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Positivity for cluster algebras

By KyuNGYoNG LEE and RALF SCHIFFLER

To the memory of Andrei Zelevinsky

Abstract

We prove the positivity conjecture for all skew-symmetric cluster
algebras.

1. Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky in [13] in
the context of total positivity and canonical bases in Lie theory. Since then
cluster algebras have been shown to be related to various fields in mathemat-
ics including representation theory of finite dimensional algebras, Teichmiiller
theory, Poisson geometry, combinatorics, Lie theory, tropical geometry and
mathematical physics.

A cluster algebra is a subalgebra of a field of rational functions in N
variables x1,xo,...,xN, given by specifying a set of generators, the so-called
cluster variables. These generators are constructed in a recursive way, starting
from the initial variables z1, z2, ..., zy, by a procedure called mutation, which
is determined by the choice of a skew-symmetric N x N integer matrix B
or, equivalently, by a quiver ). Although each mutation is an elementary
operation, it is very difficult to compute cluster variables in general because of
the recursive character of the construction.

Finding explicit computable direct formulas for the cluster variables is
one of the main open problems in the theory of cluster algebras and has been
studied by many mathematicians. In 2002, Fomin and Zelevinsky showed
that every cluster variable is a Laurent polynomial in the initial variables
r1,T9,...,TN, and they conjectured that this Laurent polynomial has positive
coefficients [13].

This positivity conjecture has been proved in the following special cases:

e Acyclic cluster algebras. These are cluster algebras given by a quiver that
is mutation equivalent to a quiver without oriented cycles. In this case,
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positivity has been shown in [17], building on [4], [16], [25], [26], using
monoidal categorifications of quantum cluster algebras and perverse sheaves
over graded quiver varieties. The bipartite case has been shown first in [25].
In the special case where the initial seed is acyclic, a different proof has
been given later in [9] using Donaldson-Thomas theory. Very recently, after
our proof of positivity was available, this approach has also been used to
prove positivity for all rank 4 cluster algebras in [7].

Cluster algebras from surfaces. In this case, positivity has been shown in [24]
building on [28], [30], [29], using the fact that each cluster variable in such a
cluster algebra corresponds to a curve in an oriented Riemann surface, and
the Laurent expansion of the cluster variable is determined by the crossing
pattern of the curve with a fixed triangulation of the surface [11], [12]. The
construction and the proof of the positivity conjecture have been generalized
to non skew-symmetric cluster algebras from orbifolds in [10].

Our approach in this paper is different. We prove positivity almost exclu-

sively by elementary algebraic computation. The advantage of this approach

is
m

that we do not need to restrict to a special type of cluster algebras. Our
ain result is the following.

THEOREM 1.1. The positivity conjecture holds in every skew-symmetric

cluster algebra.

Our argument provides a method for the computation of the Laurent

expansions of cluster variables, and some examples of explicit computations
were given in our earlier work [23]. We point out that direct formulas for the
Laurent polynomials have been obtained earlier in several special cases. The

m

fo

ost general results are the following:

e A formula involving the Euler-Poincaré characteristic of quiver Grassman-
nians obtained in [15], [8] using categorification and generalizing results
in [5], [6]. While this formula shows a very interesting connection be-
tween cluster algebras and geometry, it is of limited computational use,
since the Euler-Poincaré characteristics of quiver Grassmannians are hard
to compute. In particular, this formula does not show positivity. On the
other hand, the positivity result in this paper proves the positivity of the
Euler-Poincaré characteristics of the quiver Grassmannians involved; see
Section 6.

e An elementary combinatorial formula for cluster algebras from surfaces
given in [24].

e A formula for cluster variables corresponding to string modules as a prod-
uct of 2 x 2 matrices obtained in [1], generalizing a result in [2].

The main tools of the proof of Theorem 1.1 are modified versions of two
rmulas for the rank 2 case, one obtained by the first author in [18] and
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the other obtained by both authors in [22]. These formulas allow for the
computation of the Laurent expansions of a given cluster variable with respect
to any seed close enough to the variable, in the sense that there is a sequence
of mutations g, e, fhd, e, - - - using only two directions d and e that links seed
and variable. The general result then follows by inductive reasoning.

We actually show the stronger result, Theorem 4.1, that for every cluster
variable u and for every cluster x, there exists a connected rank 2 subtree To
of the exchange tree containing x such that u can be expressed as a sum of
four positive Laurent polynomials in the variables of four clusters closest to x
in Ty, and such that the variables that are not contained in all four clusters
appear only with positive powers. Because of rank 2 positivity, this implies
that u is a positive Laurent polynomial in every cluster in Ts.

The proof of Theorem 4.1 is by induction on the number of rank 2 mutation
subsequences of the mutation sequence from u to x. It uses two different rank
2 formulas, to express cluster variables that are two rank 2 sequences away
from x as Laurent polynomials in four clusters including x. First we compute
the Laurent expansion £q of the cluster variable after one rank 2 mutation
sequence as a sum of two Laurent polynomials in two adjacent clusters such
that the variables that are not contained in both clusters appear only with
positive powers. Then we compute the Laurent expansions in four clusters
including x of all cluster variables appearing in £; using the second rank 2
sequence and then substitute these in £1. We then show that the variables
that are not contained in all four clusters appear only with positive powers.

If the cluster algebra is not skew-symmetric, it is shown in [27], [19] that
(an adaptation of) the second rank 2 formula still holds. We therefore expect
that our argument can be generalized to prove the positivity conjecture for non
skew-symmetric cluster algebras. A noncommutative version of the formula has
been given in [21], [27].

The article is organized as follows. We start by recalling some definitions
and results from the theory of cluster algebras in Section 2. In Section 3, we
study mutation sequences of rank 3 quivers, and we recall the definition of
compatible pairs as well as results from our previous work [23] in Section 3.
The positivity conjecture is proved, using Theorem 4.1, in Section 4, and The-
orem 4.1 is proved in Section 5 following the outline above. As an application,
we show that certain quiver Grassmannians have positive Euler-Poincaré char-
acteristic in Section 6.

Acknowledgements. We are grateful to Giovanni Cerulli Irelli and Daniel
Labardini-Fragoso for pointing out to us that it is not necessary to assume that
the cluster algebra is of geometric type. We also thank Frank Ban, Sergey
Fomin, Andrea Gatica, Li Li, Hiraku Nakjima, Hugh Thomas and Lauren
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2. Cluster algebras

In this section, we review some notions from the theory of cluster alge-
bras introduced by Fomin and Zelevinsky in [13]. Our definition follows the
exposition in [14].

To define a cluster algebra .4 we must first fix its ground ring. Let (P, ®, -)
be a semifield, i.e., an abelian multiplicative group endowed with a binary
operation of (auwxiliary) addition @ that is commutative, associative, and dis-
tributive with respect to the multiplication in P. The group ring ZP will be
used as a ground ring for A.

One important choice for IP is the tropical semifield; in this case we say that
the corresponding cluster algebra is of geometric type. Let Trop(ui,...,un)
be an abelian group (written multiplicatively) freely generated by the u;. We
define @ in Trop(uy,...,uny) by

(1) H u?j o H u?j _ u;nin(aj»bj) :

J J j
and we call (Trop(uy,...,um),®,-) a tropical semifield. Note that the group
ring of Trop(uz, ..., un) is the ring of Laurent polynomials in the variables u; .

As an ambient field for A, we take a field F isomorphic to the field of
rational functions in N independent variables (here N is the rank of A), with
coefficients in QP. Note that the definition of F does not involve the auxiliary
addition in P.

Definition 2.1. A labeled seed in F is a triple (x,y, B), where

e x = (x1,...,xy) is an N-tuple from F forming a free generating set over
QP;

e y=(y1,...,yn) is an N-tuple from P; and

e B = (b;) is an N x N integer matrix that is skew-symmetrizable.

That is, x1,...,xn are algebraically independent over QP, and
F = QP(.Tl, cee ,xN).
We refer to x as the (labeled) cluster of a labeled seed (x,y, B), to the tuple y
as the coefficient tuple, and to the matrix B as the exchange matriz.
We use the notation [z]; = max(z,0), [1, N] ={1,..., N}, and
-1 ifz <0,
sgn(z) =<0 ifx=0,
1 if x > 0.
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Definition 2.2. Let (x,y,B) be a labeled seed in F, and let k € [1, N].
The seed mutation uy in direction k transforms (x,y, B) into the labeled seed
wr(x,y, B) = (x',y’, B') defined as follows:

e The entries of B’ = (b};) are given by

(2) b=

)

—bij if i=Fkorj=k,
bij +sgn(bir) [birbrjl+ otherwise.

e The coefficient tuple y' = (y1,...,yy) is given by

. if j =k,
) Yi = [brjl+ IR
Yive O (g @ 1)k if £ k.

e The cluster x' = (21,...,2)y) is given by 2% = z; for j # k, whereas
x) € F is determined by the ezchange relation

b; —b;
n ng Rl HfCE kl+
(yr ® L)y
We say that two exchange matrices B and B’ are mutation-equivalent if

one can get from B to B’ by a sequence of mutations. A sequence of mutations
Ly Mey [hdy M, - - - Using only mutations in two directions d and e is called a rank

(4) ), =

2 mutation sequence.

Definition 2.3. Consider the N-regular tree T whose edges are labeled
by the numbers 1,..., N, so that the N edges emanating from each vertex
receive different labels. A cluster pattern is an assignment of a labeled seed
¥ = (x¢, ¥+, Bt) to every vertex t € Ty, such that the seeds assigned to the
endpoints of any edge t-£-t' are obtained from each other by the seed mutation
in direction k. The components of ¥; are written as

(5) Xt:(xl;ta"'va;t)a Yt:(yl;ta"'ayN;t)y Bt:(b;t])
Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.4. Given a cluster pattern, we denote

(6) X=J x={zig : teTy, 1<i <N},
teT N

the union of clusters from all seeds in the pattern. The elements z;; € X are
called cluster variables. The cluster algebra A associated with a given pattern
is the ZP-subalgebra of the ambient field F generated by all cluster variables:
A = ZP[X]. We denote A = A(x,y, B), where (x,y, B) is any seed in the
underlying cluster pattern.
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The cluster algebra is called skew-symmetric if the matrix B is skew-
symmetric. In this case, it is often convenient to represent the N x N matrix
B by a quiver QQp with vertices 1,2,..., N and [b;j]; arrows from vertex i to
vertex j.

In [13], Fomin and Zelevinsky proved the remarkable Laurent phenomenon
and posed the following positivity conjecture.

THEOREM 2.5 (Laurent Phenomenon). For any cluster algebra A and any
seed Y, each cluster variable x is a Laurent polynomial over ZP in the cluster
variables from x¢ = (T1:4, ..., TN:t)-

CONJECTURE 2.6 (Positivity Conjecture). For any cluster algebra A, any
seed X, and any cluster variable x, the Laurent polynomial expansion of x in
the cluster x; has coefficients that are nonnegative integer linear combinations
of elements in PP.

Our main result is the proof of this conjecture for skew-symmetric cluster
algebras.

3. Expansion formulas

In this section, we recall from [23] how to compute the Laurent expansions
of those cluster variables that are obtained from the initial cluster by a muta-
tion sequence involving only two vertices. The main tools are the rank 2 for-
mula from [22] (in the parametrization of [19]) and the rank 2 formula from [18].

Let r be a positive integer, and let {cﬁ}nez be the sequence defined by

the recurrence relation
7] (7]

[r] —
Cp” =TCh—1 — Cp_2

with the initial condition c[lr] = 0, c[;] = 1. For example, if + = 2, then
[r] [r]

cn' =n —1; if r = 3, the sequence ¢, takes the following values:
e, —3,—-1,0,1,3,8,21,55,144, ... .
LEMMA 3.1 ([23, Lemma 3.1]). Let n > 3. We have

Cﬂlcﬂk_s - Cmrk—Qchg = Cg}
for k € Z. In particular, we have (cg11)2 — cg‘]cgb =1.

3.1. Nonacyclic mutation classes of rank 3. We start by collecting some
basic results on quivers of rank 3. First let us recall how mutations act on a
rank 3 quiver. Given a quiver
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where 7, £, w > 0 denote the number of arrows, then its mutation in 1 is the
quiver

where we agree that if 7{ —w < 0, then there are |r{ — w| arrows from 2 to 3.

LEMMA 3.2. Let Q be the quiver

where r > 0 and &, w € Z denote the number of arrows, and suppose that one
of &, w is nonnegative. Consider the mutation sequence

1 2 1 2

Q= Qo Q1 Qo Q3

Then Q,, is

2 ifn is even, l<—"—— 2  ifn is odd, where

1 T
E(k An) @(:N An)
3 3

[r] [r]

§(n)—c£ﬂ2§ — cme and @(n)=c, 1€ —cn'w fc£+1§ - cé lw>0
for1 <t <n,

£(n)= 7[:] 1w—c”§ and w(n )—cnﬂf—cyw zfanf w<0
and cmg — c&llw >0
for1<{£<n,

£(n)= [T] 1w — o }5 and (D(n):cgbw - CZL{ zfcn £ — cT] 1w <0
andn > 2.

