constructible étale Z/nZ-sheaves defined in [SGA,
XVIII]. In fact, Bloch and Ogus constructed a niveau spectral sequence

Ep (X, Z/nZ(b)) = 8 Hyyq(K(z), Z/nZ(D)) = Hp1q(X, Z/nZ(b)),

where, by definition, H,(k(x),Z/nZ(b)) = TﬂHa(U,Z/nZ(b)) for x € X,

where the limit is over all open subschemes U C {z} of the Zariski closure of .
By purity, there is an isomorphism H, (U, Z/nZ(b)) = H?*~%(U,Z/nZ(p — b))
for U irreducible and smooth of dimension p over L. Thus one has a canonical
isomorphism

(4.2) E, (X, Z/nZ(b)) = mg};{ HP=(k(x),Z/nZ(p — b)).

This is clear for a perfect field L, because then @ generically smooth. So
the limit can be carried out over the smooth U C {z}, and

[y U2l ~ 0) = (). 2/ = D),

since @ U = Spec k(z), and since étale cohomology commutes with this limit.

For a general field L, we may pass to the separable hull, because of invariance
of étale cohomology with respect to base change with radical morphisms.
Using the identification (4.2), one may define

C"*(X,Z/nZ) = E}_ (X, Z/nZ(-s)).
With this definition, one obtains the following description of the differential:
0: @ HV(k(zx),Z/nZ(s+1i)) — @ H T Y k(z),Z/nZ(s+i—1)).
reX; 1

reX;
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We may assume that L is perfect. For y € X; and x € X;_1, let 0, = 85{56 be
the (y,z)-component of 9. If x ¢ {y}, then 0,, = 0. If z is a smooth point
of {y} then there is an open smooth neighbourhood x € U C {y} Moreover,
any o € H™(k(x),Z/nZ(s + 1)) lies in the image of H™ Y (V,Z/nZ(s +i)) —
H™(k(x),Z/nZ(s+1i)) for some open V C U. Moreover, by making U (and V)
smaller we may assume that Z = U \ V is irreducible and smooth as well and
that z is the generic point of Z. Then one has a commutative diagram

A3)  H™i(k(y), Z/nZ(s + i)~ H+=(k(z), Z/nZ(s + i — 1)),

T

H™(V, Z/nZ(s + ) H™+=Y(Z, 7/nZ(s +i — 1))

where the vertical maps come from passing to the generic points, and 0 is
the connecting morphism for the Gysin sequence for (U, Z). This determines
9y, #(a). If z € {y}, but is not necessarily a smooth point of ¥ = {y}, let
Y — Y be the normalization of Y. Any point 2/ € Y above  has codimension
1 and thus is a regular point in Y. Since the niveau spectral sequence is
covariant with respect to proper morphisms, there is a commutative diagram
(4.4)

Doy,
H™(k(y), Z/nZ(s + i) —— @ H " (k(2!), Z/nZ(s +i — 1))
H™i(k(y), Z/nZ(s + i) ——2" o~ Br+i=L(k(z), Z/nZ(s + i — 1)),

where 7, is induced by 7 : ¥ — Y < X. One can check that 7. ((ay)) =
> Coryy(agr), where Cory, : H*(k(2'), Z/nZ(v)) — HH(k(x),Z/nZ(v)) is
x|z

the corestriction for the finite extension k(z’)/k(x). (This also makes sense if
this extension has some inseparable part.) Since 8; » can be treated as before,
this determines 0y ;.

For a function field L of transcendence degree d over a perfect field k of
characteristic p > 0, a separated scheme X of finite type over L and n a power
of p, it was shown in [JS03] and [JSS14, 3.11.3] that the theory of Bloch and
Ogus can be literally extended to this situation for the case b = —d, where the
cohomology groups H*(X,Z/nZ(j)) and H'(k(x),Z/nZ(j)) are defined as in
(0.2).

For any excellent scheme X and arbitrary n, the complexes C™*(X,Z/nZ)
were defined by Kato (and named C)*(X); cf. [Kat86]), in a more direct way, by
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using the Galois cohomology of discrete valuation fields, assuming the following
condition:
(x) If r = s+ 1 and p is a prime dividing n, then for any x € X, with

char(k(x)) = p, one has [k(z) : k(x)P] < s.

It is shown in [JSS14] that both definitions agree (up to well-defined signs)
for varieties over fields in the cases discussed above.

