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Almost contact 5-manifolds are contact

By Roger Casals, Dishant M. Pancholi, and Francisco Presas

Abstract

The existence of a contact structure is proved in any homotopy class of

almost contact structures on a closed 5-dimensional manifold.

1. Introduction

Let (M2n+1, ξ) be a cooriented contact manifold with associated contact

form α, i.e., ξ = kerα. This structure determines a symplectic distribution

(ξ, dα|ξ) ⊂ TM . Any change of the associated contact form α does not change

the conformal symplectic class of dα restricted to ξ. This allows us to choose

a compatible almost complex structure J ∈ End(ξ). Thus given a cooriented

contact structure we obtain in a natural way a reduction of the structure group

Gl(2n + 1,R) of the tangent bundle TM to the group U(n) × {1}, which is

unique up to homotopy; see [Gei08, Prop. 2.4.8]. A manifold M is said to

be an almost contact manifold if the structure group of its tangent bundle

can be reduced to U(n)× {1}. In particular, cooriented contact manifolds are

almost contact manifolds and such a reduction of the structure group of the

tangent bundle of a manifold M is a necessary condition for the existence of a

cooriented contact structure on M . It is unknown whether this condition is in

general sufficient. See, however, the recent development [BEM14].

Nevertheless there are cases in which the existence of an almost contact

structure is sufficient for the manifold to admit a contact structure. For ex-

ample, if the manifold M is open, then one can apply Gromov’s h-principle

techniques to conclude that the condition is sufficient. See the result 10.3.2

in [EM02]. The scenario is quite different for closed almost contact manifolds.

Using results of Lutz [Lut77] and Martinet [Mar71] one can show that every

cooriented tangent 2-plane field on a closed oriented 3-manifold is homotopic to
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a contact structure. A good account of this result from a modern perspective

is given in [Gei08]. For manifolds of higher dimensions there are various re-

sults establishing the sufficiency of the condition. Important instances of these

are the construction of contact structures on certain principal S1-bundles over

closed symplectic manifolds due to Boothby and Wang [BW58], the existence

of a contact structure on the product of a contact manifold with a surface of

genus greater than zero following Bourgeois [Bou12] and the existence of con-

tact structures on simply connected 5-dimensional closed orientable manifolds

obtained by Geiges [Gei91] and its higher dimensional analogue [Gei97a].

Let us turn our attention to 5-manifolds since the main goal of this article

is to show that any orientable almost contact 5-manifold is contact. In this case

H. Geiges has been studying existence results in other situations apart from the

simply connected one. In [GT98] a positive result is also given for spin closed

manifolds with π1 = Z2, and spin closed manifolds with finite fundamental

group of odd order are studied in [GT01]. On the other hand, there is also

a construction of contact structures on an orientable 5-manifold occurring as

a product of two lower dimensional manifolds by Geiges and Stipsicz [GS10].

While Geiges used the topological classification of simply connected manifolds

for his results in [Gei91], one of the ingredients in [GS10] is a decomposition

result of a 4-manifold into two Stein manifolds with common contact bound-

ary [AM], [Bay06].

Being an almost contact manifold is a purely topological condition. In fact,

the reduction of the structure group can be studied via obstruction theory. For

example, in the 5-dimensional situation a manifold M is almost contact if and

only if the third integral Steifel–Whitney class W3(M) vanishes. Actually, us-

ing this hypothesis and the classification of simply connected manifolds due

to D. Barden [Bar65], H. Geiges deduces that any manifold with W3(M) = 0

can be obtained by Legendrian surgery from certain model contact manifolds.

Though this approach is elegant, it seems quite difficult to extend these ideas

to produce contact structures on any almost contact 5-manifold. We therefore

propose a different approach: the existence of an almost contact pencil struc-

ture on the given almost contact manifold is the required topological property

to produce a contact structure. The tools appearing in our proof use techniques

from three different sources:

- the approximately holomorphic techniques developed by Donaldson in the

symplectic setting [Don96], [Don99] and adapted in [IMTP00], [Pre14] to

the contact setting to produce the so-called quasi contact pencil ;

- Eliashberg’s classification of overtwisted 3-dimensional manifolds [Eli89] to

produce overtwisted contact structures on the fibres of the pencil;

- the canonical structure of the space of contact elements in a 3-manifold (see

[Lut83]).



ALMOST CONTACT 5-MANIFOLDS ARE CONTACT 431

Let us state the main result.

Theorem 1.1. Let M be a closed oriented 5-dimensional manifold. There

exists a contact structure in every homotopy class of almost contact structures.

In particular, closed oriented almost contact 5-manifolds are contact. It

is important to emphasize that using the techniques developed in this article,

it is not possible to conclude anything about the number of distinct contact

distributions that may occur in a given homotopy class of almost contact distri-

butions. The result states that there is at least one, the article [Pre07] provides

examples with more. It follows from the construction that the contact struc-

ture is PS-overtwisted [Nie06], [NP10], and therefore it is nonfillable.

Remark 1.2. The data given by an almost contact structure is tantamount

to that of a hyperplane subbundle of the tangent bundle endowed with a com-

plex structure [Gei08]. An almost contact structure will refer to either the

reduction of the structure group or to such distribution. In the course of the

article the distributions are supposed to be coorientable and Section 10 con-

tains the corresponding results for noncoorientable distributions.

The proof of Theorem 1.1 consists of a constructive argument in which

we obtain the contact condition step by step. These steps correspond to the

sections of the paper as follows:

- To begin with, we explain how to produce over any almost contact 5-mani-

fold (M, ξ) an almost contact fibration over S2 with singularities of some

standard type. It is defined on the complement of a link. The definition and

properties of this almost contact fibration — in fact, an almost contact pen-

cil — is the content of Sections 2 and 3. The details of the actual construc-

tion are not provided and the reader is referred to [IMT04b], [MT09], [Pre14]

for the proofs. The existence of such a pencil is the input data of this article.

- In Section 4, we produce a first deformation of the almost contact structure

ξ to obtain a contact structure in a neighborhood of the singularities of the

fibration and in a neighborhood of the link.

- The neighborhood of the link has the structure of a base locus of a pencil

occurring in algebraic or symplectic geometry. In order to provide a Lef-

schetz type fibration we blow up the base locus. This requires the notion

of a contact blowup. For the purposes of the article, it will be enough to

define an appropriate contact surgery of the 5-manifold along a transverse

S1. This is the content of Section 5.

- Away from the critical points, the distribution splits as ξ = ξv ⊕H, where

ξv is the restriction of the distribution to the fibres and H is the symplectic

orthogonal. Section 6 deals with a deformation of ξv to produce a con-

tact structure in the fibres. It strongly uses the classification of overtwisted

contact manifolds due to Eliashberg [Eli89].
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- In Section 7 we begin to deform the horizontal direction H. This is done

in two steps. Given a suitable cell decomposition of the base S2, we first

deform H in the pre-image of a neighborhood of the 1-skeleton. Section 7

contains this first step.

- The contact condition still has to be achieved in the pre-image of the 2-cells.

This is the second step. The contact structure used in order to fill the pre-

image of the 2-cells is constructed in Section 8. This construction uses the

contact structure of the space of contact elements of the 3-dimensional fibre.

- In Section 9 we obtain a contact structure on the surgered 5-manifold using

the results obtained in Section 8. Then we reverse the blowup surgery and

construct the contact structure on the initial 5-manifold. Theorem 1.1 is

concluded.

- In Section 10 we deal with the case of noncoorientable distributions. We

introduce the suitable definitions and explain the noncoorientable version

of Theorem 1.1.

The more technical results on this article are contained on Sections 5, 6

and 8. Section 7 (resp. Section 9) is also essential but the exposition can be

made less technical, and the reader should be able to readily comprehend it

once Sections 5 and 6 (resp. Section 8) are understood. Section 6 and 7 can be

understood without Section 5, and Section 8 can be read almost independently.

The work in this article was presented in the Spring 2012 AIM Workshop

on higher dimensional contact geometry. In its course, J. Etnyre commented

on a possible alternative approach in the framework of Giroux’s program using

an open book decomposition. The argument has been subsequently written

and it is the content of the article [Etn].

Acknowledgements. The authors are grateful to Y. Eliashberg, J. Etnyre,

E. Giroux and H. Geiges for valuable conversations. We are also indebted

to the referee for meaningful suggestions. The second author is also grateful

to M. S. Narasimhan and T. R. Ramadas for their constant support and en-

couragement. The proof of Theorem 9.3 was outlined to us by Y. Eliashberg.

The original work lacked the construction of the homotopy in the case that

2-torsion existed in H2(M,Z). This case was proven after a useful discussion

with J. Etnyre at the AIM Workshop. The present work is part of the authors

activities within CAST, a Research Network Program of the European Science

Foundation. The second and third author acknowledge the financial support

provided by the Moduli IRSES Marie Curie project.

2. Preliminaries

2.1. Quasi-contact structures. LetM be an almost contact manifold. There

exists a choice of a symplectic distribution (ξ, ω) ⊂ TM for such a manifold.

Namely, we can find a 2-form η on ξ with the property that η is nondegenerate
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and compatible with the almost complex structure J defined on ξ. By extending

η to a form on M we can find a 2-form ω on M such that (ξ, ω|ξ) becomes

a symplectic vector bundle. This form ω is not necessarily closed. The triple

(M, ξ, ω) is also said to be an almost contact manifold. In other words, an

almost contact structure is meant to be a triple (ξ, J, ω) for some ω as discussed.

The choice of almost complex structure J is homotopically unique, and it might

be omitted. An almost contact manifold is subsequently described by a triple

(M, ξ, ω).

In order to construct a contact structure out of an almost contact one,

the first step is to provide a better 2-form on M. That is, we replace ω by a

closed 2-form.

Definition 2.1. A manifoldM2n+1 admits a quasi-contact structure if there

exists a pair (ξ, ω) such that ξ is a codimension 1-distribution and ω is a closed

2-form on M that is nondegenerate when restricted to ξ.

Notice that a quasi-contact pair (ξ, ω) admits a compatible almost con-

tact structure; i.e., there exists a J that makes (ξ, J, ω) into an almost contact

structure. These manifolds have also been called 2-calibrated [IMT04a] in the

literature. The following lemma justifies the appearance of the previous defi-

nition.

Lemma 2.2. Every almost contact manifold (M, ξ0, ω0) admits a quasi-

contact structure (ξ1, ω1) homotopic to (ξ0, ω0) through symplectic distribu-

tions, and the class [ω1] can be fixed to be any prescribed cohomology class

a ∈ H2(M,R).

Proof. Let j : M −→M×R be the inclusion as the zero section. Consider

a not-necessarily closed 2-form ω̃0 such that ω0 = j∗ω̃0. Fix a Riemannian

metric g over M such that ξ0 and kerω0 are g-orthogonal.

Apply Gromov’s classification result of open symplectic manifolds to pro-

duce a 1-parametric family {ω̃t}1t=0 of symplectic forms such that for t = 1,

the form is closed. See [EM02, Cor. 10.2.2]. Let π : M × R −→ M be the

projection, and choose the cohomology class defined by ω̃1 to be π∗a. Consider

the family of 2-forms ωt = j∗ω̃t on M. Since ω̃t is nondegenerate on M × R
for each t, the form ωt has 1-dimensional kernel kerωt. Define ξt = (kerωt)

⊥g.

Then (ξt, ωt) provides the required family. �

This is the farthest one can reach by the standard h-principle argument in

order to find contact structures on a closed manifold. One can start with the

almost contact bundle ξ = kerα and use Lemma 2.2 to find a 2-form dβ such

that (ξ, dβ) is a symplectic bundle, but in general there is no way to relate α

and β. This is the aim of the article.
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2.2. Obstruction theory. The content of Theorem 1.1 has two parts. The

statement implies the existence of a contact structure in an almost contact

manifold. This is a result in itself, regardless of the homotopy type of the

resulting almost contact distribution. The construction we provide in this

article also concludes that the obtained contact distribution lies in the same

homotopy class of almost contact distributions as the original almost contact

structure. This is achieved via the study of an obstruction class. Let us review

some well-known facts.

Let M be a smooth oriented 5-manifold and π : TM −→ M its tangent

bundle. The projection π is considered to be an SO(5)-principal frame bundle.

An almost contact structure is a reduction of the structure group G = SO(5)

to a subgroup H ∼= U(2) × {1} ∼= U(2). The isomorphism classes of almost

contact structures are parametrized by the homotopy classes of such reductions.

A reduction of the structure group G to a subgroup H is tantamount to a

section of a G/H-bundle over M . Hence the classification of almost contact

structures on M is reduced to the study of homotopy classes of sections of a

SO(5)/U(2)-bundle over M .

Lemma 2.3. There exists a diffeomorphism SO(5)/U(2) ∼= CP3.

See [Gei08, Prop. 8.1.3] for the proof of this lemma.

The homotopy groups πi(CP3) = 0 for 1 ≤ i ≤ 6, i 6= 2, hence the existence

of sections of a fibre bundle with typical fibre CP3 over the 5-manifold M is

controlled by the primary obstruction class d = W3(M) ∈ H3(M,π2(CP3)) ∼=
H3(M,Z). The hypothesis of Theorem 1.1 is d = 0.

Let sξ and sξ′ be two sections of this CP3-bundle. The obstruction class

dictating the existence (or the lack thereof) of a homotopy between them is

the primary obstruction d(ξ, ξ′) ∈ H2(M,Z). The obstruction theory argument

can be made relative to a submanifold A ⊂ M . Given a self-indexing Morse

function for the pair (M,A), we consider the relative j-skeleton Mj defined as

the union of A and the cores of the handles of the critical points of index less

or equal than j. We have the following

Lemma 2.4. Consider a relative 2-skeleton M2 for the pair (M,A), and

let sξ , sξ′ be two sections of a CP3-bundle over M that are homotopic over M2.

Then sξ and sξ′ are also homotopic over (M,A).

Let (M, ξ) be an almost contact structure. The construction of the contact

structure ξ′ obtained in Theorem 1.1 does not modify the homotopy class of

the given section, i.e., sξ ∼ sξ′ . In Section 8 we provide a detailed account

on the modification of the obstruction class d(ξ, ξ′) in the 2-skeleton of certain

pieces of M where ξ′ has been constructed. This is enough to conclude that

d(ξ, ξ′) = 0 once ξ′ is extended to M in Section 9.
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2.3. Homotopy of vector bundles. The argument constructing the homo-

topy between the initial almost contact structure and the resulting contact

distribution in Theorem 1.1 uses the following lemma. It is used in several

parts of Sections 4 to 9.

Let (V, ω) be an oriented vector space of dimension dimR V = 4. Consider

a splitting V = V0⊕V1 with V0, V1 two oriented 2-dimensional vector subspaces.

Since Sp(2,R)/SO(2) is contractible, the space of symplectic structures on V

such that V0 and V1 are symplectic orthogonal subspaces is contractible. This

essentially implies the following

Lemma 2.5. Let M be an almost contact 5-manifold, A an open subman-

ifold of M , and (ξ0, ω0), (ξ1, ω1) two almost contact structures on M such that

there exists a homotopy {ξt} of oriented distributions on (M,A) connecting ξ0

and ξ1. Suppose that there exist L0 and L1 two rank-2 symplectic subbundles of

ξ0 and ξ1 and a homotopy {Lt} ⊂ {ξt} of oriented distributions connecting L0

and L1 on (M,A). Then there is a path {ωt} of symplectic structures on {ξt}
such that {(ξt, ωt)} is a path of almost contact structures connecting (ξ0, ω0)

and (ξ1, ω1) on (M,A).

Proof. Consider J0 and J1 two compatible complex structures on the sym-

plectic distributions ξ0 and ξ1 respectively. These define two fibrewise scalar-

product structures

g0 = ω0(·, J0·) and g1 = ω1(·, J1·)
on ξ0 and ξ1. The space of fibrewise scalar-product structures has contractible

fibre, namely, Gl+(4,R)/SO(4), and thus it is contractible. Hence, there ex-

ists a homotopy {gt} of fibrewise scalar-products connecting g0 and g1. The

scalar-product gt provides an orthogonal decomposition ξt = Lt ⊕ L
⊥gt
t . The

homotopy of oriented bundles {Lt} induces a homotopy of oriented bundles

{L⊥gtt } respecting the symplectic splitting given by ω0 and ω1 on ξ0 and ξ1.

�

2.4. Notation. Let R2n be the 2n-dimensional Euclidean space, and let

B2n(r) = {p ∈ R2n : ‖p‖ ≤ r} denote the closed ball of radius r centered at

the origin. The 2-dimensional balls are also referred to as disks and denoted

by D2(r). In case the radius is omitted, B2n and D2 denote the ball and disk

of radius 1 respectively.

3. Quasi-contact pencils

Approximately holomorphic techniques have been extremely useful in sym-

plectic geometry. Their main application in contact geometry — due to

E. Giroux — is to establish the existence of a compatible open book for a

contact manifold in higher dimensions. See [Col08], [Gir02], [Pre14]. An open

book decomposition is a way of trivializing a contact manifold by fibering
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it over S1. Such objects have also been studied in the almost contact case;

see [MTMnP04].

There exists a construction [Pre02] in the contact case analogous to the

Lefschetz pencil decomposition introduced by Donaldson over a symplectic

manifold [Don99]. It is called a contact pencil, and it allows us to express

a contact manifold as a singular fibration over S2. It has been extended in

[IMT04b], [MT09], [Pre14] to the quasi-contact setting. Theorem 3.5 and

Corollary 3.7 in this section provide the existence of a quasi-contact pencil

with suitable properties. Let us begin with the appropriate definitions.

Definition 3.1. An almost contact submanifold of an almost contact man-

ifold (M, ξ, ω) is an embedded submanifold j : S −→M such that the induced

pair (j∗ξ, j∗ω) is an almost contact structure on S.

