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Rationality of W -algebras:
principal nilpotent cases

By Tomoyuki Arakawa

Abstract

We prove the rationality of all the minimal series principal W -algebras

discovered by Frenkel, Kac and Wakimoto, thereby giving a new family of

rational and C2-cofinite vertex operator algebras. A key ingredient in our

proof is the study of Zhu’s algebra of simple W -algebras via the quantized

Drinfeld-Sokolov reduction. We show that the functor of taking Zhu’s al-

gebra commutes with the reduction functor. Using this general fact we

determine the maximal spectrums of the associated graded of Zhu’s alge-

bras of vertex operator algebras associated with admissible representations

of affine Kac-Moody algebras as well.

1. Introduction

Let Wk(g) = Wk(g, fprin) be the W -algebra associated with a complex

finite-dimensional simple Lie algebra g and a principal nilpotent element fprin

of g at level k [FL88], [LF89], [FF90]. In [Ara07] we have confirmed the con-

jecture of Frenkel, Kac and Wakimoto [FKW92] on the existence of modular

invariant representations of Wk(g) for an appropriate level k. These repre-

sentations are called the minimal series representations of Wk(g) since in the

case that g = sl2(C) they are precisely the minimal series representations

[BPZ84] of the Virasoro algebra. It has been expected [FKW92] and widely

believed that these representations of Wk(g) form a minimal model of the

corresponding conformal field theory in the sense of [BPZ84] as in the case

that g = sl2(C). In the language of vertex operator algebras this amounts to

showing that the vertex operator algebras associated with minimal series rep-

resentations of W -algebras are rational and C2-cofinite. We have established

the C2-cofiniteness property previously in [Ara15]. The main purpose of this

paper is to resolve the remaining rationality problem.
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Denote by Wk(g) the unique simple quotient of Wk(g) at a noncritical

level k. The vertex operator algebra Wk(g) is isomorphic to a minimal series

representation as a module over Wk(g) if and only if

k + h∨g = p/q ∈ Q>0, p, q ∈ N, (p, q) = 1,(1)

and

p ≥ h∨g , q ≥ hg if (q, r∨) = 1,

p ≥ hg, q ≥ r∨h∨Lg if (q, r∨) = r∨,

where hg is the Coxeter number of g, h∨g is the dual Coxeter number of g, Lg

is the Langlands dual Lie algebra of g, and r∨ is the maximal number of the

edges in the Dynkin diagram of g. The central charge c(k) of Wk(g) is given

by the formula

c(p/q − h∨g ) = l − 12
|qρ− pρ∨|2

pq
= −

l((hg + 1)p− h∨g q)(r∨h∨Lgp− (hg + 1)q)

pq
,

where l is the rank of g, ρ is the half sum of positive roots of g and ρ∨ is the

half sum of positive coroots of g.

Main Theorem. Let k be as in (1). The vertex operator algebra Wk(g) is

rational (and C2-cofinite [Ara15]). The set of isomorphism classes of minimal

series representations of Wk(g) forms the complete set of the isomorphism

classes of simple modules over Wk(g).

The Main Theorem has been proved in [BFM], [Wan93] in the case that

g = sl2(C) and in [DLT+04] in the case that g = sl3(C) and k = 5/4 − 3 (or1

4/5− 3).

Let us explain the outline of the proof of the Main Theorem briefly. A cru-

cial step in the proof is the classification of the simple modules over the simple

quotient Wk(g). For this purpose it is sufficient [Zhu96] to determine Zhu’s

algebra of Wk(g). We carry out this by studying Zhu’s algebra of W -algebras

via the quantized Drinfeld-Sokolov reduction. Since this is a general argu-

ment, we work in a more general setting: Let f be any nilpotent element of

g, Wk(g, f) the (universal) W -algebra associated with (g, f) at level k. By

definition [FF90], [KRW03] we have

Wk(g, f) = H0
f (V k(g)),

where V k(g) is the universal affine vertex algebra associated with g at level

k and H•f (M) denotes the BRST cohomology of the generalized quantized

Drinfeld-Sokolov reduction [KRW03] associated with (g, f) with coefficient in

1There is the Feigin-Frenkel duality Wp/q−h∨
g

(g) ∼= Wq/r∨p−h∨
Lg

(Lg) for all p, q ∈ C∗. (The

details will be explained elsewhere.)
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a V k(g)-module M . We show that

A(H0
f (L)) ∼= H0

f (A(L))(2)

for any quotient L of V k(g) at any level k. (In fact we prove a stronger

assertion; see Theorem 8.1.) Here, for a conformal vertex algebra V , A(V )

denotes Zhu’s algebra2 of V , and H0
f (A(L)) denotes the (finite-dimensional

analogue of) BRST cohomology associated with (g, f) with coefficient in A(L),

which is identical to A(L)† in Losev’s notation [Los11]; see Section 3.

In the case that f = fprin, the classification problem is relatively sim-

ple since A(Wk(g, fprin)) ∼= Z(g) ([Ara07]), where Z(g) is the center of the

universal enveloping algebra U(g) of g, and hence, A(Wk(g)) is a quotient of

the commutative algebra Z(g). Moreover, under the assumption of the Main

Theorem we have shown in [Ara07] that

Wk(g) ∼= H0
fprin

(L(kΛ0))

as conjectured in [FKW92], where L(kΛ0) is the unique simple quotient vertex

algebra of V k(g) that is an admissible representation [KW89] as a ĝ-module.

It follows from (2) that Zhu’s algebra A(Wk(g)) of Wk(g) is completely deter-

mined by A(L(kΛ0)). We deduce the classification result in the Main Theorem

from that of admissible affine vertex algebras L(kΛ0) recently obtained by the

author in [Ara12a].

Once the classification of simple modules is established it is straightfor-

ward to see that there is not any nontrivial extension between two distinct

simple Wk(g)-modules from the general result on the representation theory of

Wk(g) achieved in [Ara07]. Finally the fact that simple Wk(g)-modules do

not admit nontrivial self-extensions follows from the result of Gorelik and Kac

[GK11], who established the complete reducibility of admissible representations

of ĝ.

The isomorphism (2) has an application to affine vertex algebras as well:

It enables us to determine the variety VarA(L(kΛ0)) associated with Zhu’s

algebra of any admissible affine vertex algebra L(kΛ0) (Theorem 9.3). This

result was announced in [Ara12a].

The assertion of the Main Theorem is a special case of the conjecture of

Kac and Wakimoto [KW08] on the rationality of exceptional W -algebras. In

subsequent papers we prove the rationality of a large family of W -algebras,

including all the exceptional W -algebras of type A, generalizing the result of

[Ara13].

2More precisely, A(V ) is the L0-twisted Zhu’s algebra in the sense of [DSK06] since

Wk(g, f) is 1
2
Z≥0-graded in general. It is the usual Zhu’s algebra for f = fprin.
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This paper is organized as follows. In Sections 2 and 3 we reformulate

some results of Ginzburg [Gin09] and Losev [Los11] in terms of BRST reduction

for later purposes. In Section 4 we fix some notation for vertex algebras and

clarify the relationship between Frenkel-Zhu’s bimodules and Zhu’s C2-modules

associated with vertex algebras. In Section 5 we discuss the effect of shifts

of conformal vector to Frenkel-Zhu’s bimodules, which is needed to describe

Frenkel-Zhu’s bimodules associated with W -algebras. In Section 6 we collect

some basic facts about affine vertex algebras and study Zhu’s C2-modules and

Frenkel-Zhu’s bimodules associated with objects in the the Kazhdan-Lusztig

parabolic full subcategory KLk of O of ĝ. In Section 7 we recall the definition

of W -algebras and some results from [Ara15]. In Section 8 we show that

the functor of taking Frenkel-Zhu’s bimodules commutes with the reduction

functor on the category KLk. This result, in particular, proves (2). In Section 9

we recall the main result of [Ara12a] and determine varieties VarA(L(kΛ0))

associated with Zhu’s algebras of admissible affine vertex algebras. Finally we

prove the Main Theorem in Section 10.
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of this work was done while he was visiting Weizmann Institute, Israel, in
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useful comments.

Notation. Throughout this paper the ground field is the complex number

C and tensor products are meant to be as vector spaces over C if not otherwise

stated.

2. The Slodowy slice and classical BRST reduction

Let R be a Poisson algebra. Recall that a Poisson module M over R is a

R-module M in the usual associative sense equipped with a bilinear map

R×M →M, (r,m) 7→ ad r(m) = {r,m},

which makes M a Lie algebra module over R satisfying

{r1, r2m} = {r1, r2}m+ r2{r1,m}, {r1r2,m} = r1{r2,m}+ r2{r1,m}
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for r1, r2 ∈ R, m ∈ M . Let R -PMod be the category of Poisson modules

over R.

For any finite-dimensional Lie algebra a, the space C[a∗] = S(a) is a

Poisson algebra by the Kirillov-Kostant Poisson bracket. A Poisson module

over C[a∗] is the same as a C[a∗]-module M in the usual associative sense

equipped with a Lie algebra module structure a→ EndM , x 7→ ad(x), over a

such that ad(x)(fm) = {x, f}m+ f ad(x)(m) for x ∈ a, f ∈ C[a∗], m ∈M .

Let g be a finite-dimensional simple Lie algebra as in the introduction,

( | ) the normalized invariant inner product of g, that is, 1/2h∨g× the killing

form of g. Let ν : g ∼→ g∗ be the isomorphism defined by the form ( | ).

Let f be a nilpotent element of g, {e, f, h} an sl2-triple associated with f :

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f.

Set

χ = ν(f) ∈ g∗.

The affine space

Sf = ν(f + ge) ⊂ g∗

is called the Slodowy slice at χ to AdG.χ, where ge is the centralizer of e in g

and G is the adjoint group of g. It is known [GG02] that the Kirillov-Kostant

Poisson structure of g∗ restricts to Sf . Hence C[Sf ] is a Poisson algebra.

We have

g =
⊕
j∈ 1

2
Z

gj , gj = {x ∈ g| adh(x) = 2jx}.(3)

Put

g≥1 =
⊕
j≥1

gj ⊂ g>0 =
⊕
j>0

gj = g1/2⊕ g≥1.

Denote by G>0 the unipotent subgroup of G whose Lie algebra is g>0. By

[GG02, Lemma 2.1] the coadjoint action gives the isomorphism

G>0 × Sf ∼→ χ+ g⊥≥1(4)

of affine varieties, where g⊥≥1 is the annihilator of g≥1 in g∗.

Consider the affine subspace χ+ ν(g−1/2) of g∗>0. We have

C[χ+ ν(g−1/2)] = C[g∗>0]/Ī>0,χ,

where Ī>0,χ is the Poisson ideal of C[g∗>0] generated by x−χ(x) with x ∈ g≥1.

