Interlacing families I: Bipartite Ramanujan graphs of all degrees

By Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava

Abstract

We prove that there exist infinite families of regular bipartite Ramanujan graphs of every degree bigger than 2 . We do this by proving a variant of a conjecture of Bilu and Linial about the existence of good 2-lifts of every graph. We also establish the existence of infinite families of "irregular Ramanujan" graphs, whose eigenvalues are bounded by the spectral radius of their universal cover. Such families were conjectured to exist by Linial and others. In particular, we prove the existence of infinite families of (c, d)-biregular bipartite graphs with all nontrivial eigenvalues bounded by $\sqrt{c-1}+\sqrt{d-1}$ for all $c, d \geq 3$. Our proof exploits a new technique for controlling the eigenvalues of certain random matrices, which we call the "method of interlacing polynomials."

1. Introduction

Ramanujan graphs have been the focus of substantial study in Theoretical Computer Science and Mathematics. They are graphs whose nontrivial adjacency matrix eigenvalues are as small as possible. Previous constructions of Ramanujan graphs have been sporadic, only producing infinite families of Ramanujan graphs of certain special degrees. In this paper, we prove a variant of a conjecture of Bilu and Linial [4] and use it to realize an approach they suggested for constructing bipartite Ramanujan graphs of every degree.

Our main technical contribution is a novel existence argument. The conjecture of Bilu and Linial requires us to prove that every graph has a signed adjacency matrix with all of its eigenvalues in a small range. We do this by proving that the roots of the expected characteristic polynomial of a randomly signed adjacency matrix lie in this range. In general, a statement like this is useless, as the roots of a sum of polynomials do not necessarily have anything to do with the roots of the polynomials in the sum. However, there seem to be many sums of combinatorial polynomials for which this intuition is wrong.

[^0]With this in mind, we identify certain special collections of polynomials, which we call "interlacing families," and prove that such families always contain a polynomial whose largest root is at most the largest root of the sum. We show that the polynomials arising from the signings of a graph form such a family. To finish the proof, we then bound the largest root of the sum of the characteristic polynomials of the signed adjacency matrices of a graph by observing that this sum is the well-studied matching polynomial of the graph.

This paper is the first one in a series that develops the method of interlacing polynomials. In the second paper [31], we use the method to give a positive resolution to an open problem of Kadison and Singer.

2. Technical introduction and preliminaries

2.1. Ramanujan graphs. Ramanujan graphs are defined in terms of the eigenvalues of their adjacency matrices. If G is a d-regular graph and A is its adjacency matrix, then d is always an eigenvalue of A. The matrix A has an eigenvalue of $-d$ if and only if G is bipartite. The eigenvalues of d, and $-d$ when G is bipartite, are called the trivial eigenvalues of A. Following Lubotzky, Phillips, and Sarnak [28], we say that a d-regular graph is Ramanujan if all of its nontrivial eigenvalues lie between $-2 \sqrt{d-1}$ and $2 \sqrt{d-1}$. It is easy to construct Ramanujan graphs with a small number of vertices: d-regular complete graphs and complete bipartite graphs are Ramanujan. The challenge is to construct an infinite family of d-regular graphs that are all Ramanujan. One cannot construct infinite families of d-regular graphs whose eigenvalues lie in a smaller range: the Alon-Boppana bound (see [34]) tells us that for every constant $\varepsilon>0$, every sufficiently large d-regular graph has a nontrivial eigenvalue with absolute value at least $2 \sqrt{d-1}-\varepsilon$.

Lubotzky, Phillips, and Sarnak [28] and Margulis [32] were the first to construct infinite families of Ramanujan graphs of constant degree. They built both bipartite and nonbipartite Ramanujan graphs from Cayley graphs. All of their graphs are regular and have degrees $p+1$ where p is a prime. There have been very few other constructions of Ramanujan graphs [7], [23], [33], [36]. To the best of our knowledge, the only degrees for which infinite families of Ramanujan graphs were previously known to exist were those of the form $q+1$ where q is a prime power. Lubotzky [29, Prob. 10.7.3] asked whether there exist infinite families of Ramanujan graphs of every degree greater than 2 . We resolve this conjecture in the affirmative in the bipartite case.
2.2. 2-lifts. Bilu and Linial's strategy for constructing infinite families of expanders was to find a way of doubling the number of vertices of a graph without changing its degree or introducing any large nontrivial eigenvalues.

Given a graph $G=(V, E)$, a 2-lift of G is a graph $\hat{G}=(\hat{V}, \hat{E})$ that has two vertices $\left\{v_{0}, v_{1}\right\} \subseteq \hat{V}$ for each vertex $v \in V$. This pair of vertices is called
the fibre of the original vertex. Every edge in G corresponds to two edges in \hat{G}. If (u, v) is an edge in $E,\left\{u_{0}, u_{1}\right\}$ is the fibre of u, and $\left\{v_{0}, v_{1}\right\}$ is the fibre of v, then \hat{E} can either contain the pair of edges

$$
\begin{align*}
& \left\{\left(u_{0}, v_{0}\right),\left(u_{1}, v_{1}\right)\right\}, \text { or } \tag{1}\\
& \left\{\left(u_{0}, v_{1}\right),\left(u_{1}, v_{0}\right)\right\} . \tag{2}
\end{align*}
$$

If only edge pairs of the first type appear, then the 2-lift is just two disjoint copies of the original graph. If only edge pairs of the second type appear, then we obtain the double-cover of G.

The definition of a 2 -lift is equivalent to saying that there is a $2: 1$ covering map from \hat{G} to G. Recall that a covering map is a graph homomorphism $\pi: \hat{V} \rightarrow V$ that bijectively maps the star of every vertex $\hat{v} \in \hat{V}$ to the star of $\pi(v)$, where the star of a vertex is the set of edges incident to it. If there is a covering map (of any order) from \hat{G} to G, we say that \hat{G} is a lift of G and G is a quotient of \hat{G}.

To analyze the eigenvalues of a 2 -lift, Bilu and Linial study signings $s: E \rightarrow\{ \pm 1\}$ of the edges of G. They place signings in one-to-one correspondence with 2 -lifts by setting $s(u, v)=1$ if edges of type (1) appear in the 2-lift and $s(u, v)=-1$ if edges of type (2) appear. They then define the signed adjacency matrix A_{s} to be the same as the adjacency matrix of G, except that the entries corresponding to an edge (u, v) are $s(u, v)$. They prove [4, Lemma 3.1] that the eigenvalues of the 2-lift are the union, taken with multiplicity, of the eigenvalues of the adjacency matrix A and those of the signed adjacency matrix A_{s}. Following Friedman [13], they refer to the eigenvalues of A as the old eigenvalues and the eigenvalues of A_{s} as the new eigenvalues. The main result of their paper is that every graph of maximum degree d has a signing in which all of the new eigenvalues have absolute value at most $O\left(\sqrt{d \log ^{3} d}\right)$. They then build arbitrarily large d-regular expander graphs by repeatedly taking 2 -lifts of a complete graph on $d+1$ vertices.

