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Positivity for cluster algebras

By Kyungyong Lee and Ralf Schiffler

To the memory of Andrei Zelevinsky

Abstract

We prove the positivity conjecture for all skew-symmetric cluster

algebras.

1. Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky in [13] in

the context of total positivity and canonical bases in Lie theory. Since then

cluster algebras have been shown to be related to various fields in mathemat-

ics including representation theory of finite dimensional algebras, Teichmüller

theory, Poisson geometry, combinatorics, Lie theory, tropical geometry and

mathematical physics.

A cluster algebra is a subalgebra of a field of rational functions in N

variables x1, x2, . . . , xN , given by specifying a set of generators, the so-called

cluster variables. These generators are constructed in a recursive way, starting

from the initial variables x1, x2, . . . , xN , by a procedure called mutation, which

is determined by the choice of a skew-symmetric N × N integer matrix B

or, equivalently, by a quiver Q. Although each mutation is an elementary

operation, it is very difficult to compute cluster variables in general because of

the recursive character of the construction.

Finding explicit computable direct formulas for the cluster variables is

one of the main open problems in the theory of cluster algebras and has been

studied by many mathematicians. In 2002, Fomin and Zelevinsky showed

that every cluster variable is a Laurent polynomial in the initial variables

x1, x2, . . . , xN , and they conjectured that this Laurent polynomial has positive

coefficients [13].

This positivity conjecture has been proved in the following special cases:

• Acyclic cluster algebras. These are cluster algebras given by a quiver that

is mutation equivalent to a quiver without oriented cycles. In this case,
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positivity has been shown in [17], building on [4], [16], [25], [26], using

monoidal categorifications of quantum cluster algebras and perverse sheaves

over graded quiver varieties. The bipartite case has been shown first in [25].

In the special case where the initial seed is acyclic, a different proof has

been given later in [9] using Donaldson-Thomas theory. Very recently, after

our proof of positivity was available, this approach has also been used to

prove positivity for all rank 4 cluster algebras in [7].

• Cluster algebras from surfaces. In this case, positivity has been shown in [24]

building on [28], [30], [29], using the fact that each cluster variable in such a

cluster algebra corresponds to a curve in an oriented Riemann surface, and

the Laurent expansion of the cluster variable is determined by the crossing

pattern of the curve with a fixed triangulation of the surface [11], [12]. The

construction and the proof of the positivity conjecture have been generalized

to non skew-symmetric cluster algebras from orbifolds in [10].

Our approach in this paper is different. We prove positivity almost exclu-

sively by elementary algebraic computation. The advantage of this approach

is that we do not need to restrict to a special type of cluster algebras. Our

main result is the following.

Theorem 1.1. The positivity conjecture holds in every skew-symmetric

cluster algebra.

Our argument provides a method for the computation of the Laurent

expansions of cluster variables, and some examples of explicit computations

were given in our earlier work [23]. We point out that direct formulas for the

Laurent polynomials have been obtained earlier in several special cases. The

most general results are the following:

• A formula involving the Euler-Poincaré characteristic of quiver Grassman-

nians obtained in [15], [8] using categorification and generalizing results

in [5], [6]. While this formula shows a very interesting connection be-

tween cluster algebras and geometry, it is of limited computational use,

since the Euler-Poincaré characteristics of quiver Grassmannians are hard

to compute. In particular, this formula does not show positivity. On the

other hand, the positivity result in this paper proves the positivity of the

Euler-Poincaré characteristics of the quiver Grassmannians involved; see

Section 6.

• An elementary combinatorial formula for cluster algebras from surfaces

given in [24].

• A formula for cluster variables corresponding to string modules as a prod-

uct of 2× 2 matrices obtained in [1], generalizing a result in [2].

The main tools of the proof of Theorem 1.1 are modified versions of two

formulas for the rank 2 case, one obtained by the first author in [18] and



POSITIVITY FOR CLUSTER ALGEBRAS 75

the other obtained by both authors in [22]. These formulas allow for the

computation of the Laurent expansions of a given cluster variable with respect

to any seed close enough to the variable, in the sense that there is a sequence

of mutations µd, µe, µd, µe, . . . using only two directions d and e that links seed

and variable. The general result then follows by inductive reasoning.

We actually show the stronger result, Theorem 4.1, that for every cluster

variable u and for every cluster x, there exists a connected rank 2 subtree T2

of the exchange tree containing x such that u can be expressed as a sum of

four positive Laurent polynomials in the variables of four clusters closest to x

in T2, and such that the variables that are not contained in all four clusters

appear only with positive powers. Because of rank 2 positivity, this implies

that u is a positive Laurent polynomial in every cluster in T2.

The proof of Theorem 4.1 is by induction on the number of rank 2 mutation

subsequences of the mutation sequence from u to x. It uses two different rank

2 formulas, to express cluster variables that are two rank 2 sequences away

from x as Laurent polynomials in four clusters including x. First we compute

the Laurent expansion L1 of the cluster variable after one rank 2 mutation

sequence as a sum of two Laurent polynomials in two adjacent clusters such

that the variables that are not contained in both clusters appear only with

positive powers. Then we compute the Laurent expansions in four clusters

including x of all cluster variables appearing in L1 using the second rank 2

sequence and then substitute these in L1. We then show that the variables

that are not contained in all four clusters appear only with positive powers.

If the cluster algebra is not skew-symmetric, it is shown in [27], [19] that

(an adaptation of) the second rank 2 formula still holds. We therefore expect

that our argument can be generalized to prove the positivity conjecture for non

skew-symmetric cluster algebras. A noncommutative version of the formula has

been given in [21], [27].

The article is organized as follows. We start by recalling some definitions

and results from the theory of cluster algebras in Section 2. In Section 3, we

study mutation sequences of rank 3 quivers, and we recall the definition of

compatible pairs as well as results from our previous work [23] in Section 3.

The positivity conjecture is proved, using Theorem 4.1, in Section 4, and The-

orem 4.1 is proved in Section 5 following the outline above. As an application,

we show that certain quiver Grassmannians have positive Euler-Poincaré char-

acteristic in Section 6.
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2. Cluster algebras

In this section, we review some notions from the theory of cluster alge-

bras introduced by Fomin and Zelevinsky in [13]. Our definition follows the

exposition in [14].

To define a cluster algebra A we must first fix its ground ring. Let (P,⊕, ·)
be a semifield, i.e., an abelian multiplicative group endowed with a binary

operation of (auxiliary) addition ⊕ that is commutative, associative, and dis-

tributive with respect to the multiplication in P. The group ring ZP will be

used as a ground ring for A.

One important choice for P is the tropical semifield; in this case we say that

the corresponding cluster algebra is of geometric type. Let Trop(u1, . . . , um)

be an abelian group (written multiplicatively) freely generated by the uj . We

define ⊕ in Trop(u1, . . . , um) by

(1)
∏
j

u
aj
j ⊕

∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j ,

and we call (Trop(u1, . . . , um),⊕, ·) a tropical semifield. Note that the group

ring of Trop(u1, . . . , um) is the ring of Laurent polynomials in the variables uj .

As an ambient field for A, we take a field F isomorphic to the field of

rational functions in N independent variables (here N is the rank of A), with

coefficients in QP. Note that the definition of F does not involve the auxiliary

addition in P.

Definition 2.1. A labeled seed in F is a triple (x,y, B), where

• x = (x1, . . . , xN ) is an N -tuple from F forming a free generating set over

QP;

• y = (y1, . . . , yN ) is an N -tuple from P; and

• B = (bij) is an N×N integer matrix that is skew-symmetrizable.

That is, x1, . . . , xN are algebraically independent over QP, and

F = QP(x1, . . . , xN ).

We refer to x as the (labeled) cluster of a labeled seed (x,y, B), to the tuple y

as the coefficient tuple, and to the matrix B as the exchange matrix.

We use the notation [x]+ = max(x, 0), [1, N ] = {1, . . . , N}, and

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.
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Definition 2.2. Let (x,y, B) be a labeled seed in F , and let k ∈ [1, N ].

The seed mutation µk in direction k transforms (x,y, B) into the labeled seed

µk(x,y, B) = (x′,y′, B′) defined as follows:

• The entries of B′ = (b′ij) are given by

(2) b′ij =

−bij if i = k or j = k,

bij + sgn(bik) [bikbkj ]+ otherwise.

• The coefficient tuple y′ = (y′1, . . . , y
′
N ) is given by

(3) y′j =

y
−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

• The cluster x′ = (x′1, . . . , x
′
N ) is given by x′j = xj for j 6= k, whereas

x′k ∈ F is determined by the exchange relation

(4) x′k =
yk

∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk
.

We say that two exchange matrices B and B′ are mutation-equivalent if

one can get from B to B′ by a sequence of mutations. A sequence of mutations

µd, µe, µd, µe, . . . using only mutations in two directions d and e is called a rank

2 mutation sequence.

Definition 2.3. Consider the N -regular tree TN whose edges are labeled

by the numbers 1, . . . , N , so that the N edges emanating from each vertex

receive different labels. A cluster pattern is an assignment of a labeled seed

Σt = (xt,yt, Bt) to every vertex t ∈ TN , such that the seeds assigned to the

endpoints of any edge t k t′ are obtained from each other by the seed mutation

in direction k. The components of Σt are written as

(5) xt = (x1;t , . . . , xN ;t) , yt = (y1;t , . . . , yN ;t) , Bt = (btij) .

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.4. Given a cluster pattern, we denote

(6) X =
⋃
t∈TN

xt = {xi;t : t ∈ TN , 1 ≤ i ≤ N},

the union of clusters from all seeds in the pattern. The elements xi;t ∈ X are

called cluster variables. The cluster algebra A associated with a given pattern

is the ZP-subalgebra of the ambient field F generated by all cluster variables:

A = ZP[X ]. We denote A = A(x,y, B), where (x,y, B) is any seed in the

underlying cluster pattern.
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The cluster algebra is called skew-symmetric if the matrix B is skew-

symmetric. In this case, it is often convenient to represent the N ×N matrix

B by a quiver QB with vertices 1, 2, . . . , N and [bij ]+ arrows from vertex i to

vertex j.

In [13], Fomin and Zelevinsky proved the remarkable Laurent phenomenon

and posed the following positivity conjecture.

Theorem 2.5 (Laurent Phenomenon). For any cluster algebra A and any

seed Σt, each cluster variable x is a Laurent polynomial over ZP in the cluster

variables from xt = (x1;t, ..., xN ;t).

Conjecture 2.6 (Positivity Conjecture). For any cluster algebra A, any

seed Σt, and any cluster variable x, the Laurent polynomial expansion of x in

the cluster xt has coefficients that are nonnegative integer linear combinations

of elements in P.

Our main result is the proof of this conjecture for skew-symmetric cluster

algebras.

3. Expansion formulas

In this section, we recall from [23] how to compute the Laurent expansions

of those cluster variables that are obtained from the initial cluster by a muta-

tion sequence involving only two vertices. The main tools are the rank 2 for-

mula from [22] (in the parametrization of [19]) and the rank 2 formula from [18].

Let r be a positive integer, and let {c[r]
n }n∈Z be the sequence defined by

the recurrence relation

c[r]
n = rc

[r]
n−1 − c

[r]
n−2,

with the initial condition c
[r]
1 = 0, c

[r]
2 = 1. For example, if r = 2, then

c
[r]
n = n− 1; if r = 3, the sequence c

[r]
n takes the following values:

. . . ,−3,−1, 0, 1, 3, 8, 21, 55, 144, . . . .

Lemma 3.1 ([23, Lemma 3.1]). Let n ≥ 3. We have

c
[r]
n−1c

[r]
n+k−3 − c

[r]
n+k−2c

[r]
n−2 = c

[r]
k

for k ∈ Z. In particular, we have (c
[r]
n−1)2 − c[r]

n c
[r]
n−2 = 1.

3.1. Nonacyclic mutation classes of rank 3. We start by collecting some

basic results on quivers of rank 3. First let us recall how mutations act on a

rank 3 quiver. Given a quiver

1
r // 2

ω���������

3,
ξ

__>>>>>>>
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where r, ξ, ω ≥ 0 denote the number of arrows, then its mutation in 1 is the

quiver

1

ξ ��>>>>>>> 2
roo

3,
rξ−ω

??�������

where we agree that if rξ − ω < 0, then there are |rξ − ω| arrows from 2 to 3.

Lemma 3.2. Let Q be the quiver

1
r // 2

ω���������

3,
ξ

__>>>>>>>

where r ≥ 0 and ξ, ω ∈ Z denote the number of arrows, and suppose that one

of ξ, ω is nonnegative. Consider the mutation sequence

Q = Q0
1

Q1
2

Q2
1

Q3
2 · · · .

Then Qn is

1
r // 2

ω̄(n)����������

3
ξ̄(n)

^^>>>>>>>>

if n is even, 1

ω̄(n) ��>>>>>>>> 2
roo

3
ξ̄(n)

@@��������

if n is odd, where



ξ̄(n)=c
[r]
n+2ξ − c

[r]
n+1ω and ω̄(n)=c

[r]
n+1ξ − c

[r]
n ω if c

[r]
`+1ξ − c

[r]
` ω > 0

for 1 ≤ ` ≤ n,

ξ̄(n)=c
[r]
n−1ω − c

[r]
n ξ and ω̄(n)=c

[r]
n+1ξ − c

[r]
n ω if c

[r]
n+1ξ − c

[r]
n ω ≤ 0

and c
[r]
` ξ − c

[r]
`−1ω > 0

for 1 ≤ ` ≤ n,

ξ̄(n)=c
[r]
n−1ω − c

[r]
n ξ and ω̄(n)=c

[r]
n−2ω − c

[r]
n−1ξ if c

[r]
n ξ − c[r]

n−1ω ≤ 0

and n ≥ 2.

If both ξ < 0 and ω < 0, then

ξ̄(n) = −c[r]
n+1ω − c

[r]
n ξ and ω̄(n) = −c[r]

n ω − c
[r]
n−1ξ.

Remark 3.3. One may rephrase in terms of the following notation: let

s̄(r, ξ, ω, n) = s̄(n) := c
[r]
n+1ξ − c

[r]
n ω
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for n ≥ 0. Then we have

ξ̄(n) = s̄(n+ 1), ω̄(n) = s̄(n) if s̄(1), . . . , s̄(n) > 0,

ξ̄(n) = −s̄(n− 1), ω̄(n) = s̄(n) if s̄(n) ≤ 0

and s̄(1), . . . , s̄(n− 1) > 0,

ξ̄(n) = −s̄(n− 1), ω̄(n) = −s̄(n− 2) if s̄(n− 1) ≤ 0 and n ≥ 2.

Remark 3.4. (1) The three cases in the lemma, when one of ξ, ω is neg-

ative, arise from the different possibilities for the orientation of the arrows

at vertex 3. In the first case, all quivers Q0, . . . , Qn−1 are cyclically ori-

ented; in the second case, the quivers Q0, . . . , Qn−2 are cyclic and the quivers

Qn−1, Qn, Qn+1 are acyclic. In the third case, if r > 1, there exists m < n

such that Qm−1, Qm, Qm+1 are acyclic, and the quivers Qp, with p > m + 1,

are cyclic.

