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Tightness is preserved
by Legendrian surgery

By Andy Wand

Abstract

This paper describes a characterization of tightness of closed contact

3-manifolds in terms of supporting open book decompositions. The main

result is that tightness of a closed contact 3-manifold is preserved under

Legendrian surgery.

1. Introduction

Following the developments of Donaldson theory [Don90] (and later the

Seiberg-Witten equations and Taubes’s Gromov invariants; see, e.g., [Tau95]),

smooth low-dimensional topology has become increasingly intertwined with

complex and symplectic geometry. Along the way, the study of contact struc-

tures on 3-manifolds has been brought to a place of prominence, as these

keep track of a complex/symplectic structure near a boundary component of

a 4-manifold, allowing one to port the cut-and-paste tools of smooth 4-dimen-

sional topology into the complex/symplectic categories. Contact structures

split into two types: tight and overtwisted. A fundamental theorem of Eliash-

berg [Eli89] gives a complete classification of overtwisted structures — in par-

ticular, showing that each homotopy class of plane fields contains a unique

isotopy class of overtwisted contact structures. As such, if a contact structure

is to carry any geometric information, it must be tight. The classification of

tight structures, however, has remained largely open.

This paper describes a characterization of tightness of closed contact

3-manifolds in terms of supporting open book decompositions. In particu-

lar, we introduce the notion of consistency of a mapping class of an oriented

surface with boundary (equivalently, of an open book decomposition of a closed

3-manifold) and show

Theorem 1.1. Let M be a closed, oriented 3-manifold, and let ξ be a

positive co-oriented contact structure on M . Then the following are equivalent :

(1) ξ is tight.
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(2) Some open book decomposition supporting (M,ξ) is consistent.

(3) Each open book decomposition supporting (M,ξ) is consistent.

In light of the correspondence theorem of Giroux [Gir02], Theorem 1.1

reduces the study of tightness to the study of surface diffeomorphisms. It

should be noted that, as our aim in this paper is mainly a specific application,

we will restrict ourselves to a ‘stable’ description of consistency. In contrast to

the general theory developed in [Wanb] (see [Wana] for an expository account),

the stable version does not aim to give tools to check consistency of an arbitrary

open book decomposition.

A symplectic (or Stein) 4-manifold comes equipped with an almost com-

plex structure J (i.e., an endomorphism of the tangent bundle whose restric-

tion to each tangent space squares to −Id); as such, any boundary component

M comes with an induced plane field ξ = TM ∩ JTM . We say such a pair

(M,ξ) is (symplectically/Stein) fillable. While fillable contact structures are

tight (by work of Gromov [Gro85] and Eliashberg [Eli90a]), the converse is not

necessarily true.

Again reaching to the analogy between the smooth and symplectic/Stein

categories, a central notion in each is that of a handle attachment; for a

4-dimensional manifold, by far the most interesting case is that of a 2-handle

attachment. It was shown by Eliashberg [Eli90b] and Weinstein [Wei91] that,

if a 2-handle is attached to a symplectic/Stein 4-manifold along a curve in the

contact boundary everywhere tangent to the contact structure, with a fram-

ing coefficient one less than that determined by the contact structure, we may

extend the symplectic/Stein structure in a unique way over the handle. The

trace of this operation on the contact boundary is referred to as a Legendrian

surgery and is a fundamental tool for constructing fillable contact manifolds.

While of course these are all tight, this in itself does little to advance our

understanding of nonfillable tight structures, as the relation between tightness

and Legendrian surgery was little understood. Indeed the only known result in

this direction, due to Honda [Hon02], was an example of an open tight contact

manifold which becomes overtwisted through Legendrian surgery. Our main

result then fills in this gap, showing that

Theorem 1.2. If (M,ξ) is obtained by Legendrian surgery on tight

(M ′, ξ′) for M ′ a closed, oriented 3-manifold and ξ′ a positive co-oriented

contact structure, then (M,ξ) is tight.

