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Interlacing families I:
Bipartite Ramanujan graphs of all degrees

By Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava

Abstract

We prove that there exist infinite families of regular bipartite Ramanujan

graphs of every degree bigger than 2. We do this by proving a variant of

a conjecture of Bilu and Linial about the existence of good 2-lifts of every

graph. We also establish the existence of infinite families of “irregular

Ramanujan” graphs, whose eigenvalues are bounded by the spectral radius

of their universal cover. Such families were conjectured to exist by Linial

and others. In particular, we prove the existence of infinite families of

(c, d)-biregular bipartite graphs with all nontrivial eigenvalues bounded by√
c− 1 +

√
d− 1 for all c, d ≥ 3. Our proof exploits a new technique for

controlling the eigenvalues of certain random matrices, which we call the

“method of interlacing polynomials.”

1. Introduction

Ramanujan graphs have been the focus of substantial study in Theoret-

ical Computer Science and Mathematics. They are graphs whose nontrivial

adjacency matrix eigenvalues are as small as possible. Previous constructions

of Ramanujan graphs have been sporadic, only producing infinite families of

Ramanujan graphs of certain special degrees. In this paper, we prove a variant

of a conjecture of Bilu and Linial [4] and use it to realize an approach they

suggested for constructing bipartite Ramanujan graphs of every degree.

Our main technical contribution is a novel existence argument. The con-

jecture of Bilu and Linial requires us to prove that every graph has a signed

adjacency matrix with all of its eigenvalues in a small range. We do this by

proving that the roots of the expected characteristic polynomial of a randomly

signed adjacency matrix lie in this range. In general, a statement like this is

useless, as the roots of a sum of polynomials do not necessarily have anything

to do with the roots of the polynomials in the sum. However, there seem to

be many sums of combinatorial polynomials for which this intuition is wrong.

A preliminary version of this paper appeared in the Proceedings of the 54th IEEE Annual

Symposium on Foundations of Computer Science.
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With this in mind, we identify certain special collections of polynomials, which

we call “interlacing families,” and prove that such families always contain a

polynomial whose largest root is at most the largest root of the sum. We show

that the polynomials arising from the signings of a graph form such a family.

To finish the proof, we then bound the largest root of the sum of the charac-

teristic polynomials of the signed adjacency matrices of a graph by observing

that this sum is the well-studied matching polynomial of the graph.

This paper is the first one in a series that develops the method of interlac-

ing polynomials. In the second paper [31], we use the method to give a positive

resolution to an open problem of Kadison and Singer.

2. Technical introduction and preliminaries

2.1. Ramanujan graphs. Ramanujan graphs are defined in terms of the

eigenvalues of their adjacency matrices. If G is a d-regular graph and A is its

adjacency matrix, then d is always an eigenvalue of A. The matrix A has an

eigenvalue of −d if and only if G is bipartite. The eigenvalues of d, and −d
when G is bipartite, are called the trivial eigenvalues of A. Following Lubotzky,

Phillips, and Sarnak [28], we say that a d-regular graph is Ramanujan if all

of its nontrivial eigenvalues lie between −2
√
d− 1 and 2

√
d− 1. It is easy

to construct Ramanujan graphs with a small number of vertices: d-regular

complete graphs and complete bipartite graphs are Ramanujan. The challenge

is to construct an infinite family of d-regular graphs that are all Ramanujan.

One cannot construct infinite families of d-regular graphs whose eigenvalues

lie in a smaller range: the Alon–Boppana bound (see [34]) tells us that for

every constant ε > 0, every sufficiently large d-regular graph has a nontrivial

eigenvalue with absolute value at least 2
√
d− 1− ε.

Lubotzky, Phillips, and Sarnak [28] and Margulis [32] were the first to

construct infinite families of Ramanujan graphs of constant degree. They built

both bipartite and nonbipartite Ramanujan graphs from Cayley graphs. All of

their graphs are regular and have degrees p+ 1 where p is a prime. There have

been very few other constructions of Ramanujan graphs [7], [23], [33], [36].

To the best of our knowledge, the only degrees for which infinite families of

Ramanujan graphs were previously known to exist were those of the form q+1

where q is a prime power. Lubotzky [29, Prob. 10.7.3] asked whether there

exist infinite families of Ramanujan graphs of every degree greater than 2. We

resolve this conjecture in the affirmative in the bipartite case.

2.2. 2-lifts. Bilu and Linial’s strategy for constructing infinite families of

expanders was to find a way of doubling the number of vertices of a graph

without changing its degree or introducing any large nontrivial eigenvalues.