If both £ < 0 and w < 0, then
E(n) =~k jw — e and &(n) = —clw - ) ¢

Remark 3.3. One may rephrase in terms of the following notation: let

§(r,&,w,n) = s(n) == el ¢ —
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for n > 0. Then we have
£(n) =3 +1), @n)=35n) if 5(1),...,5(n) > 0,

£(n) = —3(n — 1), @(n) = 3(n) if 5(n) <0
and §(1),...,5(n—1) > 0,

&n)=-3(n—-1), w(n)=-8n—-2) ifsn—1)<0andn > 2.

Remark 3.4. (1) The three cases in the lemma, when one of £, w is neg-
ative, arise from the different possibilities for the orientation of the arrows
at vertex 3. In the first case, all quivers Q,...,Q,—1 are cyclically ori-
ented; in the second case, the quivers o, ..., Q,_2 are cyclic and the quivers
Qn-1,Qn,Qns1 are acyclic. In the third case, if » > 1, there exists m < n
such that Q,—1,Qm,@m+1 are acyclic, and the quivers @, with p > m + 1,
are cyclic.

(2) If r > 1 the three cases exhaust all the possibilities. Indeed, if 67[;115 —

c[]w<0andc]§ r]w>0 then
[7’]

Al
R
Cn 5 Cn-1 n—2
[7] [7] [7]
%z§> C"[’]l > Cﬁ2 > ifw>0,
Cr:—i—l w n C;—l

and thus cg]f — cﬁlw >0forl1</{<n.
If r=0,1, then c,[:} is periodic. More precisely,

...0,1,1,0,-1,-1,0,1,1,0,—1,—1,... forr=1,
..0,1,0,-1,0,1,0,—1,... for r = 0.

(3) The case where both £ < 0 and w < 0 is listed here for the sake
of completeness, but this case is not used in the rest of the paper, because
the quiver obtained after one mutation belongs to the other case. Note that
if £ = 1, the condition c£+1§ — cé]w > 0 becomes & > 0, and the condition

cy] w = ¢ ]f < 0 becomes w > 0.

Proof. This is generalization of a result in [3], where the first case is con-

sidered. If cHlf — cgn]w > 0, for 1 < ¢ < n, we proceed by induction on n. For

n = 1, the quiver ()1, obtained from () by mutation in 1, is the following:

T

1 2

Dz

3,
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and for n = 2, the quiver (2, obtained from @ by mutation in 1 and 2, is the
following;:

T

1 2
3.
I B

In both cases, the result follows from c[lr] =0, c[;] =1l,c3 =71,¢4
Suppose that n > 2. If n is odd, then by induction we know that the
quiver @), is obtained by mutating the following quiver in vertex 1:

and the result follows from @(n) = £(n — 1) and
(7)

Tf(n—l)—w(n—l) = rcm_lf — Tclfﬂw — c,[:]f + cg]_lw = 07[;126- — cﬂ_lw = g(n)

The proof is similar in the case where n is even.
If cﬂlg — cg]w < 0 and cﬂlw — cy]é <0, for 1 </f<mn, and if n is odd,
then the quiver @, is obtained by mutating the following quiver in vertex 1:

l——— 29

3,

and the result follows from @(n) = &(n — 1) and &(n) = —w(n — 1). So the

resulting quiver @, is
l<—F——2
o
3,
[r] [r]

and cp'w — ¢} 1§ > 0. This shows the statement of the lemma in the second
case.
Now mutating in vertex 2 results in Qn41,

T

1 2,

f(n-l—k /w(n+1)

3
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where @(n + 1) = £(n) = c,[l} W — c,[f]f and £(n + 1) = —@(n) = Mw — n+1§
This proves the third case of the lemma.

If n is even, then the proof is similar.

For the case where both £ < 0 and w < 0, it is easy to check the claimed
identity for n = 1,2, and @, is nonacyclic for n > 2, thus the same proof as
above applies. O

LEMMA 3.5. In the situation of Lemma 3.2, if r > 2 and £ > w > 0, then
Q@ is cyclically oriented for all n > 0.

[r] (r] _ ]

Proof. An easy induction, using ¢, = r¢;” — ¢;_;, shows that we never

l+
quit the first case of Lemma 3.2. ([l

r

Definition 3.6. Let Qg be the quiver 1 \4> 2 with » > 0 and
§ ~3° v

w,€ € Z, and let

1 2 1

Qo Q1 Q2 Q3 Qm

be a sequence of mutations in directions 1 and 2. The sequence (Qo, ..., Qm)
of quivers is said to be of almost cyclic type if one of the following holds:

(1)r>2andc[]§ }1w>0f0r1<n<m
(2)r>2andc[]§ w<0f0r1<n<m

(3) r=1, m<2andc”§ “qw>0forl1 <n<m;
(4) r

(5) r

4 —1 m<2andc[]§ qw<0forl<n<m;
5

The sequence (Qo, ..., Qm) of quivers is said to be of acyclic type if one
of the following holds:

(6) r > 2, m > 2, and cm_lg—cmw < 0 and cg]_lw—cmﬁ < 0 for some
1<n<m-1;
(M r=1,m=2,£<0and w>0.

Remark 3.7. Conditions (3) and (4) are equivalent to conditions (3') and
(4') below, respectively:

B)Yr=1m=1lLw>0orr=1,m=2,w>0,§>0;
4)yr=1m=1lLw<0orr=1,m=2,w<0,¢<0.

Remark 3.8. The quantities ck}ﬁ - cgllw are the number of arrows in the
quivers Qo, . . . , @m; see Lemma 3.2. If each of the quivers @1, ..., Qmn—1 has an
oriented cycle, then the sequence (Qo, ..., Q) is of almost cyclic type. Thus
being of almost cyclic type does not depend on the cyclicity of first and the
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last quiver. Condition (1) of the definition means that quivers Qo, ..., Qm—2
are cyclic, and condition (2) means that quivers Qa, ..., Qy, are cyclic.

Observe that it is possible that certain quivers in an almost cyclic sequence
are acyclic. For example, the sequence

Qo Q1 Q2
2 1 2 1

7 7 S

3 3 3
satisfies condition (4) and is therefore almost cyclic.
Remark 3.9. If r > 2, then conditions (1), (2) and (6) exhaust all possi-

bilities. Thus in this case the sequence (Qo, ..., Q) is either of almost cyclic
type or of acyclic type.

2

Remark 3.10. In the case where r = 1, we only consider sequences with
m < 2. The reason for this is that in this case the quiver (J5 is the same as the
quiver Qg with the vertices 1 and 2 switched. Thus the quivers obtained from
Qo by a sequence of length m with 3 < m < 5 are the same as the quivers
obtained from Q)5 by a sequence of length 5 — m with 0 <5 —m < 2.

Remark 3.11. If the sequence is of acyclic type satisfying condition (6)
with some n < m—1, then all quivers Qn+1, ..., @m satisfy the third condition
of Lemma 3.2.

3.2. Compatible pairs. Let (aj,as) be a pair of nonnegative integers. A
Dyck path of type a1 X ag is a lattice path from (0, 0) to (aj, az) that never goes
above the main diagonal joining (0,0) and (a1, a2). Among the Dyck paths of
a given type aj X ag, there is a (unique) maximal one denoted by D = D1 *%2,
It is defined by the property that any lattice point strictly above D is also
strictly above the main diagonal.

It will be convenient to extend this definition to negative integers a1, as.
If a1 < 0, then the notation D™ *% means D% and, similarly, if as < 0, then
the notation D**%2 means D* <0, If both aq, as < 0, then D X2 means D>V,

Let D = D% *%, Let Dy = D{***? = {uy,...,uq, } be the set of horizontal
edges of D indexed from left to right, and let Dy = D3***? = {v1,...,v4,} be
the set of vertical edges of D indexed from bottom to top. Given any points
A and B on D, let AB be the subpath starting from A, and going in the
Northeast direction until it reaches B (If we reach (a1, az) first, we continue
from (0,0).) By convention, if A = B, then AA is the subpath that starts from
A, then passes (a1,a2) and ends at A. If we represent a subpath of D by its
set of edges, then for A = (i,7) and B = (¢, j), we have

AB — {ug,vp 11 <k <i#',5<€<j} if Bis to the Northeast of A,
D —A{ug,vp: 7' <k <i,7/ <l<j} otherwise.
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We denote by (AB); the set of horizontal edges in AB, and by (AB)2 the set
of vertical edges in AB. Also let AB° denote the set of lattice points on the
subpath AB excluding the endpoints A and B. (Here (0,0) and (ai,a2) are
regarded as the same point.)

Here is an example for (a1, a2) = (6,4):

Figure 1. A maximal Dyck path.

Let A= (2,1), B = (3,2) and C = (5,3). Then
(AB)1 = {us}, (AB)g = {va},
(BA)1 = {u4, us, ug,u1,uz}t, (BA)y={vs,vg,v1}.
The point C' is in BA° but not in AB°. The subpath AA has length 10 (not 0).

Definition 3.12. Let r be a positive integer. For S1 C Dy, S C Dy, we say
that the pair (S, S2) is r-compatible if for every u € S; and v € Sy, denoting
by F the left endpoint of u and F' the upper endpoint of v, there exists a lattice
point A € EF° such that

(8) [(AF )| = r|(AF)2 N0 S| or |(EA)s| = r[(EA)1 N Sl

Remark 3.13. We often say compatible instead of r-compatible if r is clear
from the context.

For r = 3, the pair ({u1, ua}, {vs,v4}) is not compatible in D9** (Figure 2),
but it is compatible in D™*4 (Figure 3).

F F

Vg V4

v3 Gk

Figure 2 Figure 3
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3.3. Ezpansion formulas. The formulas in this subsection are proved in [23].
Let A be a skew-symmetric cluster algebra of geometric type of arbitrary rank
N. Let x; = {z14,...,2ny} and xp = {x1,¢,...,2Nw} be two clusters such
that there exists a sequence p of mutations in directions 1 and 2, transforming
Xy into x;. Suppose that the last mutation in p is in direction 1. Thus p is of
one of the following two forms:

or

PR TS B T T

Observe that xyy = ¢, for all f = 3,4,...,N. Denote by n the number of
seeds in the sequence p including ¢ and t. Let Q; be the quiver of the seed
at t, let » be the number of arrows 1 — 2, where we suppose without loss of
generality that r > 0, and let {; € Z be the number of arrows f — 1 and
wy € Z the number of arrows 2 — f in Q. Given p,q > 0, define

. 1 2 1 2 1
pcﬂlJrqcy] if p= ey
Az:Ai(p7Q): ) ) ) ) .
qc[711+pc7[:r] 1flu: Y= 2. ==t
and
g ezl 21y
p dpo ¢z 2 1y

The following lemma is a straightforward consequence of Lemma 3.1.

LEMMA 3.14 ([23, Lemma 3.12]). For any i, we have

(a) Aj =r1Aj—1 — Aj_g,

(b) A7 — Ai1 A1 = p* + ¢ +rpg. O
We are now ready to state our first expansion formula.

THEOREM 3.15 ([23, Th. 3.13]). For all p,q > 0, we have

N

P9 _ r|S2|—An—1_7|S1|—An_2 Er(An_1—|S1])—wy|Sa|—My

Trp Lo = > alhy Lot fo;t ’
(51,52) f=3

where My = min(g, g,y {€f(An-1 — [S1]) — wy|S2l}, and the sum is over all
(Sy = UPHI §% Sy = UPHI SEY such that
[r] [r]
o DXz if 1 << a,
(S1,55) is a compatible pair in ] ] -
D X1 fa+1<i<p+aq.
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Remark 3.16. It can be shown that the summation on the right-hand side
in Theorem 3.15 can be taken over all compatible pairs in DAn-1%4n-2 ingtead,
without changing the sum; see [19, Th. 1.11].

Remark 3.17. The term M} in the exponent of zf; in Theorem 3.15 comes
from Fomin-Zelevinsky’s separation of addition formula [14, Th. 3.7].

We shall need a precise value for M. As a first step, we determine which
pair (S1, S2) can realize the minimum My. Let

M if1<i<a,
M ifatrl<i<ptg

and

s — c,[:],Q iftl1 <i<a,
! ! ifa+1<i<p+aq.

LEMMA 3.18 ([23, Lemma 3.8]). In the setting of Theorem 3.15, consider
the values £¢(An—1 — |S1|) — wy|Sa| obtained from the following three cases:
o Si =D and Sy =0 for all 1 <i < p+g;
e St =0 and Si =10 forall1 <i<p+gq;
o Si =0 and Si = Dy for all 1 <i < p+q.
Then one of the (possibly nondistinct) three values is equal to Mjy.

Proof. This follows from the proof of Lemma 3.8 in [23] replacing cg]

by A,. O

Before stating our second formula, we need to introduce some notation.
For arbitrary (possibly negative) integers A, B, we define the modified binomial
coefficient as follows:

4 LT At ifA> B,
{ } =11 if A=0B,

0 if A< B.

If A >0, then [4] = [ Ai‘B] is just the usual binomial coefficient; in
particular, [4] =0 if A >0 and B < 0.