A quasi-contact submanifold of a quasi-contact manifold is defined anal-

ogously. In particular, this implies in both cases that the submanifold S is

transverse to the distribution ξ.

A chart φ : (U, p) −→ V ⊂ (Cn×R, 0) of an atlas of M is compatible with

the almost contact structure (ξ, ω) at a point p ∈ U ⊂ M if the push-forward

at p of ξp by φ is Cn×{0} and the 2-form φ∗ω(p) is a positive (1, 1)-form with

respect to the canonical almost complex structure.

Definition 3.2. An almost contact pencil on a closed almost contact man-

ifold (M2n+1, ξ, ω) is a triple (f,B,C) consisting of a codimension-4 almost

contact submanifold B, called the base locus, a finite set C of smooth trans-

verse curves and a map f : M\B −→ CP1 conforming the following conditions:

(1) The map f is a submersion on the complement of C and the fibres f−1(p),

for any p ∈ CP1, are almost contact submanifolds at the regular points.

(2) The set f(C) is a finite union of locally smooth curves with transverse

self-intersections.

(3) At a critical point p∈C⊂M , there exists a compatible chart φp such that

(f ◦ φ−1
p )(z1, . . . , zn, s) = f(p) + z2

1 + · · ·+ z2
n + g(s),

where g : (R, 0) −→ (C, 0) is an immersion at the origin.

(4) Each b ∈ B has a compatible chart to (Cn×R, 0) under which B is locally

cut out by {z1 = z2 = 0} and f corresponds to the projectivization of the

first two coordinates, i.e., locally f(z1, . . . , zn, t) = z2
z1

.

Remark 3.3. Quasi-contact pencils for quasi-contact manifolds and con-

tact pencils for contact manifolds are defined by replacing the expression almost

contact by the suitable one in each case.

The generic fibres of f are open almost contact submanifolds, and the

closures of the fibres at the base locus are smooth. This is because the local
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z2

z1

t

Figure 1. Fibres close to the base locus B = {z1 = z2 = 0}.

model (4) in Definition 3.2 is a parametrized elliptic singularity and the fibres

come in complex lines {z2 = const. · z1} joining at the origin. We refer to the

compactified fibres so constructed as the fibres of the pencil. See Figure 1.

In dimension 5, each compactified smooth fibre is a smooth 3-manifold

containing B as a link and any two different compactified fibres intersect trans-

versely along B. Note that if we remove a tubular neighborhood of C in M , the

compactified fibre over a neighborhood of a point in f(C) becomes a smooth

manifold whose boundary is a (union of) 2-tori. This boundary component

can be filled by solid tori at any regular fibre.

Notice that the set of critical values ∆ = f(C) are no longer points, as in

the symplectic case, but immersed curves. This is because of Condition (3) in

Definition 3.2. In particular, the usual isotopy argument between two fibres

does not apply unless their images are in the same connected component of

CP1\∆. This has been studied in the contact and quasi-contact cases. The

set C is a positive link and therefore ∆ is also oriented. There is a partial

order in the complement of ∆: a connected component P0 is less or equal

than a connected component P1 if P0 and P1 can be connected by an oriented

path γ ⊂ CP1 intersecting ∆ only with positive crossings. The proposition

that follows has only been proved for the contact and quasi-contact cases. An

analogous statement probably remains true in the almost contact setting. It

is provided to offer some geometric insight about contact and quasi-contact

pencils, but it is not used in the rest of the article.
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Proposition 3.4 ([Pre02, Prop. 6.1]). Let M be a quasi-contact manifold

equipped with a quasi-contact pencil (f,B,C). Then if two regular values of f ,

P0 and P1, are separated by a unique curve of ∆, then the two corresponding

fibres F0 = f−1(P0) and F1 = f−1(P1) are related by an index n− 1 surgery.

Suppose that the manifold and the pencil are contact. Then the surgery is

Legendrian and it attaches a Legendrian sphere to F0 if P0 is smaller than P1.

See Figure 2.

P1

∆

P0

Figure 2. According to the orientations, the fibre F1 = f−1(P1)

is obtained via a Legendrian surgery on the fibre F0 = f−1(P0).

In the contact case it implies that the crossing of a singular curve in the

fibration amounts to a directed Weinstein cobordism. In the quasi-contact case

no such orientation appears. For instance, the case in which the quasi-contact

distribution is a foliation — in dimension 3 this is a taut foliation — becomes

absolutely symmetric and there is no difference in crossing one way or the

other.

Examples. The following two constructions yield simple instances of con-

tact pencils:

(1) Consider a closed symplectic manifold (M,ω) with [ω] of integral class

and a symplectic Lefschetz pencil (f,B,C) on (M,ω) as constructed in

[Don99]. Consider the circle bundle S(L) associated to ω with its Boothby–

Wang contact structure (S(L), ξω), defined in [BW58], and the projection

π : S(L) −→M . Then the triple

(π∗f, π−1(B), π−1(C))

is, after a small perturbation of π∗f , a contact pencil for (S(L), ξω).

(2) Given two generic complex polynomials in Cn of high enough degree, we

can construct the associated complex pencil (f,B,C). Suppose that the

base points set B contains the origin, and denote the standard embedding

of the radius r sphere by er : S2n−1 −→ Cn. Then for a generic radius ρ > 0,

the triple (e∗ρf, e
−1
ρ (B),Crit(e∗ρ(f))) is a contact pencil for (S2n−1, ξst).
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Consider a quasi-contact structure (M, ξ, ω). The main existence result

[IMT04b], [MT09], [Pre14] can be stated as

Theorem 3.5. Let (M, ξ, ω) be a quasi-contact manifold with [ω] rational.

Given an integral cohomology class a ∈ H2(M,Z), there exists a quasi-contact

pencil (f,B,C) such that the fibres are Poincaré dual to the class a+ k[ω] for

any k ∈ N large enough.

The basic construction goes as follows. Consider a line bundle V whose

first Chern class equals a, and denote by L a Hermitian line bundle over M

whose curvature is −iω. The pencil is constructed using a suitable approxi-

mately holomorphic section σk1⊕σk2 : M −→ C2⊗(Lk⊗V ); this requires k ∈ N
to be large enough. The pencil map is fk = [σk1 : σk2 ] : M \ Bk −→ CP1, and

the base locus is Bk = {p ∈ M : σk1 (p) = σk2 (p) = 0}. A point p ∈ M maps

to [σk1 (p) : σk2 (p)] ∈ CP1. This is well defined if p is not contained in the base

locus Bk. The construction is detailed in [Pre14].

The proof of this result does not work in the almost contact setting. In

order to construct the pencil, the approximately holomorphic techniques are

essential and for them to work we need the closedness of the 2-form ω (so as to

be able to construct the line bundle L). In general, a quasi-contact pencil may

have empty base locus. Nevertheless a pencil obtained through approximately

holomorphic sections on a higher dimensional manifold does not.

The following lemma will be useful.

Lemma 3.6. Let (M, ξ, ω) be an almost contact 5-manifold, (f,B,C) an

almost contact pencil adapted to it and obtained from a section s1 ⊕ s2 of the

bundle C2 ⊗ det(ξ), and so the base locus is defined as B = Z(s1 ⊕ s2) and

the pencil map is f := [s1 : s2] : M \ B → CP1. Then the Chern class of ξF
vanishes for any regular fibre (F, ξF ).

Proof. Let F be a regular fibre of f ; this fibre is defined as the zero set of

the section sλ = λ1s1 + λ2s2 for a fixed [λ1 : λ2] ∈ CP1. This is a section of

the bundle det(ξ). Along this fibre F , the distribution ξ satisfies

c1(ξ)|F = c1(ξF ) + c1(νF ).

The statement follows from c1(νF ) = c1(det ξ)|F = c1(ξ)|F inserted in the

previous equation. �

In case the form ω of the quasi-contact structure is exact — then called

an exact quasi-contact structure — we obtain the following

Corollary 3.7. Let (M, ξ, ω) be an exact quasi-contact closed manifold.

Then it admits a quasi-contact pencil such that any smooth fibre F satisfies

c1(ξF ) = 0. Further, the base locus B is nonempty if dimM is greater than 3.
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Proof. We use Theorem 3.5 to construct a pencil such that the cohomology

class a ∈ H2(M,Z) is fixed to be a = c1(ξ) = c1(det ξ). Since ω is exact, thus

L ∼= C, we obtain that the section defining the pencil s1⊕ s2 is a section of the

bundle C2 ⊗ (det ξ ⊗ Lk) = C2 ⊗ det(ξ). Lemma 3.6 implies that the almost

contact structure induced in the regular fibres of the pencil has vanishing first

Chern class.

Let us prove the nonemptiness of the set B. It is explained in [IMT04b],

[IMTP00] that the submanifold B = Z(σk1⊕σk2 ) satisfies a Lefschetz hyperplane

theorem. (This follows from the fact that it is asymptotically holomorphic.)

It implies that whenever the dimension of M is greater than 3, the morphism

H0(B) −→ H0(M)

is surjective. Hence we conclude that B is not the empty set. �

The triviality of the Chern class of the quasi-contact structures on the

fibres and the nonemptiness of B are used in the construction of the contact

structure.

4. Base locus and critical loops

Let (M, ξ, ω) be an exact quasi-contact 5-manifold and (f,B,C) a quasi-

contact pencil on it. Assume that B 6= ∅ and c1(ξF ) = 0 for a regular fibre F

of f . Such a pencil is provided in Corollary 3.7. A fair amount of control on

the almost contact structure can be achieved in the neighborhood of the base

locus and the critical loops.

Definition 4.1. A submanifold i : S −→M of an almost contact manifold

(M, ξ, ω) is said to be contact if it is an almost contact submanifold and there

is a choice of adapted form α for ξ in a neighborhood U of S, i.e., ξ|U = kerα,

such that (dα)|U = ω|U .

An additional property in our almost contact pencil can then be required.

Definition 4.2. An almost contact pencil (f,B,C) on (M, ξ, ω) is called

good if B 6= ∅, any smooth fibre F satisfies c1(ξF ) = 0 and B and C are contact

submanifolds of (M, ξ, ω).

The following lemma provides a perturbation achieving a suitable almost

contact pencil.

Lemma 4.3. Let (M, ξ, ω) be a quasi-contact closed 5-dimensional mani-

fold, and let (f,B,C) be a quasi-contact pencil. There exists a C0-small per-

turbation {(ξt, ω)} of almost contact structures such that

(i) (ξt, ω) is an almost contact structure for all t ∈ [0, 1], and (ξ0, ω) = (ξ, ω);

(ii) B and C are contact submanifolds of (ξ1, ω);
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(iii) (f,B,C) is an almost contact pencil for (M, ξ1, ω);

(iv) c1((ξ1)|F ) = 0 for any regular fibre F of f .

Fix an associated contact form α, i.e., ξ = kerα. The proof of the lemma

is an exercise. Indeed, in a neighborhood of the link B ∪ C, the difference

between ω and dα is exact and its primitive (which can be chosen to vanish

along the link) allows us to perturb the defining form until we achieve the

contact condition ω = dα1, ξ1 = kerα1.

Both Corollary 3.7 and Lemma 4.3 imply the following

Proposition 4.4. Let (M, ξ, ω) be an exact quasi-contact closed 5-dimen-

sional manifold. Then there exists an almost contact perturbation (ξ′, ω) of

(ξ, ω) such that (M, ξ′, ω) admits a good almost contact pencil (f,B,C).

5. Surgery and good ace fibrations

Let (f,B,C) be a good almost contact pencil on (M, ξ, ω). The map f

does not define a smooth fibration on M for two reasons: it is not defined on B,

and there exist critical fibres. The former failure can be avoided if we change

the domain manifold M ; i.e., f can be defined on a suitable closed manifold

M̃ obtained from M by a specific surgery procedure. Let us introduce three

pieces of terminology.

Definition 5.1. An almost contact Lefschetz fibration is an almost contact

pencil (f,B,C) with B = ∅. A contact Lefschetz fibration is a contact pencil

(f,B,C) with B = ∅.
Definition 5.2. An almost contact exceptional fibration on (M, ξ, ω) is a

triple (f, C,E), where (f, C) is an almost contact Lefschetz fibration and E

a nonempty collection of embedded 3-spheres with trivial normal bundle such

that f restricts to the Hopf fibration on any of them.

An almost contact exceptional fibration will be shortened to an ace fibration.

Definition 5.3. An ace fibration is said to be good if the curves C and

the spheres in E are contact submanifolds of (M, ξ, ω), the contact structure

in any 3-sphere of E is the standard tight contact structure and any smooth

fibre F of f satisfies c1(ξF ) = 0.

An almost contact Lefschetz fibration can be obtained out of an almost

contact Lefschetz pencil by performing a surgery along the base locus. In

particular, each connected component of the link B is replaced by a standard

3-sphere (S3, ξstd). The aim of this section is to produce a good ace fibration

from a good almost contact pencil on a 5-dimensional manifold.

Theorem 5.4. Let (M, ξ, ω) be an almost contact 5-manifold and (f,B,C)

a good almost contact pencil. There exist a homotopic deformation (ξ1, ω1) of
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(ξ, ω), an almost contact manifold (M̃, ξ̃, ω̃) with a good ace fibration (f̃ , E, ‹C),

a closed neighborhood N (B) of B and a diffeomorphism Π : M̃ \ E −→
M \ N (B) such that

- the almost contact structure (ξ1, ω1) is contact on a neighborhood of N (B);

- (Π∗ξ̃,Π∗ω̃) = (ξ1, ω1) on M \ N (B).

Note that in the context of this article, we are implicitly assuming that

the map f has been constructed using asymptotically holomorphic techniques

and thus the map f is defined using a section of the bundle C2 ⊗ det(ξ). (We

refer the reader to the paragraph following Theorem 3.5.) The description of

the almost contact manifold (M̃, ξ̃, ω̃) is explicit from the data (M, ξ, ω). The

good ace fibration (f̃ , E, ‹C) is also constructed directly from (f,B,C). This

procedure we use is a particular case of a blowup operation. The analogy with

the blowup of a base point for a symplectic Lefschetz pencil on a 4-manifold

can be useful for the reader. See [CPP15].

The description of (M̃, ξ̃, ω̃) is given in Section 5.1. The compatibility of

(M̃, ξ̃, ω̃) with the fibration (f̃ , C) is detailed in Section 5.2. In Section 5.3, we

describe a method that ensures that the regular fibres of the new fibration f̃

have vanishing Chern class.

5.1. Surgery. The almost contact manifold (M̃, ξ̃, ω̃) is obtained from

(M, ξ, ω) via a surgery procedure. The only topological requirement to per-

form surgery along a sphere is the triviality of its normal bundle. In contact

topology, a standard contact neighborhood also appears in the description.

In particular, there exists a restriction on the radius in the local model. See

[NP10]. This is not an issue in the almost contact case: the size of a neighbor-

hood of a contact submanifold of an almost contact manifold can be enlarged

by a homotopy of the distribution. In precise terms,

Lemma 5.5. Let (M, ξ, ω) be an almost contact manifold and (S, ξ =

kerα) be a contact submanifold with trivial normal bundle νS ∼= S×R2q . Fix a

radius R ∈ R. Then there exists an almost contact homotopy (M, ξt, ωt) such

that (M, ξ0, ω0) = (M, ξ, ω), and it conforms the following conditions :

- The homotopy is supported in an annulus around S; i.e., given a smooth

fiberwise metric on νS there exist ρ1, ρ2 ∈ R+ with ρ1 < ρ2 such that

ξt|D(νS ,ρ1) = ξ|D(νS ,ρ1), ξt|M\D(νS ,ρ2) = ξ|M\D(νS ,ρ2),

where D(νS , r) is the disk bundle of radius r. The almost contact homotopy

can be chosen such that ρ1, ρ2 are arbitrarily small.

- There exist a neighborhood U of S and a diffeomorphism ϕ such that

ϕ : S ×B2q(R) −→ U, ϕ∗ξ1 = ker(α− r2αstd), ϕ∗ω1 = dα− 2rdr ∧ dαstd,

where the 1-form αstd is the standard contact form on ∂B2q(R).
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Proof. This is a statement about a neighborhood S × B2q(ε). Suppose

that R > ε. In S ×B2n(ε), the almost contact distribution (ξ, ω) is a contact

structure described as the kernel of the 1-form η0 = α − r2αstd. Consider a

function H ∈ C∞([0, ε],R+) such that

(a) H(r) = r2 for r ∈ [0, ε/4] ∪ [3ε/4, ε];

(b) H ′(r) > 0 for r ∈ (0, ε/2);

(c) H(ε/2) = R2.

Consider the two values ρ1 = ε/4 and ρ2 = ε. There exists a homotopy

{Ht} of functions in C∞([0, ε],R+) with H0(r) = r2, H1(r) = H(r) and

any Ht satisfying properties (a) and (b) above. The homotopy of 1-forms

ηt = α − Ht(r)αstd defines a homotopy of almost contact distributions. The

distributions are ξt = ker ηt. The symplectic structures are of the form ωt =

dα −Htdαstd −Ht(r)dr ∧ αstd, where Ht(r) is a positive smooth function co-

inciding with ∂rHt in r ∈ [0, ε/2) ∪ (3ε/4, ε]. The diffeomorphism

Ψ : S ×B2q(R)−→S ×B2q(ε/2),

(s, r, θ) 7−→ (s,
»
H(r), θ)

satisfies Ψ∗η0 = η1, and the statement of the lemma follows. �

The lemma does not hold for a contact structure since the contact condi-

tion is violated at the region (ε/2, 3ε/4) in the course of the homotopy.

Theorem 5.4 concerns both the construction of an almost contact manifold

and a good ace fibration. The description of the former naturally leads to that

of the latter. Let us then begin with the almost contact manifold. Both the

statement and the proof of the following result are relevant. Subsections 5.2

and 5.3 refer to the proof and notation therein.