The Poisson bracket of the quotient algebra is given by

{x, y} = χ([x, y]) for x, y ∈ g1/2
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under the identification C[χ+ ν(g−1/2)] ∼= C[g∗1/2] = S(g1/2). As

g1/2 × g1/2 → C, (x, y) 7→ χ([x, y]),(5)

is a symplectic form, it follows that χ+ν(g−1/2) is isomorphic to T ∗Cdim g1/2/2

as Poisson varieties.

Let

µ : g∗ → g∗≥1

be the restriction map. Then µ is the moment map for the action of the

unipotent subgroup G≥1 of G whose Lie algebra is g≥0. We have

µ−1(χ+ ν(g−1/2)) = χ+ g⊥≥1.(6)

Let {xi|i = 1, . . . ,dim g>0} be a homogeneous basis of g>0 with respect to

the grading (3) such that the first dim g1/2-elements {xi|i = 1, . . . ,dim g1/2}
form a basis of g1/2, and let {ckij} be the structure constant: [xi, xj ] =

∑
k c

k
ijxk.

For i = 1, . . . ,dim g>0 let φ̄i denote the image of xi under the natural Poisson

algebra homomorphism C[g∗>0] � C[χ+ g∗1/2]. By definition

{φ̄i, φ̄j} = χ([xi, xj ]) for i = 1, . . . ,dim g1/2

and φ̄i = χ(xi) for i > dim g1/2.

Let Πg∗>0 denote the space g∗>0 considered as a purely odd vector space,

T ∗Πg∗>0 the tangent bundle of Πg∗>0, which is a symplectic supermanifold.

Then C[T ∗Πg∗>0] is a Poisson superalgebra, which is nothing but the exterior

algebra
∧•(g∗>0⊕ g>0) =

∧•(g∗>0)⊗∧•(g>0) (with an obvious Poisson super-

bracket).

For a Poisson module M over C[g∗], set

C̄(M) = M⊗C[χ+ ν(g−1/2)]⊗C[T ∗Πg∗>0] =
⊕
p∈Z

C̄p(M),

C̄p(M) =
⊕
i−j=p

M⊗C[χ+ ν(g−1/2)]⊗
∧i

(g∗>0)⊗
∧j

(g>0).

Then C̄(C[g∗]) is naturally a graded Poisson superalgebra, and C̄(M) is a

Poisson module over C̄(C[g∗]) (in an obvious “super” sense). Set

d̄ =
dim g>0∑
i=1

(xi⊗1 + 1⊗φ̄i)⊗x∗i − 1⊗1⊗1

2

∑
1≤i,j,k≤dim g>0

ckijx
∗
ix
∗
jxk ∈ C̄1(C[g∗]),

where {x∗i } ⊂ g∗>0 ⊂ C[T ∗Πg∗>0] is the dual basis of {xi}.

Lemma 2.1. d̄2 = 0.

Since d̄ is an odd element, it follows from Lemma 2.1 that (ad d̄)2 = 0 on

any Poisson module over C̄(C[g∗]). It follows that (C̄(C[g∗]), ad d̄) is a differ-

ential graded superalgebra and (C̄(M), ad d̄) is a module over the differential
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graded algebra (C̄(C[g∗]), ad d̄). Let H•f (M) be the cohomology of the cochain

complex (C̄(M), ad d̄). The space H•f (C̄[g∗]) inherits the Z-graded Poisson

superalgebra structure from C̄(C[g∗]) and H0
f (M) is naturally a module over

H0
f (C[g∗]).

Theorem 2.2 ([KS87, DSK06]; see also Theorem 2.3 below). We have

H i
f (C[g∗]) = 0 for i 6= 0 and H0

f (C[g∗]) ∼= C[Sf ] as Poisson algebras.

Let HC be the full subcategory of the category of C[g∗] -PMod consisting

of modules on which the Lie algebra action of g is locally finite. Denote by Īχ
the ideal of C[g∗] generated by y − χ(y) with y ∈ g≥1. Then, for M ∈ HC,
ĪχM is a Poisson submodule of M over C[g∗>0].

The following assertion is a reformulation of a result of [Gin09].

Theorem 2.3. For M ∈ HC, we have

H i
f (M) ∼=

(M/ĪχM)ad g>0 for i = 0,

0 otherwise.

In particular, the functor

HC → C[Sf ] -PMod, M 7→ H0
f (M)

is exact, and

suppC[Sf ]H
0
f (M) = Sf ∩ suppC[g∗](M)

for a finitely generated object M of HC.

Proof. Since a cohomology functor commutes with injective limits, we

may assume that M is finitely generated. Set C̄ = C̄(M), C̄p = C̄p(M),

C̄ij = M⊗C[χ + g∗1/2]⊗∧i(g∗>0)⊗∧−j(g>0) ⊂ C̄, so that C̄p =
⊕

i≥0, j≤0
i+j=p

C̄i,j .

The differential ad d̄ : C̄p → C̄p+1 decomposes as

ad d̄ = d̄−⊕ d̄+,

where

d̄− =
∑
i

(xi⊗ id + id⊗φ̄i)⊗ adx∗i ,(7)

d̄+ =
∑
i

(adxi⊗ id + id⊗ ad φ̄i)⊗x∗i +
∑
i,j,k

id⊗ id⊗ckijxkx∗j adx∗i(8)

− id⊗ id⊗1

2

∑
i,j,k

ckijx
∗
ix
∗
j adxk.

Since d̄−C̄
i,j ⊂ C̄i,j+1, d̄+C̄

i,j ⊂ C̄i+1,j , it follows that

{d̄−, d̄+} = 0, d̄2
− = d̄2

+ = 0.
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Consider the spectral sequence Er ⇒ H•f (M) with

Ep,q1 = Hq(C̄p,•, d̄−), Ep,q2 = Hp(E•,q1 , d̄+).

By (7), H•(C̄p,•, d̄−) is the homology of the Koszul complex of the C[g∗>0]-

module M⊗C[χ+ν(g−1/2)]⊗∧p(g∗>0) associated with the sequence x1, x2, . . . ,

xdim g>0 , where C[g∗>0] acts only on the first two factors. Since C[χ+ν(g−1/2)] is

a free C[g∗1/2]-module of rank 1, it follows that H•(C̄p,•, d̄−) is isomorphic to the

homology of the Koszul complex of the C[g∗≥1]-module M⊗∧p(g∗>0) associated

with the sequence xdim g1/2+1−χ(xdim g1/2+1), . . . , xdim g>1−χ(xdim g>1). Hence

thanks to [Gin09, Cor. 1.3.8], we have

E•,q1
∼=

(M/ĪχM)⊗∧•(g∗>0) for q = 0,

0 for q 6= 0.
(9)

Hence from (9) we see that E•,02 is isomorphic to the Lie algebra cohomology

H•(g>0,M/ĪχM).

Now first consider the case that M = C[g∗]. Since C[g∗]/Īχ ∼= C[χ+ g⊥≥1],

we have C[χ+ g⊥≥1] = C[G>0]⊗CC[Sf ] by (4), and thus,

H i(g>0,C[χ+ g⊥≥1]) ∼=

C[Sf ] for i = 0,

0 for i > 0.
(10)

For a general module M , the argument of [GG02, 6.2] shows that the multi-

plication map

ϕ : C[χ+ g⊥≥1]⊗C[Sf ](M/ĪχM)ad g>0 →M/ĪχM

is an isomorphism of g>0-module, where C[Sf ] acts on (M/ĪχM)ad g>0 by the

identification C[Sf ] = (C[g∗]/ĪχC[g∗])ad g>0 and g>0 acts only on the first factor

C[χ+ g⊥≥1] of C[χ+ g⊥≥1]⊗C[Sf ](M/ĪχM)ad g>0 . Therefore (10) gives that

Ep,q2
∼=

(M/ĪχM)ad g>0 for p = q = 0,

0 otherwise.

We conclude that the spectral sequence collapses at E2 = E∞, and the assertion

follows. �

3. Finite W -algebras and equivalences

of categories via BRST reduction

Let A be an associative algebra over C equipped with an increasing 1
2Z-

filtration F•A such that

FpA · FqA ⊂ Fp+qA, [FpA,FqA] ⊂ Fp+q−1A.(11)
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Then the associated graded space grF A =
⊕

p∈ 1
2
Z FpA/Fp−1/2A is naturally a

Poisson algebra. We assume that grF A is finitely generated as a ring.

Denote by A -biMod the category of A-bimodules. Let M be an object of

A -biMod equipped with an increasing filtration F•M compatible with the one

on A; that is,

FpA · FqM · FrA ⊂ Fp+q+rM, [FpA,FqM ] ⊂ Fp+q−1M.

Then grF M =
⊕
p FpM/Fp−1/2M is naturally a Poisson module over grF A.

The filtration F•M is called good if grF M is finitely generated over grF A in a

usual associative sense. If this is the case, we set

VarM = supp(grF M) ⊂ Spec(grF A),

equipped with the reduced scheme structure. It is well-known that VarM is

independent of the choice of a good filtration.

Let F•U(g) be the standard PBW filtration of U(g):

F−1U(g) = 0, F0U(g) = C, FpU(g) = gFp−1U(g) + Fp−1U(g).

Set FpU(g)[j] = {u ∈ Up(g)| adh(u) = 2ju} where, recall, h is defined in

Section 2. Let

KpU(g) =
∑
i−j≤p

FiU(g)[j].

Then K•U(g) is an increasing, exhaustive, separated filtration of U(g) that

satisfies (11). The filtration {KpU(g)} is called the Kazhdan filtration. The

associated graded Poisson algebra grK U(g) is naturally isomorphic to C[g∗].

Let M be a U(g)-bimodule. A Kazhdan filtration of M is an increasing,

exhaustive, separated, filtration K•M that is compatible with the Kazhdan

filtration of U(g).

Define

I>0,χ =
∑
x∈g≥1

U(g>0)(x− χ(x)).

Then I>0,χ is a two-sided ideal of U(g>0). Set

D = U(g>0)/I>0,χ,

and let

φ : U(g>0) � D

be the natural surjective algebra homomorphism, φi = φ(xi), where {xi} is

defined in Section 2. Then

[φi, φj ] = χ([xi, xj ]) for i = 1, . . . ,dim g1/2,

and φ̄i = χ(xi) for i > dim g1/2. It follows that D is isomorphic to the Weyl

algebra of rank dim g1/2/2. Let K•D be the filtration of D induced by K•U(g),
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that is, KpD the image ofKpU(g)∩U(g>0) inD. The associated graded Poisson

algebra grK D is isomorphic to C[χ+ ν(g−1/2)], which appeared in Section 2.

