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The circle method and bounds
for L-functions - IV:

Subconvexity for twists of GL(3) L-functions

By Ritabrata Munshi

To Soumyanetra and Sroutatwisha

Abstract

Let π be an SL(3,Z) Hecke-Maass cusp form satisfying the Ramanujan

conjecture and the Selberg-Ramanujan conjecture, and let χ be a primitive

Dirichlet character modulo M , which we assume to be prime for simplicity.

We will prove that there is a computable absolute constant δ > 0 such that

L
(
1
2
, π ⊗ χ

)
�π M

3
4
−δ.

1. Introduction

Let π be a Hecke-Maass cusp form for SL(3,Z) of type (ν1, ν2) (see [2] and

[5]). Let λ(m,n) be the normalized (i.e., λ(1, 1) = 1) Fourier coefficients of π.

The Langlands parameters (α1, α2, α3) for π are given by α1 = −ν1 − 2ν2 + 1,

α2 = −ν1 + ν2 and α3 = 2ν1 + ν2− 1. Let χ be a primitive Dirichlet character

modulo M . The L-function associated with the twisted form π⊗χ is given by

the Dirichlet series

L(s, π ⊗ χ) =
∞∑
n=1

λ(1, n)χ(n)n−s(1)

in the domain σ = Re(s) > 1. The L-function extends to an entire function

and satisfies a functional equation with arithmetic conductor M3. Hence the

convexity bound is given by

L
Ä

1
2 , π ⊗ χ

ä
�π,ε M

3/4+ε.

The subconvexity problem for this L-function has been solved in several special

cases in [1], [13], [12], [14] and, more recently in [17]. In [1] Blomer established

a subconvex bound with exponent 5/8+ε in the case where π is self dual and χ

is a quadratic character. In [13], [14] we considered twists of symmetric square
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lifts by characters χ with prime power modulus M = q` with ` > 1. In [13] it

was shown that for every ` > 1, there is a δ` > 0 such that

L
Ä

1
2 , π ⊗ χ

ä
�π,`,ε M

3/4−δ`+ε,

and in [14] we proved that

L
Ä

1
2 , π ⊗ χ

ä
�π,q,ε M

3/4−1/12+ε.

The later result, where the base prime q remains fixed and the power ` grows,

is a non-archimedean analogue of the t-aspect subconvexity (see [9] and [15]).

The main result of [17] generalizes that of the unpublished note [12]. In [17] we

consider twists of π (which need not be self dual) by characters χ that factorize

as χ = χ1χ2 with χi primitive modulo Mi and (M1,M2) = 1. Suppose there

is a δ > 0 such that M
1/2+4δ
2 < M1 < M1−3δ

2 . Then we show that

L
Ä

1
2 , π ⊗ χ

ä
�π,q,ε M

3/4−δ+ε.

In [12] a similar result was proved for twists of the symmetric square lifts.

In this paper we will prove a very general statement. However we are

going to assume that the form π satisfies the following conditions:

(R) The Ramanujan conjecture λ(m,n)� (mn)ε;

(RS) The Ramanujan-Selberg conjecture Re(αi) = 0.

Theorem 1. Let π be a Hecke-Maass cusp form for SL(3,Z) satisfying

conjectures (R) and (RS). Let χ be a primitive Dirichlet character modulo M .

Suppose M is a prime number. Then there is a computable absolute constant

δ > 0 such that

L
Ä

1
2 , π ⊗ χ

ä
�π M

3
4
−δ.

The primality assumption on M is more a technical convenience than an

essential requirement. A more general statement without this assumption can

be proved using the technique introduced in this paper. Also the exponent

can be explicitly computed. In fact one can take δ = 1/1612. Our primary

goal here is to present the ideas as clearly as possible without trying to prove

the most general statement or the best possible exponent. The conditions (R)

and (RS) are quite serious, and their removal is a technical challenge. Indeed

unlike the previous papers in this series [16], [17], we do not need to use Deligne

type bounds for exponential sums. Instead of estimating exponential sums, we

will be required to solve a counting problem, which we tackle in an elementary

manner (without recourse to exponential sums).

The subconvexity problem for L-functions twisted by a Dirichlet character

has been studied extensively in the literature. The first instance of such a result

is of course the pioneering work of Burgess [3], whose well-known bound

L
Ä

1
2 , χ
ä
�M

3
16

+ε
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still remains unsurpassed. In the case of degree two L-functions the problem

was first tackled by Duke, Friedlander and Iwaniec [4] using the amplification

technique. Their result has been extended (e.g., to the case of general GL(2)

automorphic forms) and improved by several authors in the last two decades.

Our theorem provides a GL(3) analogue of the main result of [4].

The present work substantially differs from the previous papers in the se-

ries, and one may rightly argue that the way we detect the (diagonal) equation

n = r here can hardly be termed a circle method. We use the Petersson trace

formula, which gives an expansion of the Kronecker delta symbol in terms

of the Fourier coefficients of holomorphic forms and the Kloosterman sums.

However the basic set up for the proof of Theorem 1 coincides with that in

[16], [17] and [15]. In particular, we use an expansion of the Kronecker delta

symbol to separate the oscillation of the GL(3) Fourier coefficients from that

of the character. The idea of using the Petersson formula as a substitute of the

circle method is also exploited in [18] where we deal with the Rankin-Selberg

L-functions.

Remark 1. The approach in this paper gives an unconditional subconvex-

ity result for twists of the symmetric square lifts of SL(2,Z) holomorphic forms.

Indeed in this case (RS) is known and (R) follows from the work of Deligne.

Remark 2. The theorem in fact holds under the weaker assumptions that

λ(m,n) � (mn)θo+ε and |Re(αi)| ≤ ηo, with θo and ηo sufficiently small.

Since we need these parameters to be very small, far from what one can hope

to achieve in near future, we refrain from writing it down explicitly. A case of

special interest corresponds to symmetric square lifts of SL(2,Z) Maass forms.

In this case, though not sufficient for our purpose, strong bounds are known

from the work of Kim and Sarnak (θo = 7/32).

Acknowledgements. The author wishes to thank Valentin Blomer, Philippe

Michel, Peter Sarnak and Matthew Young for their interest in this work. The

author also thanks the anonymous referees for many helpful suggestions that

substantially improved the quality of the paper.

2. The set up

2.1. Preliminaries. Throughout the paper we will adopt the usual ε-con-

vention of analytic number theory. The presence of an ε in the statement of a

proposition or lemma will mean that the estimate is valid for any ε > 0 and

the implicit implied constant is allowed to depend on that ε. Moreover the

value of the ε may differ from one occurrence to another.

Though for the purpose of subconvexity one only needs to consider very

special weight functions, the bounds that we establish hold for a larger class
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of functions. In fact it is often convenient to prove the results in this more

general setting. As such we introduce the following class of functions. Given

a sequence of positive numbers A = {A1, A2, . . . }, a positive integer h and a

vector of positive numbers H = (H1, . . . ,Hh), we define a class of functions

W(H,A). This consists of smooth functions W : Rh → C, which are supported

in the box [1, 2]h and which satisfy

|W (j)(x)| ≤ Aj1+···+jkH
j

for any j ∈ Zh≥0. (Here Hj = Hj1
1 . . . Hjh

h .) The sequence A will not be of any

importance in our analysis, and we will drop it from the notation. In fact there

is an universal sequence A(ε) depending only on the smallest ε that appears

in our analysis, such that all the weight functions considered below fall in the

class W(H) = W(H,A(ε)) for some h and H. If H = (H, . . . ,H), then we

will, by abuse of notation, simply write W(H) (or Wh(H)). The subclass of

W(H) consisting of functions with image in R≥0 will be denoted by W+(H).

For notational convenience we will adopt the following convention regarding

the analytic weights. At any situation where more than one weights of the

same class are involved, the same notation may be used to denote different

weight functions (e.g., see Lemma 14).

Our first lemma is regarding the existence of a smooth partition of unity.

Lemma 1. There exists a sequence U = {(U,R)} consisting of pairs (U,R)

with U ∈ W+
1 (1), R ∈ R>0 such that∑

(U,R)

U

Å
r

R

ã
= 1 for r ∈ (0,∞).

Also the collection is such that the sum is locally finite in the sense that for

any given ` ∈ Z, there are only finitely many (independent of `) pairs with

R ∈ [2`, 2`+1].

Once and for all we choose and fix such a smooth partition of unity. Then

by a smooth dyadic subdivision of a sum

∞∑
r=1

A(r)

we will mean ∑
(U,R)

∞∑
r=1

A(r)U

Å
r

R

ã
.

(It is also possible to choose a single weight function U and vary only the range

R to obtain such a partition of unity. This is of course not necessary for our

purpose.)
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We conclude this section by noting some basic properties of the J-Bessel

function.

Lemma 2. Let κ ≥ 2 and x > 0. Then the J-Bessel function splits as

Jκ(x) = Wκ(x)eix + W̄κ(x)e−ix,

where Wκ(x) is a smooth function defined on (0,∞), and it satisfies the fol-

lowing bound :

xjW (j)
κ (x)�κ min{xκ−1, x−1/2}.

2.2. Petersson formula to detect the equation n = r. Now we will explain

the expansion of the Kronecker symbol that we will use. Let p be a prime

number, and let k ≡ 3 mod 4 be a positive integer. Let ψ be a character of

F×p satisfying ψ(−1) = −1 = (−1)k. So, in particular, ψ is primitive modulo

p. The collection of Hecke cusp forms of level p, weight k and nebentypus ψ is

denoted by Hk(p, ψ), and they form an orthogonal basis of the space of cusp

forms Sk(p, ψ). Let

ω−1
f =

Γ(k − 1)

(4π)k−1‖f‖2
be the spectral weights. The Petersson formula gives∑

f∈Hk(p,ψ)

ω−1
f λf (n)λf (r) = δ(n, r) + 2πi

∞∑
c=1

Sψ(r, n; cp)

cp
Jk−1

Ç
4π
√
nr

cp

å
.

This gives an expansion of the Kronecker delta δ(n, r) (which is the indicator

function of the diagonal n = r) in terms of the Kloosterman sums

Sψ(a, b; c) =
∑?

α mod c

ψ(α)e

Å
αa+ ᾱb

c

ã
and the (Hecke normalized) Fourier coefficients λf (n) of holomorphic forms f

if pk is taken to be sufficiently large (so that the space Sk(p, ψ) is nontrivial).

Let P be a parameter that shall be chosen optimally later as a power of

the modulus M . Let

P ? =
∑

P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1)) =
∑

P<p<2P
p prime

φ(p) � P 2

logP
.

Lemma 3. For Pk � 1 (sufficiently large), we have

δ(n, r) =
1

P ?

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∑

f∈Hk(p,ψ)

ω−1
f λf (n)λf (r)(2)

− 2πi

P ?

∑
P<p<2P
p prime

∞∑
c=1

1

cp

∑
ψ mod p

(1− ψ(−1))Sψ(r, n; cp)Jk−1

Ç
4π
√
nr

cp

å
.
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Proof. The lemma follows by taking an average of the Petersson formula

over all odd ψ modulo p and all primes in the range P < p < 2P . �

2.3. Bounds for central values in terms of short smooth sums. Let W ∈
W1(1), and define the sum

S(N,W ) = S(N) =
∞∑∑

m,n=1

λ(m,n)χ(n)W

Ç
nm2

N

å
.

For notational simplicity, we will drop W and denote the sum simply by S(N),

with the understanding that when we have a sum of several S(N), then the

weight function involved may not be same in each occurrence. The Dirichlet

series associated with S(N) is given by
∞∑∑

m,n=1

λ(m,n)χ(n)(nm2)−s,

and our first task is to relate this series with the twisted L-function L(s, π⊗χ).

Lemma 4. We have

L(3s, χ)
∞∑∑

m,n=1

λ(m,n)χ(n)(nm2)−s = L(s, π ⊗ χ)L(2s, π̃)(3)

for σ > 1, where π̃ denotes the dual form.

Proof. The Dirichlet series, which appears on the left-hand side of (3), is

given by the Euler product∏
p prime

∞∑∑
u,v=0

λ(pu, pv)χ(p)vp−(2u+v)s.

For u, v ≥ 1, we have (the Hecke relations)

λ(pu, pv) = λ(pu, 1)λ(1, pv)− λ(pu−1, 1)λ(1, pv−1).

Consequently we get
∞∑∑

u,v=0

λ(pu, pv)χ(p)vp−(2u+v)s

=
∞∑
u=0

λ(pu, 1)p−2us
∞∑
v=0

λ(1, pv)χ(p)vp−vs
¶

1− χ(p)p−3s
©
.

The lemma follows. �

Now we relate the sums S(N) with the twisted central values L(1/2, π⊗χ).

Lemma 5. For any θ > 0, we have

L(1
2 , π ⊗ χ)�M ε sup

N

|S(N)|√
N

+M3/4−θ/2+ε,

where the supremum is taken over N in the range M3/2−θ < N < M3/2+θ and

the weight functions W (appearing in the sum S(N)) belong to W1(1).



SUBCONVEXITY FOR TWISTS OF GL(3) L-FUNCTIONS 623

Before proving the lemma, we will make a couple of remarks regarding

the statement of the lemma. The weight functions W involved in S(N) is

allowed to change with N . In fact, as we will see below, the weight functions

are obtained by taking a smooth dyadic subdivision of a given weight function.

Also we will be using (RS) to prove this statement. Using any nontrivial bound

towards (RS) one can prove a weaker statement that will be still sufficient for

the purpose of the paper.

Proof. Consider the integral

I =
1

2πi

∫
(2)
M−3/4Λ(1

2 + s, π ⊗ χ)Λ(1 + 2s, π̃)Xsds

s
.

The product of the completed L-functions appearing above is given by

M−3/4Λ(s, π ⊗ χ)Λ(2s, π̃) = M3s/2−3/4γ(s)L(s, π ⊗ χ)L(2s, π̃),

where

γ(s) = π−9s/2
3∏
j=1

Γ

Å
s− αj + δ

2

ã
Γ

Å
2s+ αj

2

ã
,

with δ = 0 if χ(−1) = 1 and δ = 1 if χ(−1) = −1. (Note that the Langlands

parameters of the dual form π̃ are (−α3,−α2,−α1).) We only need the fact

that (under (RS)) there are no poles of γ(s) in the region σ > 0. We move the

contour, in the definition of I, to σ = −1/2+ε. The residue at s = 0 is given by

γ(1/2)L(1
2 , π ⊗ χ)L(1, π̃).

For the integral at σ = −1/2 + ε, which is near the edge of the critical strip,

we use trivial bounds to get

1

2πi

∫
(−1/2+ε)

M−3/4Λ(1
2 +s, π⊗χ)Λ(1+2s, π̃)Xsds

s
= O

Ä
M3/4X−1/2(MX)ε

ä
.

On the other hand, from Lemma 4 it follows that the initial integral I is

given by

∞∑∑
m,n=1

λ(m,n)χ(n)√
m2n

1

2πi

∫
(2)
γ(1/2 + s)L(3

2 + 3s, χ)

Ç
M3/2X

nm2

ås
ds

s
.