(2) If r > 1 the three cases exhaust all the possibilities. Indeed, if c
[r]
n+1ξ−

c
[r]
n ω ≤ 0 and c

[r]
n ξ − c[r]

n−1ω > 0, then

c
[r]
n+1

c
[r]
n

≤ ω

ξ
<

c
[r]
n

c
[r]
n−1

<
c

[r]
n−1

c
[r]
n−2

< · · · if ξ > 0,

c
[r]
n

c
[r]
n+1

≥ ξ

ω
>
c

[r]
n−1

c
[r]
n

>
c

[r]
n−2

c
[r]
n−1

> · · · if ω > 0,

and thus c
[r]
` ξ − c

[r]
`−1ω > 0 for 1 ≤ ` ≤ n.

If r = 0, 1, then c
[r]
n is periodic. More precisely,

c[r]
n =

. . . 0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . . for r = 1,

. . . 0, 1, 0,−1, 0, 1, 0,−1, . . . for r = 0.

(3) The case where both ξ < 0 and ω < 0 is listed here for the sake

of completeness, but this case is not used in the rest of the paper, because

the quiver obtained after one mutation belongs to the other case. Note that

if ` = 1, the condition c
[r]
`+1ξ − c

[r]
` ω > 0 becomes ξ > 0, and the condition

c
[r]
`−1ω − c

[r]
` ξ < 0 becomes ω > 0.

Proof. This is generalization of a result in [3], where the first case is con-

sidered. If c
[r]
`+1ξ − c

[r]
` ω > 0, for 1 ≤ ` ≤ n, we proceed by induction on n. For

n = 1, the quiver Q1, obtained from Q by mutation in 1, is the following:

1

ξ ��>>>>>>> 2
roo

3,
rξ−ω

??�������
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and for n = 2, the quiver Q2, obtained from Q by mutation in 1 and 2, is the

following:

1
r // 2

rξ−ω���������

3.
(r2−1)ξ−rω

__???????

In both cases, the result follows from c
[r]
1 = 0, c

[r]
2 = 1, c

[r]
3 = r, c

[r]
4 = r2 − 1.

Suppose that n > 2. If n is odd, then by induction we know that the

quiver Qn is obtained by mutating the following quiver in vertex 1:

1
r // 2

ω̄(n−1)���������

3,
ξ̄(n−1)

__>>>>>>>

and the result follows from ω̄(n) = ξ̄(n− 1) and

(7)

rξ̄(n−1)−ω̄(n−1) = rc
[r]
n+1ξ − rc

[r]
n ω − c[r]

n ξ + c
[r]
n−1ω = c

[r]
n+2ξ − c

[r]
n+1ω = ξ̄(n).

The proof is similar in the case where n is even.

If c
[r]
n+1ξ − c

[r]
n ω ≤ 0 and c

[r]
`−1ω − c

[r]
` ξ < 0, for 1 ≤ ` ≤ n, and if n is odd,

then the quiver Qn is obtained by mutating the following quiver in vertex 1:

1
r //

−ξ̄(n−1) ��>>>>>>> 2

ω̄(n−1)���������

3,

and the result follows from ω̄(n) = ξ̄(n − 1) and ξ̄(n) = −ω̄(n − 1). So the

resulting quiver Qn is

1 2
roo

−ξ̄(n)���������

3,
−ω̄(n)

__>>>>>>>

and c
[r]
n ω − c[r]

n+1ξ ≥ 0. This shows the statement of the lemma in the second

case.

Now mutating in vertex 2 results in Qn+1,

1
r // 2,

3
ξ̄(n+1)

^^======== −ω̄(n+1)

??�������
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where ω̄(n+ 1) = ξ̄(n) = c
[r]
n−1ω − c

[r]
n ξ and ξ̄(n+ 1) = −ω̄(n) = c

[r]
n ω − c[r]

n+1ξ.

This proves the third case of the lemma.

If n is even, then the proof is similar.

For the case where both ξ < 0 and ω < 0, it is easy to check the claimed

identity for n = 1, 2, and Qn is nonacyclic for n ≥ 2, thus the same proof as

above applies. �

Lemma 3.5. In the situation of Lemma 3.2, if r ≥ 2 and ξ ≥ ω > 0, then

Qn is cyclically oriented for all n ≥ 0.

Proof. An easy induction, using c
[r]
`+1 = rc

[r]
` − c

[r]
`−1, shows that we never

quit the first case of Lemma 3.2. �

Definition 3.6. Let Q0 be the quiver 1
r // 2

ωwwpppppp

3ξ

ggNNNNNN
with r ≥ 0 and

ω, ξ ∈ Z, and let

Q0
1

Q1
2

Q2
1

Q3 Qm

be a sequence of mutations in directions 1 and 2. The sequence (Q0, . . . , Qm)

of quivers is said to be of almost cyclic type if one of the following holds:

(1) r ≥ 2 and c
[r]
n ξ − c[r]

n−1ω > 0 for 1 ≤ n ≤ m;

(2) r ≥ 2 and c
[r]
n ξ − c[r]

n−1ω ≤ 0 for 1 ≤ n ≤ m;

(3) r = 1, m ≤ 2 and c
[r]
n ξ − c[r]

n−1ω > 0 for 1 ≤ n ≤ m;

(4) r = 1, m ≤ 2 and c
[r]
n ξ − c[r]

n−1ω ≤ 0 for 1 ≤ n ≤ m;

(5) r = 0.

The sequence (Q0, . . . , Qm) of quivers is said to be of acyclic type if one

of the following holds:

(6) r ≥ 2, m ≥ 2, and c
[r]
n+1ξ − c

[r]
n ω ≤ 0 and c

[r]
n−1ω − c

[r]
n ξ < 0 for some

1 ≤ n ≤ m− 1;

(7) r = 1, m = 2, ξ ≤ 0 and ω > 0.

Remark 3.7. Conditions (3) and (4) are equivalent to conditions (3′) and

(4′) below, respectively:

(3′) r = 1,m = 1, ω > 0 or r = 1,m = 2, ω > 0, ξ > 0;

(4′) r = 1,m = 1, ω ≤ 0 or r = 1,m = 2, ω ≤ 0, ξ ≤ 0.

Remark 3.8. The quantities c
[r]
n ξ− c[r]

n−1ω are the number of arrows in the

quivers Q0, . . . , Qm; see Lemma 3.2. If each of the quivers Q1, . . . , Qm−1 has an

oriented cycle, then the sequence (Q0, . . . , Qm) is of almost cyclic type. Thus

being of almost cyclic type does not depend on the cyclicity of first and the
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last quiver. Condition (1) of the definition means that quivers Q0, . . . , Qm−2

are cyclic, and condition (2) means that quivers Q2, . . . , Qm are cyclic.

Observe that it is possible that certain quivers in an almost cyclic sequence

are acyclic. For example, the sequence

Q0 Q1 Q2

1 // 2 1 2oo 1 // 2
xxqqqqqq

3

88qqqqqq
3

88qqqqqq
3

ffMMMMMM

satisfies condition (4) and is therefore almost cyclic.

Remark 3.9. If r ≥ 2, then conditions (1), (2) and (6) exhaust all possi-

bilities. Thus in this case the sequence (Q0, . . . , Qm) is either of almost cyclic

type or of acyclic type.

Remark 3.10. In the case where r = 1, we only consider sequences with

m ≤ 2. The reason for this is that in this case the quiver Q5 is the same as the

quiver Q0 with the vertices 1 and 2 switched. Thus the quivers obtained from

Q0 by a sequence of length m with 3 ≤ m ≤ 5 are the same as the quivers

obtained from Q5 by a sequence of length 5−m with 0 ≤ 5−m ≤ 2.

Remark 3.11. If the sequence is of acyclic type satisfying condition (6)

with some n ≤ m−1, then all quivers Qn+1, . . . , Qm satisfy the third condition

of Lemma 3.2.

3.2. Compatible pairs. Let (a1, a2) be a pair of nonnegative integers. A

Dyck path of type a1×a2 is a lattice path from (0, 0) to (a1, a2) that never goes

above the main diagonal joining (0, 0) and (a1, a2). Among the Dyck paths of

a given type a1× a2, there is a (unique) maximal one denoted by D = Da1×a2 .

It is defined by the property that any lattice point strictly above D is also

strictly above the main diagonal.

It will be convenient to extend this definition to negative integers a1, a2.

If a1 < 0, then the notation Da1×a2 means D0×a2 and, similarly, if a2 < 0, then

the notation Da1×a2 means Da1×0. If both a1, a2 < 0, then Da1×a2 means D0×0.

Let D = Da1×a2 . Let D1 = Da1×a21 = {u1, . . . , ua1} be the set of horizontal

edges of D indexed from left to right, and let D2 = Da1×a22 = {v1, . . . , va2} be

the set of vertical edges of D indexed from bottom to top. Given any points

A and B on D, let AB be the subpath starting from A, and going in the

Northeast direction until it reaches B (If we reach (a1, a2) first, we continue

from (0, 0).) By convention, if A = B, then AA is the subpath that starts from

A, then passes (a1, a2) and ends at A. If we represent a subpath of D by its

set of edges, then for A = (i, j) and B = (i′, j′), we have

AB =

{uk, v` : i < k ≤ i′, j < ` ≤ j′} if B is to the Northeast of A,

D − {uk, v` : i′ < k ≤ i, j′ < ` ≤ j} otherwise.
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We denote by (AB)1 the set of horizontal edges in AB, and by (AB)2 the set

of vertical edges in AB. Also let AB◦ denote the set of lattice points on the

subpath AB excluding the endpoints A and B. (Here (0, 0) and (a1, a2) are

regarded as the same point.)

Here is an example for (a1, a2) = (6, 4):

u1 u2

u3

u4 u5

u6
v4

v3

v2

v1

A

B

C

Figure 1. A maximal Dyck path.

Let A = (2, 1), B = (3, 2) and C = (5, 3). Then

(AB)1 = {u3}, (AB)2 = {v2},

(BA)1 = {u4, u5, u6, u1, u2}, (BA)2 = {v3, v4, v1}.

The point C is in BA◦ but not in AB◦. The subpath AA has length 10 (not 0).

Definition 3.12. Let r be a positive integer. For S1 ⊆ D1, S2 ⊆ D2, we say

that the pair (S1, S2) is r-compatible if for every u ∈ S1 and v ∈ S2, denoting

by E the left endpoint of u and F the upper endpoint of v, there exists a lattice

point A ∈ EF ◦ such that

(8) |(AF )1| = r|(AF )2 ∩ S2| or |(EA)2| = r|(EA)1 ∩ S1|.

Remark 3.13. We often say compatible instead of r-compatible if r is clear

from the context.

For r = 3, the pair ({u1, u2}, {v3, v4}) is not compatible inD6×4 (Figure 2),

but it is compatible in D7×4 (Figure 3).

E

F

u1 u2

v4

v3

Figure 2

E

F

u1 u2

v4

v3

Figure 3
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3.3. Expansion formulas. The formulas in this subsection are proved in [23].

Let A be a skew-symmetric cluster algebra of geometric type of arbitrary rank

N . Let xt = {x1;t, . . . , xN ;t} and xt′ = {x1;t′ , . . . , xN ;t′} be two clusters such

that there exists a sequence µ of mutations in directions 1 and 2, transforming

xt′ into xt. Suppose that the last mutation in µ is in direction 1. Thus µ is of

one of the following two forms:

µ = t′
1 · 2 · 1 · · 2 · 1

t

or

µ = t′
2 · 1 · 2 · · 2 · 1

t

Observe that xf,t′ = xf,t for all f = 3, 4, . . . , N . Denote by n the number of

seeds in the sequence µ including t′ and t. Let Qt be the quiver of the seed

at t, let r be the number of arrows 1 → 2, where we suppose without loss of

generality that r ≥ 0, and let ξf ∈ Z be the number of arrows f → 1 and

ωf ∈ Z the number of arrows 2→ f in Qt. Given p, q ≥ 0, define

Ai = Ai(p, q) =


pc

[r]
i+1 + qc

[r]
i if µ = t′

1 · 2 · 1 · · 2 · 1
t,

qc
[r]
i+1 + pc

[r]
i if µ = t′

2 · 1 · 2 · · 2 · 1
t,

and

α =

q if µ = t′
1 · 2 · 1 · · 2 · 1

t,

p if µ = t′
2 · 1 · 2 · · 2 · 1

t.

The following lemma is a straightforward consequence of Lemma 3.1.

Lemma 3.14 ([23, Lemma 3.12]). For any i, we have

(a) Ai = rAi−1 −Ai−2,

(b) A2
i −Ai+1Ai−1 = p2 + q2 + rpq. �

We are now ready to state our first expansion formula.

Theorem 3.15 ([23, Th. 3.13]). For all p, q ≥ 0, we have

xp1;t′x
q
2;t′ =

∑
(S1,S2)

x
r|S2|−An−1

1;t x
r|S1|−An−2

2;t

N∏
f=3

x
ξf (An−1−|S1|)−ωf |S2|−Mf

f ;t ,

where Mf = min(S1,S2) {ξf (An−1 − |S1|) − ωf |S2|}, and the sum is over all

(S1 = ∪p+qi=1 S
i
1, S2 = ∪p+qi=1 S

i
2) such that

(Si1, S
i
2) is a compatible pair in

D
c
[r]
n−1×c

[r]
n−2 if 1 ≤ i ≤ α,

Dc
[r]
n ×c

[r]
n−1 if α+ 1 ≤ i ≤ p+ q.
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Remark 3.16. It can be shown that the summation on the right-hand side

in Theorem 3.15 can be taken over all compatible pairs in DAn−1×An−2 instead,

without changing the sum; see [19, Th. 1.11].

Remark 3.17. The term Mf in the exponent of xf ;t in Theorem 3.15 comes

from Fomin-Zelevinsky’s separation of addition formula [14, Th. 3.7].

We shall need a precise value for Mf . As a first step, we determine which

pair (S1, S2) can realize the minimum Mf . Let

a1,i =

c
[r]
n−1 if 1 ≤ i ≤ α,
c

[r]
n if α+ 1 ≤ i ≤ p+ q

and

a2,i =

c
[r]
n−2 if 1 ≤ i ≤ α,
c

[r]
n−1 if α+ 1 ≤ i ≤ p+ q.

Lemma 3.18 ([23, Lemma 3.8]). In the setting of Theorem 3.15, consider

the values ξf (An−1 − |S1|)− ωf |S2| obtained from the following three cases :

• Si1 = Da1,i×a2,i1 and Si2 = ∅ for all 1 ≤ i ≤ p+ q;

• Si1 = ∅ and Si2 = ∅ for all 1 ≤ i ≤ p+ q;

• Si1 = ∅ and Si2 = Da1,i×a2,i2 for all 1 ≤ i ≤ p+ q.

Then one of the (possibly nondistinct) three values is equal to Mf .

Proof. This follows from the proof of Lemma 3.8 in [23] replacing c
[r]
n

by An. �

Before stating our second formula, we need to introduce some notation.

For arbitrary (possibly negative) integers A,B, we define the modified binomial

coefficient as follows:ñ
A

B

ô
:=


∏A−B−1
i=0

A−i
A−B−i if A > B,

1 if A = B,

0 if A < B.