Given a graph G = (V,E), a 2-lift of G is a graph Ĝ = (V̂ , Ê) that has

two vertices {v0, v1} ⊆ V̂ for each vertex v ∈ V . This pair of vertices is called
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the fibre of the original vertex. Every edge in G corresponds to two edges in

Ĝ. If (u, v) is an edge in E, {u0, u1} is the fibre of u, and {v0, v1} is the fibre

of v, then Ê can either contain the pair of edges

{(u0, v0), (u1, v1)} , or(1)

{(u0, v1), (u1, v0)} .(2)

If only edge pairs of the first type appear, then the 2-lift is just two disjoint

copies of the original graph. If only edge pairs of the second type appear, then

we obtain the double-cover of G.

The definition of a 2-lift is equivalent to saying that there is a 2 : 1 covering

map from Ĝ to G. Recall that a covering map is a graph homomorphism

π : V̂ → V that bijectively maps the star of every vertex v̂ ∈ V̂ to the star of

π(v), where the star of a vertex is the set of edges incident to it. If there is a

covering map (of any order) from Ĝ to G, we say that Ĝ is a lift of G and G

is a quotient of Ĝ.

To analyze the eigenvalues of a 2-lift, Bilu and Linial study signings

s : E → {±1} of the edges of G. They place signings in one-to-one correspon-

dence with 2-lifts by setting s(u, v) = 1 if edges of type (1) appear in the 2-lift

and s(u, v) = −1 if edges of type (2) appear. They then define the signed adja-

cency matrix As to be the same as the adjacency matrix of G, except that the

entries corresponding to an edge (u, v) are s(u, v). They prove [4, Lemma 3.1]

that the eigenvalues of the 2-lift are the union, taken with multiplicity, of the

eigenvalues of the adjacency matrix A and those of the signed adjacency ma-

trix As. Following Friedman [13], they refer to the eigenvalues of A as the old

eigenvalues and the eigenvalues of As as the new eigenvalues. The main result

of their paper is that every graph of maximum degree d has a signing in which

all of the new eigenvalues have absolute value at most O(
»
d log3 d). They then

build arbitrarily large d-regular expander graphs by repeatedly taking 2-lifts

of a complete graph on d+ 1 vertices.

Bilu and Linial conjectured that every d-regular graph has a signing in

which all of the new eigenvalues have absolute value at most 2
√
d− 1. If their

conjecture is true, one can obtain an infinite family of d-regular Ramanujan

graphs by starting with the d-regular complete graph and then repeatedly

forming the appropriate 2-lifts. We prove a weak version of Bilu and Linial’s

conjecture: every d-regular graph has a signing in which all of the new eigen-

values are at most 2
√
d− 1. The difference between our result and the original

conjecture is that we do not control the smallest new eigenvalue. This is why

we consider bipartite graphs. The eigenvalues of the adjacency matrices of

bipartite graphs are symmetric about zero (see, for example, [16, Th. 2.4.2]).

Thus any upper bound on the largest nontrivial eigenvalue implies a corre-

sponding lower bound on the smallest one. Since the 2-lift of a bipartite graph
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is also bipartite, we can start with a d-regular complete bipartite graph and in-

ductively form the appropriate 2-lifts to obtain an infinite sequence of d-regular

bipartite Ramanujan graphs.

2.3. Irregular Ramanujan graphs and universal covers. We say that a bi-

partite graph is (c, d)-biregular if all vertices on one side of the bipartition have

degree c and all vertices on the other side have degree d. (To avoid technicali-

ties, we will require c, d ≥ 2.) The adjacency matrix of a (c, d)-biregular graph

always has eigenvalues ±
√
cd; these are its trivial eigenvalues. Feng and Li [12]

(see also [24]) prove a generalization of the Alon–Boppana bound that applies

to (c, d)-biregular graphs: for all ε > 0, all sufficiently large (c, d)-biregular

graphs have a nontrivial eigenvalue that is at least
√
c− 1 +

√
d− 1− ε. Thus,

we say that a (c, d)-biregular graph is Ramanujan if all of its nontrivial eigen-

values have absolute value at most
√
c− 1 +

√
d− 1. We prove the existence

of infinite families of (c, d)-biregular Ramanujan graphs for all c, d ≥ 3.

The regular and biregular Ramanujan graphs discussed above are actually

special cases of a more general phenomenon. To describe it, we use a topological

construction known as the universal cover. The universal cover of a graph G

is the unique infinite tree T such that every connected lift of G is a quotient of

T (see, e.g., [22, §6]). It can also be defined concretely in terms of walks in G.

Recall that a walk in a graph is a sequence of vertices (v0, v1, . . . , v`) such that

each consecutive pair (vi−1, vi) is an edge in G. A walk is called simple if all the

vertices are distinct and nonbacktracking if vi−1 6= vi+1 for all i. We say that a

walk w′ is a continuation of another walk w if it is obtained by adding a single

vertex to w, i.e., w = (v0, . . . , v`) and w′ = (v0, . . . , v`, v`+1) for some v`+1.