Theorem 5.6. Let (M2n+1, ξ, ω) be an almost contact manifold and S⊂M
a smooth transverse loop. Suppose that (ξ, ω) is a contact structure on a neigh-

borhood of S. There exist a homotopic deformation (ξ1, ω1) of (ξ, ω), a mani-

fold M̃ , a codimension-2 submanifold E ⊂ M̃ , a neighborhood N (S) of S and a

diffeomorphism Π : M̃ \E −→M \N (S) conforming the following conditions :

- there exists an almost contact structure (ξ̃, ω̃) on M̃ ;

- the codimension-2 submanifold E is a contact submanifold of (M̃, ξ̃, ω̃) con-

tactomorphic to the standard contact sphere (S2n−1, ξst);

- (Π∗ξ̃,Π∗ω̃) = (ξ1, ω1) on M \ N (S).

The submanifold E is called the exceptional divisor.

Proof. This proof depends on a fixed integer k ∈ Z. This parameter

becomes relevant in the description of the good ace fibration (f̃ , E, ‹C). It can

be chosen quite arbitrarily in this argument, but there shall be a specific choice

in the proof of Theorem 5.4.
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Consider the standard contact form αstd on S2n−1, induced by the re-

striction of the standard Liouville form on R2n, and the contact structure

ξstd = ker{dθ − ρ2αstd} on S1 ×B2n endowed with polar coordinates (θ; ρ, σ).

The contact neighborhood theorem for the transverse loop S provides an open

neighborhood U of S, a constant ρ0 ∈ R+ and a diffeomorphism

φ : S ×B2n(ρ0)−→U,

(θ, ρ, σ) 7−→ φ(θ, ρ, σ)

such that φ∗(ξ|U ) = ξstd. If k is a positive integer, suppose that the radius

ρ0 is small enough so that kρ2
0 < 1. This condition is necessarily satisfied for

k < 0. Consider the positive number ρk ∈ R+ satisfying ρ0 = ρk√
1+kρ2

k

and the

diffeomorphism

ψk : S1 ×B2n(ρk)−→ S1 ×B2n (ρ0) ,

(θ, ρ, w1, . . . , wn) 7−→
Ç
θ,

ρ√
1 + kρ2

, eikθw1, . . . , e
ikθwn

å
.

The map ψk preserves the distribution ξstd. In case it is needed, apply

Lemma 5.5 to enlarge the neighborhood S1 × B2n(ρk) of S to radius R = 2.

This yields a deformation ξ1 of the contact structure ξstd supported in an

annulus of radii 0 < ρa < ρb < ρk and a compatible embedding ϕ : S1 ×
B2n(2) −→ S1 × B2n(ρb). The deformation is relative to the boundary, and

thus the distribution (φ◦ψk◦ϕ)∗(ξ1) defined over U admits an extension ξ1 over

M using the original distribution ξ. There is also a corresponding extension

for the symplectic structure ω1. To ease notation, we still refer to (ξ1, ω1) as

(ξ, ω). In these terms, Lemma 5.5 provides a neighborhood U ′ of S in M and

a diffeomorphism

Φ : S1 ×B2n(2) −→ U ′, (θ, r, σ) 7−→ Φ(θ, r, σ) = φ ◦ ψk ◦ ϕ,

Φ∗(ξ|S) = ker(dθ − r2αstd).

Consider the diffeomorphism

φ1 : S1 × (3/2, 2)× S2n−1−→ S1 × (3/2, 2)× S2n−1,

(θ, r, w1, . . . , wn)−→ (θ, r, eiθw1, . . . , e
iθwn).

If V = Φ(S1 × B2n(3/2)), then g = Φ ◦ φ1 : S1 × (3/2, 2) × S2n−1 −→
U \ V ⊂M satisfies

g∗ξ = ker

®
−
Ç
αstd +

r2 − 1

r2
dθ

å´
.

Note that the function

h : (3/2, 2)−→R

r 7−→ h(r) =
r2 − 1

r2
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Figure 3. The function h̃.

satisfies h(r) > 5/9. Therefore it is possible to extend it to a smooth function

h̃ : [0, 2) −→ R satisfying the following conditions (See Figure 3):

- h̃(r) = r2 for r ∈ [0, 1/2];

- h̃(r) = h(r) for r > 3/2;

- h̃(r)′ > 0 for r ∈ [1/2, 3/2].

Therefore η̃ = −αstd− h̃(r)dθ defines a distribution ξ̃ over S1× [0, 2)×S2n−1 ∼=
B2(2) × S2n−1. Note that η̃ is a contact form near the core {0} × S2n−1. We

can glue the manifold (M \ V, ξ) and (B2(2) × S2n−1, ker η̃) with the gluing

map g to define an almost contact manifold (M̃, ξ̃). This manifold satisfies the

statement of the theorem with N (S) = Φ(S1 ×B2n(1)). �

5.2. Compatibility with an almost contact pencil. Let (f,B,C) be a good

almost contact pencil on a 5-dimensional almost contact manifold (M, ξ, ω).

The almost contact structure (ξ1, ω1) obtained in Lemma 5.5 can be chosen to

remain adapted to the almost contact pencil (f,B,C). (This can be done by

proving a standard neighborhood theorem using the local models provided by

the definition of a good almost contact pencil.) Let us understand the choices

involved in Theorem 5.6. The map f pulls back to

f ◦Π : M̃ \ E −→ CP1.

Due to the surgery procedure it can be extended to a map f̃ : M̃ −→ CP1.

Let us explain this.

The first choice in the previous construction is the chart map φ : S1 ×
B2n(ρ0) −→ U for a neighborhood U of a connected component γ ∼= S1 in the

base locus B. This amounts to a choice of framing of the trivial normal bundle
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along this S1. Since S1 ⊂ B, we can use the adapted charts in Definition 3.2

and require that φ satisfies that the map

f ◦ φ : S1 × (B4(ρ0)\{0}) −→ CP1

is precisely (f ◦ φ)(θ, w1, w2) = [w1 : w2]. Therefore, the compactified fibres

are of the form S1 × L for any complex line L ⊂ C2. It is also satisfied that

(f ◦φ ◦ψk)(θ, w1, w2) = [w1 : w2], and again the same compactification for the

fibres still holds. Moreover, the fibres are almost contact. It is left to study

the effect of ϕ and φ1.

The deformation performed in the enlargement of the neighborhood from

(ξ0, ω0) to (ξ1, ω1) preserves the fibres as almost contact submanifolds. The

reason is that in Lemma 5.5 the fibres in the coordinates (θ, ρ, σ)=(θ, ρ, w1, w2)

are given by the equation

Fz = {(θ, ρ, w1, w2) : [w1 : w2] = z} for z ∈ CP1,

and the restriction of (ξ1, ω1) is given by

(ker{dθ +H(ρ)(αstd)|S3∩Lz
},H(ρ)dρ ∧ (αstd)|S3∩Lz

),

where Lz is the line represented by z ∈ CP1 and H is a smooth function that

equals ∂ρH in the region of radius ρ ∈ [0, ρa)∪ (ρb, ρk] and it is strictly positive

for ρ ∈ [ρa, ρb]. In particular, H is positive and the restriction of ω1 is indeed

a symplectic structure.

Let us focus on the compactification of fibres in M̃ , i.e., the extension of

f̃ from Π−1(M \ N (B)) to M̃ . We first restrict ourselves to the transition

region S1 × (3/2, 2) × S3 ⊂ S1 × C2. The gluing map is φ ◦ ψk ◦ ϕ ◦ φ1. In

order to understand the fibres we just need to describe the map f̃ = f ◦ g =

f ◦ φ ◦ ψk ◦ ϕ ◦ φ1. We can easily verify that

f̃(θ, r, w1, w2) = (f ◦ g)(θ, rw1, rw2) = [w1 : w2]

since φ◦ψk◦ϕ and φ1 act as complex scalar multiplication in the transition area.

Notice that the domain of definition of f̃ is S1 × (3/2, 2) × S3, and it is

invariant with respect to the coordinates (θ, r) ∈ S1× (3/2, 2). Hence, the map

f̃ extends trivially to the model (B2(2)×S3, ker η̃). In particular, the extension

of f̃ restricted to the exceptional divisor {0} × S3 is the Hopf fibration.

The fibres of the fibration f̃ are thus almost contact submanifolds. The

critical locus ‹C is in bijection with C, and it is a contact submanifold since

the almost contact structure remains unchanged near them. The exceptional

divisors E are also contact submanifolds, and the fibres of f̃ restricted to

(B2(2)×S3, ker η̃) are diffeomorphic to B2(2)×S1, the S1-factor being a trans-

verse Hopf fibre. These fibres are also contact submanifolds.
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5.3. The good ace fibration. The fibres ‹F of the Lefschetz fibration (f̃ , ‹C)

differ from the fibres F of (f,B,C). Let us provide a precise description of ‹F
and show that the procedure described in the previous two subsections can be

performed to obtain c1(ξ̃
F̃

) = 0. This concludes Theorem 5.4.

The trivialization of a neighborhood of a connected component γ ∼= S1

⊂ B of the base locus provided in Definition 3.2 induces a natural framing

νS ∼= S1 × C2, i.e., 〈(1, 0), (i, 0), (0, 1), (0, i)〉. It restricts to a framing inside

the two fibres corresponding to the two complex axes of C2. Hence it induces

framings in any complex line S1×C ⊂ S1×C2: for the complex line {(z, w) ∈
C2 : z − αw = 0}, we use 〈(α, 1), i(α, 1)〉. Denote by Fp(0) such framing of

B ⊂ f−1(p). Let Fp(n) be the n-twist of Fp(0) and kγ be the parameter used

in the construction of Theorem 5.6 when performing the surgery along γ.

Lemma 5.7. Let (M, ξ, ω) be an almost contact 5-manifold, (f,B,C) a

good almost contact pencil adapted to it and (M̃, ξ̃, ω̃) a manifold as described

in Theorem 5.6. Then (M̃, ξ̃, ω̃) has an almost contact fibration (f̃ , ‹C) that

coincides with (f,B,C) away from B = γ1∪ . . .∪γs. Near γ ∈ B the fibre over

p ∈ CP1 is contactomorphic to a transverse contact (0, 1)-surgery performed

on f−1(p) along γi with framing Fp(−ki − 1) for some ki ∈ Z. The restriction

of the map f to each of the exceptional divisors is given by the Hopf fibration.

Proof. The map ψk in Theorem 5.6 modifies the initial framing from Fp
to Fp(−ki), ki = kγi being the corresponding parameter k in the surgery along

γi. Using the map φ1 substracts another twist and sends the meridian to the

longitude of the added solid torus. It is thus a (p, q) = (0, 1)-Dehn surgery

with respect to Fp(−ki − 1). �

Note that the coefficients ki can be arbitrarily chosen. The constructive

argument will use the fact that c1(ξ̃
F̃

) = 0 for any fibre ‹F of f̃ . This has

been achieved for the initial fibres of the pencil. The procedure changes the

almost contact manifold (F, ξ) to (‹F , ξ̃), and we cannot directly assume that

c1(ξ̃
F̃

) = 0. This will be fixed in the following discussion.

Proposition 5.8. Let (M, ξ, ω) be an almost contact 5-manifold, (f,B,C)

a good almost contact pencil adapted to it and (M̃, ξ̃, ω̃) a manifold obtained

as in Theorem 5.6. Suppose that (f,B,C) is obtained via asymptotically holo-

morphic sections as in Corollary 3.7. There is a choice of (k1, . . . , ks) ∈ Zs

such that the first Chern class of the almost contact structure (M̃, ξ̃, ω̃) on any

regular fibre ‹F is zero.

In the proof there is no need for the sections to be asymptotically holo-

morphic. The only requirement is that the pencil is obtained as the linear

system associated to two sections.



448 ROGER CASALS, DISHANT M. PANCHOLI, and FRANCISCO PRESAS

Proof. Consider a connected component γ ⊂ B. The good almost contact

pencil is obtained from a section

s = (s0, s1) : M −→ C2 ⊗ det(ξ)

and it is the input of Corollary 3.7.

Suppose that the section (s0, s1) can be lifted to a nonvanishing section

(s̃0, s̃1) from the manifold M̃ to the bundle C2 ⊗ det ξ̃. That is, the map f̃

comes as a quotient of two sections (s̃0, s̃1) of the bundle det ξ̃. Then Lemma 3.6

implies that its regular fibres satisfy the required property. Hence, we just need

to find a nonvanishing lift of the two sections (s0, s1). Let us show that this

lift exists for a particular choice of integers (k1, . . . , ks).

The study of sections of a complex bundle det ξ with ξ ⊂ TM does not

depend on the homotopy class of ξ as a complex subbundle of TM . In par-

ticular, we can deform ξ to a complex subbundle ξh and study the extension

properties of two sections of det(ξh) corresponding to a deformation of (s0, s1).

The bundle ξh yields simpler computations. A word of caution: the notation

ξh will now be used to refer to a distribution in a local chart and not in the

manifold M itself.

Consider polar coordinates (θ; r, σ) ∈ S1 × B4(2). The pull-back of the

distribution ξ by the map Φ = φ ◦ ψk ◦ ϕ is

Φ∗(ξ) = ker η, η = dθ + r2αstd.

Let χ : [0, 2] −→ [0, 1] be a smooth increasing function such that

χ|[0,1.7] = 0 and χ|[1.9,2] = 1.

Define the form ηh = dθ + χ(r)r2αstd and the distribution ξh = ker ηh. The

distribution Φ∗ξh can be extended to the manifold M using ξ. A linear in-

terpolation between η and ηh induces a homotopy between the two complex

bundles Φ∗ξ and ξh. The map φ1 is a diffeomorphism in S1× (1.5, 2)×S3. The

pull-backs of the kernels of these two forms via the map φ1|S1×(1.5,1.7)×S3 are

two distributions φ∗1(ker η) and φ∗1(ker ηh).

Consider the function h̃ defined in the proof of Theorem 5.6 and a smooth

increasing function σ : [0,∞) −→ [0, π/2] constant equal to 0 in [0, 1/2] and

constant equal to π/2 in [1.5,∞). Define also the form

η̃h = sin(σ(r))dθ + cos(σ(r))αstd.

First, the kernel of the contact form η̃ = αstd+h̃dθ extends the distribution

φ∗1(ker η) to B2(1.7) × S3, with polar coordinates (r, θ) ∈ B2(1.7). Let ξ̃ be

the push-foward to the manifold of ker η̃ extended by φ∗1(ker η). Second, the

distribution φ∗1(ker ηh) coincides with ker dθ in S1 × (1.5, 1.7) × S3 and ker η̃h
extends φ∗1(ker ηh) to B2(1.7)×S3. Let ξ̃h be the push-foward to the manifold of

ker η̃h extended by φ∗1(ker ηh). The distributions ker η̃ and ker η̃h are homotopic
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via linear interpolation. The homotopy coincides with the homotopy between

Φ∗ξ and ξh in the region S1 × (1.5, 1.7)× S3. Hence, the homotopy extends to

a homotopy between ξ̃ and ξ̃h inside the manifold M .

Let Xr = ∂r, Xi = iXr, Xj = jXr, Xk = kXr be a basis generating TC2 =

C2 ∼= H1. Consider the chart defined by φ with polar coordinates

(θ; r, w0, w1) ∈ S1 × C2 ∼= S1 × R≥0 × S3.

The distribution ξh = ker dθ will be identified with C2. The original sections

(s0, s1) will be identified as sections of Φ∗ det ξh. Suppose the sections (s0, s1)

restrict to an m-twisted frame; i.e., in the chart above, the pair of sections is

written up to homotopy as

φ∗(s0, s1) ' em·iθ(w0, w1)(1, 0) ∧ (0, 1).

The change of coordinates is defined, up to homotopy, by

(ψk ◦ ϕ ◦ φ1)(θ, r, w0, w1) = (θ, r, ei(1+k)θw0, e
i(1+k)θw1).

It pulls back the basis framing to

(ψk ◦ ϕ ◦ φ1)∗(1, 0) ∧ (0, 1) = e−2i(1+k)θ(1, 0) ∧ (0, 1).

Therefore the pull-back of the 2 sections is

(Φ ◦ φ1)∗(s0, s1) = (φ ◦ ψk ◦ ϕ ◦ φ1)∗ ' e(m−k−1)·iθ(w0, w1)(1, 0) ∧ (0, 1) =

= e(m−k−1)·iθ(w0, w1)Xr ∧Xj = −ie(m−k−1)·iθ(w0, w1)Xi ∧Xj .

Observe that k controls the twisting of the section around the component γ.

The distribution ξh is extended to B2(1.7)×S3 with the distribution Φ∗ξ̃h. The

four vector fields Xr, Xi, Xj , Xk define a framing of ξh in S1 × (1.5, 1.7) × S3.

This framing needs to be extended to the interior B2(1.7)× S3 to a framing of

the distribution

ker η̃h = ker{sin(σ(r))dθ + cos(σ(r))αstd}.

A possible extension is given by 〈Xr, sin(σ(r))Xi − cos(σ(r))∂θ, Xj , Xk〉.
Consider p = m− k− 1, and let us identify Φ∗ξh and ξ̃h in their common

region. The section (Φ ◦ φ1)∗(s0, s1) seen as a section of C2 ⊗ det ξ̃h can be

extended to

(s̃0, s̃1) ' −iep·iθ(w0, w1)(sin(σ(r))Xi − cos(σ(r)) · ∂θ) ∧Xj .