If A ≥ 0, then
[
A
B

]
=
î

A
A−B

ó
is just the usual binomial coefficient; in

particular,
[
A
B

]
= 0 if A ≥ 0 and B < 0.

For a sequence of integers (τj) (respectively (τ ′j)), we define a sequence of

weighted partial sums (si) (respectively (s′i)) as follows:

s0 = 0, si =
∑i−1
j=0 c

[r]
i−j+1τj = c

[r]
i+1τ0 + c

[r]
i τ1 + · · ·+ c

[r]
2 τi−1,

s′0 = 0, s′i =
∑i−1
j=0 c

[r]
i−j+1τ

′
j = c

[r]
i+1τ

′
0 + c

[r]
i τ
′
1 + · · ·+ c

[r]
2 τ
′
i−1.

For example, s1 = c
[r]
2 τ0 = τ0, s2 = c

[r]
3 τ0 + c

[r]
2 τ1 = rτ0 + τ1.
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Lemma 3.19 ([23, Lemma 3.15]). sn = rsn−1 − sn−2 + τn−1.

Definition 3.20. Let L(τ0, τ1, . . . , τn−3) denote the set of all elements

(τ ′0, τ
′
1, . . . , τ

′
n−3) ∈ Zn−2 satisfying the conditions

(1) 0 ≤ τ ′i ≤ τi for 0 ≤ i ≤ n− 4,

(2) s′n−3 = kc
[r]
n−2 and s′n−2 = kc

[r]
n−1 for some integer 0 ≤ k ≤ p.

We define a partial order on L(τ0, τ1, . . . , τn−3) by

(τ ′0, τ
′
1, . . . , τ

′
n−3) ≤L (τ ′′0 , τ

′′
1 , . . . , τ

′′
n−3) if and only if τ ′i ≤ τ ′′i for 0 ≤ i ≤ n− 4.

Then we define Lmax(τ0, τ1, . . . , τn−3) to be the set of the maximal elements of

of L(τ0, τ1, . . . , τn−3) with respect to ≤L.

Our second expansion formula is the following.

Theorem 3.21 ([23, Th. 3.17]). Let x̃1;t be the cluster variable obtained

by mutating xt in direction 1. Let ω′f = ξf and ξ′f be the number of arrows

from 1 to f , or f to 2 respectively, in the quiver obtained from Qt by mutating

in the vertex 1. Then

xp1;t′x
q
2;t′ =

∑
τ0,τ1,...,τn−3

(
n−3∏
i=0

ñ
Ai+1 − rsi

τi

ô)
x
rsn−3−An−2

2;t x̃1;t
An−1−rsn−2(9)

×
N∏
f=3

x
ξ′f sn−2−ω′f sn−3−M ′f
f ;t ,

where the summation runs over all integers τ0, . . . , τn−3 satisfying

(10)

0 ≤ τi ≤ Ai+1 − rsi (0 ≤ i ≤ n− 4), τn−3 ≤ An−2 − rsn−3,(
sn−2 − s′n−2

)
An−3 ≥

(
sn−3 − s′n−3

)
An−2

for any (τ ′0, . . . , τ
′
n−3) ∈ Lmax(τ0, . . . , τn−3), and M ′f = 0 if the sequence of full

subquivers on vertices 1, 2, f in µ from t′ to t is of almost cyclic type, and

M ′f = ξ′fAn−2 − ω′fAn−3 if the sequence is of acyclic type from t′ up to µ1(t).

In particular, the exponent of xf ;t is nonnegative.

Proof. The proof is exactly the same as the proof of [23, Th. 3.17] except

for the M ′f in the exponent of xf,t. The precise value for M ′f follows by com-

paring terms with the formula in Theorem 3.15 and using Lemma 3.18. The

statement about nonnegative exponents also follows from Theorem 3.15. �

Combining the two formulas of Theorems 3.15 and 3.21, we get the fol-

lowing mixed formula, which has the advantage that the exponents of x̃1;t, x1;t

and xf ;t are nonnegative.
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Theorem 3.22 ([23, Th. 3.21]).

xp1;t′x
q
2;t′ =

∑
τ0,τ1,...,τn−3

An−1−rsn−2≥0

(
n−3∏
i=0

Ç
Ai+1 − rsi

τi

å)
x̃1;t

An−1−rsn−2x
rsn−3−An−2

2;t

(11)

×
N∏
f=3

x
ξ′f sn−2−ω′f sn−3−M ′f
f ;t ,

+
∑

(S1,S2)
r|S2|−An−1>0

x
r|S2|−An−1

1;t x
r|S1|−An−2

2;t

N∏
f=3

x
ξf (An−1−|S1|)−ωf |S2|−Mf

f ;t ,

where (S1, S2) are as in Theorem 3.15, and where M ′f = 0 if the sequence of

full subquivers on vertices 1, 2, f in µ is of almost cyclic type, and Mf =

ξfAn−1 − ωfAn−2 if the sequence of full subquivers on vertices 1, 2, f in µ is

of acyclic type. In particular, the exponents of xf ;t are nonnegative.

Corollary 3.23. For any cluster monomial u in the variables of x′,

there exist two polynomials

f1 ∈ Z≥0P[x̃1;t, x
±1
2;t , x3;t, . . . , xN ;t] and f2 ∈ Z≥0P[x1;t, x

±1
2;t , x3;t, . . . , xN ;t]

such that

u = f1 + f2.

We end this subsection with the following rank 2 result, which we will

need later.

Theorem 3.24 ([23, Th. 3.26]). Let a ≥ An
r be an integer. Then the sum

∑
τ0,τ1,...,τn−2

sn−1=a

n−2∏
i=0

ñ
Ai+1 − rsi

τi

ô
x
rsn−2−An−1

1 x
r(An−1−a)−An−2

2 ,

where the summation runs over all integers τ0, . . . , τn−2 satisfying (10) with n

replaced by n+ 1, is divisible by (1 + xr1)ra−An , and the resulting quotient has

nonnegative coefficients.

4. Main result

In this section we present our main results. The positivity conjecture

(Theorem 4.2) follows from the following result.

Theorem 4.1. Let A be a skew-symmetric cluster algebra of geometric

type, and let xt = {x1;t, x2;t, . . . , xN ;t} be a cluster in A. Let u be a cluster

variable, and let xt0 be a cluster containing u such that the distance between
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t0 and t in the exchange tree of labeled seeds is minimal. Let µ be the unique

sequence of mutations relating the seeds t0 and t in the exchange tree of labeled

seeds. Denote by d′, d the directions of the last two mutations in the sequence µ,

thus

µ = t0 · t′′
d′

t′
d

t,

and let e ∈ {1, 2, . . . , n}, e 6= d, d′. Let x̃d;t, x̃e;t be the cluster variables obtained

from xt by mutation in direction d, e, respectively, and let ˜̃xe;t be the cluster

variable obtained from xt by the two step mutation first in d and then in e.

Then there exist polynomials

At ∈ Z≥0P[x̃d;t, ˜̃xe;t; (x±1
f ;t)f 6=d,e], Bt ∈ Z≥0P[x̃d;t, xe;t; (x±1

f ;t)f 6=d,e],

Ct ∈ Z≥0P[xd;t, xe;t; (x±1
f ;t)f 6=d,e], Dt ∈ Z≥0P[xd;t, x̃e;t; (x±1

f ;t)f 6=d,e]

such that

u = At +Bt + Ct +Dt.

Moreover, the polynomials At, Bt, Ct, Dt are unique up to intersection of poly-

nomial rings. In particular,

u ∈ Z≥0P[xd;t, xe;t, x̃d;t, x̃e;t, ˜̃xe;t; (x±1
f ;t)f 6=d,e].

The proof of this theorem is given in Section 5. The positivity conjecture

follows easily.

Theorem 4.2 (Positivity Conjecture). Let A(Q) be a skew-symmetric

cluster algebra, let xt be any cluster, and let u be any cluster variable. Then

the Laurent expansion of u with respect to the cluster xt is a Laurent polynomial

in xt whose coefficients are nonnegative integer linear combinations of elements

of P.

Proof. Because of Fomin-Zelevinsky’s separation of addition formula [14,

Th. 3.7], it suffices to prove the result in the case where A(Q) is of geometric

type. Let xt0 be an arbitrary cluster, and let u ∈ xt0 be a cluster variable.

Let µ be the unique sequence of mutations relating the seed t0 to the seed t

in the exchange tree of labeled seeds. Let d, e be the last two directions in the

sequence µ. Consider the maximal rank 2 mutation subsequence in directions

e, d at the end of µ. This subsequence connects t to a seed t′1, and we denote

by t1 the seed one step away from t′1 on this subsequence. Thus we have

µ = t0 · d′
t′1

e
t1

d · e · d · · d · e
t

or

µ = t0 · d′
t′1

d
t1

e · d · e · · d · e
t,
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with d′ 6= d, e. Then applying Theorem 4.1 at the seed t1 with respect to the

directions d and e, we get that

u ∈ Z≥0P[xd;t1 , xe;t1 ,fixd;t1 ,fixe;t1 ,fifixd;t1 ; (x±1
f ;t1

)f 6=d,e]

or

u ∈ Z≥0P[xd;t1 , xe;t1 ,fixd;t1 ,fixe;t1 ,fifixe;t1 ; (x±1
f ;t1

)f 6=d,e].

Moreover, if f 6= d, e, then xf ;t′ = xf ;t is a cluster variable in xt. On the other

hand, each of the variables xd;t1 , xe;t1 ,fixd;t1 ,fixe;t1 , fifixd;t1 , and fifixe;t1 is obtained

from the cluster xt by a mutation sequence using only the two directions e

and d, and therefore Theorem 3.15 implies that these variables are Laurent

polynomials in xt with coefficients in Z≥0P. It follows that, after substitution

into u, we get an expansion for u as a Laurent polynomial with nonnegative

coefficients in the initial cluster xt. �

Remark 4.3. For N > 2, one can prove Theorem 4.2 directly from Theo-

rem 4.1 without using induction. We prefer the proof above, since it illustrates

the inductive nature of Theorem 4.1.

5. Proof of Theorem 4.1

We use induction on the length ` of the sequence of mutations µ.

If ` = 0, then u = xi;t for some i, which is of the form Ct.

If ` = 1, then µ consists of a single mutation in direction d and u = x̃d;t

is of the form Bt.

If ` = 2, then µ is a sequence of two mutations t0
d′

t′
d

t , with

d′ 6= d and e 6= d, d′. Then

u = (binomial in xt′)x
−1
d′;t = (binomial in (xt \ {xd;t}) ∪ {x̃d;t})x−1

d′,t

and this is of the form Bt, since d′ 6= d, e and the binomial has coefficients in

Z≥0P.

Now let `≥3. Then µ is a sequence of the form t0 · t′′
d′

t′
d
t,

with d′ 6= d. Consider the maximal rank 2 mutation subsequence in directions

d, d′ at the end of µ. This subsequence connects t to a seed t∗∗, and we denote

by t∗ the seed one step away from t∗∗ on this subsequence. Thus we have

µ = t0 · d′′
t∗∗

d
t∗

d′ · d · d′ · · d′ · d
t

or

µ = t0 · d′′
t∗∗

d′
t∗

d · d′ · d · · d′ · d
t,

with d′′ 6= d, d′.

Consider the subsequence of mutations µ∗ connecting t0 to t∗. Since this

sequence is shorter than the sequence µ, we can conclude by induction that
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the statement holds in the seed t∗ with directions d, d′. Thus, if µ is as in the

first case,

(12) u = At∗ +Bt∗ + Ct∗ +Dt∗ ,

where

At∗ ∈ Z≥0P[flflxd′;t∗ ,fixd;t∗ ; (x±1
f ;t∗)f 6=d,d′ ], Bt∗ ∈ Z≥0P[xd′;t∗ ,fixd;t∗ ; (x±1

f ;t∗)f 6=d,d′ ],

Ct∗ ∈ Z≥0P[xd′;t∗ , xd;t∗ ; (x±1
f ;t∗)f 6=d,d′ ], Dt∗ ∈ Z≥0P[flxd′;t∗ , xd;t∗ ; (x±1

f ;t∗)f 6=d,d′ ].

If the sequence µ is as in the second case, the roles of d and d′ are inter-

changed. Without loss of generality, we assume we are in the first case.

Consider the variables appearing in these expressions one by one. If f 6=
d, d′ then xf ;t∗ = xf ;t is in xt and may have a negative exponent in the desired

expression for u. The variables flflxd′;t∗ ,fixd;t∗ , xd′;t∗ , xd;t∗ and flxd′;t∗ lie on a rank

2 mutation sequence from t in the directions d and d′, and Corollary 3.23

implies that all the cluster monomials involving such variables (up to the x±f )

have expansions of the form f1 + f2 with

f1 ∈ Z≥0P[x̃d;t, x
±1
d′;t;xf ;t : f 6= d, d′] and f2 ∈ Z≥0P[xd;t, x

±1
d′;t;xf ;t : f 6= d, d′].

Substituting these expansions into (12) shows that

(13) u = B′t + C ′t,

with

B′t ∈ Z≥0P[x̃d;t, x
±1
d′;t; (x±1

f ;t∗)f 6=d,d′ ], C ′t ∈ Z≥0P[xd;t, x
±1
d′;t; (x±1

f ;t∗)f 6=d,d′ ],

We now have to study the exponents of xe;t in B′t and C ′t. If these exponents are

nonnegative, then u is of the form Bt+Ct and we are done. But if xe;t appears

with negative exponents in B′t, then we have to rewrite B′t in the form At+Bt,

and if xe;t appears with negative exponents in C ′t, then we have to rewrite C ′t
in the form Ct + Dt, with At, Bt, Ct, Dt as in the statement of Theorem 4.1.

We prove that this is always possible in Proposition 5.5. To do so, we have to

go back in the mutation sequence µ up to the last mutations in direction e.

More precisely, consider the last maximal rank 2 subsequence ν of µ con-

taining e. Let e′ be the other direction occurring in ν. If

ν = twB
e′

twC
e

twD
e′ e e′

twZ ,

then let twA be the seed obtained from twB by mutating in direction e. If

ν = twB
e

twC
e′

twD
e e′ e′

twZ ,

then let twA be the seed obtained from twB by mutating in direction e′. We do

not label any of the seeds between twD and twE .
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Without loss of generality, we may assume that twZ = t∗ and that e′ = d.

Indeed, otherwise we can change the sequence µ by inserting two consecutive

mutations in direction e as follows

µ′ = t0 · d′′
t∗∗

e
twB

e
t∗∗

d
t∗

d′ · · d′ · d
t,

letting ν be the mutation sequence twB
e

t∗∗
d

t∗ .

Thus, without loss of generality, we assume the sequence µ is as follows:

(14)

µ= t0 twB twC · d · e
t∗∗

d
t∗

d′ · · d′ · d
t.

Proposition 5.1. The variable xe;t may have negative exponents in one

of the expressions B′t or C ′t in equation (13), but not in both.

Proof. This is proved in Section 5.1. �

Let Ai;1 = Ai (respectively τi;1 = τi, si;1 = s1 ) be the sequence of integers

defined in Section 3.3 with respect to r the number of arrows between e and d

at the seed twE , where E = A,B,C, or D.

