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A solution of an L2 extension problem with
an optimal estimate and applications

By Qi’an Guan and Xiangyu Zhou

Abstract

In this paper, we prove an L2 extension theorem with an optimal esti-

mate in a precise way, which implies optimal estimate versions of various

well-known L2 extension theorems. As applications, we give proofs of a

conjecture of Suita on the equality condition in Suita’s conjecture, the

so-called L-conjecture, and the extended Suita conjecture. As other appli-

cations, we give affirmative answer to a question by Ohsawa about limiting

case for the extension operators between the weighted Bergman spaces,

and we present a relation of our result to Berndtsson’s important result on

log-plurisubharmonicity of the Bergman kernel.

1. Background and notation

The L2 extension problem is stated as follows (for background, see De-

mailly [16]): for a suitable pair (M,S), where S is a closed complex subvariety

of a complex manifold M , given a holomorphic function f (or a holomorphic

section of a holomorphic vector bundle) on Y satisfying suitable L2 conditions

on S, find an L2 holomorphic extension F on M together with a good or even

optimal L2 estimate for F on M .

The famous Ohsawa-Takegoshi L2 extension theorem (Ohsawa wrote a

series of papers on the L2 extension theorem in more general settings) gives an

answer to the first part of the problem — existence of the L2 extension. There

have been some new proofs and a lot of important applications of the theorem

in complex geometry and several complex variables, thanks to the works of

Y.-T. Siu, J. P. Demailly, Ohsawa, and Berndtsson et al. (see [49], [50], [37],

[39], [16], [6], etc.). An unsolved problem is left — the second part of an optimal

estimate in the L2 extension problem. A first exception is Blocki’s recent

work on an optimal estimate of Ohsawa-Takegoshi’s L2 extension theorem for

bounded pseudoconvex domains (see [11]) as a continuation of an earlier work
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towards the L2 extension problem with optimal estimate [61] (see also [10]).

Another exception is our recent work [26] based on [61] about an optimal

estimate of Ohsawa’s L2 extension theorem with negligible weight for Stein

manifolds [40].

In the present paper, we shall further discuss the L2 extension problem

with an optimal estimate and give a solution of the problem with its applica-

tions, by putting it into a vision with a wider scope.

The paper is organized as follows. In the rest of this section, we recall

some notation used in the paper. In Section 2, we present our main theorems,

solving the L2 extension problem with optimal estimate. In Section 3, we in-

troduce the main applications and corollaries of our main theorems, among

others, including: we give proofs of a conjecture of Suita on the equality con-

dition in Suita’s conjecture, the so-called L-conjecture, and the extended Suita

conjecture; we find a relation of our result to Berndtsson’s theorem on log-

plurisubharmonicity of the Bergman kernel; we give an affirmative answer to

a question by Ohsawa in [43] about a limiting case for the extension operators

between the weighted Bergman spaces; and we also obtain optimal estimate

versions of various well-known L2 extension theorems. In Section 4 we recall

or prove some preliminary results used in the proofs of the main theorems and

corollaries. In Section 5, we give the detailed proofs of the main theorems. In

Section 6, we give the proofs of the main corollaries.

For basic knowledge and references on several complex variables, we refer

to [12], [14], [21], [23], [24], [31], [32], [33], [52], [53], [58], [59], et al.

Now let us recall some notation in [41], [42]. Let M be a complex n-dimen-

sional manifold, and let S be a closed complex subvariety of M . Let dVM be

a continuous volume form on M . We consider a class of the upper-semi-

continuous function Ψ from M to the interval [−∞, A), where A ∈ (−∞,+∞],

such that

(1) Ψ−1(−∞) ⊃ S, and Ψ−1(−∞) is a closed subset of M ;

(2) if S is l-dimensional around a point x ∈ Sreg (Sreg is the regular part of S),

there exists a local coordinate (z1, . . . , zn) on a neighborhood U of x such

that zl+1 = · · · = zn = 0 on S ∩ U and

sup
U\S
|Ψ(z)− (n− l) log

n∑
l+1

|zj |2| <∞.