Thus it is an extension of the section to M̃ . For radius r = 0, in the new

compactification B2(r, θ)× S3(w0, w1), the section reads

(s̃0, s̃1) = iep·iθ(w0, w1)∂θ ∧Xj ,

which extends without zeroes if and only if p = −1. The choice k = m allows us

to extend the section (s̃0, s̃1) to the interior of the exceptional sphere without

zeroes.
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In short, the required section s̃ = (‹s0, ‹s1) extends to the previous section

s = (s0, s1) away from the surgery area. Since the sections can be extended to

the manifold M̃ in a nonvanishing manner, we conclude c1(ξ̃|
F̃

) = 0 and the

base locus is empty; that is, ‹B = ∅. �

This concludes the proof of Theorem 5.4. The argument developed in this

article to prove Theorem 1.1 requires a smooth fibration, hence the reason for

Theorem 5.4. There is an alternative approach not involving the manifold M̃

that leads to a quite complicated version of the local models used in Sections 6,

7 and 8. These models are essential to describe the deformation of the almost

contact structure. The simpler, the better. In particular, the description in

Section 8 would be rather technical if the modified model was used.

6. Vertical deformation

In Section 3 we endowed our initial 5-dimensional almost contact manifold

(M, ξ, ω) with an almost contact pencil (f,B,C) such that B 6=0 and c1(ξF )=0

for the fibres F of f . In Proposition 5.8 we have obtained a contact structure

in a neighborhood of the base locus B and the critical curves C. According to

Theorem 5.4 there exists a good ace fibration (f̃ , E, ‹C) in an almost contact

manifold (M̃, ξ̃, ω̃) isomorphic to (M \N (B), ξ, ω) away from a codimension-2

contact submanifold E. In order to obtain a contact structure in the manifold

(M, ξ, ω) we use the splitting induced by the existence of the Lefschetz fibration

(f̃ , ‹C) on (M̃, ξ̃, ω̃). Henceforth we shall consider an almost contact manifold

with a good ace fibration. These will be respectively denoted (M, ξ, ω) and

(f, C,E) even though in our situation they refer to the manifold (M̃, ξ̃, ω̃) and

the good ace fibration (f̃ , ‹C,E). This should not lead to confusion. The initial

manifold is recovered in Section 9.

Let (M, ξ, ω) be a 5-dimensional closed orientable almost contact manifold.

Definition 6.1. An almost contact structure (M, ξ, ω) is called vertical

contact with respect to an almost contact fibration (f, C) if the fibres of f are

contact submanifolds for (ξ, ω) away from the critical points.

The main result of this section reads:

Theorem 6.2. Let (M, ξ, ω) be an almost contact manifold and (f, C,E)

an associated good ace fibration. Then there exists a homotopic deformation of

the almost contact structure relative to C and E such that the almost contact

structure becomes vertical contact for (f, C).

The proof of the theorem relies on the existence of an overtwisted disk

in each fibre. Such structure allows more flexibility in handling families of

distributions. Hence, it will be essential for the argument to apply that the
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fibres of the good ace fibration (f, C,E) are 3-dimensional manifolds. In order

to obtain a vertical contact fibration we need Eliashberg’s classification result

of overtwisted contact structures [Eli89].

The almost contact structure obtained in Theorem 6.2 is constructed as

a deformation of the vertical distributions {ξz = ξ ∩ Tf−1(z)}z∈CP1 relative to

open neighborhoods of C and E. A naive description of the argument consists

of two parts. An overtwisted disk is first introduced in each fibre. This is the

content of Section 6.2. Then Eliashberg’s result allows us to deform the family

{ξz}z∈CP1 to a family of overtwisted contact structures. This corresponds to

Section 6.3.

This argument cannot be readily applied because of two issues. On the

one hand, the almost contact fibration does not necessarily admit a section.

In particular, there is no naturally prescribed continuous family of overtwisted

disks. This is solved using two local families to deal with each of the fibres.

On the other hand the argument in [Eli89] deals with families of distributions

over a fixed manifold. In our case the topology of the fibres changes if a curve

in f(C) is crossed. Therefore a refined version of Eliashberg’s arguments is

needed. It strongly uses the relative character of the result, both with respect

to the parameter spaces and the open subsets of the manifold.

A technical step requires the definition of a suitable finite open cover of

CP1 by 2-disks. In particular, the fibres over each 2-disk are diffeomorphic

relative to a certain subset and there exists a continuous choice of overtwisted

disks over each of these fibres. This cover is associated to (f, C) and a cell

decomposition of CP1. This will be explained.

6.1. 3-dimensional overtwisted structures. Our setup provides a fibration

with a distribution on each fibre. Given such an almost contact fibration

f : M −→ CP1, let Fz denote the fibre over z ∈ CP1 and (ξz, ωz) the induced

almost contact structure on Fz. Then the family (Fz, ξz) can locally be viewed

as a 2-parametric family of 2-distributions on a fixed fibre.

In the proof of Theorem 6.2 we use a relative version of the following

Theorem 6.3 ([Eli89, Th. 3.1.1]). Let M be a compact closed 3-manifold

and let G be a closed subset such that M \G is connected. Let K be a compact

space and L a closed subspace of K . Let {ξt}t∈K be a family of cooriented

2-plane distributions on M that are contact everywhere for t ∈ L and are

contact near G for t ∈ K . Suppose there exists an embedded 2-disk D ⊂
M \G such that ξt is contact near D and (D, ξt) is equivalent to the standard

overtwisted disk for all t ∈ K . Then there exists a family {ξ′t}t∈K of contact

structures of M such that ξ′t coincides with ξt near G for t ∈ K and coincides

with ξt everywhere for t ∈ L. Moreover, ξ′t can be connected with ξt by a

homotopy through families of distributions that is fixed in (G×K)∪ (M ×L).
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In order to allow the case of a 3-manifold with nonempty boundary, we

also need

Corollary 6.4. Let M be a compact 3-manifold with boundary ∂M , and

let G be a closed subset of M such that M \G is connected and ∂M ⊂ G. Let

K be a compact space and L a closed subspace of K. Let {ξt}t∈K be a family of

cooriented 2-plane distributions on M which are contact everywhere for t ∈ L
and are contact near G for t ∈ K . Suppose there exists an embedded 2-disk

D ⊂ M\G such that ξt is contact near D and (D, ξt) is equivalent to the

standard overtwisted disk for all t ∈ K . Then there exists a family {ξ′t}t∈K of

contact structures of M such that ξ′t coincides with ξt near G for t ∈ K and

coincides with ξt everywhere for t ∈ L. Moreover, ξ′t can be connected with ξt by

a homotopy through families of distributions that is fixed in (G×K)∪(M×L).

Outline. The proof for the closed case uses a suitable triangulation P

of the 3-manifold having a subtriangulation Q containing G, for which the

distributions are already contact structures. Then Eliashberg’s argument is of

a local nature, working with neighborhoods of the 0, 1, 2 and 3-skeleton of

P\Q and assuring that no changes are made in a neighborhood of Q. Thus the

method for a manifold M with ∂M 6= 0 is still valid since P and Q do exist in

this case and only Q contains the boundary. �

We locally treat an almost contact fibration as a 2-parametric family of

distributions over a fixed fibre. Thus we may use a disk as a parameter space

and the central fibre as the fixed manifold. It will be useful to be able to obtain

a continuous family of distributions such that the distributions in a neighbor-

hood of the central fibre become contact structures while the distributions near

the boundary are fixed. Such a family is provided in the following

Corollary 6.5. Consider the notation and hypotheses of Corollary 6.4

with K diffeomorphic to a disk, S = ∂K its boundary sphere and coordinates

(p, r) ∈ S× [0, 1]. Let {ξt} be a family of distributions parametrized by S× [0, 1]

that are contact near G and D. Suppose that {ξt} are contact distributions for

t ∈ λ ⊂ S × [0, 1]. Given a homotopy ξs(p,0) of the distributions over S × {0},
s ∈ [0, 1], there exists a homotopy {ξst } relative to G×S×[0, 1]∪M×λ such that

ξ0
t = ξt, ξst = ξs(p,0) for t = (p, 0) and ξ1

t = ξt for t = (p, 1).

The assumption that K is a disk is not necessary. But we use Corollary 6.5

only in such a case. Its proof is left as an exercise for the reader.

We need at least one overtwisted disk over each fibre in order to apply

Corollary 6.4. The family should behave continuously. Let us provide such a

family of disks.
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6.2. Families of overtwisted disks. There are two basics issues to be treated:

the location of the disks and their overtwistedness. The second issue is simply

guaranteed since once a disk with a contact neighborhood is placed in each

fibre we can produce overtwisted disks using Lutz twists. In order to decide

the location of the disks in each fibre we need to find a section of the good ace

fibration.

Let (f, C,E) be a good ace fibration. Denote by U(C), U(Ei) open neigh-

borhoods of the critical curves C and the exceptional spheres Ei ∈ E. Consider

U(f) = U(C) ∪ U(Ei) the union of these open neighborhoods, so in the com-

plement of U(f) the map f becomes a submersion. Instead of finding a global

section mapping away from U(f), we shall construct two disjoint local sections

that will provide at least one overtwisted disk in each fibre Fz = f−1(z). The

distribution ξz = ξ∩TFz is well defined over Fz\U(f) and varies smoothly with

the parameter z ∈ CP1. The global situation we achieve is described as follows.

Proposition 6.6. Let (f, C,E) be a good ace fibration for (M, ξ, ω). Con-

sider two open disks B0,B∞ ⊂ CP1, containing 0 and ∞ respectively such that

the intersection B0 ∩B∞ is an open annulus, the complement of B0 ∩B∞ con-

sists of two disjoint disks and the curves ∂B0, ∂B∞ are disjoint from the set of

curves f(C).

Then there exists a deformation (Fz, ξ̃z)z∈CP1 of the family (Fz, ξz)z∈CP1

fixed at the intersection of the set U(f) with each Fz such that there are two

disjoint families of embedded 2-disks Diz ⊂ Fz , with z ∈ Bi, for i = 0, 1, not

intersecting U(f). The distribution ξ̃z is a contact structure in a neighborhood

of such families and (Diz, ξ̃z) are equivalent to standard overtwisted disks.

The fact that ξ̃z equals ξz in the intersection of the set U(f) with Fz
ensures that no deformation is performed near the critical curves nor the ex-

ceptional spheres. This is mainly a global statement, involving the whole of

the fibres. In order to prove the result we study the local model of a tubular

neighborhood of an exceptional divisor of the good ace fibration (f, C,E).

A good ace fibration (f, C,E) is obtained by surgery along the base locus

B of a certain good almost contact Lefschetz pencil. Let Ki be a knot be-

longing to this base locus B. After the surgery procedure it is replaced by an

exceptional contact divisor Ei ∈ E contactomorphic to (S3, ξst). As explained

in Section 5 the restriction of the fibration f to Ei is the Hopf fibration. Since

the distribution ξ is locally a contact structure, the tubular neighborhood the-

orem provides a chart

(1) Ψ : U −→ S3 × D2(ε), Ψ∗ξst = ξ,

where ξst = ker{αS3 + r2dθ}, ε ∈ R+ and Ψ(Ei) = S3 × {0}. Suppose ε = 1 in

order to ease notation.
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The induced map fU defined as

S3 × D2

fU

$$

Ψ−1
// U

f
��

CP1

can be expressed as fU (x, r, θ) = h(x) for x ∈ S3. The fibres Fz = f−1(z) ∩ U
are contact submanifolds of (S3 × D2, ξstd). The induced contact structure

ξv(z) on Fz depends on the point z ∈ CP1. These fibres are contactomorphic

to (S1 × D2, ξv = ker(dβ + r2dθ)) for each z ∈ CP1. Note that the variable

β ∈ S1 parametrizing each Hopf fibre is not global since the fibration is not

trivial. The differential dβ is globally well defined since it is dual to the vector

field generating the associated S1-action. The standard contact structure in

S3 × D2 can be expressed as the direct sum of distributions

(2) ξst(x, r, θ) = ξv(h(x))⊕H(x, r, θ),

where ξv is the standard contact structure in S1 × D2, the vertical direction,

and H is a horizontal complement associated to the fibration of S3 × D2 over

CP1.

Topologically, the 4-distribution ξst is expressed as a direct sum of two

distributions of 2-planes. Since the 2-form ω providing the almost contact

structure is given and so is ξ, we may interpret (S3×D2, ξv(z)) as a nontrivial

family of contact structures parametrized by the base z ∈ CP1. We have de-

tailed the topology and contact structure of the local model of the good ace

fibration along an exceptional sphere Ei. A neighborhood of this exceptional

sphere is a piece of the fibration and the knots are the intersection of the fibres

of the almost contact pencil with it.

The local model described above allows us to prove the following

Lemma 6.7. Let z ∈ CP1 be a coordinate, (S3 × D2, ξv(z)) a CP1-family

of contact structures on S3 × D2 and fU : S3 × D2 −→ CP1 the map described

above. Consider two open disks B0,B∞ ⊂ CP1, containing 0 and∞ respectively

such that the intersection B0 ∩ B∞ is an open annulus and the complement of

B0 ∩ B∞ consists of two disjoint disks.

There exists a homotopy ξsv(z) of CP1-families of plane fields, s ∈ [0, 1],

such that

- ξ0
v(z) = ξv(z), for all z ∈ CP1;

- near the boundary of f−1
U (z) ∼= S1 × D2 and for all (z, s) ∈ CP1 × [0, 1],

ξsv(z) = ξv(z);

- for any z ∈ CP1, the distribution ξ1
v(z) is an overtwisted contact structure

on f−1
U (z) containing two disjoint Lutz tubes L0

z and L∞z away from S3×{0};
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- there exist a smooth family of embedded overtwisted 2-disks D0
z in L0

z for

z ∈ B0 and D∞z in L∞z for z ∈ B∞.

Both B0\∂B0,B∞\∂B∞ can be thought as neighborhoods of the upper and lower

semi-spheres.

Proof. Let h : S3 −→ CP1 be the Hopf fibration. Extend the fibration to

h : S3 × D2 −→ CP1 by projection onto the first factor. The idea is to use

the exceptional divisor to create a couple of sections along B0 and B∞. On

the one hand, the exceptional divisor has a contact structure, and we would

rather not perturb around a small neighborhood of it. On the other hand, the

exceptional divisor is not CP1 but S3. Hence a global section cannot exist. We

use two copies of the exceptional divisor away from S3×{0} ⊂ S3×D2 and we

cover the base CP1 with the two disks B0, B∞.

Let q0 = (1/2, 0), q∞ = (0, 1/2) ∈ D2 be two fixed points, and consider

the two 3-spheres

S3
0 = S3 × {q0}, S3

∞ = S3 × {q∞}.
The fibre of the restriction of the fibration (S3×D2, ξv(z)) −→ CP1 to the

submanifold S3
0 (resp. S3

∞) is a transverse knot Kz
0 (resp. Kz

∞). We will now

insert two families of overtwisted disks.

Apply a full Lutz twist in a small neighborhood of each of those knots

Kz
0 ∈ h−1(z) parametrically on z ∈ CP1. This produces a 3-dimensional full

Lutz twist on each fibre. See [Lut77], [Gei08]. This yields an S3
0-family of

overtwisted disks parametrized as {D0
t }t∈S30 . Thus we obtain an S1-family of

overtwisted disks at each fibre. Note that the dependency of this parametric

family of full Lutz twists on the point z ∈ CP1 is well behaved. Indeed, let

iz : K0
z −→ S3

0 be the injection, and consider coordinates (ρ, ϕ) in the normal

bundle of this embedding. In a small neighborhood of the zero section, the

contact structure reads

ξv(z) = ker{i∗zαS3 + ρ2dϕ}.
The pair of functions (h1, h2) used in [Gei08, §4.3] to perform the full Lutz

twist can be made ρ-dependent. Thus the resulting contact structure has the

form
ξ1
v(z) = ker{h1(ρ) · i∗zαS3 + h2(ρ) · ρ2dϕ}.

This clarifies the dependency of the construction with respect to z ∈ CP1.

Perform the same twist procedure for the family of knots Kz
∞ ∈ h−1(z)

to obtain another family of overtwisted disks {D∞t }t∈S3∞ . The two families of

disks can indeed be assumed disjoint by letting the radius in which we perform

the full Lutz twists be small enough. The support of the pair of full Lutz twists

can be chosen not to intersect the exceptional divisor and be contained in the

interior of S3×D2. This construction provides the homotopy in the statement

of the lemma. See Figure 4.
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Kz
0 E0∩Fz Kz

∞

q0
0

q∞

Figure 4. The neighborhood of the exceptional divisor inter-

sected with a fibre Fz. The cylinder on the left (with axis

Kz
0 ) is the support of the full Lutz twist around the knot

Kz
0
∼= S1 × {q0}, and the cylinder on the right (with axis Kz

∞)

corresponds to the support of the full Lutz twist around the

knot Kz
∞
∼= S1 × {q∞}.

We need the base CP1 to be the parameter space instead of the 3-spheres

S3
0 and S3

∞. Restricted to B0 or B∞, the Hopf fibration becomes trivial and

therefore there exist two sections s0 : B0−→ S3∼=S3
0 and s∞ : B∞−→ S3∼=S3

∞.

The required families are defined as

{D0
z} = {D0

s0(z)}, z ∈ B0, {D∞z } = {D∞s∞(z)}, z ∈ B∞.

Note that the two families of overtwisted disks are disjoint since the two families

of Lutz twists are. Further, there exists a small neighborhood of the exceptional

divisor S3 × {0} where no deformation is performed. The statement of the

lemma follows. �

The global construction can be simply achieved.

Proof of Proposition 6.6. Apply Lemma 6.7 to a neighborhood of one ex-

ceptional sphere E0 ∈ E = {E0, E1, . . . , Es}. The families of overtwisted disks

do not meet C or any Ej . Indeed, the two families are arbitrarily close to E0,

and the exceptional divisors are pairwise disjoint and none of them intersect

the critical curves C. Thus, maybe after shrinking the neighborhood U(E0) in

the construction, the families are located away from U(f). �
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Thus we obtain the families of overtwisted disks required to apply Theo-

rem 6.3. The vertical deformation is described using a suitable cell decompo-

sition of the base CP1. The vertical contact condition is ensured progressively

above the 0-cells, the 1-cells and the 2-cells.