Proposition 5.2. Suppose that at least one monomial of B′t has a neg-

ative exponent in xe;t. Then each cluster monomial of the form xpe;twE
xqd;twE

,

where E = A,B,C , or D, has the following form :∑
v≥0

(Laurent polynomial in cluster variables of xt ∪ xt′ \ {xe;t})xve;t

+
∑
θ>0

x−θe;t′
∑
ς≥0

∑
r

λrr

×
∑

τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

∑n2−3
w=1 τw;2∑
j=0

dj

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

j

å
(15)

×
(
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
×

Ö ∏
i x

[bt
′
i,e]+

i;t′∏
i x

[−bt′i,e]+
i;t′

èsgn(2bt
′
d,e+1)

(⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−sn1−2;1

)
,

where r ∈ ZP≥0[{xd;t′} ∪ (x±1
t′ \ {x

±1
d;t′ , x

±1
e;t′})], λr ∈ {0, 1} and dj are nonnega-

tive integers depending on the summation indices, and the integers τi,` satisfy

condition (10) with n = n1 + 1 if ` = 1; and n = n2 if ` = 2 for some integers

n1, n2. The second subindex ` = 1, 2 in si,;`, Ai;`, τi;` refers to the fact that

these integers are defined in terms of n`.
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Proof. This is proved in Section 5.2. �

Remark 5.3. The condition that at least one monomial ofB′t has a negative

exponent in xe;t does not depend on the variable u but rather on the orientation

of the quivers in the mutation sequence ν.

Proposition 5.4. Suppose that at least one monomial of C ′t has a neg-

ative exponent in xe;t. Then each cluster monomial of the form xpe;twE
xqf ;twE

,

where E = A,B,C , or D, has the following form :∑
v≥0

(Laurent polynomial in cluster variables of xt ∪ xt′ \ {xe;t})xve;t

+
∑
θ>0

x−θe;t′
∑
ς≥0

∑
r

λrr
∑

τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

×
An1−2;1−r1ς−θ∑

j=0

dj

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

j

å
(16)

×
(
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
×

Ö ∏
i x

[bti,e]+
i;t∏

i x
[−bti,e]+
i;t

èsgn(2btd,e+1)

(⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−sn1−2;1

)
,

where r ∈ ZP≥0[{xd;t} ∪ (x±1
t \ {x±1

d;t , x
±1
f ;t})], λr ∈ {0, 1} and dj are nonnega-

tive integers depending on the summation indices, and the integers τi,` satisfy

condition (10) with n = n1 + 1 if ` = 1 for some integer n1.

Proof. The proof of Proposition 5.4 is similar to the proof of Proposi-

tion 5.2. �

Proposition 5.5. With the notation in equation (13), we have

(1) B′t is of the form At +Bt,

(2) C ′t is of the form Ct +Dt,

with At, Bt, Ct, Dt as in the statement of Theorem 4.1.

Proof. This is proved in Section 5.3. �

This completes the proof of Theorem 4.1 modulo Propositions 5.1, 5.2

and 5.5.

5.1. Proof of Proposition 5.1. By induction, we can assume that u can be

written as a Laurent polynomial in the clusters twA , twB , twC , and twD in such a

way that the variables xd;− and xe;− appear only with nonnegative exponents.
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Thus, in order to prove Proposition 5.1, we must compute the xt-expansions

of cluster monomials xpd;twE
xqe;twE

with p, q ≥ 0.

Recall from (14) that t∗ = twZ and our mutation sequence is of the fol-

lowing form:

(17) twE · d · e
t∗∗

d
t∗

d′ · · d′
t′

d
t.

Let Q0, Q1 and Q2, respectively, be the full subquivers on vertices d, d′, e

of the quiver at the seeds twE , t
∗∗ and t′, respectively. Note that the notation

here is not the same as in Lemma 3.2. Denote by n1 the number of seeds

between twE and t∗ inclusively and by n2 the number of seeds between t∗∗ and

t inclusively. Note that n2 is even. We define si,;`, Ai;` and τi;` with ` = 1, 2 as

in Section 3.3, but replacing n with n` − 2.

We shall often use Lemma 3.2 to compute the relations between the num-

ber of arrows in the quivers Q0, Q1 and Q2. The integer n in the statement

of Lemma 3.2 denotes the number of mutations between two quivers; thus we

have

n =

n1 − 2 between Q0 and Q1,

n2 − 2 between Q1 and Q2.

Let

Q1 = d

r1
��>>>>>>>> d′
ξ1oo

e

ω1

??��������

and Q2 = d

ξ2 ��>>>>>>>> d′
r2oo

e,

ω2

??~~~~~~~~

where r1 (respectively ω1 and ξ1) is the number of arrows from d to e (respec-

tively from e to d′ and from d′ to d) in Q1, and r2 (respectively ω2 and ξ2) is

the number of arrows from d′ to d (respectively from e to d′, and from d to e)

in Q2. Without loss of generality, we assume that r1 ≥ 0 and r2 ≥ 0. Thus

we also have ξ1 ≥ 0, since r2 = ξ1. Note however, that ξ2, ω1 and ω2 may be

negative. For the rest of this proof, we set xf ;twE
= 1 for all f 6= d, d′, e.

Recall that the sequences of quivers of almost cyclic type and of acyclic

type were defined in Definition 3.6. We need to consider four cases:

(a) Both the sequence of quivers from twE to twZ = t∗ and the sequence of

quivers from µd(twZ ) = t∗∗ to t are of almost cyclic type.

(b) The sequence of quivers from twE to twZ = t∗ is of almost cyclic type, and

the sequence of quivers from µd(twZ ) = t∗∗ to t is of acyclic type.

(c) The sequence of quivers from twE to twZ = t∗ is of acyclic type, and the

sequence of quivers from µd(twZ ) = t∗∗ to t is of almost cyclic type.

(d) Both the sequence of quivers from twE to twZ = t∗ and the sequence of

quivers from µd(twZ ) = t∗∗ to t are of acyclic type.
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Let us suppose first that we are in case (a) or (b); that is, the sequence of

quivers from twB to twZ = t∗ is of almost cyclic type. Using Theorem 3.22, we

see that xpd;tωE
xqe;tωE

is equal to

∑
τ0;1,··· ,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

Ç
Aw+1;1 − r1sw;1

τw;1

å)
× ‡xd;tωZ

An1−1;1−r1sn1−2;1x
r1sn1−3;1−An1−2;1

e;tωZ
x
ω1sn1−2;1−ξ1sn1−3;1

d′;tωZ

(18)

(19)

+ x
−An1−1;1

d;tωZ
x
−An1−2;1

e;tωZ

∑
(S1,S2)

−An1−1;1+r1|S2|>0

x
r1|S2|
d;tωZ

x
r1|S1|
e;tωZ

x
ξ1(An1−1;1−|S1|)−(ξ1r1−ω1)|S2|−Md′
d′;tωZ

.

From now on, we restrict ourselves to the most difficult case where the full

rank 3 subquivers with vertices d, d′, e at both seeds twE and t are nonacyclic;

in other words, ω1c
[r1]
n1 − ξ1c

[r1]
n1−1 > 0 and c

[ξ1]
n2 r1 − c[ξ1]

n2−1ω1 > 0. In particular,

ξ2 ≥ 0. But the same argument can be adapted to the case where the full rank 3

subquiver at either twE or t is acyclic. We focus on the former case, because

the positivity conjecture for acyclic cluster algebras was already proved in [17].

Thus assume that (ω1c
[r1]
n1 − ξ1c

[r1]
n1−1) > 0. In this case, Md′ = 0.

Let p2 = An1−1;1 − r1sn1−2;1 and q2 = ω1sn1−2;1 − ξ1sn1−3;1 be the expo-

nents of ‡xd;tωZ
and xd′;tωZ in (18), respectively. Define Ai;2 = p2c

[r2]
i+1 + q2c

[r2]
i .

In case (a), applying Theorem 3.22 to ‡xd;tωZ

p2xq2d′;tωZ
in (18), we have that

the part of (18) that contributes to C ′t is equal to

∑
τ0;1,··· ,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
x
r1sn1−3;1−An1−2;1

e;tωZ

(20)

×
∑

(S1,S2)
r2|S2|−An2−1;2>0

x
r2|S2|−An2−1;2

d;t x
r2|S1|−An2−2;2

d′;t x
ξ2(An2−1;2−|S1|)−(ξ2r2−ω2)|S2|
e;t

=
∑

τ0;1,··· ,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
×

∑
(S′1,S

′
2)

r2|S′2|−An2−1;2>0

x
r2|S′2|−An2−1;2

d;t x
r2|S′1|−An2−2;2

d′;t x
ξ2(An2−1;2−|S′1|)−(ξ2r2−ω2)|S′2|+r1sn1−3;1−An1−2;1

e;t ,
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where (S′1, S
′
2) is a family of compatible pairs satisfying the condition in The-

orem 3.22.

Since r2|S′2| −An2−1;2 > 0 in this last expression, then An2−1;2/r2|S′2| < 1

and thus

(21)
r1An2−1;2

c
[r2]
n2−1 r2

=
r1|S′2|
c

[r2]
n2−1

An2−1;2

r2|S′2|
<
r1|S′2|
c

[r2]
n2−1

≤ ξ2(An2−1;2 − |S′1|)− (ξ2r2 − ω2)|S′2|,

where the last inequality follows from Lemma 5.7 below. Using r2 = ξ1 and

the definition of An2−1;2, we get

r1sn1−3;1 −An1−2;1 + ξ2(An2−1;2 − |S′1|)− (ξ2r2 − ω2)|S′2|
> r1sn1−3;1 −An1−2;1

+
r1

(
c

[ξ1]
n2 (An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−1(ω1sn1−2;1 − ξ1sn1−3;1)

)
c

[ξ1]
n2−1ξ1

= −An1−2;1 +
r1

(
c

[ξ1]
n2 (An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−1ω1sn1−2;1

)
c

[ξ1]
n2−1ξ1

= −An1−2;1 +
r1

(
c

[ξ1]
n2 An1−1;1 − (c

[ξ1]
n2 r1 − c[ξ1]

n2−1ω1)sn1−2;1

)
c

[ξ1]
n2−1ξ1

≥
(sn1−2;1≤An1−1;1/r1)

−An1−2;1 +
r1

(
c

[ξ1]
n2 An1−1;1 − (c

[ξ1]
n2 r1 − c[ξ1]

n2−1ω1)
An1−1;1

r1

)
c

[ξ1]
n2−1ξ1

(22)

=
1

ξ1
(ω1An1−1;1 − ξ1An1−2;1)

=
1

ξ1
(ω1(pc[r1]

n1
+ qc

[r1]
n1−1)− ξ1(pc

[r1]
n1−1 + qc

[r1]
n1−2))

=
1

ξ1
(p(ω1c

[r1]
n1
− ξ1c

[r1]
n1−1) + q(ω1c

[r1]
n1−1 − ξ1c

[r1]
n1−2))

> 0,

where the last inequality holds, because from the first case of Lemma 3.2, we

see that

{ω1c
[r1]
n1
− ξ1c

[r1]
n1−1, ω1c

[r1]
n1−1 − ξ1c

[r1]
n1−2}

= {(the number of arrows between d′ and d in the seed twE ),

(the number of arrows between d′ and e in the seed twE )}.

Thus in case (a), the exponent of xe;t in the expansion of (20) is positive.

Thus the terms with negative exponents on xe;t in (18) are all in B′t. The proof
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that the terms with negative exponents on xe;t in (19) are also all in B′t uses a

similar argument. For the sake of completeness, we include the details.

Let p3 = r1|S2| − An1−1;1 and q3 = ξ1(An1−1;1 − |S1|) − (ξ1r1 − ω1)|S2|,
and let Ai;3 = p3c

[r2]
i+1 + q3c

[r2]
i . Applying Theorem 3.22 to xp3d;tωZ

xq3d′;tωZ
in (19),

the exponents of xe;t in the part of (19) that contributes to C ′t are of the form

(23) ξ2(An2−2;3 − |S′1|)− (ξ2r2 − ω2)|S′2|+ r1|S1| −An1−2;1.

We will derive the same conclusion as above, namely

(23) >
1

ξ1
(ω1An1−1;1 − ξ1An1−2;1).

Using r2 = ξ1, the definition of An2−2;3 and inequality (21) with n2 − 1

replaced by n2 − 2, we get

(23) > r1|S1| −An1−2;1

+
r1

ξ1c
[ξ1]
n2−2

(
c

[ξ1]
n2−1(r1|S2| −An1−1;1)

+ c
[ξ1]
n2−2(ξ1(An1−1;1 − |S1|)− (ξ1r1 − ω1)|S2|)

)
= −An1−2;1 +

r1

ξ1c
[ξ1]
n2−2

(
c

[ξ1]
n2−1(r1|S2| −An1−1;1)

+ c
[ξ1]
n2−2(ξ1An1−1;1 − (ξ1r1 − ω1)|S2|)

)
= −An1−2;1+

r1

ξ1c
[ξ1]
n2−2

(
c

[ξ1]
n2−1r1|S2|+c[ξ1]

n2−3An1−1;1−c[ξ1]
n2−2(ξ1r1−ω1)|S2|)

)
=

1

ξ1c
[ξ1]
n2−2

(
r1c

[ξ1]
n2−3An1−1;1 − ξ1c

[ξ1]
n2−2An1−2;1

+ r1|S2|(r1c
[ξ1]
n2−1 − (ξ1r1 − ω1)c

[ξ1]
n2−2)

)
>

(r1|S2|−An1−1;1>0)

1

ξ1c
[ξ1]
n2−2

(
r1c

[ξ1]
n2−3An1−1;1 − ξ1c

[ξ1]
n2−2An1−2;1

+An1−1;1(r1c
[ξ1]
n2−1 − (ξ1r1 − ω1)c

[ξ1]
n2−2)

)
=

1

ξ1c
[ξ1]
n2−2

(
r1c

[ξ1]
n2−3An1−1;1−ξ1c

[ξ1]
n2−2An1−2;1+An1−1;1(ω1c

[ξ1]
n2−2−r1c

[ξ1]
n2−3)

)
=

1

ξ1c
[ξ1]
n2−2

(
An1−1;1ω1c

[ξ1]
n2−2 − ξ1c

[ξ1]
n2−2An1−2;1

)
=

1

ξ1
(ω1An1−1;1 − ξ1An1−2;1).
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In case (b), applying Theorem 3.22 to ‡xd;tωZ

p2xq2d′;tωZ
in (18), we see that

the part of (18) that contributes to B′t is equal to

(24) ∑
τ0;1,τ1;1,...,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
x
r1sn1−3;1−An1−2;1

e;t

×
∑

τ0;2,τ1;2,...,τn2−3;2

An2−1;2−r2sn2−2;2>0

(
n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
× x̃d;t

An2−1;2−r2sn2−2;2x
r2sn2−3;2−An2−2;2

d′;t x
ω2sn2−2;2−ξ2sn2−3;2−Me

e;t

=
∑

τ0;1,τ1;1,...,τn1−3;1
An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
×

∑
τ0;2,τ1;2,...,τn2−3;2

An2−1;2−r2sn2−2;2>0

(
n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
× x̃d;t

An2−1;2−r2sn2−2;2x
r2sn2−3;2−An2−2;2

d′;t x
ω2sn2−2;2−ξ2sn2−3;2+r1sn1−3;1−An1−2;1−Me

e;t ,

where Me = ω2An2−2;2 − ξ2An2−3;2, and si;2 is as defined before Lemma 3.19

but in terms of p2, q2, and r2, thus si;2 =
∑i−1
j=0 c

[r2]
i−j+1τj;2.