Section 2 introduces terminology and definitions, while Section 3 gathers

some properties of consistency showing, in particular, that it is both deter-

mined by any basis of arcs in the surface and also invariant under stabilization

(in the sense of Giroux), thus determining a property of the supported contact

structure. Section 4 is then devoted to the proofs of Theorems 1.1 and 1.2.
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2. Definitions

2.1. Preliminaries. Throughout the paper, M will refer to a closed, smooth,

oriented 3-manifold, and ξ will denote a (positive) co-oriented contact struc-

ture on M ; i.e., ξ is the kernel of some globally defined 1-form α on M , such

that α ∧ dα is a (positive) volume form for M . One says ξ is overtwisted if

there is some embedded disc D in M such that the tangent plane of each point

p ∈ ∂D agrees with ξp; otherwise ξ is tight. An open book decomposition for M

is a pair consisting of an embedded oriented link B in M , as well as a fibra-

tion of the complement of B over S1, such that each fiber is the interior of a

Seifert surface for B. We encode this structure as the pair (Σ, ϕ), where Σ, the

page, is the oriented Seifert surface, and ϕ, the monodromy, is the return map

of the fibration. We consider ϕ as an element of π0 Diff+(Σ, ∂), the mapping

class group of Σ, which we will refer to simply as MCG(Σ). The pair (Σ, ϕ)
determines the open book decomposition up to a diffeomorphism of M and is

often referred to as an abstract open book (see, e.g., [Etn06]). When there is

no fear of confusion we will drop the term ‘abstract.’

A central notion concerning open book decompositions is that of ‘stabi-

lization,’ which corresponds to a plumbing of a Hopf band (see, e.g., [Gir02]).

This operation may be encoded in an abstract open book as follows:

Definition 2.1. Let (Σ, ϕ) be an open book decomposition of M , and σ

a properly embedded arc in Σ. Let Σ′ denote the surface given by attaching

a 1-handle to Σ with attaching sphere ∂σ, and denote by s ⊂ Σ′ the simple

closed curve gotten by taking the union of σ with the core of the new handle.

Then the pair (Σ′, τs ○ϕ), where τs denotes the Dehn twist about s, and ϕ the

obvious inclusion of the original ϕ (extended over the handle by the identity),

is again an open book decomposition of M , referred to as a stabilization of

(Σ, ϕ), via σ.

The relation between the above concepts is given most completely by the

following ‘correspondence theorem’ of Giroux:

Theorem 2.2 ([Gir02]). Let M be a closed, oriented, smooth 3-manifold.

Then there is a one-to-one correspondence between positive co-oriented contact

structures on M up to isotopy, and there are open book decompositions of M

up to isotopy and stabilization.
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One says that a contact structure is supported by each open book to which

it is associated through this correspondence.

2.2. Overtwisted regions. Let Σ be a closed surface with boundary. In this

article, an arc in Σ will refer to a properly embedded arc. We will refer to a

set Γ of (oriented) disjoint arcs in Σ as an (oriented) arc collection, while an

arc collection which cuts Σ into a disc is a basis (of Σ).

A main object of study in the paper will be ‘augmented’ open books

(Σ, ϕ,Γ) for Γ an arc collection. As such, when stabilizing an augmented open

book (Σ, ϕ,Γ), we will isotope Γ such that the 1-handle is attached away from

∂Γ, so that we have an inclusion map ι of Γ into the stabilized book such that

the image is again an arc collection.

We will often be interested in stable properties of augmented open book

decompositions:

Definition 2.3. Let P be some property of augmented open book decom-

positions. Then, given an augmented open book (Σ, ϕ,Γ), we say that (Σ, ϕ,Γ)
stably satisfies P if there is some sequence of positive stabilizations after which

the stabilized triple (Σ′, ϕ′, ι(Γ)) satisfies P .

By convention, if γ is an oriented arc in Σ for an open book decomposition

(Σ, ϕ), then its image ϕ(γ) is given the opposite orientation. In particular,

then for an oriented arc collection Γ, each p ∈ Γ∩ϕ(Γ) may be given a sign, as

follows: if the ordered pair in TpΣ consisting of the tangent vector along the

element of Γ, followed by the tangent vector along the element of ϕ(Γ), gives

the orientation of Σ at p, then p is positive. Otherwise p is negative (Figure 1).

 

2

Figure 1. The points p1 and p2 are, respectively, positive and

negative intersection points. This figure introduces the conven-

tions, which will hold throughout the paper, that elements of a

given arc collection are drawn as straight lines, their images un-

der a mapping class are curved, and in any figure with multiple

line weights, the thickest lines are reserved for ∂Σ.