Bilu and Linial conjectured that every d-regular graph has a signing in which all of the new eigenvalues have absolute value at most $2 \sqrt{d-1}$. If their conjecture is true, one can obtain an infinite family of d-regular Ramanujan graphs by starting with the d-regular complete graph and then repeatedly forming the appropriate 2-lifts. We prove a weak version of Bilu and Linial's conjecture: every d-regular graph has a signing in which all of the new eigenvalues are at most $2 \sqrt{d-1}$. The difference between our result and the original conjecture is that we do not control the smallest new eigenvalue. This is why we consider bipartite graphs. The eigenvalues of the adjacency matrices of bipartite graphs are symmetric about zero (see, for example, [16, Th. 2.4.2]). Thus any upper bound on the largest nontrivial eigenvalue implies a corresponding lower bound on the smallest one. Since the 2-lift of a bipartite graph
is also bipartite, we can start with a d-regular complete bipartite graph and inductively form the appropriate 2 -lifts to obtain an infinite sequence of d-regular bipartite Ramanujan graphs.
2.3. Irregular Ramanujan graphs and universal covers. We say that a bipartite graph is (c, d)-biregular if all vertices on one side of the bipartition have degree c and all vertices on the other side have degree d. (To avoid technicalities, we will require $c, d \geq 2$.) The adjacency matrix of a (c, d)-biregular graph always has eigenvalues $\pm \sqrt{c d}$; these are its trivial eigenvalues. Feng and Li [12] (see also [24]) prove a generalization of the Alon-Boppana bound that applies to (c, d)-biregular graphs: for all $\varepsilon>0$, all sufficiently large (c, d)-biregular graphs have a nontrivial eigenvalue that is at least $\sqrt{c-1}+\sqrt{d-1}-\varepsilon$. Thus, we say that a (c, d)-biregular graph is Ramanujan if all of its nontrivial eigenvalues have absolute value at most $\sqrt{c-1}+\sqrt{d-1}$. We prove the existence of infinite families of (c, d)-biregular Ramanujan graphs for all $c, d \geq 3$.

The regular and biregular Ramanujan graphs discussed above are actually special cases of a more general phenomenon. To describe it, we use a topological construction known as the universal cover. The universal cover of a graph G is the unique infinite tree T such that every connected lift of G is a quotient of T (see, e.g., $[22, \S 6])$. It can also be defined concretely in terms of walks in G. Recall that a walk in a graph is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{\ell}\right)$ such that each consecutive pair $\left(v_{i-1}, v_{i}\right)$ is an edge in G. A walk is called simple if all the vertices are distinct and nonbacktracking if $v_{i-1} \neq v_{i+1}$ for all i. We say that a walk w^{\prime} is a continuation of another walk w if it is obtained by adding a single vertex to w, i.e., $w=\left(v_{0}, \ldots, v_{\ell}\right)$ and $w^{\prime}=\left(v_{0}, \ldots, v_{\ell}, v_{\ell+1}\right)$ for some $v_{\ell+1}$.

To construct the universal cover, fix a "root" vertex $v_{0} \in G$, and then place one vertex in T for every nonbacktracking walk w in G starting at v_{0} of every length $\ell \in \mathbb{N}$. Two vertices w, w^{\prime} are adjacent in T whenever w^{\prime} is a continuation of w (or vice versa). It is easy to check that the universal cover of a graph is unique up to isomorphism and is independent of the choice of v_{0}.

The adjacency matrix A_{T} of the universal cover T is an infinite symmetric matrix. We will be interested in the spectral radius $\rho(T)$ of T, which may be defined ${ }^{1}$ as

$$
\begin{equation*}
\rho(T):=\sup _{\|x\|_{2}=1}\left\|A_{T} x\right\|_{2} \tag{3}
\end{equation*}
$$

where $\|x\|_{2}^{2}:=\sum_{i=1}^{\infty} x(i)^{2}$ whenever the series converges. Naturally, the spectral radius of a finite tree is defined to be the norm of its adjacency matrix.

[^1]With these notions in hand, we can state the definition of an irregular Ramanujan graph. As before, the largest (and smallest, in the bipartite case) eigenvalues of finite adjacency matrices are considered trivial. Greenberg [19] (see also [9]) showed that for every $\varepsilon>0$ and every infinite family of graphs that have the same universal cover T, all sufficiently large graphs in the family have a nontrivial eigenvalue that is at least $\rho(T)-\varepsilon$. Following Greenberg [19] (see also [22, Def. 6.7]), we therefore define an arbitrary graph to be Ramanujan if all of its nontrivial eigenvalues have absolute value at most the spectral radius of its universal cover.

The universal cover of every d-regular graph is the infinite d-ary tree, and the universal cover of every (c, d)-biregular graph is the infinite (c, d)-biregular tree in which the degrees alternate between c and d on every other level [24]. The former tree is known to have a spectral radius of $2 \sqrt{d-1}$ and the latter a spectral radius of $\sqrt{c-1}+\sqrt{d-1}$ (see [18], [24]). Thus a definition based on universal covers generalizes both the regular and biregular definitions of Ramanujan graphs, and the bound of Greenberg generalizes both the AlonBoppana and Feng-Li bounds.

In this general setting, we show that every graph G has a 2 -lift in which all of the new eigenvalues are at most the spectral radius of its universal cover. Applying these 2-lifts inductively to any finite irregular bipartite Ramanujan graph yields an infinite family of irregular bipartite Ramanujan graphs whose degree distribution matches that of the initial graph (since taking a 2 -lift simply doubles the number of vertices of each degree). In particular, applying them to the (c, d)-biregular complete bipartite graph yields an infinite family of (c, d) biregular Ramanujan graphs. As far as we know, infinite families of irregular Ramanujan graphs were not known to exist prior to this work.
2.4. Related work. There have been numerous studies of random lifts of graphs. For some results on the spectra of random lifts, we point the reader to [1], [2], [3], [26], [25], [27]. Friedman [14] has proved that almost every d-regular graph almost meets the Ramanujan bound: he shows that for every $\varepsilon>0$, the absolute value of all the nontrivial eigenvalues of almost every sufficiently large d-regular graph are at most $2 \sqrt{d-1}+\varepsilon$. In the irregular case, Puder [37] has shown that with high probability a random high-order lift of a graph G has new eigenvalues that are bounded in absolute value by $\sqrt{3} \rho$, where ρ is the spectral radius of the universal cover of G.

We remark that constructing bipartite Ramanujan graphs is at least as easy as constructing nonbipartite ones: the double-cover of a d-regular nonbipartite Ramanujan graph is a d-regular bipartite Ramanujan graph. For a survey of applications of expander graphs, we refer the reader to [22].