We set

V(y) =
1

2πi

∫
(2)
γ(1/2 + s)L(3

2 + 3s, χ)y−s
ds

s
.

For y ≥M ε, we see that V(y)�M−2013 by shifting the contour to the right.

For 0 < y < M ε, we shift the contour to σ = ε. Differentiating within the

integral sign we get

yjV(j)(y)�j 1.



624 RITABRATA MUNSHI

It follows that

γ(1/2)L(1
2 , π ⊗ χ)L(1, π̃) =

∞∑∑
m,n=1

λ(m,n)χ(n)√
m2n

V
Ç

nm2

XM3/2

å
+O

Ä
M3/4X−1/2(MX)ε

ä
.

Since L(1, π̃)� 1, taking a smooth dyadic subdivision (as in Section 2.1) and

picking X = M θ, we conclude the lemma. Note that for U as in Lemma 1 and

V as above, the function

W (x) := U(x)V
Å

Rx

XM3/2

ã
belongs to the class W1(1). �

One will notice a certain oddity in Lemma 5. The Dirichlet series expan-

sion of the L-function L(s, π ⊗ χ) is given by (1). In the usual approximate

functional equation, as given in Chapter 5 of [7], one gets an expression for

L(1/2, π ⊗ χ) in terms of sums of the type

∞∑
n=1

λ(1, n)χ(n)W (n/N).

In this usual form one only needs to take N � M3/2+ε, as the tail makes a

negligible contribution. In the above lemma we have given a bound for the

twisted central value in terms of a slightly different smooth sums, namely,

S(N). This is done at the cost of a larger error of size O(M3/4−θ+ε). Moreover

we are required to consider longer sums N � M3/2+θ+ε. One may wonder

what the advantage is of such an expression. The point is that after applying

the Petersson formula we will be led to consider the Rankin-Selberg L-function

L(s, π ⊗ f) that is given by the Dirichlet series

L(s, π ⊗ f) =
∞∑∑

m,n=1

λ(m,n)λf (n)(m2n)−s.

Hence, in hindsight, the introduction of the extra sum over m will turn out to

be beneficial.

In the sum S(N) we are going to separate the oscillation of the Fourier

coefficients λ(m,n) from that of the character χ(n). Consequently we would

like to have a separate smooth weight function for n that will not depend on m.

To this end, let V be a smooth function supported in [M−4θ, 4], with V (x) = 1

for x ∈ [2M−4θ, 2] and satisfying yjV (j)(y)�j 1, and set

S?(N) =
∞∑∑

m,n=1

λ(m,n)χ(n)W

Ç
nm2

N

å
V

Å
n

N

ã
.(4)



SUBCONVEXITY FOR TWISTS OF GL(3) L-FUNCTIONS 625

Lemma 6. For S?(N) as above, we have

S?(N) = S(N) +O(NM−θ+ε).(5)

Moreover

L(1
2 , π ⊗ χ)�M ε sup

N

|S?(N)|√
N

+M3/4−θ/2+ε,

where the supremum is taken over N in the range M3/2−θ < N < M3/2+θ.

Proof. Using the definition of V and the bound∑∑
m2n≤x

|λ(m,n)|2 � x1+ε,(6)

which follows from the Rankin-Selberg theory, we get the first statement. Now

substituting (5) in Lemma 5 and using N < M3/2+θ, we get the second state-

ment. �

2.4. Conclusion. We will apply the formula from Lemma 3 directly to the

sum S?(N), which we first rewrite as

S?(N) =
∞∑
r=1

∞∑∑
m,n=1

λ(m,n)χ(r)δ(n, r)W

Ç
nm2

N

å
V

Å
r

N

ã
.(7)

We take N in the range M3/2−θ ≤ N � M3/2+θ, with θ > 0. The parameter

θ shall be taken sufficiently small at the end. Applying (2) from Lemma 3 to

(7) we get two terms, namely,

S?(N) = F − 2πiO,

where

F =
1

P ?

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∑

f∈Hk(p,ψ)

ω−1
f(8)

×
∞∑∑

m,n=1

λ(m,n)λf (n)W

Ç
nm2

N

å ∞∑
r=1

λf (r)χ(r) V

Å
r

N

ã
and

O =
1

P ?

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∞∑∑

m,n=1

λ(m,n)W

Ç
nm2

N

å
(9)

×
∞∑
r=1

χ(r)V

Å
r

N

ã ∞∑
c=1

Sψ(r, n; cp)

cp
Jk−1

Ç
4π
√
nr

cp

å
.

We pick the weight k to be large, say of size ε−1. The second sum, which

we call the off-diagonal, can be nicely bounded if P is taken sufficiently large.

On the other hand, to the first sum we will apply the functional equations

followed by the Petersson formula. The resulting diagonal term vanishes, and
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the off-diagonal term (which we will call dual off-diagonal) can be bounded

nicely if P is taken in a suitable range. We will show that there is a choice of

P for which both the terms can be bounded satisfactorily.

In the rest of the paper we will prove the following two propositions.

Proposition 1. Let O be as defined in (9). Suppose P ≥ N1/2+ε with

ε > 0 and θ < 1/4. Then we have

O �
√
N
M3/2+θ+ε

P
.

Proposition 2. Let F be as defined in (8). Suppose θ is sufficiently

small. Then we have θ0, δ > 0, such that for

P = M1−θ0 ,

we have

F �
√
NM3/4−δ.

Assuming the propositions, let us complete the proof of Theorem 1. From

the propositions we conclude that for θ > 0 sufficiently small, we have a δ > 0

such that

S?(N)�
√
NM3/4−δ.

Substituting this into Lemma 6, we obtain the theorem.

3. Sketch of the proof

In this section we shall present a very rough sketch of the ideas involved

in the proof. We need strong bounds for O and F . Choose P so that N1/2+ε <

P < M1−ε.

3.1. Analysis of O. First consider O, which is defined in (9). Roughly

speaking it is given by

1

NP 2

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∑
n∼N

λ(1, n)
∑
r∼N

χ(r)
∑

c∼N/P
Sψ(r, n; cp).

Using the trivial bound (not the Weil bound) for the Kloosterman sum we get

that this sum is dominated by O(N3/P ). So after opening the Kloosterman

sum we need to make a saving of size N2/P . Since by our choice P �
√
N ,

we have (c, p) = 1, and consequently the Kloosterman sum splits as

Sψ(r, n; cp) = Sψ(c̄r, c̄n; p)S(p̄r, p̄n; c).

Summing over ψ we get∑
ψ mod p

(1− ψ(−1))Sψ(c̄r, c̄n; p) = φ(p)

Ç
e

Ç
c̄(r + n)

p

å
− e
Ç
− c̄(r + n)

p

åå
.
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This gives us a saving of size P . (In other words, we are saving
√
P in the ψ

sum in addition to the Weil bound for the Kloosterman sums.) Now we are

required to save N2/P 2 in the sum∑
P<p<2P
p prime

∑
n∼N

λ(1, n)
∑
r∼N

χ(r)
∑

c∼N/P
S(p̄r, p̄n; c) e

Ç
c̄(r + n)

p

å
.

We wish to apply the Poisson summation formula on the sum over r. But before

that we shall reduce the ‘conductor’ of the sum by applying the reciprocity

relation

e

Ç
c̄(r + n)

p

å
= e

Ç
− p̄(r + n)

c

å
e

Å
r + n

cp

ã
.

The last factor can be absorbed in the weight function as cp ∼ (r + n). So we

consider the sum∑
P<p<2P
p prime

∑
n∼N

λ(1, n)
∑

c∼N/P

∑
r∼N

χ(r)S(p̄r, p̄n; c) e

Ç
− p̄(r + n)

c

å
.

We break the inner sum into congruence classes modulo cM and apply the

Poisson summation formula. The resulting character sums are given by∑
a mod cM

χ(a)S(p̄a, p̄n; c) e

Ç
− p̄(a+ n)

c
+

ar

cM

å
.

Since c∼N/P�
√
N�M and M is assumed to be prime, we have (c,M)=1.

Hence the character sum splits into a product of two character sums. The

one with modulus M is just a Gauss sum. Consequently we find that the

contribution of the zero frequency vanishes. The character sum with modulus

c can be evaluated explicitly after opening the Kloosterman sum, and we have∑
a mod c

S(p̄a, p̄n; c) e

Ç
− p̄(a+ n)

c
+
M̄ar

c

å
= c e

Ç
(M − pr)rn

c

å
.

So it follows that using the Poisson summation formula we have a saving of

size N/
√
M — in other words, saving N/

√
cM beyond the Weil bound for the

Kloosterman sum modulo c. It remains to save N
√
M/P 2 = (M/P )2. This

is just at the threshold, as to get a satisfactory bound for F (as we will see

below), we need to take P to be just smaller than M . We wish to save (M/P )2

(and a little more) in the sum∑
P<p<2P
p prime

∑
c∼N/P

∑
n∼N

λ(1, n)
∑

|r|�M/P

χ(cr̄) e

Ç
(M − pr)rn

c

å
.

This can be achieved in several ways. One may apply the Voronoi summation

formula on the sum over n or directly apply Miller’s bound from [10] to the
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n sum. However one may refrain from utilizing the fact that the coefficients

λ(1, n) come from a SL(3,Z) Hecke-Maass form, and one can obtain a bound

that holds for any coefficients α(n) in place of λ(1, n) satisfying the bound

α(n) � nε either point-wise or in the L2 sense. To this end we apply the

Cauchy inequality and consider the sum

∑
P<p<2P
p prime

∑
n∼N

∣∣∣∣ ∑
c∼N/P

∑
|r|�M/P

χ(cr̄) e

Ç
(M − pr)rn

c

å∣∣∣∣2.
Now we open the absolute square and apply the Poisson summation on the

sum over n with modulus cc′. Only the zero frequency survives as N > cc′ ∼
N2/P 2. We end up with the counting problem

N
∑

P<p<2P
p prime

∑∑
c,c′∼N/P

∑∑
|r|,|r′|�M/P

(M−pr′)rc′−(M−pr)r′c≡0 mod cc′

1.

In Section 4.3 we deal with this counting problem and obtain a sufficient bound.

One saves the length of the diagonal, i.e., MN/P 2, which is larger than (M/P )4

if P > M3/4+ε. This is the content of Proposition 1.

3.2. Analysis of F . Next we turn to F , which is roughly of the form

1

P 2

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∑

f∈Hk(p,ψ)

ω−1
f

∑
n∼N

λ(1, n)λf (n)
∑
r∼N

λf (r)χ(r).

The trivial bound for this sum is N2, and we need to save N . We use the

functional equations to the sums over n and r. The resulting size of the n sum

is P 3/N , and that of the r sum is M2P/N . So we are able to save N2/MP 2,

and it remains to save MP 2/N = P 2/
√
M . However major complications

arise due to the root numbers, which involve the Fourier coefficient λf (p) and

the Gauss sums gψ (where gη denotes the Gauss sums associated with the

character η). Roughly speaking one is now left with the problem of saving

P 2/
√
M in a sum of the type

∑
P<p<2P
p prime

χ(p)
∑

ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψ

∑
f∈Hk(p,ψ)

ω−1
f λf (p)

2

×
∑

n∼P 3/N

λ(n, 1)λf (n)
∑

r∼P
√
M

χ̄(r)λf (r).
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Applying Petersson’s formula one gets∑
P<p<2P
p prime

χ(p)
∑

ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψ

∑
n∼P 3/N

λ(n, 1)

×
∑

r∼P
√
M

χ̄(r)
∑

c∼P 2/
√
M

Sψ(np2, r; cp).

Note that the diagonal term is nonexistent. In this process we make a loss of

size P 2/
√
M (if one opens the Kloosterman sum). So now we need to save

P 4/M (and a little more). There are two cases to consider. In the case where

p|c, we get the required saving quite easily as it turns out that the Kloosterman

sum vanishes unless p|r. So we already make a saving of size P 2. Summing

over ψ we save P more. This is enough for our purpose as P 3 > P 4/M (or

M > P ). In the other case where p - c, the Kloosterman sum splits as

Sψ(np2, r; cp) = Sψ(0, c̄r; p)S(n, r; c).

Observe the curious separation of variables. The first term on the right-hand

side does not involve n, and the second term is free of p. This plays a crucial

role in our analysis. The first term is just a Gauss sum, and it is given by

ψ(c̄r)gψ̄. We are now required to save P 4/M (taking the trivial bound for the

Gauss sum, i.e., after opening the Gauss sum) in the sum∑
P<p<2P
p prime

χ(p)
∑

n∼P 3/N

λ(n, 1)
∑

r∼P
√
M

p-r

χ̄(r)

×
∑

c∼P 2/
√
M

p-c

S(n, r; c)
∑

ψ mod p

(1− ψ(−1)) ψ̄(Mcr̄)gψ.

The sum over ψ now yields∑
ψ mod p

(1− ψ(−1)) ψ̄(Mcr̄)gψ = φ(p)

ß
e

Å
Mcr̄

p

ã
− e
Å
−Mcr̄

p

ã™
,

which gives us a saving of size P . Now we wish to save P 3/M in the sum∑
P<p<2P
p prime

χ(p)
∑

n∼P 3/N

λ(n, 1)
∑

r∼P
√
M

p-r

χ̄(r)
∑

c∼P 2/
√
M

p-c

S(n, r; c)e

Å
Mcr̄

p

ã
.

Now we apply the Voronoi summation formula on the sum over n. Roughly

speaking this yields∑
n∼P 3/N

λ(n, 1)S(n, r; c) =
P 3

c2N

∑
1≤n�c3N/P 3

λ(1, n)
∑?

a mod c

e

Å
ar

c

ã
S(a, n; c).
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Let us pretend that the last sum over a is a complete sum without the copri-

mality condition. Then the right-hand side reduces to

P 3

cN

∑
1≤n�c3N/P 3

λ(1, n)e

Å
− r̄n
c

ã
,

which is approximately

P

M

∑
1≤n�P 3

λ(1, n)e

Å
− r̄n
c

ã
=

P

M

∑
L dyadic
L<P 3

∑
n∼L

λ(1, n)e

Å
− r̄n
c

ã
.

We are taking a smooth partition of the sum into dyadic blocks, as we intend

to apply the Voronoi summation again after an application of reciprocity. We

consider the L-th block, which is given by∑
P<p<2P
p prime

χ(p)
∑

r∼P
√
M

p-r

χ̄(r)
∑

c∼P 2/
√
M

p-c

∑
n∼L

λ(1, n)e

Å
− r̄n
c

ã
e

Å
Mcr̄

p

ã
.

We need to save L/P . For L large, i.e., L ∼ P 3, we need to save P 2, which is in

fact more than what we were required to save before the Voronoi summation.

But we have gained immense structural advantage in the process. In particular,

the Kloosterman sum has vanished and we are now able to reduce the conductor

by applying reciprocity. Note that the length of the n-sum is proportional to

the amount that we need to save. Here we are using the Ramanujan-Selberg

conjecture (RS). Applying reciprocity we reduce the above sum to∑
P<p<2P
p prime

χ(p)
∑

r∼P
√
M

p-r

χ̄(r)
∑

c∼P 2/
√
M

p-c

∑
n∼L

λ(1, n)e

Å
c̄n

r

ã
e

Å
−Mcp̄

r

ã
.