In this last expression, we have

(25)
An2−1;2

r2
> sn2−2;2.

We want to show that the exponent of xe;t is positive; that is,

(26) ω2sn2−2;2−ξ2sn2−3;2 +r1sn1−3;1−An1−2;1−(ω2An2−2;2−ξ2An2−3;2) > 0.

Thanks to Lemma 5.6 below, we have

sn2−2;2An2−2;2 > sn2−3;2An2−1;2,

and thus it suffices to show thatÇ
ω2 − ξ2

An2−2;2

An2−1;2

å
sn2−2;2 +r1sn1−3;1−An1−2;1−(ω2An2−2;2−ξ2An2−3;2)> 0

⇐⇒ r1sn1−3;1 −An1−2;1 − (ω2An2−2;2 − ξ2An2−3;2)

>

Ç
ξ2
An2−2;2

An2−1;2
− ω2

å
sn2−2;2,

(27)
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and by (25) it suffices to show

r1sn1−3;1 −An1−2;1 − (ω2An2−2;2 − ξ2An2−3;2) >

Ç
ξ2
An2−2;2

An2−1;2
− ω2

å
An2−1;2

r2

⇐⇒ (r1sn1−3;1 −An1−2;1 + (ξ2An2−3;2 − ω2An2−2;2)) r2

> ξ2An2−2;2 − ω2An2−1;2

Lemma 3.14⇐⇒ ξ2An2−4;2 − ω2An2−3;2 > r2 (An1−2;1 − r1sn1−3;1) .

(28)

Since

Ai;2 = p2c
[r2]
i+1 + q2c

[r2]
i = (An1−1;1− r1sn1−2;1)c

[r2]
i+1 + (ω1sn1−2;1− ξ1sn1−3;1)c

[r2]
i ,

inequality (28) is equivalent to

(An1−1;1 − r1sn1−2;1)(ξ2c
[r2]
n2−3 − ω2c

[r2]
n2−2)

+ (ω1sn1−2;1 − ξ1sn1−3;1)(ξ2c
[r2]
n2−4 − ω2c

[r2]
n2−3)

> r2 (An1−2;1 − r1sn1−3;1)

Lemma 3.2⇐⇒ (An1−1;1 − r1sn1−2;1)ω1 + (ω1sn1−2;1 − ξ1sn1−3;1)r1

> ξ1 (An1−2;1 − r1sn1−3;1)

⇐⇒ An1−1;1ω1 > ξ1An1−2;1.

(29)

Note that cases (a) and (b) agree on the first mutation sequence, and so equa-

tion (22) is valid in both cases, and it implies An1−1;1ω1 > ξ1An1−2;1. The

proof that the exponents of xe;t in the part of (19) that contributes to B′t are

nonnegative uses a similar argument. We give an outline as follows.

Applying Theorem 3.22 to xp3d;tωZ
xq3d′;tωZ

in (19), the exponents of xe;t in

the part of (19) that contributes to B′t are of the form

(30) ω2sn2−3;2 − ξ2sn2−4;2 + r1|S1| −An1−2;1 − (ω2An2−3;2 − ξ2An2−4;2).

Using the same process as above, we get the following analogue of (28):

(31) ξ2An2−5;2 − ω2An2−4;2 > r2(An1−2;1 − r1|S1|),

which is obtained by replacing n2 with n2 − 1 and sn1−3;1 with |S1|. Since

Ai;2 = q3c
[r2]
i+1 + p3c

[r2]
i , inequality (31) is equivalent to

p3(ξ2c
[r2]
n2−5 − ω2c

[r2]
n2−4) + q3(ξ2c

[r2]
n2−4 − ω2c

[r2]
n2−3) > r2(An1−2;1 − r1|S1|)

Lemma 3.2⇐⇒ (r1|S2| −An1−1;1)(ξ1r1 − ω1) + (ξ1(An1−1;1 − |S1|)
− (ξ1r1 − ω1)|S2|)r1 > ξ1(An1−2;1 − r1|S1|)

⇐⇒ω1An1−1;1 > ξ1An1−2;1,
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which is exactly the same as (29). Thus the exponents of xe;t in B′t are non-

negative.

This completes the proof of Proposition 5.1 in cases (a) and (b), modulo

the following two lemmas.

Lemma 5.6. sn2−2;2An2−2;2 > sn2−3;2An2−1;2.

Proof. It follows from Definition 3.20 that s′n2−2c
[r2]
n2−2 = s′n2−3c

[r2]
n2−1, and

using (c
[r2]
n2−1)2 > c

[r2]
n2 c

[r2]
n2−2 from Lemma 3.1, this implies

(32) s′n2−2c
[r2]
n2−1 > s′n2−3c

[r2]
n2
.

On the other hand, the second line of (10) in Theorem 3.21 together with

An2−2An2−2 > An2−1An2−3 from Lemma 3.14 implies

(sn2−2 − s′n2−2)An2−2 > (sn2−3 − s′n2−3)An2−1

and, using the definition of An2−i, we get

(sn2−2 − s′n2−2)(p2c
[r2]
n2−1 + q2c

[r2]
n2−2) > (sn2−3 − s′n2−3)(p2c

[r2]
n2

+ q2c
[r2]
n2−1).

Now (32) implies the statement. �

Lemma 5.7. Let (S1 = ∪p+qi=1 S
i
1, S2 = ∪p+qi=1 S

i
2) such that

(Si1, S
i
2) is a compatible pair in

D
c
[r2]
n2
×c[r2]n2−1 if 1 ≤ i ≤ p2,

Dc
[r2]
n2−1×c

[r2]
n2−2 if p2 + 1 ≤ i ≤ p2 + q2,

where p2, q2 are arbitrary nonnegative integers. Then

r1|S2|
c

[r2]
n2−1

≤ ξ2(An2−1;2 − |S1|)− (ξ2r2 − ω2)|S2|.

Proof. This is proved in [20, Lemma 4.10] using colored subpaths with

|β|2 = An2−1;2 − |S1| and |β|1 = |S2|. This is also proved in [19, Prop. 4.1,

Case 6] with a2 = An2−1;2, b = c = r2. �

Now suppose we are in the case (c). Using Theorem 3.22, we see that

xpd;tωE
xqe;tωE

is equal to the following expression, which is almost the same as

the expression in (18) and (19) up to the exponent M ′d′ :

(33) ∑
τ0;1,··· ,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

ô
τw;1

)

× ‡xd;tωZ

An1−1;1−r1sn1−2;1x
r1sn1−3;1−An1−2;1

e;tωZ
x
ω1sn1−2;1−ξ1sn1−3;1−M ′d′
d′;tωZ
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(34) + x
−An1−1;1

d;tωZ
x
−An1−2;1

e;tωZ

∑
(S1,S2)

−An1−1;1+r1|S2|>0

x
r1|S2|
d;tωZ

x
r1|S1|
e;tωZ

x
ξ1(An1−1;1−|S1|)−(ξ1r1−ω1)|S2|−Md′
d′;tωZ

.

Let p2 =r1|S2|−An1−1;1 and q2 =ξ1(An1−1;1 − |S1|)−(ξ1r1 − ω1)|S2|−Md′

be the exponents of xd;tωZ
and xd′;tωZ in (34), respectively. Applying Theo-

rem 3.22 to xp2d;tωZ
xq2d′;tωZ

, we see that the part of (34) that contributes to C ′t is

equal to

∑
(S1,S2)

−An1−1;1+r1|S2|>0

x
r1|S1|−An1−2;1

e;tωZ

×
∑

(S′1,S
′
2)

An2−2;2<r2|S′2|

x
r2|S′2|−An2−2;2

d;t x
r2|S′1|−An2−3;2

d′;t x
ξ2(An2−2;2−|S′1|)−(ξ2r2−ω2)|S′2|
e;t

=
∑

(S1,S2)
−An1−1;1+r1|S2|>0

∑
(S′1,S

′
2)

An2−2;2<r2|S′2|

x
r2|S′2|−An2−2;2

d;t x
r2|S′1|−An2−3;2

d′;t

× xξ2(An2−2;2−|S′1|)−(ξ2r2−ω2)|S′2|+r1|S1|−An1−2;1.
e;t

(35)

Since An2−2;2 < r2|S′2| in this expression, we have An2−2;2/r2|S′2| < 1 and

thus

(36)
r1An2−2;2

c
[r2]
n2−2 r2

=
r1|S′2|
c

[r2]
n2−2

An2−2;2

r2|S′2|
<
r1|S′2|
c

[r2]
n2−2

≤ ξ2(An2−2;2 − |S′1|)− (ξ2r2 − ω2)|S′2|,

where the last inequality is proved in Lemma 5.7. On the other hand,

(37)

An2−2;2 = p2c
[r2]
n2−1 + q2c

[r2]
n2−2

= (r1|S2| −An1−1;1)c
[r2]
n2−1

+ ξ1(An1−1;1 − |S1|)− (ξ1r1 − ω1)|S2| −Md′)c
[r2]
n2−2.

The exponent of xe;t is

ξ2(An2−2;2 − |S′1|)− (ξ2r2 − ω2)|S′2|+ r1|S1| −An1−2;1

(36)
>

r1An2−2;2

c
[r2]
n2−2 r2

+ r1|S1| −An1−2;1

(37)
=

r1

c
[r2]
n2−2 r2

(
(r1|S2| −An1−1;1)c

[r2]
n2−1

+ (ξ1(An1−1;1 − |S1|)− (ξ1r1 − ω1)|S2| −Md′)c
[r2]
n2−2

)
+ r1|S1| −An1−2;1
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Lemma 3.14
=

r1

c
[r2]
n2−2 r2

(
(r1|S2| −An1−1;1)c

[r2]
n2−1

− ((ξ1r1 − ω1)|S2| −Md′)c
[r2]
n2−2

)
+An1;1

Lemma 3.1
=

r1

c
[r2]
n2−2 r2

(
(ω1c

[r2]
n2−2 − r1c

[r2]
n2−3)|S2|

−An1−1;1c
[r2]
n2−1 −Md′c

[r2]
n2−2

)
+An1;1

(∗)
≥ r1

c
[r2]
n2−2 r2

Å
(ω1c

[r2]
n2−2 − r1c

[r2]
n2−3)

An1−1;1

r1

−An1−1;1c
[r2]
n2−1 −Md′c

[r2]
n2−2

)
+An1;1

=
r1

c
[r2]
n2−2 r2

Å
(ω1c

[r2]
n2−2 − r1c

[r2]
n2−3)

An1−1;1

r1
−An1−1;1c

[r2]
n2−1

−(ξ1An1−1;1 − (ξ1r1 − ω1)An1−2;1)c
[r2]
n2−2

)
+An1;1,

where inequality (∗) holds because p2 = r1|S2| − An1−1;1 ≥ 0. We shall show

below that the quiver Q2 is cyclic, and therefore ξ2 and r2 have the same sign,

so r2 > 0, since ξ2 > 0. This implies that the above expression has the same

sign as

r1

Å
(ω1c

[r2]
n2−2 − r1c

[r2]
n2−3)

An1−1;1

r1
−An1−1;1c

[r2]
n2−1

− (ξ1An1−1;1 − (ξ1r1 − ω1)An1−2;1)c
[r2]
n2−2

)
+An1;1c

[r2]
n2−2 ξ1

= (ω1c
[r2]
n2−2 − r1c

[r2]
n2−3)An1−1;1 + (r1(ξ1r1 − ω1)An1−2;1

− r1ξ1An1−1;1 +An1;1 ξ1)c
[r2]
n2−2 − r1An1−1;1c

[r2]
n2−1

= (ω1c
[r2]
n2−2 − r1c

[r2]
n2−3)An1−1;1

+ (ξ1(r2
1 − 1)− ω1 r1)An1−2;1c

[r2]
n2−2 − r1An1−1;1c

[r2]
n2−1

= (ω1c
[r2]
n2−2 − r1ξ1c

[r2]
n2−2)An1−1;1 + (ξ1(r2

1 − 1)− ω1 r1)An1−2;1c
[r2]
n2−2,

and this expression has the same sign as

(38)
(ω1 − r1ξ1)An1−1;1 + (ξ1(r2

1 − 1)− ω1 r1)An1−2;1

= ξ1An1−4;1 − ω1An1−3;1.

This expression is positive because of Lemma 3.2.

Let us now show that the quiver Q2 is cyclic in this case. Since we are in

case (c), the mutation sequence from t∗∗ to t is of almost cyclic type. Moreover,

this sequence is of length at least 3 and the quiver Q2 is the quiver at the seed

t′ one step before reaching the seed t in this sequence. We need to consider

conditions (1) and (2) of Definition 3.6. If condition (2) holds, then all the
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quivers after the second mutation in this sequence are cyclic so, in particular,

Q2 is cyclic. Suppose now that condition (1) holds. In our situation this

condition says c
[r2]
n ξ2− c[r2]

n−1ω2 > 0 for 1 ≤ n ≤ m, where m is the length of the

mutation sequence. Using n = 1 and 2, this implies that ω2 > 0 and ξ2 > 0,

and thus Q1 is cyclic. Because we are in case (c), the mutation sequence from

twE to t∗ is of acyclic type, and it follows that there is an acyclic quiver in one

of the seeds preceding Q1 in that sequence. The facts that r1 > 1 and that the

last mutation to get to Q1 is in direction e then imply that ξ1 > ω1, because ξ1

is the number of arrows opposite to the vertex e. But then the first mutation

in the sequence from Q1 to Q2 is in direction d and afterwards the sequence

alternates between directions d′ and d, and therefore the number of arrows in

the quivers of this sequence grows. In particular, all quivers in that sequence

are cyclic.

The proof that the exponents of xe;t in the part of (33) that contributes

to C ′t are nonnegative uses a similar argument, which is given below. Let

p3 = An1−1;1 − r1sn1−2;1 and q3 = ω1sn1−2;1 − ξ1sn1−3;1 −M ′d′ , and let Ai;3 =

p3c
[r2]
i+1+q3c

[r2]
i . Applying Theorem 3.22 to ‡xd;tωZ

p3xq3d′;tωZ
in (33), the exponents

of xe;t in the part of (33) that contributes to C ′t are of the form

(39) ξ2(An2−2;3 − |S′1|)− (ξ2r2 − ω2)|S′2|+ r1sn1−3;1 −An1−2;1.