Definition 2.4. Let (Σ, ϕ) be a open book decomposition, and let Γ be an

oriented arc collection in Σ such that each point of ∂Γ is positive in Γ ∩ϕ(Γ).
An overtwisted region (in (Σ, ϕ,Γ)) is an embedded disc A ↪ Σ, with ∂A ↪
(Γ ∪ ϕ(Γ)), such that
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(1) Corners of A alternate between points in ∂Γ and negative points in the

interior of Σ.

(2) Each point of Γ ∩ ϕ(Γ) ∩ int(Σ) is a corner of A.

(3) A is the unique such disc.

(b)(a)

A

Figure 2. (a) An overtwisted region. (b) Each of the illustrated

discs satisfy (1) and (2), but not (3).

Observation 2.5. It should be emphasized that there is no assumption con-

cerning minimality of Γ∩ϕ(Γ); in particular, for the case n = 1, an overtwisted

region is a bigon.

As we shall see, existence of an overtwisted region in (Σ, ϕ,Γ) implies

existence of an overtwisted disc in (M,ξ). Finally,

Definition 2.6. A class ϕ ∈ MCG(Σ) is inconsistent if there is some arc

collection Γ such that, stably, (Σ, ϕ,Γ) has an overtwisted region. Otherwise,

ϕ is consistent.

3. Properties of consistency

The purpose of this section is to show firstly that consistency is determined

by any basis of arcs and, using this, secondly that consistency is preserved

under stabilization and destabilization, and thus is a property of the associated

contact structure. Looking forward to the proof of Theorem 1.2, we will in fact

show a bit more. In what follows, a curve system in a surface Σ will refer to

a collection L of embedded arcs and closed curves in Σ, disjoint away from

∂Σ, and such that ∂L ⊂ ∂Σ. (In fact, all results in this section hold equally

for collections whose components are neither disjoint nor embedded, but as

our main application requires consideration of neither of these possibilities, we

have restricted to this more standard set-up.)

Definition 3.1. Let A be an overtwisted region in (Σ, ϕ,Γ) and L a curve

system. Then A is proper with respect to L if there is a negative corner y of

A such that for any neighborhood U of y, L can be isotoped, fixing ∂L, such

that L ∩ (Γ ∪ ϕ(Γ)) ⊂ U .
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3.1. Basis independence.

Definition 3.2. Let (Σ, ϕ) be an open book decomposition, L a curve

system, and B a basis of Σ. We say B (stably) detects overtwistedness relative

to L if there is some arc collection Γ such that

(1) each element of Γ is isotopic to an element of B; and

(2) there is a sequence of stabilizations (Σ, ϕ,Γ) ↝ (Σ′, Sϕ, ι(Γ)) (where S

refers to the composition of the Dehn twists associated to the stabilizations)

and a subsequence S′ of S such that (Σ′, Sϕ, ι(Γ)) has an overtwisted

region A, proper with respect to S′(L).

Observation 3.3. It should be emphasized that elements of B are not as-

sumed oriented, so the isotopy of condition (1) is not an isotopy of oriented

arcs. In particular, Γ may contain parallel arcs with opposite orientations.

Now, existence of such a basis clearly implies inconsistency. Our imme-

diate goal is to show that if some basis of a given open book decomposition

stably detects overtwistedness relative to some given curve system, then every

basis does (relative to the same curve system). Our main tool for navigating

among bases is the following:

Definition 3.4. An arc-slide domain (in (Σ, ϕ,Γ)) is a disc component ∆

of Σ cut along Γ whose boundary contains exactly three (distinct) elements

of Γ.

We pause to gather some notation, to be used throughout the subsection.

Firstly, for a given oriented arc a, we will denote its endpoints by ∂−a and ∂+a,

such that the orientation points from ∂−a to ∂+a. Then, let (Σ, ϕ) denote an

open book decomposition, Γ = ΓA∪Γ∆ an arc collection, and L a curve system,

such that

(1) ΓA is a minimal collection such that (Σ, ϕ,ΓA) has an overtwisted region,

which we label A. We label ΓA = {γ1, γ2, . . . , γn} where indices increase

around ∂A in accordance with its positive orientation, and we label the

negative corners of A by yi, such that yi ∈ γi.
(2) A is proper with respect to L.

(3) (Σ, ϕ,Γ) contains an arc slide domain ∆, with edges Γ∆ = {γ1, γb, γa},
which appear in that order around the boundary of ∆ in the orientation

given by γ1, and such that ∂L ∩∆ = ∅.

