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The proof of the l2 Decoupling Conjecture

By Jean Bourgain and Ciprian Demeter

Abstract

We prove the l2 Decoupling Conjecture for compact hypersurfaces with

positive definite second fundamental form and also for the cone. This has

a wide range of important consequences. One of them is the validity of the

Discrete Restriction Conjecture, which implies the full range of expected

Lpx,t Strichartz estimates for both the rational and (up to Nε losses) the ir-

rational torus. Another one is an improvement in the range for the discrete

restriction theorem for lattice points on the sphere. Various applications

to Additive Combinatorics, Incidence Geometry and Number Theory are

also discussed. Our argument relies on the interplay between linear and

multilinear restriction theory.

1. The l2 Decoupling Theorem

Let S be a compact C2 hypersurface in Rn with positive definite sec-

ond fundamental form. Examples include the sphere Sn−1 and the truncated

(elliptic) paraboloid

Pn−1 := {(ξ1, . . . , ξn−1, ξ
2
1 + · · ·+ ξ2

n−1) ∈ Rn : |ξi| ≤ 1/2}.
Unless specified otherwise, we will implicitly assume throughout the whole

paper that n ≥ 2. We will write A ∼ B if A . B and B . A. The implicit

constants hidden inside the symbols . and ∼ will in general depend on fixed

parameters such as p, n and sometimes on variable parameters such as ε, ν.

We will not record the dependence on the fixed parameters.

Let Nδ be the δ neighborhood of Pn−1, and let Pδ be a finitely overlapping

cover of Nδ with curved regions θ of the form

(1) θ = {(ξ1, . . . , ξn−1, η + ξ2
1 + · · ·+ ξ2

n−1) : (ξ1, . . . , ξn−1) ∈ Cθ, |η| ≤ 2δ},

where Cθ runs over all cubes c+ [− δ1/2

2 , δ
1/2

2 ]n−1 with

c ∈ δ
1/2

2
Zn−1 ∩ [−1/2, 1/2]n−1.
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Note that each θ sits inside a ∼ δ1/2 × · · · × δ1/2 × δ rectangular box. It is

also important to realize that the normals to these boxes are ∼ δ1/2 separated.

A similar decomposition exists for any S as above, and we will use the same

notation Pδ for it. We will denote by fθ the Fourier restriction of f to θ.

Our main result is the proof of the following l2 Decoupling Theorem.

Theorem 1.1. Let S be a compact C2 hypersurface in Rn with positive

definite second fundamental form. If supp(f̂) ⊂ Nδ , then for p ≥ 2(n+1)
n−1 and

ε > 0,

(2) ‖f‖p .ε δ−
n−1

4
+n+1

2p
−ε
Ç∑
θ∈Pδ

‖fθ‖2p
å1/2

.

Theorem 1.1 has been proved in [21] for p > 2 + 8
n−1 −

4
n(n−1) . A standard

construction is presented in [21] to show that, up to the δ−ε term, the exponent

of δ is optimal. We point out that Wolff [36] has initiated the study of lp

decouplings, p > 2 in the case of the cone. His work provides part of the

inspiration for our paper.

A localization argument and interpolation between p = 2(n+1)
n−1 and the

trivial bound for p = 2 proves the subcritical estimate

(3) ‖f‖p .ε δ−ε
Ç∑
θ∈Pδ

‖fθ‖2p
å1/2

,

when 2 ≤ p < 2(n+1)
n−1 . Estimate (3) is false for p < 2. This can easily be seen

by testing it with functions of the form fθ(x) = gθ(x+ cθ), where supp(“gθ) ⊂ θ
and the numbers cθ are very far apart from each other.

Inequality (3) has been recently proved by the first author for p = 2n
n−1 in

[11], using a variant of the induction on scales from [14] and the multilinear

restriction Theorem 6.1.

An argument similar to the one in [21] was used in [18] to prove Theo-

rem 1.1 for p > 2(n+2)
n−1 , by interpolating Wolff’s machinery with the estimate

p = 2n
n−1 from [11]. This range is better than the one in [21] due to the use of

multilinear theory as opposed to bilinear theory.1

We mention briefly that there is a stronger form of decoupling, sometimes

referred to as square function estimate, which predicts that

(4) ‖f‖p .ε δ−ε‖(
∑
θ∈Pδ

|fθ|2)1/2‖p,

in the slightly smaller range 2 ≤ p ≤ 2n
n−1 . When n = 2, this easily follows via a

geometric argument. Minkowski’s inequality shows that (4) is indeed stronger

1While both the bilinear theorem in [32] and the multilinear theorem in [3] are sharp, the

latter one is “morally” stronger.
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than (3) in the range 2 ≤ p ≤ 2n
n−1 . This is also confirmed by the lack of any

results for (4) when n ≥ 3. Our methods do not seem to enable any progress

on (4).

It is reasonable to hope that in the subcritical regime (3) one may be able

to replace δ−ε by a constant Cp,n independent of δ. This is indeed known when

n = 2 and p ≤ 4, but it seems in general to be an extremely difficult question.

To the authors’ knowledge, no other examples of 2 < p < 2(n+1)
n−1 are known for

when this holds.

In Section 5 we introduce a multilinear version of the decoupling inequal-

ity (2) and show that the multilinear and the linear theories are essentially

equivalent. This in itself is not enough to prove Theorem 1.1, as Theorem 6.1

gives multilinear decoupling only in the range 2 ≤ p ≤ 2n
n−1 . To bridge the

gap between 2n
n−1 and 2(n+1)

n−1 , in Section 6 we refine our analysis based on the

multilinear theory. In particular, we set up an induction on scales argument

that makes use of Theorem 6.1 at each step of the iteration, rather than once.

Let us now briefly describe some of the consequences of Theorem 1.1. The

first one we mention is a sharp decoupling for the (truncated) cone

Cn−1 =
{

(ξ1, . . . , ξn−1,
»
ξ2

1 + · · ·+ ξ2
n−1), 1 ≤

»
ξ2

1 + · · ·+ ξ2
n−1 ≤ 2

}
.

Abusing earlier notation, we let Nδ(Cn−1) be the δ neighborhood of Cn−1, and

we let Pδ(Cn−1) be the partition of Nδ(Cn−1) associated with a given partition

of Sn−1 into δ1/2 caps. More precisely, each θ ∈ Pδ(Cn−1) is essentially a

1× δ × δ1/2 × · · · × δ1/2 rectangular box.

Theorem 1.2. Assume supp(f̂) ⊂ Nδ(Cn−1). Then for each ε > 0,

‖f‖p .ε δ−
n−2

4
+ n

2p
−ε
Ç ∑
θ∈Pδ(Cn−1)

‖fθ‖2p
å1/2

if p ≥ 2n

n− 2

and

‖f‖p .ε δ−ε
Ç ∑
θ∈Pδ(Cn−1)

‖fθ‖2p
å1/2

if 2 ≤ p ≤ 2n

n− 2
.

The proof of Theorem 1.2 is presented in the last section of the paper, and

it turns out to be a surprisingly short application of Theorem 1.1 for the elliptic

paraboloid. It has some striking consequences, some of which were described

in (and provided some of the original motivation for) the work [36] of Wolff.

Examples include progress on the “local smoothing conjecture for the wave

equation” (see [30] and [36]), the regularity for convolutions with arclength

measures on helices [27], and the boundedness properties of the Bergman pro-

jection in tube domains over full light cones; see [20] and [2]. We refer the

interested reader to these papers for details.
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Theorem 1.1 immediately implies the validity of the Discrete Restriction

Conjecture in the expected range; see Theorem 2.2 below. This in turn has a

wide range of interesting consequences that are detailed in Section 2. First, we

get the full range of expected Lpx,t Strichartz estimates for both the rational

and (up to N ε losses) irrational tori. Second, we derive sharp estimates on the

additive energies of various sets. These can be rephrased as incidence geometry

problems, and in some cases we are not aware of an alternative approach. While

our theorems successfully address the case of “nicely separated” points, some

intriguing questions are left open for arbitrary points.

A third type of applications includes sharp (up to N ε losses) estimates

for the number of solutions of various Diophantine inequalities. This is rather

surprising given the fact that our methods do not rely on any number theory.

We believe that they provide a new angle by means of our use of induction on

scales and the topology of Rn. Indeed, the Multilinear Restriction Theorem 6.1

that we use repeatedly in the proof of our main Theorem 1.1 relies at its core

on the multilinear Kakeya phenomenon, which has some topological flavor (see

[24], [16]).

Finally, we use Theorem 2.2 to improve the range from [13], [12] in the

discrete restriction problem for lattice points on the sphere.

In forthcoming papers we will develop the decoupling theory for arbitrary

hypersurfaces with nonzero Gaussian curvature, as well as for nondegenerate

curves.

Acknowledgments. The authors are indebted to the anonymous referees

whose comments helped improve the presentation in Section 6. The second

author has benefited from helpful conversations with Nets Katz and Andreas

Seeger. The second author would like to thank his student Fangye Shi for a

careful reading of the original version of the manuscript and for pointing out

a few typos.

2. First applications

In this section we present the first round of applications of our decoupling

theory. Additional applications will appear elsewhere.

2.1. The discrete restriction phenomenon. To provide some motivation we

recall the Stein-Tomas Restriction Theorem; see [34].

Theorem 2.1. Let S be a compact C2 hypersurface in Rn with nonzero

Gaussian curvature, and let dσ denote the natural surface measure on S. Then

for p ≥ 2(n+1)
n−1 and f ∈ L2(S, dσ), we have∥∥∥‘fdσ∥∥∥

Lp(Rn)
. ‖f‖L2(S).
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Note that this result only needs nonzero Gaussian curvature. We will use

the notation e(a) = e2πia. For fixed p ≥ 2(n+1)
n−1 , it is an easy exercise to see

that this theorem is equivalent to the statement thatÑ
1

|BR|

∫
BR

∣∣∣∣∣∑
ξ∈Λ

aξe(ξ · x)

∣∣∣∣∣
p
é1/p

. δ
n
2p
−n−1

4 ‖aξ‖l2(Λ),

for each 0 ≤ δ ≤ 1, each aξ ∈ C, each ball BR ⊂ Rn of radius R ∼ δ−1/2 and

each δ1/2 separated set Λ ⊂ S. Thus, the Stein-Tomas Theorem measures the

average Lp oscillations of exponential sums at spatial scale equal to the inverse

of the separation of the frequencies. It will be good to keep in mind that for

each R & δ−1/2,

(5)

∥∥∥∥∥∑
ξ∈Λ

aξe(ξ · x)

∥∥∥∥∥
L2(BR)

∼ |BR|1/2‖aξ‖2

as can be seen using Plancherel’s Theorem.

The discrete restriction phenomenon consists in the existence of stronger

cancellations at the larger scale R & δ−1. We prove the following.