Now let K be a global field, and let X be a variety over K. For every
place v of K, let X, = X xg K,. Then condition (*) holds for X and the
X, for (r,s) = (2,1) and arbitrary n. Moreover, one has natural restriction
maps «a, : C"¥(X,Z/nZ) — C™*(X,,Z/nZ), and Kato stated the following
conjecture (see Conjecture 2).

CONJECTURE 4.5. Let X be connected, smooth, and proper. Then the ay,
mnduce 1somorphisms

H,(C*Y(X,Z/nZ) = @ Hy(C?Y (X, Z/nZ)) for all a # 0,

and an exact sequence
0 — Ho(C*'(X,Z/nZ)) — @ Ho(C*Y(X,,Z/nZ)) — Z/nZ — 0.

Remark 4.6. (a) For X = Spec (L), L any finite extension of K, the
cohomology groups vanish for a # 0, and the sequence for a = 0 becomes the
exact sequence

0— H*L,Z/nZ(1)) - @ H?*(Ly,Z/nZ(1)) — Z/nZ — 0,
weP(L)

which is the n-torsion of the classical exact sequence

Einvw
0—Br(L)» @ Br(Ly) —— Q/Z—0
wep(L)

for the Brauer groups (where invy, : Br(L,) — Q/Z is the ‘invariant’ map).
Thus Kato’s conjecture is a generalization of this famous sequence to higher
dimensional varieties.

(b) As we will see below, the «, induce a map

(4.7) axn: CPN(X,Z/nZ) — @ C*Y(X,,Z/nZ).

Let C'(X,Z/nZ) be its cokernel. Then Conjecture 4.5 is implied by the fol-
lowing two statements:

(i) ax,p is injective;

(il) Ho(C'(X,Z/nZ)) = Z/nZ, and H,(C'(X,Z/nZ)) = 0 for a > 0.
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Conversely, Conjecture 4.5 implies (i) and (ii) by the known case (a) and
induction on dimension, provided the occurring function fields have smooth
and proper models over the perfect hull of K (which holds over number fields).

We prove the following on Conjecture 4.5; compare with Remark 4.6(b).

THEOREM 4.8. Let K be a global field, let n € N be invertible in K, and

let X be a connected, smooth proper variety over K.

(a) The map ax, : CPY(X,Z/nZ) — @, C*Y(Xy,Z/nZ) is well defined
and injective.

(b) Let C"(X,Z/nZ) be the cokernel of ax . If K is a number field or if
resolution of singularities holds over K (see Definition 4.18), then

Ho(C'(X,Z/nZ)) = {;/nZ Z i 3

Proof of Theorem 4.8(a). First note that the restriction map a, factors
as

a1 C2Y(X, Z/nZ) 2 C¥V(X ), Z/nZ) — C>V(X,, Z/nZ),
where X(,) = X Xk K(,). These maps of complexes have components
@ H(k(z),Z/nZ(i+1)) —» € H(k(x),Z/nZ(i+ 1))
reX; CEG(X(U))i
- @ H T (k(x), Z/nZ(i)),
CEG(XU)i
which in turn can be written as the sum, over all x € X;, of maps
H2(k(x),Z/nZ(i+ 1)) —» @ H(k(2'),Z/nZ(i + 1))

IIG(X(,U))Z'

2/ |z

- @ HT(k("),Z/nZ(i+1)).

JCHE(XU)Z'
:EN|1

By the same reasoning as in the proof of Theorem 3.8, the first map can be
identified with
H2(k(x),Z/nZ(i + 1)) = @ H2(k(x) K {2} ), Z/nZ(i + 1)),
wlv

where K{w} is the separable closure of K in k(x), which is a finite extension
of K, and where w runs over all places of K{z} above v. Note that k(z) is a
function field of transcendence degree i over K{x}. Therefore the restriction
maps above induce an injective map into the direct sum

H2(k(x),Z/nZ(i+ 1)) = @  HT2(k(2) ), Z/nZ(i + 1))
weP(K{z})
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by Proposition 1.2 and Theorem 2.10 (since the latter implies Theorem 0.4;
see the introduction). This shows that we get maps

BX,n

(4.9) axn:C*NX,Z/nZ) — @ C* (X, Z/nZ) — @ C* Xy, Z/nZ)

of which the first one is injective. The claim of Theorem 4.8(a) therefore follows
from the next claim.