(4) There is a basis B of Σ such that each element of ΓA ∪ {γa} is isotopic to

some element of B.

The set-up is indicated in Figure 3(a) for the case that the orientation of

γ1 disagrees with the positive orientation of ∂∆ and in Figure 3(b) otherwise.

Note that Definition 2.4 allows two possibilities for the orientations of ΓA;
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we choose that which agrees with the positive orientation of ∂A. We will

also require some terminology to refer to the conditions of Definition 2.4, as

follows: A region (in (Σ, ϕ,Γ)) will refer to any embedded disc in Σ with

boundary in Γ ∪ ϕ(Γ). A region is boundary based if exactly every 2nd corner

is on ∂Σ, and each of these is positive. Finally a region is isolated if each point

Γ ∩ ϕ(Γ) ∩ int(Σ) is a corner of the region. In particular, then an overtwisted

region is a unique isolated boundary based region.

We have

Lemma 3.5. The basis B′ ∶= (B∖{γ1})∪{γb} stably detects overtwistedness

with respect to L.

Proof. We would like to assume that ΓA contains neither γa nor γb. As

such, observe that, if ΓA contains γa, we may simply replace it in ΓA with a

copy pushed slightly out of ∆ (and similarly for γb). We then orient γa and γb
to disagree with the orientation given to ∂∆ by γ1.

We will begin with a simplification of our data. In particular, let σ1

denote an arc in the isotopy class of γb, isotoped in a neighborhood of ∆ to

intersect each of γa and γb exactly once, and consider the stabilization via

σ1. As in Definition 2.1, we denote the closed curve obtained as the union

of σ1 with the core of the new handle by s1. Observe then that (using the

symbol ∩̊ to denote intersections away from ∂Σ), γb∩̊(τs1ϕ(Γ) ∪ τs1(L)) is a

single point y ∈ τs1ϕ(γa), where y is an endpoint of a ∂Σ-parallel component

of τs1ϕ(γa) ∩ ∆ with other endpoint ∂+γa (Figure 4(a)). Now, σ1 ∩ ΓA = ∅,

and τs1(L) is isotopic to L in a neighborhood of A, so we may for notational

simplicity assume ϕ is a composition with the stabilizing twist τs1 ; i.e., we

relabel, setting ϕ ∶= τs1ϕ and L ∶= τs1(L).
Similarly, letting σ2 denote an arc in the isotopy class of ϕ(γa), isotoped

in a neighborhood of ϕ(∆) to intersect each of ϕ(γa) and ϕ(γb) exactly once,

(Γ ∪ L)̊∩τs2ϕ(γa) is again the single point y (Figure 4(b)). We again relabel,

setting ϕ ∶= τs2ϕ (and not changing L).

We go through the remainder of the proof under the additional condition

that the orientation of γ1 does not agree with the positive orientation of ∂∆,

then we indicate the changes necessary for the remaining case.
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Figure 4. (a) The stabilizing arc σ1 and the result of the stabi-

lization. (b) The stabilizing arc σ2 and the result of the stabi-

lization.

Suppose firstly that A is a bigon (Figure 5(a)). After the above simplifica-

tion then, each of γa and γb is mapped into ∆ from its positive endpoint, exit-

ing through the other. In particular, {γa, γb} determines an isolated boundary

based 4-gon region A′ ⊂ ∆ (Figure 5(b)), proper with respect to L. Supposing

then that A′ were not the unique such region, any other is an incident 4-gon

with positive corners ∂−γa and ∂−γb and, in particular, can have no intersec-

tion with ϕ(γ1), which is then isotopic to γ1, giving an incident bigon B for A

(Figure 5(c)), a contradiction.

B

B

(a) (b) (c)
a

a

A
A

B

B

Figure 5. (a) The bigon A. (b) The 4-gon A′. (c) Incident re-

gions B′ for A′ and B for A. This figure introduces the conven-

tion, followed through the remainder of the proof, that brackets

with like symbol are identified.