Theorem 2.2. Let S be a compact C2 hypersurface in Rn with positive

definite second fundamental form. Let Λ ⊂ S be a δ1/2- separated set, and let

R & δ−1. Then for each ε > 0,

(6)

Ñ
1

|BR|

∫
BR

∣∣∣∣∣∑
ξ∈Λ

aξe(ξ · x)

∣∣∣∣∣
p
é1/p

.ε δ
n+1
2p
−n−1

4
−ε‖aξ‖2

if p ≥ 2(n+1)
n−1 .

It has been observed in [11] that Theorem 1.1 for a given p implies (6) for

the same p. Here is a sketch of the argument. First, note that the statement

‖f‖p . δcp
Ç ∑
θ∈Pδ

‖fθ‖2p
å1/2

whenever supp(f̂) ⊂ Nδ

easily implies that for each g : S → C and R & δ−1,

(7)

Ç∫
BR

∣∣∣‘gdσ∣∣∣på1/p

. δcp

Ñ∑
θ∈Pδ

∥∥∥’gθdσ∥∥∥2

Lp(wBR )

é1/2

;

here gθ = g1θ is the restriction of g to the δ1/2- cap θ on S. See Remark 5.2.

Also, throughout the paper we write

‖f‖Lp(wBR ) =

Ç ∫
Rn
|f(x)|pwBR(x)dx

å1/p
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for weights wBR that are Fourier supported in B(0, 1
R) and satisfy

(8) 1BR(x) . wBR(x) ≤
Ç

1 +
|x− c(BR)|

R

å−10n

.

It now suffices to use g =
∑
ξ∈Λ aξσ(U(ξ, τ))−11U(ξ,τ) in (7), where U(ξ, τ) is

a τ -cap on S centered at ξ, and to let τ → 0.

Using (6) with p = 2(n+1)
n−1 and Hölder’s inequality we determine that

(9) δε‖aξ‖2 .ε

Ñ
1

|BR|

∫
BR

∣∣∣∣∣∑
ξ∈Λ

aξe(ξ · x)

∣∣∣∣∣
p
é1/p

.ε δ
−ε‖aξ‖2

for 1 ≤ p ≤ 2(n+1)
n−1 and R & δ−1. We mention that prior to our current

work, the only known results for (6) and (9) were the ones in the range where

Theorem 1.1 was known.

2.2. Strichartz estimates for the classical and irrational tori. The discrete

restriction phenomenon has mostly been investigated in the special case when

the frequency points Λ come from a lattice. There is extra motivation in

considering this case coming from PDEs, where there is interest in establishing

Strichartz estimates for the Schrödinger equation on the torus. Prior to the

current work, the best known result for the paraboloid

Pn−1(N) := {ξ := (ξ1, . . . , ξn) ∈ Zn : ξn = ξ2
1+· · ·+ξ2

n−1, |ξ1|, . . . , |ξn−1| ≤ N}

was obtained by the first author [9], [11]. We recall this result below.

Theorem 2.3 (Discrete restriction: the lattice case (paraboloid)). Let

aξ ∈ C and ε > 0. Then

(i) if n ≥ 4, we have∥∥∥∥∥ ∑
ξ∈Pn−1(N)

aξe(ξ · x)

∥∥∥∥∥
Lp(Tn)

.ε N
n−1

2
−n+1

p
+ε‖aξ‖l2 ,

for p ≥ 2(n+2)
n−1 and∥∥∥∥∥ ∑

ξ∈Pn−1(N)

aξe(ξ · x)

∥∥∥∥∥
Lp(Tn)

.ε N
ε‖aξ‖l2

for 1 ≤ p ≤ 2n
n−1 ;

(ii) if n = 2, 3, then∥∥∥∥∥ ∑
ξ∈Pn−1(N)

aξe(ξ · x)

∥∥∥∥∥
Lp(Tn)

.ε N
ε‖aξ‖l2

for p = 2(n+1)
n−1 .
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The proof of (i) combines the implementation of the Stein-Tomas argu-

ment via the circle method with the inequality (3) proved in [11]. The argument

for (ii) is much easier; it uses the fact that circles in the plane contain “few”

lattice points. It has been conjectured in [9] that (ii) should also hold for n ≥ 4.

This is easily seen to be sharp, up to the N ε term. We will argue below that

our Theorem 2.2 implies this conjecture — in fact, a more general version of it.

The analogous question for the more general irrational tori has been

recently investigated in [10], [17], [19] and [23]. More precisely, fix 1
2 <

θ1, . . . , θn−1 < 2. For φ ∈ L2(Tn−1), consider its Laplacian

∆φ(x1, . . . , xn−1)

=
∑

(ξ1,...,ξn−1)∈Zn−1

(ξ2
1θ1 + · · ·+ξ2

n−1θn−1)φ̂(ξ1, . . . , ξn−1)e(ξ1x1 + · · ·+ξn−1xn−1)

on the irrational torus
∏n−1
i=1 R/(θiZ). Let also

eit∆φ(x1, . . . , xn−1, t)

=
∑

(ξ1,...,ξn−1)∈Zn−1

φ̂(ξ1, . . . , ξn−1)e(x1ξ1+· · ·+xn−1ξn−1+t(ξ2
1θ1+· · ·+ξ2

n−1θn−1)).

We prove

Theorem 2.4 (Strichartz estimates for irrational tori). Let φ ∈ L2(Tn−1)

with supp(φ̂) ⊂ [−N,N ]n−1. Then for each ε > 0, p ≥ 2(n+1)
n−1 and each interval

I ⊂ R with |I| & 1, we have

(10) ‖eit∆φ‖Lp(Tn−1×I) .ε N
n−1

2
−n+1

p
+ε|I|1/p‖φ‖2,

and the implicit constant does not depend on I , N and θi.

Proof. For −N ≤ ξ1, . . . , ξn−1 ≤ N , define ηi =
θ
1/2
i ξi
4N and aη = φ̂(ξ). A

simple change of variables shows that∫
Tn−1×I

|eit∆φ|p . 1

Nn+1

∫
|y1|,...,|yn−1|≤8N

yn∈IN2

×

∣∣∣∣∣∣ ∑
η1,...,ηn−1

aηe(y1η1 + · · ·+ yn−1ηn−1 + yn(η2
1 + · · ·+ η2

n−1))

∣∣∣∣∣∣
p

dy1 · · · dyn,

where IN2 is an interval of length ∼ N2|I|. By periodicity in the y1, . . . , yn−1

variables we bound the above by

1

Nn+1(N |I|)n−1

∫
BN2|I|

×

∣∣∣∣∣∣ ∑
η1,...,ηn−1

aηe(y1η1 + · · ·+ yn−1ηn−1 + yn(η2
1 + · · ·+ η2

n−1))

∣∣∣∣∣∣
p

dy1 · · · dyn
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for some ball BN2|I| of radius ∼ N2|I|. Our result will follow once we note

that the points

(η1, . . . , ηn−1, η
2
1 + · · ·+ η2

n−1)

are ∼ 1
N separated on Pn−1 and then apply Theorem 2.2 with R ∼ N2|I|. �

Remark 2.5. The diagonal form ξ2
1θ1 + · · ·+ ξ2

n−1θn−1 may in fact be re-

placed with an arbitrary definite quadratic form Q(ξ1, . . . , ξn−1) to incorporate

the more general case of flat tori. The case θ1 = · · · = θn−1 = 1 corresponds

to the classical (periodic) torus Tn. When combined with our Theorem 2.4,

Propositions 3.113 and 3.114 from [9] show that in fact (10) holds true with

ε = 0 in the range p > 2(n+1)
n−1 for Tn. Similar partial results in the direction of

ε removal are derived for the irrational torus in [23].

2.3. The discrete restriction for lattice points on the sphere. Given inte-

gers n ≥ 3 and λ = N2 ≥ 1 consider the discrete sphere

Fn,N2 = {ξ = (ξ1, . . . , ξn) ∈ Zn : |ξ1|2 + · · ·+ |ξn|2 = N2}.

In [8], the first author made the following conjecture about the eigenfunctions

of the Laplacian on the torus and found some partial results.

Conjecture 2.6. For each n ≥ 3, aξ ∈ C, ε > 0 and each p ≥ 2n
n−2 , we

have

(11)

∥∥∥∥∥ ∑
ξ∈Fn,N2

aξe(ξ · x)

∥∥∥∥∥
Lp(Tn)

.ε N
n−2

2
−n
p

+ε‖aξ‖l2(Fn,N2 ).

We refer the reader to [13], [12] for a discussion on why the critical index
2n
n−2 for the sphere is different from the one for the paraboloid. The conjecture

has been verified by the authors in [13] for p ≥ 2n
n−3 when n ≥ 4 and then

later improved in [12] to p ≥ 44
7 when n = 4 and p ≥ 14

3 when n = 5. The

methods in [8], [13] and [12] include Number Theory of various sorts, Incidence

Geometry and Fourier Analysis. Using Theorem 2.2 we can further improve

our results.

Theorem 2.7. Let n ≥ 4. Inequality (11) holds for p ≥ 2(n−1)
n−3 .

Proof. Fix ‖aξ‖2 = 1, and define

F (x) =
∑

ξ∈Fn,N2

aξe(x · ξ).

We start by recalling the following estimate (24) from [13], valid for n ≥ 4 and

α &ε N
n−1

4
+ε:

(12) |{|F | > α}| .ε α−2n−1
n−3N

2
n−3 .
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By invoking interpolation with the trivial L∞ bound, it suffices to consider the

endpoint p = pn = 2(n−1)
n−3 . Note that ‖F‖∞ ≤ NCn . It follows that∫

|F |pn =

∫
N
n−1

4 +ε.εα≤NCn

αpn−1|{|F | > α}|dα

+N (n−1
4

+ε)(pn− 2(n+1)
n−1

)
∫
|F |

2(n+1)
n−1 .

The result will follow by applying (12) to the first term and Theorem 2.2 with

p = 2(n+1)
n−1 to the second term. �

2.4. Additive energies and Incidence Geometry. The proof of Theorem 1.1

in the following sections will implicitly rely on the incidence theory of tubes

and cubes. This theory manifests itself in the deep multilinear Kakeya phe-

nomenon that lies behind Theorem 6.1. It thus should come as no surprise

that Theorem 1.1 has applications to Incidence Geometry.

An interesting question is whether there is a proof of Theorem 2.2 using

softer arguments — or at least if there is such an argument that recovers (6)

for R large enough, depending on Λ. When n = 3 and S = P 2 we can prove

such a result. In fact our result is surprisingly strong, in that the bound |Λ|ε
does not depend on the separation between the points in Λ.

Theorem 2.8. Let Λ ⊂ P 2 be an arbitrary collection of distinct points.

Then for R large enough, depending only on the geometry of Λ and on its

cardinality |Λ|, we have

(13)

Ñ
1

|BR|

∫
BR

∣∣∣∣∣∑
ξ∈Λ

aξe(ξ · x)

∣∣∣∣∣
4
é1/4

.ε |Λ|ε‖aξ‖2.

Due to periodicity, this recovers (ii) of Theorem 2.3 for n = 3. To see the

proof we recall some terminology and well-known results.