To construct the universal cover, fix a “root” vertex v0 ∈ G, and then

place one vertex in T for every nonbacktracking walk w in G starting at v0
of every length ` ∈ N. Two vertices w,w′ are adjacent in T whenever w′ is a

continuation of w (or vice versa). It is easy to check that the universal cover

of a graph is unique up to isomorphism and is independent of the choice of v0.

The adjacency matrix AT of the universal cover T is an infinite symmetric

matrix. We will be interested in the spectral radius ρ(T ) of T , which may be

defined1 as

(3) ρ(T ) := sup
‖x‖2=1

‖ATx‖2,

where ‖x‖22 :=
∑∞
i=1 x(i)2 whenever the series converges. Naturally, the spec-

tral radius of a finite tree is defined to be the norm of its adjacency matrix.

1In functional analysis, the spectral radius of an infinite-dimensional operator A is tradi-

tionally defined to be the supremum of |λ| over the λ ∈ C such that A− λI is not invertible.

However, in the case of self-adjoint operators, this definition is equivalent to the one presented

here (see, for example, Theorem VI.6 in [38]).
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With these notions in hand, we can state the definition of an irregular

Ramanujan graph. As before, the largest (and smallest, in the bipartite case)

eigenvalues of finite adjacency matrices are considered trivial. Greenberg [19]

(see also [9]) showed that for every ε > 0 and every infinite family of graphs

that have the same universal cover T , all sufficiently large graphs in the family

have a nontrivial eigenvalue that is at least ρ(T )− ε. Following Greenberg [19]

(see also [22, Def. 6.7]), we therefore define an arbitrary graph to be Ramanu-

jan if all of its nontrivial eigenvalues have absolute value at most the spectral

radius of its universal cover.

The universal cover of every d-regular graph is the infinite d-ary tree, and

the universal cover of every (c, d)-biregular graph is the infinite (c, d)-biregular

tree in which the degrees alternate between c and d on every other level [24].

The former tree is known to have a spectral radius of 2
√
d− 1 and the latter

a spectral radius of
√
c− 1 +

√
d− 1 (see [18], [24]). Thus a definition based

on universal covers generalizes both the regular and biregular definitions of

Ramanujan graphs, and the bound of Greenberg generalizes both the Alon-

Boppana and Feng-Li bounds.

In this general setting, we show that every graph G has a 2-lift in which

all of the new eigenvalues are at most the spectral radius of its universal cover.

Applying these 2-lifts inductively to any finite irregular bipartite Ramanujan

graph yields an infinite family of irregular bipartite Ramanujan graphs whose

degree distribution matches that of the initial graph (since taking a 2-lift simply

doubles the number of vertices of each degree). In particular, applying them to

the (c, d)-biregular complete bipartite graph yields an infinite family of (c, d)-

biregular Ramanujan graphs. As far as we know, infinite families of irregular

Ramanujan graphs were not known to exist prior to this work.

2.4. Related work. There have been numerous studies of random lifts of

graphs. For some results on the spectra of random lifts, we point the reader to

[1], [2], [3], [26], [25], [27]. Friedman [14] has proved that almost every d-regular

graph almost meets the Ramanujan bound: he shows that for every ε > 0, the

absolute value of all the nontrivial eigenvalues of almost every sufficiently large

d-regular graph are at most 2
√
d− 1 + ε. In the irregular case, Puder [37] has

shown that with high probability a random high-order lift of a graph G has

new eigenvalues that are bounded in absolute value by
√

3ρ, where ρ is the

spectral radius of the universal cover of G.

We remark that constructing bipartite Ramanujan graphs is at least as

easy as constructing nonbipartite ones: the double-cover of a d-regular non-

bipartite Ramanujan graph is a d-regular bipartite Ramanujan graph. For a

survey of applications of expander graphs, we refer the reader to [22].
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3. 2-lifts and the matching polynomial

A matching in a graph is a subset of its edges, no two of which share a

common vertex. For a graph G, let mi denote the number of matchings in

G consisting of i edges (with m0 = 1). Heilmann and Lieb [21] defined the

matching polynomial of G to be the polynomial

µG(x)
def
=
∑
i≥0

xn−2i(−1)imi,

where n is the number of vertices in the graph. They proved two remarkable

theorems about the matching polynomial that we will exploit in this paper.

It is worth mentioning that the proofs of these theorems are elementary and

short, relying only on simple recurrence formulas for the matching polynomial.

Theorem 3.1 ([21, Th. 4.2]). For every graph G, µG(x) has only real

roots.

Theorem 3.2 ([21, Th. 4.3]). For every graph G of maximum degree d,

all of the roots of µG(x) have absolute value at most 2
√
d− 1.

The preceding theorems will allow us to prove the existence of infinite

families of d-regular bipartite Ramanujan graphs. To handle the irregular case,

we will require a refinement of these results due to Godsil. This refinement

uses the concept of a path tree, which was also introduced by Godsil (see [15]

or [16, §6]).