6.3. Adapted families. Let (f, C) be an almost contact fibration. A finite

set of oriented immersed connected curves T in CP1 will be called an adapted

family for (f, C) if it satisfies the following properties:

- The image of the set of critical values f(C) is part of T .

- Given any element c ∈ T , there exists another element of c′ ∈ T having a

nonempty intersection1 with c. Any two elements of T intersect transver-

sally.

- There exists no triple intersection point between the curves of T .

- The complement CP1 \ |T | is a union of open disks.

|T | ⊂ CP1 denotes the underlying set of points of the elements of T . The

elements of an adapted family T that are not in the image of a component of

C are referred to as fake components. Let N ∈ N be fixed. The insertion of fake

curves proves the existence of an adapted family with diamg0(CP1\|T |) ≤ 1/N ,

g0 the standard round metric.

Figure 5. Part of an adapted family T . The associated subdi-

vision consists of certain 2-cells with their boundaries being a

union of parts of various elements in the family T .

There is a cell decomposition of CP1 associated to an adapted family, the

1-skeleton being |T |. See Figure 5. In order to conclude Theorem 6.2 we shall

first deform in a neighborhood of each vertex relative to the boundary, pro-

ceed with a neighborhood of the 1-cells and finally obtain the vertical contact

condition in the 2-cells. To be precise in the description of the procedure, we

1In case c has a self-intersection, then c′ = c is allowed.
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A9

A5
A7

B2

B1
B0

B7

B8

B10
B11

B3
B4

B5
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B15

B14

B13

B12

B9

Figure 6. The sets Ap and Bi associated to the subdivision of

the Figure 5. The sets Ap are drawn in darker grey.

introduce some notation. This is not strictly necessary, but it provides the

adequate pieces in the framework to apply Eliashberg’s result.

Let Lj ∈ T be a curve, U(Lj) be an open tubular neighborhood and

denote

∂U(Lj) = L0
j ∪ L1

j .

Suppose that
⋃
j∈J |Lij | is isotopic to |T | for both i = 0, 1; this can be achieved

by taking a small enough neighborhood of each Lj . See Figure 6. We use

V (Lj) to denote a slightly larger tubular neighborhood satisfying this same

condition. Fix an intersection point p of two elements Lj , Lk ∈ T . Denote by

Ap the connected component of the intersection of U(Lj)∩U(Lk) containing p.

Similarly, let VAp be the connected component of the intersection of V (Lj) ∩
V (Lk) that contains p, and denote AAp = VAp\Ap.

Consider a small neighborhood U(T ) of |T |. The open connected compo-

nents of

U(T )\{∪Ap}

are homeomorphic to rectangles Bi, p being treated as an index over the in-

tersection points. A suitable indexing for i is also assumed. The third class of

pieces constitute the interior of the complement in CP1 of the open set formed

by the union of the sets Ap and Bi. Its connected components are denoted Cl.
Thus, neighborhoods of the 0-cells, 1-cells and 2-cells are labeled Ap, Bi and

Cl respectively. See Figure 6.
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Finally, we define the sets BBi. Let Bi connect a couple of open sets2 of

the form Ap. There exists a curve LBi contained in Bi that is a part of a curve

Li ∈ T . LBi is part of a 1-cell in the decomposition associated to the adapted

family T . Let L0
Bi and L1

Bi denote the two boundary components of Bi that are

part of the curves L0
i and L1

i defined above. Then we declare BB0
i (resp. BB1

i )

to be the connected component of V (Li)\Bj containing the boundary curve L0
i

(resp. L1
i ). Their union BB0

i ∪ BB1
i will be denoted BBi. See Figures 7 and 8.

Figure 7. Example of two components VAp and VAq in light

gray, containing Ap and Aq, in dark gray.

B5 B3B4

BB4 BB3BB5

B1

BB1

B2

BB2

Figure 8. Example of the sets Bi and BBi for the subdivision of Figure 7.

6.4. The vertical construction. In this subsection we prove Theorem 6.2.

The following lemma is a simple exercise in differential topology and can be

considered as a particular case of Ehresmann’s fibration theorem. It will be

used in the proof of Theorem 6.2. We include it for completeness.

2Both sets may be the same for the self–intersecting curves.
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Lemma 6.8. Let f : E −→ D2 be a locally trivial smooth fibration over

the unit disk with compact fibres Ez , z ∈ D2. Decompose ∂E along its corners

as ∂E = f−1(∂D2) ∪ ∂hE, and suppose that ∂hE is a smooth closed boundary.

Suppose also that there is a collar neighborhood N of ∂hE and a closed sub-

manifold S such that restricting f to S and N induces locally trivial fibrations.

Let S0, N0 be their fibres over 0 ∈ D2.

Then there exists a diffeomorphism g : E −→ E0×D2 making the following

diagram commute:

E
g
//

π
��

E0 × D2

π0
��

D2 D2

such that g(N) = N0 × D2 and g(S) = S0 × D2.

Proof. Let g be Riemannian metric in E such that (TEz)
⊥g ⊂ TS and

(TEz)
⊥g ⊂ T (∂hE) for the points z where the condition can be satisfied. Let

X = ∂r be the radial vector field in D2\{0}, and construct the connection Hπ

associated to the Riemannian fibration:

Hπ(e) = (TeFπ(e))
⊥g.

The condition imposed on the Riemannian metric implies that ∂hE and S are

tangent to the horizontal connection Hπ. Let ‹X be a lift of X through Hπ and

φt(e) the flow of this vector field. Define

E
g−→E0 × D2

e 7−→ (φ(−||π(e)||)(e), π(e)).

This map satisfies the required properties. �

Proof of Theorem 6.2. Let (f, C,E) be a good ace fibration and T an

adapted family to (f, C,E). Note that a horizontal complement H is defined

away from U(C) and provides the splitting specified in (2). Apply Proposi-

tion 6.6, and choose B0 and B∞ in the statement such that ∂B0 and ∂B∞ are

both contained in two different 2-cells C0 and C∞. Lemma 2.5 implies that this

procedure preserves the homotopy class of (M, ξ, ω).

In order to establish Theorem 6.2 we need to perform a deformation that

is fixed in a neighborhood of U(C) and leaves the distribution H unchanged;

i.e., it should be a strictly vertical deformation.

Deformation at the 0-cells. Let p be a vertex with neighborhood Ap and

F = f−1(VAp) \ (f−1(VAp) ∩ U(C)).

We can assume that VAp is small enough and choose a neighborhood U(C) such

that the map f restricts to a trivial fibration on F and induces a fibration on



ALMOST CONTACT 5-MANIFOLDS ARE CONTACT 461

∂F . Consider a trivialization of the former fibration over VAp. The manifolds

with boundary Fz = f−1(z)\(f−1(z)∩U(C)) are all diffeomorphic. Let Nz be

a collar neighborhood of ∂Fz in which the distribution is contact. Given an

exceptional divisor Ei ∈ E, denote by U(Ei)z the intersection of U(Ei) with

the fibre Fz. Applying the trivializing diffeomorphism provided in Lemma 6.8,

we may assume Fz × VAp ∼= F , U(Ei)z × VAp ∼= U(Ei) and Nz × VAp ∼= N .

Thus we have a manifold with boundary F with a family of distributions

ξz parametrized by the topological disk VAp containing K = Ap. We also have

a good set G of submanifolds that are already contact for any contact fibre over

VAp. The good set G consists of the union of N , U(Ej) and a neighborhood of

one of the two overtwisted disks.3 Let us say p ∈ B0. We choose a neighborhood

of D∞. A neighborhood of this set will not be perturbed. The remaining disk

D0 is contactomorphic to the standard overtwisted disk for each element of the

family of distributions. This setup satisfies the hypotheses of Corollary 6.4.

It should be applied to a smaller parameter space K. Then Corollary 6.5 is

used with λ = ∅ to obtain a deformation relative to the boundary. Since we

are able to obtain a deformation relative to the boundary, we may perform

the deformation at each neighborhood of the 0-cells and extend trivially to the

complement of VAp in CP1.

Deformation at the 1-cells. Almost the same strategy applied to the 0-cells

applies, although we should not undo the deformation in a neighborhood of

the 0-cells. Corollaries 6.4 and 6.5 allow us to perform deformations relative

to a subfamily, so in this case λ will be nonempty. See Figure 9.

Deformation at the 2-cells. In this situation Theorem 6.3 also applies after

a suitable trivialization of the smooth fibration provided by Lemma 6.8. Note

that in this case the fibres do not have the boundary contribution of U(C) since

its image is not contained in the 2-cells. The set L is a small tubular neighbor-

hood of the boundary of the 2-cells. Except at C0 and C∞, we may use any of

the two families of overtwisted disks to apply the result. Let it be D0
z . In the re-

maining family the distributions are contact, and so we include the disks in the

set G, which also contains N and U(Ei). At C0 we use the family D0
z since it is

the only one well defined over the whole set. Proceed analogously at C∞. Note

that this argument is possible because the deformation is relative to the bound-

ary. Then Theorem 6.3 applies to the 2-cells and we extend trivially the de-

formation. We obtain a vertical contact distribution (Fz, ξ̃z) away from U(C).

In order to conclude the statement of the theorem, consider the direct

sum ξ̃z ⊕H to include the critical set, which has not been deformed. This is

the required vertical contact structure. Notice that this construction preserves

3These disks are trivialized along with N using Lemma 6.8.
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λ

Ai

AAi

Bi

BBi

λ

Figure 9. The distributions set ξz ⊂ BBi with z ∈ λ are already

contact distributions.

the almost contact class of the distribution since it is performed homotopically

only in the vertical direction. Hence Lemma 2.5 provides a homotopy on the

complement of U(C) relative to the boundary. This yields a homotopy over

the manifold M . �

7. Horizontal deformation I

Consider an almost contact distribution (M, ξ, ω) and a good ace fibration

(f, C,E) with associated adapted family T . Theorem 6.2 deforms ξ to a ver-

tical contact structure with respect to (f, C,E). To obtain an honest contact

structure the distribution has to be suitably changed in the horizontal direc-

tion. As in the previous section, this is achieved in three stages. The content

of this section consists of the first two of these: deformation in the pre-image

of a neighborhood of the 0- and the 1-cells of the adapted family T . The main

result of this section is the following theorem.

Theorem 7.1. Let (M, ξ, ω) be a vertical contact structure with respect

to a good ace fibration (f, C,E) and T an adapted family. Then there exists a

homotopic deformation (ξ′, ω′) of (ξ, ω) relative to C and E such that (f, C,E)

is a good ace fibration for (ξ′, ω′), (ξ′, ω′) is a vertical contact almost contact

structure and ξ′ is a contact structure in the pre-image of a neighborhood of |T |.
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The vertical distribution is fixed along the deformation. In this sense the

deformation in the statement is horizontal. The fibration (f, C,E) will not be

deformed to prove this fact, just the almost contact structure.

Theorem 7.1 follows Proposition 7.7 and Lemma 2.5. To prove the state-

ment we trivialize the vertical contact fibration over a neighborhood of the

0-cells. Then the deformation is performed using an explicit local model. The

deformation in a neighborhood of the 0-cells is the content of Proposition 7.6.

Then we proceed with the pre-image of a neighborhood of the 1-cells. This is

Proposition 7.7. The same local model is used in both deformations.

7.1. Local model. The following lemma is used to prove Propositions 7.6

and 7.7. It is a version of results in Section 2.3 of [Eli89] concerning defor-

mations of a family of distributions near the 1- and 2-skeleta of a 3-manifold.

The connectedness condition is stated there as the vanishing of a relative fun-

damental group.

Lemma 7.2. Let (F, ξt) be a family of contact structures over a compact

3-manifold F parametrized by (s, t) ∈ [−ε, ε]× [0, 1] where ξt is constant along

the s-lines and αt are associated contact forms. Consider the projection

F × [−ε, ε]× [0, 1]
π
// F × [0, 1]

and the distribution ξ on F × [−ε, ε] × [0, 1] defined globally by the kernel of

the form

αH(p, s, t) = αt +H(p, s, t)dt, H ∈ C∞(F × [−ε, ε]× [0, 1]).

Suppose that |H(p, s, t)| ≤ c · |s|, and assume that the 1-form αH is a contact

form in a compact set G such that the intersection of G with any segment

{p} × [−ε, ε]× {t} is either connected or empty.

Then, there is a small perturbation ‹H of H relative to G such that α
H̃

defines a contact structure. In precise terms, |‹H −H| ≤ 3cε and ‹H|G = H|G.

Proof. Let us compute the contact condition on α = αH :

dα = dαt + dt ∧ ∂tαt + dH ∧ dt =⇒ (dα)n = (dαt)
n + (dαt)

n−1 ∧ dH ∧ dt.
Therefore, the contact condition is described as

(dα)n ∧ α = (dαt)
n−1 ∧ αt ∧ (∂sH · ds ∧ dt).

Thus, the 1-form α is a contact form if and only if ∂sH > 0.

Given (p, t) ∈ F×[0, 1], π−1(p, t) is a 4-parametric family of 1-dimensional

manifolds. The connectedness of π−1(p, t)∩G and the compactness of G assure

that it is possible to perturb H to an ‹H relative to G and satisfying the

contact condition. Indeed, the connectedness condition allows us to perturb

the function H on at least one end of the curves in F × [−ε, ε] × [0, 1] and

obtain a function ‹H with ∂s‹H > 0. �
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7.2. Contact connections. Lemma 7.2 can be used if the contact form has

the expression as in the hypotheses of the statement. This is achieved with

the choice of an appropriate trivialization obtained by parallel transport. It is

convenient to review the notions introduced in [Ler04].

Definition 7.3. A contact fibration is a smooth fibration π : M −→ B with

a cooriented codimension-1 distribution ξ ⊂ TM such that the intersection of

ξ with any fibre induces a contact structure on that fibre.

Consider a contact fibration (π, ξ), a 1-form α such that ξ = kerα and

the vertical bundle kerπ. A contact fibration has an associated contact con-

nection Hξ. It is defined as the orthogonal of the symplectic subbundle (kerπ

∩ ξ, dα|kerπ∩ξ) in ξ with respect to dα|ξ. Note that the contact connection only

depends on the contact structure and not on the choice of the contact form.

Lemma 7.4. Let (π, ξ) be a contact fibration. The parallel transport with

respect to a contact connection is by contactomorphisms.

This is a simple computation. See [Ler04], [Pre07]. A vertical contact al-

most contact structure (M, ξ, ω) with respect to a good ace fibration (f, C,E)

is, in particular, a contact fibration away from the critical locus C. Suppose

that ξ = kerα, and let ξv = kerαv be the vertical distribution. The symplectic

structure ω and dα|ξ both provide a horizontal complement for the vertical

distribution ξv in ξ. These are defined as the annihilators of the vertical bun-

dles with respect to the 2-forms ω and dα|ξ. Let us denote the first one by Hω

and note that the second one is the contact connection Hξ introduced above.

The distribution Hξ is not necessarily symplectic for ω. Consider a symplec-

tic structure ωξ for Hξ coinciding with the symplectic structure dα|Hξ on a

neighborhood of C and E. Then (M, ξ, dαv ⊕ ωξ) is a vertical contact almost

contact structure for (f, C,E). Lemma 2.5 implies the following

Lemma 7.5. Let (M, ξ, ω) be a vertical contact almost contact structure

with respect to a good ace fibration (f, C,E), αv such that ξv = kerαv and

ωξ a symplectic structure for the contact connection associated to (f, ξ). Then

(M, ξ, ω) and (M, ξ, dαv ⊕ ωξ) are homotopic almost contact structures.

In order to be able to apply Lemma 7.2 we need a deformation of (M, ξ, ω)

such that at least in one direction the parallel transport along the deformed

almost contact connection is a contactomorphism. This allows us to trivialize

with the almost contact connection and obtain a vertical contact distribution

constant along that direction, thus conforming the hypotheses of Lemma 7.2.

Both Lemmas 7.4 and 7.5 provide such a construction. The following two

subsections provide details.

7.3. Deformation along intersection points. In this subsection we obtain

a contact structure in a neighborhood of the fibres over a neighborhood of the



ALMOST CONTACT 5-MANIFOLDS ARE CONTACT 465

intersection points of an adapted family T . The precise statement reads as

follows.

Proposition 7.6. Let (M, ξ, ω) be a vertical contact structure with re-

spect to a good ace fibration (f, C,E) and T an adapted family. Then there

exists a deformation (ξ′, ω′) of (ξ, ω) relative to C and E such that (f, C,E) is

a good ace fibration for (ξ′, ω′) and ξ′ is a contact structure in the pre-image

of a neighborhood of the 0-cells of |T |.

Proof. Let z be a point of intersection of the adapted family T , (φ,U) a suf-

ficiently small chart centered at z with the diffeomorphism φ : U −→ [−1, 1]×
[−1, 1], Cartesian coordinates (s, t) ∈ [−1, 1]× [−1, 1] and N = f−1(U)\U(f).

The geometric argument to prove the statement is simple. Lemmas 7.5 and

7.4 are used to trivialize f over a neighborhood of the 0-cells such that the

hypotheses of Lemma 7.2 can be applied. Let us provide the details.

The map f : N −→ U is a smooth trivial fibration with fibre F . Lemma 6.8

provides an adequate trivializing diffeomorphism g : N −→ F×[−1, 1]×[−1, 1].

Let (λ,Ω) = (g∗ξ, g∗ω) be the almost contact structure in this local model and

fλ = φ◦f◦g−1 : F×[−1, 1]×[−1, 1] −→ [−1, 1]×[−1, 1], fλ(p) = (σ(p), τ(p)).

This is a contact fibration for the distribution λ, and the almost contact struc-

ture (λ,Ω) is a contact structure near g(∂N \ f−1(∂U)). Consider the 1–forms

α and αv defining the distributions λ and λv. Lemma 7.5 allows us to deform

the symplectic structure Ω to dαv ⊕ Ωλ for a suitable choice of symplectic

structure Ωλ in the dα-orthogonal of λv in λ. Lemma 7.4 implies that the

parallel transport along the lift of the vector field ∂s to the connection Hλ con-

sists of contactomorphisms. This provides a specific trivialization such that

the contact form satisfies the hypotheses of Lemma 7.2.