For a sequence of integers (7;) (respectively (7})), we define a sequence of
weighted partial sums (s;) (respectively (s})) as follows:

s0 =0, si= 4= Ocy]]-l—l = C£+1-170 + C[ e,

sp =0, ;= Zg =0 y]gHT = 0541170 + C[ ]7'{ +oot C[QT]T{—r
[r] [r] [r]

For example, s1 = ¢y 179 = 70, S2 = ¢5 7o + ¢y T1 = 170 + T1.
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LEMMA 3.19 (23, Lemma 3.15]). S, = 7Sp—1 — Sp—2 + Tnh—1.

Definition 3.20. Let L(79,71,...,Tn—3) denote the set of all elements

(14,71, ..., 7h_3) € Z"? satisfying the conditions

(H)o<7/<7for0<i<n-—4,

[r]

(2) sl,_5= kcEiZ and s),_o = ke, | for some integer 0 < k < p.

We define a partial order on L(19,71,...,Tn—3) by

(75 T1s ey Thg) <z (18,71, Th_g) if and only if 7] < 7/’ for 0 < i <n — 4.
Then we define Lyax (70, 71, - - ., Th—3) to be the set of the maximal elements of
of L(19,71,...,Tn—3) with respect to <.

Our second expansion formula is the following.

THEOREM 3.21 ([23, Th. 3.17]). Let x14 be the cluster variable obtained
by mutating x; in direction 1. Let w} = ¢y and 5} be the number of arrows
from 1 to f, or f to 2 respectively, in the quiver obtained from Q¢ by mutating
in the vertex 1. Then

n—3
9) le);t’xg;t/ = Z <H

Ai+1 — TS :|> x'f‘sn—B*An—2NAn—1*7‘5n72

. 2;t L1t
T0,T15-Tn—3 \i=0 Ti
N
élfsn—Q*wfsn—S*Mjlf
X H L ’
f=3
where the summation runs over all integers g, ..., Th—3 Satisfying
(10) 0<7<Aip1—715(0<i<n-—4), 73 < Apg—7rsy_3,
/ /
(Sn—Z - Sn_Q) Ap_3 > (Sn—?) - Sn_g) Ap_2

for any (7, ..., 7,_3) € Lmax(T0,- -, Tn—3), and M} = 0 if the sequence of full
subquivers on vertices 1, 2, f in p from t' to t is of almost cyclic type, and
M} = &4 An—2 — wiAn_3 if the sequence is of acyclic type from t' up to pi(t).
In particular, the exponent of x g, is nonnegative.

Proof. The proof is exactly the same as the proof of [23, Th. 3.17] except
for the M } in the exponent of z¢;. The precise value for M JQ follows by com-
paring terms with the formula in Theorem 3.15 and using Lemma 3.18. The
statement about nonnegative exponents also follows from Theorem 3.15. [

Combining the two formulas of Theorems 3.15 and 3.21, we get the fol-
lowing mixed formula, which has the advantage that the exponents of Z1;, z1:
and xy,; are nonnegative.
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THEOREM 3.22 ([23, Th. 3.21]).
(11)

n—3 A
A i+l — T8 —~Ap_1—TSp_2, TSn—3—An_2
Thp T = > (H ( Ty gy

T0,T15-++Tn—3 i=0 Ti
Anfl —7rS$n—220

N
§}sn_27wfsn_3fo
X H ‘Tf;t ’
/=3
1Sal—An—1_rlS1l—An_s TY - £r(An-1—|Si))—wp|Sal—M
T2 —An—1_TO1|—An—-2 flAn—1—|o1])—Wyrlo2|—Myf
+ Z xl;t xQ;t fo;t )
(51752) f:3

T‘S2|_An—1>0

where (S1,S2) are as in Theorem 3.15, and where M}‘ = 0 if the sequence of
full subquivers on wvertices 1, 2, f in p is of almost cyclic type, and M; =
§rAn—1 —wypAn_2 if the sequence of full subquivers on vertices 1, 2, f in p is
of acyclic type. In particular, the exponents of xy; are nonnegative.

COROLLARY 3.23. For any cluster monomial u in the variables of X',
there exist two polynomials

S +1
f1 € Z>oPlx1e, 25, 358, - -, TNy and  fo € ZxoPlw1g, 254, T34, o, TN

such that
u= f1+ fa.

We end this subsection with the following rank 2 result, which we will
need later.

THEOREM 3.24 ([23, Th. 3.26]). Let a > 4= be an integer. Then the sum

70,715+ Tn—2

Ait1 —78i | rsp_o—An_1 (An_1—a)—An_2
x x
T 1 2 3
KA

Sn—1=a

where the summation runs over all integers To, . .., Tn—2 satisfying (10) with n
replaced by n + 1, is divisible by (1 + a:{)m*A”, and the resulting quotient has
nonnegative coefficients.

4. Main result

In this section we present our main results. The positivity conjecture
(Theorem 4.2) follows from the following result.

THEOREM 4.1. Let A be a skew-symmetric cluster algebra of geometric
type, and let x; = {x1,4,24,..., Ny} be a cluster in A. Let u be a cluster
variable, and let x4, be a cluster containing u such that the distance between
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to and t in the exchange tree of labeled seeds is minimal. Let u be the unique
sequence of mutations relating the seeds tg and t in the exchange tree of labeled
seeds. Denote by d', d the directions of the last two mutations in the sequence .,
thus

d' d

t/ t,

p=to ¢

andlete € {1,2,...,n},e #d,d". Let gy, Tey be the cluster variables obtained
from x; by mutation in direction d,e, respectively, and let ;’?t be the cluster
variable obtained from x; by the two step mutation first in d and then in e.
Then there exist polynomials

Ay € Zx0PT gy, Tey; (ivﬁ%)f;ed,e], By € Z>oP[xay, Tey; (xjjfé)f#d,e],
e — ol
Cy € Zzop[l’d;u Tests (xf;t)f;éd,e]y D; € Zzop[xd;m Test; (xf;t)f;éd,e]
such that

u:At+Bt+Ct+Dt.

Moreover, the polynomials A, Bt, Ct, Dy are unique up to intersection of poly-
nomial rings. In particular,

U € Z>0P[Tgt, Teits Tarts Test, Tests (xii)f;éd,e]'

The proof of this theorem is given in Section 5. The positivity conjecture
follows easily.

THEOREM 4.2 (Positivity Conjecture). Let A(Q) be a skew-symmetric
cluster algebra, let x; be any cluster, and let u be any cluster variable. Then
the Laurent expansion of u with respect to the cluster x; is a Laurent polynomial
in x; whose coefficients are nonnegative integer linear combinations of elements
of P.

Proof. Because of Fomin-Zelevinsky’s separation of addition formula [14,
Th. 3.7], it suffices to prove the result in the case where A(Q) is of geometric
type. Let x4, be an arbitrary cluster, and let u € x;, be a cluster variable.
Let © be the unique sequence of mutations relating the seed ty to the seed t
in the exchange tree of labeled seeds. Let d, e be the last two directions in the
sequence u. Consider the maximal rank 2 mutation subsequence in directions
e,d at the end of . This subsequence connects t to a seed t7, and we denote
by ¢; the seed one step away from ¢} on this subsequence. Thus we have

= fo - d’ tll e t d e d S d . e

or

p=tg - d’ " d t e ) d e d ) e
- 1
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with d’ # d,e. Then applying Theorem 4.1 at the seed ¢; with respect to the
directions d and e, we get that

— — +1
u € ZZOP[md;tl 9 xe;tl ) xd;tl 3 me;tl ) xd;tl ) (xf;tl )f;éd,e]

or

— j— . +1
(RS ZZO]P)[xd;tl ) xe;tl ) xd;tl ) xe;tl ) xe;t1 ) (If;h )f;éd,e] .

Moreover, if f # d, e, then x4 = xf, is a cluster variable in x;. On the other

hand, each of the variables xg.,, Zeit; s Tdity» Testys Tdity> and Tey, is obtained
from the cluster x; by a mutation sequence using only the two directions e
and d, and therefore Theorem 3.15 implies that these variables are Laurent
polynomials in x; with coefficients in Z>oP. It follows that, after substitution
into u, we get an expansion for v as a Laurent polynomial with nonnegative
coefficients in the initial cluster x;. O

Remark 4.3. For N > 2, one can prove Theorem 4.2 directly from Theo-
rem 4.1 without using induction. We prefer the proof above, since it illustrates
the inductive nature of Theorem 4.1.

5. Proof of Theorem 4.1

We use induction on the length ¢ of the sequence of mutations p.
If £ =0, then u = z;;; for some 4, which is of the form C;.
If £ =1, then pu consists of a single mutation in direction d and u = x4y

is of the form B;.
d

If £ = 2, then p is a sequence of two mutations tg L t, with

d # d and e # d,d'. Then

u = (binomial in xy) x,}, = (binomial in (x; \ {zay}) U {zaz}) 2,
and this is of the form By, since d’ # d, e and the binomial has coefficients in
Z>(P.

Now let £>3. Then p is a sequence of the form tg - — " Ay L t,
with d’ # d. Consider the maximal rank 2 mutation subsequence in directions
d,d" at the end of . This subsequence connects t to a seed t**, and we denote
by t* the seed one step away from t** on this subsequence. Thus we have

d’ d d’ d d’ d’ d
p= to - FE t . . e . t
or
d"’ d’ d d’ d d’ d
= tg- £ t* . . . t,

with d” # d,d'.
Consider the subsequence of mutations p* connecting ¢y to t*. Since this
sequence is shorter than the sequence p, we can conclude by induction that
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the statement holds in the seed t* with directions d,d’. Thus, if p is as in the
first case,

(12) U = At* + Bt* + Ct* + Dt*,

where

—_—

Apr € LsoPZgrge, Tape; ($ﬁ*)f¢d,df], By € Z>oP[xgr e, Taspes (Sﬂii*)#d,w],
C € Z>oPlxar i+, e (wii*)f;éd,d'], Dy € ZsoP[xarpe, Tases (wﬁ*)fyéd,d']-

If the sequence p is as in the second case, the roles of d and d’' are inter-
changed. Without loss of generality, we assume we are in the first case.

Consider the variables appearing in these expressions one by one. If f #
d,d' then x4« = x4, is in x; and may have a negative exponent in the desired

—_—

expression for u. The variables Tg/ .=, Tg=, Tarp+, Tay» and Ty lie on a rank
2 mutation sequence from ¢ in the directions d and d’, and Corollary 3.23
implies that all the cluster monomials involving such variables (up to the xjf)
have expansions of the form f; + fo with

fl € ZEOP[@axi}t;xﬁt : f 7& d, dl] and f2 € ZEOP[xd;tamj;lt;xf;t : f 7£ da d/]

Substituting these expansions into (12) shows that

(13) u= Bj+ Cj,
with
By € ZxoPlrag, vl (rpe ) fra.ar), Cf € ZxoP[zag, v3; (€5 ) rraal,

We now have to study the exponents of z., in Bj and Cj. If these exponents are
nonnegative, then u is of the form B; +C; and we are done. But if z.; appears
with negative exponents in By, then we have to rewrite By in the form A;+ By,
and if z.; appears with negative exponents in C}, then we have to rewrite Cj
in the form C; + Dy, with A;, By, Cy, Dy as in the statement of Theorem 4.1.
We prove that this is always possible in Proposition 5.5. To do so, we have to
go back in the mutation sequence p up to the last mutations in direction e.

More precisely, consider the last maximal rank 2 subsequence v of u con-
taining e. Let €’ be the other direction occurring in v. If

e e e’ e e

v=tug, tue tup s~

e e e e e

V= tup —— tue —— tup e — by

then let t,,, be the seed obtained from t,,, by mutating in direction e’. We do
not label any of the seeds between t,,,, and t,,,.
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Without loss of generality, we may assume that ¢,,, = ¢t* and that ¢’ = d.
Indeed, otherwise we can change the sequence u by inserting two consecutive
mutations in direction e as follows

/J,/ — oty d” o e " e d d’ o d’ d
= wp

t** t* I t,

e 4

Thus, without loss of generality, we assume the sequence p is as follows:

e

letting v be the mutation sequence ¢,

d d d d
t* e N

M: to """" th I th o N t**

PROPOSITION 5.1. The variable x.,; may have negative exponents in one
of the expressions B; or Cy in equation (13), but not in both.

Proof. This is proved in Section 5.1. U

Let A;.1 = A; (respectively 7,1 = 75, 8;1 = s1 ) be the sequence of integers
defined in Section 3.3 with respect to r the number of arrows between e and d
at the seed t,,,, where £ = A, B,C, or D.