Note that cr ∼ P 3 � L and pr ∼ P 2
√
M ∼ Mc. Next we apply the Poisson

summation on the sum over c and the Voronoi summation on the sum over n.

First the Poisson summation gives us a saving of the size P 3/2/M3/4. Then

the Voronoi summation saves L/P 3/2M3/4. So in total we save L/M3/2. One

is now required to save M3/2/P in the sum∑
P<p<2P
p prime

χ(p)
∑

r∼P
√
M

p-r

χ̄(r)
∑

c∼M/P

∑
n<P 3M3/2/L

λ(n, 1)

×
∑

a mod r

S(a, n; r)e

Å
−Map̄

r
+
ac

r

ã
.

The last character sum is given by

re

Ç
M − cppn

r

å
.
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Next we apply the Cauchy inequality to get rid of the Fourier coefficients and

reduce the problem to that of saving M3/P 2 = (N/P )2 in the sum

∑
c∼M/P

∑
n<P 3M3/2/L

∣∣∣∣ ∑
P<p<2P
p prime

∑
r∼P

√
M

p-r

χ(pr̄) e

Ç
M − cppn

r

å∣∣∣∣2.
Opening the absolute square we apply the Poisson summation formula on the

sum over n. This leads us to a counting problem. ‘Ideally’ one should be able

to save P 3M3/2/L > M3/2 = N . But there are few degenerate cases that make

large contribution in the count. However we get a satisfactory bound as long

as P is taken in a suitable range in [N1/2+ε,M1−ε]. One will also observe that

the present counting problem is same (with different variable sizes) as the one

we encountered while dealing with the off-diagonal O. However in the present

case we need to analyze the contribution of the nonzero frequencies as well.

In the above sketch we concentrated only on the transition range for the

c sum. Due to the rapid decay of the Bessel function, and our choice of large

weight k, the tail sum, where c is larger than the transition range, makes a

negligible contribution. However for smaller c, we need a detailed analysis to

get a satisfactory bound. In this range we gain a little from the size of the

Bessel function, but there is an additional oscillation. We analyze these terms

in Section 6. The content of this section is summarized in Lemma 18, where

we show that by taking P between [N1/2+ε,M1−ε] we can obtain a satisfactory

bound. Similarly in our analysis of the contribution of the ‘wild terms’ in the

transition range, i.e., those with variables having large common factors with

each other, in Section 7 we again need to take P < M . The main output of

this section is Lemma 24. Also we stress that in our analysis of these sums

we make a very small saving compared to our savings in Proposition 1 or in

our treatment for c in the transition range. With more work one expects to

get better bounds in Sections 6 and 7. Indeed one expects that the optimal

choice for P should be near
√
N , rather than near M , as in the standard circle

method.

4. The off-diagonal

In this section we will analyze the off-diagonal contribution O as given in

(9). We will prove Proposition 1. Suppose we take P ≥ N1/2+ε. Since we are

picking k very large, of the order ε−1, and Jk−1(x)� xk−1 (see Lemma 2), the

contribution from the tail c > N1/2−ε is negligibly small. In particular, the

contributing c are necessarily coprime with p. We make a dyadic subdivision

of the the c-sum (see Section 2.1) and extract the oscillation from the Bessel
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function as in Lemma 2. This leads us to the study of the sum

O(m) =
∑

P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∞∑
n=1

λ(m,n)
∞∑
r=1

χ(r)

×
∞∑
c=1

(c,p)=1

Sψ(r, n; cp)e

Ç
2
√
nr

cp

å
W0

Å
n

N0
,
r

R
,
c

C

ã
for any fixed m ≤

√
N , where W0 ∈ W3(1) and

N0 = N/m2, NM−4θ � R� N and C �
√
N0RM

ε/P.

From a bound for O(m) we can conclude a bound for O via the inequality

(10) O � M ε

P 2

∑
1≤m�

√
N

sup
O(m)√

CP (N0R)1/4
,

where the supremum is taken over all C andR in the above ranges. (Technically

speaking one should also take supremum over a class of weight functions, but

that does not affect the bound. This feature will be present throughout this

paper.)

4.1. Sum over ψ and reciprocity. Our next step is a conductor lowering

mechanism. This is one of the most vital steps. Similar tricks were also used

in the series of papers [13], [12] and [14]. There a part of the Kloosterman sum

could be evaluated as the modulus was powerful. Here the extra average over

ψ helps us to evaluate precisely the twisted average value of the Kloosterman

sum. This also makes way for the application of reciprocity, which lowers the

conductor. We set

W±1 (x, y, z) = e

Å
±Ry +N0x

Cpz

ã
e

Ç
2
√
RN0xy

Cpz

å
W0 (x, y, z) .(11)

Note that the new factors are only mildly oscillating at the transition range

for c. Indeed we have W±1 (x, y, z) ∈ W(H1, H2, H1 + H2) (see Section 2.1),

where

H1 =

Ç
N0

CP
+

√
RN0

CP
+ 1

å
and H2 =

Ç
R

CP
+

√
RN0

CP
+ 1

å
.

Lemma 7. We have

O(m) =
∑
±

(±1)
∑

P<p<2P
p prime

∞∑
c=1

(c,p)=1

φ(p)
∞∑
n=1

λ(m,n)

×
∞∑
r=1

χ(r)S(p̄r, p̄n; c)e

Ç
∓ p̄(r + n)

c

å
W±1

Å
n

N0
,
r

R
,
c

C

ã
,

where W±1 are as given in (11).
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Proof. Using the coprimality (c, p) = 1, we get∑
ψ mod p

(1− ψ(−1))Sψ(r, n; cp)

= S(p̄r, p̄n; c)
∑

ψ mod p

(1− ψ(−1))Sψ(c̄r, c̄n; p)

= φ(p)S(p̄r, p̄n; c)

Ç
e

Ç
c̄(r + n)

p

å
− e
Ç
− c̄(r + n)

p

åå
.

Hence

O(m) =
∑
±

(±1)
∑

P<p<2P
p prime

φ(p)
∞∑
n=1

λ(m,n)
∞∑
r=1

χ(r)

×
∞∑
c=1

(c,p)=1

S(p̄r, p̄n; c)e

Ç
± c̄(r + n)

p

å
e

Ç
2
√
nr

cp

å
W0

Å
n

N0
,
r

R
,
c

C

ã
.

Next we use the reciprocity relation

e

Ç
± c̄(r + n)

p

å
= e

Ç
∓ p̄(r + n)

c

å
e

Å
±r + n

cp

ã
.

We push the last oscillatory factor into the weight function. The lemma follows.

�

Observe that before the application of the reciprocity relation the modulus

for the sum over r was cpM . Using the reciprocity relation we have brought

it down to cM .

4.2. First application of the Poisson summation. For notational simplicity

we will only focus on the contribution of the ‘+’ term in the expression given

in Lemma 7. We denote this by O1(m). We also set W1 = W+
1 . We start by

applying the Poisson summation formula on the sum over r. Let

H =

Ç
1 +

√
N0√
R

å
M1+ε

P
.

Lemma 8. We have O1(m)� |O?1(m)|+M−2013, where

O?1(m) =
R√
M

∑
P<p<2P
p prime

∞∑
c=1

(c,p)=1

φ(p)
∞∑
n=1

λ(m,n)

×
∑
|r|<H

(pr−M,c)=1

χ(cr̄) e

Ç
(M − pr)rn

c

å
W ?

1

Å
n

N0
,
rR

cM
,
c

C

ã
,

with

W ?
1 (x, y, z) =

∫
R
W1 (x, u, z) e (−uy) du.
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Proof. Consider the sum over r in the expression in Lemma 7 (only the

‘+’ term). Splitting into congruence classes modulo cM we obtain∑
a mod cM

χ(a)S(p̄a, p̄n; c)e

Ç
− p̄(a+ n)

c

å∑
r∈Z

W1

Ç
n

N0
,
(a+ rcM)

R
,
c

C

å
.

By the Poisson summation formula we now get∑
a mod cM

χ(a)S(p̄a, p̄n; c)e

Ç
− p̄(a+ n)

c

å
×
∑
r∈Z

∫
R
W1

Ç
n

N0
,
(a+ xcM)

R
,
c

C

å
e(−rx)dx.

The change of variables (a+ xcM)/R 7→ y reduces the above sum to

R

cM

∑
r∈Z

{ ∑
a mod cM

χ(a)S(p̄a, p̄n; c)e

Ç
− p̄(a+ n)

c
+

ar

cM

å}
×
∫
R
W1

Å
n

N0
, y,

c

C

ã
e

Å
−rRy
cM

ã
dy.

Since C � N1/2M ε < M , we have (c,M) = 1 (as we are assuming M to

be prime and θ to be small, say θ < 1/4). So the character sum splits into a

product of two character sums∑
α mod M

χ(α)e

Å
αc̄r

M

ã ∑
a mod c

S(p̄a, p̄n; c)e

Ç
− p̄(a+ n)

c
+
aM̄r

c

å
.

Writing the first sum in terms of the Gauss sum and opening the Kloosterman

sum, we get

εχχ(cr̄)
√
M

∑?

b mod c

e

Ç
p̄n(b̄− 1)

c

å ∑
a mod c

e

Ç
p̄a(b− 1)

c
+
aM̄r

c

å
,

where εχ is the sign of the Gauss sum for χ. Next we execute the sum over a

to arrive at

εχχ(cr̄) c
√
M e

(
(1− M̄pr − 1)p̄n

c

)
= εχχ(cr̄) c

√
M e

Ç
(M − pr)rn

c

å
.(12)

In particular, this means that the character sum vanishes unless (pr−M, c) = 1.

Next we consider the integral. By repeated integration by parts we have∫
R
W1

Å
n

N0
, y,

c

C

ã
e

Å
−rRy
cM

ã
dy �j

ñÇ
R

CP
+

√
RN0

CP
+ 1

å
CM

rR

ôj
.

Hence the integral is negligibly small if

|r| �M ε

Ç
M

P
+
M
√
N0

P
√
R

+
CM

R

å
.
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The second term ‘essentially’ dominates the last term as C �
√
N0RM

ε/P .

Hence the tail |r| � H makes a negligible contribution, say of size O(M−2013).

The lemma follows. �

We will conclude this subsection by noting a nontrivial bound for the

Fourier transform W ?
1 for smaller values of r. Using the explicit form of W1 as

given in (11) and the second derivative test for exponential integrals, we get∫
R
W1

Å
n

N0
, y,

c

C

ã
e

Å
−rRy
cM

ã
dx�j

√
CP

(N0R)1/4
.(13)

A more elaborate analysis can be carried out using the stationary phase method.

It turns out that the contribution of the stationary point nullifies the oscilla-

tion coming from the additive character in (12), via the reciprocity relation.

This can be used if one wants a better exponent in the main result.

4.3. Cauchy inequality and second application of Poisson summation. Us-

ing Cauchy’s inequality we get

O?1(m)� RP 2M ε

√
M

√
Λm sup

P<p<2P
p prime

»
Ψp,(14)

where

Λm =
∑

n≤10N/m2

|λ(m,n)|2

and

Ψp =
∞∑
n=1

∣∣∣∣ ∑∑
1≤c<∞
|r|<H

(c,p(pr−M))=1

χ(cr̄) e

Ç
(M − pr)rn

c

å
W ?

1

Å
n

N0
,
rR

cM
,
c

C

ã∣∣∣∣2.
Lemma 9. We have

O?1(m)�
√

Λm N
1/4
0 R3/4P 5/2

»
CH(C +H)M−1/2+ε.

Proof. The lemma will follow once we obtain a satisfactory bound for Ψp.

Consider the expression for Ψp as given above. We open the absolute square

and apply the Poisson summation formula on the sum over n after splitting

the sum into congruence classes modulo cc′. This gives

Ψp = N0

∑∑∑∑
1≤c,c′<∞
|r|,|r′|<H

(c,p(pr−M))=1
(c′,p(pr′−M))=1

∑
n∈Z

(M−pr)c′r−(M−pr′)cr′≡n mod cc′

χ(cr′c′r) U(n, r, r′, c, c′),
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where

U(n, r, r′, c, c′) =

∫
R
W ?

1

Å
x,
rR

cM
,
c

C

ã
W̄ ?

1

Ç
x,
r′R

c′M
,
c′

C

å
e

Å
nN0x

cc′

ã
dx.

By repeated integration by parts we have

U(n, r, r′, c, c′)�j

ñÇ
N0

CP
+

√
RN0

CP
+ 1

å
C2

nN0

ôj
.

Hence the integral is negligibly small if

|n| �M ε

Ç
C

P
+

C
√
R

P
√
N0

+
C2

N0

å
.

Since C �
√
N0RM

ε/P and N0, R � N , we see that the right-hand side is

dominated by O(NM ε/P 2). So if P ≥ N1/2+ε, then the contribution of the

nonzero frequencies n 6= 0 is negligibly small. Hence

Ψp � N0
CP√
N0R

∑∑∑∑
1≤c,c′�C

1≤|r|,|r′|<H
(c,p(pr−M))=1

(c′,p(pr′−M))=1

(M−pr)c′r−(M−pr′)cr′≡0 mod cc′

1 + M−2013.

The factor CP/
√
N0R comes from the size of the weight function (see (13)).

We have reduced the problem to counting the number of solutions of the

above congruence. This we can estimate quite easily. Let d = (c, c′). We write

c = de and c′ = de′, with (e, e′) = 1. The congruence condition now reduces to

(M − pr)e′r − (M − pr′)er′ ≡ 0 mod dee′.

The coprimality (e, e′) = 1 now forces e|r and e′|r′. Accordingly we write

r = es and r′ = e′s′. We are now left with the congruence condition

(M − pe′s′)s− (M − pes)s′ ≡ 0 mod d.

We will first study the case where the equality

(M − pe′s′)s = (M − pes)s′

holds. This reduces to M(s − s′) = pss′(e′ − e). Hence p|s − s′. By size

consideration it now follows that s− s′ = 0. Consequently we also have e′ = e.

So the equality forces c = c′ and r = r′. Hence the contribution from this

equality to the count is given by

M εN0
CP√
N0R

CH.

Next we study the case where (M − pe′s′)s 6= (M − pes)s′. Here for any

given vector (e, e′, s, s′), we have O(M ε) many d. So it turns out that the
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contribution of this part to the count is

M εN0
CP√
N0R

H2.

Hence

Ψp �M εN0
CP√
N0R

H(C +H).

The lemma follows. �

4.4. Conclusion. Substituting the bound from Lemma 9 into Lemma 8,

we see that the bound of Lemma 9 holds for O1(m). The same bound in fact

holds for O(m)−O1(m) as well. Substituting this bound in (10) we conclude

that

O �M−1/2+ε
∑

1≤m�
√
N

sup
√

Λm
»
RH(C +H)

�M−1/2+ε
∑

1≤m�
√
N

√
Λm

Ç
N2M

mP 2
+
NM2

P 2

å1/2

� N5/4M1/2+ε

P
.

The last inequality follows by employing the Cauchy inequality and using (6).