Using (36) with n2 − 2 replaced by n2 − 1, we have

(39) >
r1An2−1;3

c
[r2]
n2−1r2

+r1sn1−3;1 −An1−2;1

=
r1

c
[r2]
n2−1ξ1

(
p3c

[r2]
n2

+q3c
[r2]
n2−1

)
+r1sn1−3;1 −An1−2;1

=
r1

c
[r2]
n2−1ξ1

(
p3c

[r2]
n2

+(ω1sn1−2;1 − ξ1sn1−3;1 −M ′d′)c
[r2]
n2−1

)
+r1sn1−3;1 −An1−2;1

=
r1

c
[r2]
n2−1ξ1

(
p3c

[r2]
n2

+(ω1sn1−2;1 −M ′d′)c
[r2]
n2−1

)
−An1−2;1

=
r1

c
[r2]
n2−1ξ1

(
(An1−1;1 − r1sn1−2;1)c[r2]

n2
+(ω1sn1−2;1−M ′d′)c

[r2]
n2−1

)
−An1−2;1

=
r1

c
[r2]
n2−1ξ1

(
An1−1;1c

[r2]
n2
−sn1−2;1(r1c

[r2]
n2
−ω1c

[r2]
n2−1)−M ′d′c

[r2]
n2−1

)
−An1−2;1

>
(An1−1;1−r1sn1−2;1≥0)

r1

c
[r2]
n2−1ξ1

(
An1−1;1c

[r2]
n2
− An1−1;1

r1
(r1c

[r2]
n2
− ω1c

[r2]
n2−1)

−M ′d′c
[r2]
n2−1

)
−An1−2;1
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=
r1

c
[r2]
n2−1ξ1

Å
An1−1;1

r1
ω1c

[r2]
n2−1 −M

′
d′c

[r2]
n2−1

ã
−An1−2;1

=
r1

c
[r2]
n2−1ξ1

Å
An1−1;1

r1
ω1c

[r2]
n2−1 − (ω1An1−2;1 − ξ1An1−3;1)c

[r2]
n2−1

ã
−An1−2;1

=
ω1An1−1;1

ξ1
− r1

ξ1
(ω1An1−2;1 − ξ1An1−3;1)−An1−2;1

= −ω1An1−3;1

ξ1
+An1−4;1,

which has the same sign as

ξ1An1−4;1 − ω1An1−3;1,

which is equal to (38).

Thus the exponents of xe;t in C ′t are nonnegative, and this shows Propo-

sition 5.1 in the case (c).

To complete the proof of the proposition, we analyze case (d). Suppose

that the sequence from twB to t∗ is of acyclic type and consider the quiver

Q1 at the seed t∗∗ = µd(t
∗). Our first goal is to show that µeQ1 is acyclic.

Suppose the contrary. Thus condition (7) in Definition 3.6 does not hold.

Hence condition (6) in Definition 3.6 implies that the number of arrows r1

from d to e in Q1 is at least 2. In this case, the acyclic quivers in the sequence

from twB to t∗ form a connected subsequence, and thus µeQ1 being cyclic

implies that Q1 and µdQ1 are cyclic too. The third case of Lemma 3.2 with

ω = ξ1 and r = ω1 implies that

ξ1 ≥
c

[r1]
n

c
[r1]
n−1

ω1 > ω1,

where the last inequality holds since c
[r1]
n > c

[r1]
n−1. Moreover, using the third

case of Lemma 3.2 with ω = ω1 and r = r1 together with the fact that the

mutation sequence from Q1 to Q2 is of acyclic type, we also see that ω1 ≥ r1.

Thus ξ1 > ω1 ≥ r1 ≥ 2, and therefore Lemma 3.5 implies that all quivers in

the sequence from t∗ to t are cyclic, a contradiction to the assumption that we

are in case (d).

Thus µeQ1 is acyclic. By the same reasoning, we get that Q1 is acyclic,

and then by symmetry, we also have that the quivers in the seeds t∗ and µd′(t
∗)

are acyclic.

Thus we have shown that the case (d) occurs if and only if the four quivers

in the consecutive seeds µe(t
∗∗), t∗∗, t∗ and µd′(t

∗) are acyclic. In this case, the

sequence from t∗ to t is of almost cyclic type and the result can be shown by the

same argument as in the case (c). This completes the proof of Proposition 5.1.
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5.2. Proof of Proposition 5.2. Proposition 5.2 applies in cases (a) and (c).

We assume that we are in case (a). Case (c) is similar.

Let g be an arbitrary vertex different from d, d′, e and let

Q1 = d oo
ξ1

ii
ρ1

SSSS

SSSSSSSSSSSS
d′55

ω1
kkkk

kkkkkkkkkkkk
OO

e
��

r1

g//
ν1

be the full subquiver with vertices d, d′, e′g of the quiver at the seed µd(twZ )

= t∗∗, where r1 (respectively ω1, ξ1, ν1, ρ1) is the number of arrows from d to

e (respectively from e to d′, from d′ to d, from e to g, from g to d ). Recall

that r1 ≥ 0. Although the mutations in the sequence µ are in directions d, d′, e

only, we need to study how the variable xg,t behaves in the expansion formulas

in order to show certain divisibility properties. On the other hand, it suffices

to consider only one of the xg;t with g 6= d, d′, e.

We present the case where the subquiver with vertices d, e, g in some seed

between µd(twE ) and µd(twZ ) is acyclic. The case where all these subquivers

are nonacyclic is easier; in fact, only the exponent of xg,twZ would change.

Thus for the rest of this proof, we set xf ;t = 1 for all f 6= d, d′, e′g.

Since the mutation sequence relating the seeds twE and twZ = t∗ consists in

mutations in directions d and e, applying Theorem 3.21 to xpd;twE
xqe;twE

yields1

(40) ∑
τ0;1,τ1;1,...,τn1−3;1

(
n1−3∏
w=0

ñ
Aw+1;1−r1sw;1

τw;1

ô)‡xd;twZ

An1−1;1−r1sn1−2;1x
r1sn1−3;1−An1−2;1

e;twZ

× xω1sn1−2;1−ξ1sn1−3;1

d′;twZ
x
ν1sn1−2;1−ρ1sn1−3;1−(ν1An1−2;1−ρ1An1−3;1)
g;twZ

.

As before, let n2 be the number of seeds between µd(twZ ) = t∗∗ and t

inclusive. Recall that n2 is even. Let

Q2 = d oo
r2

d′55
ω2

kkkk

kkkkkkkkkkkk
OO
ν2

e oo
γ2

��
ξ2

g))

ρ2SSSSSSSSSSSS

SSSS

1The term (ν1An1−2;1 − ρ1An1−3;1) in the exponent of xg;twZ
is equal to the Mg in Theo-

rem 3.21, and it is nonzero because of the assumption that the subquiver with vertices d, e, g

in some seed between µd(twE ) and µd(twZ ) is acyclic. On the other hand, the term Md′ in

the exponent of xd′;twZ
is zero, because we are in case (a).
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be the quiver at the seed µd(t) = t′, where r2 (respectively ω2, ξ2, ν2, ρ2, γ2)

is the number of arrows from d′ to d (respectively from e to d′, from d to e,

from g to d′, from d to g, from g to e). Recall that r2 ≥ 0.

Next we want to use Lemma 3.2 to compute the number of arrows in Q2

in terms of the number of arrows in Q1. The mutation sequence relating the

quivers Q1 and Q2 is a rank 2 sequence in directions d and d′, starting with d

and ending with d′. In particular, the number of mutations in this sequence

(which is denoted n in Lemma 3.2) is even and we have n = n2 − 2. First we

apply Lemma 3.2 to the subquiver on vertices d, d′, e. Since we are in case (a),

the condition c
[r2]
n2−1r1 − c[r2]

n2−2ω1 > 0 holds. Therefore we see from Lemma 3.2

that

r2 = ξ1,

ω2 = c
[r2]
n2−1r1 − c[r2]

n2−2ω1,(41)

ξ2 = c[r2]
n2
r1 − c[r2]

n2−1ω1.

Next, we use Lemma 3.2 on the subquiver on vertices d, d′ and g. Since we

assumed that the mutation sequence on this subquiver is of acyclic type and

because of Remark 3.11, we use the third case of Lemma 3.2 with ω̄(n) = −ρ1,

ξ = r2, ω = ν2, and r = ρ2 to obtain

ρ1 = c
[r2]
n2−3ν2 − c[r2]

n2−4ρ2.

Finally, we show by induction on n2 that

(42) γ2 = (c
[r2]
n2−2ρ2 − c[r2]

n2−1ν2)r1 − (c
[r2]
n2−3ρ2 − c[r2]

n2−2ν2)ω1 − ν1.

If n2 =4, then the above formula becomes γ2 =(ρ2−r2ν2)r1−(−ν2)ω1−ν1. This

is easily checked, since Q1 and Q2 are related by sequence of two mutations.

Suppose n2 > 4. We want to show that if equation (42) computes the number

of arrows from e to g in the quiver Q2, then it also computes the number of

arrows from e to g in the quiver µd′µdQ2, if n2 is replaced by n2 + 2, and ρ2

(respectively ν2) is replaced by the number of arrows in µd′µdQ2 from g to d

(respectively d′ to g).

Denoting by ρ′2 (respectively ν ′2) the number of arrows from g to d (re-

spectively d′ to g) in µd′µdQ2, we observe that ρ′2 = (r2(r2ρ2 − ν2) − ρ2),

ν ′2 = (r2ρ2 − ν2), and the number of arrows from e to g is still γ2.

Now using the definition c
[r2]
n−2 = r2c

[r2]
n−1 − c

[r2]
n , we see that

c
[r2]
n2−2ρ2 − c[r2]

n2−1ν2 = (r2c
[r2]
n−1 − c

[r2]
n )ρ2 − (r2c

[r2]
n − c[r2]

n+1)ν2

= (r2(r2c
[r2]
n − c[r2]

n+1)− c[r2]
n )ρ2 − (r2c

[r2]
n − c[r2]

n+1)ν2

= c
[r2]
n (r2(r2ρ2 − ν2)− ρ2)− c[r2]

n+1(r2ρ2 − ν2)

= c
[r2]
n ρ′2 − c

[r2]
n+1ν

′
2.
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Similarly,

c
[r2]
n2−3ρ2 − c[r2]

n2−2ν2 = c
[r2]
n2−1ρ

′
2 − c[r2]

n2
ν ′2.

This proves formula (42).

Now let p2 = An1−1;1 − r1sn1−2;1, q2 = ω1sn1−2;1 − ξ1sn1−3;1 be the ex-

ponents of ‡xd;twZ
and xd′;twZ in (40) respectively. Applying Theorem 3.21 to‡xd;twZ

p2xq2d′;twZ
, we see that (40) is equal to

(43) ∑
τ0;1,τ1;1,...,τn1−3;1

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
x
r1sn1−3;1−An1−2;1

e;t

× xν1sn1−2;1−ρ1sn1−3;1−(ν1An1−2;1−ρ1An1−3;1)
g;t

×
∑

τ0;2,τ1;2,...,τn2−3;2

(
n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
× x̃d;t

An2−1;2−r2sn2−2;2x
r2sn2−3;2−An2−2;2

d′;t x
ω2sn2−2;2−ξ2sn2−3;2

e;t

× xν2sn2−2;2−ρ2sn2−3;2−(ν2An2−2;2−ρ2An2−3;2)
g;t

=
∑

τ0;1,τ1;1,··· ,τn1−3;1

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
×

∑
τ0;2,τ1;2,··· ,τn2−3;2

(
n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
× x̃d;t

An2−1;2−r2sn2−2;2x
r2sn2−3;2−An2−2;2

d′;t x
ω2sn2−2;2−ξ2sn2−3;2+r1sn1−3;1−An1−2;1

e;t

× xν2sn2−2;2−ρ2sn2−3;2−(ν2An2−2;2−ρ2An2−3;2)+ν1sn1−2;1−ρ1sn1−3;1

g;t

× x−(ν1An1−2;1−ρ1An1−3;1)
g;t ,

where Ai;2 and si;2 are as defined before Lemmas 3.14 and 3.19 but in terms

of p2, q2, and r2, thus Ai;2 = p2c
[r2]
i+1 + q2c

[r2]
i and si;2 =

∑i−1
j=0 c

[r2]
i−j+1τj;2.

Let θ be a positive integer, and let Pθ be the sum of all the terms in the

sum above for which the exponent of xe;t is equal to −θ. Thus −θ is equal to

ω2sn2−2;2 − ξ2sn2−3;2 + r1sn1−3;1 −An1−2;1.

5.2.1. Computation of exponents. In this subsubsection, we compute the

exponents in the expression in (43). The main computation continues in 5.2.2.

It is convenient to introduce ς such that τ0;2 = ς − sn1−3;1. Then

sn2−2;2 = c
[r2]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[r2]
n2−1−jτj;2



108 KYUNGYONG LEE and RALF SCHIFFLER

and

sn2−3;2 = c
[r2]
n2−2(ς − sn1−3;1) +

n2−4∑
j=1

c
[r2]
n2−2−jτj;2.

Using equation (41), the expressions for sn2−2;2 and sn2−3;2 and the fact

that c
[ξ]
1 = 0, we have

ω2sn2−2;2 − ξ2sn2−3;2

= (c
[ξ1]
n2−1r1 − c[ξ1]

n2−2ω1)

c[ξ1]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2


− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)

c[ξ1]
n2−2(ς − sn1−3;1)+

Ñ
n2−3∑
j=1

c
[ξ1]
n2−2−jτj;2

é
−c[ξ1]

1 τn2−3;2


= (ς − sn1−3;1) r1

(
(c

[ξ1]
n2−1)2 − c[ξ1]

n2
c

[ξ1]
n2−2

)
+
n2−3∑
j=1

τj;2
[
r1

(
c

[ξ1]
n2−1c

[ξ1]
n2−1−j − c

[ξ1]
n2
c

[ξ1]
n2−2−j

)
+ω1

(
−c[ξ1]

n2−2c
[ξ1]
n2−1−j + c

[ξ1]
n2−1c

[ξ1]
n2−2−j

)]
= (ς − sn1−3;1) r1 +

n2−3∑
j=1

τj;2
[
r1

(
−c[ξ1]
−j

)
+ ω1c

[ξ1]
1−j

]
(by Lemma 3.1).

And since −c[ξ1]
−j = c

[ξ1]
j+2, we get

(44)

−θ = r1(ς − sn1−3;1) +
n2−3∑
j=1

τj;2(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1) + r1sn1−3;1 −An1−2;1

= −An1−2;1 + r1ς +
n2−3∑
j=1

τj;2(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1).

Also, the exponents of x̃d;t and xd′;t in (43) can be expressed as follows:

An2−1;2 − r2sn2−2;2 = c[ξ1]
n2
p2 + c

[ξ1]
n2−1q2

− ξ1

Ñ
c

[ξ1]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

é
= c[ξ1]

n2
(An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−1(ω1sn1−2;1 − ξ1sn1−3;1)

− ξ1

Ñ
c

[ξ1]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

é
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= c[ξ1]
n2

(An1−1;1 − r1sn1−2;1) + c
[ξ1]
n2−1ω1sn1−2;1

− ξ1

Ñ
c

[ξ1]
n2−1ς +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

é
,

and similarly

ξ1sn2−3;2 −An2−2;2 = ξ1

Ñ
c

[ξ1]
n2−2ς +

n2−4∑
j=1

c
[ξ1]
n2−2−jτj;2

é
−
(
c

[ξ1]
n2−1(An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−2ω1sn1−2;1

)
.