Definition 3.3. Given a graph G and a vertex u, the path tree P (G, u)

contains one vertex for every simple walk in G beginning at u. Two vertices in

P (G, u) are adjacent if the simple walk corresponding to one is a continuation

of the simple walk corresponding to the other (as defined in Section 2.3).

Remark 3.4. The use of the term “path tree” derives from the fact that

simple walks (as we have defined them) are sometimes called paths in the litera-

ture. Since this is not standard, we chose to define everything in terms of walks,

but we retain the name “path tree” since it signifies a specific construction of

Godsil.

The path tree provides a natural relationship between the roots of the

matching polynomial of a graph and the spectral radius of its universal cover:

Theorem 3.5 (Godsil [15]). Let P (G, u) be a path tree of G. Then the

matching polynomial of G divides the characteristic polynomial of the adjacency

matrix of P (G, u). In particular, all of the roots of µG(x) are real and have

absolute value at most ρ(P (G, u)).

Lemma 3.6. Let G be a graph, and let T be its universal cover. Then the

roots of µG(x) are bounded in absolute value by ρ(T ).
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Proof. Let u be any vertex of G and let P be the path tree rooted at u.

Since the simple walks that correspond to the vertices of P are (in particular)

nonbacktracking walks, P is a finite induced subgraph of the universal cover T ,

and AP is a finite submatrix of AT . By Theorem 3.5, the roots of µG are

bounded by

‖AP ‖2 = sup
‖x‖2=1

‖APx‖2

≤ sup
‖y‖2=1,supp(y)⊂P

‖AT y‖2

≤ sup
‖y‖2=1

‖AT y‖2 = ρ(T ),

as desired. �

We remark that one can directly prove an upper bound of 2
√
d− 1 on

the spectral radius of a path tree of a d-regular graph and an upper bound of√
c− 1+

√
d− 1 on the spectral radius of a path tree of a (c, d)-regular bipartite

graph without considering infinite trees. We point the reader to Section 5.6 of

Godsil’s book [16] for an elementary argument.

We now recall an identity of Godsil and Gutman that relates the expected

characteristic polynomial over uniformly random signings of the adjacency ma-

trix of a graph to its matching polynomial. To associate a signing of the edges

of G with a vector in {±1}m, we choose an arbitrary ordering of the m edges

of G, denote the edges by e1, . . . , em, and denote a signing of these edges by

s ∈ {±1}m. We then let As denote the signed adjacency matrix corresponding

to s and define fs(x) = det (xI −As) to be the characteristic polynomial of As.

Theorem 3.7 (Corollary 2.2 of Godsil and Gutman [17]).

Es∈{±1}m [fs(x)] = µG(x).

For the convenience of the reader, we present a simple proof of this theorem

in Appendix A.

To prove that a good lift exists, it suffices, by Theorems 3.2 and 3.7, to

show that there is a signing s so that the largest root of fs(x) is at most

the largest root of Es∈{±1}m [fs(x)]. To do this, we prove that the polynomials

{fs(x)}s∈{±1}m form what we call an “interlacing family.” We define interlacing

families and examine their properties in the next section.

4. Interlacing families

Definition 4.1. We say that a polynomial g(x) =
∏n−1
i=1 (x− αi) interlaces

a polynomial f(x) =
∏n
i=1(x− βi) if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn.
We say that polynomials f1, . . . , fk have a common interlacing if there is a

single polynomial g that interlaces each of the fi.



314 ADAM W. MARCUS, DANIEL A. SPIELMAN, and NIKHIL SRIVASTAVA

Let βi,j be the jth smallest root of fi. An equivalent characterization

of the polynomials f1, . . . , fk having a common interlacing is the existence of

numbers α0 ≤ α1 ≤ · · · ≤ αn so that βi,j ∈ [αj−1, αj ] for all i and j. The

numbers α1, . . . , αn−1 can be taken to be the roots of the polynomial g, and

α0 (αn) can be chosen to be any number that is smaller (larger) than all of the

roots of all of the fi.

Lemma 4.2. Let f1, . . . , fk be degree-n real-rooted polynomials with posi-

tive leading coefficients, and define

f∅ =
k∑
i=1

fi.

If f1, . . . , fk have a common interlacing, then there exists an i for which the

largest root of fi is at most the largest root of f∅.

Proof. Let g be a polynomial that interlaces all of the fi, and let αn−1 be

the largest root of g. As each fi has a positive leading coefficient, it is positive

for sufficiently large x. As each fi has exactly one root that is at least αn−1,

each fi is nonpositive at αn−1. Therefore f∅ is also nonpositive at αn−1 and

eventually becomes positive. This tells us that f∅ has a root that is at least

αn−1, and so its largest root is at least αn−1. Let βn be this root.