PROPOSITION 4.10. Let K be a global field, and let v be a place of K. For
every variety V- over K(,), every integer n invertible in K and allr,s € Z, the
natural map

C*(V,Z/nZ) — C™*(V Xk, Kv,Z/nZL)
18 injective.
Proof. In degree 7, this map is the sum over all x € V; of restriction maps
H™ " (k(x),Z/nZ(s +14)) —» @ H""(k(z'),Z/nZ(s+1)),

'€V,

z'|x
where V =V XK, Kv. For z €V, k(z) is the function field of the integral
subscheme (of dimension i) Z = {z} C V. Because K,/K,) is separable,
and K(,) is algebraically closed in Ky, Z = Z X, K, — V is a closed
integral subscheme whose generic point z is in V; and lies above z. Let L be
the algebraic closure of K,y in k(z). Then L = L ®k_,, Ky is a field, Z is
geometrically integral over L with function field L(Z) = k(z), and Z = Z x L
with function field L(Z) = k(Z). Moreover, L is henselian, with completion L.
Thus it follows from Theorem 2.12 that the natural map

H™ Y (k(x),Z/nZ(s 4+ 1)) — H (k(Z),Z/nZ(s + 1))

is injective for all r,s,i € Z and all n € N invertible in K(,). This proves
Proposition 4.10 and thus Theorem 4.8(a). O

Now we start the proof of Theorem 4.8(b). The following rigidity result
is shown in [Jan15].

THEOREM 4.11. Let K be a global field, and let v be a place of K. For
every variety V- over K(,), every integer n invertible in K, and all r,s € Z,
the natural morphism of complexes

C™*(V,Z/nZ) — C™*(V Xk, Ky, Z/nZ)

1S a quasi-isomorphism, i.e., induces isomorphisms in the homology.
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In view of this result and of the factorization (4.9), it suffices to prove
Theorem 4.8(b) after replacing X, by X(v) for each v. In fact, by Theorem 4.11
we have a canonical quasi-isomorphism

(4.12) C(X,Qu/2) 8 ¢'(X, Z/nZ),

where the complex C(X, Q,/Z) is defined by the exact sequence
(4.13) 0 — C*Y(X,Z/nZ) Pxen @ C* (X (), Z/nZ) — C(X,Z/nZ) — 0.

So our task is to show Ho(C(X,Z/nZ)) = Z/nZ, and H,(C(X,Z/nZ)) = 0 for
a # 0, if X is connected, smooth, and proper over K. Note that all complexes
in (4.12) are concentrated in degrees 0, ..., d := dim(X).

Next we note the following.

LEMMA 4.14. Forn € N invertible in K, the complex C(X,Z/nZ) can be
canonically identified with the compler C%°(X,Z/nZ)q,.

o @ H(K (@) o K, Z/nZ(r))c

— o= @ HYK(z) 9k K,Z/nZ(0)a,,
reXo

obtained from the Kato complex CY0(X,Z/nZ) by taking coinvariants.

Proof. This follows easily by means of the arguments used in the proof of
Lemma 3.15, together with the explicit description of the differentials in this
complex in (4.4) and the covariance of the Hochschild-Serre spectral sequence
for corestrictions. ([l

With these tools at hand, we can reduce the proof of Theorem 4.8(b) to
a Qg/Z-version. Note that it suffices to prove Theorem 4.8(b) for n = ™,
for any prime ¢ invertible in K and any natural number m. For any prime /
and any integers r, s and any scheme Z where it is defined, define the Kato
complex C™(Z,Qy/Zy) as the direct limit of the complexes C™*(Z,Z/("Z)
via the transition maps induced by the canonical injections Z/¢"Z — Z/¢" 1.
Then we have, in fact,

LEMMA 4.15. Let K be a global field, let X be a connected, smooth proper
variety over K, and let £ be any prime. Define the map

Bieo : C*H(X,Qu/Zg) — @02’1()((1;),@@/26)

as the inductive limit of the maps Bxm for all m € N, and let C(X,Qq/Zy)
be its cokernel.

(a) The injectivity of Bx ¢~ is equivalent to the injectivity of the Bem for all m.
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(b) To have Ho(C(X,Qu/Z¢) = Qu/Z¢ and Hy(C(X,Qq¢/Zs)) =0 for a # 0 is
equivalent to having Ho(C(X,Z/{™Z)) = Z/{™Z and H,(C(X,Z/(™Z))
=0 for all a # 0 for all m € N.