Recall that ρ1 =c
[r2]
n2−3ν2−c[r2]

n2−4ρ2. The exponent of xg;t in (43) is equal to

ν2sn2−2;2 − ρ2sn2−3;2 − (ν2An2−2;2 − ρ2An2−3;2)

+ ν1sn1−2;1 − ρ1sn1−3;1 − (ν1An1−2;1 − ρ1An1−3;1)

= ν2

Ñ
c

[ξ1]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

é
− ρ2

Ñ
c

[ξ1]
n2−2(ς − sn1−3;1) +

n2−4∑
j=1

c
[ξ1]
n2−2−jτj;2

é
− ν2

(
c

[ξ1]
n2−1(An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−2(ω1sn1−2;1 − ξ1sn1−3;1)

)
+ ρ2

(
c

[ξ1]
n2−2(An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−3(ω1sn1−2;1 − ξ1sn1−3;1)

)
+ ν1sn1−2;1 − ρ1sn1−3;1

− (ν1An1−2;1 − ρ1An1−3;1)

= −γ2sn1−2;1 + (ν2c
[ξ1]
n2−1 − ρ2c

[ξ1]
n2−2)(ς −An1−1;1)

+ ν2

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2 − ρ2

n2−4∑
j=1

c
[ξ1]
n2−2−jτj;2 − (ν1An1−2;1 − ρ1An1−3;1).

5.2.2. Back to main computation. Using the computations from 5.2.1 and

fixing ς, τ1;2, . . . , τn2−3;2 in (43), we obtain

(43) =
∑

τ0;1,τ1;1,··· ,τn1−3;1

(
n1−3∏
w=0

ñ
Aw+1;1−r1sw;1

τw;1

ô)(n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
× x̃d;t

c
[ξ1]
n2

(An1−1;1−r1sn1−2;1)+c
[ξ1]
n2−1ω1sn1−2;1−ξ1

Ä
c
[ξ1]
n2−1ς+

∑n2−3
j=1 c

[ξ1]
n2−1−jτj;2

ä
× x

ξ1

Ä
c
[ξ1]
n2−2ς+

∑n2−4
j=1 c

[ξ1]
n2−2−jτj;2

ä
−
Ä
c
[ξ1]
n2−1(An1−1;1−r1sn1−2;1)+c

[ξ1]
n2−2ω1sn1−2;1

ä
d′;t

× x
−An1−2;1+r1ς+

∑n2−3
j=1 (c

[ξ1]
j+2r1−c

[ξ1]
j+1ω1)τj;2

e;t
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× x
−γ2sn1−2;1+(ν2c

[ξ1]
n2−1−ρ2c

[ξ1]
n2−2)(ς−An1−1;1)+ν2

∑n2−3
j=1 c

[ξ1]
n2−1−jτj;2

g;t

× x
−ρ2

∑n2−4
j=1 c

[ξ1]
n2−2−jτj;2−(ν1An1−2;1−ρ1An1−3;1)

g;t .

Now we collect all powers involving sn1−2;1 and write (43) as a product φϕ,

where φ is a Laurent monomial in x̃d;t, xd′;t, xe;t, xg;t that in the expression of

Proposition 5.2 is absorbed either in the first summation, if the exponent of

xe;t is positive, or in the second summation inside x−θe;t′r if the exponent of xe;t
is negative. On the other hand, ϕ is equal to

∑
τ0;1,τ1;1,...,τn1−3;1

(
n1−3∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)(n2−3∏
w=0

ñ
Aw+1;2 − r2sw;2

τw;2

ô)
×

Ü
x̃d;t

c
[ξ1]
n2

r1−c
[ξ1]
n2−1ω1xγ2g;t

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

d′;t

ê⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−sn1−2;1

.

Note that the 0-th term of the second product can be identified with an (n1−2)-

nd term in the first product, since A1;2 = An1−1;1− r1sn1−2;1 by the definition

of Aw;2 right after equation (19) and s0,2 = 0. The above expression is therefore

equal to

(45)

∑
τ0;1,τ1;1,...,τn1−3;1

(
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)(n2−3∏
w=1

Ç
Aw+1;2 − r2sw;2

τw;2

å)
×

Ü
x̃d;t

c
[ξ1]
n2

r1−c
[ξ1]
n2−1ω1xγ2g;t

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

d′;t

ê⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−sn1−2;1

,

where τn1−2;1 = An1−1;1 − r1sn1−2;1 − τ0;2 = An1−1;1 − r1sn1−2;1 − ς + sn1−3;1.

The exponent
⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1 is nonnegative by Lemma 5.13

below.

Now we show that the Laurent monomial φ has nonnegative degree on

x̃d;t. We want to show that

c[ξ1]
n2
An1−1;1 − ξ1

Ñ
c

[ξ1]
n2−1ς +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

é
− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)(An1−1;1 − ς)
An1−1;1

An1;1
≥ 0.

(46)
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Inequality (50) yields

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)
An1−1;1

An1−2;1

Ç
c[ξ1]
n2
− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1;1

å
τj;2

> ξ1c
[ξ1]
n2−1−jτj;2,

so

n2−3∑
j=1

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)
An1−1;1

An1−2;1

Ç
c[ξ1]
n2
− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1;1

å
τj;2

>
n2−3∑
j=1

ξ1c
[ξ1]
n2−1−jτj;2.

Thanks to θ > 0 and equation (44), this implies that

(47)

(An1−2;1−r1ς)
An1−1;1

An1−2;1

Ç
c[ξ1]
n2
− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1;1

å
>
∑
j

ξ1c
[ξ1]
n2−1−jτj;2.

Then to prove (46), it is enough to show that

c[ξ1]
n2
An1−1;1 − ξ1c

[ξ1]
n2−1ς − (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)(An1−1;1 − ς)
An1−1;1

An1;1

is greater than the left-hand side of (47). The terms without ς are all canceled.

Hence it remains to show that

r1
An1−1;1

An1−2;1

Ç
c[ξ1]
n2
− (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1;1

å
> ξ1c

[ξ1]
n2−1 − (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1;1

⇐⇒ r1c
[ξ1]
n2

An1−1;1

An1−2;1
− ξ1c

[ξ1]
n2−1 > (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)

Ç
r1
An1−1;1

An1−2;1
− 1

å
An1−1;1

An1;1

⇐⇒ r1c
[ξ1]
n2

An1−1;1

An1−2;1
− ξ1c

[ξ1]
n2−1

> (c[ξ1]
n2
r1 − c[ξ1]

n2−1ω1)

Ç
r1An1−1;1 −An1−2;1

An1−2;1

å
An1−1;1

An1;1

Lemma 3.14⇐⇒ r1c
[ξ1]
n2

An1−1;1

An1−2;1
− ξ1c

[ξ1]
n2−1 > (c[ξ1]

n2
r1 − c[ξ1]

n2−1ω1)
An1−1;1

An1−2;1

⇐⇒ ω1
An1−1;1

An1−2;1
− ξ1 > 0.

The last inequality follows from the first case of Lemma 3.2. This shows (46),

and thus the exponent of x̃d;t in φ is nonnegative.

Now Proposition 5.2 follows from the following lemma.
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Lemma 5.8.

n2−3∏
w=1

Ç
Aw+1;2 − r2sw;2

τw;2

å
=

∑n2−3
w=1 τw;2∑
i=0

di

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

å
for some di ∈ N, which are independent of sn1−2;1.

Proof. First suppose that one of ξ1, r1, ω1 is at most one. The equation in

Lemma 5.8 without the requirement that di ∈ N is always true in any case (a),

(b), (c), (d). The divisibility in Lemma 5.14 without the positivity statement

is always true, so the argument in Section 5.3 shows that Proposition 5.5

without the positivity statement is always true. Therefore xpd;tωE
xqe;tωE

is a

linear combination of the following rank 2 cluster monomials:

x̃d;t
p′˜̃xe;tq′ , x̃d;t

p′xe;t
q′ , xd;t

p′xe;t
q′ , xd;t

p′ x̃e;t
q′ .

Now if one of ξ1, r1, ω1 is at most one, then some quiver that is mutation equiv-

alent to the subquiver with vertices d, d′, e is acyclic [23], and it follows from

[31, eq. (5.10)] that the coefficients of the linear combination are nonnegative.

This implies that di ∈ N.

In what follows, we assume that ξ1, r1, ω1 ≥ 2.

Once we know that there are nonnegative integers a and b such that

Aw+1;2 − r2sw;2 = a

Çú
(An1−1;1 − ς)

An1−1;1

An1;1

ü
− sn1−2;1

å
+ b,

then it is clear, by Lemma 5.11 below, thatÇ
Aw+1;2 − r2sw;2

τw;2

å
=

τw;2∑
i=0

d′i

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

å
for some d′i ∈ N, and by Lemma 5.12 below, for any nonnegative integers j

and k,Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

j

åÇ⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

k

å
=

j+k∑
i=0

d′′i

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

å
for some d′′i ∈ N. Then it follows that

n2−3∏
w=1

Ç
Aw+1;2 − r2sw;2

τw;2

å
=

∑n2−3
w=1 τw;2∑
i=0

di

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

å
.
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Thus we need to show the existence of the nonnegative integers a and b.

Using the definitions of Aw+1;2 and ς as well as the fact that r2 = ξ1, we get

Aw+1;2 − r2sw;2 = c
[ξ1]
w+2(An1−1;1 − r1sn1−2;1)

+ c
[ξ1]
w+1ω1sn1−2;1 − ξ1

Ñ
c

[ξ1]
w+1ς +

w−1∑
j=1

c
[ξ1]
w+1−jτj;2

é
,

which can be written as

Aw+1;2 − r2sw;2

= (c
[ξ1]
w+2r1 − c[ξ1]

w+1ω1)

Çú
(An1−1;1 − ς)

An1−1;1

An1;1

ü
− sn1−2;1

å
+ C(w),

(48)

where C(w) is some function of w, which is independent of sn1−2;1 and which

we give explicitly below. Note that

c
[ξ1]
w+2r1 − c[ξ1]

w+1ω1 > 0,

because, by Lemma 3.2, this is the number of arrows between some pair of

vertices in some seed between tωZ and t. Thus is suffices to show that C(w) is

nonnegative:

C(w) = (c
[ξ1]
w+2r1 − c[ξ1]

w+1ω1)

Ç
(An1−1;1 − ς)

An1−1;1

An1;1

−
ú

(An1−1;1 − ς)
An1−1;1

An1;1

üå
+ C̃(w)θ(w),

where

C̃(w) = c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

and

θ(w) = An1−1;1 −
ξ1c

[ξ1]
w+1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

ς

−
w−1∑
j=1

ξ1c
[ξ1]
w+1−j

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

τj;2.

We want to show that C(w) is nonnegative for 1 ≤ w ≤ n2 − 3, for which it

suffices to show that C̃(w) and θ(w) are nonnegative.

First we show that C̃(w) are nonnegative for w ≥ 1. Note that C̃(w) =

ξ1C̃(w− 1)− C̃(w− 2). Then if we show C̃(1) > 0 ≥ C̃(0), then the induction

on w will show that C̃(w) is increasing with w. By Lemma 3.14, we have
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C̃(0) = 1− r1
An1−1;1

An1;1
≤ 0. On the other hand,

C̃(1) = ξ1 − (ξ1r1 − ω1)
An1−1;1

An1;1
= ξ1

Ç
An1;1 − r1An1−1;1

An1;1

å
+ ω1

An1−1;1

An1;1

= ξ1

Ç
−An1−2;1

An1;1

å
+ ω1

An1−1;1

An1;1
,

which is positive because of equation (22).

Next we show that θ(w) are nonnegative for all w such that 1 ≤ w ≤ n2−3.

Recall from (44) that

θ = An1−2;1 − r1ς −
n2−3∑
j=1

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)τj;2 > 0.

Multiplying with
An1−1;1

An1−2;1
yields

An1−1;1 −
r1An1−1;1

An1−2;1
ς −

w−1∑
j=1

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

An1−2;1
τj;2 > 0.

So it is enough to show that if ξ1, r1, ω1 ≥ 2, then

(49)
r1An1−1;1

An1−2;1
>
ξ1c

[ξ1]
w+1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

and

(50)
(c

[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

An1−2;1
>

ξ1c
[ξ1]
w+1−j

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

.

This ends the proof of Lemma 5.8, modulo inequalities (49) and (50),

which are proved in the following subsection. �

5.2.3. Proof of (49) and (50). It follows from Lemma 3.14 that the left-

hand side of (49) is equal to (An1−2;1 +An1;1)/An1−2;1 = 1 + An1;1/An1−2;1.

Thus (49) is equivalent to

1 +
An1;1

An1−2;1
>
ξ1c

[ξ1]
w+1An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

(51)

⇐⇒ 1 +
An1;1

An1−2;1
> 1 +

(ξ1c
[ξ1]
w+1 − c

[ξ1]
w+2)An1;1

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

⇐⇒ 1

An1−2;1
>

ξ1c
[ξ1]
w+1 − c

[ξ1]
w+2

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1
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by recursive definition of c
[ξ1]
w⇐⇒ 1

An1−2;1
>

c
[ξ1]
w

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

Lemma 3.14⇐⇒ 1

An1−2;1
>

c
[ξ1]
w

c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1

⇐⇒ c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1 > c[ξ1]
w An1−2;1

⇐⇒ c
[ξ1]
w+1ω1An1−1;1 −An1−2;1(c[ξ1]

w + c
[ξ1]
w+2) > 0

by recursive definition of c
[ξ1]
w⇐⇒ c

[ξ1]
w+1(ω1An1−1;1 − ξ1An1−2;1) > 0.

This last inequality holds by equation (22), and thus this completes the proof

of (49).

To prove inequality (50) we start with inequality (51) above. Suppose first

that

c[ξ1]
w ≥

ξ1c
[ξ1]
w+1−jAn1;1

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

.

Then (51) implies

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

An1−2;1
>

ξ1c
[ξ1]
w+1−jAn1;1

c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1

,

which is equivalent to inequality (50), because An1−2;1 = rAn1−1;1 −An1;1, by

Lemma 3.14.

Suppose to the contrary that

c[ξ1]
w <

ξ1c
[ξ1]
w+1−jAn1;1

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

.

Then

c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1 <
ξ1c

[ξ1]
w+1−jAn1;1

c
[ξ1]
w An1−1;1

,

and dividing by c
[ξ1]
j+1 and using An1;1 = r1An1−1;1 −An1−2;1 yields

(52)
c

[ξ1]
j+2

c
[ξ1]
j+1

r1 − ω1 <
ξ1c

[ξ1]
w+1−j(r1An1−1;1 −An1−2;1)

c
[ξ1]
j+1c

[ξ1]
w An1−1;1

≤
ξ1c

[ξ1]
w+1−jr1

c
[ξ1]
j+1c

[ξ1]
w

.

Case 1. Suppose that j ≥ 2. Recall that c
[ξ1]
1 = 0, c

[ξ1]
2 = 1, c

[ξ1]
3 = ξ1, and

then (52) implies

c
[ξ1]
j+2

c
[ξ1]
j+1

r1 − ω1 <
c

[ξ1]
w−1r1

c
[ξ1]
w

,
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so

ω1 >

Ñ
c

[ξ1]
j+2

c
[ξ1]
j+1

−
c

[ξ1]
w−1

c
[ξ1]
w

é
r1 >

Ñ
lim
j→∞

c
[ξ1]
j+2

c
[ξ1]
j+1

− lim
w→∞

c
[ξ1]
w−1

c
[ξ1]
w

é
r1,

where the last inequality holds since
c
[ξ1]
j+2

c
[ξ1]
j+1

<
c
[ξ1]
j+3

c
[ξ1]
j+2

, for all j ≥ 1. Computing the

limits, we obtain

(53) ω1 >

Ñ
ξ1 +

»
ξ2

1 − 4

2
−
ξ1 −

»
ξ2

1 − 4

2

é
r1 = r1

»
ξ2

1 − 4.