Given an integer k ≥ 2 and a set Λ in Rn, we introduce its k-energy

Ek(Λ) = |{(λ1, . . . , λ2k) ∈ Λ2k : λ1 + · · ·+ λk = λk+1 + · · ·+ λ2k}|.

Note the trivial lower bound |Ek(Λ)| ≥ |Λ|k.
We recall the point-line incidence theorem due to Szemerédi and Trotter:

Theorem 2.9 ([31]). There are O(|L|+ |P|+ (|L||P|)2/3) incidences be-

tween any collections L and P of lines and points in the plane.

Up to extra logarithmic factors, the same thing is conjectured to hold if

lines are replaced with circles. Another related conjecture is

Conjecture 2.10 (The unit distance conjecture). The number of unit

distances between N points in the plane is always .ε N1+ε.
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The point-circle and the unit distance conjectures are thought to be rather

difficult, and only partial results are known.

Proof of Theorem 2.8. The following parameter encodes the “additive ge-

ometry” of Λ:

υ := min {|η1 + η2 − η3 − η4| : ηi ∈ Λ and |η1 + η2 − η3 − η4| 6= 0} .

We show that Theorem 2.8 holds if R & |Λ|
2

υ . Fix such an R. Using restricted

type interpolation it suffices to prove

1

|BR|

∫
BR

∣∣∣∣∣ ∑
η∈Λ′

e(x · η)

∣∣∣∣∣
4

dx .ε |Λ′|2+ε

for each subset Λ′ ⊂ Λ. See Section 6 in [12] for details on this type of approach.

Expanding the L4 norm we need to prove∣∣∣∣∣ ∑
ηi∈Λ′

1

R3

∫
BR

e((η1 + η2 − η3 − η4) · x)dx

∣∣∣∣∣ .ε |Λ′|2+ε.

Note that if A 6= 0, then ∣∣∣∣∣
∫ R

−R
e(At)dt

∣∣∣∣∣ ≤ A−1.

Using this we get that∣∣∣∣∣ ∑
ηi∈Λ′

|η1+η2−η3−η4|6=0

1

R3

∫
BR

e((η1 + η2 − η3 − η4) · x)dx

∣∣∣∣∣ ≤ |Λ′|4Rυ
≤ |Λ′|2.

Thus it suffices to prove the following estimate for the additive energy:

(14) E2(Λ′) .ε |Λ′|2+ε.

Assume

(15) η1 + η2 = η3 + η4,

with ηi := (αi, βi, α
2
i +β2

i ). It has been observed in [9] that given A,B,C ∈ R,

the equality

η1 + η2 = (A,B,C)

implies that for i ∈ {1, 2},

(16)

Å
αi −

A

2

ã2

+

Å
βi −

B

2

ã2

=
2C −A2 −B2

4
.

Thus the four points Pi = (αi, βi) corresponding to any additive quadruple (15)

must belong to a circle. As observed in [9], this is enough to conclude (14)

in the lattice case, as circles of radius M contain .ε M ε lattice points. The

bound (14) also follows immediately if one assumes the circle-point incidence

conjecture.
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However, we need a new observation. Note that if (15) holds, then in

fact both P1, P2 and P3, P4 are diametrically opposite on the circle (16). Thus

each additive quadruple gives rise to a distinct right angle, the one subtended

by P1, P2, P3 (say). Estimate (14) is then an immediate consequence of the

following application of the Szemerédi-Trotter Theorem. �

Theorem 2.11 (Pach, Sharir [26]). The number of repetitions of a given

angle among N points in the plane is O(N2 logN).

It has been recognized that the restriction theory for the sphere and the

paraboloid are very similar.2 Consequently, one expects not only Theorem 2.8

to be true also for S2, but for a very similar argument to work in that case,

too. If that is indeed the case, it does not appear to be obvious. The same

argument as above shows that an additive quadruple of points on S2 will belong

to a circle on S2 and, moreover, the four points will be diametrically opposite

in pairs. There will thus be at least E2(Λ) right angles in Λ. This is, however,

of no use in this setting, as Λ lives in three dimensions. It is proved in [1] that

a set of N points in R3 has O(N7/3) right angles and, moreover, this bound is

tight in general.

Another idea is to map an additive quadruple to the plane using the

stereographic projection. The resulting four points will again belong to a circle,

so the bound on the energy would follow if the circle-point incidence conjecture

is proved. Unfortunately, the stereographic projection does not preserve the

property of being diametrically opposite and thus prevents the application of

Theorem 2.11. We thus ask

Question 2.12. Is it true that E2(Λ) .ε |Λ|2+ε for each finite Λ ⊂ S2?

One can ask the same question for Pn−1 and Sn−1 when n ≥ 4. The right

conjecture seems to be

(17) E2(Λ) .ε |Λ|
3n−5
n−1

+ε.

Interestingly, when Λ ⊂ P 3 this follows from the aforementioned result in [1]

and, in fact, there is no Λε loss this time. However, in the same paper [1] it

is proved that this argument fails in dimensions five and higher: there is a set

with N points in R4 that determines & N3 right angles. We point out that

Theorem 2.2 implies (17) for subsets of Pn−1 and Sn−1 when n ≥ 3, in the

case when the points Λ are ∼ |Λ|−
1

n−1 separated.

It is also natural to investigate the two dimensional phenomenon for S =

S1 and S = P 1.

2A notable difference is the lattice case of the discrete restriction, but that has to do with

a rather specialized scenario.
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Question 2.13. Is it true that for each Λ ⊂ S,

(18) E3(Λ) .ε |Λ|3+ε?

Surprisingly, this question seems to be harder than its three dimensional

analogue from Theorem 2.8. Note that the case when the points are |Λ|−C
separated follows from Theorem 2.2. We are not aware of an alternative (softer)

argument.

A positive answer to Question 2.13 would have surprising applications to

Number Theory. In particular, it would answer the following question posed

in [5].

Question 2.14. Let N be a positive integer. Does (18) hold when Λ are

the lattice points on the circle N1/2S1?

Note that Theorem 2.2 is too weak to answer this question. Indeed, rescal-

ing by N1/2, the lattice points in N1/2S1 become N−1/2-separated points on

S1. However, it is known that there are O(N
O(1)

log logN ) lattice points on the circle

N1/2S1.

The analysis in [5] establishes some partial results as well as some intrigu-

ing connections to the theory of elliptic curves; see, for example, [5, Th. 8]. An

easier question with similar flavor is answered in the next subsection.

The best that can be said regarding Question 2.13 with topological based

methods seems to be the following.

Proposition 2.15. Let S be either P 1 or S1. For each Λ ⊂ S,

E3(Λ) .ε |Λ|
7
2

+ε.

Proof. This was observed by Bombieri and the first author [5] when S=S1.

The proofs for P 1 and S1 are very similar; we briefly sketch the details for

S = P 1. Let N be the cardinality of Λ. It goes back to [9] that if

(19) (x1, x
2
1) + (x2, x

2
2) + (x3, x

2
3) = (n, j),

then the point (3(x1 +x2),
√

3(x1−x2)) belongs to the circle centered at (2n, 0)

and of radius squared equal to 6j − 2n2. Note that there are N2 such points

with (xi, x
2
i ) ∈ Λ; call this set of points T . Assume we have Mn such circles

containing roughly 2n points (3(x1 + x2),
√

3(x1− x2)) ∈ T in such a way that

(19) is satisfied for some x3 ∈ Λ. Then clearly

E3(S) .
∑

2n≤N
Mn22n.

It is easy to see that

(20) Mn2n . N3,

as each point in T can belong to at most N circles.
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The nontrivial estimate is

(21) Mn23n . N4,

which is an immediate consequence of the Szemerédi-Trotter Theorem for

curves satisfying the following two fundamental axioms: two curves intersect in

O(1) points, and there are O(1) curves passing through any two given points.

The number of incidences between such curves and points is the same as in the

case of lines and points; see, for example, [33, Th. 8.10]. Note that since our

circles have centers on the x axis, any two points in T sitting in the upper (or

lower) half plane determine a unique circle. Combining the two inequalities we

get for each n

Mn22n . N
7
2 . �

In the case when Λ ⊂ S1, the same argument leads to incidences between

unit circles and points. The outcome is the same, since for any two points there

are at most two unit circles passing through them. An interesting observation

is the fact that Question 2.13 has a positive answer if the Unit Distance Con-

jecture is assumed. Indeed, the argument above presents us with a collection

T of N2 points and a collection of . N3 unit circles. For 2n . N , let Mn

be the number of such circles with ∼ 2n points. There will be at least Mn2n

unit distances among the N2 points and the Mn centers. The Unit Distances

Conjecture forces Mn2n .ε (Mn + N2)1+ε. Since Mn . N3, it immediately

follows that Mn22n .ε N3+ε, which gives the desired bound on the energy.

It seems likely that in order to achieve the conjectured bound on E3(Λ),

the structure of T must be exploited, paving the way to algebraic methods.

One possibility is to make use of the fact that T has sumset structure. Another

interesting angle for the parabola is the following. Recall that whenever (19)

holds, the three points (3(xi + xj),
√

3(xi − xj)), (i, j) ∈ {(1, 2), (2, 3), (3, 1)},
belong to the circle centered at (2n, 0) and of radius squared equal to 6j − 2n2.

One can easily check that in fact they form an equilateral triangle! This poten-

tially opens up the new toolbox of symmetries since, for example, the rotation

by π/3 about the center of any such circle C will preserve C ∩ T .

2.5. Additive energies of annular sets. We start by mentioning a more

general version of Theorem 2.2.

Theorem 2.16. Let S be a C2 compact hypersurface in Rn with positive

definite second fundamental form. For each θ ∈ Pδ , let Λθ be a collection of

points in θ, and let Λ = ∪θΛθ. Then for each R- ball BR with R & δ−1, we

have∥∥∥∥∥∑
ξ∈Λ

aξe(x · ξ)
∥∥∥∥∥
L

2(n+1)
n−1 (BR)

.ε δ
−ε

Ñ∑
θ

∥∥∥∥∥ ∑
ξ∈Λθ

aξe(x · ξ)
∥∥∥∥∥

2

L
2(n+1)
n−1 (wBR )

é1/2

.



364 JEAN BOURGAIN and CIPRIAN DEMETER

To see why this holds, note first that the case R ∼ δ−1 follows by applying

(the localized version of) Theorem 1.1 to functions whose Fourier transforms

approximate weighted sums of Dirac deltas supported on Λ. The case R & δ−1

then follows using Minkowski’s inequality.

For R > 1, define

AR = {ξ ∈ R2 : R ≤ |ξ| ≤ R+R−1/3}
and A′R = AR∩Z2. We prove the following inequality related to Question 2.14.

Theorem 2.17.

(22) E3(A′R) .ε |A′R|3+ε.

Note that this is essentially sharp. The old Van der Corput estimate

|N(R)− πR2| = o(R2/3)

for the error term in the Gauss circle problem shows that |A′R| = 2πR2/3 +

o(R2/3). It thus suffices to show∥∥∥∥∥ ∑
ξ∈A′R

e(ξ · x)

∥∥∥∥∥
L6(T2)

.ε R
1
3

+ε.