Proof. Let F be a function field in d variables over K. Then the theorem

of Rost-Voevodsky, more precisely, the validity of the condition BK(F,d+1, /)
recalled in the introduction, implies that the sequence

0 — HY(F,Z/("L(d+ 1)) & H*(F,Q/Zo(d +1)) % H™(F,Q/Ze(d + 1))
is exact (see the introduction), and the same holds for the fields F,, for all
places v of K. By applying this to all residue fields of X and X, for all v, we
get a commutative diagram with exact rows

i, ZTL
D, C* (X (), 2/ D) > @), C* (X (v, Q/Ze) —> @), C¥(X(v). Qe/Z0)

(4.16) Bx,on T Bx,g00 T Bx, 000 T

2V (X, 2/0" ) > 2 (X, Q) Z0) “

C*N (X, Qq/Ze)

with injections ¢ and 7', and we deduce the claim in (a).
Now we consider the cokernels of the vertical maps. First assume that K
is a global function field. Then we claim that we even have an exact sequence

0 — H™2(F,Z/"Z(d + 1)) 5 H™2(F,Q/Z(d + 1))
& HY2(F,Q/Zo(d + 1)) — 0,

and similarly for all Fi,yv. In fact, we have H3(F,Z/0"Z(d + 1)) = 0: If
¢ # char(F), then F has ¢-cohomological dimension d + 2, and if £ = p =
char(F), then we have H43(F, Z/0"Z(d + 1)) = H?(F, W, QF0g), but F has
p-cohomological dimension 1. Exactly the same reasoning works for F{,. Writ-
ing, for n a positive integer or n = oo,

Cy := coker[H™2(F, Z/0"Z(d + 1)) — @, H™?(F,), Z/("Z(d + 1))],
where we set Z /(7 = Qy/Z¢, we obtain an exact sequence

0—C, - Csx — Csx — 0.

Applied to the points of X and the X, and the morphisms Bx » for n €
NU {oo}, we now get an exact sequence

0= C(X,Z/0"Z) - C(X, Qu/Z) S T(X, Qe/Ze) = 0,
and the claim of 4.15(b) follows in this case.
Now let K be a number field. If £ # 2 or if K has no real places, then F
has ¢-cohomological dimension d 4 2, and we can argue in the same way. In

general, we can argue in the following way. In any case, a function field F' of
transcendence degree d over an algebraically closed field has ¢-cohomological
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dimension d for £ invertible in F. It follows that for any variety X over K the
sequence

(4.17) CO(X,Z/0"Z) — CO0(X, Qo/Ze) & CO0(X, Qu/Ze) — 0

is exact, where X = X x K for an algebraic closure K of K. Obviously this
complex stays exact if we pass to the co-invariants under G, the absolute
Galois group of K.

Now Bx ¢ is injective by Theorem 2.10. (Note that ¢ is invertible in K.)
By (4.17) and Lemma 4.14, we get the following commmutative diagram with

exact rows and columns:
0

T

B ) —
0 ——— OPN(X,Qu/Z) —s P O* X1y, Qe/Be) ——— C(X,Qu/Zs) —— 0

v
Tw Tln T”L

0 —— CMX,Qu/Ze) 2 @B (X (), Qu/) ——— T(X,Qe/Ze) —— 0

T T T

. B n —
o (X, 2/0"2) — @ O (X (o), B/ME) ——s O(X,Z/4"Z) —— 0

v

1 1

0 0
A simple diagram chase now shows that Sx ¢» and ¢ are injective, which gives
an exact sequence

0 —— C(X,Z2/0"2) —— C(X,Qu/Z¢) —— C(X,Q¢/Z¢) — 0.
This implies Lemma 4.15(b). O

Definition 4.18. Let L be a perfect field. We say that resolution of sin-
gularities holds over L, or that (RS); holds, if the following two conditions
hold:

(RS1)r: For any integral and proper variety X over L, there exists a proper
birational morphism 7 : X — X such that X is smooth over L.
1: For any smooth affine varie over L, there is an open immersion
RS2);: F y th affi iety U L, there i pen i i
U — X such that X is projective smooth over L and ¥ = X — U
(with the reduced subscheme structure) is a simple normal crossing
divisor on X.

By Hironaka’s fundamental results [Hir64a], [Hir64b], resolution of singu-
larities holds over fields L of characteristic zero.

Using the quasi-isomorphism (4.12) as well as Lemmas 4.14 and 4.15,
Theorem 4.8(b) is obviously implied by the following result.

THEOREM 4.19. Let K be a finitely generated field with algebraic closure
K and perfect hull KP°*, let ¢ be a prime, and let X be an irreducible smooth
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proper variety over K. Assume that resolution of singularities holds over L =
KP*. Then for the Kato complex C(X,Qq/Zy) := C*°(X,Q/Z¢)G,., one has

QE/Z& GZO,

H,(C(X,Qu/Zy)) = {O a 0.

Here G, the absolute Galois group of K, is regarded as Gal(K /KP).