Note that to prove this bound, which is sufficient for the purpose of subcon-

vexity, we required neither of the conditions (R) or (RS). However under (R)

we have Λm �M εN/m2, and consequently it follows that

O �M−1/2+ε
∑

1≤m�
√
N

√
Λm

Ç
N2M

mP 2
+
NM2

P 2

å1/2

� N3/2M ε

P
.

Thus we have proved Proposition 1.

There are several ways in which the above estimate can be improved. For

example we also have

O?1(m)� RM ε

√
M

√
Λm
√

Ψ

where

Ψ =
∞∑
n=1

∣∣∣∣ ∑
P<p<2P
p prime

∑∑
1≤c<∞
|r|<H

(c,p(pr−M))=1

φ(p)χ(cr̄) e

Ç
(M − pr)rn

c

å
W ?

1

Å
n

N0
,
rR

cM
,
c

C

ã∣∣∣∣2.
Now we can obtain a bound for Ψ exactly in the same fashion as Lemma 9. As

the diagonal is now longer, but the modulus is same as before, we save more.

The counting problem turns out to be slightly more involved. This yields the

improved bound

O �
√
N
M5/4+θ/2+ε

P
.

As our analysis of the dual term F is much weaker, this extra saving does not

lead us to an improved exponent at the end.
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5. Functional equations

In the rest of the paper we will analyze F , which is given by (8). We will

first take a smooth dyadic partition of unity to replace the weight function

V (r/N) by a bump function. To this end we apply Lemma 1 to get

F =
1

P ?

∑
P<p<2P
p prime

∑
ψ mod p

(1− ψ(−1))
∑

f∈Hk(p,ψ)

ω−1
f

×
∞∑∑

m,n=1

λ(m,n)λf (n)W

Ç
nm2

N

å ∑
(U,R)

∞∑
r=1

λf (r)χ(r) V

Å
r

N

ã
U

Å
r

R

ã
.

The function

x 7→ U(x)V (xR/N)

belongs to the class W1(1). By abuse of notation we will again denote this

function by V (x). Moreover we only need to take R in the range NM−4θ �
R � N . Next we apply summation formulas to the sums over (m,n) and

r. The summation formulas will be derived from the respective functional

equations. (For the sum over r, one may also use the GL(2) Voronoi summation

formula directly.)

5.1. Functional equation for L(s, f ⊗ χ) and related summation formula.

Let

Λ(s, f̄ ⊗ χ) =

Ç
M
√
p

2π

ås
Γ

Å
s+

k − 1

2

ã
L(s, f̄ ⊗ χ)

be the completed L-function associated with the twisted form f̄ ⊗ χ. Recall

that (M,p) = 1. We have the following functional equation ([7, Chap. 14]).

Lemma 10. We have

Λ(s, f̄ ⊗ χ) = ikψ̄(M)χ(p)
g2
χḡψ

M
√
p
λf (p) Λ(1− s, f ⊗ χ̄),(15)

where gχ and gψ are the Gauss sums associated with χ and ψ respectively.

We will use this functional equation to derive a summation formula for

the sum

S =
∞∑
r=1

λf̄ (r)χ(r)V

Å
r

R

ã
,

where V ∈ W1(1). Let U = {(U, R̃)} be a smooth partition of unity as in

Lemma 1.
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Lemma 11. We have
∞∑
r=1

λf̄ (r)χ(r)V

Å
r

R

ã
= ikψ̄(M)χ(p)g2

χḡψ λf (p)
1

2π

∑
U?

∞∑
r=1

λf (r)χ̄(r)

r
U

Å
r

R̃

ã
× 1

2πi

∫
(0)
Ṽ (s)

Ç
4π2rR

M2p

ås Γ(1− s+ k−1
2 )

Γ(s+ k−1
2 )

ds+O(M−2013),

where U? is the subset of U consisting of those pairs (U, R̃) that have R̃ in the

range

M2−εP

R
� R̃� M2+εP

R
.

Proof. By Mellin inversion we get

S =
1

2πi

∫
(2)
Ṽ (s)RsL(s, f̄ ⊗ χ)ds.

Using (15) we get

S = ikψ̄(M)χ(p)
g2
χḡψ

M
√
p
λf (p)

M
√
p

2π
(16)

× 1

2πi

∫
(2)
Ṽ (s)

Ç
4π2R

M2p

ås Γ(1− s+ k−1
2 )

Γ(s+ k−1
2 )

L(1− s, f ⊗ χ̄)ds.

We move the contour to −ε, expand the L-function into a series and then use

a smooth dyadic partition of unity U , as above, to get

S = ikψ̄(M)χ(p)g2
χḡψ λf (p)

1

2π

∑
U

∞∑
r=1

λf (r)χ̄(r)

r
U

Å
r

R̃

ã
× 1

2πi

∫
(−ε)

Ṽ (s)

Ç
4π2rR

M2p

ås Γ(1− s+ k−1
2 )

Γ(s+ k−1
2 )

ds.

The poles of the integrand are located at

s =
k + 1

2
+ `, where ` = 0, 1, 2, . . . .

For R̃ � M2+εP/R, we shift the contour to the left, and for R̃ � M2−εP/R,

we shift the contour to k/2. Since k is large (of the size ε−1), we see that the

contribution from the above ranges is negligibly small. �

5.2. Functional equation for L(s, π ⊗ f) and related summation formula.

Now we consider the Rankin-Selberg convolution L(s, π ⊗ f), which is given

by the Dirichlet series

∞∑∑
m,n=1

λ(m,n)λf (n)(m2n)−s
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in the region of absolute convergences Re(s) > 1. The L-function extends to

an entire function. The completed L-function is given by

Λ(s, π ⊗ f) = p3s/2γ (s)L(s, π ⊗ f),

where γ(s) is a product of six gamma factors of the type Γ((s + κj)/2). Also

each κj satisfies Re(κj) > k/2 − 2 (see [6]). We have the following functional

equation.

Lemma 12. We have

Λ(s, π ⊗ f) = ι

Ç
ḡψ̄√
p
λf (p)

å3

Λ(1− s, π̃ ⊗ f),(17)

where ι is a root of unity that depends only on the weight k and the Langlands

parameters of π.

The (global) ε-factor in the above functional equation is given by the prod-

uct of the local epsilon factors. For any finite prime q, let ψq be an unramified

additive character of Qq. The local component πq (of π) is an unramified

principal series representation of GL(3,Qq) with trivial central character. In

other words, πq = Ind(φ1, φ2, φ3) with φi unramified character of Q×q and

φ1φ2φ3 = 1. So (see [8])

εq(1/2, π ⊗ f, ψq) =
3∏
i=1

εq(1/2, φi × f, ψq) =
3∏
i=1

{φi(?)εq(1/2, f, ψq)}

= εq(1/2, f, ψq)
3.

Here ? = 1 if q 6= p and ? = p otherwise. Hence the ε-factor for L(s, π⊗ f), up

to the archimedean component (which depends only on the weight of f and the

Langlands parameters of π) turns out to be the cube of the ε-factor for L(s, f).

It is well known (see [7]) that the ε-factor for L(s, f) is given by ḡψ̄λ̄f (p)/
√
p.

Consider the sum (which we will again temporarily denote by S)

S =
∞∑∑

m,n=1

λ(m,n)λf (n)W

Ç
m2n

N

å
,

with W ∈ W1(1). We will prove the following summation formula.
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Lemma 13. We have

∞∑∑
m,n=1

λ(m,n)λf (n)W

Ç
m2n

N

å
= ιψ(−1)g3

ψλf (p)
3∑
U†

∞∑∑
m,n=1

λ(n,m)λf (n)

m2n
U

Ç
m2n

Ñ

å
× 1

2πi

∫
(0)
W̃ (s)

Ç
m2nN

p3

ås
γ(1− s)
γ(s)

ds+O(M−2013),

where U† is the subset of U consisting of those pairs (U, Ñ) that have Ñ in the

range

P 3M−ε

N
� Ñ � P 3M ε

N
.

Proof. By Mellin inversion we get

S =
1

2πi

∫
(2)
W̃ (s)N sL(s, π ⊗ f)ds.

Using functional equation (17) we see that S is given by

ιψ(−1)

Ç
gψ√
p

å3

λf (p)
3
p3/2 1

2πi

∫
(2)
W̃ (s)

Å
N

p3/2

ãs γ(1− s)
γ(s)

L(1− s, π̃ ⊗ f̄)ds.

We move the contour to −ε, expand the L-function into a series and then use

a partition of unity U , as above, to get

ιψ(−1)g3
ψλf (p)

3∑
U

∞∑∑
m,n=1

λ(n,m)λf (n)

m2n
U

Ç
m2n

Ñ

å
× 1

2πi

∫
(−ε)

W̃ (s)

Ç
m2nN

p3

ås
γ(1− s)
γ(s)

ds.

As before, by moving contours we can show that for Ñ outside the range given

in the statement of the lemma, the total contribution is negligible. �

5.3. Application of Petersson formula. We will conclude this section by

proving the following lemma. (Recall our conventions regarding weights from

Section 2.1.)

Lemma 14. Suppose 0 < θ < 1/24 and P > N1/2+ε. Then we have

F �M ε sup |Ored dual|+M3/2+θ+ε

 
P

N
,(18)
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where

Ored dual =
RN

MP 5

∑
P<p<2P
p prime

χ(p)
∑

ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψ

(19)

×
∞∑∑

m,n=1

∞∑
r=1

χ̄(r)λ(n,m)
∞∑
c=1

(c,p)=1

Sψ(np2, r; cp)

cp
Jk−1

Ç
4π
√
nr

c

å
W

Ç
nm2

Ñ

å
W

Å
r

R̃

ã
,

and the supremum is taken over all R, R̃, Ñ in the range

N

M4θ
� R� N,

P 3

NM ε
� Ñ � P 3M ε

N
and

M2P

RM ε
� R̃� M2+εP

R
.(20)

Proof. We apply Lemmas 11 and 13 to (8). This reduces the analyzes of

the sum in (8) to that of sums of the type

RN

MP 5

∑
P<p<2P
p prime

χ(p)
∑

ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψ

∑
f∈Hk(p,ψ)

ω−1
f λf (p)

2

×
∞∑∑

m,n=1

λ(n,m)λf (n)W

Ç
nm2

Ñ

å ∞∑
r=1

χ̄(r)λf (r)W

Å
r

R̃

ã
,

where R, R̃ and Ñ are in the range (20). The leading factor accounts for the

sizes of the denominators appearing on the right-hand side of the summation

formulas in Lemmas 11 and 13 and also the sizes of the Gauss sums associated

with χ and ψ.

We apply the Petersson formula. The diagonal term vanishes as the equal-

ity r = np2 never holds in the above range, as

r � R̃�M εM
2+4θP

N
�M1/2+5θ+εP � P 2M−ε � p2M−ε.

The fourth inequality follows from the condition on θ and P . The off-diagonal

is given by

Odual =
RN

MP 5

∑
P<p<2P
p prime

χ(p)
∑

ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψ

(21)

×
∞∑∑

m,n=1

∞∑
r=1

χ̄(r)λ(n,m)
∞∑
c=1

Sψ(np2, r; cp)

cp
Jk−1

Ç
4π
√
nr

c

å
W

Ç
nm2

Ñ

å
W

Å
r

R̃

ã
.

Since the weight k is large, the contribution of the tail c >
»
R̃Ñ0M

ε is neg-

ligible. Here we are setting Ñ0 = Ñ/m2. It follows that the terms where p2|c
make a negligible contribution.
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Now let us consider the case where p‖c. We write c = pc′. In this case the

Kloosterman sum splits as

Sψ(np2, r; cp) = Sψ(0, c′r; p2)S(n, p̄2r; c′).

The first term on the right-hand side vanishes unless p|r, and accordingly we

write r = pr′. It follows that∑
ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψSψ(0, c′r; p2)

= p2
∑

ψ mod p

(1− ψ(−1))ψ(Mc′r′)gψ

= p2φ(p)

®
e

Ç
Mc′r′

p

å
− e
Ç
−Mc′r′

p

å´
.

So the contribution of those c for which p‖c is dominated by

RNM ε

MP 4

∑
P<p<2P
p prime

∑∑
nm2�Ñ

∑
r�R̃/P

|λ(n,m)|
∑

c�
√
R̃Ñ0Mε/P

1√
c
.

Trivially estimating the remaining sums (using (R)), we get that the above

sum is dominated by

O

Ç
RNM ε

MP 4

√
MP

(RN)1/4
R̃Ñ

å
= O

Ç √
MP

(RN)1/4
M1+ε

å
.

(One may avoid (R) by employing the Cauchy inequality and applying (6).)

We conclude that

Odual = Ored dual +O

(
M3/2+θ+ε

 
P

N

)
,

where the reduced dual off-diagonal Ored dual is given by an expression similar

to (21) but with the extra coprimality restriction (c, p) = 1. �

Observe that we have used the Weil bound for the Kloosterman sum mod-

ulo c. One may avoid the application of the Weil bound by employing the

Voronoi summation formula on the n-sum and then evaluating the remaining

sums trivially.

6. Dual off-diagonal away from transition

It remains to study (19). We will take a smooth dyadic subdivision of

the c-sum in Ored dual. In this section we will show that the contribution of

any such subdivision that is away from the transition range, which is marked

by C ∼
»
Ñ0R̃, is satisfactory. For larger values of C, the trivial estimation

suffices as the size of the Bessel function is small due to the large weight k.
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We will see that for smaller size of C, one can get away with a relatively easy

estimate.

6.1. Sum over ψ. We fix C,m ≥ 1 and consider sums of the type

O±(C,m) =
RN

MP 5

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑
n=1

∞∑
r=1

(r,p)=1

χ̄(r)λ(n,m)

(22)

×
∞∑
c=1

(c,p)=1

S(n, r; c)

c
e

Å
±Mcr

p

ã
Jk−1

Ç
4π
√
nr

c

å
W

Ç
nm2

Ñ

å
W

Å
r

R̃

ã
W

Å
c

C

ã
.

For notational simplicity we are using the same notation W for the new smooth

weight function on the c sum.

Lemma 15. We have

Ored dual �M ε
10
√
Ñ∑

m=1

sup |O±(C,m)|+M−2013,

where the supremum is taken over all C �M ε
»
Ñ0R̃.

Proof. The Kloosterman sum in (19) factorizes as

Sψ(np2, r; cp) = Sψ(0, cr; p)S(p̄np2, p̄r; c) = Sψ(0, cr; p)S(n, r; c).

Moreover we have∑
ψ mod p

(1− ψ(−1)) ψ̄(−M)g2
ψSψ(0, cr; p) = p

∑
ψ mod p

(1− ψ(−1))ψ(Mcr)gψ

= pφ(p)

ß
e

Å
Mcr

p

ã
− e
Å
−Mcr

p

ã™
.

(The sum vanishes unless (r, p) = 1.) The lemma follows by taking a smooth

dyadic subdivision of the c sum. �

Observe the curious separation of the variables n and p, which is a con-

sequence of the fact that we are studying a GL(d1) × GL(d2) Rankin-Selberg

convolution with d1 − d2 = 2. (In our case d1 = 3 and d2 = 1.) This inbuilt

separation of variables will play an important structural role in our analysis of

Odual.