PROPOSITION 5.2. Suppose that at least one monomial of B; has a neg-
ative exponent in xey. Then each cluster monomial of the form xg;t
where E = A, B,C, or D, has the following form:

q
wg xd;th ’

Z(Laurent polynomial in cluster variables of x; Uxy \ {Tex}) Tey

v>0
AR
6>0 ¢>0 v
2122:_13 Tw;2 {(A An1—1;1J
11— ) |~ Sny—2n1
(15) X Z Z d]( n1 3 .n]_;l ) )
T0;1,T1;15-++,Tny —2;1 7=0 ]

Snl—l;len1—1;1*§

ny—2
% ( H Aw+1;1 — T1Sw;1 })

w=0 Tw;l
Ay 11

’ sgn th/ “+1 (\‘ Apy—1.1—6 LA St J*S _2-1)

H x[bz,e]“‘ & ( de ) ( " ’ ) Anl;1 " ’
Tt
! b
[0 )+

IL Ly

where v € ZPso[{zar} U (x5 \ {z5), 250 })], A € {0,1} and d; are nonnega-
tive integers depending on the summation indices, and the integers T; ¢ satisfy
condition (10) withn =n1 + 1 if £ = 1; and n = ng if £ = 2 for some integers
ni,n2. The second subindex { = 1,2 in s;., Ay, Tie refers to the fact that
these integers are defined in terms of ny.
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Proof. This is proved in Section 5.2. O

Remark 5.3. The condition that at least one monomial of Bj has a negative
exponent in x.,; does not depend on the variable u but rather on the orientation
of the quivers in the mutation sequence v.

PROPOSITION 5.4. Suppose that at least one monomial of C| has a neg-
ative exponent in Tey. Then each cluster monomial of the form :Uﬁ;th l’;lc;th,
where E = A, B,C, or D, has the following form:

Z(Laurent polynomial in cluster variables of x; U Xy \ {Tes}) Toy
v>0

DI D SIS
b
0>0 gzo T T0;1,7T1;15-++,Tny —2;1
5n1—1;1:An1—1;1*§

An1—2;1*7"1§70 _ M B
(16) X Z dj({(fhu—l;l C) Anpi J 3n1—2;1>

i=0 J

n1—2
% ( H Aw+1;1 — T1Sw;1 })
w=0 Tw;l
sgn(2bf, +1)( | (A —q) Any 131 —s
[bg,e]"' & d.e m bl Angs m-2l
% Hl Lt
[0} J+ ’
H’i Lt

where t € ZPso[{zg.:} U (xiF\ {mi%,xﬁ})], Ae € {0,1} and d; are nonnega-
tive integers depending on the summation indices, and the integers 7; ¢ satisfy
condition (10) with n =ny + 1 if £ =1 for some integer ni.

Proof. The proof of Proposition 5.4 is similar to the proof of Proposi-
tion 5.2. O
PROPOSITION 5.5. With the notation in equation (13), we have

(1) By is of the form A + By,
(2) Cy is of the form Cy+ Dy,

with A¢, By, Cy, Dy as in the statement of Theorem 4.1.
Proof. This is proved in Section 5.3. (]

This completes the proof of Theorem 4.1 modulo Propositions 5.1, 5.2
and 5.5.

5.1. Proof of Proposition 5.1. By induction, we can assume that u can be
written as a Laurent polynomial in the clusters ., ,, twy, twe, and t,,, in such a
way that the variables x4, and z.,_ appear only with nonnegative exponents.
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Thus, in order to prove Proposition 5.1, we must compute the x;-expansions
of cluster monomials (IZZ;th xz;th with p,q > 0.

Recall from (14) that t* = t¢,,, and our mutation sequence is of the fol-
lowing form:

d e

A7) tugee e L L S

# d

t’ t.

Let Qo, @1 and 2, respectively, be the full subquivers on vertices d,d’, e
of the quiver at the seeds t,,,,t** and ¢/, respectively. Note that the notation
here is not the same as in Lemma 3.2. Denote by n; the number of seeds
between t,,, and t* inclusively and by ny the number of seeds between ¢** and
t inclusively. Note that ny is even. We define s; ¢, A; and 75,0 with £ = 1,2 as
in Section 3.3, but replacing n with ny — 2.

We shall often use Lemma 3.2 to compute the relations between the num-
ber of arrows in the quivers Qg, Q1 and (J2. The integer n in the statement
of Lemma 3.2 denotes the number of mutations between two quivers; thus we
have

n1 —2 between Qg and @1,

ng — 2 between (1 and )s.

n =

Let

where 7 (respectively wy and &) is the number of arrows from d to e (respec-
tively from e to d’ and from d’ to d) in @1, and ry (respectively wo and &) is
the number of arrows from d’ to d (respectively from e to d’, and from d to e)
in Q2. Without loss of generality, we assume that r1 > 0 and ro > 0. Thus
we also have & > 0, since ro = &. Note however, that &, w; and wy may be
negative. For the rest of this proof, we set Tfity, =1 for all f #d,de.

Recall that the sequences of quivers of almost cyclic type and of acyclic
type were defined in Definition 3.6. We need to consider four cases:

(a) Both the sequence of quivers from t,,, to t,, = t* and the sequence of
quivers from fi4(t,,) = t** to t are of almost cyclic type.

(b) The sequence of quivers from t,,, to t,, = t* is of almost cyclic type, and
the sequence of quivers from pg(t,,) = t** to t is of acyclic type.

(c) The sequence of quivers from t,,, to t,, = t* is of acyclic type, and the
sequence of quivers from pg(ty,) = t** to t is of almost cyclic type.

(d) Both the sequence of quivers from t,, to t,, = t* and the sequence of
quivers from p4(ty,) = t** to t are of acyclic type.
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Let us suppose first that we are in case (a) or (b); that is, the sequence of

quivers from t,,, to t,,, = t* is of almost cyclic type. Using Theorem 3.22, we

p q :
see that Lty Lesturgy 1 equal to

Z nﬁg ( Aw+1;1 — T1Sw;1 )

(18) T0;15°",Tny —3;1 w=0 Tw;l
Anq—1;1—T18n7 -2,120

« Tau Anl,1;17T13n1,2;1xT'ltsnl73;1_1471172;1xwll.sn172;1_§13n173;1
3 ‘“Z Elwy d ,th
(19)
+ —An1—1;1 Apq—211 Z r1|S2] r1|5'1\ 51( nq—1;1—1S1])=(§1r1—w1)|Sa|—M
Lat,,  Letoy Lat,, Tetw, Yd'it, :

(S1,52)
—Apg—1;1+7r1|S2|>0

From now on, we restrict ourselves to the most difficult case where the full

rank 3 subquivers with vertices d, d’, e at both seeds t,,,, and ¢ are nonacyclic;
in other words, wlc[ ] 510[”] > 0 and 0521}7“1 521}—1‘*)1 > 0. In particular,
&5 > 0. But the same argument can be adapted to the case where the full rank 3
subquiver at either t,,, or ¢ is acyclic. We focus on the former case, because
the positivity conjecture for acyclic cluster algebras was already proved in [17].
Thus assume that (wlc[nf] 5102"11]71) > 0. In this case, My = 0.

Let po = Ay —1.1 — T15p,—2;1 and g2 = w15p,—2.1 — 150, —3,1 be the expo-
nents of :EE; and zgy,,, in (18), respectively. Define A;. = p20£7f]1 + qzcgrﬂ.

In case (a), applying Theorem 3.22 to gy, prg? vy in (18), we have that

the part of (18) that contributes to Cj is equal to

(20)
ni—3
Z H Aw+1;1 — T1Sw;1 } T18nq—3;1—Any—2;1
e;th
TO;1,7 3 Tng —3;1 w=0 Tw;1
Apy—1;1—T18n,—2;120
% Z xTQ\Szl— ng— 12xT2|S1|— no—2;2 52( ny—1;2—151])— (§2r2—w2)|S2|
dst d';t et
(S1,52)
r2|Sa|—Any—1,2>0
ni1—3
o Z H Aw+1;1 — T1Sw;1 }
T0;15" " »Tny —3;1 w=0 T’LU;I

Anl ,1.1—T18n1,241>0

% T2\S| Ang—1;2 T2|S\ Apgy—2:2 52( ng—1;,2—181 ) —(é2r2—w2)[Sh|+r15n, —3;1—Ang —21

Z d 5t )
(81:53)

T2|S| Ang 1;2>0
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where (57, 5%) is a family of compatible pairs satisfying the condition in The-
orem 3.22.
Since r9|S5| — Ap,—1,2 > 0 in this last expression, then Ap,_1.2/r2|S5| <1
and thus
(21)
T An,—12 7“1\5%! Ap,—1:2 1|55

[r2] N 2] r9|S. [r2]
Cpy—1T2 2|55 Cro—1

< &(Ang-12 — [51]) — (&2 — w2)[ 9],
where the last 1nequality follows from Lemma 5.7 below. Using ro = & and
the definition of A,,_1.2, we get

T18n;—3:1 — Any—2;1 + E2(Any—12 — [S1]) — (€212 — w2)|S5)]
> 718p,—3;1 — Any—2;1

. 1 (ng](z‘lmqg — r1Sn—2:1) + 052] 1(wisn,—2.1 — §1Sn1—3;1))
&
1 (C7[§21](An1—1;1 — T1Sn;— 2'1) + CE;L1W18n1—2;1)
= _An172;1 + §1] 5
TL2 1
ey ( [1]An17 b1 — (c6 [51] - [51] 1W1)3n1 21)
— A+ - G
n2 161
Ap,_1.
> A " 1 (052]14711—1;1 ( [gl}rl - C521}_1"‘)1) i,l 171)
- —Anp—-2;1
(8n1-21<Apq—1;1/71) ! 521] 151
1
g —(w1An—131 — &1 AR —2.1)
1 T T
(22) = e +aeil) - &l +aelly)
1

= g e — el vl —aaly)

> 0,
where the last inequality holds, because from the first case of Lemma 3.2, we
see that

{ch[rl] flcm 1w Llﬂ—1 m 2}

= {(the number of arrows between d’ and d in the seed t,),

(the number of arrows between d’ and e in the seed t,,,)}.

Thus in case (a), the exponent of z.; in the expansion of (20) is positive.
Thus the terms with negative exponents on x.,; in (18) are all in Bj. The proof
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that the terms with negative exponents on z.; in (19) are also all in Bj uses a
similar argument. For the sake of completeness, we include the details.

Let p3 = 71]S2| — Apy—1.1 and g3 = &1(Ap,—151 — !51!) — (&r1 — w1)| S,
and let A;3 = pchf]1 + Q3C£ r2] Applying Theorem 3.22 to z¥] xd, oy in (19),

the exponents of z.; in the part of (19) that contributes to C’t are of the form
(23) §2(Any—2:3 — [S1]) = (§2r2 — w2)|S3] + 71[S1] — Apy—21.

We will derive the same conclusion as above, namely

1
(23) > g(wlAm—l;l —&1An, —2.1)-

Using ro = &, the definition of A,, 2.3 and inequality (21) with ng — 1
replaced by no — 2, we get

(23) > r1[Si] — An; 221

1
! 5 [1] (0521171(/’41’SQ| - An1—1;1)

n22

+ i€ (Ao = 1S1) = (€ = w1)] )

-
= —Any a1+ —— (el (119 = Any 1)

1€ Egl] 2
+ Lo (&4, 11 = (Gam1 — w1)1S2)))
\
= Aot e (GRlmiSa el -l @ —w)is:)
1€ no—2
1
é_ 1] (Tlcq[—iﬂ_gAnlfl;l - 61052] QAn172;1
1€ ng—2

+ ISl (riegily — (G — wi)e5))

[€1] (1]
> ¢ A, 11— & A, o
(r1|S2|—An; —1;1>0) &10521] ) ( 18ny =344 =151 51 np—24im—2;1

+ Apyaa(ricsl = (€1 = wi)nly))

1
g [€1] (7’1052] 3Ani—1; 1_51%2} 2 An —21+An, -1 1(00107[1g - rlcE;]ng
1€ no—2

1
= g, (Annelil -6l d0a)
Cry—

— (w1 An,—131 — &1 AR —2.1).