As f∅ is the sum of the fi, there must be some i for which fi(βn) ≥ 0. As

fi has at most one root that is at least αn−1, and fi(αn−1) ≤ 0, the largest

root of fi is it at least αn−1 and at most βn. �

One can show that the assumptions of the lemma imply that f∅ is itself

a real-rooted polynomial. The conclusion of the lemma also holds for the kth

largest root by a similar argument. However, we will not require these facts

here.

If the polynomials do not have a common interlacing, the sum may fail to

be real-rooted: consider (x+ 1)(x+ 2) + (x− 1)(x− 2). Even if the sum of two

polynomials is real-rooted, the conclusion of Lemma 4.2 may fail to hold if the

interval containing the largest roots of each polynomial overlaps the interval

containing their second-largest roots. For example, consider the sum of the

polynomials (x+ 5)(x− 9)(x− 10) and (x+ 6)(x− 1)(x− 8). It has roots at

approximately −5.3, 6.4, and 7.4, so its largest root is smaller than the largest

root of both polynomials of which it is the sum.

Definition 4.3. Let S1, . . . , Sm be finite sets, and for every assignment

s1, . . . , sm ∈ S1×· · ·×Sm, let fs1,...,sm(x) be a real-rooted degree n polynomial

with positive leading coefficient. For a partial assignment s1, . . . , sk ∈ S1 ×
· · · × Sk with k < m, define

fs1,...,sk
def
=

∑
sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm
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as well as

f∅
def
=

∑
s1∈S1,...,sm∈Sm

fs1,...,sm .

We say that the polynomials {fs1,...,sm}s1,...,sm form an interlacing family if for

all k = 0, . . . ,m− 1 and all s1, . . . , sk ∈ S1 × · · · × Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem 4.4. Let S1, . . . , Sm be finite sets, and let {fs1,...,sm} be an inter-

lacing family of polynomials. Then, there exists some s1, . . . , sm ∈ S1×· · ·×Sm
so that the largest root of fs1,...,sm is at most the largest root of f∅.

Proof. From the definition of an interlacing family, we know that the poly-

nomials {ft} for t ∈ S1 have a common interlacing and that their sum is f∅.

Lemma 4.2 then guarantees one of the polynomials (say fs1) has largest root at

most the largest root of f∅. We now proceed inductively. For any s1, . . . , sk, we

know that the polynomials {fs1,...,sk,t} for t ∈ Sk+1 have a common interlacing

and that their sum is fs1,...,sk . So for some choice of t (say sk+1), the largest

root of the polynomial fs1,...,sk+1
is at most the largest root of fs1,...,sk . �

We will prove that the polynomials {fs}s∈{±1}m defined in Section 3 form

an interlacing family. According to Definition 4.3, this requires establishing the

existence of certain common interlacings. There is a systematic way to do this

based on the fact that common interlacings are equivalent to real-rootedness

statements. In particular, the following result seems to have been discovered

a number of times. It appears as Theorem 2.1 of Dedieu [10], (essentially) as

Theorem 2′ of Fell [11], and as (a special case of) Theorem 3.6 of Chudnovsky

and Seymour [8].

Lemma 4.5. Let f1, . . . , fk be (univariate) polynomials of the same degree

with positive leading coefficients. Then f1, . . . , fk have a common interlacing

if and only if
∑k
i=1 λifi is real-rooted for all nonnegative λ1, . . . , λk.

5. The main result

Our proof that the polynomials {fs}s∈{±1}m form an interlacing family

relies on the following generalization of the fact that the matching polynomial

is real-rooted. It says that if the sign of each edge is chosen independently,

each with its own probability, then the resulting polynomial is real-rooted.

Theorem 5.1. The polynomial∑
s∈{±1}m

Ñ ∏
i:si=1

pi

éÑ ∏
i:si=−1

(1− pi)

é
fs(x)

is real-rooted for all values of p1, . . . , pm ∈ [0, 1].
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We will prove this theorem using machinery that we develop in Section 6.

It immediately implies our main technical result as follows.

Theorem 5.2. The polynomials {fs}s∈{±1}m form an interlacing family.

Proof. We will show that for every 0 ≤ k ≤ m−1, every partial assignment

s1 ∈ ±1, . . . , sk ∈ ±1, and every λ ∈ [0, 1], the polynomial

λfs1,...,sk,1(x) + (1− λ)fs1,...,sk,−1(x)

is real-rooted. The theorem then follows from Lemma 4.5. However this follows

directly from Theorem 5.1 with pk+1 = λ, pk+2, . . . , pm = 1/2, and pi =

(1 + si)/2 for 1 ≤ i ≤ k. �

Theorem 5.3. Let G be a graph with adjacency matrix A and universal

cover T . Then there exists a signing s of A so that all of the eigenvalues of As
are at most ρ(T ). In particular, if G is d-regular, there is a signing s so that

the eigenvalues of As are at most 2
√
d− 1.