We set O(C,m) = O+(C,m), and in the rest of the paper we will only

deal with this sum. The other sum with − sign behaves exactly in the same
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fashion. Taking absolute values we get

|O(C,m)| � RN

CMP 5

∑
r∈Z

∑
C<c≤2C

W

Å
r

R̃

ã ∣∣∣∣ ∑
P<p<2P
p prime
(cr,p)=1

φ(p)χ(p)e

Å
Mcr

p

ã∣∣∣∣
×
∣∣∣∣ ∞∑
n=1

λ(n,m)S(n, r; c)Jk−1

Ç
4π
√
nr

c

å
W

Ç
nm2

Ñ

å∣∣∣∣.
This is the point where we use the separation of the variables noted above.

Now applying the Cauchy inequality (and exploiting positivity) we get

O(C,m)� RN

CMP 5

√
Θ1

√
Θ2,(23)

where

Θ1 =
∑∑
c,r∈Z

U

Å
c

C
,
r

R̃

ã∣∣∣∣ ∑
P<p<2P
p prime
(cr,p)=1

φ(p)χ(p)e

Å
Mcr

p

ã∣∣∣∣2(24)

and

Θ2 =
∑
r∈Z

∑
C<c≤2C

W

Å
r

R̃

ã∣∣∣∣ ∑
1≤n<2Ñ

α(n)S(n, r; c)Jk−1

Ç
4π
√
nr

c

å∣∣∣∣2.(25)

Here

α(n) = λ(n,m)W

Ç
nm2

Ñ

å
,

and U is a suitable compactly supported weight function on (0,∞)2.

6.2. Bound for Θ1. We will consider a slightly general sum

Θ?
1 =

∑∑
c,r∈Z

U

Å
c

C
,
r

R̃

ã∣∣∣∣ ∑
P<p<2P
p prime
(cr,p)=1

β(p)e

Å
Mcr

p

ã∣∣∣∣2,
with |β(p)| ≤ p. Taking β(p) = φ(p)χ(p), the above sum Θ?

1 reduces to Θ1.

Lemma 16. Suppose P >
√
N . Then we have

Θ?
1 � P 3R̃(C + P )M ε.(26)

Proof. Opening the absolute square we arrive at∑∑
P<p,p′<2P
p,p′ prime

β(p)β(p′)
∑∑
c,r∈Z

(cr,pp′)=1

e

Å
Mcr

p
− Mcr

p′

ã
U

Å
c

C
,
r

R̃

ã
.

The diagonal p = p′ contribution is dominated by P 3CR̃. Also the coprimality

condition (c, pp′) = 1 can be removed at a cost of an error term of size P 3CR̃,
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which is dominated by the diagonal contribution. We will now apply the

Poisson summation formula on the off-diagonal. Breaking into congruence

classes modulo pp′, we arrive at∑∑
P<p,p′<2P
p 6=p′ prime

β(p)β(p′)
∑∑

γ,ρ mod pp′

(ρ,pp′)=1

e

Å
Mγρ

p
− Mγρ

p′

ã
×
∑∑
c,r∈Z

U

Ç
γ + cpp′

C
,
ρ+ rpp′

R̃

å
.

Then by the Poisson summation (and standard rescaling) we get

CR̃
∑∑

P<p,p′<2P
p 6=p′ prime

β(p)β(p′)

(pp′)2

∑∑
c,r∈Z

∑∑
γ,ρ mod pp′

(ρ,pp′)=1

e

Å
Mγρ

p
− Mγρ

p′
+
cγ + rρ

pp′

ã
×
∫
R2
U (x, y) e

Ç
−Cc
pp′

x− R̃r

pp′
y

å
dxdy.

The complete character sum over γ now yields the relation

Mρ̄(p′ − p) + c ≡ 0 mod pp′.

Hence the above sum reduces to

CR̃
∑∑

P<p,p′<2P
p 6=p′ prime

β(p)β(p′)

pp′

∑∑
c,r∈Z

(c,pp′)=1

e

Ç
− c̄rM(p′ − p)

pp′

å
(27)

×
∫
R2
U (x, y) e

Ç
−Cc
pp′

x− R̃r

pp′
y

å
dxdy.

The integral is negligibly small if |r| � P 2M ε/R̃ or if |c| � P 2M ε/C.

Let V (x) be a smooth bump function with support contained in [−10, 10]

and such that V (j) �j 1. Set R? = P 2M ε/R̃, take 1 ≤ c � P 2M ε/C with

(c, pp′) = 1 and consider the sum

∑
r∈Z

e

Ç
− c̄rM(p′ − p)

pp′

å
e

Ç
− R̃r
pp′

y

å
V

Å
r

R?

ã
.

Here y is a fixed positive number. (The negative values of c are treated in the

same fashion.) Applying reciprocity we reduce the above sum to

∑
r∈Z

e

Ç
p̄p̄′rM(p′ − p)

c

å
e

Ç
−rM(p′ − p)

cpp′
− R̃r

pp′
y

å
V

Å
r

R?

ã
.
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We break the sum into congruence classes modulo c and then apply the Poisson

summation formula. This gives (after standard rescaling)

R?

c

∑
r∈Z

∑
ρ mod c

e

Ç
p̄p̄′M(p′ − p)ρ+ rρ

c

å
×
∫
R
V (z)e

Ç
−R

?M(p′ − p)
cpp′

z − R̃R?y

pp′
z

å
e

Å
−R

?r

c
z

ã
dz,

which reduces to

R?
∑
r∈Z

c|rpp′+M(p′−p)

∫
R
V (z)e

Ç
−R

?M(p′ − p)
cpp′

z − R̃R?y

pp′
z

å
e

Å
−R

?r

c
z

ã
dz.

By repeated integration by parts we see that the integral is bounded by

�j

ÇÅ
1 +

MP

cR̃

ã
cM ε

R?|r|

åj
�j

ÇÅ
c

R?
+
MP

R̃R?

ã
M ε

|r|

åj
�j

ÇÇ
R̃

C
+
M

P

å
M ε

|r|

åj
.

Hence the integral is negligibly small if

|r| �M ε

Ç
R̃

C
+
M

P

å
.

It follows that (27) is dominated by

CR̃R?
∑∑

P<p,p′<2P
p 6=p′ prime

∑
|c|�P 2Mε/C

∑
|r|�Mε( R̃

C
+M
P

)

c|rpp′+M(p′−p)

1 +M−2013.

Since rpp′ +M(p′ − p) never vanishes, the sum is seen to be bounded by

M1+εCPR̃R? +M εP 2R̃2R? �M1+εCP 3 +M εP 4R̃.

Since P >
√
N and θ is sufficiently small, we find that R̃ > M . So the first

term is dominated by the diagonal contribution. The lemma follows. �

6.3. Bound for Θ2. In this subsection we prove the following bound for

Θ2. To this end we will use the Ramanujan conjecture (R), which implies that

|α(n)| �M ε.

Lemma 17. For P < M1−ε and θ sufficiently small, we have

Θ2 � C2R̃Ñ0M
ε.
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Proof. Opening the absolute square in the sum (25) we arrive at

Θ2 =
∑

C<c≤2C

∑∑
1≤n,n′<2Ñ0

α(n)ᾱ(n′)
∑
r∈Z

S(n, r; c)S(n′, r; c)(28)

× Jk−1

Ç
4π
√
nr

c

å
Jk−1

Ç
4π
√
n′r

c

å
W

Å
r

R̃

ã
.

We only need to consider the case where C � M ε
√
R̃Ñ/m, as the Bessel

function is negligibly small otherwise due to the large weight. For C in this

range, we apply the Poisson summation formula on r with modulus c. Now

the Fourier transform∫
R
Jk−1

(
4π
√
nR̃

c
x

)
Jk−1

(
4π
√
n′R̃

c
x

)
W (x) e

Ç
−R̃r
c
x

å
dx

is bounded by

�j

[(
1 +

√
R̃Ñ

mC

)
C

R̃r

]j
by repeated integration by parts j times. Since C � M ε

√
R̃Ñ/m, it follows

that the integral is negligibly small if

|r| �

√
Ñ

R̃

M ε

m
.

Since we are going to choose P < M1−ε, we have R̃ � ÑM ε, and hence the

nonzero frequencies r 6= 0 make a negligible contribution. The main contribu-

tion comes from the zero frequency that is given by

R̃
∑

C<c≤2C

1

c

∑∑
1≤n,n′<2Ñ0

α(n)ᾱ(n′)
∑

a mod c

S(n, a; c)S(n′, a; c)

×
∫
R
Jk−1

(
4π
√
nR̃x

c

)
Jk−1

(
4π
√
n′R̃x

c

)
W (x) dx.

The integral is bounded by∫
R
Jk−1

(
4π
√
nR̃x

c

)
Jk−1

(
4π
√
n′R̃x

c

)
W (x) dx� C√

R̃(nn′)1/4
.

The character sum is given by∑
a mod c

S(n, a; c)S(n′, a; c) = c cc(n− n′),

where cu(v) is the Ramanujan sum modulo u. We obtain the bound

Θ2 � C
»
R̃

∑
C<c≤2C

∑∑
1≤n,n′<2Ñ0

|α(n)||α(n′)|
(nn′)1/4

|cc(n− n′)|.
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The Ramanujan sum can be bounded by the greatest common divisor, i.e.,

cc(n− n′)� (c, n− n′). Consequently

∑
c∼C
|cc(n− n′)| �

CM ε if n 6= n′,

C2M ε otherwise.

So it follows (using (R)) that

Θ2 � C
»
R̃M ε

C2
∑

n∼Ñ/m2

1

n1/2
+ C

Ö ∑
n∼Ñ/m2

1

n1/4

è2
� C2

»
R̃Ñ0

¶
C + Ñ0

©
M ε.

Since by our choice P < M , it follows that C + Ñ0 �
»
R̃Ñ0M

ε, and we

conclude the lemma. �

6.4. Estimate for O(C,m) for C away from transition range. Recall that

we have already noted that the Bessel function in (22) is negligibly small,

because of the large weight k, if C �
»
R̃Ñ0M

ε. So we need to analyze, for

any given m, the contribution of C in the range C �
»
R̃Ñ0M

ε.

Lemma 18. For N1/2+ε < P < M1−ε and θ sufficiently small, we have∑
m>M4θ

sup |O(C,m)| �
√
NM3/4−θ/2+ε,

where the supremum is taken over all C �M ε
»
R̃Ñ0. Also we have

10
√
Ñ∑

m=1

sup
C<P 2/M1/2+θ

|O(C,m)| �
√
NM3/4−θ/2+ε.

Proof. Plugging the bounds for Θi from Lemmas 16 and 17 into (23), we

conclude

O(C,m)� RNM ε

CMP 5

»
P 3(C + P )R̃

»
C2R̃Ñ0 �M ε

Ç
M
√
NC

mP
+
M
√
N

m
√
P

å
.

(29)

In the range C �M ε
»
R̃Ñ0, we get

M
√
NC

mP
�M εM

√
N

mP
(R̃Ñ0)1/4 �

√
N
M3/4+3θ/2+ε

m3/2
.

Summing over m we now conclude the first statement. The second statement

also follows from (29). The lemma follows. (To manage the last term in (29)

one only needs θ < 1/6.) �
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Substituting the bound from Lemma 18 into Lemma 15, we derive the

following corollary.

Corollary 1. For N1/2+ε < P < M1−ε and θ sufficiently small, we

have

Ored dual �M ε
∑

m≤M4θ

sup |O(C,m)|+
√
NM3/4−θ/2+ε,

where the supremum is taken over all C in the range

P 2

M1/2

1

M θ
< C <

P 2M1+ε

m
√
NR

� P 2

mM1/2
M3θ+ε.(30)

Later we will be applying Poisson summation on the sum over c. To this

end we wish to get rid of the coprimality condition (c, p) = 1 in (22). Consider

the sum in (22) but with the condition p|c in place of (c, p) = 1, i.e.,

O†(C,m) =
RN

MP 5

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑
n=1

∞∑
r=1

(p,r)=1

χ̄(r)λ(n,m)(31)

×
∞∑
c=1

S(n, r; cp)

cp
Jk−1

Ç
4π
√
nr

cp

å
W

Ç
nm2

Ñ

å
W

Å
r

R̃

ã
W

Å
cp

C

ã
.

We set

O?(C,m) = O(C,m) +O†(C,m),

which is exactly the sum in (22) (for a + sign) without the coprimality (c, p) = 1

condition.

Corollary 2. For N1/2+ε < P < M1−ε and θ sufficiently small, we

have

Ored dual �M ε
∑

m≤M4θ

sup |O?(C,m)|+
√
NM3/4−θ/2+ε,

where the supremum is taken over all C in the range (30).

Proof. We need to show that the term O† can be absorbed in the error

term in Corollary 1. Taking absolute value we get

O†(C,m) ≤ RN

CMP 4

∑
P<p<2P
p prime

∑
r∼R̃

∑
c∼C/p

×
∣∣∣∣ ∞∑
n=1

λ(n,m)S(n, r; cp)Jk−1

Ç
4π
√
nr

cp

å
W

Ç
nm2

Ñ

å∣∣∣∣.
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Using positivity we glue c and p to arrive at

O†(C,m)�M ε RN

CMP 4

∑
r∼R̃

∑
C<c≤4C

×
∣∣∣∣ ∞∑
n=1

λ(n,m)S(n, r; c)Jk−1

Ç
4π
√
nr

c

å
W

Ç
nm2

Ñ

å∣∣∣∣.
Applying Cauchy inequality we get

O†(C,m)�M ε RN

CMP 4

»
CR̃

√
Θ2 �M ε RN

CMP 5

»
P 2CR̃

√
Θ2.

This can be absorbed in the bound given in Lemma 18 or in Corollary 1. �

7. Wild dual off-diagonal in transition

In the rest of the paper we will analyze the contribution of those C that

lie in the range (30) for any given m ≤M4θ. The Voronoi summation formula

now comes into play, and we will be using it more than once. As such the

notation starts to become a little messy. At this point we abandon keeping

track of the exponent and use the notation

M? to mean a power of M θ

(e.g., m�M?), which will vary from one occurrence to other.

We consider the sum

O?(C,m) =
RN

CMP 5

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑∑

c,r=1
(p,r)=1

χ̄(r)(32)

×
∞∑
n=1

λ(n,m)S(n, r; c)e

Å
Mcr

p

ã
W

Ç
c

C
,
n

Ñ0

,
r

R̃

å
,

where

W (x, y, z) = Jk−1

Ñ
4π
»
Ñ0R̃yz

Cx

é
x−1W (x)W (y)W (z) .

The single variable function W on the right-hand side is as given in (22). In

particular, W (x, y, z) ∈ W3(M θ̂) where θ̂ = 4θ. Moreover the weightW (x, y, z)

is independent of p.