3. 2-lifts and the matching polynomial

A matching in a graph is a subset of its edges, no two of which share a common vertex. For a graph G, let m_{i} denote the number of matchings in G consisting of i edges (with $m_{0}=1$). Heilmann and Lieb [21] defined the matching polynomial of G to be the polynomial

$$
\mu_{G}(x) \stackrel{\text { def }}{=} \sum_{i \geq 0} x^{n-2 i}(-1)^{i} m_{i},
$$

where n is the number of vertices in the graph. They proved two remarkable theorems about the matching polynomial that we will exploit in this paper. It is worth mentioning that the proofs of these theorems are elementary and short, relying only on simple recurrence formulas for the matching polynomial.

Theorem 3.1 ([21, Th. 4.2]). For every graph $G, \mu_{G}(x)$ has only real roots.

Theorem 3.2 ([21, Th. 4.3]). For every graph G of maximum degree d, all of the roots of $\mu_{G}(x)$ have absolute value at most $2 \sqrt{d-1}$.

The preceding theorems will allow us to prove the existence of infinite families of d-regular bipartite Ramanujan graphs. To handle the irregular case, we will require a refinement of these results due to Godsil. This refinement uses the concept of a path tree, which was also introduced by Godsil (see [15] or $[16, \S 6]$).

Definition 3.3. Given a graph G and a vertex u, the path tree $P(G, u)$ contains one vertex for every simple walk in G beginning at u. Two vertices in $P(G, u)$ are adjacent if the simple walk corresponding to one is a continuation of the simple walk corresponding to the other (as defined in Section 2.3).

Remark 3.4. The use of the term "path tree" derives from the fact that simple walks (as we have defined them) are sometimes called paths in the literature. Since this is not standard, we chose to define everything in terms of walks, but we retain the name "path tree" since it signifies a specific construction of Godsil.

The path tree provides a natural relationship between the roots of the matching polynomial of a graph and the spectral radius of its universal cover:

Theorem 3.5 (Godsil [15]). Let $P(G, u)$ be a path tree of G. Then the matching polynomial of G divides the characteristic polynomial of the adjacency matrix of $P(G, u)$. In particular, all of the roots of $\mu_{G}(x)$ are real and have absolute value at most $\rho(P(G, u))$.

Lemma 3.6. Let G be a graph, and let T be its universal cover. Then the roots of $\mu_{G}(x)$ are bounded in absolute value by $\rho(T)$.

Proof. Let u be any vertex of G and let P be the path tree rooted at u. Since the simple walks that correspond to the vertices of P are (in particular) nonbacktracking walks, P is a finite induced subgraph of the universal cover T, and A_{P} is a finite submatrix of A_{T}. By Theorem 3.5, the roots of μ_{G} are bounded by

$$
\begin{aligned}
\left\|A_{P}\right\|_{2} & =\sup _{\|x\|_{2}=1}\left\|A_{P} x\right\|_{2} \\
& \leq \sup _{\|y\|_{2}=1, \operatorname{supp}(y) \subset P}\left\|A_{T} y\right\|_{2} \\
& \leq \sup _{\|y\|_{2}=1}\left\|A_{T} y\right\|_{2}=\rho(T),
\end{aligned}
$$

as desired.
We remark that one can directly prove an upper bound of $2 \sqrt{d-1}$ on the spectral radius of a path tree of a d-regular graph and an upper bound of $\sqrt{c-1}+\sqrt{d-1}$ on the spectral radius of a path tree of a (c, d)-regular bipartite graph without considering infinite trees. We point the reader to Section 5.6 of Godsil's book [16] for an elementary argument.

We now recall an identity of Godsil and Gutman that relates the expected characteristic polynomial over uniformly random signings of the adjacency matrix of a graph to its matching polynomial. To associate a signing of the edges of G with a vector in $\{ \pm 1\}^{m}$, we choose an arbitrary ordering of the m edges of G, denote the edges by e_{1}, \ldots, e_{m}, and denote a signing of these edges by $s \in\{ \pm 1\}^{m}$. We then let A_{s} denote the signed adjacency matrix corresponding to s and define $f_{s}(x)=\operatorname{det}\left(x I-A_{s}\right)$ to be the characteristic polynomial of A_{s}.

Theorem 3.7 (Corollary 2.2 of Godsil and Gutman [17]).

$$
\mathbb{E}_{s \in\{ \pm 1\}^{m}}\left[f_{s}(x)\right]=\mu_{G}(x) .
$$

For the convenience of the reader, we present a simple proof of this theorem in Appendix A.

To prove that a good lift exists, it suffices, by Theorems 3.2 and 3.7, to show that there is a signing s so that the largest root of $f_{s}(x)$ is at most the largest root of $\mathbb{E}_{s \in\{ \pm 1\}^{m}}\left[f_{s}(x)\right]$. To do this, we prove that the polynomials $\left\{f_{s}(x)\right\}_{s \in\{ \pm 1\}^{m}}$ form what we call an "interlacing family." We define interlacing families and examine their properties in the next section.

4. Interlacing families

Definition 4.1. We say that a polynomial $g(x)=\prod_{i=1}^{n-1}\left(x-\alpha_{i}\right)$ interlaces a polynomial $f(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$ if

$$
\beta_{1} \leq \alpha_{1} \leq \beta_{2} \leq \alpha_{2} \leq \cdots \leq \alpha_{n-1} \leq \beta_{n}
$$

We say that polynomials f_{1}, \ldots, f_{k} have a common interlacing if there is a single polynomial g that interlaces each of the f_{i}.

Let $\beta_{i, j}$ be the j th smallest root of f_{i}. An equivalent characterization of the polynomials f_{1}, \ldots, f_{k} having a common interlacing is the existence of numbers $\alpha_{0} \leq \alpha_{1} \leq \cdots \leq \alpha_{n}$ so that $\beta_{i, j} \in\left[\alpha_{j-1}, \alpha_{j}\right]$ for all i and j. The numbers $\alpha_{1}, \ldots, \alpha_{n-1}$ can be taken to be the roots of the polynomial g, and $\alpha_{0}\left(\alpha_{n}\right)$ can be chosen to be any number that is smaller (larger) than all of the roots of all of the f_{i}.

Lemma 4.2. Let f_{1}, \ldots, f_{k} be degree-n real-rooted polynomials with positive leading coefficients, and define

$$
f_{\emptyset}=\sum_{i=1}^{k} f_{i} .
$$

If f_{1}, \ldots, f_{k} have a common interlacing, then there exists an i for which the largest root of f_{i} is at most the largest root of f_{\emptyset}.

Proof. Let g be a polynomial that interlaces all of the f_{i}, and let α_{n-1} be the largest root of g. As each f_{i} has a positive leading coefficient, it is positive for sufficiently large x. As each f_{i} has exactly one root that is at least α_{n-1}, each f_{i} is nonpositive at α_{n-1}. Therefore f_{\emptyset} is also nonpositive at α_{n-1} and eventually becomes positive. This tells us that f_{\emptyset} has a root that is at least α_{n-1}, and so its largest root is at least α_{n-1}. Let β_{n} be this root.