Proof. The first statement follows immediately from Theorems 3.7, 4.4,

5.2, and Lemma 3.6. The second statement follows by noting that the universal

cover of a d-regular graph is the infinite d-regular tree, which has spectral radius

at most 2
√
d− 1, or by directly appealing to Theorem 3.2. �

Lemma 5.4. Every nontrivial eigenvalue of a complete (c, d)-biregular

graph is zero.

Proof. The adjacency matrix of this graph has rank 2, so all its eigenvalues

other than ±
√
cd must be zero. �

Theorem 5.5. For every d ≥ 3, there exists an infinite sequence of

d-regular bipartite Ramanujan graphs.

Proof. We know from Lemma 5.4 that the complete bipartite graph of de-

gree d is Ramanujan. By Lemma 3.1 of [4] and Theorem 5.3, for every d-regular

bipartite Ramanujan graph G, there is a 2-lift in which every nontrivial eigen-

value is at most 2
√
d− 1. As the 2-lift of a bipartite graph is bipartite and

the eigenvalues of a bipartite graph are symmetric about 0, this 2-lift is also a

d-regular bipartite Ramanujan graph.

Thus for every d-regular bipartite Ramanujan graph G, there exists an-

other d-regular bipartite Ramanujan graph with twice as many vertices. �

Theorem 5.6. There exists an infinite sequence of (c, d)-biregular bipar-

tite Ramanujan graphs for all c, d ≥ 3.

Proof. We know from Lemma 5.4 that the complete (c, d)-biregular graph

is Ramanujan. We will use this as a base for a construction of an infinite
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sequence of (c, d)-biregular bipartite Ramanujan graphs. Let G be any (c, d)-

biregular bipartite Ramanujan graph. As mentioned in Section 2.3, the uni-

versal cover of G is the infinite (c, d)-biregular tree, which has spectral radius√
c− 1 +

√
d− 1. Thus, Theorem 5.3 tells us that there is a 2-lift of G with

all new eigenvalues at most
√
c− 1 +

√
d− 1. As this graph is bipartite, all

of its nontrivial eigenvalues have absolute value at most
√
c− 1 +

√
d− 1.

The resulting 2-lift is therefore a larger (c, d)-biregular bipartite Ramanujan

graph. �

To conclude the section, we remark that repeated application of Theo-

rem 5.3 can be used to generate an infinite sequence of irregular Ramanujan

graphs from any finite irregular bipartite Ramanujan graph, since all of the

lifts produced will have the same universal cover. In other words, if an infinite

tree has a single bipartite Ramanujan quotient, then it must have infinitely

many. In contrast, Lubotzky and Nagnibeda [30] have shown that there exist

infinite trees that cover infinitely many finite graphs but such that none of the

finite graphs are Ramanujan.

6. Real stable polynomials

In this section we will establish the real-rootedness of a class of polyno-

mials that includes the polynomials of Theorem 5.1. We will do this by con-

sidering a multivariate generalization of real-rootedness known as real stability

(see, e.g., the surveys [35], [40]). In particular, we will show that the univariate

polynomials we are interested in are the images, under a well-behaved linear

transformation, of a multivariate real stable polynomial.

Definition 6.1. A multivariate polynomial f ∈ R[z1, . . . , zn] is called real

stable if it is the zero polynomial or if

f(z1, . . . , zn) 6= 0

whenever the imaginary part of each zi is strictly positive.

Note that a real stable polynomial has real coefficients but may be evalu-

ated on complex inputs. We begin by considering certain determinantal poly-

nomials whose real stability is guaranteed by the following lemma, which may

be found in Borcea and Brändén [6, Prop. 2.4].

Lemma 6.2. Let A1, . . . , Am be positive semidefinite matrices. Then

det (z1A1 + · · ·+ zmAm)

is real stable.

Real stable polynomials enjoy a number of useful closure properties. In

particular, it is easy to see that if f(x1, . . . , xk) and g(y1, . . . yj) are real stable,
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then f(x1, . . . , xk)g(y1, . . . , yj) is real stable. A standard limiting argument

based on Hurwitz’s theorem shows that the real stability of f(x1, . . . , xk) im-

plies the real stability of f(x1, . . . , xk−1, c) for every c ∈ R (see, e.g., Lemma 2.4

in [40]). For a variable xi, we define Zxi to be the operator that acts on poly-

nomials by setting the variable xi to zero.

In [5], Borcea and Brändén characterize a class of differential operators

that preserve real stability. To simplify notation, we will let ∂zi denote the

operation of partial differentiation with respect to zi. For α, β ∈ Nn, we use

the notation

zα =
n∏
i=1

zαi
i and ∂β =

n∏
i=1

(∂zi)
βi .