7.1. Voronoi summation formula. The next step involves an application

of the Voronoi summation formula (see [11, Th. 1.18] or [9, Prop. 2.1]) on the

sum over n. Let

W̃ (x, s, z) =

∫ ∞
0

W (x, y, z) ys−1dy,
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and for ` = 0, 1, define

γ`(s) =
1

2π3(s+ 1
2

)

3∏
i=1

Γ
Ä

1+s+αi+`
2

ä
Γ
Ä−s−αi+`

2

ä(33)

and set γ±(s) = γ0(s)∓ iγ1(s). We define the integral transforms

W ?
±(x, y, z) =

1

2πi

∫
(σ)
y−sγ±(s)W̃ (x,−s, z)ds,(34)

where σ > −1 + max{−Re(α1),−Re(α2),−Re(α3)}. The following lemma

gives the Voronoi summation formula.

Lemma 19. For W and W ?
± as above, we have

∞∑
n=1

λ(m,n) e

Å
αn

c

ã
W

Ç
c

C
,
n

Ñ0

,
r

R̃

å
= c

∑
±

∑
m′|cm

∞∑
n=1

λ(n,m′)

m′n
S(mᾱ,±n;mc/m′)W ?

±

Ç
c

C
,
m′2nÑ0

c3m
,
r

R̃

å
.

Since the function W (x, y, z) is smooth and supported in [1, 2]3, the Mellin

transform W̃ (x, s, z) is entire in the s variable. Using the bounds for the

derivatives of W and using integration by parts, we get

W̃ (x, s, z)�j
M θ̂j

|s(s+ 1) . . . (s+ j − 1)|
.

We can now obtain a bound for the integral transform in (34) by shifting the

contour to the right and using the Stirling approximation. It follows that

W ?
±(x, y, z) is negligibly small if y �M3θ̂+ε. For 0 < y �M3θ̂+ε we shift the

contour to the left up to σ = −1 +ε. Since we are assuming (RS), there are no

poles of the gamma factor in this domain. Differentiating under the integral

sign we get

yj
∂j

∂yj
W ?
±(x, y, z)�M θ̂(j−1/2)+ε y(35)

for j ≥ 1. Also W ?
±(x, y, z) � M εy. It is crucial to assume the (RS) to get

tight bounds for W ?
±(x, y, z) for small values of y. This plays an important

role in our derivation of Lemma 23 below. (The −1/2 in (35) comes from

applying the Stirling’s approximation to the gamma functions in (33) at the

line σ = −1 + ε. The size of the gamma functions partly compensates the loss

of powers of s when we differentiate (34) under the integral sign.)

Next we will apply the Voronoi summation to establish the following.

Lemma 20. We have

O?(C,m)�M ε sup |O(C,m;L,m′, d)|,
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where

O(C,m;L,m′, d) =
RN

CMP 5

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑
r=1

(p,r)=1

χ̄(r)
∞∑
c=1

e

Å
Mcr

p

ã(36)

×Ñ0

c

∑
m′|cm
m′∼m′

m′

m

∑
d|c
d∼d

µ(d)

d

∑?

β mod mc/m′

r+βm′≡0 mod c/d

∞∑
n=1

λ(m′, n)e

Ç
β̄n

mc/m′

å
V

Å
c

C
,
n

L
,
r

R̃

ã
.

Here the smooth weight function V belongs to the class W3(M θ̂). The supre-

mum is taken over all triplets (L,m′, d) satisfying

1 ≤ L� C3M?

m′2Ñ
,(37)

m′ � Cm and d� C .

Proof. We apply Lemma 19 to the sum over n in (32) after opening the

Kloosterman sum. (More precisely, one applies the Voronoi summation for-

mula for the dual form π̃. The (m,n)-th Fourier coefficient of π̃ is given by

λπ̃(m,n) = λ(n,m). The Langlands parameters are given by (−α3,−α2,−α1).)

As we observed above, the tail m′2n� C3m3M3θ̂+ε/Ñ makes a negligible con-

tribution as the integral transform is negligibly small. For smaller values of

m′2n, we take a smooth dyadic subdivision of the n-sum, and a dyadic sub-

division of the sum over m′ to arrive at (consider only the term with a +

sign)

Ñ0

c2

∑
m′|cm
m′∼m′

m′

m

∞∑
n=1

λ(m′, n)S(mᾱ, n;mc/m′)V

Å
c

C
,
n

L
,
r

R̃

ã
.(38)

Here L needs to be taken in the range

1 ≤ L� L? =
C3m3M3θ̂+ε

m′2Ñ
,

which in our short-hand notation boils down to (37). Also V (x, y, z) is of the

shape

(yL/L?)−1W ?
+(x, yL/L?, z)U(y),

where U ∈ W1(1) comes from the partition of unity. From (35) it follows that

V (x, y, z) ∈ W3(M θ̂).

We have applied the Voronoi summation after opening the Kloosterman

sum in the initial expression (32). So we eventually get the Fourier transform
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of the Kloosterman sum in (38), which is given by∑?

α mod c

e

Å
ᾱr

c

ã
S(mᾱ, n;mc/m′)

=
∑?

β mod mc/m′

e

Ç
β̄n

mc/m′

å ∑?

α mod c

e

Ç
ᾱ(r + βm′)

c

å
.

The last sum is a Ramanujan sum. Substituting explicit formula for this sum

we obtain

c
∑
d|c

µ(d)

d

∑?

β mod mc/m′

r+βm′≡0 mod c/d

e

Ç
β̄n

mc/m′

å
.

The lemma follows. �

Note that the function V , which appears in Lemma 20, involves the (la-

tent) variables m and m′ but does not depend on p.

7.2. Repeating Voronoi summation. In the rest of this section we will ob-

tain a bound for (36), which will be satisfactory for our purpose when either

m′ or d is suitably large. We call these terms ‘wild.’ Consider the expression

in the second line of (36). Suppose we again apply the Voronoi summation

formula on the sum over n. (This is the standard reversal process to get rid of

the ‘wild’ terms.) Then we arrive at

Ñ0

∑
d|c
d∼d

µ(d)

d

∑
±

∑
m′,m′′|cm
m′∼m′

∞∑
n=1

λ(n,m′′)

m′′n
(39)

×
∑?

β mod mc/m′

r+βm′≡0 mod c/d

S(m′β,±n;mc/m′′) V ?
±

Ç
c

C
,
m′2m′′2nL

m3c3
,
r

R̃

å
.

The integral transform is negligibly small if

n > N =
C3M?

(m′m′′)2L
.(40)

Let us consider only the + term. We set

Θ3(m′, d) = sup
u

∑
C<c<2C

∑
d|c
d∼d

1

d

∑
m′,m′′|cm
m′∼m′

∑
r∈Z

W

Å
r

R̃

ã
(41)

×
∣∣∣∣∑
n≤N

λ(n,m′′)

m′′n

∑?

β mod mc/m′

r+βm′≡0 mod c/d

S(m′β, n;mc/m′′)Ṽ ?
+

Ç
c

C
,
m′2m′′2nL

m3c3
, iu

å∣∣∣∣2.
Here the supremum is taken over the range |u| �M θ̂+ε and W is a nonnegative

compactly supported smooth function on (0,∞) with W (x) = 1 for x ∈ [1, 2].
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Also Ṽ ?
+(x, y, s) is the Mellin transform of V ?

+(x, y, z) in the z variable. The

contribution of the + term to (36) will be denoted by O+(C,m;L,m′, d).

Lemma 21. We have

O+(C,m;L,m′, d)�M θ̂+ε RNÑ

m2CMP 5
d−1/2

»
P 3CR̃

»
Θ3(m′, d).(42)

Proof. Substituting the expression in (39) (only the term with the + sign)

in the second line of (36) we get

RNÑ

m2CMP 5

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑
c=1

∞∑
r=1

(p,r)=1

χ̄(r)e

Å
Mcr

p

ã∑
d|c
d∼d

µ(d)

d

∑
m′,m′′|cm
m′∼m′∑

n≤N

λ(n,m′′)

m′′n

∑?

β mod mc/m′

r+βm′≡0 mod c/d

S(m′β, n;mc/m′′) V ?
+

Ç
c

C
,
m′2m′′2nL

m3c3
,
r

R̃

å
.

Here the sum over n is truncated at N at a cost of a negligible error term.

Taking inverse Mellin transform to free the variable r from the weight function

and then taking absolute values, we bound the above sum by

RNÑ

m2CMP 5

∫ M θ̂+ε

−M θ̂+ε

∑
C<c<2C

∑
d|c
d∼d

1

d

∑
m′,m′′|cm
m′∼m′

∑
R̃<r<2R̃

∣∣∣∣ ∑
P<p<2P
p prime
(p,r)=1

φ(p)χ(p)e

Å
Mcr

p

ã∣∣∣∣
×
∣∣∣∣∑
n≤N

λ(n,m′′)

m′′n

∑?

β mod mc/m′

r+βm′≡0 mod c/d

S(m′β, n;mc/m′′)Ṽ ?
+

Ç
c

C
,
m′2m′′2nL

m3c3
, iu

å∣∣∣∣du.
Recall that the weight function V ?

+ does not depend on p.

Applying the Cauchy inequality we get that the above sum is dominated

by

M θ̂+ε RNÑ

m2CMP 5
d−1/2

√
Θ1

»
Θ3(m′, d),

where Θ1 is as given in (24). Using (26) the lemma follows. �

We have considered only the + term from (39). The contribution of the

− term can be analyzed in a similar fashion. The bound that we obtain is not

sensitive to this sign.

7.3. Bound for Θ3. Now we consider Θ3 = Θ3(m′, d). We will see that

the estimation of this sum is related with that of the character sum

C0 =
∑? ∑?

β,β′ mod mc/m′

βm′≡β′m′ mod c/d

S(m′β, n;mc/m′′)S(m′β′, n′;mc/m′′).
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We first prove the following estimate.

Lemma 22. We have

C0 �
cmm′′

m′

(
(cm/m′′, n) + (cm/m′′, n′)

)
(cm/m′′, n− n′).(43)

Proof. Let p be a prime with vp(c) = γ, vp(d) = δ, vp(m) = µ, vp(m
′) = µ′

and vp(m
′′) = µ′′. We consider the character sum∑? ∑?

β,β′ mod pγ+µ−µ
′

βpµ
′≡β′pµ′ mod pγ−δ

S(pµ
′
βa, nb; pγ+µ−µ′′)S(pµ

′
β′a, n′b; pγ+µ−µ′′),

where p - ab. If µ′ ≥ γ − δ, then the sum splits into a product of two sums∑?

β mod pγ+µ−µ
′
S(pµ

′
βa, nb; pγ+µ−µ′′)

∑?

β′ mod pγ+µ−µ
′
S(pµ

′
β′a, n′b; pγ+µ−µ′′),

which can be written as a product of Ramanujan sums

cpγ+µ−µ′′ (n)cpγ+µ−µ′′ (n
′)c2

pγ+µ−µ′
(pµ

′′
)

≤ (pγ+µ−µ′′ , n)(pγ+µ−µ′′ , n′)(pγ+µ−µ′ , pµ
′′
)2.

The last term can be bounded by

pγ+µ−µ′+µ′′
(
(pγ+µ−µ′′ , n) + (pγ+µ−µ′′ , n′)

)
(pγ+µ−µ′′ , n− n′).

On the other hand, if µ′ < γ − δ, then we have congruence restriction

β ≡ β′ mod pγ−δ−µ
′
, and the above sum boils down to∑?

β mod pγ−δ−µ′

∑
β1 mod pµ+δ

S
(
pµ
′
(β + β1p

γ−δ−µ′)a, nb; pγ+µ−µ′′
)

×
∑

β′1 mod pµ+δ

S
(
pµ
′
(β + β′1p

γ−δ−µ′)a, n′b; pγ+µ−µ′′
)
.

Opening the Kloosterman sums we observe that the sums over β1 and β′1
vanishes unless µ′′ = µ + δ. In this case we also need pµ

′ |n and n′, otherwise

the average of the Kloosterman sum vanishes. Set n = pµ
′
ñ and n′ = pµ

′
ñ′.

The character sum now reduces to

p2(µ+δ)
∑?

β mod pγ−δ−µ′
S
(
βa, ñb; pγ−δ−µ

′)
S
(
βa, ñ′b; pγ−δ−µ

′)
.

As p - ab, we can change variables to arrive at

p2(µ+δ)
∑?

β mod pγ−δ−µ′
S
(
β, ñ; pγ−δ−µ

′)
S
(
β, ñ′; pγ−δ−µ

′)
,
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which is given by

pγ+2µ+δ−µ′cpγ−δ−µ′ (ñ− ñ
′)− pγ+2µ+δ−µ′−1cpγ−δ−µ′−1

Ç
ñ

p
− ñ′

p

å
.

This is bounded by

pγ+µ−µ′+µ′′(pγ+µ−µ′′ , n− n′).

With this we conclude the lemma. �

Next we will use the above bound for the character sum C0 to obtain a

bound for Θ3.

Lemma 23. We have

Θ3 �
M?R̃

m′

Ç
C2

Ñ
+ C

å
.

Proof. Consider the expression (41). Opening the absolute square we

perform Poisson summation on the r sum with modulus c/d. We get

Θ3 = sup
u

R̃
∑

C<c<2C

1

c

∑
d|c
d∼d

∑
m′,m′′|cm
m′∼m′

(44)

×
∑∑
n,n′≤N

λ(n,m′′)

m′′n

λ(n′,m′′)

m′′n′
Ṽ ?

+(· · · ) ¯̃V ?
+(· · · )

∑
r∈Z

I C,

where the character sum is given by

C =
∑? ∑?

β,β′ mod mc/m′

βm′≡β′m′ mod c/d

S(m′β, n;mc/m′′)S(m′β′, n′;mc/m′′)e

Ç
−rβm

′

c/d

å
and the integral is given by

I =

∫
R
W (z)e

Ç
−zR̃r
c/d

å
dz.

By repeated integration by parts it follows that the integral is negligibly small

if

|r| � CM ε

dR̃
.

Given the restriction on the sizes of C and R̃, we see that the nonzero frequen-

cies r 6= 0 make a negligible contribution. For r = 0, we use the trivial bound

for the integral I� 1.
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From (43) it follows that

Θ3 � sup
u

R̃
∑

C<c<2C

1

c

∑
d|c
d∼d

×
∑

m′,m′′|cm
m′∼m′

∑∑
n,n′≤N

|λ(n,m′′)|
m′′n

|λ(n′,m′′)|
m′′n′

|Ṽ ?
+(· · · )||Ṽ ?

+(· · · )|

× cmm′′

m′
(cm/m′′, n)(cm/m′′, n− n′) +M−2013.

Here it is not clear whether one can estimate this sum without taking a point-

wise bound for the Fourier coefficients. Direct application of the Cauchy in-

equality is not helpful as the function (u, v)→ gcd(u, v) has a large dispersion.

Using (R) and (RS) we get

(45)
λ(n,m′′)

m′′n

λ(n′,m′′)

m′′n′
Ṽ ?

+(· · · ) ¯̃V ?
+(· · · )� 1

nn′m′′2
m′2m′′2nL

m3c3

m′2m′′2n′L

m3c3
M ε.