As f_{\emptyset} is the sum of the f_{i}, there must be some i for which $f_{i}\left(\beta_{n}\right) \geq 0$. As f_{i} has at most one root that is at least α_{n-1}, and $f_{i}\left(\alpha_{n-1}\right) \leq 0$, the largest root of f_{i} is it at least α_{n-1} and at most β_{n}.

One can show that the assumptions of the lemma imply that f_{\emptyset} is itself a real-rooted polynomial. The conclusion of the lemma also holds for the k th largest root by a similar argument. However, we will not require these facts here.

If the polynomials do not have a common interlacing, the sum may fail to be real-rooted: consider $(x+1)(x+2)+(x-1)(x-2)$. Even if the sum of two polynomials is real-rooted, the conclusion of Lemma 4.2 may fail to hold if the interval containing the largest roots of each polynomial overlaps the interval containing their second-largest roots. For example, consider the sum of the polynomials $(x+5)(x-9)(x-10)$ and $(x+6)(x-1)(x-8)$. It has roots at approximately $-5.3,6.4$, and 7.4 , so its largest root is smaller than the largest root of both polynomials of which it is the sum.

Definition 4.3. Let S_{1}, \ldots, S_{m} be finite sets, and for every assignment $s_{1}, \ldots, s_{m} \in S_{1} \times \cdots \times S_{m}$, let $f_{s_{1}, \ldots, s_{m}}(x)$ be a real-rooted degree n polynomial with positive leading coefficient. For a partial assignment $s_{1}, \ldots, s_{k} \in S_{1} \times$ $\cdots \times S_{k}$ with $k<m$, define

$$
f_{s_{1}, \ldots, s_{k}} \stackrel{\text { def }}{=} \sum_{s_{k+1} \in S_{k+1}, \ldots, s_{m} \in S_{m}} f_{s_{1}, \ldots, s_{k}, s_{k+1}, \ldots, s_{m}}
$$

as well as

$$
f_{\emptyset} \stackrel{\text { def }}{=} \sum_{s_{1} \in S_{1}, \ldots, s_{m} \in S_{m}} f_{s_{1}, \ldots, s_{m}} .
$$

We say that the polynomials $\left\{f_{s_{1}, \ldots, s_{m}}\right\}_{s_{1}, \ldots, s_{m}}$ form an interlacing family if for all $k=0, \ldots, m-1$ and all $s_{1}, \ldots, s_{k} \in S_{1} \times \cdots \times S_{k}$, the polynomials

$$
\left\{f_{s_{1}, \ldots, s_{k}, t}\right\}_{t \in S_{k+1}}
$$

have a common interlacing.
Theorem 4.4. Let S_{1}, \ldots, S_{m} be finite sets, and let $\left\{f_{s_{1}, \ldots, s_{m}}\right\}$ be an interlacing family of polynomials. Then, there exists some $s_{1}, \ldots, s_{m} \in S_{1} \times \cdots \times S_{m}$ so that the largest root of $f_{s_{1}, \ldots, s_{m}}$ is at most the largest root of f_{\emptyset}.

Proof. From the definition of an interlacing family, we know that the polynomials $\left\{f_{t}\right\}$ for $t \in S_{1}$ have a common interlacing and that their sum is f_{\emptyset}. Lemma 4.2 then guarantees one of the polynomials (say $f_{s_{1}}$) has largest root at most the largest root of f_{\emptyset}. We now proceed inductively. For any s_{1}, \ldots, s_{k}, we know that the polynomials $\left\{f_{s_{1}, \ldots, s_{k}, t}\right\}$ for $t \in S_{k+1}$ have a common interlacing and that their sum is $f_{s_{1}, \ldots, s_{k}}$. So for some choice of t (say s_{k+1}), the largest root of the polynomial $f_{s_{1}, \ldots, s_{k+1}}$ is at most the largest root of $f_{s_{1}, \ldots, s_{k}}$.

We will prove that the polynomials $\left\{f_{s}\right\}_{s \in\{ \pm 1\}^{m}}$ defined in Section 3 form an interlacing family. According to Definition 4.3, this requires establishing the existence of certain common interlacings. There is a systematic way to do this based on the fact that common interlacings are equivalent to real-rootedness statements. In particular, the following result seems to have been discovered a number of times. It appears as Theorem 2.1 of Dedieu [10], (essentially) as Theorem 2^{\prime} of Fell [11], and as (a special case of) Theorem 3.6 of Chudnovsky and Seymour [8].

Lemma 4.5. Let f_{1}, \ldots, f_{k} be (univariate) polynomials of the same degree with positive leading coefficients. Then f_{1}, \ldots, f_{k} have a common interlacing if and only if $\sum_{i=1}^{k} \lambda_{i} f_{i}$ is real-rooted for all nonnegative $\lambda_{1}, \ldots, \lambda_{k}$.

5. The main result

Our proof that the polynomials $\left\{f_{s}\right\}_{s \in\{ \pm 1\}^{m}}$ form an interlacing family relies on the following generalization of the fact that the matching polynomial is real-rooted. It says that if the sign of each edge is chosen independently, each with its own probability, then the resulting polynomial is real-rooted.

Theorem 5.1. The polynomial

$$
\sum_{s \in\{ \pm 1\}^{m}}\left(\prod_{i: s_{i}=1} p_{i}\right)\left(\prod_{i: s_{i}=-1}\left(1-p_{i}\right)\right) f_{s}(x)
$$

is real-rooted for all values of $p_{1}, \ldots, p_{m} \in[0,1]$.

We will prove this theorem using machinery that we develop in Section 6 . It immediately implies our main technical result as follows.

Theorem 5.2. The polynomials $\left\{f_{s}\right\}_{s \in\{ \pm 1\}^{m}}$ form an interlacing family.
Proof. We will show that for every $0 \leq k \leq m-1$, every partial assignment $s_{1} \in \pm 1, \ldots, s_{k} \in \pm 1$, and every $\lambda \in[0,1]$, the polynomial

$$
\lambda f_{s_{1}, \ldots, s_{k}, 1}(x)+(1-\lambda) f_{s_{1}, \ldots, s_{k},-1}(x)
$$

is real-rooted. The theorem then follows from Lemma 4.5. However this follows directly from Theorem 5.1 with $p_{k+1}=\lambda, p_{k+2}, \ldots, p_{m}=1 / 2$, and $p_{i}=$ $\left(1+s_{i}\right) / 2$ for $1 \leq i \leq k$.

Theorem 5.3. Let G be a graph with adjacency matrix A and universal cover T. Then there exists a signing s of A so that all of the eigenvalues of A_{s} are at most $\rho(T)$. In particular, if G is d-regular, there is a signing s so that the eigenvalues of A_{s} are at most $2 \sqrt{d-1}$.