Subdivide AR into sectors Aα of size ∼ R1/3 ×R−1/3 so that each of them fits

inside a rectangle Rα of area < 1
2 . Applying Theorem 2.16 after rescaling by

R and using periodicity, we get

(23)

∥∥∥∥∥ ∑
ξ∈A′R

e(ξ · x)

∥∥∥∥∥
L6(T2)

.ε R
ε

Ñ∑
α

∥∥∥∥∥ ∑
ξ∈A′α

e(ξ · x)

∥∥∥∥∥
2

L6(T2)

é1/2

,

with A′α = Aα ∩ Z2.

An elementary observation, which goes back (at least) to Jarńık’s work

[25], is the fact that the area determined by a nondegenerate triangle with

vertices in Z2 is half an integer. It follows that the points in each A′α lie on a

line Lα. In fact they must be equidistant, with consecutive points at distant

d, for some d ≥ 1. Now for 1 ≤ 2s . R1/3, define

Ls = {α : 2s ≤ |A′α| < 2s+1}.
Let also Ls,m be those α ∈ Ls for which 2m ≤ d < 2m+1. Note that if α ∈ Ls,m,

then Lα makes an angle ∼ 2−m2−sR−1/3 with the long axis of Rα. Thus the

directions of the lines Lα will be distinct for each collection of α ∈ Ls,m whose

corresponding arcs on S1 are C2−m2−sR−1/3-separated. Obviously there are

u, v ∈ A′α such that |u − v| ∼ 2m. Since there are O(22m) lattice points

with length ∼ 2m, it follows that there can be at most O(22m) elements α in

Ls,m that are C2−m2−sR−1/3-separated. Thus |Ls,m| . 22mR1/32−m2−s. As

2m+s . R1/3, we conclude that |Ls| . R2/32−2s.
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Note that by using Hölder’s inequality with L2 − L∞ endpoints, we have∥∥∥∥∥ ∑
ξ∈A′α

e(ξ · x)

∥∥∥∥∥
L6(T2)

≤ |A′α|5/6.

Using this, the bound on |Ls| and (23) finishes the proof of (22).

2.6. Counting solutions of Diophantine inequalities. In this section we

show how to use the Decoupling Theorem to recover and generalize results

from the literature as well as to prove some new type of results. We do not

aim at providing a systematic study of these problems but rather to explain

the way our methods become useful in this context.

To motivate our first application we consider the system of equations for

k ≥ 2, nk1 + nk2 + nk3 = nk4 + nk5 + nk6,

n1 + n2 + n3 = n4 + n5 + n6,

with 1 ≤ ni ≤ N . It is easy to see that there are 6N3 trivial solutions. The

question here is to determine the correct asymptotic for the number Uk(N) of

nontrivial solutions. This is in part motivated by connections to the Waring

problem; see [4]. The case k = 3, known as the Segre cubic, has been intensely

studied. Vaughan and Wooley have proved in [35] that U3(N) ∼ N2(logN)5;

see also [15] for a more precise result. For k ≥ 4, Greaves [22] (see also [29])

has proved that Uk(N) = O(N
17
6

+ε). All these results follow through the use

of rather delicate Number Theory.

While our methods in this paper cannot produce such fine estimates, they

successfully address the perturbed case. The following result is perhaps a

surprising consequence of Theorem 2.2.

Theorem 2.18. For fixed k ≥ 2 and C , the system|nk1 + nk2 + nk3 − nk4 − nk5 − nk6| ≤ CNk−2,

n1 + n2 + n3 = n4 + n5 + n6

has O(N3+ε) solutions with ni ∼ N .

Proof. Apply Theorem 2.2 to the curve

{(ξ, ξk) : |ξ| ∼ 1},

the points

Λ =

®Ç
n

N
,

Å
n

N

ãkå
: n ∼ N

´
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and δ = N−2. We get that

1

N4

∫
|x|≤N2

∫
|y|≤N2

∣∣∣∣∣ ∑
n∼N

e

Ç
x
n

N
+ y

Å
n

N

ãkå ∣∣∣∣∣6dxdy .ε N3+ε.

Upon rescaling and using periodicity we get

Nk−3
∫
|x|≤N

∫
|y|≤N2−k

∣∣∣∣∣ ∑
n∼N

e(xn+ ynk)

∣∣∣∣∣
6

dxdy

= Nk−2
∫
|x|≤1

∫
|y|≤N2−k

∣∣∣∣∣ ∑
n∼N

e(xn+ ynk)

∣∣∣∣∣
6

dxdy .ε N
3+ε.

(24)

Let now φ : R→ [0,∞) be a Schwartz function with positive Fourier transform

satisfying φ̂(ξ) & 1 for |ξ| ≤ 1. Define φN (y) = φ(Nk−2y). A standard

argument allows us to replace the cutoff |y| ≤ N2−k with φN (y) in (24). It

suffices then to note that

Nk−2
∫
|x|≤1

∫
R

∣∣∣∣∣ ∑
n∼N

e(xn+ ynk)

∣∣∣∣∣
6

φN (y)dxdy

=
∑
ni∼N

n1+n2+n3=n4+n5+n6

φ̂
Ä
N2−k

Ä
nk1 + nk2 + nk3 − nk4 − nk5 − nk6

ää
. �

Note also that our method proves that

Nk−2
∫
|x|≤1

∫
|y−c|≤N2−k

∣∣∣∣∣ ∑
n∼N

e(xn+ ynk)

∣∣∣∣∣
6

dxdy .ε N
3+ε

for each c ∈ R. The difficulty in proving this for k ≥ 3 using purely num-

ber theoretic methods comes from estimating the contribution of the minor

arcs. When k = 2, the left-hand side is at least cN3 logN , which shows that

one cannot dispense with the N ε term. This can be seen by evaluating the

contribution from the major arcs; see, for example, [9, p. 118].

Our second application generalizes the result from [28] (k = 4) to k ≥ 4.

Its original motivation lies in the study of the Riemann zeta function on the

critical line (cf. [6], [7]) and also in getting refinements of Heath-Brown’s variant

of Weyl’s inequality; see [28].

Theorem 2.19. For k ≥ 4 and 0 ≤ λ ≤ 1, we have∫
|x|≤1

∫ λ

0

∣∣∣∣∣ ∑
n∼N

e(xn2 + ynk)

∣∣∣∣∣
6

dxdy .ε λN
3+ε +N4−k+ε.

In particular, the system|nk1 + nk2 + nk3 − nk4 − nk5 − nk6| ≤ CNk−1,

n2
1 + n2

2 + n2
3 = n2

4 + n2
5 + n2

6

has O(N3+ε) solutions with ni ∼ N .
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Proof. The estimate on the number of solutions follows by using λ =

N1−k. Note that it suffices to prove that∫
|x|≤1

∫
J

∣∣∣∣∣ ∑
n∼N

e(xn2 + ynk)

∣∣∣∣∣
6

dxdy .ε N
4−k+ε

for each interval J with length N1−k.

We apply Theorem 2.16 to the curve

{(ξ2, ξk) : |ξ| ∼ 1},

the points

Λ =

®ÇÅ
n

N

ã2

,

Å
n

N

ãkå
: n ∼ N

´
,

R−1 = δ = N−1 and BN = [MN, (M + 1)N ]×NkJ with

M ∈ {−N, . . . , 0, . . . , N − 1}.

Summing over M , due to periodicity we get∥∥∥∥∥ ∑
n∼N

e

Ç
x′
n2

N2
+ y′

nk

Nk

å ∥∥∥∥∥
L6(|x′|≤N2, y′∈NkJ)

.ε N
ε

Ñ∑
α

∥∥∥∥∥ ∑
n∈Iα

e

Ç
x′
n2

N2
+ y′

nk

Nk

å ∥∥∥∥∥2

L6(|x′|≤N2, y′∈NkJ)

é1/2

.

Here Iα = [nα, nα+N1/2] are intervals of lengthN1/2 that partition the integers

n ∼ N . It follows after a change of variables that∥∥∥∥∥ ∑
n∼N

e(xn2 + ynk)

∥∥∥∥∥
L6(|x|≤1, y∈J)

.ε N
ε

Ñ∑
α

∥∥∥∥∥ ∑
n∈Iα

e(xn2 + ynk)

∥∥∥∥∥
2

L6(|x|≤1, y∈J)

é1/2

.

(25)

Next note that for y ∈ J ,∣∣∣∣∣ ∑
n∈Iα

e(xn2 + ynk)

∣∣∣∣∣
=

∣∣∣∣∣N
1/2∑

m=1

cm,J,nαe

Ç
m2

Ç
x+

k(k − 1)

2
nk−2
α y

å
+m(2xnα + knk−1

α y)

å∣∣∣∣∣+O(1),

with |cm,J,nα | = 1. To estimate the first term we change variables tox′ = x+ k(k−1)
2 nk−2

α y,

y′ = (2k − k2)nk−1
α y.
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We get∥∥∥∥∥ ∑
n∈Iα

e(xn2 + ynk)

∥∥∥∥∥
L6(|x|≤1, y∈J)

. n
− k−1

6
α

∥∥∥∥∥N
1/2∑

m=1

cm,J,nαe(x
′m2 + 2x′nαm+my′)

∥∥∥∥∥
L6(BC)

+O
(
N

1−k
6

)

= n
− k−1

6
α

∥∥∥∥∥
N1/2+nα∑
m=1+nα

cm,J,nαe(x
′m2 +my′)

∥∥∥∥∥
L6(BC)

+O
(
N

1−k
6

)
for some ball BC of radius C = O(1). By the result in Theorem 2.3, this can

further be seen to be O(N
1
4

+ 1−k
6

+ε). We conclude that (25) is O(N
1
2

+ 1−k
6

+ε),

as desired. �

There are further number theoretical consequences of the decoupling the-

ory that will be investigated elsewhere.

3. Norms and wave packet decompositions

We will use C to denote various constants that are allowed to depend on

the fixed parameters n, p, but never on the scale δ. We will denote by | · | both

the Lebesgue measure on Rn and the cardinality of finite sets.

This section and the next one is concerned with introducing some of the

tools that will be used in the proof of Theorem 1.1 from Section 6. For 2 ≤
p ≤ ∞, we define the norm

‖f‖p,δ =

Ñ∑
θ∈Pδ

‖fθ‖2p

é1/2

,

where fθ is the Fourier restriction of f to θ. We note the following immediate

consequence of Hölder’s inequality,

(26) ‖f‖p,δ ≤ ‖f‖
2
p

2,δ ‖f‖
1− 2

p

∞,δ ,

and the fact that if supp(f̂) ⊂ Nδ, then

‖f‖2,δ ∼ ‖f‖2.

Definition 3.1. Let N be a real number greater than 1. An N -tube T

is an N1/2 × · · · × N1/2 × N rectangular parallelepiped in Rn that has dual

orientation to some θ = θ(T ) ∈ Pδ. We call a collection of N -tubes separated

if no more than C tubes with a given orientation overlap.