Denote by Cl the Clifford algebra associated with g>0⊕ g∗>0 and the bi-

linear form g>0⊕ g∗>0 × g>0⊕ g∗>0 → C, (x+ f, x′ + f ′) 7→ f(x′) + f ′(x). The

algebra Cl contains
∧•(g∗>0) and

∧•(g>0) as its subalgebras, and the multi-

plication map
∧•(g∗>0)⊗∧•(g>0) → Cl is a linear isomorphism. Let F•Cl be

the increasing filtration of Cl defined by FpCl =
⊕

j≤p
∧•(g∗>0)⊗∧j(g>0). Set

FpCl[j] = {ω ∈ FpCl| adh(ω) = 2jω}, and define the filtration K•Cl by

KpCl =
∑
i−j≤p

FiCl[j].

We have grK Cl ∼= C[T ∗Πg∗>0] as Poisson superalgebras.

Let HC be the full subcategory of U(g) -biMod consisting of modules on

which the adjoint g-action is locally finite.

For M ∈ HC, let

C(M) = M⊗D⊗Cl =
⊕
p∈Z

Cp(M),

Cp(M) =
⊕
i−j=p

M⊗D⊗
∧i

(g∗>0)⊗
∧j

(g>0).

Here we have used the linear isomorphism Cl ∼=
∧•(g∗>0)⊗∧•(g>0). The

space C(M) is naturally a Z-graded bimodule over the Z-graded superalge-

bra C(U(g)).

Set

d =
∑
i

(xi⊗1 + 1⊗φi)⊗x∗i − 1⊗1⊗1

2

∑
i,j,k

ckijx
∗
ix
∗
jxk ∈ C1(U(g)).

Lemma 3.1. d2 = 0 in C(U(g)).

Since d is an odd element, it follows from Lemma 3.1 that (ad d)2 = 0

on C(M). By abuse of notation we denote by H•f (M) the cohomology of the

cochain complex (C(M), ad d). Since (C(U(g)), ad d) is a differential graded al-

gebra, H•f (U(g)) is naturally a Z-graded superalgebra and H•f (M) is naturally

a bimodule over H•f (U(g)).

The finite W -algebra [Pre02] associated with (g, f) may be defined as the

associative algebra

U(g, f) := H0
f (U(g))

([DDCDS+06]; see (14) below).

Let K•M be a Kazhdan filtration of M ∈ HC. Set

KpC(M) =
∑

p1+p2+p3≤p
Kp1M⊗Kp2D⊗Kp3Cl.
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When this is applied to M = U(g), K•C(U(g)) defines an increasing, exhaus-

tive, separated filtration of C(U(g)) satisfying (11). Note that d ∈ K1C(U(g)),

and thus, ad d · KpC(U(g)) ⊂ KpC(U(g)) and ad d defines a derivation of

grK C(U(g)). By definition the differential graded algebra (grK C(U(g)), ad d)

is isomorphic to (C̄(C[g∗]), ad d̄) and grK C(U(g∗)) is isomorphic to C̄(grKM)

as Poisson modules over C̄(C[g∗]), where C̄(grKM) is the complex considered

in Section 2.

Let K•H
•
f (M) be the filtration of H•f (M) induced from the filtration

K•C(M). We have

grK H
0
f (U(g)) ∼= H0

f (grK U(g)) ∼= C[Sf ]

as Poisson algebra ([GG02], [DSK06]). In fact we have the following more

general assertion.

Theorem 3.2.

(i) Let M be an finitely generated object of HC, K•M a good Kazhdan-

filtration of M . Then

grK H
i
f (M) ∼= H i

f (grKM) ∼=

(grKM/Īχ grKM)ad g>0 for i = 0,

0 otherwise

as Poisson modules over C[Sf ]. In particular,

VarH0
f (M) = VarM ∩ Sf .

(ii) We have H i
f (M) = 0 for i 6= 0, M ∈ HC. In particular the functor

HC → U(g, f) -biMod, M 7→ H0
f (M)(12)

is exact.

Proof. (i) By assumption grKM is an object of HC. Moreover, thanks to

(the proof of) [Gin09, Lemma 4.3.3], the filtration K•C(M) is convergent in the

sense of [CE56]. Hence the assertion follows immediately from Theorem 2.3.

(ii) Suppose that M is finitely generated. Then M admits a good Kazhdan

filtration, and hence, H i
f (M) = 0 for i 6= 0. This proves the vanishing of all

M ∈ HC since the cohomology functor commutes with injective limits. �

We shall now give yet another description of the functor (12) and show

that (12) is equivalent to the functor constructed by Ginzburg [Gin09] and

Losev [Los11], independently.

Choose a Lagrangian subspace l of g1/2 with respect to the symplectic

form (5), and let

m = l⊕ g≥1.
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Then m is a nilpotent subalgebra of g>0 and the restriction of χ to m is a

character, that is, χ([x, y]) = 0 for x, y ∈ m. Let {x′i|i = 1, . . . ,dimm} be

a basis of m, {x′i
∗|i = 1, . . . ,dimm} the dual basis of m∗, ckij

′
the structure

constants of m.

Let Clm be the Clifford algebra associated with m⊕m∗ and the natural

bilinear form on it. For M ∈ HC, set

C(M)′ = M⊗Clm,

d′ =
dimm∑
i=1

(x′i + χ(x′i))⊗x′i
∗ − 1⊗1⊗1

2

∑
1≤i,j,k≤dimm

ckij
′
x′i
∗
x′j
∗
x′k ∈ C(U(g))′.

Then we have (d′)2 = 0 and (C(M ′), ad d′) is a cochain complex as well. Denote

by H•f (M)′ the corresponding cohomology.

Proposition 3.3.

(i) We have an algebra isomorphism H0
f (U(g))′ ∼= U(g, f).

(ii) For M ∈ HC, we have H i
f (M)′ = 0 for i 6= 0 and H0

f (M)′ ∼= H0
f (M)

as modules over U(g, f).

Proof. We may assume that M be a finitely generated as in the proof of

Theorem 3.2. Let K•M be a good Kazhdan filtration. In the same manner as

Theorem 3.2 one can show that

grK H
i
f (M)′ ∼=

(grKM/mχ grKM)adm for i = 0,

0 for i 6= 0,

where mχ is the ideal generated by x − χ(x) with x ∈ m. Since the natural

map (grKM/Īχ grKM)ad g>0 → (grKM/mχ grKM)adm is an isomorphism by

the argument of [GG02, 5.5], we have

grK H
0
f (M) ∼→ grK H

0
f (M)′(13)

as modules over C[Sf ].

Now in the same manner as in [AKM15, 3.2.5] one can construct a map

H0
f (M)→ H0

f (M)′, which induces the map (13), and hence must be an isomor-

phism. ForM=U(g), this gives an algebra isomorphismH0
f (U(g)) ∼→H0

f (U(g))′,

and for a general M , this gives the assertion (ii). �

Let Cχ be the one-dimensional representation of m defined by the character

χ. For M ∈ HC, the space

Whm(M) := M⊗U(m)Cχ
is equipped with a (U(g), U(g, f))-bimodule structure. Indeed, there is an

obvious left U(g)-module structure on Whm(M). To see the right U(g, f)-

module structure consider the space M⊗∧•(m), which is naturally a right
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module over C(U(g))′ = U(g)⊗Clm. Under this right module structure the

element d′ ∈ C(U(g))′ gives M⊗∧•(m) the chain complex structure, and

this complex is identical to the Chevalley complex for calculating the Lie al-

gebra m-homology H•(m,M⊗Cχ) with coefficient in the diagonal m-module

M⊗Cχ, where m acts on M by xm = −mx. The right C(U(g))′-action on

M⊗∧•(m) gives the right U(g, f)-action on H•(m,M⊗Cχ) — in particular,

on H0(m,M⊗Cχ) = Whm(M). This action obviously commutes with the left

U(g)-action.

By [Gin09], we have Hi(m,M⊗Cχ) = 0 for i 6= 0, M ∈ HC, and hence,

the functor

Whm : HC → (U(g), U(g, f)) -biMod, M 7→Whm(M)

is exact.

Let C be the full subcategory of g -Mod consisting of objects on which

x−χ(x) acts locally nilpotently for all x ∈ m. Here, for any algebra A, A -Mod

denotes the category of left A-modules. Note that Whm(M) with M ∈ HC
belongs to C when it is considered as a left g-module.

For an object M of C, consider the space M⊗∧•(m∗) as a (left) C(U(g))′-

module. The cochain complex (M⊗∧•(m∗), d′) is identical to the Chevalley

complex for calculating Lie algebra m-cohomology H•(m,M⊗C−χ) with coef-

ficient in the diagonal m-module M⊗C−χ. It follows that H•(m,M⊗C−χ) is

a module over U(g, f), and we have a functor

Whm : C → U(g, f) -Mod, M 7→ H0(m,M⊗C−χ).

By [Skr02], one knows that H i(m,M⊗C−χ) = 0 for i > 0, M ∈ C, and Whm

defines an equivalence of categories.

The following assertion can be proved in the same way as [Ara07, Th. 2.4.2]

using Proposition 3.3.

Proposition 3.4. For M ∈ HC, we have H0
f (M) ∼= Whm(Whm(M))) as

U(g, f)-bimodules.

Let

Y = Whm(U(g)) = U(g)⊗U(m)Cχ.

Then by Proposition 3.4 we obtain the usual realization of U(g, f):

U(g, f) ∼= Whm(Y ) ∼= EndU(g)(Y )op.(14)

The assignment U(g, f)-Mod → C, E 7→ Y⊗U(g,f)E, gives a functor that is

quasi-inverse to Whm ([Skr02]).
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Remark 3.5. By Proposition 3.4 and [Los11, 3.5], it follows that the func-

tor HC → U(g, f) -biMod, M 7→ H0
f (M), coincides with the functor •† con-

structed by Losev [Los11]. This observation enables us to improve the main

result of [Ara11]. The details will appear elsewhere.

Let I be a two-sided ideal of U(g). Then U(g)/I is a quotient algebra,

and thus, H0
f (U(g)/I) inherits the algebra structure from C(U(g)/I). On the

other hand, the exact sequence 0 → I → U(g) → U(g)/I → 0 induces the

exact sequence

0→ H0
f (I)→ U(g, f)→ H0

f (U(g)/I)→ 0

by Theorem 3.2. Hence we have the algebra isomorphism

(15) H0
f (U(g)/I) ∼= U(g, f)/H0

f (I).

Let CI denote the full subcategory of C consisting of objects that are

annihilated by I.

Theorem 3.6. For a two-sided ideal I of U(g), we have an equivalence

of categories
CI ∼= H0

f (U(g)/I) -Mod, M 7→Whm(M).

Proof. By (15), H0
f (U(g)/I) -Mod can be identified with the full subcat-

egory of U(g, f) -Mod consisting objects M that are annihilated by H0
f (I).

Thus, thanks to Skryabin’s equivalence, it is enough to check that Whm(M) ∈
H0
f (U(g)/I) -Mod for M ∈ CI and Y⊗U(g,f)E ∈ CI for E ∈ H0

f (U(g)/I) -Mod.