T4
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In case (b), applying Theorem 3.22 to Ed;\tw;p?xg?;th in (18), we see that
the part of (18) that contributes to By is equal to

(24)
ni1—3
Z H Aw+1;1 — T Sw;1 } $r15n173;1_An172;1
et
T0;1,T1;15 Ty —3;1 w=0 Tw;l

Apy—1;17718n —2;120

no—3
% Z H { Aw+1;2 — T285w;2 }
T0;2,T1;25+++:Tng —3;2 w=0 Tw;2
An271;2_7’25n272;2>0

> i?/Anz71;2—T2Sn272;2xr25n2*3:2_Anz*2;2‘@‘*’25”2*2:2_525712*3;2_]\46
d;t d'st et

_ Z nﬁ3 { Aw—l—l;l — T1Sw;1 :|

Tap-
T0;1571;15 Ty —3;1 w=0 w,l
Apy—1;17715n —2;120

no—3
% Z H Aw+1;2 — T28w;2 }
T0;2,T1;25++:Tng —3;2 w=0 Tw;2

no—1;27— nog —2;
A2 1;2—T28ng—2;2>0

% — Angy—12—T25ny—2;2 T28ny—3;2—Any—2,2 W2Sny—2,2—828n,—3;2+T18n; —3;1—Any—2;1—Me
xd;t :Ud“ x

et )
where M, = waAy,—2.29 — {2A45,-3.2, and s;.2 is as defined before Lemma 3.19

i—1 [re]

but in terms of pg, g2, and 7o, thus s;0 = > i=0 Cij+1T32-

In this last expression, we have

A,
(25) na— 12

> Spy—2;2-
T2

We want to show that the exponent of x.; is positive; that is,
(26) wosn,—2:2—&28n,—3:2+ 7180, —3:1 — Any—2:1 — (W2 Any—2.0 —E2An,—3:2) > 0.
Thanks to Lemma 5.6 below, we have
Sny—2:2An,-2:2 > Spy—3.0An,-1:2,
and thus it suffices to show that
(27)
Apo—1:2

An 2:2
24
<W2 - 52 Sngy—2;2 +7'13n1—3;1 - An1—2;1 - (WQAn2—2;2 - §2An2—3;2) >0

> T15n, 331 — Any—2,1 — (w2 An,—20 — {2 An,—3:2)

An 2;2
24,
> (52 — w2 | Sny—2:2,

An271;2
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and by (25) it suffices to show

(28)
Apy—2:2 Apy—12
T18n,—3:1 — Anyj—2:1 — (w2 An,—2:0 — &2 An,—3:2) > (szW’ —wy | =
no—1;2 o
= (r1Sn—-31 — An—21 + (240,32 — waAp,—2.2)) 12
> §An, 22 — w2, 12

Lemma 3.14
= &2 Anp, a2 — wWaAp,—3.0 > 12 (Api—2.1 — 1S —3:1) -

Since

Ajp = pzcbﬂ + Q2C£T2] = (Ap 11— T15n172;1)0£ﬂ + (W1sn,—2;1 — 518n173;1)6y2},

inequality (28) is equivalent to
] [r2] )

(Any—1;1 — 718my—21) (E26b?) 5 — wacll?],

] [r2] )

+ (W18n;—2;1 — §1$n173;1)(€26g§_4 — W2y, 3
(29) > 1o (Ani—2:1 — T1Sn,—3:1)
L 3.2
ergg (Anl—l;l - T15n1—2§1)w1 + (w13n1—2;1 - 515n1—3;1)rl
> &1 (A —2:1 — T18n,—3:1)
= Ap_w > AR 2.
Note that cases (a) and (b) agree on the first mutation sequence, and so equa-
tion (22) is valid in both cases, and it implies Ay, —1.1w1 > &1 Ap,—2.1. The
proof that the exponents of z.; in the part of (19) that contributes to B; are
nonnegative uses a similar argument. We give an outline as follows.
Applying Theorem 3.22 to :L'Z?th :Ugf’,th in (19), the exponents of z.; in
the part of (19) that contributes to B are of the form

(3()) W28n5-3;2 — 52571274;2 + T1|Sl‘ - An172;1 - (WZAnsz;Q - §2An274;2)~
Using the same process as above, we get the following analogue of (28):
(31) E2An,—5.2 — wWaAn,—a:0 > 12(An,—21 — 11]51]),

which is obtained by replacing no with ny — 1 and s,,_3,1 with |S1]. Since

Ay = q:;C,EE]l + ng,Em], inequality (31) is equivalent to

p3(526£:22]_5 - wzcgj}_zl) + Q3(52C£:22}_4 - wzcgf}_g) > 1ro(An,—2.1 — 71/51])

ORI (1) Sp| — A1) (171 — w1) + (€1 (Any—121 — |S1])
— (&r1 — w1)]S2])r1 > &1(Any—2,1 — r1[S1])
—widp —11 > §1Ap, —2:1,
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which is exactly the same as (29). Thus the exponents of z.; in Bj are non-
negative.

This completes the proof of Proposition 5.1 in cases (a) and (b), modulo
the following two lemmas.

LEMMA 5.6. Sn272;2An272;2 > Sn273;2An271;2.

Proof. It follows from Definition 3.20 that s%Q,QC[nj] 9 = Sp,_ SCLLQ] 1, and
[r2] )2 [r2] lr2]

using (cn2_ > Cny Cp,—9 from Lemma 3.1, this implies

(32> S;lg QCg‘j] 1 > S’nz 3C[T2]'

On the other hand, the second line of (10) in Theorem 3.21 together with
Apy—2An,—2 > Ap,—1An,—3 from Lemma 3.14 implies
(Sn2*2 - 5;12—2)14712*2 > (8712*3 - 5412—3)14“2*1
and, using the definition of A,,_;, we get

(Smp—2 — 8y _0) (P2c?) | + qocl” ) > (50,5 — s, _5) (p2cll?) 4 goc??) ).

Now (32) implies the statement. O
LEMMA 5.7. Let (S = U St Sy = UPF SLY) such that

[r2]

el if 1< < po,

[7"2] [ra]

2=t na=2if py +1 < i < po + o,

[T2] xe

(Si,8%) is a compatible pair in {

where pa, qo are arbitrary nonnegative integers. Then
T1’SQ|

C’I’LQ 1

< &(Any—12 — |51]) — (€ara — w2)[ Sl

Proof. This is proved in [20, Lemma 4.10] using colored subpaths with
|Bl2 = Apy—1.2 — |S1| and |B|1 = |S2|. This is also proved in [19, Prop. 4.1,
Case 6] with ay = A,,—1,2,b =c = 1. O

Now suppose we are in the case (c). Using Theorem 3.22, we see that

p q

Ty Tey is equal to the following expression, which is almost the same as
lwp twg

> (T

the expression in (18) and (19) up to the exponent M},:
0315 yTny —3;1 w=0

(33)
Aw+1;1 — T18w;1
Tw;1
Any—-1;1—T18n;-2;120

« g Ani—11mTisny 21 T80 =317 A, 21 W1sn;—2;1—E18n—3;1— M,
dth eth d': th
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—-A L, Apq—2:1 r1]Sa| rl\S1| &1(Any—11—[S1])—(&1r1—w1)|S2 |- My
34 T, v 1 .
(34) + wgy, " T, dow Vst Lestu, Td'ite,
(S1,52)
—Apg—1;1+71|S2[>0

Let po =71[S2| — An,—1;1 and g2 =&1(Ap; —151 — |51]) = (§171 — w1)[Se| — My
be the exponents of x4y, and zgy, in (34), respectively. Applying Theo-

rem 3.22 to ajdt xg? , we see that the part of (34) that contributes to Cy is
equal to

(35)
r1]S1|=Ang —2;1
Z $e§th
(S1,52)
_An171;1+7"1‘52|>0
2|84 |—Any—2:2 72|87 |—Any—3;2 52(An2 2;2—|S1[)—(2ra—w2)| S}
X Z xdt xd/
(51:5%)
An2 22<7‘2‘S§|
i 7"2|S| Ang—2;2 T2\5| Apg—3;2
= > Y. T T
(81,52) (51:53)
_An171;1+T1‘52|>0 An272;2<7'2|sé|
£2(Any—2,2—]81])—(E2r2—w2) S5 |+71]S1|—Any —2;1.
X xe;t

Since Ap,—2;2 < r|S5| in this expression, we have A,,_2.2/72|S5| < 1 and
thus

(36)

r1An,—22 71185 Any22 71|59 / /
A2l B A Jdral = §2(Any—22 — [51]) — (§2r2 — w2) S5,
ng—2"12 no—2 no—2

where the last inequality is proved in Lemma 5.7. On the other hand,

Ap,—2:0 = pQCq[Z:;LI + ‘DCELZLZ
(37) = (11[Sa] = Any11)enz

+ & (A1 — |S1]) = (€71 — w1)|Sa| — M)l

no—2°
The exponent of z.; is

Eo(Any—22 — |S1]) — (§ara — wo)[S5| + 71[S1| — Any 21
(36) ’r‘lAnQ,Q.Q

T r1]51] — Any—2:1
C?’L2—2 T2

(37) 1 T

= W ((7“1‘52‘ - An1_1;1)CL22],1
no—2"2

+ (&1 (A, -1 — [S1]) = (€ar1 = w1)[S2| = Ma)ely2L )
+ T1’51| - An172;1
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Lemma 3.14 1 r
2 (1]a] = Anya)el

Cn2_2 7"2

= ((&ar1 = w1)IS2] = Ma)ey?p) + Aun

remer 3 (@i — el )19
67[:22]—2 T2 ’ ’
_A [r2] - M [r2] ) A
n1—1;1Cpy—1 d'Cpy—2) t Angi
(%) A, 1.
> [Tf ((chq[:j]—Q — ricyl )il
C?’L2—2 T2 "
—_A [r2] - M [2] ) A
n1—151Cp, 1 d'Cpy—2) T Angil
T A, 1
[T2]1 ((wlcgj]—Q - T]-C7[’:22]—3) n; SHg Am—l;lcgj]—l
Cpa—2T2 1

—(&1An,—11 — (§1m1 — wl)Am—2;1)C,[:22]_z) + Apyi1,
where inequality (x) holds because pa = r1|S2| — A,,—1,1 > 0. We shall show
below that the quiver Qs is cyclic, and therefore & and 19 have the same sign,
so ro > 0, since & > 0. This implies that the above expression has the same
sign as

n((ndy - ndiy)

Ani—1:1

- Anlfl;lc

[r2]
na—1

r1
—(&1An —1;1 — (&1 — Wl)AM*Q;l)C?[:;]—Q) + An1;10£:221—2 &1
= (wlcgj}_Q - rlcgj]_g)Anlfm + (ri(&1r — w1)Any—2;1
—1r1§1An; —11 + Anpn fl)cgfj]_a - TlAmfl;chr;]—l

[r2] [r2]
= (Wi€py—2 — T1Cp,—3) Any 131

+(&rf - 1) —w T1)An172;107[:22]_2 - 7“1An171;16g22]_1
= (wlcgj}_Q - 7"1516522}_2)1471171;1 + (& —1) —w Tl)AanlCE;ﬂ—z’
and this expression has the same sign as
(w1 = 71€0) Any 11 + (E2(rF = 1) —wi71) Ap, 201

(38)
= &1 An 41 —w1Ap, 3.
This expression is positive because of Lemma 3.2.

Let us now show that the quiver Q5 is cyclic in this case. Since we are in
case (c), the mutation sequence from t** to ¢ is of almost cyclic type. Moreover,
this sequence is of length at least 3 and the quiver )2 is the quiver at the seed
t' one step before reaching the seed ¢ in this sequence. We need to consider

conditions (1) and (2) of Definition 3.6. If condition (2) holds, then all the



POSITIVITY FOR CLUSTER ALGEBRAS 103

quivers after the second mutation in this sequence are cyclic so, in particular,
Q9 is cyclic. Suppose now that condition (1) holds. In our situation this
condition says cn 52 c, }lwg > 0 for 1 <n < m, where m is the length of the
mutation sequence. Using n = 1 and 2, this implies that wo > 0 and & > 0,
and thus @1 is cyclic. Because we are in case (c), the mutation sequence from
tw, to t* is of acyclic type, and it follows that there is an acyclic quiver in one
of the seeds preceding ()1 in that sequence. The facts that r; > 1 and that the
last mutation to get to ()1 is in direction e then imply that & > w1, because &
is the number of arrows opposite to the vertex e. But then the first mutation
in the sequence from (1 to ()5 is in direction d and afterwards the sequence
alternates between directions d’ and d, and therefore the number of arrows in
the quivers of this sequence grows. In particular, all quivers in that sequence
are cyclic.

The proof that the exponents of z.; in the part of (33) that contributes
to C] are nonnegative uses a similar argument, which is given below. Let
p3 = Ap—1;1 — r1Sp,—2;1 and g3 = wiSp,—2;1 — {18n,—3;1 — My, and let A;3 =
pgc£+]1+q30£7"2]. Applying Theorem 3.22 to z 4y, prfﬁ in (33), the exponents

of xe, in the part of (33) that contributes to C; are of “the form

(39) E2(Any—2;3 — |S1]) — (€22 — w2)| S| + r18p,—3:1 — Ay —2,1.

Using (36) with no — 2 replaced by ny — 1, we have

A .
(39) > 7‘1[’]‘7213—#7“18”1_3;1 — Apy 21
n2 172
1
- [7"2] E ( [7’2] +a3 CL;]—l) +Tr18p,—3;1 — Anlfz;l
nz 1
T
— [7,2]1 f (p?)CLT;] +(W18n1—2;1 - 518n1_3;1 — Mé,)ckjll)
ng 1

+ T15n;-3;1 — An1—2;1

r
= (pacliz + (wrsn,—20 = Mi)ei? 1 ) = Any-2a

[2]

cngfl
1
= [TQ] € ((Am—l;l - 7‘18”1_2;1)6&;22} + (wlsm—?;l _Mc/l/)cgj}—l) _An1—2;1
TL2 1
1
= [,,2] £ (Am 1; 161[122] _5711*2;1(7“10% 2] _wlcglg} 1)_M(/1’C£:22}—1) _Am*?;l
nQ 1
"1 (A Lqclrl - Ap 151 (rlc[Tz] _ W1C[T2] )
(Anlfl;l—T18n172;120) E"z] 15 n1—11ng r1 ) ng—1
2

—Md/C[ 2] ) An172;1

na—1
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[7'2] r no—1 no—1
C?’Lg—l 1

_ ! (Amfl;lwlc[?b] _Mo/l’c[r2] ) _An1—2;1
&1

™ An1—1;1 ro o
( wchz],l — (w1 Ap,—21 — flAn1—3;1)Cq[12],1 —Ap —21

cgj]_lﬁ "
wiAp, 11 71
=M —(w1dp,—20 — &1 An —31) — Ani—2.1
&1 S
LU1A —-3;1
= —$+An1—4;17
&1

which has the same sign as
§1An,—4;1 — w1 An,—3;1,

which is equal to (38).