Theorem 6.3 (Theorem 1.3 in [5]). Let T : R[z1, . . . , zn]→ R[z1, . . . , zn]

be an operator of the form

T =
∑

α,β∈Nn

cα,βz
α∂β,

where cα,β ∈ R and cα,β is zero for all but finitely many terms. Define

FT (z, w) :=
∑
α,β

cα,βz
αwβ.

Then T preserves real stability if and only if FT (z,−w) is real stable.

We will use a special case of this result.

Corollary 6.4. For all real numbers a, b ≥ 0 and variables x, y, the

operator T = 1 + a∂x + b∂y preserves real stability.

Proof. If a = b = 0, then T is the identity operator and thus preserves

real stability. If a or b is nonzero, we just need to show that the polynomial

r(x, y) = 1− ax− by is real stable. To see this, consider x and y with positive

imaginary parts. The imaginary part of 1− ax− by will then be negative, and

so r cannot be zero. �

We now show how operators of the preceding kind can be used to generate

the expected characteristic polynomial that appears in Theorem 5.1.

Lemma 6.5. For an invertible matrix A, vectors u and v, and a number

p ∈ [0, 1],

ZxZy(1 + p∂x + (1− p)∂y) det
Ä
A+ xuuT + yvvT

ä
= p det

Ä
A+ uuT

ä
+ (1− p) det

Ä
A+ vvT

ä
.

Proof. The matrix determinant lemma (see, e.g., [20]) states that for every

nonsingular matrix A and every real number t,

det
Ä
A+ tuuT

ä
= det (A) (1 + tuTA−1u).
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One consequence of this is Jacobi’s formula for the derivative of the determi-

nant:
∂t det

Ä
A+ tuuT

ä
= det (A) (uTA−1u).

This formula implies that

ZxZy(1 + p∂x + (1− p)∂y) det
Ä
A+ xuuT + yvvT

ä
= det (A)

Ä
1 + p(uTA−1u) + (1− p)(vTA−1v)

ä
.

By the matrix determinant lemma, this equals

p det
Ä
A+ uuT

ä
+ (1− p) det

Ä
A+ vvT

ä
. �

Using these tools, we prove our main technical result on real-rootedness.

Theorem 6.6. Let u1, . . . , um, v1, . . . , vm be vectors in Rn, let p1, . . . , pm
be real numbers in [0, 1], and let D be a positive semidefinite matrix. Then the

(univariate) polynomial

P (x)
def
=

∑
S⊆[m]

(∏
i∈S

pi

)Ñ∏
i 6∈S

(1− pi)

é
det

Ñ
xI +D +

∑
i∈S

uiu
T
i +

∑
i 6∈S

viv
T
i

é
is real-rooted.

Proof. Let y1, . . . , ym and z1, . . . , zm be formal variables, and define

Q(x, y1, . . . , ym, z1, . . . , zm) = det

(
xI +D +

∑
i

yiuiu
T
i +

∑
i

ziviv
T
i

)
.

Lemma 6.2 and the fact mentioned in the paragraph after Lemma 6.2 that

specializing variables to real numbers preserves real stability imply that Q is

real stable. We claim that we can rewrite P as

P (x) =

(
m∏
i=1

ZyiZziTi

)
Q(x, y1, . . . , ym, z1, . . . , zm),

where Ti = 1 +pi∂yi + (1−pi)∂zi . To see this, we prove by induction on k that(
k∏
i=1

ZyiZziTi

)
Q(x, y1, . . . , ym, z1, . . . , zm)

equals

∑
S⊆[k]

(∏
i∈S

pi

)Ñ ∏
i∈[k]\S

(1− pi)

é
det

(
xI +D +

∑
i∈S

uiu
T
i

+
∑

i∈[k]\S
viv

T
i +

∑
i>k

yiuiu
T
i + ziviv

T
i

é
.

The base case (k = 0) is trivially true, as it is the definition of Q. The inductive

step follows from Lemma 6.5. The case k = m is exactly the claimed identity.
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Starting with Q (a real stable polynomial) we can then apply Corollary 6.4

and the closure of real stable polynomials under the restrictions of variables to

real constants to see that each of the polynomials above, including P (x), is also

real stable. As P (x) is real stable and has one variable, it is real-rooted. �

Alternatively, one can prove Theorem 6.6 by observing that P is a mixed

characteristic polynomial, as defined in [31], and then applying Corollary 4.4

of that paper.

Proof of Theorem 5.1. For each vertex u, let du be its degree, and let

d = maxu du. We need to prove that the polynomial

∑
s∈{±1}m

Ñ ∏
i:si=1

pi

éÑ ∏
i:si=−1

(1− pi)

é
det (xI −As)

is real-rooted. This is equivalent to proving that the the following polynomial

is real-rooted:

(4)
∑

s∈{±1}m

Ñ ∏
i:si=1

pi

éÑ ∏
i:si=−1

(1− pi)

é
det (xI + dI −As) ,

as their roots only differ by d.