The former is easy to see. The latter follows from the proof of [Gin09, Th. 4.5.2].

�

4. Frenkel-Zhu’s bimodules and Zhu’s C2-modules

Recall that a vertex algebra is a vector space V equipped with an element

1 ∈ V called the vacuum, T ∈ End(V ), and a linear map

Y (?, z) : V → (EndV )[[z, z−1]], a 7→ Y (a, z) = a(z) =
∑
n∈Z

a(n)z
−n−1,

such that

(i) 1(z) = idV ;

(ii) a(n)b = 0 for n� 0, a, b ∈ V , and a(−1)1 = a;

(iii) (Ta)(z) = [T, a(z)] = d
dza(z) for a ∈ V ;

(iv) (z − w)n[a(z), b(w)] = 0 in End(V ) for n� 0, a, b ∈ V .

For a vertex algebra V we have the Borcherds identity
∞∑
i=0

Ç
p

i

å
(a(r+i)b)(p+q−i) =

∞∑
i=1

(−1)i
Ç
r

i

å
(a(p+r−i)b(q+i) − (−1)rb(q+r−i)a(p+i))

in EndV for all p, q, r ∈ Z, a, b, c ∈ V .



RATIONALITY OF W -ALGEBRAS 579

A module over a vertex algebra V is a vector space M equipped with a

linear map

YM (?, z) : V → (EndM)[[z, z−1]], a 7→ aM (z) =
∑
n∈Z

aM(n)z
−n−1,

such that YM (1, z) = idM , aM(n)m = 0 for n� 0, a ∈ V , m ∈M , and

∞∑
i=0

Ç
p

i

å
(a(r+i)b)

M
(p+q−i) =

∞∑
i=1

(−1)i
Ç
r

i

å
(aM(p+r−i)b

M
(q+i) − (−1)rbM(q+r−i)a

M
(p+i))

in EndM for all p, q, r ∈ Z, a, b, c ∈ V . In particular, V itself is a module over

V called the adjoint module. Let V -Mod be the abelian category of V -modules.

Below, if no confusion arises, we write a(n) for aM(n).

For a V -module M , set

C2(M) := spanC{a(−2)m|a ∈ V,m ∈M}.

Zhu’s C2-algebra [Zhu96] of V is by definition the space

RV =: V/C2(V )

equipped with the Poisson algebra structure given by

ā · b̄ = a(−1)b, {ā, b̄} = a(0)b for a, b ∈ V,

where ā = a+C2(V ). Zhu’s C2-module of M is the space M/C2(M) equipped

with the Poisson module structure over RV given by

ā · m̄ = a(−1)m, {ā, m̄} = a(0)m for a ∈ V, m ∈M.

A vertex algebra V is called finitely strongly generated if RV is finitely

generated as a ring; it is called rational if any V -module is completely re-

ducible; it is called C2-cofinite if Zhu’s C2-algebra RV is finite-dimensional.

The C2-cofiniteness condition is equivalent to the lisse condition in the sense

of [BFM] ([Ara12b]).

A vertex algebra V is called conformal if it is equipped with a vector

ω ∈ V , called the conformal vector, such that the corresponding field Y (ω, z) =∑
n∈Z Lnz

−n−2 satisfies the relation

[Lm, Ln] = (m− n)Lm+n +
(m3 −m)δm+n,0

12
cV for some cV ∈ C,

L−1 = T,

L0 is diagonalizable on V.

The number cV is called the central charge of V .
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In this paper we assume that a vertex algebra V is conformal and 1
2Z-

graded3 with respect to L0:

V =
⊕
d∈ 1

2
Z

Vd, Vd = {a ∈ V |L0a = da}.

For a homogeneous elements a ∈ V , we denote by wt(a) the eigenvalue of L0

on a.

A V -module M is called graded if

M =
⊕
d∈C

Md, Md = {m ∈M |(L0 − d)rm = 0, r � 0};

it is called positively graded if in addition there exists a finite set {d1, . . . , dr}
⊂C such that Md=0 unless d∈⋃r

i=1(di+
1
2Z≥0). If V is C2-cofinite, any finitely

generated V -module is positively graded ([ABD04]). Let V -gMod be the

abelian full subcategory of V -Mod consisting of positively graded V -modules,

Irr(V ) the set of isomorphism classes of simple objects of V -gMod.

Let A(V ) be the (L0-twisted) Zhu’s algebra of V ([FZ92], [DSK06]). By

definition,

A(V ) = V/O(V ),

where O(V ) is the subspace of V spanned by the vectors

a ◦ b :=
∑
i≥0

Ç
wt(a)

i

å
a(i−2)b

with homogeneous vectors a, b ∈ V . The multiplication ∗ of A(V ) is given by

a ∗ b =
∑
i≥0

Ç
wt(a)

i

å
a(i−1)b.

Let M be a V -module. Frenkel-Zhu’s bimodule [FZ92] associated to M is

the bimodule A(M) over A(V ) defined by

A(M) = M/O(M),

where O(M) is the subspace of M spanned by the elements

a ◦m :=
∑
i≥0

Ç
wt(a)

i

å
a(i−2)m,

3This is because W -algebras are 1
2
Z≥0-graded in general. However since principal

W -algebras are Z≥0-graded, it is enough to consider the Z-graded case in order to prove

the Main Theorem.
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with homogeneous vectors a ∈ V and m ∈ M . The bimodule structure of

A(M) is given by

a ∗m =
∑
i≥0

Ç
wt(a)

i

å
a(i−1)m, m ∗ a =

∑
i≥0

Ç
wt(a)− 1

i

å
a(i−1)m.(16)

Note that

a ∗m−m ∗ a =
∑
i≥0

Ç
wt(a)− 1

i

å
a(i)m.(17)

Lemma 4.1 ([FZ92, Prop. 1.5.4]). The assignment M 7→ A(M) defines a

right exact functor from V -Mod to A(V ) -biMod.

Zhu’s C2-algebra RV and Zhu’s algebra A(V ) are related as follows: Set

V≤p =
⊕
d≤p

Vd,

and let FpA(V ) be the image of V≤p in A(V ). Then F•A(V ) defines an increas-

ing, exhaustive 1
2Z-filtration of A(V ) satisfying (11) ([Zhu96]). (In the cases

that we will consider in this paper the filtration F•A(V ) will be separated as

well; this is true, for instance, if V is positively graded.) On the other hand,

the grading of V induces the grading of RV : RV =
⊕

p∈ 1
2
Z(RV )p, where (RV )p

is the image of Vp in RV : (RV )p ∼= Vp/C2(V )p, C2(V )p = C2(V ) ∩ Vp. The

linear map

(RV )p → FpA(V )/Fp−1/2A(V ), a+ C2(V )p 7→ a+O(V ) ∩ V≤p + V≤p−1/2

defines a surjective homomorphism

πV : RV � grF A(V )(18)

of graded Poisson algebras ([DSK06, Prop. 2.17(c)], [ALY14, Prop. 3.2]). It

follows that A(V ) is finite-dimensional if V is C2-cofinite.

For a graded V -module M =
⊕

d∈CMd, there is a similar relation between

M/C2(M) and A(M) as well: Set

M≤p =
⊕

d∈p− 1
2
Z≥0

Md,

and let FpA(M) be the image of M≤p in A(M). Then the space grF A(M) =⊕
p∈C FpA(M)/Fp−1/2A(M) is a graded Poisson module over grF A(V ) and

hence over RV by (18).

The following assertion can be proved in the same manner as [ALY14,

Prop. 3.2].
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Lemma 4.2. Let M be a graded V -module. The linear map Mp/C2(M)p→
FpA(M)/Fp−1/2A(M), m+C2(M)p 7→ m+O(M)∩M≤p +M≤p−1/2 defines a

surjective homomorphism

πM : M/C2(M) � grF A(M)

of Poisson modules over RV . Here C2(M)p = C2(M) ∩Mp.

Now assume for a moment that V is Z≥0-graded with respect to L0. Let

U(V ) =
⊕

d∈Z U(V )d be the current algebra [FZ92, MNT10] of V , which is

a degree-wise complete graded topological algebra. Then a V -module is the

same as a continuous representation of U(V ). Since

A(V ) ∼= U(V )0/
∑
p>0

U(V )pU(V )−p(19)

([NT05]), where U denotes the degree-wise closure of U , an A(V )-module E

can be regarded as a module over U(V )≤0 :=
⊕
p≤0
U(V )p on which U(V )p, p < 0,

acts trivially. Set

MV (E) := U(V )⊗U(V )≤0
E ∈ V -gMod,(20)

and let LV (E) be the unique simple quotient of MV (E). By Zhu’s theorem

[Zhu96], we have

Irr(V ) = {LV (E)|E ∈ Irr(A(V ))}(21)

where, for any algebra A, Irr(A) denotes the set of isomorphism classes of

simple objects of A -Mod.

5. The effect of shifts of conformal vector

to Frenkel-Zhu’s bimodules

Let V be a 1
2Z-graded conformal vertex algebra with conformal vector ω.

Suppose that there exists an element ξ ∈ V that satisfies the conditions

Lnξ = δn,0ξ, ξ(n)ξ = κδn,11 for n ∈ Z≥0,

with some κ ∈ C, and that ξ(0) acts semisimply on V with eigenvalues in

Z. Then one can “shift” the conformal vector ω by 1
2L−1ξ to obtain a new

conformal vector. Namely,

ωξ := ω +
1

2
ξ(−2)1

also defines a conformal vector of V , with central charge cnew = cold − 3κ,

where cold is the central charge of V with respect to ω.

Although the definition of Zhu’s algebra and Frenkel-Zhu’s bimodules de-

pend on the choice of a conformal vector, the above shift of a conformal vector

does not change the structure of Zhu’s algebra nor Frenkel-Zhu’s bimodules as
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we show below: For a V -module M let Anew(M) (temporary) denote Frenkel-

Zhu’s bimodule of M with respect to the conformal vector ωξ and let Aold(M)

(temporary) denote Frenkel-Zhu’s bimodule with respect to the conformal vec-

tor ω.

Let ∆(z) be Li’s ∆-operator [Li97] associated with ξ:

∆(z) = z
ξ(0)

2 exp

Ñ∑
n≥1

ξ(n)

−2n
(−z)n

é
.

Proposition 5.1.

(i) The map V → V , a 7→ ∆(1)a, induces an algebra isomorphism

Aold(V ) ∼→ Anew(V ).

(ii) Let M be a V -module on which ξ(0) acts semisimply. Then the map

M →M , m 7→ ∆(1)m, induces an Aold(V )(∼= Anew(V ))-bimodule iso-

morphism

Aold(M) ∼→ Anew(M).

Proposition 5.1 follows from the following lemma.