Note that Theorem 4.19 implies Theorem 0.11. By the following lemma,
it also implies Theorem 0.10, concerning Kato’s conjecture over finite fields.

LEMMA 4.20. Let k be a finite field, and let X be any variety over k.

(a) One has a canonical isomorphism of complexes
CY(X,Z2/0"7) = CO(X x4 k, Z/0" L), -
(b) The canonical sequence
0 — CYO(X,Z/0"Z) — CYO(X, Q/Ze) S CMO(X, Qu/Z) — 0

15 exact.

Proof. Let F be a function field of transcendence degree m over k. Then
one has canonical isomorphisms

H™(F,Z/0"Z(m)) = H (k, H™(Fk,Z/("Z(m))) = H™(Fk,Z/{"Z(m))g,

where Fk is the function field over k deduced from F;i.e., Fk = F ®{k}E, where
{K} is the algebraic closure of k in F. In fact, the first isomorphism follows
from the Hochschild-Serre spectral sequence, because F'k has ¢-cohomological
dimension m, and the second isomorphism comes from the canonical identifica-
tion H(k, M) = Mg, for any Gi-module M if k is a finite field. By applying
this to all fields k(z) for x € X, we obtain (a).

(b) follows from the exact sequence

0— H™Y(F, 2/ Z(m)) = H™ Y (F, Q) Zg(m)) < H™ (P, Q¢/Ze(m)) —0,

in which the exactness on the left follows from the results of Bloch-Kato-
Gabber (for ¢ = p = char(k)) and Merkurjev-Suslin-Rost-Voevodsky (for ¢
invertible in k) — see the introduction — and the exactness on the right follows

from the cohomological dimension of F'; compare the proof of Theorem 4.15.
O

The proof of Theorem 4.19 will be given in the next section. The idea
is to ‘localize’ the question; but for this we will have to leave the realm of
smooth proper varieties. First recall that the complexes C™*(X,Z/nZ) exist
for arbitrary varieties X over a field L, under the conditions on X, n, and (r, s)
stated at the beginning of this section. If K is a global field, the restriction
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map C*Y(X,Q¢/Z¢) — Hycz’l(X(v),Qg/Zg) still has image in the direct sum
and is injective (by Proposition 1.2 and the same argument as for 4.8 (a)), and
we may define C(X,Qy/Zy) for arbitrary varieties X over K by exactness of
the sequence

(4.21)  0— C*N(X,Qu/Z) — @02’1()((@)7@(/212) — C(X,Q¢/Zg) — 0.

At the same time, by the same arguments as in Lemma 4.14, we have a canon-
ical isomorphism

C(X,Qu/Z¢) = C™(X,Qu/Zo) iy
for ¢ invertible in K.

Definition 4.22. Let L be a field, and let C be a category of schemes of
finite type over L such that for each scheme X in C, also every closed immersion
1:Y — X and every open immersion j : U — X is in C.

(a) Let Ci be the category with the same objects as C, but where morphisms
are just the proper maps in C. A homology theory on C is a sequence of
covariant functors

H,(—) : Cx — (abelian groups) (a€Z)

satisfying the following conditions:
(i) For each open immersion j : V < X in C, there is amap j* : H,(X) —
H,(V), associated to j in a functorial way.
(i) If ¢ : Y < X is a closed immersion in C, with open complement j :
V < X there is a long exact sequence (called localization sequence)

S HL (V) o Hy(X) L HL(V) - Hy y(Y) — -

(The maps ¢ are called the connecting morphisms.) This sequence
is functorial with respect to proper maps or open immersions, in an
obvious way.
(b) A morphism between homology theories H and H' is a morphism ¢ : H — H'
of functors on C,, which is compatible with the long exact sequences
from (ii).

LEMMA 4.23.

(a) Let L be a field, and let r,s, and n > 1 be fized integers with n invertible
in L, orr # s+ 1, orp=char(L) |n and r = s+ 1 and [L : LP] < p°.
There is a natural way to extend the assignments

X w  H'(X,Z/nZ) = Hy(C™*(X,Z/nZ))  (a € Z)

to a homology theory on the category of all varieties over L.
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(b) The same holds for the assignment
X w~ HX,Z/nZ):= H,(C"°(X,Z/nZ))  (a € ),
where C"° (X, Z/n7) = C™*(X,Z/nZ)q,, with X = X x1, L for a sepa-

rable closure of L.