Proof. The first statement follows immediately from Theorems 3.7, 4.4, 5.2 , and Lemma 3.6. The second statement follows by noting that the universal cover of a d-regular graph is the infinite d-regular tree, which has spectral radius at most $2 \sqrt{d-1}$, or by directly appealing to Theorem 3.2.

Lemma 5.4. Every nontrivial eigenvalue of a complete (c, d)-biregular graph is zero.

Proof. The adjacency matrix of this graph has rank 2, so all its eigenvalues other than $\pm \sqrt{c d}$ must be zero.

Theorem 5.5. For every $d \geq 3$, there exists an infinite sequence of d-regular bipartite Ramanujan graphs.

Proof. We know from Lemma 5.4 that the complete bipartite graph of degree d is Ramanujan. By Lemma 3.1 of [4] and Theorem 5.3, for every d-regular bipartite Ramanujan graph G, there is a 2-lift in which every nontrivial eigenvalue is at most $2 \sqrt{d-1}$. As the 2 -lift of a bipartite graph is bipartite and the eigenvalues of a bipartite graph are symmetric about 0 , this 2-lift is also a d-regular bipartite Ramanujan graph.

Thus for every d-regular bipartite Ramanujan graph G, there exists another d-regular bipartite Ramanujan graph with twice as many vertices.

Theorem 5.6. There exists an infinite sequence of (c, d)-biregular bipartite Ramanujan graphs for all $c, d \geq 3$.

Proof. We know from Lemma 5.4 that the complete (c, d)-biregular graph is Ramanujan. We will use this as a base for a construction of an infinite
sequence of (c, d)-biregular bipartite Ramanujan graphs. Let G be any (c, d) biregular bipartite Ramanujan graph. As mentioned in Section 2.3, the universal cover of G is the infinite (c, d)-biregular tree, which has spectral radius $\sqrt{c-1}+\sqrt{d-1}$. Thus, Theorem 5.3 tells us that there is a 2 -lift of G with all new eigenvalues at most $\sqrt{c-1}+\sqrt{d-1}$. As this graph is bipartite, all of its nontrivial eigenvalues have absolute value at most $\sqrt{c-1}+\sqrt{d-1}$. The resulting 2 -lift is therefore a larger (c, d)-biregular bipartite Ramanujan graph.

To conclude the section, we remark that repeated application of Theorem 5.3 can be used to generate an infinite sequence of irregular Ramanujan graphs from any finite irregular bipartite Ramanujan graph, since all of the lifts produced will have the same universal cover. In other words, if an infinite tree has a single bipartite Ramanujan quotient, then it must have infinitely many. In contrast, Lubotzky and Nagnibeda [30] have shown that there exist infinite trees that cover infinitely many finite graphs but such that none of the finite graphs are Ramanujan.

6. Real stable polynomials

In this section we will establish the real-rootedness of a class of polynomials that includes the polynomials of Theorem 5.1. We will do this by considering a multivariate generalization of real-rootedness known as real stability (see, e.g., the surveys [35], [40]). In particular, we will show that the univariate polynomials we are interested in are the images, under a well-behaved linear transformation, of a multivariate real stable polynomial.

Definition 6.1. A multivariate polynomial $f \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is called real stable if it is the zero polynomial or if

$$
f\left(z_{1}, \ldots, z_{n}\right) \neq 0
$$

whenever the imaginary part of each z_{i} is strictly positive.
Note that a real stable polynomial has real coefficients but may be evaluated on complex inputs. We begin by considering certain determinantal polynomials whose real stability is guaranteed by the following lemma, which may be found in Borcea and Brändén [6, Prop. 2.4].

Lemma 6.2. Let A_{1}, \ldots, A_{m} be positive semidefinite matrices. Then

$$
\operatorname{det}\left(z_{1} A_{1}+\cdots+z_{m} A_{m}\right)
$$

is real stable.
Real stable polynomials enjoy a number of useful closure properties. In particular, it is easy to see that if $f\left(x_{1}, \ldots, x_{k}\right)$ and $g\left(y_{1}, \ldots y_{j}\right)$ are real stable,
then $f\left(x_{1}, \ldots, x_{k}\right) g\left(y_{1}, \ldots, y_{j}\right)$ is real stable. A standard limiting argument based on Hurwitz's theorem shows that the real stability of $f\left(x_{1}, \ldots, x_{k}\right)$ implies the real stability of $f\left(x_{1}, \ldots, x_{k-1}, c\right)$ for every $c \in \mathbb{R}$ (see, e.g., Lemma 2.4 in [40]). For a variable x_{i}, we define $Z_{x_{i}}$ to be the operator that acts on polynomials by setting the variable x_{i} to zero.

In [5], Borcea and Brändén characterize a class of differential operators that preserve real stability. To simplify notation, we will let $\partial_{z_{i}}$ denote the operation of partial differentiation with respect to z_{i}. For $\alpha, \beta \in \mathbb{N}^{n}$, we use the notation

$$
z^{\alpha}=\prod_{i=1}^{n} z_{i}^{\alpha_{i}} \quad \text { and } \quad \partial^{\beta}=\prod_{i=1}^{n}\left(\partial_{z_{i}}\right)^{\beta_{i}} .
$$

Theorem 6.3 (Theorem 1.3 in [5]). Let $T: \mathbb{R}\left[z_{1}, \ldots, z_{n}\right] \rightarrow \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ be an operator of the form

$$
T=\sum_{\alpha, \beta \in \mathbb{N}^{n}} c_{\alpha, \beta} z^{\alpha} \partial^{\beta},
$$

where $c_{\alpha, \beta} \in \mathbb{R}$ and $c_{\alpha, \beta}$ is zero for all but finitely many terms. Define

$$
F_{T}(z, w):=\sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} w^{\beta}
$$

Then T preserves real stability if and only if $F_{T}(z,-w)$ is real stable.
We will use a special case of this result.
Corollary 6.4. For all real numbers $a, b \geq 0$ and variables x, y, the operator $T=1+a \partial_{x}+b \partial_{y}$ preserves real stability.

Proof. If $a=b=0$, then T is the identity operator and thus preserves real stability. If a or b is nonzero, we just need to show that the polynomial $r(x, y)=1-a x-b y$ is real stable. To see this, consider x and y with positive imaginary parts. The imaginary part of $1-a x-b y$ will then be negative, and so r cannot be zero.

We now show how operators of the preceding kind can be used to generate the expected characteristic polynomial that appears in Theorem 5.1.