Indeed, consider the connection Hλ for the fibration fλ and the vector

field ∂s in the base [−1, 1]× [−1, 1]. Let Xs be the lift of ∂s to Hλ and mτ
p the

parallel transport along the segment

γ : [0, τ ] −→ [−1, 1]× [−1, 1], γ(r) = p+ (r, 0).

That is, mτ
p is the time-τ flow of Xs. There exists a small ε ∈ R+ such that the

flow mτ
p is well defined for all |τ | < ε and p ∈ {0}× [−1, 1]. This might require

a perturbation of the trivializing diffeomorphism g along a neighborhood of

the boundary f−1
λ (∂((−ε, ε)× [−1, 1])).

In order to obtain the required trivialization, consider the diffeomorphism

ι : F × (−ε, ε)× [−1, 1] −→ F × (−ε, ε)× [−1, 1],

p 7−→ ι(p) = (m
−σ(p)
(0,τ(p))(p), fλ(p)).
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The lift of the direction ∂s is part of the trivialized distribution. In precise

terms, the push-forward of ξ in g−1(F × (−ε, ε) × [−1, 1]) along ι ◦ g is a

distribution (ι ◦ g)∗ξ given by the kernel of a 1-form

α(s,t) +H(p, s, t)dt, satisfying ∂sα(s,t) = 0.

Lemma 7.2 can then be applied. The good set G is chosen to be a suitable

neighborhood of the trivialization of the boundary ∂F × (−ε, ε)× [−1, 1]. The

statement of the lemma yields a smooth function‹H : F × (−ε, ε)× [−1, 1] −→ R

inducing a contact structure in this local model.

The previous procedure has to be considered inside the manifold. We

should then perform the perturbation relative to the boundary of the base

(−ε, ε) × [−1, 1]. To this aim, consider δ ∈ R+ small enough and a smooth

cut-off function cδ : [−1, 1] −→ [0, 1] satisfying

cδ(x) = 1 for |x| ≤ δ, cδ(x) = 0 for |x| ≥ 1− δ.
Then the interpolating function

h(p, s, t) = cδ(ε
−1s)cδ(t)‹H(p, s, t) + (1− cδ(ε−1s)cδ(t))H(p, s, t)

induces the form α = α(s,t) +h(p, s, t)dt that coincides with α(s,t) +H(p, s, t)dt

near the boundary of (−ε, ε)× [−1, 1]. The perturbation can thus be made rel-

ative to the boundary and inserted in the manifold. The deformation from the

initial distribution to that defined by the contact form α satisfies the statement

of the proposition. �

7.4. Deformation along curves. Once we have achieved the contact con-

dition in a neighborhood of the fibres over the 0-skeleton, we proceed with a

neighborhood of the fibres over the 1-skeleton.

Proposition 7.7. Let (M, ξ, ω) be a vertical contact structure with re-

spect to a good ace fibration (f, C,E), T an adapted family and T a neighbor-

hood of T . Suppose that (M, ξ) is a contact structure on a neighborhood O
of the fibres over the 0-cells of T . Then there exists a deformation (ξ′, ω′) of

(ξ, ω) relative to C , E and O such that (f, C,E) is a good ace fibration for

(ξ′, ω′) and ξ′ is a contact structure in the pre-image of T.

Let S be a small neighborhood of the set of fibres over T\O. See Figure 10.

The argument applied over O in the previous subsection works analogously

when applied to S. Thus, no detailed proof is given. The only subtlety lies in

the appropriate choice of the compact set G when Lemma 7.2 is applied.

Let z, w ∈ CP1 with corresponding neighborhood Oz,Ow; we focus on a

line segment S ⊂ |T | joining these two points. Let (φ,U) be a local chart

around S\ (Oz ∪Ow) with Cartesian coordinates (s, t) such that

φ(U) = [−ε, ε]× [0, 1], φ(S) = {0} × [0, 1].
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Figure 10. The deformation domains.

Lemma 7.8. There exist an arbitrarily small neighborhood S of S and a

horizontal deformation of the vertical contact almost contact structure (ξ, ω)

supported in the pre-image of S, relative to the pre-images of S∩Oz and S∩Ow,

and conforming the following properties :

- the deformation is relative to U(f) where ξ is already a contact structure;

- there exists a local chart (φ,U) such that the parallel transport of the as-

sociated almost contact connection along the vector field φ∗∂s consists of

contactomorphisms.

This follows from Section 7.2.

Proof of Proposition 7.7. Use Lemma 7.8 to ensure that the parallel trans-

port along the lift of ∂s is by contactomorphisms. Choose the s-coordinate in

the neighborhood S in such a way that the curves that provide the lift of φ∗∂s
either have at most one of the ends in the fibres over a small neighborhood

of the 0-skeleton or are contained therein. See Figure 11. This allows us to

choose a compact set G containing the fibres over the two endpoints plus a

neighborhood of the boundary of all the fibres such that the intersection of

Oz
S Ow

Figure 11. The deformation curves φ∗∂s.
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G with any such arc is connected. There might be the need to progressively

shrink the neighborhoods of the fibres over the 0-skeleton. Apply Lemma 7.2 to

produce a contact structure in a neighborhood of the fibres over the 1-skeleton

without perturbing the existing contact structure in a small neighborhood of

fibres over the endpoints. �

8. Fibrations over the 2-disk

Let (F, ξv) be a contact 3-manifold, ξv = kerαv and D2 a 2-disk. In this

section we study contact structures on the product manifold F ×D2. Consider

the coordinates (p, r, θ) ∈ F × D2. The previous sections essentially reduce

Theorem 1.1 to the existence of a contact structure on F ×D2 restricting to a

prescribed contact structure on a neighborhood of the boundary F ×∂D2. See

Theorem 9.1 in Section 9 for details on the end of the proof.

Fix an ε ∈ (0, 1), and consider H ∈ C∞(F × D2(1)) to be a smooth

function such that ∂rH > 0 for r ∈ (1− ε, 1]. Then the 1-form

α = αv +H(p, r, θ)dθ

defines a distribution ξ = kerα. It can be endowed with the symplectic form

ω = dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dH ∧ dθ,

where τ : [0, 1] −→ [0, 1] is an strictly increasing smooth function such that

τ(x) = 0 for x ∈ [0, 1− ε] and τ(x) = 1 for x ∈ [1− ε/2, 1].

Then (ξ, ω) is an almost contact structure on F × D2(1) that is a contact

structure on the neighborhood F×(1−ε/2, 1]×S1 of the boundary F×∂D2(1).

The main result in this section is the following

Theorem 8.1. Let (F, ξv) be a contact 3-manifold with c1(ξv) = 0, ξv =

kerαv and L a transverse link. Given ε ∈ (0, 1), consider a function H ∈
C∞(F × D2(1)) such that ∂rH > 0 in r ∈ (1 − ε, 1] and H|L×D2(1) ≥ 0, and

the almost contact structure

(ξ, ω) = (ker(αv +H(p, r, θ)dθ), dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dH ∧ dθ),

where τ is the function described above.

There exists a 1-parametric family of almost contact structures {(ξt, ωt)},
constant along the boundary F × ∂D2(1) and with (ξ0, ω0) = (ξ, ω) such that

(a) (ξ1, ω1) = (kerα, dα) is a contact structure for some contact form α on

F × D2(1);

(b) the submanifold L×D2(1) is a contact submanifold of (F ×D2(1), ξ1) and

the induced contact structure is a small neighborhood of a full Lutz twist

along L× {0}.
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In coordinates (z, r, θ) ∈ L×D2(1), the contact structure obtained by a full

Lutz twist in a neighborhood N (L) ∼= L×D2 of L along L×{0} is described as

ξ|L×D2(1) = ker(cos(2πr)dz + r sin(2πr)dθ).

Consider the domain L × D2(5/4) with the previous equation defining the

contact structure. The term small neighborhood of a full Lutz twist refers

to an open subset U ∼= L × D2(1) such that it can be contact embedded as

L× D2(1) ⊂ U ⊂ L× D2(5/4).

This theorem is used to conclude Theorem 1.1 in Section 9. In brief, it

is used to deform the almost contact structure over the 2-cells of the decom-

position associated to an adapted family T of a vertical good ace fibration

(f, C,E). In this description of the fibration over the 2-cells, the part corre-

sponding to the exceptional divisors is the submanifold L × D2(1). Although

the deformation in the statement is not relative to a neighborhood of them,

the resulting contact structure is described in the part (b) of Theorem 8.1.

Example. Suppose that the function H ∈ C∞(F × D2(1)) also satisfies

H(p, 1, θ) > 0 for all (p, θ) ∈ F × S1.

The contact condition for the initial form αv+H(p, r, θ)dθ is ∂rH > 0. Consider

a smooth family {Ht}t∈[0,1] of functions in F × D2(1) such that

H0 = H, H1(p, 0, θ) = 0, ∂rH1 > 0 for r ∈ (0, 1] and Ht(p, 1, θ) = H0(p, 1, θ).

Suppose that H1 vanishes quadratically at the origin. (This assumption will be

implicitly made throughout the article.) Then αt = αv+Ht(p, r, θ)dθ is a family

of almost contact distributions constant along the boundary F × ∂D2(1) such

that kerα1 is a contact structure. The corresponding symplectic structures on

kerαt is readily constructed as in the previous discussion, and an interpolation

to the symplectic form αv + dH1 ∧ dθ is required to obtain the almost contact

structure (kerα, dα). This contact structure does conform property (a) in

Theorem 8.1.

The importance of Theorem 8.1 is that it also covers the case of almost

contact distributions where H is negative along a part of F×∂D2(1). This case

is handled at the cost of changing the contact structure on L × D2(1). This

region is part of the exceptional locus E and should a priori not be modified;

however, we will see in Section 9 that the control on this region ensured by

Theorem 8.1 will be enough to correct that change.

8.1. The model. In this subsection we describe the model used to obtain

the contact structure in the statement of Theorem 8.1.

Consider the smooth 5-dimensional manifold F × S2. The submanifolds

i0 : F0 = F ×{(1, 0, 0)} −→ F ×S2 and i∞ : F∞ = F ×{(−1, 0, 0)} −→ F ×S2
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are referred to as the fibres at zero and infinity. A construction made relative

to F∞ should be thought as construction on F×D2(1) relative to the boundary.

The compact smooth 3-manifold F is parallelizable. Hence the cotangent

bundle T ∗F −→ F is isomorphic to the fibre bundle F × R3 −→ F given

by the projection onto the first factor. The canonical symplectic structure in

the manifold T ∗F induces a contact structure in the manifold F × S2. For

instance, given a Riemannian metric, the manifold F × S2 can be identified

with the unit cotangent bundle S(T ∗F ) with respect to that metric. This is a

convex hypersurface in T ∗F , and the canonical Liouville vector field defines a

contact structure ξcan on S(T ∗F ) ∼= F × S2. The study of the distribution ξcan

has been at the core of contact geometry since its foundations. See [Lut83]

and Appendix 4 in [Arn89].

Consider a contact structure (F,Ξ). The choice of a contact form α for

Ξ defines an embedding F −→ T ∗F . The image of this embedding can be

assumed to lie in S(T ∗F ). Then (F,Ξ) is seen as a contact submanifold of

(S(T ∗F ), ξcan). The symplectic normal bundle of this contact embedding is

isomorphic to Ξ. In particular, the embedding has trivial normal bundle if and

only if c1(Ξ) = 0. See [Gei97b] for an application.

The construction of the contact structure in the following proposition

begins with the natural contact structure in S(T ∗F ) thought of as a contact

structure in the total space of F × S2 −→ S2.

In the manifold S1 × S2 there exists a unique tight contact structure. It

is the contact boundary of the symplectic manifold S1 × D3. The first Chern

class of this tight contact structure is 0 ∈ H2({0} × S2,Z) ∼= H2(S1 × S2,Z).

Consider the overtwisted contact structure ξot in the homotopy class of plane

fields {θ} × TS2. It is obtained by performing half Lutz twist in the tight

contact structure along the transverse knot S1 × {0}. This is said to be the

standard 2-overtwisted structure on S1 × S2. Certainly its first Chern class

c1(ξot) = 2 coincides with c1(TS2) = 2. This homotopy class of plane fields is

relevant since TS2 is a horizontal bundle for the projection S1 × S2 −→ S2.

The basic geometric construction used to prove Theorem 8.1 is the con-

tent of the following result. A minor enhancement of the proposition is also

required; it is explained in Corollary 8.3.

Proposition 8.2. Let (F, ξv) be a contact 3-manifold with c1(ξv) = 0,

ξv = kerαv and L a transverse link. Consider the manifold (F × S2, ωS2) the

standard area form on S2 and the almost contact structure

(ξ, ω) = (kerαv, dαv + ωS2).

Then there exists a contact structure ξf = kerαf on F × S2 conforming

the following properties :
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(a) The contact form αf restricts to the initial contact form at the fibres F0

and F∞:

i∗0αf = αv and i∗∞αf = αv.

(b) Consider the inclusion iL : L × S2 =
⊔

(S1 × S2) −→ F × S2. Then the

contact form i∗Lαf defines the contact structure ξot on each S1 × S2.

(c) The almost contact structures (ξ, ω) and (kerαf , dαf ) are homotopic rela-

tive to F∞.

Proof. This is a rather long proof. It is divided according to the construc-

tion and the verification of each of the three properties.

Construction. Since c1(ξv) = 0, there exists a global framing {X1, X2 ∈
Γ(ξv)} of the contact distribution ξv. Denote by X0 the Reeb vector field

associated to the contact form α0 = αv. Therefore {X0, X1, X2} is a global

framing of TF . Let {α0, α1, α2} be the dual framing. It can be assumed that

the transverse link L is an orbit of the Reeb vector field X0. In particular,

α1 and α2 vanish along L. Denote the standard embedding of the 2-sphere

as e = (e0, e1, e2) : S2 −→ R3. The previous discussion endows the smooth

manifold F × S2 with a natural contact structure. We use an explicit model

for the argument. It is a computation to verify that

λ = e0 · α0 + e1 · α1 + e2 · α2

is a contact form on F × S2. The important properties are that {α0, α1, α2} is

a framing and the map e is a star-shaped embedding. The contact structure

kerλ is contactomorphic to ξcan. From the classical viewpoint it is clear that

kerλ is a contact structure. See [Lut83].

In spherical coordinates (t, θ) ∈ [0, 1] × [0, 1], the embedding can be de-

scribed as

e0(t, θ) = cos(πt),

e1(t, θ) = sin(πt) cos(2πθ),

e2(t, θ) = sin(πt) sin(2πθ).

Note that F∞ = F × (−1, 0, 0) and F0 = F × (1, 0, 0) are contactomorphic

contact submanifolds of (F × S2, kerλ) with trivial normal bundle. Consider

two copies of F × S2. We can perform a contact fibered sum along their F∞
fibres; see [Gei08]. This operation is done in order to obtain two fibres with

the contact form α0 — those coming from the two zero fibres F0 in the two

copies of F × S2. Let us provide an explicit equation for the contact form in

this fibered sum.
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A tentative modification of λ is obtained by considering the following map:

κ0(t, θ) = cos(2πt),

κ1(t, θ) = sin(2πt) cos(2πθ),

κ2(t, θ) = | sin(2πt)| sin(2πθ)

and the 1-form κ0 ·α0 +κ1 ·α1 +κ2 ·α2. Due to the appearance of the absolute

value this form is just continuous. Observe though that in the smooth area it

is a contact form. Let us perturb it to a smooth 1-form.

Define a smooth map t : [0, 1] −→ [0, 1] such that

t(0) = 0, t(1/2) = 1/2, t(1) = 1, t′(v) > 0

for v ∈ [0, 1/2) ∪ (1/2, 1] and t(k)(1/2) = 0 ∀k ∈ N.

This allows us to reparametrize the sphere with coordinates (v, θ) ∈ [0, 1] ×
[0, 1]. The following map is denoted by (e0, e1, e2) in order to ease nota-

tion. This should not lead to confusion since the map formerly referred to

as (e0, e1, e2) is not to be considered again. Consider the smooth map

e0(v, θ) = cos(2πt(v)),

e1(v, θ) = sin(2πt(v)) cos(2πθ),

e2(v, θ) = | sin(2πt(v))| sin(2πθ).

It is indeed smooth because t(k)(1/2) = 0. This almost provides the desired

1-form for the fibre connected sum. Define the smooth function

h(v) = v(1− v) sin(2πv)

and the 1-form η = c · h(v)dθ, where c is a small positive constant.

Assertion. There exists a choice of c ∈ R+ such that the 1-form defined

as

(3) αf = e0α0 + e1α1 + e2α2 − η

is a contact form over the fibre connected sum of two copies of F × S2 along

the fibres F∞.

This concludes the construction of the contact form in the manifold F×S2

obtained in the theorem. The contact form αf also conforms property (a). in

the statement of the theorem.

Proof of Assertion. Consider the following volume form ν = sin(πv)dv ∧
dθ ∧ α0 ∧ α1 ∧ α2 on F × S2, and compute the exterior differential

dαf = de0 ∧ α0 + de1 ∧ α1 + de2 ∧ α2 + e0dα0 + e1dα1 + e2dα2 − dη.
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The contact condition states that αf ∧ (dαf )2 is a positive multiple of ν. Let

us express it as

αf ∧ (dαf )2 = η1 + cη2 + cη3,

where η1, η2, η3 are the following 5-forms:

η1 =

∣∣∣∣∣∣∣
e0 e1 e2

∂te0 ∂te1 ∂te2

∂θe0 ∂θe1 ∂θe2

∣∣∣∣∣∣∣ t′(v)2dv ∧ dθ ∧ α0 ∧ α1 ∧ α2

= 4π2| sin(2πt(v))|(t′(v))2dv ∧ dθ ∧ α0 ∧ α1 ∧ α2,

η2 = −e2
0 · h′(v) · α0 ∧ dα0 ∧ dv ∧ dθ,

η3 = −
∑
i+j≥1

(ei · ej · h′(v)) · αi ∧ dαj ∧ dv ∧ dθ

+
∑
i,j

(ei · h(v)) · dej ∧ dαi ∧ αj ∧ dθ.