Lemma 5.2. Let M be a V -module on which ξ(0) acts semisimply. Then

∆(1)(a ◦old m) = (∆(1)a) ◦new (∆(1)m),

∆(1)(a ∗old m) = (∆(1)a) ∗new (∆(1)m),

∆(1)(m ∗old a) = (∆(1)m) ∗new (∆(1)a)

for a ∈ V , m ∈ M . Here ◦old and ∗old (respectively, ◦new and ∗new) are oper-

ations (16) with respect to the grading defined by L0,old (respectively, L0,new).

Here Y (ω, z) =
∑
n∈Z Ln,oldz

−n−2, Y (ωξ, z) =
∑
n∈Z Ln,newz

−n−2.

Proof. Let m be a homogeneous vector of M such that ξ(0)m = 2λm.

Then wt(m)new = wt(m)old − λ, where wt(m)new and wt(m)old denote the

eigenvalue of L0,new and L0,old on m, respectively. Write

exp

Ñ∑
n≥1

ξ(n)

−2n
(−z)−n

é
=

∑
n≥0

unz
−n,

with un ∈ C[ξ(1), ξ(2), . . . , ]. Since we have

∆(1)Y (a, z) = Y (∆(z + 1)a, z)∆(1)(22)
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for any a ∈ V by [Li97, Prop. 3.2], we have

∆(1)(a ◦old m) = ∆(1) Resz=0(Y (a, z)
(z + 1)wt(a)old

z2
m)

= Resz(∆(1)Y (a, z)
(z + 1)wt(a)old

z2
m)

= Resz=0(Y (∆(z + 1)a, z)
(z + 1)wt(a)old

z2
∆(1)m)

=
∑
n≥0

Resz=0(Y (una, z)
(z + 1)wt(a)old+λ−n

z2
∆(1)m)

=
∑
n≥0

Resz=0(Y (una, z)
(z + 1)wt(una)new

z2
∆(1)m)

= (∆(1)a) ◦new (∆(1)m).

The proof of the other equalities is similar. �

6. Affine vertex algebras

Let ĝ be the nontwisted affine Kac-Moody algebra associated with g and

( | ):

ĝ = g[t, t−1]⊕CK.
The commutation relations of ĝ are given by

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K for x, y ∈ g,m, n ∈ Z,
[K, ĝ] = 0.

We consider g as a subalgebra of ĝ by the embedding g ↪→ ĝ, x 7→ xt0.

For k ∈ C, define

V k(g) = U(ĝ)⊗U(g[t]⊕CK)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK on which g[t] acts

trivially and K acts as a multiplication by k. There is a unique vertex algebra

structure on V k(g) such that 1 := 1⊗1 is the vacuum and

Y (xt−11, z) = x(z) :=
∑
n∈Z

(xtn)z−n−1

for x ∈ g. The vertex algebra V (g) is called the universal affine vertex algebra

associated with g at level k.

A V k(g)-module is the same as a smooth ĝ-module of level k, where by a

smooth ĝ-module M we mean a ĝ-module M such that (xtn)m = for n � 0,

x ∈ g, m ∈M .

We have

C2(M) = g[t−1]t−2M(23)
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for a V k(g)-module M . It follows that the assignment x 7→ (xt−1)1, x ∈ g,

gives the isomorphism of Poisson algebras

C[g∗] ∼→ RV k(g) = V k(g)/g[t−1]t−2V k(g).(24)

We will identify RV k(g) with C[g∗] through the above isomorphism. The Pois-

son module structure of M/C2(M) = M/g[t−1]t−2M over C[g∗] is then given

by

x · m̄ = (xt−1)m, {x, m̄} = (xt0)m

for x ∈ g, m ∈M .

We will assume that k is noncritical, that is, k 6= −h∨g , unless otherwise

stated, although this condition is not essential. The standard conformal vector

ωg of V k(g) is given by the Sugawara construction:

ωg =
1

2(k + h∨g )

∑
i

(Xit
−1)(Xit−1)1,

where {Xi} is a basis of g, {Xi} the dual bases with respect to ( | ). This gives

a Z≥0-grading on V k(g).

We have [FZ92] the natural isomorphism of algebras

A(V k(g)) ∼= U(g).(25)

This can also be seen using (19) from the fact that the current algebra of

V k(g) is isomorphic to the standard degree-wise completion [MNT10] ‡Uk( )̂g

of Uk(ĝ) := U(ĝ)/(K − k id). For a g-module E, we have

MV k(g)(E) ∼= U(ĝ)⊗U(g[t]⊕CK)E,(26)

where E is considered as a g[t]⊕CK-modules on which K acts as the multi-

plication by k and g[t]t acts trivially.

Let Nk(g) be the unique maximal ideal of V k(g). Then

L(kΛ0) := V k(g)/Nk(g)

is a simple vertex algebra called the (simple) affine vertex algebra associated

with g at level k.

Let KLk be the full subcategory of the category of V k(g) -gMod consisting

of objects M on which g ⊂ ĝ acts locally finitely. By (26), MV k(g)(E) is an

object of KLk for a finite-dimensional g-module E.

The following assertion is clear.

Lemma 6.1.

(i) The assignment M 7→ M/C2(M) defines a right exact functor from KLk
to HC.

(ii) The assignment M 7→A(M) defines a right exact functor from KLk to HC.
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Let KL∆
k be the full subcategory of KL consisting of modules that admit a

finite filtration 0 = M0 ⊂M1 ⊂ . . .Mr = M such that Mi/Mi+1
∼= MV k(g)(E)

for some finite-dimensional representation Ei for each i. Note that the adjoint

module V k(g) is an object of KL∆
k and that M ∈ KLk belongs to KL∆

k if and

only if it is a free U(g[t−1]t−1)-module of finite rank.

Lemma 6.2.

(i) Let M be an object of KL∆
k . Then πM : M/C2(M) → grF A(M) is an

isomorphism.

(ii) Let 0 → M1 → M2 → M3 → 0 be an exact sequence in KL∆
k . Then the

induced sequence 0→ A(M1)→ A(M2)→ A(M3)→ 0 is exact as well.

(iii) Let M be a finitely generated object of KLk. Then A(M) is finitely gen-

erated as a left (or a right) U(g)-module.

Proof. (i) Let F•O(M) be the filtration of O(M) induced by the filtration

{M≤p} of M , grF O(M) =
⊕
p FpO(M)/Fp−1/2O(M). The freeness of M over

U(g[t−1]t−1) implies that a(−2)m 6= 0 for any nonzero elements a ∈ V k(g),

m ∈M . Hence grF O(M) = C2(M) ⊂M = grF M and the assertion follows.

(ii) It is sufficient to show that the induced sequence

(27) 0→ grF A(M1)→ grF A(M2)→ grF A(M3)→ 0

is exact. Since 0 → M1 → M2 → M3 → 0 is an exact sequence of free

U(g[t−1]t−1)-modules, it induces an exact sequence

0→M1/C2(M1)→M2/C2(M2)→M3/C2(M3)→ 0

by (23). By (i), this prove the exactness of (27).

(iii) Since it is finitely generated, M is a quotient of an object of KL∆. By

the right exactness of the functor A(?) it is enough to show the assertion for

objects of KL∆. By (ii) it then suffices to show the assertion for the modules

of the form M = MV k(g)(E). But this follows from [FZ92, Th. 3.2.1]. �

Let {e, f, h} be the sl2-triple defined in Section 2. In the definition of

W -algebras Wk(g, f) below we shift the conformal vector ωg of V k(g) to the

conformal vector

(28) ωg,h = ωg +
1

2
(ht−2)1

to give a well-defined conformal vector of Wk(g, f). We will identify Frenkel-

Zhu’s bimodules of M ∈ KLk with respect to ωg,h with Frenkel-Zhu’s bimodules

with respect to ωg through Proposition 5.1 and denote both of them by A(M).
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7. W -algebras and Poisson modules over Slodowy slices

For a V k(g)-module M , let (Cch(M), Q(0)) be the BRST complex of the

(generalized) quantized Drinfeld-Sokolov reduction associated with (g, f) de-

fined in [FF90], [KRW03]. We have

Cch(M) = M⊗Dch⊗
∧∞

2
+•
,

where Dch is the βγ-system of rank 1
2 dim g1/2 and

∧∞
2

+• is the space of semi-

infinite forms associated with g>0⊕ g∗>0. The vertex algebra Dch is freely

generated by the fields φi(z) with i = 1, . . . ,dim g1/2 (corresponding to the

basis {xi} of g1/2) satisfying the OPE’s

φi(z)φj(w) ∼ χ([xi, xj ])

z − w
.

The space
∧∞

2
+• of semi-infinite forms is a vertex superalgebra freely generated

by the odd fields ψ1(z), . . . , ψdim g>0(z) (corresponding to the basis {xi} of

g>0) and ψ∗1(z), . . . , ψ∗dim g>0
(z) (corresponding to the dual basis {x∗i } of g∗>0)

satisfying the OPE’s

ψi(z)ψ
∗
j (w) ∼ δij

z − w
, ψi(z)ψj(w) ∼ ψ∗i (z)ψ∗j (w) ∼ 0.

The differential Q(0) is the zero-mode of the fields

Q(z) =
∑
n∈Z

Q(n)z
−n−1

:=
dim g>0∑
i=1

(xi(z) + φi(z))ψ
∗
i (z)−

1

2

∑
1≤i,j,k≤dim g>0

ckijψ
∗
i (z)ψ

∗
j (z)ψk(w).

Here we have omitted the tensor product symbol and have put φi(z) = χ(xi)

for i > dim g1/2. (Note that in the formula of Q(z) above there is no need to

take the normal ordering because of the existence of the structure constant ckij .)

By abuse of notation we also denote by H0
f (M) the cohomology of the

complex (Cch(M), Q(0)).

The W -algebra associated with (g, f) at level k is by definition

Wk(g, f) = H0
f (V k(g)).(29)

The space Wk(g, f) inherits the vertex algebra structure from Cch(V k(g)). The

vertex algebra Wk(g, f) is conformal with the conformal vector ωW defined by

ωW = ωg,h + ωD + ω∧∞
2 +• ,
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where

Y (ωD, z) =
1

2

dim g1/2∑
i=1

: ∂zφ
i(z)φi(z),

Y (ω∧∞
2 +• , z) = −

dim g>0∑
i=1

mi : ψ∗i (z)∂zψi(z) : +
dim g>0∑
i=1

mi : ∂zψ
∗
i (z)ψi(z) : .

Here φi(z) is the field of D corresponding to the vector xi ∈ g1/2 such that

χ([xi, xj ]) = δij , mi = j if xi ∈ gj , and we have used the state-field correspon-

dence. Here the conformal vector ωg of V k(g) has been shifted to ωg,h so that

Q(0)ωW = 0.

By definition the assignmentM 7→H0
f (M) gives a functor from V k(g) -Mod

to Wk(g, f) -Mod.