Lemma 6.5. For an invertible matrix A, vectors u and v, and a number $p \in[0,1]$,

$$
\begin{aligned}
Z_{x} Z_{y}\left(1+p \partial_{x}+(1-p) \partial_{y}\right) & \operatorname{det}\left(A+x u u^{T}+y v v^{T}\right) \\
& =p \operatorname{det}\left(A+u u^{T}\right)+(1-p) \operatorname{det}\left(A+v v^{T}\right)
\end{aligned}
$$

Proof. The matrix determinant lemma (see, e.g., [20]) states that for every nonsingular matrix A and every real number t,

$$
\operatorname{det}\left(A+t u u^{T}\right)=\operatorname{det}(A)\left(1+t u^{T} A^{-1} u\right)
$$

One consequence of this is Jacobi's formula for the derivative of the determinant:

$$
\partial_{t} \operatorname{det}\left(A+t u u^{T}\right)=\operatorname{det}(A)\left(u^{T} A^{-1} u\right) .
$$

This formula implies that

$$
\begin{aligned}
& Z_{x} Z_{y}\left(1+p \partial_{x}+(1-p) \partial_{y}\right) \operatorname{det}\left(A+x u u^{T}+y v v^{T}\right) \\
& \quad=\operatorname{det}(A)\left(1+p\left(u^{T} A^{-1} u\right)+(1-p)\left(v^{T} A^{-1} v\right)\right)
\end{aligned}
$$

By the matrix determinant lemma, this equals

$$
p \operatorname{det}\left(A+u u^{T}\right)+(1-p) \operatorname{det}\left(A+v v^{T}\right) .
$$

Using these tools, we prove our main technical result on real-rootedness.
Theorem 6.6. Let $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}$ be vectors in \mathbb{R}^{n}, let p_{1}, \ldots, p_{m} be real numbers in $[0,1]$, and let D be a positive semidefinite matrix. Then the (univariate) polynomial

$$
P(x) \stackrel{\text { def }}{=} \sum_{S \subseteq[m]}\left(\prod_{i \in S} p_{i}\right)\left(\prod_{i \notin S}\left(1-p_{i}\right)\right) \operatorname{det}\left(x I+D+\sum_{i \in S} u_{i} u_{i}^{T}+\sum_{i \notin S} v_{i} v_{i}^{T}\right)
$$

is real-rooted.
Proof. Let y_{1}, \ldots, y_{m} and z_{1}, \ldots, z_{m} be formal variables, and define

$$
Q\left(x, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right)=\operatorname{det}\left(x I+D+\sum_{i} y_{i} u_{i} u_{i}^{T}+\sum_{i} z_{i} v_{i} v_{i}^{T}\right)
$$

Lemma 6.2 and the fact mentioned in the paragraph after Lemma 6.2 that specializing variables to real numbers preserves real stability imply that Q is real stable. We claim that we can rewrite P as

$$
P(x)=\left(\prod_{i=1}^{m} Z_{y_{i}} Z_{z_{i}} T_{i}\right) Q\left(x, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right),
$$

where $T_{i}=1+p_{i} \partial_{y_{i}}+\left(1-p_{i}\right) \partial_{z_{i}}$. To see this, we prove by induction on k that

$$
\left(\prod_{i=1}^{k} Z_{y_{i}} Z_{z_{i}} T_{i}\right) Q\left(x, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right)
$$

equals

$$
\begin{aligned}
\sum_{S \subseteq[k]}\left(\prod_{i \in S} p_{i}\right)\left(\prod_{i \in[k] \backslash S}\left(1-p_{i}\right)\right) \operatorname{det}(& x I+D+\sum_{i \in S} u_{i} u_{i}^{T} \\
& \left.+\sum_{i \in[k] \backslash S} v_{i} v_{i}^{T}+\sum_{i>k} y_{i} u_{i} u_{i}^{T}+z_{i} v_{i} v_{i}^{T}\right) .
\end{aligned}
$$

The base case $(k=0)$ is trivially true, as it is the definition of Q. The inductive step follows from Lemma 6.5. The case $k=m$ is exactly the claimed identity.

Starting with Q (a real stable polynomial) we can then apply Corollary 6.4 and the closure of real stable polynomials under the restrictions of variables to real constants to see that each of the polynomials above, including $P(x)$, is also real stable. As $P(x)$ is real stable and has one variable, it is real-rooted.

Alternatively, one can prove Theorem 6.6 by observing that P is a mixed characteristic polynomial, as defined in [31], and then applying Corollary 4.4 of that paper.

Proof of Theorem 5.1. For each vertex u, let d_{u} be its degree, and let $d=\max _{u} d_{u}$. We need to prove that the polynomial

$$
\sum_{s \in\{ \pm 1\}^{m}}\left(\prod_{i: s_{i}=1} p_{i}\right)\left(\prod_{i: s_{i}=-1}\left(1-p_{i}\right)\right) \operatorname{det}\left(x I-A_{s}\right)
$$

is real-rooted. This is equivalent to proving that the the following polynomial is real-rooted:

$$
\begin{equation*}
\sum_{s \in\{ \pm 1\}^{m}}\left(\prod_{i: s_{i}=1} p_{i}\right)\left(\prod_{i: s_{i}=-1}\left(1-p_{i}\right)\right) \operatorname{det}\left(x I+d I-A_{s}\right), \tag{4}
\end{equation*}
$$

as their roots only differ by d.
We now observe that the matrix $d I-A_{s}$ is a signed Laplacian matrix of G plus a nonnegative diagonal matrix. For each edge (u, v), define the rank-1 matrices

$$
\begin{aligned}
& L_{u, v}^{1}=\left(e_{u}-e_{v}\right)\left(e_{u}-e_{v}\right)^{T}, \quad \text { and } \\
& L_{u, v}^{-1}=\left(e_{u}+e_{v}\right)\left(e_{u}+e_{v}\right)^{T},
\end{aligned}
$$

where e_{u} is the elementary unit vector in direction u. Consider a signing s, and let $s_{u, v}$ denote the sign it assigns to edge (u, v). Since the original graph had maximum degree d, we have

$$
d I-A_{s}=\sum_{(u, v) \in E} L_{u, v}^{s_{u, v}}+D
$$

where D is the diagonal matrix whose u th diagonal entry equals $d-d_{u}$. As the diagonal entries of D are nonnegative, it is positive semidefinite. If we now set $a_{u, v}=\left(e_{u}-e_{v}\right)$ and $b_{u, v}=\left(e_{u}+e_{v}\right)$, we can express the polynomial in (4) as

$$
\begin{aligned}
\sum_{s \in\{ \pm 1\}^{m}}\left(\prod_{i: s_{i}=1} p_{i}\right)\left(\prod_{i: s_{i}=-1}\left(1-p_{i}\right)\right) \operatorname{det}(x I+D & +\sum_{s_{u, v}=1} a_{u, v} a_{u, v}^{T} \\
& \left.+\sum_{s_{u, v}=-1} b_{u, v} b_{u, v}^{T}\right)
\end{aligned}
$$

The fact that this polynomial is real-rooted now follows from Theorem 6.6.