Proof. (a) The Bloch-Ogus-Kato complexes are covariant with respect to
proper morphisms and contravariant with respect to open immersions. The
localization sequence for a closed immersion 4 : Y < X with open complement
j:U=X\Y — X is obtained by the short exact sequence of complexes

0 — C™(Y,Z/nZ) = O™ (X, Z/nZ) L O™ (U, Z/nZ) — 0

which are componentwise canonically split (cf. also [JS03, Cor. 2.10]).
(b) This follows from (a), because the mentioned splitting is equvariant,
so that the sequences stay exact after taking coinvariants. O

The mentioned localization is now obtained by the following observation.

LEMMA 4.24. Let L be a perfect field, let C be a category of schemes of
finite type over L as in 4.20, and let ¢ : H — H be a morphism of homology
theories on the category Cy of all schemes in C with proper morphisms. For
every integral variety Z over L, let L(Z) be its function field. Define

Ha<L(Z)) = h_r)nHa(U)a

where the limit is over all nonempty open subvarieties U of Z, and define
ﬁa(L(Z)) similarly. Suppose the following holds for every integral variety Z
of dimension d over L:

() Ha(L(Z)) =0 for a #d,

(ii) Ho(L(Z)) =0 for a # d, and

(ili) the map ¢ : Hy(L(Z)) — Hy(L(Z)) induced by ¢ is an isomorphism.

Then @ is an isomorphism of homology theories.

Before we give a proof for this, we note the following.

Remark 4.25. The homology theories of 4.23(a) clearly satisfy condition
4.24(i). In fact, setting
C™*(L(X),Z/nZ) = li_1>nC”"S(U7 Z/n7)
for an integral X, where the limit is over all nonempty open subvarieties U
of X, we trivially have C*(L(X),Z/nZ) = 0 for a # dimX, because for any
x € X different from the generic point, there is a nontrivial open U C X
not containing x. Hence 4.24(i) also holds for the homology theories from

4.23(b). The proof of Theorem 4.19 will then be achieved as follows. In the
next section we will define a homology theory H) (—,Qq/Z;), over any field
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K of characteristic 0, or over a perfect field of positive characteristic assuming
resolution of singularities, which a priori satisfies

Qf/Zfa GZO,

% _
(4.26) H;' (X, Q¢/%) = {0’ 040

if X is smooth, proper and irreducible. Moreover, we will show that 4.22(ii)
holds for H"Y. Still under the same assumptions we will construct a morphism

— —0,0
¢ Ho(=,Qu/Z¢) = H, (=, Qu/Z¢) = H" (=, Qe/Z)
of homology theories which satisfies 4.24(iii) if K is finitely generated. Thus, by
Lemma 4.24, ¢ is an isomorphism, and hence (4.26) also holds for H,(—,Qy/Zy),
which proves 4.19.

Proof of Lemma 4.24. For every homology theory H over L, there is a
strongly converging niveau spectral sequence

E;,q(X) = mg{ Hyiq(k(2)) = Hpiq(X)

for every X; cf. [BOT4] and [JS03]. If E;q = flp+q is associated to another
homology theory H , then every morphism ¢ : H — H induces a morphism
E — E of these spectral sequences, compatible with ¢ on the E'-terms and
limit terms. In the situation of 4.24, conditions (i), (ii), and (iii) imply that ¢
induces isomorphisms on the E'-terms, and hence ¢ also gives an isomorphism
between the limit terms, i.e., between H and H. U

5. Weight complexes and weight cohomology

Let k£ be a field. Let X be a smooth, proper variety of dimension d over
T
k,and let Y = | Y; be a divisor with simple normal crossings in X — with a
i=1
fixed ordering of the smooth components as indicated.

Definition 5.1. Let F' be a covariant functor on the category SPj of
smooth projective varieties with values in an abelian category A which is ad-
ditive in the sense that the natural arrow

is an isomorphism in A, where X;]] X3 is the sum (disjoint union) of two
varieties X1, X2 in SPg. Then define L'F(X,Y) as the i-th homology of the

complex

C.F(X,Y): 0= F(Yldy o piyld-ly .o Pyl - F(X) — 0.
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Here F(Y) is placed in degree j, and the differential 9 : F(YU!) — F(yli—1])

J
is ) (—1)¥d,, where J, is induced by the inclusions
v=1

Yii, i =Y,

U eyl yeesly
for 1 <4y <--- <i; <7 (and where Y% = X as usual).

Remark 5.2. There is the dual notion of an additive, contravariant functor
G from SPy to A, and here we define R'G(X,Y) to be the i-th cohomology
of the complex

CGX,)Y): GX)—= Gy 5. ... 5 eyl 5 gl
with G(Y') placed in degree ;.