For a V k(g)-module M , consider Zhu’s C2-module Cch(M)/C2C
ch(M)

over the Poisson superalgebra RCch(V k(g)). Since we have Q(0)C2C
ch(M) ⊂

C2C
ch(M), Cch(M)/C2C

ch(M) is a quotient complex, which is by definition

isomorphic to the complex (C̄(M/C2(M)), ad d̄) studied in Section 2. We have

the obvious map

η̄M : H0
f (M)/C2H

0
f (M)→ H0

f (M/C2(M)).

For the adjoint module M = V k(g), η̄V k(g) gives the isomorphism

ηV k(g) : RWk(g,f)
∼→ C[Sf ]

([DSK06]). It follows that η̄M is a homomorphism of Poisson modules over

C[Sf ].

Theorem 7.1 ([Ara15]).

(i) We have H i
f (M) = 0 for i 6= 0, M ∈ KLk. In particular, the functor

KLk →Wk(g, f) -Mod, M 7→ H0
f (M) is exact.

(ii) For M ∈ KLk, η̄M gives the isomorphism

H0
f (M)/C2(H0

f (M)) ∼= H0
f (M/C2(M))

of Poisson modules over C[Sf ].

Let N be an ideal of V k(g). By Theorem 7.1(i), H0
f (N) embeds into

Wk(g, f), and we have the isomorphism

H0
f (V k(g)/N) ∼= Wk(g, f)/H0

f (N)(30)

of vertex algebras. In particular,

H0
f (L(kΛ0)) ∼= Wk(g, f)/H0

f (Nk(g)).
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8. Quantized Drinfeld-Sokolov reduction and Frenkel-Zhu’s

bimodules associated with W -algebras

For a V k(g)-moduleM , consider theA(Cch(V k(g)))-bimoduleA(Cch(M)).

Since we have Q(0)O(Cch(M)) ⊂ O(Cch(M)), (A(Cch(M)), Q(0)) is a quotient

complex, which is isomorphic to the complex (C(A(M)), ad d) studied in Sec-

tion 2 where, throughout this section, A(M) denotes Frenkel-Zhu’s bimodule

associated with M with respect to the conformal vector (28). Consider the map

ηM : A(H0
f (M)) → H0

f (A(M)),

[c] +O(H0
f (M)) 7→ [c+O(C(M))].

For the adjoint module M = V k(g), ηV k(g) gives the isomorphism

A(Wk(g, f)) ∼→ U(g, f)(31)

of algebras ([Ara07, DSK06], or see Proposition 8.4(ii) below). It follows that

ηM is a homomorphism of U(g, f)-bimodules.

We can now state the main result of this section.

Theorem 8.1. For any object M of KLk, ηM gives the isomorphism

A(H0
f (M))) ∼= H0

f (A(M))

of U(g, f)-bimodules.

Remark 8.2. Theorem 8.1 holds at the critical level k = −h∨g as well by

considering the outer grading as in [Ara05], [Ara07].

To avoid confusion we denote by K•A(M) (instead by F•A(M)) the fil-

tration of A(M) with respect to the grading defined by the conformal vector

(28) for M ∈ KLk.

Lemma 8.3.

(i) The filtration K•A(V k(g)) coincides with the Kazhdan filtration of U(g) =

A(V k(g)).

(ii) Let M be an object of KLk. Then K•A(M) is a Kazhdan filtration of

A(M). It is good if M is finitely generated.

Proof. (i) and the first assertion of (ii) is easily seen from the definition.

To see the second assertion of (ii) observe that M/C2(M) is a finitely generated

C[g∗]-module for a finitely generated object M of KLk. Hence so is grK A(M)

by Lemma 4.2. �

Proposition 8.4.

(i) For an object M of KLk, ηM : A(H0
f (M))→ H0

f (A(M)) is surjective.

(ii) For an object M of KL∆
k , ηM : A(H0

f (M)) → H0
f (A(M)) is an isomor-

phism.
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Proof. (i) First, suppose that M is finitely generated. By Lemma 8.3,

K•A(M) is a good Kazhdan filtration of A(M). Hence we have

grK H
0
f (A(M)) ∼= H0

f (grK A(M))(32)

by Theorem 3.2. Here grK H
0
f (A(M)) is the associated graded with respect to

the induced filtration KpH
0
f (A(M)) = Im(H0

f (KpA(M))→ H0
f (A(M))). Since

ηM (KpA(H0
f (M))) ⊂ KpH

0
f (A(M)), ηM induces a homomorphism

grK ηM : grK A(H0
f (M))→ grK H

0
f (A(M)).

It is enough to show that gr ηM is surjective.

Consider the surjection

πM : M/C2(M) � grK A(M).

Since both M/C2(M) and grK A(M) are objects of HC, this induces the sur-

jection

H0
f (πM ) : H0

f (M/C2(M)) � H0
f (grK A(M)) ∼= grK H

0
f (A(M))

by Theorem 2.3.

Now we have the following commutative diagram:

H0
f (M)/C2(H0

f (M))
π
H0
f

(M)

−−−−−→ grK A(H0
f (M))

η̄M

y ygr ηM

H0
f (M/C2(M))

H0
f (πM )
−−−−−→ grK H

0
f (A(M)).

(33)

Since η̄M is an isomorphism by Theorem 7.1(ii), it follows that gr ηM is sur-

jective as required.

Next, let M be an arbitrary object of KLk. There exists a sequence of

finitely generated objects M0 ⊂ M1 ⊂ M2 ⊂ · · · in KLk such that M =⋃
iMi. Since (co)homology functor commutes with injective limits, A(M) =

lim−→
i

A(Mi), H
0
f (M)=lim−→

i

H0
f (Mi), A(H0

f (M))=lim−→
i

A(H0
f (Mi)), and H0

f (A(M))

= lim−→
i

H0
f (A(Mi)). This proves the assertion.

(ii) By Lemma 6.2(i) H0
f (πM ) is an isomorphism. Hence the commuta-

tivity of (33) implies that πH0
f

(M) and gr ηM are isomorphisms, and hence, so

is ηM . �

Proof of Theorem 8.1. As in the proof of Proposition 8.4 it is sufficient to

show the case that M is finitely generated. Then there exists an exact sequence

0→ N → V →M → 0(34)
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in the category KLk with V ∈ KL∆
k . By the right exactness of the functor A(?)

this yields an exact sequence

A(N)→ A(V )→ A(M)→ 0

in the category HC. Applying the exact functor H0
f (?) : HC → U(g, f) -biMod

(Theorem 3.2) to the above sequence we obtain an exact sequence

H0
f (A(N))→ H0

f (A(V ))→ H0
f (A(M))→ 0.

On the other hand, by applying the exact functor H0
f (?) : KLk→Wk(g, f) -Mod

(Theorem 7.1) to (34) we obtain the exact sequence

0→ H0
f (N)→ H0

f (V )→ H0
f (M)→ 0.

This yields an exact sequence

A(H0
f (N))→ A(H0

f (V ))→ A(H0
f (M))→ 0.(35)

Now we have the following commutative diagram:

A(H0
f (N)) −−−−→ A(H0

f (V )) −−−−→ A(H0
f (M)) −−−−→ 0

ηN

y ηV

y ηM

y
H0
f (A(N)) −−−−→ H0

f (A(V )) −−−−→ H0
f (A(M)) −−−−→ 0.

(36)

By Proposition 8.4, ηN and ηM are surjective and ηV is an isomorphism. As

the horizontal sequences are exact, it follows that ηM is an isomorphism. This

completes the proof. �

For an ideal N of V k(g), let JN denote the image of A(N) in A(V k(g))

= U(g), so that

A(V k(g)/N) = U(g)/JN .(37)

Note that H0
f (V k(g)/N) is a quotient vertex algebra of Wk(g, f) provided it is

nonzero (see (30)).

Theorem 8.5. For any ideal N of V k(g), we have the isomorphism of

algebras

A(H0
f (V k(g)/N)) ∼= U(g, f)/H0

f (JN ).

Proof. Set L = V k(g)/N . By Theorem 8.1,

A(H0
f (L)) ∼= H0

f (A(L)),

and by Theorem 3.2 the exact sequence 0→ JN → U(g)→ A(L)→ 0 induces

the exact sequence

0→ H0
f (JN )→ U(g, f)→ H0

f (A(L))→ 0.

This completes the proof. �
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The following assertion follows immediately from Theorems 3.6 and 8.5.

Theorem 8.6. For any ideal N of V k(g), we have the equivalence of

categories

CJN ∼→ A(H0
f (V k(g)/N)) -Mod, M 7→Whm(M).

A quasi-inverse functor is given by E 7→ Y⊗U(g,f)E.

9. Varieties associated with Zhu’s algebras

of admissible affine vertex algebras

Let g = n−⊕ h⊕ n be a triangular decomposition of g with Cartan subal-

gebra h, ∆ the set of roots of g, ∆+ the set of positive roots of g, W the Weyl

group of g, Q∨ ⊂ h the coroot lattice of g, P∨ ⊂ h the coweight lattice of g,

and ρ the half sum of positive roots of g, ρ∨ the half sum of positive coroots of

g. For λ ∈ h∗, let Mg(λ) be the Verma module of g with highest weight λ ∈ h∗,

Lg(λ) the unique simple quotient of Mg(λ).

Let ĥ = h⊕CK be the Cartan subalgebra of ĝ, ĥ∗ = h∗⊕CΛ0 the dual

of ĥ, where Λ0(K) = 1, Λ0(h) = 0. Let “∆re be the set of real roots in the dual

h̃∗ of the extended Cartan subalgebra h̃ of ĝ, “∆re
+ the set of positive real roots,

Ŵ = W n Q∨ the Weyl group of ĝ, W̃ = W n P∨ the extended Weyl group

of ĝ, and ρ̂ = ρ+ h∨Λ0. For λ ∈ ĥ∗, let “∆(λ) = {α ∈ “∆re|〈λ+ ρ̂, α∨〉 ∈ Z}, the

set of integral roots of λ, Ŵ (λ) = 〈sα|α ∈ “∆(λ)〉 ⊂ Ŵ the integral Weyl group

of λ, where sα is the reflection with respect to α. Denote by λ̄ the restriction

of λ ∈ ĥ∗ to h.

Set

ĥ∗k = {λ ∈ ĥ∗|λ(K) = k},

the set of weights of ĝ of level k. For λ ∈ ĥ∗k, let L(λ) be the irreducible

representation of ĝ with highest weight λ. Clearly, L(λ) is irreducible as a

V k(g)-module.

A weight λ ∈ ĥ∗ is called admissible if (1) λ is regular dominant, that is,

〈λ+ ρ̂, α∨〉 6∈ {0,−1,−2,−3, . . . } for all α ∈ “∆re
+ , and (2) Q“∆(λ) = Q“∆re. The

admissible weights of ĝ were classified in [KW89]. The module L(λ) is called

admissible if λ is admissible. Admissible representations are (conjecturally all)

modular invariant representations of ĝ ([KW89]).