For the case that A is not a bigon (Figure 6(a)), we have a similar ar-

gument, but a bit more to keep track of. Now, after the stabilization via σ1,

γb ∩ (ϕ(ΓA) ∪ L) = ∅, so any intersection of ∆ with ϕ(ΓA) ∪ L is an arc con-

necting γ1 to γa. By isolation of A, ∆ ∩ ϕ(ΓA) is exactly two arcs: one along

ϕ(γ1), with endpoint ∂−γ1, the other along ϕ(γn), with endpoint y1. These

arcs then are edges of a 4-gon X ⊂ ∆, such that (Γ∆∩̊ϕ(ΓA)) ⊂ {corners of X}
(Figure 6(b)).

Similarly, after the stabilization via σ2, ϕ(γa) ∩ (ΓA ∪ L) = ∅, so any

intersection of ϕ(∆) with ΓA ∪ L is an arc connecting ϕ(γ1) to ϕ(γb). There

are again exactly two arcs in ϕ(∆) ∩ ΓA, one along γ2 with endpoint y2, the
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other along γ1 with endpoint ∂+γ1 (Figure 6(b)). Again, each is an edge of a

4-gon Z ⊂ ϕ(∆), such that (ΓA∩̊ϕ(Γ∆)) ⊂ {corners of Z}.
Combining the above, we have

Γ∩̊ϕ(Γ) = (ΓA∩̊ϕ(ΓA)) ∪ (Γ∆∩̊ϕ(ΓA)) ∪ (ΓA∩̊ϕ(Γ∆)) ∪ ({γa, γb}∩̊ϕ({γa, γb}))
⊂ {corners of A} ∪ {corners of X} ∪ {corners of Z} ∪ {y}.

In particular, then (Γ ∖ {γ1})̊∩ϕ(Γ ∖ {γ1}) are the negative corners of

an isolated boundary based region A′, constructed by removing Z from A,

and extending the result over γ1 into ∆ (Figure 6(c)). Moreover, if L can be

isotoped such that L ∩ (ΓA ∪ϕ(ΓA)) lies in a neighborhood of y1, then it may

also be isotoped to intersect (Γ∖ {γ1})∪ϕ(Γ∖ {γ1}) in a neighborhood of the

corner of A′ interior to γa. In particular, then A′ is proper with respect to L.

Moreover, if B′ were any other region, then the region B obtained by removing

ϕ(∆) ∖ Z from B′ and extending the result over X would be a region in the

original data, contradicting our assumption that A be an overtwisted region.

We conclude that A′ is overtwisted.

A

2 3

n 1

A

2 3

n

y1

y2

(a) (c)

1





b

a

2 3

n

y1

y2

(b)

Z

X

Figure 6. The regions A and A′.

It remains then to consider the case that the orientation of γ1 agrees with

the positive orientation of ∂∆. We simply observe that the above proof goes

through unchanged, but with the roles of ∆ and ϕ(∆) reversed. Thus, in the

case that A is a bigon (Figure 7(a)), A′ is a 4-gon in ϕ(∆), while in the general

case, A′ is now obtained from A by removing a 4-gon of A ∩∆ and extending

into ϕ(∆) (Figure 7(b)). �

(a)

A

(b)

AA

A

Figure 7.
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Corollary 3.6. Let (Σ, ϕ) be an open book decomposition, and let Σ

admit a basis which stably detects overtwistedness relative to some curve system

L. Then each basis of Σ stably detects overtwistedness relative to L.

Proof. Let B,Γ, S, and S′ be as in Definition 3.2. Throughout the proof,

given a stabilization sequence S, we will use ιS to denote the inclusion as-

sociated to S. Suppose then that B′ is another basis, obtained from B by

arc slide {γ1, γa} ↝ {γa, γb}. We enlarge the domain ∆ of the slide to con-

tain each element of Γ1 isotopic to γ1, and label the collection of such arcs

{γi1}, i = 1,2 . . . ,m, such that γj1 lies in the 4-gon component of ∆ cut along γk1
if and only if k < j (Figure 8(a)).

Let γ1
a denote an arc in the isotopy class of γa, isotoped within ∆ such

that no component of either ∂L or of the attaching sphere of any stabilization

handle from the sequence S lies between γ1
a and γ1

1 in ∂Σ ∩ ∂∆ (Figure 8(b)).