Let φ : Rn → R be given by

φ(x) = (1 + |x|2)−M
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for some M large enough compared to n, whose value will become clear from

the argument. Define φT = φ ◦ aT , where aT is the affine function mapping T

to the unit cube in Rn centered at the origin.

Definition 3.2. An N -function is a function f : Rn → C such that

f =
∑

T∈T (f)

fT ,

where T (f) consists of finitely many separated N -tubes T and, moreover,

|fT | ≤ φT ,

‖fT ‖p ∼ |T |1/p, 1 ≤ p ≤ ∞

and

supp(f̂T ) ⊂ θ(T ).

For θ∈P1/N , let T (f, θ) denote the N -tubes in T (f) dual to θ . An N -function

is called balanced if |T (f, θ)| ≤ 2|T (f, θ′)| whenever T (f, θ), T (f, θ′) 6= ∅.

The ‖ · ‖p,δ norms of N -functions are asymptotically determined by their

plate distribution over the sectors θ.

Lemma 3.3. For each N -function f and for 2 ≤ p ≤ ∞,

(27) ‖f‖p,1/N ∼ N
n+1
2p

(∑
θ

|T (f, θ)|
2
p

)1/2

.

If the N -function is balanced, then

(28) ‖f‖p,1/N ∼ N
n+1
2p M(f)

1
2
− 1
p |T (f)|1/p,

where M(f) is the number of sectors θ for which T (f, θ) 6= ∅.

Proof. It suffices to prove (27) when T (f) = T (f, θ) for some θ. We

first observe the trivial estimates ‖f‖1 . |T ||T (f)|, ‖f‖∞ . 1 and ‖f‖2 ∼
|T |1/2|T (f)|1/2. Applying Hölder’s inequality twice we get

‖f‖
2(p−1)
p

2 ‖f‖
2−p
p

1 ≤ ‖f‖p ≤ ‖f‖1/p1 ‖f‖
1/p′
∞ ,

which is exactly what we want. �

The crucial role played by balanced N -functions is encoded by

Lemma 3.4.

(i) Each N -function f can be written as the sum of O(log |T (f)|) balanced

N -functions.
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(ii) For each balanced N -function f and 2 ≤ p ≤ ∞, we have the converse

of (26), namely,

(29) ‖f‖p,1/N ∼ ‖f‖
2
p

2,1/N‖f‖
1− 2

p

∞,1/N .

Proof. Note that (i) is immediate by using dyadic ranges. Also, (ii) will

follow from (28). �

In the remaining sections we will use the fact that the contribution of f to

various inequalities comes from logarithmically many N -functions. The basic

mechanism is the following.

Lemma 3.5 (Wave packet decomposition). Assume f is Fourier supported

in Nδ . Then for each dyadic 0 < λ . ‖f‖∞,δ , there is an N = δ−1-function

fλ such that

f =
∑

λ.‖f‖∞,δ

λfλ,

and for each 2 ≤ p <∞, we have

(30) λpN
n+1

2 |T (fλ)| ≤ ‖λfλ‖pp,δ . ‖f‖
p
p,δ.

Proof. Using a partition of unity, write

f =
∑
θ∈Pδ

f̃θ,

with f̃θ = fθ ∗ Kθ Fourier supported in 9
10θ with ‖Kθ‖1 . 1. Consider a

windowed Fourier series expansion for each f̃θ:

f̃θ =
∑
T∈Tθ

〈f̃θ, ϕT 〉ϕT ,

where ϕT are L2 normalized Schwartz functions Fourier localized in θ such

that

|T |1/2|ϕT | . φT .

The tubes in Tθ are separated. Note that by Hölder’s inequality,∣∣∣∣∣aT :=
1

|T |1/2
〈f̃θ, ϕT 〉

∣∣∣∣∣ . ‖f̃θ‖∞ . ‖fθ‖∞ ≤ ‖f‖∞,δ.
It is now clear that we should take

fλ =
∑
θ

∑
T∈Tθ: |aT |∼λ

aTλ
−1|T |1/2ϕT .

To see (30) note that the first inequality follows from (27) and the fact

that ‖ · ‖lp/2 ≤ ‖ · ‖l1 . To derive the second inequality, it suffices to prove that
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for each θ, ∥∥∥∥∥ ∑
T∈Tθ: |aT |∼λ

〈f̃θ, ϕT 〉ϕT

∥∥∥∥∥
p

. ‖fθ‖p.

Using (27) and the immediate consequence of Hölder’s inequality |aT |p .∫
|f̃θ|p|T |−1/2ϕT , we get∥∥∥∥∥ ∑

T∈Tθ: |aT |∼λ
〈f̃θ, ϕT 〉ϕT

∥∥∥∥∥
p

p

. λp|T ||{T ∈ Tθ : |aT | ∼ λ}| . |T |
∑
T∈Tθ

|aT |p

.
∫
|f̃θ|p

∑
T∈Tθ

φT .
∫
|f̃θ|p .

∫
|fθ|p. �

4. Parabolic rescaling

Proposition 4.1. Let δ ≤ σ < 1
2 and Kp(

δ
σ ) be such that

‖f‖p ≤ Kp

Å
δ

σ

ãÖ ∑
θ∈P δ

σ

‖fθ‖2p

è1/2

for each f with Fourier support in N δ
σ

. Then for each f with Fourier support

in Nδ and for each τ ∈ Pσ , we have

‖fτ‖p . Kp

Å
δ

σ

ãÑ ∑
θ∈Pδ: θ∩τ 6=∅

‖fθ‖2p

é1/2

.

Proof. Let a = (a1, . . . , an−1) be the center of the σ1/2-cube Cτ ; see (1).

We will perform the parabolic rescaling via the affine transformation

Lτ (ξ1, . . . , ξn) = (ξ′1, . . . , ξ
′
n)

=

Ç
ξ1 − a1

σ1/2
, . . . ,

ξn−1 − an−1

σ1/2
,
ξn − 2

∑n−1
i=1 aiξi +

∑n−1
i=1 a

2
i

σ

å
.

Note that

ξ′n −
n−1∑
i=1

ξ′i
2

= σ−1

(
ξn −

n−1∑
i=1

ξ2
i

)
.

It follows that Lτ maps the Fourier supportNδ∩τ of fτ toN δ
σ
∩([−1

2 ,
1
2 ]n−1×R).

Also, for each τ ′ ∈ P δ
σ

, we have that Lτ (θ) = τ ′ for some θ ∈ Pδ with θ∩τ 6= ∅.
Thus

‖fτ‖pp = ‖g‖pp(det(Lτ ))1−p,
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where g is the Lτ dilation of fτ Fourier supported in N δ
σ
∩ ([−1

2 ,
1
2 ]n−1 × R).

By invoking the hypothesis we get that

‖g‖p . Kp

Å
δ

σ

ãÖ ∑
τ ′∈P δ

σ

‖gτ ′‖2p

è1/2

.

We are done if we use the fact that

‖fθ‖pp = ‖gτ ′‖pp(det(Lτ ))1−p

whenever Lτ (θ) = τ ′. �

5. Linear versus multilinear decoupling

The material in this section is an application of the Bourgain-Guth induc-

tion on scales [14], and it is most closely connected to the argument in [11].

Let g : Pn−1 → C. For a cap τ on Pn−1, we let gτ = g1τ be the (spatial)

restriction of g to τ . We denote by π : Pn−1 → [−1/2, 1/2]n−1 the projection

map.

Definition 5.1. We say that the caps τ1, . . . , τn on Pn−1 are ν-transverse

if the volume of the parallelepiped spanned by any unit normals vi at τi is

greater than ν.

We denote by Cp,n(δ, ν) the smallest constant such that∥∥∥∥∥
(

n∏
i=1

|’gτidσ|)1/n ∥∥∥∥∥
Lp(Bδ−1 )

≤ Cp,n(δ, ν)


n∏
i=1

Ü ∑
θ: δ1/2-cap

θ⊂τi

∥∥∥’gθdσ∥∥∥2

Lp(wB
δ−1

)

ê1/2


1/n

for each ν-transverse caps τi⊂Pn−1, each δ−1 ball Bδ−1 and each g : Pn−1→C.

Let also Kp,n(δ) be the smallest constant such that

∥∥∥‘gdσ∥∥∥
Lp(Bδ−1 )

≤ Kp,n(δ)

Ñ ∑
θ:δ1/2-cap

∥∥∥’gθdσ∥∥∥2

Lp(wB
δ−1

)

é1/2

for each g : Pn−1 → C and each δ−1 ball Bδ−1 .

Remark 5.2. As before, the norm ‖f‖Lp(wBR ) refers to the weighted Lp

integral Å∫
Rn
|f(x)|pwBR(x)dx

ã1/p
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for some weight satisfying (8). It is important to realize that there are such

weights which, in addition, are Fourier supported in B(0, R−1). Note also that

if g is supported on Pn−1 and if ‘wBR is supported in B(0, R−1), then (‘gdσ)wBR
has Fourier support inside NR−1 . This simple observation justifies the various

(entirely routine) localization arguments that follow, as well as the interplay be-

tween Fourier transforms of functions and Fourier transforms of measures sup-

ported on Pn−1. In particular, let K
(1)
p,n(δ) be the smallest constant such that

∥∥∥‘gdσ∥∥∥
Lp(wB

δ−1
)
≤ K(1)

p,n(δ)

Ñ ∑
θ:δ1/2-cap

∥∥∥’gθdσ∥∥∥2

Lp(wB
δ−1 )

é1/2

for each g : Pn−1 → C and each δ−1 ball Bδ−1 . Then K
(1)
p,n(δ) ∼n,p Kp,n(δ).

Also, if K
(2)
p,n(δ), K

(3)
p,n(δ), K

(4)
p,n(δ) are the smallest constants such that

‖f‖Lp(Rn) ≤ K(2)
p,n(δ)

Ñ∑
θ∈Pδ

‖fθ‖2Lp(Rn)

é1/2

,

‖f‖Lp(Bδ−1 ) ≤ K(3)
p,n(δ)

Ñ∑
θ∈Pδ

‖fθ‖2Lp(Rn)

é1/2

,

‖f‖Lp(wB
δ−1

) ≤ K(4)
p,n(δ)

Ñ∑
θ∈Pδ

‖fθ‖2Lp(wB
δ−1

)

é1/2

for each f Fourier supported in Nδ and each δ−1 ball Bδ−1 , then

K(2)
p,n(δ),K(3)

p,n(δ),K(4)
p,n(δ) ∼n,p Kp,n(δ).

The same observation applies to the family of constants related to Cp,n(δ, ν)

from the multilinear inequality.

Note that due to Hölder’s inequality,

Cp,n(δ, ν) ≤ Kp,n(δ).

We will show that the reverse inequality essentially holds true.

Theorem 5.3. Assume one of the following holds :

(i) n = 2;

(ii) n ≥ 3 and Kp,d(δ
′) .ε δ

′−ε for each δ′, ε > 0 and each 2 ≤ d ≤ n− 1.