A number k is called admissible for ĝ if kΛ0 is an admissible weight. By

[KW08, Prop. 1.2], k is an admissible number for ĝ if and only if

k + h∨ =
p

q
, p, q ∈ N, (p, q) = 1, p ≥

h∨g if (r∨, q) = 1,

hg if (r∨, q) = r∨.
(38)

A number k of the form (38) is called an admissible number with denominator q.
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For an admissible number k of ĝ, let Prk be the set of admissible weights

λ of level k such that “∆(λ) ∼= “∆(kΛ0) as root systems.

Theorem 9.1 ([Ara12a]). Let k be an admissible number for ĝ, λ ∈ ĥ∗k.

Then L(λ) is a module over the vertex algebra L(kλ0) if and only if λ ∈ Prk.

In particular, the vertex operator algebra L(kΛ0) is rational in the category O
of ĝ as conjectured in [AM95].

By Zhu’s theorem, the first statement of Theorem 9.1 is equivalent to that

Lg(λ) with λ ∈ h∗ is a module over A(L(kΛ0)) if and only if λ + kΛ0 ∈ Prk.
On the other hand, by Duflo’s theorem [Duf77] any primitive ideal of U(g) is

the annihilating ideal of some irreducible highest weight module Lg(λ). Hence

Theorem 9.1 implies the following.

Corollary 9.2. Let k be an admissible number for ĝ. A simple U(g)-

module M is an A(L(kΛ0))-module if and only if AnnU(g)M = AnnU(g) Lg(λ̄)

for some λ ∈ Prk.

Let k be an admissible number for ĝ. We shall determine

VarA(L(kΛ0)) := Specm(grF A(L(kΛ0)))(∼= Specm(grK A(L(kΛ0)))),

which is a G-invariant, conic, Poisson subvariety of g∗.

Recall [Ara12b] that the associated variety XV of a finitely strongly gen-

erated vertex algebra V is defined as

XV = Specm(RV ).

Note that V is C2-cofinite if and only if XV is zero-dimensional.

By (18), VarA(L(kΛ0)) is a subvariety of XL(kΛ0), which is also a G-invar-

iant, conic, Poisson subvariety of g∗.

Let us identify g∗ with g through ν, and let N ⊂ g∗ = g be the nilpotent

cone.

By a conjecture of Feigin and Frenkel proved in [Ara15] we have

XL(kΛ0) ⊂ N for an admissible number k for ĝ.

In fact the following holds.

Theorem 9.3 ([Ara15]). Let k be an admissible number for ĝ. Then

XL(kΛ0) is an irreducible subvariety of N that depends only on the denominator

q of k; that is, there exist a nilpotent element fq of g such that

XL(kΛ0) = AdG.fq.
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More explicitly, we have

XL(kΛ0) =

{x ∈ g|(adx)2q = 0} if (q, r∨) = 1,

{x ∈ g|πθs(x)2q/r∨ = 0} if (q, r∨) = r∨,

where θs is the highest short root of g and πθs : g→ EndC(Lg(θs)) is the finite

dimensional irreducible representation of g with highest weight θs.

Theorem 9.3 has the following important consequence [Ara15]. By Theo-

rems 2.3 and 7.1 we have

XH0
f

(L(kΛ0))
∼= XL(kΛ0) ∩ Sf .(39)

Hence the transversality of Sf with G-orbits (see [GG02]) implies the following.

Theorem 9.4 ([Ara15]). Let k be an admissible number with denomina-

tor q. Then the vertex algebra H0
fq

(L(kΛ0)) is a nonzero C2-cofinite quotient

of Wk(g, f).

Now we are in a position to state the main result of this section.

Theorem 9.5. Let k be an admissible number for ĝ with denominator q.

We have an isomorphism of affine varieties

VarA(L(kΛ0)) ∼= XL(kΛ0).

Proof. By Theorem 9.3, it is sufficient to show the following assertion.

Proposition 9.6. Let f be any nilpotent element of g, and let k be any

complex number. The following conditions are equivalent :

(i) XL(kΛ0) ⊃ AdG.f .

(ii) Var(A(L(kΛ0))) ⊃ AdG.f .

Proof. Clearly (ii) implies (i) as VarA(L(kΛ0))) ⊂ XL(kΛ0). Conversely,

suppose that XL(kΛ0) ⊃ AdG.f . Since VarA(L(kΛ0)) is G-invariant and

closed, it is sufficient to show that the point f ∈ g = g∗ is contained in

VarA(L(kΛ0)). By (39), XH0
f

(L(kΛ0)) contains f , and hence, H0
f (L(kΛ0)) is

nonzero. It follows that A(H0
f (L(kΛ0))) = H0

f (A(L(kΛ0))) is nonzero as

well. Since VarH0
f (A(L(kΛ0))) = VarA(L(kΛ0)) ∩ Sf by Theorem 3.2(i),

VarA(L(kΛ0)) intersects Sf nontrivially. As VarH0
f (A(L(kΛ0))) is invari-

ant under the natural C∗-action on Sf that is contracting to f (see [Gin09]),

VarA(L(kΛ0)) must contain the point f as required. �

Conjecture 1. For a finitely strongly generated simple vertex operator

algebra V of CFT type, we have VarA(V )(:= Specm grF (A(V ))) ∼= XV .
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Note that Conjecture 1, in particular, implies the widely believed fact

that a finitely strongly generated rational vertex operator algebra of CFT type

must be C2-cofinite.

10. Proof of the Main Theorem

In this section we let f = fprin, a principal nilpotent element of g,

Wk(g) = Wk(g, fprin) = H0
fprin

(V k(g)),

and Wk(g) = the unique simple quotient of Wk(g)

as in the introduction. The vertex algebra Wk(g) is Z≥0-graded by L0, where

Y (ωW, z) =
∑
n∈Z

Lnz
−n−2.

The central charge c(k) of Wk(g) is given in the introduction. We have the

isomorphisms

C[g∗]G ∼→ C[Sf ] = H0(C̄(C[g∗]), ad d̄) ∼= RWk(g), p 7→ p⊗1,

Z(g) ∼→ U(g, fprin) = H0(C(U(g)), ad d) ∼= A(Wk(g)), z 7→ z⊗1

([Kos78], see also [Ara07]), where Z(g) denotes the center of U(g). We will

identify A(Wk(g)) with Z(g) through the above isomorphism.

For a central character γ : Z(g) → C, let Cγ be the one-dimensional

representation of Z(g) defined by γ. Put

MW(γ) = MWk(g)(Cγ), LW(γ) = LWk(g)(Cγ)

(see Section 4). We have

Irr(Wk(g)) = {LW(γλ)|λ ∈ h∗/W − ρ},

where γλ : Z(g)→ C is the evaluation at Mg(λ). Note that

Wk(g) ∼= LW(γ−(k+h∨g )ρ∨);

see [Ara07, 5.4].

Theorem 10.1. Let N be an ideal of V k(g). Suppose that H0
fprin

(V k(g)/N)

6= 0, so that H0
fprin

(V k(g)/N) is a quotient vertex algebra of Wk(g) (see (30)).

We have

Irr(H0
fprin

(V k(g)/N)) = {LW(γ)|U(g) ker γ ⊃ JN}.

(Here JN is defined in Section 8; see (37).)
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Proof. Recall Skryabin’s equivalence for f = fprin in Section 3:

Z(g) -Mod ∼→ C, E 7→ Y⊗Z(g)E,

which goes back to Kostant [Kos78]. In particular, {Yγ |γ ∈ h∗/W − ρ} gives

the complete set of isomorphism classes of simple object of C, where Yγ =

Y⊗Z(g)Cγ . We have [Kos78]

AnnU(g) Yγ = U(g) ker γ.

Therefore Yγ is annihilated by JN if and only if JN ⊂ U(g) ker γ. In other

words, {Yγ |U(g) ker γ ⊃ JN} gives the complete set of isomorphism classes of

simple objects of CJN . By Theorem 8.6 this is equivalent to the fact that

Irr(A(H0
f (V k(g)/N))) = {Cγ |U(g) ker γ ⊃ JN}.

This completes the proof. �

Recall that XL(kΛ0) ⊂ N for an admissible number k for ĝ (Theorem 9.3).

An admissible number k is called nondegenerate if

XL(kΛ0) = N = AdG.fprin.

From Theorem 9.3 and the fact that

(θ|ρ∨) = hg − 1, (θs|ρ∨) = h∨Lg − 1,(40)

where θ is the highest root of g, it follows that an admissible number k is

nondegenerate if and only if k satisfies

q ≥

hg if (q, r∨) = 1,

r∨h∨Lg if (q, r∨) = r∨,

where q is the denominator of k; that is, k is of the form (1).

Theorem 10.2. Let k be an admissible number for ĝ. Then H0
fprin

(L(kΛ0))

6= 0 if and only if k is nondegenerate. If this is the case, then

H0
fprin

(L(kΛ0)) ∼= Wk(g).

Moreover, Wk(g) is C2-cofinite.

Proof. The fact that H0
fprin

(L(kΛ0)) ∼= Wk(g) for a nondegenerate admis-

sible number k was proved in [Ara07, Th. 9.1.4]. The rest of the assertion is

the special case of Theorem 9.4. �

Let

Prknondeg = {λ ∈ Prk|〈λ, α∨〉 6∈ Z for all α ∈ ∆},

the set of nondegenerate admissible weights [FKW92, Lemma 1.5] of level k. It

is known [FKW92] that Prknondeg is nonempty if and only if k is nondegenerate.

Put

PrkW = {γλ̄|λ ∈ Prknondeg}.
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Then ]PrkW = ]Prknondeg/]W since W acts on Prknondeg freely (by the dot

action).

The irreducible representations {LW(γ)|γ ∈ PrkW } are called minimal se-

ries representations of Wk(g). In [Ara07] we have verified the conjectural

character formula of minimal series representations of Wk(g) given by Frenkel-

Kac-Wakimoto [FKW92]. (In fact the main result of [Ara07] gives the character

of all LW(γ); see Theorem 10.8 and Corollary 10.9 below.)

Remark 10.3. The module LW(γ) with γ ∈ PrkW admits a two-sided reso-

lution in terms of free field realizations [Ara14]. However we do not need this

result.

Theorem 10.4. Let k be a nondegenerate admissible number for ĝ, γ a

central character of Z(g). Then LW(γ) is a module over Wk(g) if and only if

it is a minimal series representation of Wk(g), that is,

Irr(Wk(g)) = {LW(γ)|γ ∈ PrkW}.

Proof. Set Jk = JNk(g), so that

A(L(kΛ0)) = U(g)/Jk.