There is then an arc γ1
b in the isotopy class of γb, such that ιS(γ1

a), ιS(γ1
b ), and

ιS(γ1
1) are edges of an arc-slide domain ∆1 ⊂ ιS(∆).
Let B1 be a basis of the stabilized surface containing ιS(Γ) and B′1 the

result of the arc-slide {ιS(γ1
1), ιS(γ1

a)}↝ {ιS(γ1
a), ιS(γ1

b )} (Figure 8(c)). Then,

by Lemma 3.5, there exists a stabilization sequence S1 (which is of course actu-

ally just a pair of stabilizations) such that ιS1S((Γ∖{γ1
1})∪{γ1

a, γ
1
b }) determines

an overtwisted region, proper with respect to S′(L) (for some subsequence S′

of S1S). We may then proceed in the obvious way: for each 2 ≤ i ≤m, letting γia
denote an arc in the isotopy class of γa, such that ιSi−1⋯S2S1S(γia) is adjacent to

ιSi−1⋯S2S1S(γi1), we define Γi1 ∶= (Γi−1
1 ∖{γi1})∪{γia, γib} (where Γ0

1 ∶= Γ). Again,

by Lemma 3.5, there exists a stabilization sequence Si such that ιSi⋯S2S1S(Γi1)
has an overtwisted region proper with respect to S′(L) for S′ a subsequence of

Si⋯S2S1S. Moreover, each element of Γm1 (Figure 8(d)) is isotopic to one of

B′. As any two bases of Σ are related by such arc-slides (see, e.g., [HKM09]),

we are done. �

Finally,

Corollary 3.7. Let (Σ, ϕ) and (Σ′, ϕ′) be open book decompositions sup-

porting some common contact structure on M3. Then if there exists some basis

B of Σ such that, for any curve system L, B stably detects overtwistedness rel-

ative to L, then the same is true of (Σ′, ϕ′).
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Proof. By Giroux (Theorem 2.2), it is sufficient to show that our prop-

erty is preserved under stabilization and destabilization. In particular, it is

sufficient to consider the case that (Σ′, ϕ′) is obtained from (Σ, ϕ) by a single

stabilization/destabilization.

For the case of a stabilization, let (Σ, ϕ)↝ (Σ′, τsϕ) be a stabilization via

arc σ, and L′ a curve system in Σ′ (Figure 9(a)). Letting γ denote the co-

core of the stabilizing handle, we then let L denote the result of ‘pinching’ L′

by an isotopy supported in a neighborhood of γ which contracts the maximal

segment of γ with endpoints in L′ (Figure 9(b)). We may then consider L as

a curve system in Σ (Figure 9(c)).

(a)

°

(b) (c)

L

°

L

Figure 9.

Taking a handlebody decomposition of Σ in which a neighborhood of σ is

the unique 0-handle, the set C consisting of the co-cores of the 1-handles gives

a basis for Σ. Moreover, B ∶= ϕ−1(C) is another basis and has the property

that ϕ(B) ∩ σ = ∅. By Corollary 3.6, B stably detects overtwistedness relative

to L, so we can find arc collection Γ and stabilization sequences S and S′ as

in Definition 3.2. We may of course assume Γ lies in any neighborhood of B,

so that ϕ(Γ) ∩ σ = ∅, and whenever γi and γj are parallel arcs in Γ, they are

again parallel in Σ′. But then we may apply the same stabilization sequence

to (Σ′, τsϕ), and (in the stabilized page Σ′′) we have Sτsϕ(Γ) = Sϕ(Γ). In

particular, then as (Σ′′, Sϕ,Γ) has an overtwisted region proper with respect

to S′(L), (Σ′′, Sτsϕ,Γ) has (the same) overtwisted region, proper with respect

to S′(L′). Thus B∪{γ} is a basis of Σ′ detecting overtwistedness relative to L′.
On the other hand, for a destabilization, we may of course choose the basis

B of Σ to contain the co-core γ of the destabilization handle. Then letting B′
denote the result of sliding an endpoint of γ over some other element of B, by

Corollary 3.6, B′ stably detects overtwistedness relative to L. Moreover, in Σ′,
each element of B′ is isotopic to an element of the basis B ∖ {γ}. Thus any

collection Γ in Σ satisfying the conditions of Definition 3.2 for B′ is the image

of the obvious inclusion of another such collection in Σ′. Finally, any curve

system in Σ′ is again a curve system in Σ, so we are done. �

4. Inconsistency, tightness, and Legendrian surgery

We are now in a position to prove Theorems 1.1 and 1.2.