Then for each 0 < ν ≤ 1, there is ε(ν) with limν→0 ε(ν) = 0 and Cν such that

Kp,n(δ) ≤ Cνδ−ε(ν)Cp,n(δ, ν)

for each δ.

We prove the case n = 3 and will indicate the modifications needed for

n ≥ 4. The argument will also show how to deal with the case n = 2.
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Remark 5.4. If Q1, Q2, Q3 ∈ [−1/2, 1/2]2, the volume of parallelepiped

spanned by the unit normals to P 2 at π−1(Qi) is comparable to the area of

the triangle ∆Q1Q2Q3.

The key step in the proof of Theorem 5.3 for n = 3 is the following.

Proposition 5.5. Assume Kp,2(δ).ε δ−ε for each ε>0. Then for each ε,

there is Cε such that for each R > 1 and K ≥ 1,∥∥∥‘gdσ∥∥∥
Lp(wBR )

≤ CεKε

ñÇ ∑
α⊂P2

α: 1
K

-cap

‖’gαdσ‖2Lp(wBR)

å1/2

+

Ç ∑
β⊂P2

β: 1

K1/2
-cap

‖’gβdσ‖2Lp(wBR )

å1/2ô
+K10Cp,3(R−1,K−2)

Ç ∑
∆⊂P2

∆: 1

R1/2
-cap

‖’g∆dσ‖2Lp(wBR )

å1/2

.

Proof. Following the standard formalism (see, for example, [14, §§2–5])

we will regard |’gαdσ| as being essentially constant on each ball BK . Denote

by cα(BK) this value, and let α∗ be the cap that maximizes it.

The starting point in the argument is the observation in [14] that for each

BK , there exists a line L = L(BK) in the (ξ1, ξ2) plane such that if

SL =

ß
(ξ1, ξ2) : dist((ξ1, ξ2), L) ≤ C

K

™
,

then for x ∈ BK ,

|‘gdσ(x)|

≤ C max
α
|’gαdσ(x)|(31)

+K4 max
α1,α2,α3

K−2−transverse

(
3∏
i=1

|÷gαidσ(x)|
)1/3

(32)

+

∣∣∣∣∣ ∑
α⊂π−1(SL)∩P 2

’gαdσ(x)

∣∣∣∣∣.(33)

To see this, we distinguish three scenarios. First, if cα(BK) ≤ K−2cα∗(BK)

for each α with dist(π(α), π(α∗)) ≥ 10
K , then (31) suffices, as

|‘gdσ(x)| ≤
∑
α

cα(BK).

If not, there is α∗∗ with dist(π(α∗∗), π(α∗)) ≥ 10
K and cα∗∗(BK) ≥ K−2cα∗(BK).

The line L is determined by α∗, α∗∗.
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Second, if there is α∗∗∗ such that π(α∗∗∗) intersects the complement of SL
and cα∗∗∗(BK) ≥ K−2cα∗(BK), then (32) suffices. Indeed, note that α∗, α∗∗,

α∗∗∗ are K−2 transverse by Remark 5.4.

Otherwise the sum of (31) and (33) will suffice.

The only nontrivial case to address is the one corresponding to this latter

scenario. Cover π−1(SL) ∩ P 2 by pairwise disjoint strips U of length ∼ 1
K1/2 .

An application of Minkowski’s inequality shows that∥∥∥∥∥ ∑
α:π(α)⊂SL

’gαdσ∥∥∥∥∥
Lp(BK)

. Kp,2(K−1)

(∑
U

∥∥∥’gUdσ∥∥∥2

Lp(wBK )

)1/2

.

We are of course relying on the fact that π−1(L) is a parabola with principal

curvature equal to 1. Note however that since we are dealing with the third

scenario(∑
U

∥∥∥’gUdσ∥∥∥2

Lp(BK)

)1/2

.

( ∑
β: 1

K1/2
-cap:

π(β)⊂SL

‖’gβdσ‖2Lp(wBK )

)1/2

+
∥∥∥÷gα∗dσ∥∥∥

Lp(wBK )
.

We conclude that in either case,

∥∥∥‘gdσ∥∥∥
Lp(BK)

≤ CεKε

ñÇ ∑
α⊂P2

α: 1
K

-cap

∥∥∥’gαdσ∥∥∥2

Lp(wBK )

å1/2

+

Ç ∑
β⊂P2

β: 1

K1/2
-cap

∥∥∥’gβdσ∥∥∥2

Lp(wBK )
)1/2

ô
+K4 max

α1,α2,α3
K−2-transverse

∥∥∥∥∥
Ç 3∏
i=1

|÷gαidσ(x)|
å1/3

∥∥∥∥∥
Lp(wBK )

.

It suffices now to raise to the pth power and sum over BK ⊂ BR using

Minkowski’s inequality. Also, the norm
∥∥∥‘gdσ∥∥∥

Lp(BR)
can be replaced by the

weighted norm
∥∥∥‘gdσ∥∥∥

Lp(wBR )
via the localization argument described in Re-

mark 5.2. �

Rescaling gives the following.

Proposition 5.6. Let τ be a δ cap. Assume Kp,2(δ′) .ε δ
′−ε for each

ε > 0 and δ′. Then for each ε, there is Cε such that for each R > δ−2 and

K ≥ 1,
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∥∥∥’gτdσ∥∥∥
Lp(wBR )

≤ CεKε

ñÇ ∑
α⊂τ

α: δ
K

-cap

∥∥∥’gαdσ∥∥∥2

Lp(wBR )

å1/2

+

Ç ∑
β⊂τ

β: δ

K1/2
-cap

∥∥∥’gβdσ∥∥∥2

Lp(wBR )

å1/2ô
+K10Cp,3((Rδ2)−1,K−2)

Ç ∑
∆⊂τ

∆: 1

R1/2
-cap

∥∥∥’g∆dσ
∥∥∥2

Lp(wBR )

å1/2

.

Proof. Note that if γ ⊂ [−1/2, 1/2]2, thenÿ�gπ−1γdσ(x1, x2, x3) =

∫
γ
πg(ξ1, ξ2)e(ξ1x1 + ξ2x2 + (ξ2

1 + ξ2
2)x3)dξ1dξ2.

Let a = (a1, a2). Changing variable to ξi = ai + δξ′i and letting

πga,δ(ξ′) = πg(a+ δξ′),

γ′ = δ−1(γ − a),

we get

∣∣∣ÿ�gπ−1γdσ(x1, x2, x3)
∣∣∣ = δ2

∣∣∣∣Ÿ�ga,δπ−1γ′dσ(δ(x1 + 2a1x3), δ(x2 + 2a2x3), δ2x3)

∣∣∣∣ .
In particular,

∥∥∥ÿ�gπ−1γdσ
∥∥∥
Lp(wBR )

= δ
2− 4

p

∥∥∥∥Ÿ�ga,δπ−1γ′dσ

∥∥∥∥
Lp(wCR )

,

where CR is a ∼ δR×δR×δ2R cylinder. Cover CR with balls Bδ2R. The result

now follows by applying Proposition 5.5 to ga,δ (with a the center of π(τ)) on

each Bδ2R and then summing using Minkowski’s inequality. �

We are now ready to prove Theorem 5.3 for n = 3. Let K = ν−1/2. Iterate

Proposition 5.6 staring with scale δ = 1 until we reach scale δ = R−1/2. Each

iteration lowers the scale of the caps from δ to at least δ
K1/2 . Thus we have to

iterate ∼ logK R times. Since

Cp,3((δ2R)−1,K−2) . Cp,3(R−1, ν),
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for each ε > 0, we get∥∥∥‘gdσ∥∥∥
Lp(wBR )

≤ (CCεK
ε)logK RK10Cp,3(R−1, ν)

Ö ∑
∆: 1

R1/2
-cap

∥∥∥’g∆dσ
∥∥∥2

Lp(wBR )

è1/2

= R−2 logν(CCε)+εν−5Cp,3(R−1, ν)

Ö ∑
∆: 1

R1/2
-cap

∥∥∥’g∆dσ
∥∥∥2

Lp(wBR )

è1/2

.

The result follows since C,Cε doe not depend on ν.

To summarize, the proof of Theorem 5.3 for n = 3 relied on the hypoth-

esis that the contribution coming from caps living near the intersection of P 2

with a plane is controlled by Kp,2(δ) = O(δ−ε). When n ≥ 4, the hypothesis

Kp,d(δ) = O(δ−ε) for 2 ≤ d ≤ n − 1 plays the same role; it controls the con-

tribution coming from caps living near lower dimensional elliptic paraboloids

with principal curvatures equal to 1. And, of course, no such hypothesis is

needed when n = 2. The statement and the proof of Proposition 5.6 for these

values of n will hold without further modifications.

6. Proof of Theorem 1.1 for the paraboloid

In this section we prove Theorem 1.1 for Pn−1. We first consider the

open range p > 2(n+1)
n−1 , and in the end of the section we prove the result for the

endpoint. We use notation from the previous section such as Kp,n(δ), Cp,n(δ, ν)

and δ = N−1.

Proposition 4.1 shows that Kp,n(δ) . Kp,n(δ1/2)2. Let

γ = lim inf
δ→0

logKp,n(δ)

log(δ−1)
.

It follows that for each ε,

δ−γ . Kp,n(δ) .ε δ
−γ−ε.

Write γ = n−1
4 −

n+1
2p + α. We have to show that α = 0.

The following multilinear restriction estimate from [3] will play a key role

in our proof.

Theorem 6.1. Let τ1, . . . , τn be ν-transverse caps on Pn−1, and assume“fi is supported on the δ-neighborhood of τi. Then we have∥∥∥∥∥
Ç n∏
i=1

|fi|
å1/n

∥∥∥∥∥
L

2n
n−1 (BN )

.ε,ν N
− 1

2
+ε

Ç n∏
i=1

‖fi‖L2

å1/n

.
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Using Plancherel’s identity this easily implies that

Cp,n(δ, ν) .ε,ν δ
−ε

for p = 2n
n−1 . Combined with the Bourgain-Guth induction on scales this

further leads to

Kp,n(δ) .ε δ
−ε

for 2 ≤ p ≤ 2n
n−1 . These inequalities were proved in [11]. We will not rely on

them in our argument below.

We now present the first step of our proof, which shows how to interpolate

the ‖ · ‖p,δ norms.

Proposition 6.2. Let τ1, . . . , τn be ν-transverse caps on Pn−1, and as-

sume “fi is supported on the δ-neighborhood of τi. Then for each 2n
n−1 ≤ p ≤ ∞,

we have

(34)

∥∥∥∥∥
Ç n∏
i=1

|fi|
å1/n

∥∥∥∥∥
Lp(BN )

.ε,ν N
n−1

4
− n2+n

2p(n−1)
+ε

Ç n∏
i=1

‖fi‖ p(n−1)
n

,δ

å 1
n

and also

(35)∥∥∥∥∥
ñ n∏
i=1

Ç ∑
θ∈Pδ

|fi,θ|2
å1/2ô1/n

∥∥∥∥∥
Lp(BN )

.ε,ν N
− n

(n−1)p
+ε

Ç n∏
i=1

‖fi‖ p(n−1)
n

,δ

å1/n

.