Thus the exponents of x., in C{ are nonnegative, and this shows Propo-
sition 5.1 in the case (c).

To complete the proof of the proposition, we analyze case (d). Suppose
that the sequence from t,, to t* is of acyclic type and consider the quiver
Q1 at the seed t** = pg(t*). Our first goal is to show that u.Q; is acyclic.
Suppose the contrary. Thus condition (7) in Definition 3.6 does not hold.
Hence condition (6) in Definition 3.6 implies that the number of arrows r;
from d to e in )1 is at least 2. In this case, the acyclic quivers in the sequence
from t,, to t* form a connected subsequence, and thus p.Q); being cyclic
implies that Q1 and pg@1 are cyclic too. The third case of Lemma 3.2 with
w =& and r = w; implies that

cﬁfl]
&1 > le > Wi,
Cn—1

where the last inequality holds since cg s c,[:ﬂl. Moreover, using the third

case of Lemma 3.2 with w = wy and r = ry together with the fact that the
mutation sequence from )1 to ()9 is of acyclic type, we also see that w; > 1.
Thus & > w; > r1 > 2, and therefore Lemma 3.5 implies that all quivers in
the sequence from t* to t are cyclic, a contradiction to the assumption that we
are in case (d).

Thus p.Q1 is acyclic. By the same reasoning, we get that () is acyclic,
and then by symmetry, we also have that the quivers in the seeds t* and pq (t*)
are acyclic.

Thus we have shown that the case (d) occurs if and only if the four quivers
in the consecutive seeds e (t*), t**, t* and pq (t*) are acyclic. In this case, the
sequence from t* to t is of almost cyclic type and the result can be shown by the
same argument as in the case (c¢). This completes the proof of Proposition 5.1.
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5.2. Proof of Proposition 5.2. Proposition 5.2 applies in cases (a) and (c).
We assume that we are in case (a). Case (c) is similar.
Let g be an arbitrary vertex different from d, d’, e and let

&1 ,
f[\ /7?
€ g

Q1=
P1 w1
1

vy

be the full subquiver with vertices d,d’,e’g of the quiver at the seed pg(ty,)
= t**, where 7 (respectively wi, &1, v1, p1) is the number of arrows from d to
e (respectively from e to d’, from d' to d, from e to g, from g to d ). Recall
that r; > 0. Although the mutations in the sequence p are in directions d, d’, e
only, we need to study how the variable z,; behaves in the expansion formulas
in order to show certain divisibility properties. On the other hand, it suffices
to consider only one of the x4, with g # d, d', e.

We present the case where the subquiver with vertices d, e, g in some seed
between fi4(tw,) and pq(ty,) is acyclic. The case where all these subquivers
are nonacyclic is easier; in fact, only the exponent of x4, ~would change.
Thus for the rest of this proof, we set x,; = 1 for all f # d,d’,e'g.

Since the mutation sequence relating the seeds t,,, and t,,, = t* consists in
mutations in directions d and e, applying Theorem 3.21 to xZ;th acg;th yields!

(40)

ny—3
- Ay 11— T18ng —2;1,, 7180y —3;1—Anj —21
;th xa;th

T0;1,T1;15++:Tny —3;1\ w=0

Aw+1;1—?“18w;1D

Tw;1

W157L172;17£13n173;1 V1Snq—2;1—P1Snq 73;17(V1An172;17p114n1 73;1)
X Ty Lyt .
sbw 7 rwz

As before, let ng be the number of seeds between piq(t,,) = t** and ¢
inclusive. Recall that ng is even. Let

T2

Q= d d
\PQ ng/
éQ\L /& TVQ
€ 72 9

'The term (v1An, —2.1 — p1An,—3.1) in the exponent of z,, is equal to the M, in Theo-
rem 3.21, and it is nonzero because of the assumption that the subquiver with vertices d, e, g
in some seed between pia(twy) and pq(tw,) is acyclic. On the other hand, the term My in

the exponent of x4,  is zero, because we are in case (a).
k] U)Z

tw,
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be the quiver at the seed pg(t) = ¢/, where ro (respectively wa, &2, va, p2, 72)
is the number of arrows from d’' to d (respectively from e to d’, from d to e,
from g to d’, from d to g, from g to e). Recall that ro > 0.

Next we want to use Lemma 3.2 to compute the number of arrows in Q)2
in terms of the number of arrows in );. The mutation sequence relating the
quivers Q1 and @9 is a rank 2 sequence in directions d and d’, starting with d
and ending with d’. In particular, the number of mutations in this sequence
(which is denoted n in Lemma 3.2) is even and we have n = ng — 2. First we
apply Lemma 3.2 to the subquiver on vertices d, d’, e. Since we are in case (a),

the condition cgj}_lrl — cgj]_le > (0 holds. Therefore we see from Lemma 3.2
that

ro = &1,
(41) wo = cgfj]_m - ng}_gwl,

_ o] _ [7"2}
fg—cn2 71— Cpy W1

Next, we use Lemma 3.2 on the subquiver on vertices d, d and g. Since we
assumed that the mutation sequence on this subquiver is of acyclic type and
because of Remark 3.11, we use the third case of Lemma 3.2 with w(n) = —p1,
& =19, w =19, and r = py to obtain

pr =2l — 72 .

Finally, we show by induction on no that

(12) = (enop — e — (e goe — ¢ vl — .
If ng =4, then the above formula becomes o = (pa—rov2)r1 —(—v2)wi —vp. This
is easily checked, since Q1 and @9 are related by sequence of two mutations.
Suppose ng > 4. We want to show that if equation (42) computes the number
of arrows from e to ¢ in the quiver o, then it also computes the number of
arrows from e to g in the quiver pguqQo, if no is replaced by noe 4 2, and ps
(respectively vs) is replaced by the number of arrows in pguq@2 from g to d
(respectively d’ to g).

Denoting by pf, (respectively v4) the number of arrows from g to d (re-
spectively d' to g) in pgpqgQ2, we observe that py = (ro(rape — v2) — p2),

vh = (repa — v2), and the number of arrows from e to g is still ~,.
[r2] [r2] [r2]

Now using the definition ¢~y = r2c,,”; — cn™, we see that
07[:22]_2,02 - 67[:22}_11/2 = (7“207[:3}1 - cgz])pg — (7“207[12] — Cgﬂl)yg
= (ra(racn® — c2)) — ) py — (rach? — 2 )y
— A (ra(raps — va) — p2) — Cgi(?‘zpz — 1)
[ra] y _ ra]
Cn P2 — CpyiVo.
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Similarly,

[2] [r2] _ 2] ro] 1
Cn2_3p2 — C?’L2—21/2 = Cn2_1p2 — 07[,12}7/2.

This proves formula (42).

Now let po = Ap, 1,1 — T15n,-2;1, G2 = WiSn;—2;1 — 150, -3;1 be the ex-
ponents of Z4y,, and xg,  in (40) respectively. Applying Theorem 3.21 to
%m :Eg?; t,» WE SCC that (40) is equal to

(43)

ny—3

2 11

T0;1,T1;15-,Tng —3;1 \w=0

Aw+1;1 — T1Sw;1 T18nq—3;1—Anq —2;1
xe;t
Tw;1
V1Sng—21—P15n; —3;1— (V1 An; —2;1—p1An; —3;1)
gt
no—3

x D 11

T0;2,T1;25+.Tng —3;2 \w=0

Aw+1:2 — 72502 }

Tw;2
— Apy—1:2—T28n, —2:2 T25n9—3:2—Ang—2,2 Wasny—2;2—E28ny—3;2
X xd;t 2— 4 274 xd’; xe;t

V2Sny—2;2—P25ny—3;2— (V2 Any—2,2—p2An, —3;2)

X Lt

ni—3

= X 11

T0;1,T1;15"" Ty —3;1 w=0

Aw+1;1 — T1Sw;1
Tw;1

no—3

x ) 11

7052571525, Tng —3;2 w=0

Awi12 — m28uw;2
Tw;?2

An2_1;2—r28n2_2;2xr25n2—3;2_An2—2;2xw23n2—2;2_€25n2—3;2+T13n1—3;1_An1—2;1
d/.

X Tt ; et
V28ng—2;2—P28ny—3;2— (V2 Any—2:2—p2Any —3;2) +118n, —2,1—P15n; —3;1
>< x .t
g7
_(VlAnl—Z;l_ﬂlAn1—3;1)
X xg;t )

where A;.2 and s;.2 are as defined before Lemmas 3.14 and 3.19 but in terms

of p2, g2, and 79, thus A;9 = pQCKﬁ]l + qzcz[rﬂ and s;.0 = Z;;%) C,E?;-JrlTj;g.

Let 6 be a positive integer, and let Py be the sum of all the terms in the
sum above for which the exponent of x..; is equal to —f. Thus —0 is equal to

W2Spy—2:2 — £28n,—3;2 + 180,31 — Any—2.1.

5.2.1. Computation of exponents. In this subsubsection, we compute the
exponents in the expression in (43). The main computation continues in 5.2.2.
It is convenient to introduce ¢ such that 9.0 = ¢ — 55, -3,1. Then

fra] )

79 T2

Sny—2;2 = Cpy 1 (S — Spy—3;1) + § Cry—1-57452
=1



108 KYUNGYONG LEE and RALF SCHIFFLER

and
72 R~ )
Sna-32 = Cparo(S = Sni—31) + D Cuoly Tia:
J=1
Using equation (41), the expressions for sy,_2.2 and sp,_3.2 and the fact
that c[lﬂ = 0, we have

W2Sn,—2;2 — £28n,-3;2

no—3
= ( 521] 11— [5 : " owi) 521] (S = Sny—3;1) + Z 07[1521] 1—575; 2}

no—3
— (clfhry — el ) | iy (6 — sy s) <Z sl a5 > ‘0[1&}7"2_3;2}

= (¢ — Sn1—3:1) 71 ((0521]—1)2 521] 5211—2)
no—3

+ 3 mie [ (emladihiny - AL )

j=1
twi ( 521] 205;17173' + 521] 10[521} 2 ])]
no—3
= (¢ — Sp—3.1)71 + Z Tj:2 [1"1 ( [51]) + w1 c[gl]} (by Lemma 3.1).
j=1
And since — [Ei} = cﬁg, we get

no—3
—0 =r1(s— Sp,—3.1) + Z 7‘]2 Ei]ﬂ"l_ gi]lw1)+1"18m 31 — Ap—2;1
1
(44) -
—_A 51] [€1]
= n1—2;1 + 115+ Z 7'32 Cihall — Jle)
7=1

Also, the exponents of 243 and x4, in (43) can be expressed as follows:

An2—1;2 T T28ny-2;2 = 0521}])2 + 0521] 192

no—3
—&1 < E;] 1(6 = 8ny—3.1) + Z Cril] 1 1732)
7=1

= ey (A, —11 = T18ny—21) + Ez] 1(W18ny 2,1 — €180, -3;1)

no—3

_&<5§]l<<—8m w+ Y dth )
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= CL%}(Am—l;l - T15n1—2;1) + EQ] 1W1Sn,—2:1

—& 71521]—1g+ Z CE; 1-5T5:2 | »

and similarly

515n2—3;2 - An2—2;2 = 51 0521]_ S+ Z CEQI 92— ]7—] 2
( 521]_1(1471171;1 — T18p,—2;1) + 52] oW18n, —2; 1)
Recall that p; —ch] g2 — 1[122]_4p2. The exponent of 4 in (43) is equal to
V2Sny—2;2 — P25ny-3;2 — (V2An2—2;2 - pQAnz—S;Q)
+ V1Sn—2:1 — P15m—3:1 — (V1 Ap —211 — p1An,—3:1)
e &l
=1 | 1 (S — 8ny—31) + Z Cry o1 T2
no—4
— o [ (¢~ snyz) + > el T2
7j=1
— 1 (CE;]_l(Anl—l;l — r1Sn—2:1) + 052] o(W1Sn,—21 — 515n1—3;1))
& (4 )
+ P2 ( €yt (Any—1,1 — 7180, —2;1) + €0y L3 (W10, 2,1 — €150, —3:1)