4.1. Consistency and tightness. We start with (a slightly strengthened

version of)
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Theorem 1.1. Let M be a closed oriented 3-manifold, and let ξ be a pos-

itive, co-oriented contact structure on M . Then the following are equivalent :

(1) ξ is overtwisted.

(2) Some open book decomposition supporting (M,ξ) is inconsistent.

(3) Each open book decomposition supporting (M,ξ) is inconsistent.

(4) For any open book decomposition (Σ, ϕ) supporting ξ, and any basis B and

curve system L in Σ, B stably detects overtwistedness relative to L.

(5) There exists an open book decomposition (Σ, ϕ) supporting ξ, and basis B,

such that for any curve system L in Σ, B stably detects overtwistedness

relative to L.

Proof. In light of Giroux’s classification theorem, equivalence of (4) and

(5) is of course a restatement of Corollaries 3.6 and 3.7. On the other hand,

(4) trivially implies (3), which in turn trivially implies (2). We will show then

that (2) implies (1) and (1) implies (5).

To start with, we generalize a construction due to Goodman ([Goo05])

to demonstrate an overtwisted disc in (M,ξ) whenever (M,ξ) is supported

by an inconsistent open book decomposition. In particular, let (Σ, ϕ) be a

supporting open book, with overtwisted region A, supported by minimal Γ =
{γ1, γ2, . . . , γn}, which we index such that γi ∩ ϕ(γj) is a corner for A for

i < n and j = i + 1, or i = n and j = 1. (In fact, one may assume n = 1 —

see Lemma 4.1 — but we prefer to go through the construction for the general

case.) We then consider the suspension Si of γi in the mapping torus of (Σ, ϕ),
which we extend over the binding by attaching a meridional disc along each

{p}×S1, for p ∈ ∂γi. We thus have a collection of embedded discs (one for each

element of Γ), which we label Di, and n positive boundary-intersection points

∂Di<n ∩ ∂Di+1 and ∂Dn ∩ ∂D1. We then ‘resolve’ ∪iDi at each intersection

point p by adding a pair of small triangles from the page Σ0 through p in the

unique way which preserves the boundary orientation (Figure 10). Smoothing

the result via an isotopy relative to the boundary, and then pushing each ∂γi
into Σ, we obtain an embedded annulus C ↬ M , such that the boundary

is contained in Σ, and exactly one boundary component of C bounds a disc

(namely, our original region A) in Σ. Finally, then, ‘capping off’ a boundary

component of C via this disc, we obtain an embedded disc D in M ; following

the arguments of Goodman, which in turn rely on the ‘Legendrian realization

principle’ of Honda [Hon00], we may make ∂D Legendrian. Moreover, the

Thurston-Bennequin number of ∂D is just given by the intersection of D with

a push-off of the boundary along Σ, so it is zero. We conclude that D is an

overtwisted disc.

For the final implication ((1)⇒ (5)), suppose that ξ is overtwisted. Using

Eliashberg’s homotopy classification of overtwisted contact structures [Eli89],
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Di+1

A A

Di C

Figure 10. To the left: above, the discs Di and Di+1, in a neigh-

borhood of γi, illustrating the foliation of the mapping torus by

the pages; below, the restriction to Σ0. To the right, the result

C of resolving the intersections.

it is straightforward to find an open book decomposition (Σ, ϕ) supporting ξ

which is a negative stabilization (i.e., replace the Dehn twist in Definition 2.1

with its inverse) of some other open book. (See [Goo05] or [HKM07] for a

proof.) Let γ denote the co-core of the stabilizing 1-handle, L a collection of

curves and arcs, and U(γ) a neighborhood of γ disjoint from ∂L (Figure 11(a)).

Orienting γ arbitrarily, let σ1 denote a boundary-parallel arc in a neighborhood

of ∂−γ which intersects γ exactly once (Figure 11(a)), σ2 an arc isotopic to γ,

isotoped in U(γ) to lie to the right of γ, and not intersect σ1 (Figure 11(b)),

and σ3 an arc isotopic to ϕ(γ), isotoped relative to its intersection with σ1 by

pushing the endpoints against the positive orientation of ∂Σ in a neighborhood

of ∂γ disjoint from ∂σ1 and ∂σ2 (Figure 11(c)). It is then straightforward

to check (Figure 11(d)) that after the associated stabilizations, our bigon is

preserved and is proper with respect to L. In particular, then any basis of Σ

containing γ stably detects overtwistedness relative to L. �

(a)

°

¾ )(' °

(b)

¾

(c)

¾

(d)

L
1 2

3

Figure 11.