We now observe that the matrix dI − As is a signed Laplacian matrix of

G plus a nonnegative diagonal matrix. For each edge (u, v), define the rank-1

matrices

L1
u,v = (eu − ev)(eu − ev)T , and

L−1u,v = (eu + ev)(eu + ev)
T ,

where eu is the elementary unit vector in direction u. Consider a signing s,

and let su,v denote the sign it assigns to edge (u, v). Since the original graph

had maximum degree d, we have

dI −As =
∑

(u,v)∈E
Lsu,vu,v +D,

where D is the diagonal matrix whose uth diagonal entry equals d−du. As the

diagonal entries of D are nonnegative, it is positive semidefinite. If we now set

au,v = (eu − ev) and bu,v = (eu + ev), we can express the polynomial in (4) as

∑
s∈{±1}m

Ñ ∏
i:si=1

pi

éÑ ∏
i:si=−1

(1− pi)

é
det

Ñ
xI +D +

∑
su,v=1

au,va
T
u,v

+
∑

su,v=−1
bu,vb

T
u,v

é
.

The fact that this polynomial is real-rooted now follows from Theorem 6.6. �
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7. Conclusion

We conclude by drawing an analogy between our proof technique and the

probabilistic method, which relies on the fact that for every random variable

X : Ω → R, there is an ω ∈ Ω for which X(ω) ≤ E [X]. We have shown

that for certain special polynomial-valued random variables P : Ω → R[x],

there must be an ω with λmax(P (ω)) ≤ λmax(E [P ]). In fact it is possible

to define interlacing families in greater generality than we have done here,

using probabilistic notation. In particular, we call a polynomial-valued random

variable P useful if P is deterministic and real-rooted or if there exist disjoint

nontrivial events E1, . . . , Ek with
∑
i≤k Pr [Ei] = 1 such that the polynomials

{E [P |Ei]}i≤k have a common interlacing and each polynomial E [P |Ei] is itself

useful. The conclusion of Theorem 4.4 continues to hold for this definition,

and we suspect it will be applicable in nonproduct settings. In the case of

this paper, the events Ei are particularly simple: they correspond to setting

one sign of a lift to be +1 or −1, and the resulting sequence of polynomials

f∅, fs1 , . . . , fs1,...,sm forms a martingale (a fact that we do not use, but may be

interesting in its own right).

Like many applications of the probabilistic method, our proof does not

yield a polynomial-time algorithm. In the particular case of random lifts,

the polynomial f∅ is itself a matching polynomial, and its last coefficient is

the number of perfect matchings in the graph. Valiant [39] proved that it is

#P -hard to compute the number of matchings in a graph; so, we do not expect

to find an efficient algorithm for computing the matching polynomial. It would

be very interesting to find a computationally efficient analogue of our method.

It has been pointed out that the proofs in this paper carry over to the case

of multigraphs (ones allowing loops and multiple edges) without much effort.

For the sake of simplicity, we chose not to pursue that direction in detail. We

mention it, however, as it might provide an interesting set of “seed” graphs

apart from the default choice of the complete bipartite graph.
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Appendix A. Proof of Theorem 3.7

Let sym(S) denote the set of permutations of a set S, and let |π| denote

the number of inversions of a permutation π. We recall that (−1)|π| is the

signature of the permutation π. Expanding the determinant as a sum over

permutations σ ∈ sym([n]), we have

Es [det(xI −As)] = Es

 ∑
σ∈sym([n])

(−1)|σ|
n∏
i=1

(xI −As)i,σ(i)


=

n∑
k=0

xn−k(−1)k
∑

S⊂[n],|S|=k

∑
π∈sym(S)

Es

[
(−1)|π|

∏
i∈S

(As)i,π(i)

]

=
n∑
k=0

xn−k(−1)k
∑

S⊂[n],|S|=k

∑
π∈sym(S)

Es

[
(−1)|π|

∏
i∈S

si,π(i)

]
.

Since the sij are independent with E [sij ] = 0, only those products that contain

even powers (0 or 2) of the sij survive. Thus, we may restrict our attention to

the permutations π that contain only orbits of size two (disjoint transpositions).

These are just the perfect matchings on S. There are no perfect matchings

when |S| is odd; when |S| is even, each matching consists of |S|/2 disjoint

transpositions. Since Es
î
s2ij
ó

= 1, we are left with

Es [det(xI −As)] =
n∑
k=0
k even

xn−k
∑
|S|=k

∑
matchings π on S

(−1)|S|/2 · 1

= µG(x),

as desired.
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[23] B. W. Jordan and R. Livné, Ramanujan local systems on graphs, Topology 36

(1997), 1007–1024. MR 1445552. Zbl 0872.05036. http://dx.doi.org/10.1016/

S0040-9383(96)00044-4.
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