Proof. Let us start with the proof of (34). Let λn = N
n−1

4 and F =

(
∏n
i=1 |fi|)1/n. Note that by Cauchy-Schwartz, we have

‖F‖∞ ≤ λn

(
n∏
i=1

‖fi‖∞,δ

) 1
n

.

By combining this with Theorem 6.1 and Hölder’s inequality, we find that

(36) ‖F‖Lp(BN ) .ε,ν λ
1− 2n

(n−1)p
n N

ε− n
(n−1)p

(
n∏
i=1

Ç
‖fi‖

2n
(n−1)p

2 ‖fi‖
1− 2n

(n−1)p

∞,δ

å) 1
n

.

Finally, to get (34), we use the wave packet decomposition and the fact

that

‖f‖
2n

(n−1)p

2 ‖f‖
1− 2n

(n−1)p

∞,δ ∼ ‖f‖ p(n−1)
n

,δ

if f is a balanced N -function. We can assume ‖fi‖ p(n−1)
n

,δ
= 1 for each i. As

in Lemma 3.5, write

fi =
∑

λ.‖fi‖∞,δ

λfi,λ.
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We use the triangle inequality to estimate the left-hand side of (34). In

the following C will denote a large enough constant depending on n, p. As

‖fi,λ‖∞ . 1, we have that

‖fi,λ‖Lp(BN ) ≤ NC .

As the right-hand side in (34) is & N−C , it follows that the contribution coming

from λfi,λ with λ . N−C is well controlled.

On the other hand, recall that by Bernstein’s inequality, ‖fi‖∞,δ . NC .

This shows that it suffices to consider O(log δ−1) many terms in the triangle

inequality. Each of these terms is dealt with by using (36), Lemma 3.4 and (30).

The proof of (35) is very similar. First, a randomization argument and

Theorem 6.1 imply that∥∥∥∥∥
ñ n∏
i=1

Ç ∑
θ∈Pδ

|fi,θ|2
å1/2ô1/n

∥∥∥∥∥
L

2n
n−1 (BN )

.ε,ν N
− 1

2
+ε

Ç n∏
i=1

‖fi‖2
å1/n

.

Combining this with the trivial inequality∥∥∥∥∥
ñ n∏
i=1

Ç ∑
θ∈Pδ

|fi,θ|2
å1/2ô1/n

∥∥∥∥∥
L∞(BN )

≤
Ç n∏
i=1

‖fi‖∞,δ
å1/n

and then with Hölder’s inequality gives∥∥∥∥∥
ñ n∏
i=1

Ç ∑
θ∈Pδ

|fi,θ|2
å1/2ô1/n

∥∥∥∥∥
Lp(BN )

.ε,ν N
− n

(n−1)p
+ε

Ç n∏
i=1

Ç
‖f‖

2n
(n−1)p

2 ‖fi‖
1− 2n

(n−1)p

∞,δ

åå1/n

.

Then (35) follows from interpolation, as explained before. �

At this point it is useful to introduce the local norms for g : Pn−1 → C
and arbitrary balls B

∥∥∥‘gdσ∥∥∥
p,δ,B

=

Ç ∑
θ: δ1/2-cap

∥∥∥’gθdσ∥∥∥2

Lp(wB)

å1/2

.

Fix 2n
n−1 < p < ∞. To simplify notation we also introduce the following

quantities. First, define

ξ =
2

(p− 2)(n− 1)
and η =

n(np− 2n− p− 2)

2p(n− 1)2(p− 2)
.
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For a fixed 0 ≤ β ≤ 1, consider the inequality∥∥∥∥∥
Ç n∏
i=1

∣∣∣‘gidσ∣∣∣å1/n
∥∥∥∥∥
Lp(BN )

.ε,ν Aβ(N)N ε

Ç n∏
i=1

∥∥∥‘gidσ∥∥∥
p,δ,BN

å 1−β
n
Ç n∏
i=1

∥∥∥‘gidσ∥∥∥ p(n−1)
n

,δ,BN

å β
n

(37)

for arbitrary ε > 0, ν, N , gi and BN as before.

We prove the following result.

Proposition 6.3.

(a) Inequality (37) holds true for β = 1 with A1(N) = N
n−1

4
− n2+n

2p(n−1) .

(b) Moreover, if we assume (37) for some β ∈ (0, 1], then we also have (37)

for βξ with

Aβξ(N) = Aβ(N1/2)Nβη+ γ
2

(1−βξ).

Proof. The proof of (a) is an immediate consequence of Remark 5.2 and

(34). We next focus on proving (b). By using Hölder’s inequality on the N1/2-

ball ∆ ∥∥∥‘gidσ∥∥∥ p(n−1)
n

,δ1/2,∆
≤
∥∥∥‘gidσ∥∥∥1− 2

(p−2)(n−1)

p,δ1/2,∆

∥∥∥‘gidσ∥∥∥ 2
(p−2)(n−1)

2,δ1/2,∆
,

we get ∥∥∥∥∥
Ç n∏
i=1

|‘gidσ|å1/n
∥∥∥∥∥
Lp(∆)

.ε,ν N
εAβ(N1/2)

Ç n∏
i=1

Ç ∥∥∥‘gidσ∥∥∥1−ξβ

p,δ1/2,∆

∥∥∥‘gidσ∥∥∥ξβ
2,δ1/2,∆

å 1
n

.

(38)

Consider a finitely overlapping cover of BN with balls ∆ of radius N1/2. Note

that

(39)

∥∥∥∥∥
Ç n∏
i=1

’|gidσ|å1/n
∥∥∥∥∥
Lp(BN )

.

Ç∑
∆

∥∥∥∥∥
Ç n∏
i=1

∣∣∣‘gidσ∣∣∣å1/n
∥∥∥∥∥
p

Lp(∆)

å1/p

.

We will use (38) to bound each ‖(∏n
i=1 |‘gidσ|)1/n‖Lp(∆). After raising to the

pth power, the right-hand side of (38) is summed using Hölder’s inequality

(40)
∑
∆

bξβp∆

n∏
i=1

a
1−ξβ
n

p

∆,i ≤
(∑

∆

bp∆

)ξβ n∏
i=1

(∑
∆

ap∆,i

) 1−ξβ
n

,

with

a∆,i =
∥∥∥‘gidσ∥∥∥

p,δ
1
2 ,∆
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and

b∆ =

(
n∏
i=1

∥∥∥‘gidσ∥∥∥p
2,δ

1
2 ,∆

) 1
np

.

To sum the factors ap∆,i we invoke first Minkowski’s inequality then Propo-

sition 4.1 to get

(41)
∑
∆

∥∥∥‘gidσ∥∥∥p
p,δ

1
2 ,∆
.
∥∥∥‘gidσ∥∥∥p

p,δ
1
2 ,BN

. Kp,n(δ1/2)p
∥∥∥‘gidσ∥∥∥p

p,δ,BN
.

We next show how to sum the factors bp∆. Rather than using the n-linear

Hölder’s inequality followed by Minkowski’s inequality as we did with the terms

ap∆,i, we first transform bp∆ to make it amenable to another application of

Theorem 6.1.

To this end we recall the standard formalism (see, e.g., [14, §§2–4]) that for

each δ1/2-cap θ, |’gθdσ| is essentially constant on each ∆. Thus, in particular,

it is easy to see that

∑
∆⊂BN

n∏
i=1

∥∥∥‘gidσ∥∥∥ pn
p,δ,∆

.
∑

∆⊂BN

∥∥∥∥∥ n∏
i=1

Ç ∑
θ: δ1/2-cap

θ⊂τi

∣∣∣÷gi,θdσ∣∣∣2å 1
2n
∥∥∥∥∥
p

Lp(w∆)

.

∥∥∥∥∥ n∏
i=1

Ç ∑
θ: δ1/2-cap

θ⊂τi

∣∣∣÷gi,θdσ∣∣∣2å 1
2n
∥∥∥∥∥
p

Lp(wBN )

.

(42)

Note also that by orthogonality followed by Hölder’s inequality, for each ∆,

(43)
∥∥∥‘gidσ∥∥∥

2,δ
1
2 ,∆
.
∥∥∥‘gidσ∥∥∥

2,δ,∆
. N

n
2

( 1
2
− 1
p

)
∥∥∥‘gidσ∥∥∥

p,δ,∆
.

Now (43), (42) and (35) lead to

(44)
∑
∆

bp∆ .ε,ν N
− n

(n−1)
+ε
N

n
2

( p
2
−1)

(
n∏
i=1

∥∥∥‘gidσ∥∥∥ (n−1)p
n

,δ,BN

)1/n

.

To end the argument simply invoke estimates (39), (40), (41) and (44). �

We can now present the final stage of the proof of Theorem 1.1 for

p > 2(n+1)
n−1 . Recall from the beginning of this section that this amounts to

proving that α = 0. Since p > 2(n+1)
n−1 , we have that ξ < 1

2 . We begin with a

general discussion that applies in every dimension n and then conclude with

an inductive argument.

A simple computation reveals that the inequality α > 0 is equivalent with

γ
1− ξ
1− 2ξ

>
n− 1

4
− n2 + n

2p(n− 1)
+

2η

1− 2ξ
.
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It follows that if α > 0, we can choose s0 ∈ N large enough and ε0 small enough

so that

γ

Ç
1− ξ
1− 2ξ

− ξ(2ξ)s0

1− 2ξ

å
>
n− 1

4
− n2 + n

2p(n− 1)
+ 2s0ε0

+
2η

1− 2ξ
(1− (2ξ)s0) +

n

(n− 1)p
(2ξ)s0 .

(45)

Choose now ν0 > 0 small enough such that ε0 > ε(ν0), with ε(ν0) as in

Theorem 5.3. Note that s0, ε0 and ν0 depend only on the fixed parameters

p, n, α. As a result, we follow our convention and do not record the dependence

on them when using the symbol ..

Proposition 6.3 implies that for each s ≥ 0,

Aξs(N) = Nψ(ξs),

with

(46) ψ(ξs+1) =
1

2
ψ(ξs) +

γ

2
(1− ξs+1) + ηξs.

Iterating (46) gives

(47) ψ(ξs) =
1

2s
ψ(1) + γ(1− 2−s) + 2

Å
η

ξ
− γ

2

ã
2−s − ξs

ξ−1 − 2
.

Note that by Hölder’s inequality,Ç n∏
i=1

∥∥∥‘gidσ∥∥∥ p(n−1)
n

,δ,BN

å 1
n

.

Ç n∏
i=1

∥∥∥‘gidσ∥∥∥
p,δ,BN

å 1
n

N
n

(n−1)p .

Combining this with (37) for β = ξs, we get

(48) Cp,n(δ, ν0) .ε,s δ
−εAξs(N)N

nξs

(n−1)p .