The indices belong to i, j ∈ {0, 1, 2}. Evaluating at v = 1/2, we obtain

η2(p, 1/2, θ) =
π

2
α0 ∧ dα0 ∧ dv ∧ dθ =

π

2
dv ∧ dθ ∧ α0 ∧ α1 ∧ α2,

η1(p, 1/2, θ) = 0,

η3(p, 1/2, θ) = 0.

Therefore, there is a small constant δ > 0 such that the 5-form η2 +η3 is a

positive volume form in the region F × [1/2− δ, 1/2 + δ]× [0, 1]. The function

t(v) is strictly increasing except at v = 1/2. Hence, there exists a constant

B > 0 such that t′(v) > B for any v ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1].

Let us write η1(p, v, θ) = g1(p, v, θ)ν and η2+η3 = g2(p, v, θ)ν. There exist

constants C,M ∈ R+ such that g1 > C > 0 for v ∈ [0, 1/2 − δ] ∪ [1/2 + δ, 1],

and |g2| ≤M .

Choose the initial constant c ∈ R+ to satisfy cM ≤ C. Then we obtain

the following bound for v ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1]:

αf ∧ (dαf )2 = η1 + cη2 + cη3 = (g1 + cg2)ν > C − cM ≥ 0.

Hence the form αf is a contact form in this region. The following bound holds

in the remaining region v ∈ [1/2− δ, 1/2 + δ]:

αf ∧ (dαf )2 = η1 + cη2 + cη3 = (g1 + cg2)ν > cg2 ≥ 0.

Thus αf is a contact form in the fibre connected sum F × S2. �
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Property (b). The contact form αv associated to ξv has been chosen such

that its Reeb vector field X0 is tangent to the link L. Thus α1,α2 vanish on L.

Restricting the contact form αf in equation (3) to the submanifold, we obtain

(4) i∗L(αT ) = cos(2πt(v))dz − cv(1− v) sin(2πv)dθ,

where (z, v, θ) ∈ S1 × S2. This is an equation of the contact structure ξot on

each S1×S2. Indeed, consider a(v) = cos(2πt(v)) and b(v) = v(1−v) sin(2πv).

Then the curve parametrized by (a(v), b(v)) rotates once around the origin and

the tangent vector field (a′(t), b′(t)) is transverse to the radial direction, i.e.,

∂r, on (0, 1).

Property (c). Let fF : F −→ [0, 1] be a Morse function on the 3-manifold

F with a single minimum q ∈ F . Then

f(p, v, θ) = fF (p)− (1 + fF (p))v2 : F × S2 −→ [−1, 1]

is a smooth Morse–Bott function on F×S2 whose nondegenerate critical points

belong to the central fibre F0 and that has F∞ as a critical manifold. Let us use

the associated cell decomposition relative to the level f−1((−∞,−1]) = F∞.

It is generated by the descending manifolds associated to each critical point.

It has a unique 2-cell σ2
q = {q}× (S2\{∞}), corresponding to the critical point

(q, 0, 0).

Note that the resulting almost contact structure and the initial one coin-

cide near F∞ and we only need to compare them as almost contact structures

on the disk relative to the boundary. Due to Lemma 2.4, a pair of almost

contact distributions homotopic over the disk σ2
q relative to its boundary are

homotopic on the 5-manifold F × S2. To conclude property (c) we verify that

such relative homotopy exists along σ2
q . The almost contact distribution ξ

in the statement of the proposition can be written as ξ = kerαv ⊕ TS2. Its

symplectic structure is induced by the symplectic structure on each of the fac-

tors. Note that both kerαv and TS2 are rkR = 2 symplectic bundles. This is

tantamount to rkR = 2 oriented bundles.

Consider a trajectory γ of the Reeb flow through q

γ : (−ε, ε) −→ F, γ(0) = q.

The submanifold (V, ξot) = (γ × S2, ξf |γ×S2) is a contact submanifold of the

contact manifold (F ×S2, kerαf ). A contact from is given by equation (4). As

suggested by the notation, the contact form αot = αf |V defines the overtwisted

structure ξot on (−ε, ε)× (S2 \ {∞}).
Hence the two subbundles of TV ,

ξot −→ σ2
q , TS2 −→ σ2

q ,
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are homotopic as oriented subbundles relative to the boundary of the disk and,

thus, relative homotopic as symplectic bundles. This provides a homotopy in

the 2-dimensional horizontal part. Let us deal with the vertical bundle.

The initial vertical subbundle is ξv = kerαv; it does satisfy the splitting

ξv |σ2
q
⊕ TV|σ2

q
= T (F × S2)|σ2

q
.

The resulting vertical subbundle in the distribution ξf can be constructed as

the symplectic orthogonal subbundle νot of ξot. This yields the decomposition

νot|σ2
q
⊕ TV|σ2

q
= T (F × S2)|σ2

q
.

The space of rank-2 oriented vector bundles transverse to the rank-3 vector

bundle TV is contractible. Hence νot|σ2
q

is homotopic to ξv |σ2
q

as rank-2 sym-

plectic distributions.

On the unique 2-cell σ2
q , both splittings ξ = ξv ⊕ TS2 and ξf = νot ⊕ ξot

hold. Note that the bundle TS2 is homotopic to ξot inside TV and ξv is

homotopic to νot through planes transverse to TV . Since the subbundles are

pairwise homotopic as symplectic distributions and these homotopies do not

interact, ξ and ξf are also homotopic as symplectic distributions. �

In the proof of property (c) of Proposition 8.2 we have only used the

2-skeleton to verify the statement. Lemma 2.4 ensures that this is enough.

There is an alternative geometric approach to produce the homotopy. Indeed,

the Reeb trajectories of αv produce a foliation L on F . This induces a folia-

tion L × D2 with 3-dimensional contact leaves. The argument in the proof of

property (c) can be made parametric to construct an explicit almost contact

homotopy.

The norm of the functionH in the statement of Theorem 8.1 does translate

into a geometric feature. This is the size of a certain neighborhood. This is

explained in the subsequent subsection. Let us enhance the conclusion of

Proposition 8.2 in order to obtain an arbitrarily large contact neighborhood of

a fibre.

Property (d). Let R ∈ R+ be given. There exists a neighborhood U∞ of

the fibre F∞ and a trivializing diffeomorphism ψ : F × D2(R) −→ U∞ such

that

- ψ(F × {0}) = F∞,

- ψ∗αf = αv + r2dθ.

This property could have been included in the statement of Proposition 8.2.

It is stated apart to ease the comprehension.

Corollary 8.3. There exists a contact manifold (F × S2, ξf = kerαf )

conforming (a) to (d).
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Proof. The contact structure (F × S2, ξf = kerαf ) obtained in Proposi-

tion 8.2 does satisfy Properties (a)–(c). Let us modify it in order to satisfy

property (d). The contact neighborhood theorem provides a neighborhood U∞
of the fibre F∞ and a contactomorphism ψε : F×D2(ε)→ U∞ for some ε ∈ R+.

In case R ≤ ε, the statement follows.

Suppose that R ≥ ε, then we use the following covering trick (introduced

in [NP10]). Let k ∈ N be an integer, and consider the ramified covering

φk : F × S2 = F × CP1−→F × CP1

(p, z) 7−→ (p, zk).

The branch locus consists of the fibres F0 and F∞. Both fibres are contact

submanifolds in (F × S2, kerαf ), and we can lift the contact form to a contact

form αkf = φ∗kαf in the domain of the covering map. Lifting the formula (3),

we obtain

αkf = cos(2πt(v))α0 + sin(2πt(v)) cos(2πkθ)α1(5)

+ | sin(2πt(v))| sin(2πkθ)α2 + kη.

The reader can verify that properties (a)–(c) are still satisfied by the contact

structure kerαkf . Regarding property (d), observe that ψ∗αkf = αv + kr2dθ.

Consider the scaling diffeomorphism

gk : F × D2(
√
k · ε)−→F × D2(ε),

(p, r, θ) 7−→ (p, r/
√
k, θ).

Then the trivializing diffeomorphism ψε ◦ gk satisfies (ψε ◦ gk)∗αkf = αv + r2dθ.

Choose k ∈ N such that
√
k · ε ≥ R to conclude the statement. �

To ease notation, we can refer to the contact structures resulting either

from Proposition 8.2 or Corollary 8.3 as ξf . Since the latter has better prop-

erties than the former, ξf refers to that in Corollary 8.3.

Remark. Suppose that the contact manifold (F, ξv) is overtwisted. Then

the contact structure ξf contains a plastikstufe; see [Nie06],[Pre07]. It can be

constructed as follows.

Restrict the contact form αkf to {(p, v, θ) ∈ F × S2 : v = 1/2} ∼= F × S1.

This is a contact bundle over the S1-factor. The induced contact connection

satisfies that π∗∂θ = ∂θ, and thus the parallel transport is the identity. In

particular, the parallel transport of the overtwisted disk on the fibre generates

a plastikstufe.

The contact manifold F ×D2(1/2) will be contact embedded in our initial

manifold (M, ξ); it is PS-overtwisted. Note that Section 6 forces (F, ξv) to be

overtwisted contact structures. Hence the contact structures constructed in

Theorem 1.1 are PS-overtwisted.
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8.2. The proof. In this subsection we conclude the proof of 8.1. The es-

sential geometric ideas have been introduced in Proposition 8.2. The necessary

details to conclude are provided.

Let us introduce a definition. It is given in order to stress the relevance

of the size in a neighborhood.

Definition 8.4. Let (F, ξv = kerαv) be a contact manifold. For A ∈ R+,

the manifold F × [−A,A] × S1 with the contact structure αA = αv + tdθ is

called the A-standard contact band associated to (F, kerαv).

The role of this definition is elucidated in the following lemma.

Lemma 8.5. Let (F, ξF ) be a contact manifold, ξF = kerαF . Consider

a contact manifold (F × [0, 1] × S1, ξ) with contact form αF + Hdθ, H ∈
C∞(F × [0, 1]× S1).

Suppose that |H| < A for some A ∈ R+. Then, there exists a strict contact

embedding of (F × [0, 1]× S1, α) in the A-standard contact band associated to

(F, αF ).

Proof. Consider the embedding defined as

ΨA : F × [0, 1]× S1−→F × [−A,A]× S1

(p, t, θ)−→ (p,H(p, t, θ), θ) .

This is a diffeomorphism onto its image because the form αF +Hdθ is a contact

form or, equivalently, ∂tH > 0. �

The remaining ingredient for the proof of Theorem 8.1 is the subsequent

lemma.

Let l ∈ R+ be a constant, l > 1. Consider a smooth function κl : [0, 2l+1]

−→ [0, l] with

κl(r) = 0 for r ∈ [0, l], κl(r) = r − l − 1 for r ∈ [2l, 2l + 1].

Consider (r, θ) ∈ D2
l to be polar coordinates for the 2-disk D2

l of radius 2l+ 1.

Suppose that F is a manifold. The subset F × {a ≤ r ≤ b} of the product

F × D2 will be denoted F × [a, b]× S1. Similarly, F × (a, b]× S1 refers to the

subset F × {a < r ≤ b} × S1.

Lemma 8.6. Let (F, ξv) be a contact 3-manifold with c1(ξv) = 0, ξv =

kerαv , l ∈ (1,∞) and L a transverse link. Consider the standard area ωD on

the 2-disk D2
l and the almost contact structure on F × D2

l described as

(ξ, ω) = (ker(αv + κl(r)dθ), dαv + ωD).

Then there exists a contact structure ξ1 = kerα1 on F × D2
l such that
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(A) The region F × [1, 2l+1]×S1 is an l-standard contact band for (F, kerαv):

α1|F×[1,2l+1]×S1 = αv + (r − l − 1)dθ.

(B) Consider the inclusion iL : L × D2
l =

⊔
(S1 × D2

l ) −→ F × D2
l . Then the

contact form i∗Lαf defines a small neighborhood of a full Lutz twist on each

S1 × D2
l .

(C) (ξ, ω) and (ξ1, dα1) are homotopic relative to the boundary F × ∂D2
l .

Proof. Consider property (d) in Proposition 8.2 and Corollary 8.3 with

radius R =
√
l. Let (F × S2, ξf = kerαf ) be the contact manifold obtained in

Corollary 8.3. Then there exists a contact neighborhood U∞ of the fibre F∞
and a trivializing diffeomorphism

ψ : F × D2(
√
l) −→ U∞ such that ψ∗αf = αv + r2dθ.

The diffeomorphism ψ also identifies ψ : F × (0,
√
l]× S1 −→ U∞ \ F∞.

Define the following map:

m : F × [−l, 0)× S1 −→ F × (0,
√
l]× S1, m(p, x, θ) = (p,

√
−x,−θ).

It satisfies (ψ◦m)∗αf = αv+rdθ. This form extends to the region F×[−l, l]×S1

with the same expression. Then the manifold F ×D2
l is obtained by gluing the

annular region F × [0, l]× S1 to the annular region

F × (0,
√
l]× S1 ∼= F × [−l, 0)× S1 identified via m

and then using the contactomorphism ψ restricted to F × (0,
√
l]× S1 to per-

form the gluing construction in (F × S2) \ F∞. The construction implies that

property (A) holds. Properties (B) and (C) follow from properties (b) and (c)

in Corollary 8.3 since the manifold (F × S2) \ F∞ satisfies them. �

Proof of Theorem 8.1. Let ε > 0 be a small constant. The function H is

C0-bounded on the compact manifold F = F × D2(1). Let l ∈ (1,∞) be an

upper bound such that ‖H‖C0 < l − ε/4. Consider coordinates (p, r, θ) ∈ F
and a smooth function h ∈ C∞(F) such that

- h(p, r, θ) = 0 for r ∈ [0, 1− 2ε];

- h(p, r, θ) = r − l − (1− ε) for r ∈ [1− ε, 1− 3ε/4];

- ∂rh > 0 for r ∈ [1− 3ε/4, 1− ε/2];

- h(p, r, θ) = H(p, r, θ) for r ∈ [1− ε/2, 1].

The almost contact structure (ξ, ω) is homotopic relative to the boundary

to the almost contact structure defined by

(ξh, ωh) = (ker(αv + h(p, r, θ)), dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dh ∧ dθ).

The homotopy is provided by a relative homotopy between the functions

h(p, r, θ) and H(p, r, θ) and Lemma 2.5. Hence the departing almost contact

structure can be considered to be (ξh, ωh).
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The neighborhood F × (1 − ε, 1] × S1 of the boundary F × ∂D2(1) ⊂ F
is a contact manifold. By Lemma 8.5, F × (1 − ε, 1] × S1 contact embeds in

an l-standard contact band F × [−l, l] × S1. Denote this embedding by φ. It

depends on the Hamiltonian h ∈ C∞(F) in the interval (1−ε, 1]. Observe that

φ(F × {1− ε} × S1) = F × {−l} × S1 since h(p, 1− ε, θ) = −l.
Consider the almost contact manifold (F × D2

l , ξ1 = kerα1) in the state-

ment of Lemma 8.6. Property (A) implies the existence of a contactomorphism

ι : F×[−l, l]×S1 −→ F×[1, 2l+1]×S1 ⊂ (F×D2
l , ξ1), ι(p, r, θ)=(p, r+(l+1), θ)

embedding the l-standard contact band in a neighborhood of size 2l of the

boundary of F × D2
l . Consider the composition

j = ι ◦ φ : F × (1− ε, 1]× S1 −→ F × D2
l .

In particular, it satisfies j(F × {1 − ε} × S1) = F × {1} × S1 ⊂ F × D2
l and

embeds a neighborhood of the boundary F × {1− ε} × S1 via

ι : F × (1− ε, 1− 7ε/8)× S1 ⊂ F
−→ F × [1, 2l + 1]× S1 ⊂ F × D2

l , j(p, r, θ) = (p, r + ε, θ).

The required contact structure in the statement of Theorem 8.1 is obtained

by extending j to the interior of the manifold F × D2(1− ε) ⊂ F and pulling-

back the contact structure from (F ×D2
l , kerα1). Indeed, consider j̃ a smooth

embedding such that

j̃ : F × D2(1) −→ F × D2
l , j̃|F×(D2(1)\D2(1−ε)) = j.

For instance, one can consider the extension to be

j̃|F×D2(1−ε) : F × D2(1− ε) −→ F × D2(1), (p, r, θ) 7−→ (p, c(r), θ),

where c : [0, 1− ε] −→ [0, 1] is a smooth function such that

- c(t) = t near t = 0;

- c(t) = t+ ε near t = 1− ε;
- c′(t) > 0 for t ∈ [0, 1].

Then j̃∗(ξ1) is the required contact structure. Property (B) in Lemma 8.6 and

the fact that the function H is positive in a neighborhood of L imply property

(b) in the theorem.

Let us justify that the obtained contact structure is homotopic to the

initial almost contact structure relative to the boundary F × ∂D2(1). The

homotopy obstruction appears in the 2-skeleton, and therefore it is enough to

find the homotopy at a disk {p} × D2(1) ⊂ F. An analogous computation to

the one detailed in the proof of property (c) of Proposition 8.2 yields the same

result. Hence the resulting contact structure ξ1 is homotopic as an almost

contact structure to the initial almost contact structure (ξ, ω) relative to the

boundary. �
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Remark 8.7. The central ingredient in this construction is the existence

of a contact structure ξ on F × S2 with the following two properties:

- it restricts to a given contact structure (F, ξF ) on a fibre F × {p};
- the contact structure ξ is homotopic to the almost contact structure ξF ⊕
TS2.