We may apply this to the following functors. Let Ab be the category of
abelian groups.

Definition 5.3. For any abelian group A, define the covariant functor
Hy(—, A) : SP;, — Ab and the covariant functor H°(—, A) : SP, — Ab by

Ho(X,A): @ A:A(X)ZZ[TF()(X)],
aemy(X)

HY(X, A) = A™) = Map(mo(X), A),

where Z[M] is the free abelian group on a set M and Map(M, N) is the set

of maps between two sets M and N. (Hence if A happens to be a ring, then

Hy(X, A) is the free A-module on 7y(X ), and Hy(X, A) = Homu4(Hy(X, A), A)

is its A-dual.) We write C" (X,Y; A) for C.Ho(—, A)(X,Y) and call
HY(X,Y; A) = L'Ho(—, A)(X,Y) = Hy(C.(X,Y}; A))

the weight homology of (X,Y’). Similarly define

and call Hi,(X,Y;A) = H(Cy,(X,Y; A)) the weight cohomology of (X,Y).

PROPOSITION 5.4. Let Y, 11 be a smooth divisor on X such that the inter-
sections with the connected components of YUl are transversal for all j and con-
nected for all j < d—2. (Note: Ifk is infinite, then by the Bertini theorems such
a Y,11 exists by taking a suitable hyperplane section, since dimYVl =d—j>2

r—+1
forj <d—2.) Let Z = |J Y; (which, by the assumption, is again a divisor
i=1

with normal crossings on X). Then, for any abelian group A,

HY(X,Z;A)=0=H{,(X,Z;A) fori <d—1.
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Proof. Fix A, and omit it in the notation. We get a commutative diagram

0 0 Ho(Y 1 1 Y1) 25 Ho(YI2 Y, pq) —> -
id}dl Z\L¢d2
0 — Hy(Yl) % Hy(Yld-1) %41 Ho(Y19-2)
Hoy(YNY, 1) Ho(Yr41) 0
Z\Ld)l zlwo
Hy(Y) Ho(X) 0,

where the bottom line is the complex C (X,Y) and the top line is C"V (Y, 11,
Y NY, ;1) (note that Y NY, 41 = 0 (Y;NY,41) is a divisor with strict normal

crossings on the smooth, projectixzfe 1Vau“iety Y,+1), and where 1), is induced by
the inclusion Y NY, ;1 — Y,

By the assumption, 1, is an isomorphism for v < d — 2 and a (noncanon-
ically) split surjection for v = d — 1. Hence we have isomorphisms

HY (Y1, Y NYy1) = HY(X,Y) for i < d —2

(2

and a surjection
HY (Y1, Y NYop) » HY  (X,Y).

Moreover, let C.. be the associated double complex, with Hy(X) placed in
degree (0,0) and 1, being replaced by (—1)"1,. Then the associated total
complex s(C..) is just the complex C" (X, Z). Hence the result follows, and
we have exact sequences

0— HY(X,Y) = HY(X,2) - HY (Y1, Y N Y,q) = HY (X,Y) =0,

0 — ker(¥)g_1 — HY (X, Z) — HY (v — 0.
The proof for Hi, (X, Z) is dual. (Note, however, that in general, H" (X,Y")
and H;y, (X,Y) are related by a coefficient theorem in an nontrivial way.) O

COROLLARY 5.5. HY (X, Z;7Z) is a finitely generated free Z-module, and
we have an isomorphism H)Y (X, Z; A) = Hy(X, Z; Z) @7 A. The same holds
for H&, (X, 7).

Proof. The first statement follows since ker(1))4_; and H°(Y4) have this
property for A = Z, and the second claim follows from 5.4 and the universal
coefficient theorem. Similarly for Hg, (X, Z). O

COROLLARY 5.6. HW(X, Z;Qq/Zy) is divisible.
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Now let U = X Y.

PROPOSITION 5.7. Let U = U x}, k, where k is the algebraic closure of k.
Then there are canonical homomorphisms

HY(U,7/nZ(d)) - HY (X,Y;Z/n7Z)

for all n € N. If k is finitely generated and if X 'Y, is affine for one v €
{1,...,r}, then these induce isomorphisms

HY(U, Qu/Zo(d)) 6y, — Hy (X,Y;Qu/Z¢)
for all primes £.

This is just a reformulation of Theorem 3.1, in which the construction of
e does not depend on the assumption that some X \ 'Y, is affine.

Remark 5.8. In particular, with the notation and assumptions of 5.4, this
applies to (X, Z) and U = X \ Z.