7. Conclusion

We conclude by drawing an analogy between our proof technique and the probabilistic method, which relies on the fact that for every random variable $X: \Omega \rightarrow \mathbb{R}$, there is an $\omega \in \Omega$ for which $X(\omega) \leq \mathbb{E}[X]$. We have shown that for certain special polynomial-valued random variables $P: \Omega \rightarrow \mathbb{R}[x]$, there must be an ω with $\lambda_{\max }(P(\omega)) \leq \lambda_{\max }(\mathbb{E}[P])$. In fact it is possible to define interlacing families in greater generality than we have done here, using probabilistic notation. In particular, we call a polynomial-valued random variable P useful if P is deterministic and real-rooted or if there exist disjoint nontrivial events E_{1}, \ldots, E_{k} with $\sum_{i \leq k} \operatorname{Pr}\left[E_{i}\right]=1$ such that the polynomials $\left\{\mathbb{E}\left[P \mid E_{i}\right]\right\}_{i \leq k}$ have a common interlacing and each polynomial $\mathbb{E}\left[P \mid E_{i}\right]$ is itself useful. The conclusion of Theorem 4.4 continues to hold for this definition, and we suspect it will be applicable in nonproduct settings. In the case of this paper, the events E_{i} are particularly simple: they correspond to setting one sign of a lift to be +1 or -1 , and the resulting sequence of polynomials $f_{\emptyset}, f_{s_{1}}, \ldots, f_{s_{1}, \ldots, s_{m}}$ forms a martingale (a fact that we do not use, but may be interesting in its own right).

Like many applications of the probabilistic method, our proof does not yield a polynomial-time algorithm. In the particular case of random lifts, the polynomial f_{\emptyset} is itself a matching polynomial, and its last coefficient is the number of perfect matchings in the graph. Valiant [39] proved that it is $\# P$-hard to compute the number of matchings in a graph; so, we do not expect to find an efficient algorithm for computing the matching polynomial. It would be very interesting to find a computationally efficient analogue of our method.

It has been pointed out that the proofs in this paper carry over to the case of multigraphs (ones allowing loops and multiple edges) without much effort. For the sake of simplicity, we chose not to pursue that direction in detail. We mention it, however, as it might provide an interesting set of "seed" graphs apart from the default choice of the complete bipartite graph.

Acknowledgments. This research was partially supported by NSF grants CCF-0915487 and CCF-1111257, an NSF Mathematical Sciences Postdoctoral Research Fellowship, Grant No. DMS-0902962, a Simons Investigator Award, and a MacArthur Fellowship.

We thank James Lee for suggesting Lemma 6.5 and the simpler proof of Theorem 6.6 that appears here. We thank Mirkó Visontai for bringing a number of references ([8], [10], [11], [17]) to our attention. We also thank the anonymous referees for, among other things, pointing out the extension of our results to multigraphs.

Appendix A. Proof of Theorem 3.7

Let $\operatorname{sym}(S)$ denote the set of permutations of a set S, and let $|\pi|$ denote the number of inversions of a permutation π. We recall that $(-1)^{|\pi|}$ is the signature of the permutation π. Expanding the determinant as a sum over permutations $\sigma \in \operatorname{sym}([n])$, we have

$$
\begin{aligned}
\mathbb{E}_{s}\left[\operatorname{det}\left(x I-A_{s}\right)\right] & =\mathbb{E}_{s}\left[\sum_{\sigma \in \operatorname{sym}([n])}(-1)^{|\sigma|} \prod_{i=1}^{n}\left(x I-A_{s}\right)_{i, \sigma(i)}\right] \\
& =\sum_{k=0}^{n} x^{n-k}(-1)^{k} \sum_{S \subset[n],|S|=k} \sum_{\pi \in \operatorname{sym}(S)} \mathbb{E}_{S}\left[(-1)^{|\pi|} \prod_{i \in S}\left(A_{s}\right)_{i, \pi(i)}\right] \\
& =\sum_{k=0}^{n} x^{n-k}(-1)^{k} \sum_{S \subset[n],|S|=k} \sum_{\pi \in \operatorname{sym}(S)} \mathbb{E}_{S}\left[(-1)^{|\pi|} \prod_{i \in S} s_{i, \pi(i)}\right] .
\end{aligned}
$$

Since the $s_{i j}$ are independent with $\mathbb{E}\left[s_{i j}\right]=0$, only those products that contain even powers (0 or 2) of the $s_{i j}$ survive. Thus, we may restrict our attention to the permutations π that contain only orbits of size two (disjoint transpositions). These are just the perfect matchings on S. There are no perfect matchings when $|S|$ is odd; when $|S|$ is even, each matching consists of $|S| / 2$ disjoint transpositions. Since $\mathbb{E}_{s}\left[s_{i j}^{2}\right]=1$, we are left with

$$
\begin{aligned}
\mathbb{E}_{s}\left[\operatorname{det}\left(x I-A_{s}\right)\right] & =\sum_{\substack{k=0 \\
k \text { even }}}^{n} x^{n-k} \sum_{|S|=k \text { matchings } \pi \text { on } S}(-1)^{|S| / 2} \cdot 1 \\
& =\mu_{G}(x),
\end{aligned}
$$

as desired.