The use of the space of contact elements space forces the fibre to have vanishing

Chern class and part of Section 5 is invested to achieve this hypothesis. Since

the submission of this article, the articles [BCS14], [HW12] provide a contact

structure on F ×S2 conforming the above properties. Their use would simplify

Section 5.3.

9. Horizontal deformation II

The arguments in the previous sections are gathered to conclude the proof

of Theorem 1.1.

9.1. Contact Structure in the fibration.

Theorem 9.1. Let (M, ξ, ω) be an almost contact structure and (f, C,E)

a good ace fibration adapted to it. Suppose that (ξ, ω) is vertical with respect

to (f, C) and T is an adapted family such that ξ is a contact structure over

a regular neighborhood of |T |. Then (ξ, ω) is homotopic to a contact struc-

ture ξ′ and the restriction of ξ′ to the exceptional 3-spheres in E induces the

homotopically standard overtwisted contact structure.

The standard overtwisted structure is the unique overtwisted contact struc-

ture on S3 homotopic to the standard contact structure ξstd.

A neighborhood of the intersection of an exceptional 3-sphere with a fibre

of f is diffeomorphic to S1×D2×D2. Let (z, r, θ, ρ, φ) be coordinates for such

a neighborhood; the triple (z, ρ, φ) belongs to the fibre. It can be considered

as a trivial fibration over the first pair of factors

π : S1 × D2 × D2 −→ S1 × D2, (z, r, θ, ρ, φ) 7−→ (z, r, θ).

There also exists a contact structure given by the contact form α = dz +

r2dθ + ρ2dφ on the neighborhood. This induces a contact connection Aπ for

the fibration π. Let δ ∈ R+, and suppose the horizontal 2-disk (ρ, φ) ∈ D2(δ)

is of radius δ.

Lemma 9.2. Consider the contact manifold

(S1 × D2 × D2(δ), ker(dz + r2dθ + ρ2dφ)),

π the projection onto the first pair of factors and Aπ the associated con-

tact connection. The flow of the lift of ∂r to Aπ preserves the submanifold

{(z, r, θ, ρ, φ) ∈ X : ρ = δ/2}.
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Proof. The vector field ∂r belongs to the contact distribution. The vertical

directions are generated by ∂ρ, ∂φ, and the symplectic form pairs them via

ρ · dρ ∧ dφ. Hence ∂r is itself the lift to Aπ. The statement follows. �

Proof of Theorem 9.1. The complement of a regular neighborhood of |T |
in CP1 is a disjoint collection {B1, . . . , Ba} of 2-disks. The distribution ξ is a

contact structure in the fibres of f close to the boundary of B1∪ · · · ∪Ba. The

restriction of f to the preimages of each B ∈ {Bi} is a smooth fibration since

the critical values of f lie in the complement of the set B1 ∪ · · · ∪Ba. In order

to conclude the statement of the theorem, we produce a deformation over each

ball B supported away from the boundary and resulting in a contact structure.

The proof of the statement now uses the results in Section 8. Let us

provide the necessary details regarding the trivializations. Choose a ball B ∈
{B1, . . . , Ba} and a local chart ϕ : B −→ B2(1). Consider the map g =

ϕ ◦ f : f−1(B) −→ B2(1). For ε > 0 a small constant, we may assume that

g−1(B2(1)\B2(1 − ε)) is an open set where the distribution ξ is a contact

structure.

Consider an exceptional divisor E. According to the local model used in

Section 5, there exists a neighborhood E of E and a contactomorphism

ϕE : (S3 × D2(δ), αstd + ρ2dφ) −→ E .

The composition f ◦ ϕE : S3 × D2(δ) −→ S2 restricts to the Hopf fibration at

S3 × {0}. Restricting to the region f−1(B) ∩ E , we obtain a fibration

ϕ ◦ f ◦ ϕE : S1 ×B2(1)× D2(δ) −→ B2(1)

over the 2-ball. Lemma 9.2 implies that the contact parallel transport along

the neighborhoods of the boundary is tangent to it. Lemma 7.4 allows us to

radially trivialize and express the contact structure as

ξ = ker(αv +Hdθ).

Observe that the contact fibration is a contact structure in the neighborhood E ;

therefore, ∂rH ≥ 0 is satisfied on E . Since H(p, 0, 0) = 0, we also conclude

that H ≥ 0 over E .

This setup satisfies the hypotheses of Theorem 8.1. The theorem produces

a homotopy ξt of almost contact structures over f−1(B) relative to its boundary

such that ξ0 = ξ and ξ1 is a contact structure. The exceptional divisors are

contact submanifolds of ξ1, and their induced contact structure is the standard

contact structure ξstd with a full Lutz twist performed. The construction

is made relative to the pre-image of a neighborhood of the boundary of the

ball B. The argument successively applies to the elements of {B1, . . . , Ba}.
This concludes the statement. �
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9.2. Interpolation at the exceptional divisors. Let (M, ξ, ω) be an almost

contact manifold. The argument for proving Theorem 1.1 begins with a good

almost contact pencil (f, C,E). Section 5 provides a good ace fibration in a

modified manifold (M̃, ξ̃, ω̃). The results in Sections 6, 7 and 8 confer good

ace fibrations. These exist not on the manifold (M, ξ, ω) but in (M̃, ξ̃, ω̃). In

the previous subsection a contact structure has been obtained in the almost

contact manifold (M̃, ξ̃, ω̃) such that a neighborhood of the exceptional spheres

has remained contact. It is left to obtain a contact structure in the initial

manifold M .

The exceptional spheres in (M̃, ξ̃) have the standard tight contact struc-

ture (S3, ξstd) at the beginning of the argument. In the deformation performed

in Section 8, the exceptional spheres become overtwisted and we cannot di-

rectly obtain a contact structure on M . This has a simple solution; we deform

the contact distribution on a neighborhood of the exceptional spheres to the

standard one. This is the content of the following

Theorem 9.3. Let (S3 ×B2(4), ξ0) have the contact form

(6) η = αot + δ · r2dθ,

where δ ∈ R+ is a constant and αot is any contact form associated to an over-

twisted contact structure homotopic to the standard contact structure on S3.

Let ξstd be a tight contact structure on S3. Then there exists a deformation

ξ1 of ξ0 supported in S3 × B2(3) such that the ξ1 is a contact structure and

S3 × {0} inherits the contact structure ξstd.

This result is a consequence of Lemma 3.2 in [EP11]. Let us give an

alternative argument, pointed out to us by Y. Eliashberg.

Proof of Theorem 9.3. Let us begin with the tight contact structure on

the 3-sphere (S3, ξstd). Performing a Lutz twist along a given transverse trivial

knot K produces an overtwisted contact structure ξ1
ot in S3 homotopic to ξstd

as an almost contact distribution. The contact structure ξ1
ot is isotopic to

the contact structure ξ2
ot = kerαot. Consider both a trivial Legendrian knot

L ⊂ (S3, ξstd) whose positive transverse push-off is K, and its Legendrian push-

off L′ with two additional zig-zags. According to [DGS05], a Lutz twist along

K is tantamount to a contact (+1)-surgery along L and L′. Hence, given

(S3, ξ1
ot), there exists a (−1)-surgery on (S3, ξ1

ot) producing (S3, ξstd). Such

surgery provides a Liouville cobordism (W,λ) from (S3, ξ1
ot) to (S3, ξstd).

The cobordism obtained by a (+1)-surgery along L and L′ can be made

smoothly trivial; see [DGS05]. Consider θ ∈ S1 and η1 = λ + µ · dθ for a

constant µ ∈ R+. Then the contactization (W ×S1, η1) of the exact symplectic

manifold (W,λ) ∼= (S3 × [0, 1], λ) is diffeomorphic to S3 × [0, 1]× S1. We have

obtained a contact structure on the 3-sphere times the annulus such that the
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inner boundary S3 × {0} has fibres (S3, ξstd), and (S3, ξ1
ot) are the fibres of the

outer bundary S3 × {1}. The inner part is a convex boundary, and it can be

filled with the contact manifold

(S3 × D2, ker(αstd + r2dθ))

in order to obtain a contact structure on S3 × D2 with (S3, ξstd) as central

fibre. For a choice of µ small enough, there exists a small constant δ ∈ R+

such that in a neighborhood S3 × (1 − ε, 1] × S1 of the outer boundary the

contact structure can be expressed as

η1 = α1
ot + δ · r2dθ.

The contact forms α1
ot and α2

ot = αot are isotopic via a family of contact forms

{αrot}, r ∈ [1, 2]. On the manifold S3 × [1, 4]× S1, consider the 1–form

η2 = α̃ot + δ · r2dθ for r ∈ [1, 2] and η2 = α2
ot + δ · r2dθ for r ∈ [2, 4],

where α̃ot(p, r, θ) = αrot(p). The form η2 is a contact form because the form

r2dθ does not depend on the point p ∈ S3. The gluing of the contact forms η1

and η2 is the required contact structure ξ1 on S3 ×B2(4). �

Notice that this deformation gives a homotopy of almost contact structures.

9.3. Proof of Theorem 1.1. Let (M, ξ, ω) be an almost contact structure.

Applying Lemma 2.2 we suppose that (ξ, ω) is an exact quasi-contact structure.

Proposition 5.8 allows us to construct a good almost contact pencil for an ho-

motopic almost contact structure also referred to as (ξ, ω). Then Theorem 5.6

provides a good ace fibration (f, C,E) on an almost contact manifold (M̃, ξ̃, ω̃),

a contact neighborhood N (B) of B and a diffeomorphism Π : M̃ \E −→M \B
such that (Π∗ξ̃,Π∗ω̃) = (ξ, ω).

Theorems 6.2, 7.1 and 9.1 subsequently applied to this almost contact

manifold and good ace fibration yield a contact structure ξ̃c on M̃ . It induces

the standard overtwisted structure on the exceptional spheres since a sequence

of full Lutz twists are performed. Apply Theorem 9.3 to deform the contact

structure to be the initial tight contact structure near each of the exceptional

spheres. Then, maybe after a small deformation, it coincides with (ξ̃, ω̃) in a

tubular neighborhood N (E) of E. Let us still refer to this contact structure as

ξ̃c. The distribution Π∗ξ̃c defines a contact structure on M \N (B). It coincides

with (Π∗ξ̃,Π∗ω̃) = (ξ, ω) in the submanifold Π(N (E)\E). The almost contact

structure (ξ, ω) is a contact structure in a neighborhood of N (B). In conse-

quence, Π∗ξ̃c can be extended to a contact structure ξc on M . This concludes

the proof of the existence of a contact structure ξc in the manifold M .

Let us prove that ξ and ξc are homotopic. There exists a homotopy be-

tween (ξ̃, ω̃) and ξ̃c over M̃ . This homotopy restricts to a homotopy over

the open submanifold M̃ \ E. Then, the diffeomorphism Π yields a homo-

topy between (ξ, ω) and ξc in the open manifold M \ N (B). Let us consider
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a cell decomposition of the manifold M such that N (B) does not intersect

the 2-skeleton. Such decomposition exists because B is 1-dimensional, M is

5-dimensional and the genericity of transversality. Thus (ξ, ω) and ξc are homo-

topic over the 2-skeleton of this cell decomposition. Then Lemma 2.4 implies

that the almost contact structures (ξ, ω) and ξc are also homotopic over M .�

9.4. Uniqueness. The uniqueness of a contact structure in every homo-

topy class of almost contact structures does not hold in a 5-manifold. There

are many examples in the literature; for instance, [Pre07] provides two noncon-

tactomorphic contact structures in the same almost contact homotopy class.

The construction described in this article requires a fair amount of choices.

However, the dependence of the contact structure with respect to them may

be understood. The three main ingredients are the stabilization procedure of

almost contact pencils, in the same spirit as Giroux’s stabilization for a contact

open book decomposition [Col08], [vK10], the addition of fake curves in the

triangulation increasing the amount of holes filled with the local model and

the surgery procedure.

10. Noncoorientable case

10.1. Definitions. Let M be a (2n + 1)-dimensional closed manifold, not

necessarily orientable. In order to state Theorem 1.1 in the noncoorientable

setting, we need to give a definition of a noncoorientable almost contact struc-

ture. This is a distribution with a suitable reduction of the structure group

along with a property requiring a relation between the normal bundle and the

distribution. First we introduce the Lie group A(n) defined as

A(n) = {A ∈ O(2n) : AJ = ±JA}, where J =

Ç
0 Idn
−Idn 0

å
.

Notice the following properties:

(1) The group A(n) has two connected components. It is homeomorphic to

U(n)× Z2.

(2) Its group structure is isomorphic to a semidirect product U(n)oρZ2. More

precisely, let I =
Ä

Idn 0
0 −Idn

ä
; then the action

ρ : Z2 −→ Aut(U(n)), a 7−→ (U 7−→ IaUIa)

induces the semidirect product structure in the usual way.

(3) There is a natural group morphism s : A(n) −→ Z2 defined as

s(A) = tr(JAJ−1A−1)/(2n);

i.e., under the previous isomorphism, s is the projection onto the second

factor of U(n) oρ Z2.

Let us deduce some topological implications of the existence of a contact struc-

ture. Let ξ ⊂ TM be a possibly noncoorientable contact structure on M with a
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fixed set {Ui} of trivializing contractible charts. Choose αi as a local equation

for ξ|Ui ; then

αi = aijαj , with aij : Ui ∩ Uj −→ {±1}.
This implies that {aij} are the transition function of the normal line bundle

TM/ξ. Further, (dαi)|ξ = aij(dαj)|ξ. In particular, we may choose a family of

compatible complex structures {Ji} for the bundle ξ satisfying Ji = aijJj .

First, note that there is a group injection

A(n) −→ O(2n+ 1), A 7−→
Ç
A 0

0 s(A)

å
and, thus, the structure group of M reduces to A(n). And second, a A(n)-

bundle E induces via the morphism s a real line bundle s(E). This construction

applied to ξ gives the line bundle TM/ξ in the case above. These two properties

will be the ones required in the following

Definition 10.1. An almost contact structure on a manifold M is a codi-

mension 1 distribution ξ ⊂ TM such that the structure group of ξ reduces to

A(n) and s(ξ) ∼= TM/ξ.

Observe that the definition for a cooriented almost contact distribution

coincides with the one previously given. There are some immediate topological

consequences of the existence of such a ξ. Indeed,

(i) If n is an even integer, then A(n) ⊂ SO(2n). Thus the distribution ξ is

oriented.

(ii) If n is an even integer, there is an isomorphism

(7) TM/ξ ∼= det(TM).

Hence, any almost contact structure in an orientable 5-dimensional man-

ifold is cooriented. Conversely, any nonorientable 5-manifold can only

admit noncorientable almost contact structures.

(iii) If n is an odd integer, then s = det as morphisms from A(n) to Z2.

Therefore M is orientable since

det(TM) ∼= det(ξ ⊕ (TM/ξ)) ∼= det(ξ)⊗ s(ξ) ∼= det(ξ)2 ∼= R

Let M2n+1 be a nonorientable manifold with n an even integer. Then there

exists a canonical 2 : 1 cover

π2 : M2 −→M

satisfying the following properties:

(1) M2 is an orientable manifold.

(2) Any almost contact structure ξ on M lifts to an almost contact struc-

ture π∗2ξ on M2. Moreover, such a distribution is cooriented because of

equation (7).
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10.2. Statement of the main result. Let us state the equivalent of Theo-

rem 1.1 in the noncoorientable setting.

Theorem 10.2. Let M be a nonorientable closed 5-dimensional manifold.

Let ξ be an almost contact structure. Then there exists a contact structure ξc
homotopic to ξ.

Proof. Let π2 : (M2, π
∗
2ξ) −→ (M, ξ) be an orientable double cover. The

constructions developed in this article can be performed in a Z2-invariant man-

ner. Let us discuss it.

(i) An almost contact pencil (f,B,C) can be made Z2-invariant. To be pre-

cise, the loci B and C are Z2-invariant subsets and f is a Z2-invariant

as a map. In particular, the action preserves the fibres. This is because

the approximately holomorphic techniques can be developed in that set-

ting. See [IMTP00] for the details of the construction in the Z2-invariant

setting.

(ii) The deformations performed in Section 4 can easily be done in a Z2-invar-

iant way. Also, the surgery along a Z2-invariant loop can be built to

preserve that symmetry.

(iii) Section 6.2 is also prepared for the Z2-invariant setting. Instead of having

a single pair of overtwisted disks, we require two pairs of overtwisted disks.

Each pair in the image of the other through the Z2-action.

(iv) Eliashberg’s construction is not Z2-invariant. Therefore we proceed by

quotienting the whole manifold by the Z2-action; we then obtain an al-

most contact pencil over the quotient. The fibres are oriented since they

are 3-dimensional almost contact manifolds. The induced almost contact

distribution on them is noncoorientable. However, there is no hypoth-

esis on the coorientability in the results of [Eli89]. Once the procedure

described in Section 6 is applied, we consider the orienting double cover.

(v) Section 7 is trivially adapted to the Z2-invariant setting if a serious in-

crease of notation is allowed.

(vi) Filling the 2-cells as in Section 8 and 9, we need to produce a Z2-invar-

iant standard model over M × S2, with (M,α0) a contact manifold with

a Z2-invariant action. The only required ingredient is to ensure that the

framing {α0, α1, α2} is chosen Z2-invariant. The rest of the proof works

through up to notation details.

(vii) The arguments in Section 9 are still Z2-invariant if the previous choices

have been done Z2-invariantly. Therefore, we obtain a Z2-invariant con-

tact structure ξ2
c on M2. Its quotient produces a contact structure ξc

on M .

This proves the existence part of the statement. The statement concerning the

homotopy follows since the homotopies can be easily made Z2-invariant. �
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