Substituting this in the above expression, we get

Θ3�M εR̃
∑

C<c<2C

∑
d|c

∑
m′,m′′|cm
m′∼m′

m′4m′′3L2

c6m6

m

m′

∑∑
1≤n,n′≤N

(cm/m′′, n)(c/m′′, n−n′).

Next we sum over n and n′. The contribution from the diagonal n = n′

is dominated by cN/m′′, and the off-diagonal is dominated by N2. Hence

Θ3 �
M?R̃L2

m′

∑
C<c<2C

∑
d|c

∑
m′,m′′|cm
m′∼m′

m′4m′′3

(cm)6

Å
c

m′′
N + N2

ã
.

Substituting the size of N from (40), we get

Θ3 �
M?R̃L2

m′

∑
C<c<2C

∑
d|c

∑
m′,m′′|cm
m′∼m′

m′4m′′3

c6

Ç
C4

m′2m′′3L
+

C6

(m′m′′)4L2

å
.

Now applying the upper bound for L from (37) we arrive at

Θ3 �
M?R̃

m′

∑
C<c<2C

∑
m′,m′′|cm
m′∼m′

m′4m′′3

c6

Ç
C4

m′2m′′3
C3

m′2Ñ
+

C6

(m′m′′)4

å
.

Trivially estimating the remaining sums, the lemma follows. �

7.4. Conclusion. The following lemma summarizes the main content of

this section.

Lemma 24. Suppose N1/2+ε < P < M1−ε and m′d ≥ M? (which is a

suitable large power of M θ). Then we have

O(C,m;L,m′, d)�
√
NM3/4−10θ+ε.
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Remark 3. By keeping track of the powers of M θ in the above calculations

one can show that the above statement holds for m′d ≥M40θ.

Proof. Substituting the bound for Θ3 (Lemma 23) in (42) we get

O+(C,m;L,m′, d)�M ε RNÑ

CMP 5
d−1/2

»
P 3CR̃

Ã
M?R̃

m′

Ç
C2

Ñ
+ C

å
� M?

√
m′d

RN
√
R̃Ñ

MP 5

»
P 3R̃(C + Ñ)� M?

√
m′d

M3/2
Å
N

R

ã1/4

.

The lemma follows as the same bound holds for the ‘−’ term as well. �

Combining the above lemma with Lemma 20 we draw the following con-

clusion.

Corollary 3. We have

O?(C,m)�M ε sup |O(C,m;L,m′, d)|+
√
NM3/4−10θ+ε,

where the supremum is taken over all L in the range (37), m′d�M?.

Combining with Corollary 2 and Lemma 14, we conclude the following.

Corollary 4. Suppose N1/2+ε < P < M1−ε and θ > 0 sufficiently

small. Then we have

F �M ε
∑

m≤M4θ

sup |O(C,m;L,m′, d)|+
√
NM3/4−θ/2+ε,

where the supremum is taken over all L in the range (37), m′d�M?, and C

in the range (30).

8. Tamed dual off-diagonal in transition

We now return to (36) the expression we obtained after the first appli-

cation of the Voronoi summation and dyadic segmentation. In the light of

Corollary 4, to complete the proof of Proposition 2 we just need to consider

O(C,m;L,m′, d) for small values of the parameters m, m′ and d as given in

Corollary 4. Note that for m = m′ = d = 1, we have already given a sketch of

the proof in Section 3.2. In the rest of the paper we will show that the argument

holds even if the parameters are allowed to range over short intervals.

We take C in the transition range (30) and m in the range 1 ≤ m ≤M θ̂.

We write cd in place of c and change the order of summations. It follows that

sup
m′d≤M?

O(C,m;L,m′, d)�M ε RNÑ0

CMP 5
sup

dm′≤M?

∣∣∣∣O(· · · )
∣∣∣∣,(46)
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where

O(· · · ) =
∑

P<p<2P
p prime

φ(p)χ(p)
∞∑
r=1

(p,r)=1

χ̄(r)
∞∑
c=1

e

Å
Mcdr

p

ã
(47)

×
∑

m′|cdm
m′∼m′

m′

cdm

∑?

β mod mcd/m′

r+βm′≡0 mod c

∞∑
n=1

λ(m′, n)e

Ç
β̄n

mcd/m′

å
V

Å
cd

C
,
n

L
,
r

R̃

ã
.

Here the weight function V is as given in (38).

8.1. Evaluation of character sum and reciprocity. Consider the character

sum (which we again temporarily denote by C)

C =
∑?

β mod mcd/m′

r+βm′≡0 mod c

e

Ç
β̄n

mcd/m′

å
,

which appears in (47). If m = m′ = d = 1, then the character sum can be

explicitly evaluated, and it is given by e(−r̄n/c). However in general it is not

easy to evaluate the character sum due to the presence of factors m, m′ and d.

But we have now obtained a good control on the sizes of these factors, and

consequently we can evaluate explicitly a large ‘portion’ of the character sum.

To this end, let h = (m′, c). We observe that C = 0 unless h|r. Accordingly

we write m′ = hm′1, c = hc1 and r = hr1. Let h1 = (m′1, r1), and let us write

r1 = h1r2 and m′1 = h1m2. Hence (r2,m2) = 1. We get

C =
∑?

β mod mc1d/m′1
β≡−r2m2 mod c1

e

Ç
β̄n

mc1d/m′1

å
.

It follows that

O(· · · ) =
∑∑
h1,m2

h1m2=m′1|dm

m′1
dm

∑
h∼m′/m′1

χ̄(hh1)
∞∑
r2=1

(pm2,r2)=1

χ̄(r2)
∑

P<p<2P
p prime

φ(p)χ(p)

×
∞∑
c1=1

(r2m′1,c1)=1

e

Ç
Mc1dh1r2

p

å
1

c1

∞∑
n=1

λ(m′, n)

×
∑?

β mod mc1d/m′1
β≡−r2m2 mod c1

e

Ç
β̄n

mc1d/m′1

å
V

Å
c1hd

C
,
n

L
,
r2hh1

R̃

ã
,

where m′ = hm′1.

Let g = (c1, dm). We write c1 = gc2 and dm = g0g
′, where g0|g∞ and

(g′, g) = 1. Let f = g′/m′1, which is an integer as m′1|g0g
′ but (c1,m

′
1) = 1.
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Then β̄ = −r̄2m2 + β1c1 with β1 mod fg0. We have

C = e

Å
− r̄2m2n

c1fg0

ã ∑†

β1 mod fg0

e

Å
β1n

fg0

ã
,

where † implies that (β1, f) = 1. In particular, C = 0 if (r2, c1fg0) > 1.

Applying the reciprocity relation to the outer exponential and pulling out the

greatest common divisor of β1 and g0, we get

C = e

Ç
c1fg0m2n

r2

å
e

Å
− m2n

c1fg0r2

ã ∑
g1g2=g0

g1

∑
1≤β1<fg2
(β1,fg2)=1

e

Å
β1n

fg2

ã
.

We introduce the convention that for a, b, c ∈ Z and c 6= 0, we have e(ab̄/c) = 0

for (b, c) 6= 1.

Lemma 25. There exists hi ∈ Z, i = 1, . . . , 6, and m′ with hi,m
′ =

O(M?), (h5, h6) = 1, such that

sup
m′d≤M?

|O(C,m;L,m′, d)| �M? RNÑ

CMP 5
|Ω|,

where

Ω =
∑

P<p<2P
p prime

φ(p)χ(p)
∞∑∑

c,r=1
(r,ch3h5)=1

χ̄(r)e

Ç
Mcr̄h1h̄2

p

å
1

c
(48)

×
∞∑
n=1

λ(m′, n)e

Ç
cnh3h̄4

r
+
h5n

h6

å
W

Å
c

C ′
,
n

L
,
r

R̃′

ã
,

with W ∈ W3(M?) and C/M? ≤ C ′ ≤ C , R̃/M? ≤ R̃′ ≤ R̃.

Proof. The lemma follows by plugging in the expression for the character

sum C into O(· · · ) and rearranging the sums. Some of the coprimality con-

ditions are then removed using Möbius inversion, which only involves small

factors. Here the new weight function is given by

W (x, y, z) = e

Ç
−m

′
1m2h

2h1

m

L

CR̃

y

xz

å
V (x, y, z),

which is clearly in the class W3(M?). �

8.2. The last application of Voronoi summation. In the rest of the paper

we will obtain a sufficient bound for Ω as defined in (48). We will apply the

Voronoi summation formula. The modulus of the additive character is now

rh6. Notice that the application of the reciprocity relation has changed the

modulus and so the Voronoi summation here is not a reversal process.
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Lemma 26. There exists hi ∈ Z, i = 1, . . . , 6, and m′ (not necessarily

same as in Lemma 25) with hi,m
′ = O(M?), and t ∈ [−M?,M?], such that

Ω�M?L |∆|+M−2013,

where

∆ =
∑

P<p<2P
p prime

φ(p)χ(p)
∞∑∑

c,r=1
(r,ch3h5)=1

χ̄(r)e

Ç
Mcr̄h1h̄2

p

å
1

c
(49)

×
∑
m|r

m

r2

∑
1≤n<N

λ(m′m,n)

n−ε+it
S(m′ξ̄, n;h3r/m) Ut

Å
c

C ′
,
r

R̃′

ã
,

with ξ = ch̄4h5 + h6r, C/M
? ≤ C ′ ≤ C , R̃/M? ≤ R̃′ ≤ R̃ and

N =
M?R̃3

m2L
.(50)

Here the weight function Ut belongs to the class W2(M?).

Proof. Applying the Voronoi summation, i.e., Lemma 19, on the sum over

n in Ω, we get

Ω =
∑
±

∑
P<p<2P
p prime

φ(p)χ(p)
∞∑∑

c,r=1
(r,ch3h5)=1

χ̄(r)e

Ç
Mcr̄h1h̄2

p

å
h6r

c

(51)

×
∑

m′′|h6rm′

∞∑
n=1

λ(m′′, n)

m′′n
S(m′ξ̄,±n;m′h6r/m

′′)W ?
±

Ç
c

C ′
,
m′′2nL

(h6r)3m′
,
r

R̃′

å
,

with ξ as in the statement of the lemma. Recall that (see Lemma 19)

W ?
±

Ç
c

C ′
,
m′′2nL

(h6r)3m′
,
r

R̃′

å
=

1

2πi

∫
(σ)

Ç
m′′2nL

(h6r)3m′

å−s
γ±(s)W̃

Å
c

C
,−s, r

R̃′

ã
ds.

This is negligibly small if

n ≥ R̃3M?

m′′2L
.

For smaller values of n, we shift the contour in the definition of the integral

transform to σ = −1 + ε, using (RS). The integrand decays rapidly for t =

Im(s)�M? (as the Mellin transform decays beyond this range), and this part

makes a negligible contribution. We now interchange the order of summations

and the integral over t. Taking absolute value inside the integral, the lemma

follows. Note that

Ut

Å
c

C ′
,
r

R̃′

ã
=

Å
r

R̃′

ã3(−ε+it)
W̃

Å
c

C ′
, 1− ε− it, r

R̃′

ã
. �
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In the rest of the paper we will obtain sufficient bounds for the expression

in (49), which is uniform with respect to t in the desired range.

8.3. Reciprocity and Poisson summation. Next we wish to apply the Pois-

son summation formula on the sum over c. Recall that c is essentially the mod-

ulus of the ‘circle method’ (Petersson formula) that we applied at the initial

stage. After a sequence of applications of summation formulas and reciprocity

relations we are finally at the stage where we are able to sum over the modulus

again. The variable c appears in the Kloosterman sum in (51). This Klooster-

man sum has modulus h3r/m. Also c appears in the additive character that

has modulus p. So apparently the total modulus is too large compared to the

length of the sum. However we can now apply the reciprocity again to bring

down the modulus.

Lemma 27. There exists hi ∈ Z, i = 1, . . . , 6, and m′ with hi,m
′ =

O(M?), such that

∆� |Ξ|+M−2013,

where

Ξ =
∑

P<p<2P
p prime

φ(p)χ(p)
∞∑
r=1

(h3h5,r)=1

χ̄(r)
∑
m|r

m

r3

∑
1≤n<N

λ(m′m,n)

n−ε+it

∑
|c|�C

C I,

and

C = M? R̃

C
.

The character sum is given by

C =
∑

γ mod h2h3r
(r,γ)=1

e

Å
−Mh1pγ

h2r
+

cγ

h2h3r

ã
S(m′ξ̄, n;h3r/m),

with ξ = γh̄4h5 + h6r, and the integral transform is given by

I =

∫
R
Vt

Å
x,

r

R̃′

ã
e

Ç
− C ′cx

h2h3r

å
dx

x
,

with Vt ∈ W2(M?).

Proof. In (49) we first use the reciprocity relation

e

Ç
Mcr̄h1h̄2

p

å
= e

Å
−Mch1p

h2r

ã
e

Å
Mch1

h2pr

ã
.

The last term can be absorbed in the weight function. Accordingly we let

Vt(x, y) = e

Ç
h1C

′M

h2pR̃′
x

y

å
Ut(x, y).

Observe that we (still) have Vt(x, y) ∈ W2(M?).
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We now study the sum over c in (49), which is given by

∞∑
c=1

(r,c)=1

e

Å
−Mch1p

h2r

ã
1

c
S(m′ξ̄, n;h3r/m) Vt

Å
c

C ′
,
r

R̃′

ã
.

We break the sum into congruence classes modulo h2h3r and apply the Poisson

summation formula. We get

1

h2h3r

∑
c∈Z

∑
γ mod h2h3r

(r,γ)=1

e

Å
−Mh1pγ

h2r
+

cγ

h2h3r

ã
S(m′ξ̄, n;h3r/m)

×
∫
R
Vt

Å
x,

r

R̃′

ã
e

Ç
− C ′cx

h2h3r

å
dx

x
,

where ξ = γh̄4h5 +h6r. From repeated integration by parts it follows that the

integral is negligibly small if |c| � C, and the lemma follows. �

8.4. Evaluation of character sums. Now we write r = r1r2, with (r1, h2h3)

= 1 and r2|(h2h3)∞. Accordingly we split m = m1m2, with mi|ri. We set

ζ = h3r2/m2. The character sum C splits as a product of two character sums

C = C1C2. The one with modulus h2h3r2 is given by

C1 =
∑

γ mod h2h3r2
(r2,γ)=1

S(m′ξr1/m1, nr1/m1; ζ)e

Å
−Mh1γpr1

h2r2
+

γcr1

h2h3r2

ã
,(52)

where ξ is as given in Lemma 27. The other sum with modulus r1 is given by

C2 =
∑?

γ mod r1

S(m′η, n; r1/m1)e

Ç
−Mh1γph2r2

r1
+
γch2h3r2

r1

å
,

where η = ξζ2 ≡ γh̄4h5ζ
2 mod r1. For the former sum, we will establish the

following bound.

Lemma 28. We have

C1 �M? r2

m2
.

Proof. Suppose p`‖r2 with ` ≥ 1, and suppose pk‖h2h3, pj‖h3r2/m2 (so

j ≤ `+ k). Then we take A,B,C ∈ Z with p - A and study the sum∑?

γ mod p`+k

S(m′Aξ,B; pj)e

Å
Cγ

p`+k

ã
.