4.2. Tightness and Legendrian surgery. We gather for reference a pair of

simple observations.

Lemma 4.1. Let A be an overtwisted region in (Σ, ϕ,Γ), proper with re-

spect to some curve system L. If A is not a bigon, then there is γ ∈ Γ, and
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triple (Σ′, ϕ′,Γ ∖ {γ}) which is obtained by a destabilization of (Σ, ϕ,Γ), and

contains overtwisted A′ with two fewer sides than A, again proper with respect

to L.

Proof. Assuming L∩Γ is nonempty, by Definition 3.1 there is some nega-

tive corner y of A such that all intersections L∩ (Γ∪ϕ(Γ)) can be assumed to

occur in any neighborhood of y. Then let γ denote the element of Γ encoun-

tered first traveling around ∂A from y against the positive orientation. Now

from the definition of an overtwisted region, it is clear that γ is the co-core of

a stabilization 1-handle; destabilizing, we see (Figure 12) that the effect of the

destabilization on A ∪ Γ ∪ ϕ(Γ) can be realized as a resolution of the negative

corner of A in γ, followed by an isotopy to push the result away from ∂Σ near

∂γ (as in the proof of Theorem 1.1). The new region A′ then clearly has all

desired properties. �

A

°
L

y A

Figure 12.

Lemma 4.2. Let (Σ, ϕ) ↝ (Σ′, τsϕ) be a stabilization of an open book

decomposition and L a simple closed curve in Σ. Then each of (Σ′, τ−1
τs(L)τsϕ)

and (Σ′, τ−1
L τsϕ) are stabilizations of (Σ, τ−1

L ϕ).

Proof. Each of the statements follows easily from the well-known (and

easily verified) fact that, for a given diffeomorphism ψ of a surface Σ, and

simple closed curve L in Σ, we have ψτLψ
−1 = τψ(L). The first statement

indeed follows directly, so consider the second: re-factoring τ−1
L τs as ττ−1L sτ

−1
L ,

observe that, as L does not cross the stabilization 1-handle, τ−1
L s again crosses

it exactly once. �

Theorem 1.2. If (M,ξ) is obtained by Legendrian surgery on tight

(M ′, ξ′), for M ′ a closed, oriented 3-manifold, and ξ′ a positive co-oriented

contact structure, then (M,ξ) is tight.

Proof. Letting L denote the Legendrian knot along which the surgery is

performed, it follows from work of Giroux (see, e.g., [Etn06]) that we may

find an open book (Σ, ϕ) supporting (M,ξ) such that L is a curve on a page

and, furthermore, that (M ′, ξ′) is supported by (Σ, τ−1
L ○ ϕ). Suppose then

that (M,ξ) were overtwisted. In light of (the slightly strengthened version of)
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Theorem 1.1, we may find a collection Γ in Σ and a sequence of stabilizations

S, such that the stabilized triple (Σ′, Sϕ, ι(Γ)) has an overtwisted region A,

and further a subsequence S′ of S such that ι(Γ)∩S′(L) is contained in a single

element of ι(Γ). Using Lemma 4.1, we may destabilize each remaining element

of Γ to obtain an open book (Σ′′, ϕ′′) in which γ is (after a bigon-removing

isotopy of ϕ′′(γ)) mapped to the left at an endpoint, and S′(L) still lies on the

page. In particular, then γ is again mapped to the left in (Σ′′, τ−1
S′(L)ϕ

′′), so

by [HKM07], it supports an overtwisted contact structure. On the other hand,

(using Lemma 4.2), (Σ′, τ−1
S′(L)Sϕ) is a common stabilization of (Σ′′, τ−1

S′(L)ϕ
′′)

and (Σ, τ−1
L ○ ϕ), so that ξ′ is overtwisted, a contradiction. �

As an aside, we note that rather than appealing to [HKM07] in the above

proof, we could just as well simply show directly that (Σ′, τ−1
S′(L)Sϕ, ι(Γ)) sta-

bly has an overtwisted region; indeed, that it has (using the terminology of

Section 3) a boundary-based region is immediate, so it is left to show that this

region may be made isolated through stabilizations. An explicit algorithm to

do just this can be found in [Wana].
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