By Theorem 10.2, we have Wk(g) = H0
fprin

(V k(g)/Nk(g)). Hence Theorem 10.1

gives that

Irr(Wk(g)) = {LW(γ)|U(g) ker γ ⊃ Jk}.
Now recall that λ̄ ∈ h∗ is called anti-dominant if 〈λ̄ + ρ, α∨〉 6∈ N for all

α ∈ ∆+. Clearly, for any central character γ : Z(g) → C, there exists an

anti-dominant λ̄ ∈ h∗ such that γ = γλ̄. It is well known that Lg(λ̄) = Mg(λ̄)

for an anti-dominant λ̄ and that

AnnU(g)Mg(λ̄) = U(g) kerχλ̄.

We have

{LW(γ)|U(g) ker γ ⊃ Jk}
= {LW(γλ̄)|λ̄ ∈ h∗, λ̄ is anti-dominant, AnnU(g) Lg(λ̄) ⊃ Jk} (by the above)

= {LW(γλ̄)|λ̄ ∈ h∗, λ̄ is anti-dominant, Lg(λ̄) is an A(L(kΛ0))-module}

= {LW(γλ̄)|λ ∈ ĥ∗, λ̄ is anti-dominant, L(λ) is an L(kΛ0)-module}

= {LW(γλ̄)|λ ∈ Prk, λ̄ is anti-dominant} (by Theorem 9.1)

= {LW(γλ̄)|λ ∈ Prknondeg} = {LW(γ)|γ ∈ PrkW}.

This completes the proof. �

Theorem 10.5. For a nondegenerate admissible number k for ĝ, Zhu’s

algebra A(Wk(g)) is semisimple.
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In order to prove Theorem 10.5, we consider the Lie algebra homology

functor

g-Mod→ Z(g)-Mod, M 7→ H0(n−,M).

Since Mg(λ) is free over U(n−),

Hi(n−,Mg(λ)) ∼=

Cγλ for i = 0,

0 for i > 0.
(41)

Lemma 10.6. Let λ ∈ h∗ be regular, that is, 〈λ+ρ, α∨〉 6= 0 for all α ∈ ∆.

Then for an exact sequence 0→ Cγλ
φ1→ E

φ2→ Cγλ → 0 of Z(g)-modules, there

exists an exact sequence 0 → Mg(λ) → N → Mg(λ) → 0 of g-modules such

E ∼= H0(n−, N) as Z(g)-modules.

Proof. Choose homogeneous generators p1, . . . , prk g of of Z(g). Let

Υ : Z(g) ∼→ S(h)W

be the Harish-Chandra isomorphism, so that zvλ = Υ(z)(λ+ρ)vλ for z ∈ Z(g),

where vλ is the highest weight vector of Mg(λ). Set v = φ1(1), and fix v′ ∈ E
such that φ2(v′) = 1. Then there exists d1, . . . , drk g ∈ C such that

piv
′ = Υ(pi)(λ+ ρ)v′ + div.

Let us identify S(h) with C[α∨1 , . . . , α
∨
rk g]. It is well known that

det(
∂Υ(pi)

∂α∨j
)1≤i,j≤rk g = C

∏
α∈∆+

α∨,(42)

where C is some nonzero constant. The hypothesis on λ implies that the value

of (42) at λ+ ρ is nonzero. It follows that there exists some µ ∈ h∗ such that

Υ(pi)(λ+ tµ+ ρ) = Υ(pi)(λ+ ρ) + tdi +O(t2)(43)

for all i = 1, . . . , rk g.

Let A = C[t], hA = h⊗CA. Denote by Aλ+tµ the hA-module that is a

rank one free A-module on which h ∈ h acts as multiplication by the scalar

λ(h) + tµ(h). Set M = Aλ+tµ/t
2Aλ+tµ, and view M as an h-module. Observe

that tM ∼= Cλ and we have the exact sequence

0→ tM →M → Cλ → 0(44)

of h-modules. Set

N = U(g)⊗U(b)M,

where b = h⊕ n and M is regarded as a b-module via the natural surjection

b→ h. Applying the induction functor U(g)⊗U(b)? to (44) we obtain the exact



RATIONALITY OF W -ALGEBRAS 599

sequence

0→Mg(λ)→ N →Mg(λ)→ 0(45)

of g-modules. Next applying the functor H0(n, ?) we get the exact sequence

0→ Cγλ → H0(n−, N)→ Cγλ → 0

of Z(g)-modules by (41). By construction, H0(n−, N) ∼= E as required. �

Proposition 10.7. For λ ∈ Prk, we have L(λ) ∼= ML(kΛ0)(Lg(λ̄)) (see

(20)).

Proof. We have a surjective map

MV k(g)(Lg(λ̄)) = U(ĝ)⊗U(g[t]⊕CK)Lg(λ̄) �ML(kΛ0)(Lg(λ̄))

of ĝ-modules. It follows that ML(kΛ0)(Lg(λ̄)) is an object of O of ĝ. Being

a L(kΛ0)-module, ML(kΛ0)(Lg(λ̄)) decomposes into a direct sum of admissible

representations by Theorem 9.1. Since it is generated by the highest weight

vector of Lg(λ̄), ML(kΛ0)(Lg(λ̄)) must be isomorphic to L(λ). �

Proof of Theorem 10.5. Since Wk(g) = H0
fprin

(L(kΛ0)) is C2-cofinite by

Theorem 9.4, Zhu’s algebra A(Wk(g)) is finite-dimensional. Also, we have

shown that Irr(A(Wk(g))) = {Cγ |γ ∈ PrkW} in Theorem 10.4.

Let λ ∈ Prknondeg, and let

0→ Cγλ̄ → E → Cγλ̄ → 0(46)

be an exact sequence of A(Wk(g))-modules. We need to show that this se-

quence splits.

Recall that Lg(λ̄) = Mg(λ̄) for λ ∈ Prknondeg. By Lemma 10.6 there exists

an exact sequence

0→ Lg(λ̄)→ N → Lg(λ̄)→ 0(47)

of g-modules that yields the exact sequence (46) by applying the functor

H0(n−, ?). Since AnnU(g) Lg(λ̄) = U(g) ker γλ, we have

AnnU(g)N = U(g) AnnZ(g)E.(48)

On the other hand, by applying the exact functor Y⊗Z(g)? to (46) we obtain

the exact sequence of A(L(kΛ0))-modules

0→ Yγλ̄ → Y⊗Z(g)E → Yγλ̄ → 0

by Theorem 8.6. It follows similarly that

AnnU(g)(Y⊗Z(g)E) = U(g) AnnZ(g)E.(49)
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From (48) and (49), it follows that N is a module over A(L(kΛ0)) as well, and

(47) is an exact sequence of A(L(kΛ0))-modules. Therefore by applying the

functor U(L(kΛ0))⊗U(L(kΛ0))≤0
? to (47) we obtain an exact sequence

0→ L(λ)→ML(kΛ0)(N)→ L(λ)→ 0(50)

of L(kΛ0)-modules by Proposition 10.7. Here the map L(λ) → ML(kΛ0)(N)

is injective since L(λ) is simple. Now, thanks to Gorelik and Kac [GK11], an

admissible ĝ-module does not admit a nontrivial self-extension. Therefore (50)

must split. Restricting (50) we see that (47) splits and, therefore, (46) splits

as well. This completes the proof. �

Let Ok be the full subcategory of category O of ĝ consisting of modules

of level k, which can be regarded as a full subcategory of V k(g) -Mod. Let

H0
−(?) : Ok → Wk(g)-Mod be the quantized Drinfeld-Sokolov “−”-reduction

functor [FKW92].

Recall the following result.

Theorem 10.8 ([Ara07]). Let k be any complex number.

(i) The functor H0
−(?) : Ok →Wk(g)-Mod is exact.

(ii) For λ ∈ ĥ∗k, H0
−(M(λ)) ∼= MW(γλ̄).

(iii) For λ ∈ ĥ∗k, H0
−(L(λ)) ∼=

LW(γλ̄) if λ̄ is anti-dominant,

0 otherwise.

Let [M(λ) : L(µ)] (resp. [MW(γ) : LW(γ′)]) be the multiplicity of L(µ)

(resp. LW(γ′)) in the local composition factor of M(λ) (resp. in the local com-

position factor of MW(γ)).

Corollary 10.9. Let λ, µ ∈ ĥ∗k, and suppose that µ̄ is anti-dominant.

Then

[MW(γλ̄) : LW(γµ̄)] = [M(λ) : L(µ)].

Proof. Since chM(λ) =
∑
µ[M(λ) : L(µ)] chL(µ), we have

ch MW(γλ̄) =
∑

µ∈“W (λ)◦λ
µ̄ is anti-dominant

[M(λ) : L(µ))] ch LW(γµ̄).

It remains to observe that if µ, µ′ ∈ Ŵ (λ) ◦ λ, γµ̄ = γµ̄′ , and µ̄ and µ̄′ are both

anti-dominant, then µ = µ′. �

Theorem 10.10. Let k be a nondegenerate admissible number for ĝ. The

simple vertex operator algebra Wk(g) is rational.

Proof. By Theorem 10.2, it is sufficient to show that

Ext1
Wk(g) -Mod(LW(γ),LW(γ′)) = 0 for LW(γ),LW(γ′) ∈ Irr(Wk(g)).
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By Theorem 10.4, we can write γ = γλ̄, γ = γλ̄′ with λ, λ′ ∈ Prknondeg. Let

0→ LW(γ′)→ N → LW(γ)→ 0(51)

be an exact sequence of Wk(g)-modules.

Let ∆γ be the L0-eigenvalue of the lowest weight vector vγ of LW(γ),

which is a rational number. Suppose that ∆γ < ∆γ′ , and choose a vector

v ∈ N∆γ such that the image of v in LW(γ) is vγ . Then there is a Wk(g)-

module homomorphism MW(γ) → N that sends the highest weight vector of

MW(γ) to v. If (51) is nonsplitting, N must coincide with the image of MW(γ).

In particular, [MW(γ) : LW(γ′)] 6= 0. By Corollary 10.9, this is equivalent to

[M(λ) : L(λ′)] 6= 0. This forces that λ = λ′ since both λ and λ′ are dominant

weighs of ĝ. This contradicts the assumption that ∆γ < ∆γ′ .

By applying the duality functor D(?) to (51), we see that the same ar-

gument applies to show that Ext1
Wk(g)-Mod(LW(γ),LW(γ′)) = 0 in the case

∆γ > ∆γ′ .

Finally, suppose that ∆γ = ∆γ′ =: ∆. Then we have the exact sequence

0→ LW(γ′)∆ → N∆ → LW(γ)∆ → 0.

The semisimplicity of A(Wk(g)) (Theorem 10.5) implies that the above se-

quence splits. Therefore (51) splits as well. This completes the proof. �

The Main Theorem follows immediately from Theorems 10.4, 10.5 and

10.10. �
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