References

[1] L. Addario-Berry and S. Griffiths, The spectrum of random lifts, 2010. arXiv 1012.4097.
[2] A. Amit and N. Linial, Random lifts of graphs: edge expansion, Combin. Probab. Comput. 15 (2006), 317-332. MR 2216470. Zbl 1095.05034. http: //dx.doi.org/10.1017/S0963548305007273.
[3] A. Amit, N. Linial, and J. Matoušek, Random lifts of graphs: independence and chromatic number, Random Structures Algorithms 20 (2002), 1-22. MR 1871947. Zbl 0993.05071. http://dx.doi.org/10.1002/rsa. 10003.
[4] Y. Bilu and N. Linial, Lifts, discrepancy and nearly optimal spectral gap, Combinatorica 26 (2006), 495-519. MR 2279667. Zbl 1121.05054. http://dx. doi.org/10.1007/s00493-006-0029-7.
[5] J. Borcea and P. Brändén, Multivariate Pólya-Schur classification problems in the Weyl algebra, Proc. Lond. Math. Soc. 101 (2010), 73-104. MR 2661242. Zbl 1196.47028. http://dx.doi.org/10.1112/plms/pdp049.
[6] J. Borcea and P. Brändén, Applications of stable polynomials to mixed determinants: Johnson's conjectures, unimodality, and symmetrized Fischer products, Duke Math. J. 143 (2008), 205-223. MR 2420507. Zbl 1151.15013. http://dx.doi.org/10.1215/00127094-2008-018.
[7] P. Chiu, Cubic Ramanujan graphs, Combinatorica 12 (1992), 275-285. MR 1195890. Zbl 0770.05062. http://dx.doi.org/10.1007/BF01285816.
[8] M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007), 350-357. MR 2305888. Zbl 1119.05075. http://dx.doi.org/10.1016/j.jctb.2006.06.001.
[9] S. M. Cioabă, Eigenvalues of graphs and a simple proof of a theorem of Greenberg, Linear Algebra Appl. 416 (2006), 776-782. MR 2242462. Zbl 1109.05068. http://dx.doi.org/10.1016/j.laa.2005.12.020.
[10] J.-P. Dedieu, Obreschkoff's theorem revisited: what convex sets are contained in the set of hyperbolic polynomials?, J. Pure Appl. Algebra 81 (1992), 269-278. MR 1179101. Zbl 0772.12002. http://dx.doi.org/10.1016/0022-4049(92)90060-S.
[11] H. J. Fell, On the zeros of convex combinations of polynomials, Pacific J. Math. 89 (1980), 43-50. MR 0596914. Zbl 0416.30005. http://dx.doi.org/10.2140/pjm. 1980.89.43.
[12] K. Feng and W.-C. W. Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1996), 1-22. MR 1405722. Zbl 0874.05041. http://dx.doi.org/10. 1006/jnth.1996.0109.
[13] J. Friedman, Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J. 118 (2003), 19-35. MR 1978881. Zbl 1035.05058. http://dx.doi.org/ 10.1215/S0012-7094-03-11812-8.
[14] J. Friedman, A proof of Alon's second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc. 195 (2008), viii+100. MR 2437174. Zbl 1177. 05070. http://dx.doi.org/10.1090/memo/0910.
[15] C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5 (1981), 285297. MR 0625070. Zbl 0466.05053. http://dx.doi.org/10.1002/jgt.3190050310.
[16] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall Math. Series, Chapman \& Hall, New York, 1993. MR 1220704. Zbl 0784.05001.
[17] C. D. Godsil and I. Gutman, On the matching polynomial of a graph, in Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), Colloq. Math. Soc. János Bolyai 25, North-Holland, New York, 1981, pp. 241-249. MR 0642044. Zbl 0476.05060.
[18] C. D. Godsil and B. Mohar, Walk generating functions and spectral measures of infinite graphs, in Proceedings of the Victoria Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987)), Linear Algebra Appl. 107, 1988, pp. 191-206. MR 0960145. Zbl 0654.05054. http://dx.doi.org/10.1016/ 0024-3795(88)90245-5.
[19] Y. Greenberg, On the spectrum of graphs and their universal covering, 1995, Ph.D. thesis, Hebrew University.
[20] D. A. Harville, Matrix Algebra from a Statistician's Perspective, SpringerVerlag, New York, 2008. Zbl 1142. 15001.
[21] O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190-232. MR 0297280. Zbl 0228.05131. http://dx.doi. org/10.1007/BF01877590.
[22] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 43 (2006), 439-561. MR 2247919. Zbl 1147.68608. http://dx.doi.org/10.1090/S0273-0979-06-01126-8.
[23] B. W. Jordan and R. Livné, Ramanujan local systems on graphs, Topology 36 (1997), 1007-1024. MR 1445552. Zbl 0872.05036. http://dx.doi.org/10.1016/ S0040-9383(96)00044-4.
[24] W.-C. W. Li and P. Solé, Spectra of regular graphs and hypergraphs and orthogonal polynomials, European J. Combin. 17 (1996), 461-477. MR 1397154. Zbl 0864.05072. http://dx.doi.org/10.1006/eujc.1996.0040.
[25] N. Linial and E. Rozenman, Random lifts of graphs: perfect matchings, Combinatorica 25 (2005), 407-424. MR 2143247. Zbl 1091.05063. http://dx.doi.org/ 10.1007/s00493-005-0024-8.
[26] N. Linial and D. Puder, Word maps and spectra of random graph lifts, Random Structures Algorithms 37 (2010), 100-135. MR 2674623. Zbl 1242.60011. http: //dx.doi.org/10.1002/rsa. 20304.
[27] E. Lubetzky, B. Sudakov, and V. Vu, Spectra of lifted Ramanujan graphs, Adv. Math. 227 (2011), 1612-1645. MR 2799807. Zbl 1222.05168. http://dx. doi.org/10.1016/j.aim.2011.03.016.
[28] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-277. MR 0963118. Zbl 0661.05035. http://dx.doi.org/10.1007/ BF02126799.
[29] A. LubotZky, Discrete Groups, Expanding Graphs and Invariant Measures, Progr. Math. 125, Birkhäuser, Basel, 1994, with an appendix by Jonathan D. Rogawski. MR 1308046. Zbl 0826.22012. http://dx.doi.org/10. 1007/978-3-0346-0332-4.
[30] A. Lubotzky and T. Nagnibeda, Not every uniform tree covers Ramanujan graphs, J. Combin. Theory Ser. B 74 (1998), 202-212. MR 1654133. Zbl 1024. 05021. http://dx.doi.org/10.1006/jctb.1998.1843.
[31] A. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. 182 (2015), 327-350. http://dx.doi.org/10.4007/annals/2015.182.1.8.
[32] G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), 51-60. MR 0939574. Zbl 0708. 05030.
[33] M. Morgenstern, Existence and explicit constructions of $q+1$ regular Ramanujan graphs for every prime power q, J. Combin. Theory Ser. B 62 (1994), 44-62. MR 1290630. Zbl 0814.68098. http://dx.doi.org/10.1006/jctb.1994.1054.
[34] A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991), 207210. MR 1124768. Zbl 0771.05064. http://dx.doi.org/10.1016/0012-365X(91) 90112-F.
[35] R. Pemantle, Hyperbolicity and stable polynomials in combinatorics and probability, in Current Developments in Mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 57-123. MR 3098077.
[36] A. K. Pizer, Ramanujan graphs and Hecke operators, Bull. Amer. Math. Soc. 23 (1990), 127-137. MR 1027904. Zbl 0752.05035. http://dx.doi.org/10.1090/ S0273-0979-1990-15918-X.
[37] D. Puder, Expansion of random graphs: New proofs, new results, 2012. arXiv 1212.5216.
[38] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Aanalysis, second ed., Academic Press [Harcourt Brace Jovanovich, Publishers], 1980. MR 0751959. Zbl 0459.46001.
[39] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), 189-201. MR 0526203. Zbl 0415.68008. http://dx.doi.org/10. 1016/0304-3975(79)90044-6.
[40] D. G. Wagner, Multivariate stable polynomials: theory and applications, Bull. Amer. Math. Soc. 48 (2011), 53-84. MR 2738906. Zbl 1207.32006. http://dx. doi.org/10.1090/S0273-0979-2010-01321-5.
(Received: March 4, 2014)
Yale University, New Haven, CT
E-mail: adam.marcus.academic@gmail.com
Yale University, New Haven, CT
E-mail: spielman@cs.yale.edu
Microsoft Research, Bangalore, India
E-mail: knikct@gmail.com

[^0]: A preliminary version of this paper appeared in the Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science.
 (c) 2015 Department of Mathematics, Princeton University.

[^1]: ${ }^{1}$ In functional analysis, the spectral radius of an infinite-dimensional operator A is traditionally defined to be the supremum of $|\lambda|$ over the $\lambda \in \mathbb{C}$ such that $A-\lambda I$ is not invertible. However, in the case of self-adjoint operators, this definition is equivalent to the one presented here (see, for example, Theorem VI. 6 in [38]).