• If ξ1 ≥ 3, then (53) implies ω1 > r1(ξ1 − 1), thus ω1 ≥ 5 and ω1 − ξ1 >

ξ1r1 − r1 − ξ1 ≥ 1.

• If ξ1 = 2 and ω1 ≥ 4 then, since 0 < An1−2;1/An1−1;1 < 1, we have

ω1 − ξ1
An1−2;1

An1−1;1
≥ 2.

• If ξ1 = 2, ω1 = 3 and r1 ≥ 3, then we still have

ω1 − ξ1
An1−2;1

An1−1;1
≥ 2.

• If ξ1 = 2, ω1 = 3 and r1 = 2, then the subquiver obtained from t∗ by

mutating at d′ is acyclic, so we do not consider this case.

• If ξ1 = ω1 = 2 and r1 ≥ 3, then c
[ξ1]
j+2r1−c[ξ1]

j+1ω1 ≥ 2 and ω1−ξ1
An1−2;1

An1−1;1
≥ 1.

In any of the above cases, we have

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(ω1 − ξ1
An1−2;1

An1−1;1
) ≥ 2

=⇒ (c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(ω1 − ξ1
An1−2;1

An1−1;1
) ≥

ξ1c
[ξ1]
w+1−j

c
[ξ1]
w+1

=⇒ (c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(ω1An1−1;1 − ξ1An1−2;1) ≥
ξ1c

[ξ1]
w+1−jAn1−1;1

c
[ξ1]
w+1

.

(54)

Since c
[ξ1]
w = ξ1c

[ξ1]
w−1 − c

[ξ1]
w−2, and thus ξ1c

[ξ1]
w−1 > c

[ξ1]
w−2, it follows that

(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1) ≥ ξ1c
[ξ1]
w+1−jAn1−1;1

⇐⇒ (c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1)An1−1;1

≥ ξ1c
[ξ1]
w+1−jA

2
n1−1;1

Lemma 3.14
=⇒ (c

[ξ1]
j+2r1 − c[ξ1]

j+1ω1)(c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1)An1−1;1

> ξ1c
[ξ1]
w+1−jAn1;1An1−2;1
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⇐⇒
(c

[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

An1−2;1
>

ξ1c
[ξ1]
w+1−jAn1;1

c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1

Lemma 3.14⇐⇒
(c

[ξ1]
j+2r1 − c[ξ1]

j+1ω1)An1−1;1

An1−2;1

>
ξ1c

[ξ1]
w+1−jAn1;1

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

,

which proves inequality (50) in these cases.

Next suppose that ξ1 = r1 = ω1 = 2. In this case, c
[ξ1]
j+1 = j, and thus

(c
[ξ1]
j+2r1− c[ξ1]

j+1ω1) = 2 and (c
[ξ1]
w+2r1− c[ξ1]

w+1ω1) = 2. It therefore suffices to show

that

2An1−1;1

An1−2;1
>

2(w − j)An1;1

(w + 1)An1;1 − 2An1−1;1
,

but this is equivalent to

(w + 1)An1;1An1−1;1 > (w − j)An1;1An1−2;1 + 2An1−1;1An1−1;1,

which holds true for j ≥ 1, by Lemma 3.14. This completes the proof in the

case j ≥ 2.

Case 2. Suppose that j = 1. Let “ξ1 = limw→∞
c
[ξ1]
w+1

c
[ξ1]
w

; in other words,“ξ1 =
ξ1+
√
ξ21−4

2 .

Case 2-1. Suppose that

(55)
An1−1;1

An1−2;1
ω1 −

(ξ1r1 − ω1)“ξ1(ω1An1−1;1 − ξ1An1−2;1)An1−1;1

A2
n1−2;1

≥ ξ1.

If r1 = 2, then one can check (50) directly. Suppose r1 ≥ 3. Then

ω1c
[r1]
0 −ξ1c

[r1]
−1 = −w1+ξ1r1 is the number of arrows between e and d′ in the seed

t∗, and ω1c
[r1]
n−1− ξ1c

[r1]
n−2 is the number of arrows between some pair of vertices

in the seed twE . In particular, these numbers are positive. Then by Lemma 5.9,

we have (ω1c
[r1]
0 − ξ1c

[r1]
−1 )(ω1c

[r1]
n−1− ξ1c

[r1]
n−2) > c

[r1]
n−2 for n ∈ {n1− 2, n1− 1}. So

(ξ1r1 − ω1)(ω1c
[r1]
n−1 − ξ1c

[r1]
n−2) > c

[r1]
n−2,

hence

(ξ1r1 − ω1)(ω1An1−1;1 − ξ1An1−2;1) > An1−2;1,

because Ai;1 is a positive linear combination of c
[r1]
i and c

[r1]
i+1.
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Then (55) implies thatÄ
ω1 − “ξ1

ä An1−1;1

An1−2;1
≥ ξ1

=⇒
Å
ω1 −

2

ξ1r1 − ω1

ã
An1−1;1

An1−2;1
≥ ξ1

⇐⇒ ω1 −
2

ξ1r1 − ω1
≥ ξ1

An1−2;1

An1−1;1

⇐⇒ ω1 − ξ1
An1−2;1

An1−1;1
≥ 2

ξ1r1 − ω1

⇐⇒ (ξ1r1 − ω1)(ω1 − ξ1
An1−2;1

An1−1;1
) ≥ 2,

and we can use the argument following (54).

Lemma 5.9. Fix a positive integer r ≥ 3, and let ci = c
[r]
i . Let ω, ξ, a, b

be integers such that b − a, ωca − ξca−1 and ωcb − ξcb−1 are positive. Then

(ωca − ξca−1)(ωcb − ξcb−1) > cb−a−1.

Proof. Suppose that ω2 − rωξ + ξ2 < 0. If b− a ≤ 2, then cb−a−1 ≤ 0, so

there is nothing to show. Thanks to Lemma 3.1, we get

(ωca−ξca−1)(ωcb+1−ξcb)−(ωca+1−ξca)(ωcb−ξcb−1) = −cb−a+1(ω2−rωξ+ξ2),

and the desired statement follows from induction on b− a.

Suppose that ω2 − rωξ + ξ2 > 0. Since ci = −c2−i for i ∈ Z, we assume

(ωca − ξca−1) < (ωcb − ξcb−1) without loss of generality. Then there exists an

integer e < a such that ωce+1− ξce > 0 and ωce− ξce−1 ≤ 0. Then again using

ci = −c2−i and Lemma 3.1, we get

ωcb − ξcb−1 = (ωce+1 − ξce)cb−e+1 + |ωce − ξce−1|cb−e,

which is clearly greater than cb−a−1. �

Case 2-2. Suppose that

An1−1;1

An1−2;1
ω1 −

(ξ1r1 − ω1)“ξ1(ω1An1−1;1 − ξ1An1−2;1)An1−1;1

A2
n1−2;1

< ξ1.

Then

ξ1
An1−2;1

An1−1;1
> ω1 −

(ξ1r1 − ω1)“ξ1(ω1An1−1;1 − ξ1An1−2;1)

An1−2;1

⇐⇒ (ξ1r1 − ω1)“ξ1(ω1An1−1;1 − ξ1An1−2;1)

An1−2;1

+ (ξ1r1 − ω1) > ξ1r1 − ξ1
An1−2;1

An1−1;1
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Lemma 3.10(a)⇐⇒ (ξ1r1 − ω1)“ξ1(ω1An1−1;1 − ξ1An1−2;1)

An1−2;1

+ (ξ1r1 − ω1) > ξ1
An1;1

An1−1;1

⇐⇒ (ξ1r1 − ω1)An1−1;1 >
ξ1An1;1“ξ1(ω1An1−1;1−ξ1An1−2;1)

An1−2;1
+ 1

⇐⇒ (ξ1r1 − ω1)An1−1;1

An1−2;1
>

ξ1An1;1“ξ1(ω1An1−1;1 − ξ1An1−2;1) +An1−2;1

Lemma 5.10
=⇒ (ξ1r1 − ω1)An1−1;1

An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+1(ω1An1−1;1 − ξ1An1−2;1) + c

[ξ1]
w An1−2;1

by recursive definition of c
[ξ1]
w⇐⇒ (ξ1r1 − ω1)An1−1;1

An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1

Lemma 3.14⇐⇒ (ξ1r1 − ω1)An1−1;1

An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+2An1;1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)An1−1;1

,

which is inequality (50) for j = 1.

Lemma 5.10. We have

ξ1c
[ξ1]
w+1An1;1

c
[ξ1]
w+2(ω1An1−1;1 − ξ1An1−2;1) + c

[ξ1]
w+1An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+1(ω1An1−1;1 − ξ1An1−2;1) + c

[ξ1]
w An1−2;1

.

In particular,

lim
w→∞

ξ1c
[ξ1]
w An1;1

c
[ξ1]
w+1(ω1An1−1;1 − ξ1An1−2;1) + c

[ξ1]
w An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+1(ω1An1−1;1 − ξ1An1−2;1) + c

[ξ1]
w An1−2;1

.
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Proof. The statement is equivalent to

ξ1c
[ξ1]
w+1An1;1

c
[ξ1]
w+2ω1An1−1;1 − c[ξ1]

w+3An1−2;1

>
ξ1c

[ξ1]
w An1;1

c
[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+2An1−2;1

⇐⇒ c
[ξ1]
w+1c

[ξ1]
w+1ω1An1−1;1 − c[ξ1]

w+1c
[ξ1]
w+2An1−2;1

> c[ξ1]
w c

[ξ1]
w+2ω1An1−1;1 − c[ξ1]

w c
[ξ1]
w+3An1−2;1

Lemma 3.1⇐⇒ ω1An1−1;1 − ξ1An1−2;1 > 0. �

This completes the proof of Proposition 5.2 modulo the following lemmas,

which are proved in [23].

Lemma 5.11 ([23, Lemma 4.8]). Let a, b, c be any nonnegative integers.

Then there are nonnegative integers d0, . . . , dc such thatÇ
aX + b

c

å
=

c∑
i=0

di

Ç
X

i

å
for all nonnegative integers X .

Lemma 5.12 ([23, Lemma 4.9]). Let a, b be any nonnegative integers.

Then there are nonnegative integers e0, . . . , ea+b such thatÇ
X

a

åÇ
X

b

å
=

a+b∑
i=0

ei

Ç
X

i

å
for all nonnegative integers X .

Lemma 5.13 ([23, Lemma 4.5]).
⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1 ≥ 0.

Lemma 5.14 ([23, Lemma 4.6]). Let I be a subset of the integers, and let

q : I → R be a function. Suppose that a polynomial of x of the form∑
m∈I

q(m)xb−m

is divisible by (1 + x)g and its quotient has nonnegative coefficients. Let

p(m) =
h∑
i=0

di

Ç
b−m
i

å
be a polynomial of m with di ≥ 0. Then∑

m∈I
p(m)q(m)xb−m

is divisible by (1 + x)g−h and its quotient has nonnegative coefficients.
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5.3. Proof of Proposition 5.5.

Proof. By Theorem 3.24 and replacing x1 by x−1
d,twZ

, we have that

∑
τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

(
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
xd;tωZ

An1−1;1−r1sn1−2;1

is divisible by (1 + xd;tωZ
r1)r1(An1−1;1−ς)−An1;1 in Z[xd;tωZ

±1], and the resulting

quotient has nonnegative coefficients. Multiplying the sum with

xd;tωZ

r1

⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−An1−1;1

shows that ∑
τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

(
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô)
× (xd;tωZ

r1)

⌊
(An1−1;1−ς)

An1−1;1

An1;1

⌋
−sn1−2;1

(56)

is also divisible by (1 + xd;tωZ
r1)r1(An1−1;1−ς)−An1;1 , and the resulting quotient

has nonnegative coefficients. Moreover, Lemma 5.13 above implies that the

exponents in the expression (56) are nonnegative and, since the divisor has

constant term 1, this shows that the quotient is a polynomial.

Note that the statement about the divisibility of (56) also holds when we

replace (xrd;tωZ
) with any other expression X. We can write the second sum of

(15) as follows: ∑
θ>0

x−θe;t′
∑
ς≥0

∑
r

λrr
∑
b,m

q(m)p(m)Xb−m,

where

q(m) =
n1−2∏
w=0

ñ
Aw+1;1 − r1sw;1

τw;1

ô
,

p(m) =

∑n2−3
w=1 τw,2∑
j=0

dj

Ç⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

j

å
,

b =

ú
(An1−1;1 − ς)

An1−1;1

An1;1

ü
,

m = sn1−2;1,

X =

Ö ∏
i x

[bt
′
i,e]+

i;t′∏
i x

[−bt′i,e]+
i;t′

èsgn(2bt
′
d,e+1)

.



122 KYUNGYONG LEE and RALF SCHIFFLER

Moreover, we can replace the upper bound
∑n2−3
w=1 τw,2 of the sum in

p(m) by the larger integer An1−2;1 − r1ς − θ and setting dj = 0, whenever

j >
∑n2−3
w=1 τw,2. The fact that

∑n2−3
w=1 τw,2 ≤ An1−2;1 − r1ς − θ follows from

equation (44).

Using Lemma 5.14 with g = r1(An1−1;1 − ς) − An1;1 and h = An1−2;1 −
r1ς − θ, we get that the second sum in the expression in (15) is divisible by

(57)

á
1 +

Ö ∏
i x

[bt
′
i,e]+

i;t′∏
i x

[−bt′i,e]+
i;t′

èsgn(2bt
′
d,e+1)

ër1(An1−1;1−ς)−An1;1−(An1−2;1−r1ς−θ)

Lemma 3.14
=

á
1 +

Ö ∏
i x

[bt
′
i,e]+

i;t′∏
i x

[−bt′i,e]+
i;t′

èsgn(2bt
′
d,e+1)

ëθ

,

and the resulting quotient has nonnegative coefficients. Finally, dividing (57)

by xθe;t′ and using the fact that

˜̃xe;t =

(∏
i

x
[bt
′
i,e]+

i;t′ +
∏
i

x
[−bt′i,e]+
i;t′

)/
xe;t′ ,

we see that the second sum in (15) is divisible by ˜̃xe;tθ. This completes the

proof of Proposition 5.5(1). Part (2) can be proved in a similar way using

Proposition 5.4. �

6. Application to quiver Grassmannians

Let (Q,S) be a quiver with potential, and let M be an indecomposable

representation of (Q,S) that is obtained by a mutation sequence starting from a

negative simple representation; see [8, §5]. Let GreM denote the Grassmannian

of subrepresentations of M of dimension vector e.

Theorem 6.1.The Euler-Poincaré characteristic of GreM is nonnegative.

Proof. It has been shown in [8] that M corresponds to a cluster variable

whose F -polynomial is equal to a sum of monomials whose coefficients are

given by the Euler-Poincaré characteristic of Gre(M). Theorem 4.2 implies

that these coefficients are nonnegative. �
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