The sum vanishes unless p`+k−j |C, in which case it reduces to

p`+k−j
∑?

γ mod pj

S(m′Aξ,B; pj)e

Ç
C ′γ

pj

å
.
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First consider the case where ` > k, so that 2` > j. Then ξ̄ = γh4h5 −
(γh4h5)2h6r. Now if ` ≥ j, the character sum reduces to

p`+k−j
∑?

γ mod pj

S(m′Aγh4h5, B; pj)e

Å
Cγ

pj

ã
.

Opening the Kloosterman sum we execute the sum over γ, which yields a

Ramanujan sum. Using standard bounds for the Ramanujan sum we now

get the bound O(p`+k(m′, pj)) for the character sum. On the other hand, if

j > ` ≥ k, then we write γ = γ1 + γ2p
j−` with γ1 modulo pj−`, (γ1, p) = 1,

and γ2 modulo p`. Then the character sum reduces to

p`+k−j
∑?∑

γ1 mod pj−`

γ2 mod p`

S(m′A((γ1 + γ2p
j−`)h4h5 − (γ1h4h5)2h6r), B; pj)

× e
Å
Cγ1

pj
+
Cγ2

p`

ã
.

Opening the Kloosterman sum, executing the sum over γ2, and trivially esti-

mating the remaining sums we get the bound O(pj+k(m′, p`)). In the case ` < k

(including when ` = 0) we trivially bound the sum by O(p`+k+j) = O(p2k+j).

Putting the above bounds together we get the lemma. �

Lemma 29. There exists hi ∈ Z, i = 1, . . . , 5, with hi = O(M?), such that

Ξ� M?P

R̃2

∑∑
u,v|h∞1

∞∑
m1=1

∑∑
δ1δ2�M3/4

(δ1h,δ2)=1

m1

uδ2
Ψ +

M?R̃3

LM1/4
,

where h = h1h2h4h5 and

Ψ =
∑
|c|�C

∑
1≤n<N †

∣∣∣∣ ∑
P<p<2P
p prime

∑[

|r|�R†
υ(· · · ) C1(n) ψn(· · · )

∣∣∣∣.(53)

The [ indicates the coprimality condition (δ1h, r) = 1, the factors υ(· · · )� 1,

and do not depend on n, and ψn vanishes unless m1|(Mh2 − cp), and in this

case we have

ψn(· · · ) =
∑?

α mod δ2r
ξpα≡(Mh2−cp)/m1 mod r

e

Å
ᾱn

δ2r

ã
,

where ξ = δ1vh3uh4. The factor C1(n) is of the form (52), with modulus

ζ = h5u. Also

R† =
M?R̃

δ1δ2m1uv
and N † =

M?R̃3

(δ1m1v)2L
.
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Proof. Consider the expression for Ξ as given in Lemma 27. We need to

explicitly evaluate the character sum C2. Opening the Kloosterman sum we

get

C2 =
∑?

α mod r1/m1

e

Ç
ᾱn

r1/m1

å
×

∑?

γ mod r1

e

(
m1m

′αγh4h5ζ2

r1
− Mh1γph2r2

r1
+
γch2h3r2

r1

)
.

The sum over γ is a Ramanujan sum. So we get

r1

∑
δ|r1

µ(δ)

δ

∑?

α mod r1/m1

m1m′αh4h5ζ2≡(Mh1h3−cp)h2h3pr2 mod r1/δ

e

Ç
ᾱn

r1/m1

å
.

Now we write rm1 in place of r1, and we split δ = δ1δ2 with δ1|m1, (δ1, r) = 1

and δ2|r. The above sum now becomes

rm1

∑∑
δ1|m1

δ2|r
(δ1,r)=1

µ(δ1δ2)

δ1δ2

∑?

α mod r
m1m′αh4h5ζ2≡(Mh1h3−cp)h2h3pr2 mod rm1/δ1δ2

e

Å
ᾱn

r

ã
.

We substitute this in the expression for Ξ as given in Lemma 27. Then inter-

change the order of summations and rename variables (e.g., we write δ1m1 in

place of m1 and δ2r in place of r). Finally taking absolute value and using

(R), we arrive at the inequality

Ξ� M?P

R̃2

∑
r2|(h2h3)∞

∑
m2|r2

∞∑
m1=1

(h2h3,m1)=1

∞∑∑
δ1,δ2=1

(δ1h2h3,δ2)=1

m1m2

δ2r2

×
∑
|c|�C

∑
1≤n<N †

∣∣∣∣ ∑
P<p<2P
p prime

∞∑
r=1

(δ1h2h3,r)=1

υ(· · · ) C1 ψn(· · · )
∣∣∣∣,

where υ(· · · ) = φ(p)χ(pr̄)I/P and

ψn(· · · ) =
∑?

α mod δ2r

m1m′αh4h5ζ2≡(Mh1h3−cp)h2h3pr2 mod rm1

e

Å
ᾱn

δ2r

ã
.

Note that υ(· · · ) is free of n and is bounded by O(1). Moreover this factor

vanishes outside the given range for r.



SUBCONVEXITY FOR TWISTS OF GL(3) L-FUNCTIONS 667

Finally we show that we only need to consider small values of δi. By trivial

estimation we get ψn(· · · )�M?(δ2, n). Consequently

M?P

R̃2

∑
r2|(h2h3)∞

∞∑
m1=1

∑
m2|r2

∑∑
δ1∼D1
δ2∼D2

m1m2

r2δ2

×
∑
|c|�C

∑
1≤n<N †

∣∣∣∣ ∑
P<p<2P
p prime

∑[

|r|�R†
υ(· · · ) C1 ψn(· · · )

∣∣∣∣
is dominated by

M?P 2

R̃2

∑
r2|(h2h3)∞

∞∑
m1=1

∑
m2|r2

∑∑
δ1∼D1
δ2∼D2

m1CR†

δ2

∑
1≤n<N †

(n, δ2) � M?R̃2CP 2

LD2
1D2

.

The lemma follows after renaming the ‘small variables.’ Lengths of the r and

the n sum are derived from those given in Lemma 26. For example, note that

m in Lemma 26 has been factorized here as m = δ1m1m2, and we have changed

m2 to v in the statement of the lemma. �

8.5. Application of Cauchy ’s inequality and Poisson summation. Let hi,

i = 1, . . . , 5 be as in the statement of Lemma 29. Let δ1, δ2 ∈ N. Set

ρ = (Mh2 − cp)/m1, ρ′ = (Mh2 − cp′)/m1.

Let ζ = h5u, η = pδ1h3v, η′ = p′δ1h3v, µ = h4uρ and µ′ = h4uρ
′. Note that

(η, r) = (h3, r) = O(M?). Set

Ĉ =
∑?

α mod δ2r

∑?

α′ mod δ2r′

ηα≡µ mod r
η′α′≡µ′ mod r′

ᾱr′−ᾱ′r≡n mod δ2rr′

1,(54)

and define

W =
∑? ∑?

P<p,p′<2P
p,p′ prime

∑[ ∑[

|r|,|r′|�R†

∑
|n|�N?

|Ĉ|,(55)

where

R† =
M?R̃

δ1δ2m1uv
and N? =

M?

δ2u

L

R̃
.

Here the ? on the p sum indicates the restriction m1|(Mh2 − cp).

Lemma 30. We have

Ψ� uM?R̃3

(δ1m1v)2L

∑
|c|�C

W1/2 +M−2013.
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Proof. Applying the Cauchy inequality to the expression on the right-hand

side of (53), we get

Ψ =
∑
|c|�C

√
N †
»

Θ4(· · · ),(56)

where

Θ4(· · · ) =
∑

1≤n<N †

∣∣∣∣ ∑?

P<p<2P
p prime

∑[

r�R†
υ(· · · ) C1(n) ψn(· · · )

∣∣∣∣2.
Using positivity we now smooth out the n-sum and then apply the Poisson

summation formula after opening the absolute square. The modulus is ζδ2rr
′.

(Recall that C1(n) is periodic in n with modulus ζ.) We get

Θ4(· · · ) ≤ N
†

ζδ2

∑? ∑?

P<p,p′<2P
p,p′ prime

∑[ ∑[

|r|,|r′|�R†

1

rr′
υ(· · · )ῡ(· · · )

∑
n∈Z

CI,

where the new character sum is given by∑
β mod ζδ2rr′

C1(β)C′1(β)ψβ(· · · )ψ′β(· · · ) e
Å

nβ

ζδ2rr′

ã
.

Now using the coprimality (ζ, δ2rr
′) = 1, we split the character sum into a

product of two character sums. The one with modulus ζ is estimated trivially

using Lemma 28. The other character sum modulo δ2rr
′ is given by

∑?

α mod δ2r

∑?

α′ mod δ2r′

ξpα≡(Mh2−cp)/m1 mod r
ξpα′≡(Mh2−cp′)/m1 mod r′

∑
β mod δ2rr′

e

Ç
ᾱβ

δ2r
− ᾱ′β

δ2r′

å
e

Ç
δ̄nβ

δ2rr′

å
.

This reduces to δ2rr
′Ĉ. The integral I is the Fourier transform of a smooth

bump function with compact support. By repeated integration by parts we

see that the integral is negligibly small if

|n| �M?uδ2R
†2

N †
� N?.

We conclude that

Θ4(· · · )� u2M?N †W +M−20130,

where W is as given in (55). Substituting the above bound into (56) and

substituting the size of N †, we conclude the lemma. �
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8.6. A counting problem. It remains to estimate W for δ1δ2 �M3/4.

Lemma 31. For N1/2+ε < P < M1−ε, δ1δ2 � M3/4, and θ sufficiently

small, we have

W�M?v M7/4P 2.

Proof. First consider the contribution of the zero frequency n = 0. In this

case the last congruence in (54) implies that r = r′ and α = α′. The other

two congruences now imply that η′µ ≡ ηµ′ mod r. For any (p, p′, r) satisfying

the above congruence, we have Ĉ � M?δ2, as the second congruence in (54)

restricts the number of α modulo r by (η, r) ≤ M?. If p = p′, then there

are O(R†) many choice for r. On the other hand, if p 6= p′ (which implies

η′µ 6= ηµ′), there are O(M ε) many choice for r. It follows that the contribution

of this case, n = 0, to (55) is dominated by

O
Ä
M?δ2

Ä
PR† + P 2

ää
.(57)

Let d = (r, r′), and set r = ds and r′ = ds′ (so ss′ 6= 0). Then d|n and we

write n = dk with k 6= 0. The first two congruences in (54) imply that there

are O(M?) many α (resp. α′) satisfying the congruence modulo r (resp. r′).

Also the third congruence condition in (54) implies that ᾱs′− ᾱ′s ≡ k mod δ2.

Since (s, s′) = 1, we see that modulo δ2 there are O(δ2) many pairs (α, α′).

Consequently Ĉ�M?δ2.

From (54) we conclude that η′s ≡ −kµ′ mod s′ and ηs′ ≡ kµ mod s. We

write the last congruence as an equation:

ηs′ = kµ+ es.(58)

We will now consider the generic case where

e 6= 0, η′µ 6= eµ′ and ηµ′s′ − η′µs 6= µµ′k.

Comparing the sizes of the terms we get |e| � δ1vM
?P . Multiplying the

equation with η′ and using the first congruence, we arrive at k(η′µ − eµ′)

≡ 0 mod s′. Since (s′, k) = 1, it follows that s′|(η′µ − eµ′). Suppose (p, p′, e)

is given with η′µ 6= eµ′. Then there are O(M ε) many possible s′. Once s′ is

obtained, then to find the number of k one looks at the congruence

ηs′ ≡ kµ mod |e|

if e 6= 0. The number of k is given by

(e, µ)

Ç
1 +

N?

d|e|

å
.
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If ηµ′s′ − η′µs 6= µµ′k, then there are O(M ε) many d. The total contribution

of the generic case is given by

M εδ2

∑
p

∑
p′

∑
e6=0

(e, µ)

Ç
1 +

N?

|e|

å
�M?δ2

Ä
δ1vP

3 +N?P 2
ä
.

Now we are left with three degenerate cases. First suppose e = 0, but

ηµ′s′ − η′µs 6= µµ′k (so that the number of d still remains O(M ε)). Then

ηs′ = kµ. Consequently p|k, and once a p and such a k are given, we can

solve for s′. Then once p′ is given we determine s from the congruence η′s ≡
−kµ′ mod s′. The number of such s is O(M?) if p′ - k and O(pM?) if p′|k.

From size consideration we get that p|k and p′|k imply p = p′. So the total

contribution of this case to (55) is dominated by

M?δ2

∑
p

∑
p′

N?

p
+M?δ2

∑
p

p
N?

p
�M?δ2 N

?P.

This is absorbed by the generic count.

Next suppose η′µ = eµ′, but ηµ′s′ − η′µs 6= µµ′k. Then p′|e, and once p′

and such an e are given, we can then solve for p. Then from (58) we get the

congruence kµ ≡ −es mod η. Given s, there are O(1 + N?/P ) many choices

for k. Then s′ is solved from equation (58). So the total contribution of this

case is dominated by

M?δ2

∑
s

∑
p′

Å
1 +

N?

P

ã
δ1vP

p′
�M?δ1δ2v (P +N?)R†.

Now it remains to count the number of solutions of the equation ηµ′s′ −
η′µs = µµ′k. Suppose we are given (s, p). Then there are O(M ε) many choice

for p′ as µ′|η′µs (and (µ′, p′) = 1). Suppose we are given (s, p, p′). Let (s′, k)

and (s̄′, k̄) be two possible pairs. Then from the equation we get µ|η(s′ − s̄′).
Hence the number of possible pairs (s′, k) is bounded by

O

Ç
M?

Ç
1 +

R†

d|µ|

åå
.

The contribution of this case is dominated by

M?δ2

∑
d

∑
s

∑
p

Ç
1 +

R†

d|µ|

å
�M?δ2

Ä
PR† +R†2

ä
.

Comparing the bounds obtained above, and using δ1δ2 � M3/4, we are now

able to conclude the lemma. �
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9. Conclusion

The counting function W vanishes for uvm1 large, say for uvm1 > M2013.

Substituting the bound from Lemma 31 into Lemma 30 we get

Ψ� uM?R̃3CM7/8P

(δ1m1)2v3/2L
.

Substituting into Lemma 29 it follows that

Ξ� M?P 2R̃CM7/8

L
+

M?R̃3

LM1/4
.

From Lemma 27 we see that the same bound holds for ∆. Substituting in

Lemma 26 we conclude that

Ω�M?P 2R̃CM7/8 +
M?R̃3

M1/4
�M?M19/8P 2.

Then from Lemma 25 it follows that for N1/2+ε < P < M1−ε and θ sufficiently

small, we have

sup
m′d≤M?

|O(C,m;L,m′, d)| �
√
N
M?M21/8

P 2

for m in the range of Corollary 4 (at the end of Section 7). From Corollary 4

it now follows that

F �M ε
√
N

Ç
M?M21/8

P 2
+M3/4−θ/2

å
.

We can now conclude Proposition 2 by picking P = M1−θ0 with θ0 > 0 suffi-

ciently small.
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