To finish the argument, we first consider n = 2. Since (48) (with s = s0)

holds for arbitrarily small δ and ε, using Theorem 5.3, we get

(49) γ − ε0 ≤ ψ(ξs0) +
nξs0

(n− 1)p
.

Combining (47) and (49), we find

γ

Ç
1− ξ
1− 2ξ

− ξ(2ξ)s0

1− 2ξ

å
≤ ψ(1) + 2s0ε0 +

2η

1− 2ξ
(1− (2ξ)s0) +

n

(n− 1)p
(2ξ)s0 ,

which contradicts (45), if α > 0. Thus α = 0 and Theorem 1.1 is proved for

n = 2 and p > 6.

The higher dimensional proof follows by induction. Assume that n ≥ 3 and

that Theorem 1.1 was proved for all 2 ≤ d ≤ n− 1 when p > 2(d+1)
d−1 . To prove

Theorem 1.1 in Rn for p > 2(n+1)
n−1 , it suffices to prove it for 2(n+1)

n−1 < p < 2n
n−2 .

Note that in this range we have p < 2(d+1)
d−1 for each 2 ≤ d ≤ n − 1 and

thus Theorem 5.3 is applicable, due to the induction hypothesis. To finish the
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argument, one applies the same reasoning as in the case n = 2 to conclude

that α > 0 leads to a contradiction.

It remains to see why Theorem 1.1 holds for the endpoint p = pn =
2(n+1)
n−1 . Remark 5.2 shows that it suffices to investigate the best constant in

the localized inequality

(50) ‖f‖Lp(BN ) ≤ K(3)
p,n(δ)

Ç ∑
θ∈Pδ

‖fθ‖2Lp(Rn)

å1/2

for each N -ball BN . It suffices now to invoke Theorem 1.1 for p > 2(n+1)
n−1

together with

‖f‖Lpn (BN ) . ‖f‖Lp(BN )N
n
pn
−n
p (by Hölder’s inequality),

‖fθ‖Lp(Rn) . N
n+1
2p
−n+1

2pn ‖fθ‖Lpn (Rn) (by Bernstein’s inequality)

and then to let p→ pn.

7. Extension to other hypersurfaces

Let S be a compact C2 hypersurface in Rn with positive definite second

fundamental form. Recall that we have proved Theorem 1.1 for Pn−1. By a

linear transformation, the proof extends to elliptic paraboloids of the form

{(ξ1, . . . , ξn−1, θ1ξ
2
1 + · · ·+ θn−1ξ

2
n−1) ∈ Rn : |ξi| ≤ 1/2},

with θi ∈ [C−1, C]. The implicit bounds will of course depend on C > 0.

We now show how to extend the result in Theorem 1.1 to S as above. It

suffices to prove the result for p = 2(n+1)
n−1 . We can assume that all the principal

curvatures of S are in [C−1, C].

The following argument is sketched in [21] and was worked out in detail

for conical surfaces in [27]. For δ < 1, as before let Kp(δ) be the smallest

constant such that for each f with Fourier support in Nδ, we have

‖f‖p ≤ Kp(δ)

Ç ∑
θ∈Pδ

‖fθ‖2p
å1/2

.

Fix such an f . First, note that

‖f‖p ≤ Kp(δ
2
3 )

Ç ∑
τ∈P

δ
2
3

‖fτ‖2p
å1/2

.

Second, our assumption on the principal curvatures of S combined with Tay-

lor’s formula shows that on each τ ∈ P
δ

2
3
, S is within δ from a paraboloid with

similar principal curvatures. By invoking Theorem 1.1 for this paraboloid,

combined with parabolic rescaling (Proposition 4.1), we get

‖fτ‖p .ε δ−ε
Ç ∑
θ∈Pδ:θ⊂τ

‖fθ‖2p
å1/2

.
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For each ε > 0, we conclude the existence of Cε such that for each δ < 1,

Kp(δ) ≤ Cεδ−εKp(δ
2
3 ).

By iteration this immediately leads to Kp(δ) .ε δ−ε.

8. Proof of Theorem 1.2

To simplify notation we present the argument for n = 3. Define the

extension operator

ERg(x1, x2, x3) =

∫
R
g(ξ1, ξ2)e

(
x1ξ1 + x2ξ2 + x3

»
ξ2

1 + ξ2
2

)
dξ1dξ2

for a subset R of the annulus

A1 =
{

(ξ1, ξ2) : 1 ≤
»
ξ2

1 + ξ2
2 ≤ 2

}
.

It will suffice to prove that

(51) ‖EA1g‖L6(BN ) .ε N
ε

Ç ∑
S⊂A1

‖ESg‖2L6(wBN )

å1/2

,

where the sum is over a tiling of A1 into sectors S of length 1 and aperture

N−1/2. The idea behind the proof is rather simple; we will apply the decoupling

inequality from Theorem 1.1 to the parabola (ξ, ξ
2

2 ). The observation that

makes this application possible is the fact that∣∣∣∣∣(»ξ2
1 + ξ2

2 − ξ1

)
− ξ2

2

2

∣∣∣∣∣
is “small” if ξ1 is “close” to 1 and ξ2 is “close” to 0. It remains to quantify the

meaning of “small” and “close.”

The key step is the following partial decoupling for a “significant” subset

of the cone.

Proposition 8.1. Fix ν, µ > 0 such that 2µ+ ν ≤ 1 and 2µ ≥ ν. Given

intervals I ⊂ [1, 2] and J ⊂ (−π/2, π/2) of lengths N−ν and N−µ respectively,

consider the sector

S =

ß
(ξ1, ξ2) :

»
ξ2

1 + ξ2
2 ∈ I, arctan

Å
ξ2

ξ1

ã
∈ J
™

of length N−ν and aperture N−µ. For each ε > 0, we have

‖ESg‖L6(BN ) .ε N
νε

Ç ∑
S′⊂S

‖ES′g‖2L6(wBN )

å1/2

,

where the sum runs over a tiling of S into sectors S′ of length N−ν and aperture

∼ N−µ−
ν
2 .
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Proof. Due to rotational and radial symmetry it suffices to assume I =

[1, 1+N−ν ] and J = [N−µ, 2N−µ]. Moreover, we may also assume that ξ1 > 0,

which implies, in particular, that

|1− ξ1| . N−ν , |ξ2
2 | ∼ N−2µ.

Note that for each function F = F (x1, x2, x3), we have

(52) ‖F‖L6(BN ) ∼
1

N1/3
‖‖F (x1−y3, x2 +y2, x3 +y3)‖L6

y2,y3
(BN )‖L6

x1,x2,x3
(BN ).

We apply this to

F (x1, x2, x3) = ESg(x1, x2, x3).

Fix (x1, x2, x3) ∈ BN , and evaluate the inner L6 norm in (52) using the change

of variables

(ξ1, ξ2) 7→ (η, ξ2) :=
(»

ξ2
1 + ξ2

2 − ξ1, ξ2

)
,

whose Jacobian J(η, ξ2) is nonzero. We get∥∥∥∥∥
∫
S
g(ξ1, ξ2)e

(
x1ξ1 + x2ξ2 + x3

»
ξ2

1 + ξ2
2

)
× e

(
y2ξ2 + y3

(»
ξ2

1 + ξ2
2 − ξ1

))
dξ1dξ2

∥∥∥∥∥
L6
y2,y3

(BN )

=

∥∥∥∥∥
∫
h(η, ξ2)e(y2ξ2 + y3η)dηdξ2

∥∥∥∥∥
L6
y2,y3

(BN )

for some appropriate function h. Note that if (ξ1, ξ2) ∈ S,∣∣∣∣∣η − ξ2
2

2

∣∣∣∣∣ =

∣∣∣∣∣∣∣
ξ2

2

(
ξ1 +

»
ξ2

1 + ξ2
2 − 2

)
2
(
ξ1 +

»
ξ2

1 + ξ2
2

)
∣∣∣∣∣∣∣ . N−2µ−ν .

It follows that the support of h is inside the δ ∼ N−2µ−ν neighborhood of the

parabola ®Ç
ξ2

2

2
, ξ2

å
, ξ2 ∼ N−µ

´
.

We can now invoke the parabolic rescaling Proposition 4.1 and Theorem 1.1

with f = ĥ to conclude that∥∥∥∥∥
∫
h(η, ξ2)e(y2ξ2 + y3η)dηdξ2

∥∥∥∥∥
L6
y2,y3

(BN )

.ε N
εν

Ç ∑
|H|=N−µ−

ν
2

∥∥∥∥∥
∫
ξ2∈H

h(η, ξ2)e(y2ξ2 + y3η)dηdξ2

∥∥∥∥∥
2

L6
y2,y3

(wBN )

å1/2

.

The conclusion of our proposition follows now by changing back to the original

variables, using Minkowski’s inequality and (52). �
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By iterating this proposition we get the following result.

Proposition 8.2. Fix ν = 1
M , with M ≥ 2 an integer. Given intervals

I ⊂ [1, 2] and J ⊂ (−π/2, π/2) of lengths N−ν and N−
ν
2 respectively, consider

the sector

S =

ß
(ξ1, ξ2) :

»
ξ2

1 + ξ2
2 ∈ I, arctan

Å
ξ2

ξ1

ã
∈ J
™

of length N−ν and aperture N−
ν
2 . We have

‖ESg‖L6(BN ) .ε N
ε

Ç∑
∆⊂S
‖E∆g‖2L6(wBN )

å1/2

,

where the sum runs over a tiling of S into sectors ∆ of length N−ν and aperture

∼ N−
1
2 .

Proof. Repeatedly apply Proposition 8.1 with µ = µj = j ν2 staring with

j = 1 until j = M − 1. �

We are left with proving that inequality (51) follows from this proposition.

First, note that A1 can be tiled using ∼ N
3ν
2 sectors S of length N−ν and

aperture N−
ν
2 . Call this collection Lν . Thus, by using the Cauchy-Schwartz

inequality and invoking the above proposition, we get for arbitrary ε > 0

‖EA1g‖L6(BN ) . N
3ν
4

Ç ∑
S∈Lν

‖ESg‖2L6(BN )

å1/2

.ε N
εν+ 3ν

4

Ç ∑
∆⊂A1

‖E∆g‖2L6(wBN )

å1/2

,

(53)

where the sum runs over a tiling of A1 into sectors ∆ of length N−ν and

aperture ∼ N−
1
2 . We also observe the following easy inequality:

(54) ‖E∆g‖L6(wBN ) . ‖ES′g‖L6(wBN ) ,

where S′ is the sector in A1 of length 1 and aperture N−1/2 containing ∆.

Note that no curvature is involved in this estimate, as the N−1 neighborhood

of ∆ is essentially a rectangular parallelepiped. Since each such S′ contains

Nν sectors ∆, by combining (53) and (54) we conclude that

‖EA1g‖L6(BN ) .ε N
εν+ 3ν

4
+ ν

2

Ç ∑
S′⊂A1

‖ES′g‖2L6(wBN )

å1/2

.

Inequality (51) now follows by choosing ν appropriately small.
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