T V1Sn;—2;1 = P15n;—3;1
— (VlAnl—Q;l — plAn1—3;1)
[51] _ [€1] _A
—Y28n,—2:1 + (Vgc P2Cp, 2 )(§ n1—1;1)

no—3

no—4
+ 12 Z 0521—1 —§Tj2 = P2 Z CEQ] 2—T52 — (1An,—21 — p1An,—31)-
i=1 j=1

5.2.2. Back to main computation. Using the computations from 5.2.1 and
fixing ¢, 71,2, ..., Tny—3;2 in (43), we obtain

M A1 — 15w na-
)= ¥ (H | D(H

T
T0;1,T1515° 5Ty —3;1 \w=0 w;l w=0

Api12 — T25w;2 D
2

Tw;

3
NCL%](AM 1,1—T18ng — 21)+C[621] 1W18ny —2;1—¢ (521] 1<+Zn2 [szl 1—j ],2)

X Tt
4
(EIL2<+Zn2 n2 o jTj 2) (6521],1(1‘%1—1;1—7"15111—2;1)+C£f21],2w18n1—2;1)
X xd’;t
3
*Anl 2; 1+T1§+Zn2 gi]y“ Cgi}]lwl)‘r] 12

xxet
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3
_728n172;1+(uzc[§21]*1 pchll 2)(s—An -1 +V22n2 521]_1—3"@';2
X Ty
n2 4
—P2 Z n2 257527 (V1 An,—2,1—p1An;—3;1)
X ng ]
7

Now we collect all powers involving sy, 2.1 and write (43) as a product ¢,
where ¢ is a Laurent monomial in Zgy, Tgr+, Te;t, Tg:¢ that in the expression of
Proposition 5.2 is absorbed either in the first summation, if the exponent of
Ty 1s positive, or in the second summation inside a:;f,t if the exponent of .
is negative. On the other hand, ¢ is equal to 7

n1—3 Aw L " no—3
3 <H +1,;w;17“15 1 }) <H

T0;15T1;150+Tng —3;1 \ w=0 w=0

Tw;2

Aw+1;2 — T285w;2 })

Any—151
[(ATLl —1;1 7§) Al 75n1 —2;1

[£1] (1] ny;l
—cptri—c w
" Tgy "2 ' T2t ;?t
[521]_17"1 [521] w1
xd/;t

Note that the O-th term of the second product can be identified with an (n; —2)-
nd term in the first product, since A2 = Ay, 1.1 — 715p,—2:1 by the definition
of Ay right after equation (19) and sp2 = 0. The above expression is therefore

equal to
7’Ll—2 n2—3
Z ( H Aw+1;1 — T18w;1 }) ( H (Aw+1;2 - r25w;2)>
T0;1,T1515++:Tny —3;1 \w=0 Tw;1 w=1 Tw;2
Ang—1;1
(45) [(An1—1;1_§) Zl J_5n172;1
C[ﬁl]r _ [£1] ni;l
T T1 LW Y2
% Lt Lyt
)
[51] ri—c [521]_2601
[Ed/

where 7, 2.1 = Ap; 1,1 — T18n,-2;1 — 70,2 = Apy—1;1 — T18n;-2:1 — S + Spy—3;1-
Anq—151
1 3

The exponent {(Anrl;l —S) % J — Sp,—2:1 is nonnegative by Lemma 5.13

nqy;l
below.
Now we show that the Laurent monomial ¢ has nonnegative degree on

Zq¢. We want to show that

e A, 10 — & | ditlio + Z a1 i1
(46)

A, 1.
- (6521]7“1 - 07[1521]—1‘”1)(1471171;1 - §)171’1 > 0.

ni;l
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Inequality (50) yields
3 13 A —11 I3 A —1;1
( Eﬂzrl Cgi]lwl)#_m (CL%} - (07[1621]7'1 - CL;]lwl)Z;lJ) 752
>€lcn2 1—575;2
SO
no—3
€1] [€1] Any—151 [€1] ], _ &l Ani—11 )

jz:l ( ]+2T1 - Cj+1w )An172;1 (anl - (Cngl ng—lwl) Anl;l Tj;2

no—3

> Z ’51052] 1-575;2
j=1

Thanks to # > 0 and equation (44), this implies that

(47)
(A, -2 ﬂ‘l@jﬁ_;i (CEJ] — (clitlr - CEQ}—l n;l’l 1) >Z§1c,f§] 15752
Then to prove (46), it is enough to show that
A Ani1a — Gl — (el — o) (Any 1 — 21
1

is greater than the left-hand side of (47). The terms without ¢ are all canceled.
Hence it remains to show that

A, 1. A1
- 1—1;1 <C£§21] _ (CEQI]Tl - C[El] 1UJ1) 1 1,1>

Apy—21 2 Apia
A, 1.
> & c&] - (0521]1"1 - CE;]—lwl)ijl L1
ni;l
An, -1 Apy 1. Ap, 1.
[e] AL [€1] (€], _ &l ni—L1 n1—1;1
<~ > 1
"1n; Any—21 §16n, 11 > (eny ' — ey qwi) (71 Apy—2,1 A
— rlc[&]”li—l?l ¢ 521] .
n1—2;1
(1] [51] (TlAnl—l;l - An1—2;1> An1—1;1
> (¢ 'ry — T iwq
( n 1 ) An1_2-1 Anl;l
Lemma 3.14 re [51]1411171;1 _5 (1] >( [51]7“ _c[fl] 1)Arnfl;l
" Apy—2;1 fra1 na1% Any—21
A, 1.
— wlnlil’l _ fl > 0.
An1—2;1

The last inequality follows from the first case of Lemma 3.2. This shows (46),
and thus the exponent of 24 in ¢ is nonnegative.
Now Proposition 5.2 follows from the following lemma.
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LEMMA 5.8.
ng—3
ng—3 w—=1 Tw;2 An —1;1
i—[ (Aw+1;2 - T23w;2) _ > ZI: d.({(Anl—l%l —<) Aim J - 8"1—2;1>
- T .
w=1 Tw;2 i=0 t

for some d; € N, which are independent of s,,—2.1.

Proof. First suppose that one of £, 71, w1 is at most one. The equation in
Lemma 5.8 without the requirement that d; € N is always true in any case (a),
(b), (c), (d). The divisibility in Lemma 5.14 without the positivity statement
is always true, so the argument in Section 5.3 shows that Proposition 5.5
is a

without the positivity statement is always true. Therefore xs;th xg;th

linear combination of the following rank 2 cluster monomials:
)/ / ! / ! / !

0 =—q 4
Lt xe;tq y Ldit xe;tq , xd;tp $e;tq ) xd;tp Test™ -

Now if one of 1,71, w; is at most one, then some quiver that is mutation equiv-
alent to the subquiver with vertices d, d’, e is acyclic [23], and it follows from
[31, eq. (5.10)] that the coefficients of the linear combination are nonnegative.
This implies that d; € N.

In what follows, we assume that &1, 71, w; > 2.

Once we know that there are nonnegative integers a and b such that

Api-11
Api12 — T25w2 = @ Q(Am—l;l - €)ZI’J - 5n1—2;1) + b,
ni;l

then it is clear, by Lemma 5.11 below, that
w; An —1;
Aw+1;2 — T28w;2 _ TZQ d, \‘(Anl—l;l - §)ﬁJ — Sp1—2:1
Tw;2 = i

for some d; € N, and by Lemma 5.12 below, for any nonnegative integers j
and k,

An,—1: Anq— H
\‘(Anl—l;l - §)ﬁJ — Sn1—2;1 \‘(Arn—l;l - §)ﬁJ — Sny—2:1
J k
-‘rk An —1;1
oo
i=0 ¢
for some d € N. Then it follows that

nog—3
-3 w2: Tw;2 An —1;1
b (Awﬂ;g —) = 5 d,({(Am_m — )| —)
_ Z .

w=1 Taw;2 i=0 7
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Thus we need to show the existence of the nonnegative integers a and b.
Using the definitions of A, 1.2 and ¢ as well as the fact that ro = &;, we get

&
Awt+1;2 — T25w2 = CLJQ(Anl—l;I — T15p,—2:1)

el s a — ( & ¢4 Z ol T 2>

which can be written as

Awt12 — 2502

(48) A 1.
= (s = clthon) (| (Aniora = 92| = a0 ) + O,
ni;

where C(w) is some function of w, which is independent of s,, 2.1 and which
we give explicitly below. Note that

(1]

Coypy2T1 — [E ]

w1>()

because, by Lemma 3.2, this is the number of arrows between some pair of
vertices in some seed between t,,, and ¢. Thus is suffices to show that C(w) is
nonnegative:

An1—1;1
Anl;l

O(w) = (] — €, w1>(<An1_1;1 9

A, 1. -
_ {(Anl—m - G)AIIIIJ> + C(w)0(w),
ni;
where
A An 1.
Clw) = 01[151:12 —(c 7[51&12741 511“1)1417171
ni;l
and
O(w) = A Greits = (ithr — il w1>“n7;1£1
(w) - n1—1;1 — [E} ( [fl] o [fl} Ll,l S
Cut2 Cuw+2"1 7 Cul wl) ny;l
[§1] [€1] [51] Api—121 Tj;2-

=1 Cyyy2 — ( Cou42T1 — Cyyy1 wl) An

We want to show that C'(w
suffices to show that C(w) and f(w) are nonnegative.

First we show that C(w) are nonnegative for w > 1. Note that C(w) =
£1C(w —1) — C(w — 2). Then if we show C(1) > 0 > C(0), then the induction

on w will show that C(w) is increasing with w. By Lemma 3.14, we have

) is nonnegative for 1 < w < ng — 3, for which it
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C)=1- 7“1‘4217_11;1 < 0. On the other hand,
ny;
= Api—1a Apiq —r1An -1 Api—1a
C 1 — _ _ 1 5 — 1, 1 5 1 5
(1) =& — (&1 —wi) Ao 3 . + wy A
_¢ (—An12;1> Ly Api—1a
Am;l Am;l 7

which is positive because of equation (22).
Next we show that #(w) are nonnegative for all w such that 1 < w < ny—3.
Recall from (44) that

no—3
0 = An1,2;1 — 716 — Z ( [2}27‘1 [i]lwl)Tj;Q > 0.
j=1
Multiplying with "1 Ll ylelds

Ll = efthwn) An, 1

An1—2;1

TlAnl—l;l
Apyogg — A5

A . Tj2 > 0.
n1—2;1 j=1

So it is enough to show that if £, 71, w; > 2, then

13 3 13 ny—1;
’[”1An1_1;1 § Cwﬂl - ( ?[,01‘112741 E,Uﬂ wl)Alill

nyil
(49) Ao 21 oL (L T Al;l
and
(50) (crthr — cfwn) An, —1 N gresly_; |
Anmi—21 et = (eillar — ey Wl)lilni;ljl
This ends the proof of Lemma 5.8, modulo inequalities (49) and (50),
which are proved in the following subsection. O

5.2.3. Proof of (49) and (50). It follows from Lemma 3.14 that the left-
hand side of (49) is equal to (An1,2;1 + Anl;l)/Anle;l =1+ Anl;l/An172;1-
Thus (49) is equivalent to

(51)
1+ AAn“l gl[cgf]ﬂ nil ([55]3127"1 - [065#1601)/17111;1
n1—2;1 CortoAniil — (Cpliort — Cyiiw1) Any—151
— 14 Apy 14 (ﬁlcqfﬂl _Cgﬂz)Am i1
A2 52214111,1 (c EﬂQTl - CgﬂMl)Anrl;l
— 1 &1 0521 5312

>
Apy 231 051214711;1 —( 53127“1 - Ca[fﬂlwl)Am—l;l
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[€1] 1 el

>
Any-2;1 051214711;1 —(c [gﬂzrl - 0521“}1)14711—1;1
1 C[ﬁﬂ
w

by recursive definition of ¢,
=

Lemma 3.14
A 2:1 = [51] A [51] A
nL—s Cow+1W14n1 —1;1 = Cyyp9in; —2;1

(31

] wJQAnl—Z'l > A, g

< Cw+1w1An1_1;1 —C
<~ CgﬂlwlAnl—l-l — Ay 2 (e [E1] 4 C[gl] 5) >0

by recursive definition of c[gl]
<~

5£1<W1An1—1;1 — &1 An —21) > 0.

This last inequality holds by equation (22), and thus this completes the proof
of (49).