We want to have these results in a more functorial setting. This is possible
if resolution of singularities holds in a suitable form.

THEOREM 5.9. Let k be a field, with perfect hull L = kP") let A be an
abelian group, and assume that condition (RS1); from 4.18 holds. Then there
exists a homology theory (in the sense of Definition 4.22) (H)V (—, A),a € 7)
on the category Vi)« of all varieties over k with proper morphisms such that
the following holds:

(i) For any smooth, proper, and connected variety X over k, one has

0, a#0,

HY(X,A>={
A, a=0.

(ii) If X is smooth and proper over k and Y is a divisor with simple normal
crossings on X, then one has a canonical isomorphism for U = X \ 'Y,

HYUAZHY (XY A)=H( @ A—- = @ A— @ A),
7T0(Y[e]) 7T0(Y[1]) 7I'()(X)

where the right-hand side is defined in Definition 5.3. We call HV (—, A)
the weight homology with coefficients in A.

Proof. First assume that k is perfect. We want to show that the covariant
functor (cf. 5.3)
F: X & Hy(X,A)=p 4
mo(X)
on the category SPy of all smooth proper varieties over k extends to a ho-
mology theory on all of Vi and fulfills (ii). By the method of Gillet and Soulé
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([GS96, proof of 3.1.1]) this holds if (RS1); holds and if F' extends to a con-
travariant functor on Chow motives over k, i.e., admits an action of algebraic

correspondences modulo rational equivalence. But the latter is clear — in
fact, one has F/(X) = Hom(CHY(X), A), where CH’(X) is the Chow group of
algebraic cycles of codimension j on X, modulo rational equivalence. O

If k is general, we just define
HY (2, A) == Hy' (Z %y k),

where the theory on the right is the one existing over kP" by our assumptions
and the case of a perfect field. Note that Z xj kP® is again connected for
connected Z.

THEOREM 5.10. Let k be a field, and assume that resolution of singulari-
ties holds over the perfect hull L of k (see Definition 4.18). Then the homology
theory HY (—, A) of Theorem 5.9 has the property 4.24(ii).

Proof. By construction we may assume k is perfect. For every integral
variety Z of dimension d over k, we have to show

(5.11) HY (k(2),A) = @Hy(u A) =0 for a # d,

where the inductive limit is over all nonempty open subvarieties V C Z.

Now assume property (RS2); from 4.18 holds. Then, by perfectness of
k, for every nonempty open subvariety V C Z, there is a nonempty smooth
open subvariety U C V, and by (RS2), there is an open embedding U — X
into a smooth projective variety X such that the complement ¥ = X \ U
is a divisor with strict normal crossings. If k£ is infinite then, by Bertini’s
theorem, there exists a smooth hyperplane section H of X whose intersection
with all connected components of Y1 is smooth, and connected for i < d — 2.
Writing Z = Y U H (which is a divisor with strict normal crossings on X)
and U = X\ Z c U C V, we get HV(U°,A) = HYV(X,Z;A) = 0 for
a # d by Property 5.9(ii) and Proposition 5.4. Since V' was arbitrary, we get
property (5.11).

If k is finite, we use a suitable norm argument. By what has been shown,
for each prime p, we find such a hyperplane section after base change to an
extension k' /k of degree [k’ : k] = p", a power of p (the maximal pro-p-extension
of k is an infinite field). Then the map

HC‘L/V(Vk”A) — Hgv(k/(zk’)aA)

is zero.
Now we note that there is a homology theory HW (—, A; k) on all varieties
over k, defined by HV(Z, A;k') = HY(Z;s,A) and the induced structure
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maps. This is also the homology theory which is obtained by the method
of Theorem 5.9, by extending the covariant functor
F':SP), — Ab, X ~ @ A
7o (X )

to a homology theory on all varieties. There is an obvious morphism of functors
Tr: F/ — F (trace, or norm), induced by the natural maps 7o(Xy ) — mo(X).
On the other hand there is also a morphism of functors Res : FF — F” (restric-
tion) such that Tr Res = [k : k].

This is best seen by noting that for any smooth proper variety X/k one
has a canonical isomorphism

F(X):( D A)G = P A
; mo(X)

7o (X X k)

where k is an algebraic closure of k. Similarly, F'(X) = Bg,,, where

B = oF) A= P A

7o (X X k') X k) 70 (X x k)
In these terms, Tr is induced by the natural map Bg,, — Bg, . Conversely, for
any profinite group G, any open subgroup U, and any discrete G-module C,
we have a well-defined functorial