To prove inequality (50) we start with inequality (51) above. Suppose first
that

[1]
[51] > fle}H_J n1;l

(ctbrt = efhwn) An, 1
Then (51) implies

(@27“1 ﬁl_}lwl)Am—l;l 510511 _jAnin

> 5
An172;1 [51]1(-&]114711 1;1 — C'EU—EZATH 21

which is equivalent to inequality (50), because A, —2.1 = rAp, —1.1 — Anyi1, by
Lemma 3.14.
Suppose to the contrary that

glc'w“rl—j ny;l

(1]
el < .
(citbrt — e An, 1
Then
(€]
el (1] §1Cu41—jAma
ro—chw < —————,
j+2 741 Ca[ﬁﬂAnl—l;l
and dividing by ﬂ and using Ay,.1 = 1 An,—1;1 — Ap,—2;1 yields
(52) C[Eﬂ = erclt j(rAn, —11 — Any ;1) et T
1 <
Ei}l [Elgcgl]Amf L1 [i}lcz[ﬁﬂ

Case 1. Suppose that j > 2. Recall that c[fl] =0, 0[251] = 1,cg§1] = &1, and
then (52) implies

EE}A B 51]17’

cq[fﬂ ’
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SO
[5+1]2 &l [51] [El]
j _ w 1 . _ .
o\ el T e ) }Lnolo [aﬂ Jim [511
j+
ol [51]
where the last inequality holds since Jgg T < fjl 3 for all j > 1. Computing the
C;+1 CJ+2

limits, we obtain

[e2 _ _ Je2 _
(53) cu1><§1+ 251 e 3 4>T1=T1\/§%—4-

2

o If & > 3, then (53) implies wy > r1(§ — 1), thus w; > 5 and w; — & >

Giri—r—& > 1.
e If & =2 and w; > 4 then, since 0 < Ay, —2.1/An,—1.1 < 1, we have
Any—21

w1 — &1 > 2.

ni—1;1
o If &4 =2, wy; =3 and r; > 3, then we still have

A —o:
w1 — 517711 21 > 2.
ny—1;1
o If & = 2, wy = 3 and r; = 2, then the subquiver obtained from t* by
mutating at d’ is acyclic, so we do not consider this case.

o If&y =w; =2andr; > 3, then cgigrl—cgi]lwl >2andw; —& A"1 fi > 1.

In any of the above cases, we have

(€], _ ] Any 21
(c5tart — cipwi)(wr — élﬁ—m) >2
1] 1] Anz, _ G100
| n—2; w+1—j
(54) — ( ]+2T1 - C]Jrlwl)( - 51 Anlfll) = [gﬂl
31
gl L} n1—1;1
= ﬁ]ﬂh ﬁﬂlwl)(wlz‘lnqu —&1An —20) > +1[§]1] —.
Cu+1
Since 5! = & c&] — cEﬂQ, and thus flc[éﬂ 51]2, it follows that
( ﬁl]zrl gi]ﬂdl)( EﬂlwlAm—l'l EJQAm 2,1) > fleH _jAn, -1

= (Eil]z?”l ﬁl]ﬂdl)( w1 An, 1 — ey An, 2a) An,—1a

(1]
> §1C, 41— ]Anl 1;1

L 3.14
_— ( ﬁ}ﬂl gﬂwl)( Cthw1 An, 11 — ey An, 21) An, 10

> 610511 ]AnlglAnl —2;1
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(gil_]zrl Cgil_gwl)Am—l;l flcfjﬂl —j n1;1

=
Api—21 5£1W1An1—1;1 - C,EJ,QAnl—Q;l

€1] [€1]
Lemma 3.14 ( Cital1 — Cj+1W1)An171;1
<
An1—2;1

(€]
glcu}—‘,—l ] n171

ety Anyst — (et — el ) Ay 1

which proves inequality (50) in these cases.

Next suppose that & = r; = w1 = 2. In this case, cﬁ]l = j, and thus

( Ei]zrl Ei]lwl) =2 and ( 5ﬂ2r1 - cgﬂlwl) = 2. It therefore suffices to show

that
2An,—11 2(w — j)Aninn
An1—2;1 (w + 1)An1;1 - 2*’4711—1;17

but this is equivalent to
(w + 1)An1;1An171;1 > (w - j)Anl;lAnlfQ;l + 2An171;1An171;1a

which holds true for 5 > 1, by Lemma 3.14. This completes the proof in the
case j > 2.

—~ [€1]
Case 2. Suppose that j = 1. Let & = limy o0 %; in other words,
C

oo aryEd
=" —.
Case 2-1. Suppose that

(55) Anl—r;rwl (& — W) (W1 Ay 1.1 — E14n, —2.1) Ay 11 > €
A 231 A% o -

If 11 = 2, then one can check (50) directly. Suppose 1 > 3. Then
1] ~&ie 7"11 = —wi+& 7 is the number of arrows between e and d’ in the seed
[r ]
in the seed tw E In particular these numbers are positive. Then by Lemma 5.9,
we have (w100 §1c )( [ -& cn 2) > c[ 1] for n € {n; —2,n1 —1}. So

t* and wic,, flcgi]Q is the number of arrows between some pair of vertices

(&1 —wl)(wlc & C ) > 62"1}2,
hence
(&1 —wi)(widn,—11 — E1An —2.1) > Ap—2.1,

because A;;; is a positive linear combination of cyl] and cyﬂ
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Then (55) implies that

(wl—a)%Zfl

n1—2;1
— <w1 — ) i : Z 51
§ir1 —wi/ Api—2a
<= wp— — Z 1L
§1r1 — w1 Api—1a

-2 2

— & A
W —
! 1Am—1;1 T & —wr

A,
= (&ir1 —wi)(wr — §1A172’1) > 2,

n1—1;1

and we can use the argument following (54).

LEMMA 5.9. Fix a positive integer r > 3, and let ¢; = C,ET}. Let w,€,a,b
be integers such that b — a, wcy — Ecq—1 and wey — Ecp—1 are positive. Then
(wea —&ca—1)(wep — &cp1) > Cpa1-

Proof. Suppose that w? — rwé + &2 < 0. If b —a < 2, then ¢p_q_1 <0, s0
there is nothing to show. Thanks to Lemma 3.1, we get

(wca_gcafl)(wcb-i-l_gcb)_(wcaJrl_gCa)(wcb_gcb—l) = —Cp—a+1 (w2_rw§+£2)a
and the desired statement follows from induction on b — a.

Suppose that w? — rwé + €2 > 0. Since ¢; = —co_; for i € Z, we assume
(weq — &cq—1) < (wep — Ecp—1) without loss of generality. Then there exists an
integer e < a such that wcey1 —&ce > 0 and wee —E€ce—1 < 0. Then again using
¢; = —co_; and Lemma 3.1, we get

wep — Ecp—1 = (Weey1 — £Ce)Cheq1 + [wCe — ECo—1]Ch—e,

which is clearly greater than cp_,_1. O

Case 2-2. Suppose that
Am—l;lwl (G —w)b(widn -1 — &1 4n —21)Ani 10

< &.
An172;1 A721172;1 2
Then
6 Any—21 o (E1r1 — W)€ (W1 Ay 1.1 — E14n;—2.1)
An1—1;1 An1—2;1
— (E1r1 — w1)E (W1 An, 11 — E1 40, _21)
Apyi—2:1

A, o
+ (&1 —wr) > & — §1A172’1

ny—1;1
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Lemma 310(a) (&r — wl)a(wlArn—l;l — &4, -2.1)

An1—2;1
A
+ (&1 —w1) > 61#
ni1—1;1
<= (flTl — wl)A 1;1 > 51 n1;l
e E1(w1Ang—1;1—61An; —2;1) +1
Anl 21
(&1m1 —wi)Ap,—121 o &14n, 0
An172;1 gl(wlAmfl;l - £1An172;1) + An172;1
Lemma, 5.10 (&1m1 —wi)Ap, -1
An172;1
flc'[f;ﬂAnul
[51]

w+1(W1An171;1 —&§1An, —21) + Cgul]Am 21

€1l — A
by recursive definition of c[ 617”1 Ww1)Any—1;1
( )An,

Ap—2.1

> élcgl]Am,

[51]1W1An1 11— CEU_AQATM 2.1

Lemma3.14  (§171 — w1)An, 151
An1—2;1

5101[51}14711,1

EﬂzAm;l — (B = o A, 1

which is inequality (50) for j = 1.
LEMMA 5.10. We have

flcw+1Am;1

5£Q(W1An1—1;1 - & n1—2;1> + CgﬂlAm—Zl

glcwl]Anl,
[51] (&1

w+1(WlAn1—l;1 - 51 n1—2;1) + ¢y ]An1—2;1

In particular,

(1]
lim §1cw Ay
wW—00 [61]

Cop1 (W1 An, 1,1 — §1An, —2.1) + C[&]Anl 2.1
glcwl]Aﬂl,
[51]

w+1(W1An171;1 — & A —21) + cgl]An1,2;1
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Proof. The statement is equivalent to

flchJilAm, 516[51 Any1
531200114711—1 1 6541314711—2;1 541100114711 151 — CEE_H_QAnl—Q;l
[Eﬂ (€] A &) &) A
= Cui1Cy1W1An—1;1 — Cu1Cyioin —2;1
> elftlelS lpwr Any 10 — el Any 20
hergma 3.1 w1An, 11 — §1 40,21 > 0. O

This completes the proof of Proposition 5.2 modulo the following lemmas,
which are proved in [23].

LEMMA 5.11 ([23, Lemma 4.8]). Let a,b,c be any nonnegative integers.
Then there are nonnegative integers dy, . ..,d. such that

()50

for all nonnegative integers X.

LEMMA 5.12 ([23, Lemma 4.9]). Let a,b be any nonnegative integers.
Then there are nonnegative integers eq, . .., eqtp Such that

(06 -5()

for all nonnegative integers X.

An,—1:
LEMMA 5.13 ([23, Lemma 4.5]). | (A, —1;1 — ) 52| = 80,21 > 0.

LEMMA 5.14 ([23, Lemma 4.6]). Let I be a subset of the integers, and let
q: I — R be a function. Suppose that a polynomial of x of the form

ZCI(meb m

mel
is divisible by (1 + x)9 and its quotient has nonnegative coefficients. Let
h
b—m
=0

be a polynomial of m with d; > 0. Then

> p(m)g(m)z>~"

mel

is divisible by (1 +x)9~" and its quotient has nonnegative coefficients.
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5.3. Proof of Proposition 5.5.
Proof. By Theorem 3.24 and replacing x; by x;l}wz, we have that
<n12

T0;1,7T1;15-++,Tny —2;1 w=0
snlfl;lenlfl;l_g

Aw+1;1 — T18w;1 Tt An1—1;1*T15n1—2;1
Tw;1 Tz

is divisible by (14244, ") (Am-1179=Ana ip Z[$d;thi1], and the resulting
quotient has nonnegatlve coefficients. Multiplying the sum with

T {(An1 1,1—S) % Any 111J —An 151

md;th

shows that

> (1

Aw+1;1 — T1Sw;1 :|>

T0;15T1;150-, Ty —2;1 w=0 Tw;1
(56) 3n171;1:A7L171;1*§
Apg—1;1
_ 1-11 |
X (244 Tl){(Anlil;l ) Angsl J 2
b WZ
is also divisible by (1 4+ 244, ")" 1(Any-11=)=An11 and the resulting quotient

has nonnegative coefﬁments Moreover, Lemma 5.13 above implies that the
exponents in the expression (56) are nonnegative and, since the divisor has
constant term 1, this shows that the quotient is a polynomial.

Note that the statement about the divisibility of (56) also holds when we
replace (xg;th) with any other expression X. We can write the second sum of

(15) as follows:
ert,ZZAtth m) X’ ™,

0>0 ¢>0 ¢
where
ny—2
Aw+1:1 — T1Swi1
glm) =[] | 7
w=0 w;l
22,2:7137—10,2 \‘A Anl—l;lJ
1 —¢)m= | — g, o
p(m)= Y dj(( mtit =) Anit " 2’1>,
=0 J
Api—11
b= (A, 1.4 —c)—a—2-
\‘( n1—1;1 §) Anl;l J7

m = Spq—2;1,

!
[bt n sgn(Qbfi,e-i-l)
Hl zt’
TN

HZ Ztlze

X =
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Moreover, we can replace the upper bound > 727 3Tw72 of the sum in
p(m) by the larger integer A, , 2.1 — ric — 0 and setting d; = 0, whenever
J o> Sk 13 Tw2. The fact that an 37'%2 < Ap,—24 — ris — 0 follows from
equation (44).

Using Lemma 5.14 with g = r(An,—11 — <) — Apyn and b = Ay 0 —
r16 — 0, we get that the second sum in the expression in (15) is divisible by

sgn(2bfi/e+l) r1(Any —1,1—6)—Ang;1—(Ang —2;1—716—0)

I« [bt o+
1+ i’ Zt ]
1,€e +
Hl i t’
(57) ,
bt n sgn(2b276+1)
Lemma 3.14 Hl I8 Z’e
= 1+ Y E— )
(=6} )+
Hl it

and the resulting quotient has nonnegative coefficients. Finally, dividing (57)
by :cz;t, and using the fact that

Tet = (H ’Lt’ +H ,Lt/le )/me;t’v
i

we see that the second sum in (15) is divisible by aﬁe. This completes the
proof of Proposition 5.5(1). Part (2) can be proved in a similar way using
Proposition 5.4. ([l

6. Application to quiver Grassmannians

Let (Q,S) be a quiver with potential, and let M be an indecomposable
representation of (@, S) that is obtained by a mutation sequence starting from a
negative simple representation; see [8, §5]. Let Gre M denote the Grassmannian
of subrepresentations of M of dimension vector e.

THEOREM 6.1. The FEuler-Poincaré characteristic of Gre M is nonnegative.

Proof. 1t has been shown in [8] that M corresponds to a cluster variable
whose F-polynomial is equal to a sum of monomials whose coefficients are
given by the Euler-Poincaré characteristic of Gre(M). Theorem 4.2 implies
that these coeflicients are nonnegative. O
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