The set of such polar functions Ψ will be denoted by #A(S).

For each Ψ ∈ #A(S), one can associate a positive measure dVM [Ψ] on Sreg

as the minimum element of the partially ordered set of positive measures dµ

satisfying ∫
Sl

fdµ ≥ lim sup
t→∞

2(n− l)
σ2n−2l−1

∫
M
fe−ΨI{−1−t<Ψ<−t}dVM



A SOLUTION OF A SHARP L2 EXTENSION PROBLEM 1141

for any nonnegative continuous function f with supp f ⊂⊂ M , we denote by

I{−1−t<Ψ<−t} the characteristic function of the set {−1 − t < Ψ < −t}, Sl
the l-dimensional component of Sreg, and σm the volume of the unit sphere in

Rm+1.

Let ω be a Kähler metric on M \ (X ∪ S), where X is a closed subset of

M such that Ssing ⊂ X. (Ssing is the singular part of S.)

We can define measure dVω[Ψ] on S \X as the minimum element of the

partially ordered set of positive measures dµ′ satisfying∫
Sl

fdµ′ ≥ lim sup
t→∞

2(n− l)
σ2n−2l−1

∫
M\(X∪S)

fe−ΨI{−1−t<Ψ<−t}dVω

for any nonnegative continuous function f with supp(f) ⊂⊂M \X; as

Supp(I{−1−t<Ψ<−t}) ∩ Supp(f) ⊂⊂M \ (X ∪ S),

the right-hand side of the above inequality is well defined.

Let u be a continuous section of KM⊗E, where E is a holomorphic vector

bundle equipped with a continuous metric h on M . We define

|u|2h|V :=
cnh(e, e)v ∧ v̄

dVM

and

|u|2h,ω|V :=
cnh(e, e)v ∧ v̄

dVω
,

where u|V = v ⊗ e for an open set V ⊂M \ (X ∪ S), v is a continuous section

of KM |V and e is a continuous section of E|V ; especially, we define

|u|2|V :=
cnu ∧ ū
dVM

,

when u is a continuous section of KM . It is clear that |u|2h is independent of

the choice of V .

The following argument shows a relationship between dVω[Ψ] and dVM [Ψ]

(resp. dVω and dVM ). Precisely,

(1.1)

∫
M\(X∪S)

f |u|2h,ωdVω[Ψ] =

∫
M\(X∪S)

f |u|2hdVM [Ψ],

(1.2) (resp.

∫
M\(X∪S)

f |u|2h,ωdVω =

∫
M\(X∪S)

f |u|2hdVM ),

where f is a continuous function with compact support on M \X.
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For the neighborhood U , let u|U = v ⊗ e. Note that∫
M\(X∪S)

fI{−1−t<Ψ<−t}|u|2h,ωe−ΨdVω

=

∫
M\(X∪S)

fI{−1−t<Ψ<−t}h(e, e)cnv ∧ v̄e−Ψ

=

∫
M\(X∪S)

fI{−1−t<Ψ<−t}|u|2he−ΨdVM

(1.3)

and

(resp.

∫
M\(X∪S)

f |u|2h,ωe−ΨdVω

=

∫
M\(X∪S)

fh(e, e)cnv ∧ v̄e−Ψ

=

∫
M\(X∪S)

f |u|2he−ΨdVM ),

(1.4)

where f is a continuous function with compact support on M \ (X ∪ S). As

Supp(I{−1−t<Ψ<−t}) ∩ Supp(f) ⊂⊂M \ (X ∪ S),

equality (1.3) is well defined. Then we have equalities (1.1) and (1.2).

It is clear that |u|2h is independent of the choice of U , while |u|2hdVM is

independent of the choice of dVM (resp. |u|2hdVM [Ψ] is independent of the

choice of dVM ). Then the space of L2 integrable holomorphic sections of KM

is denoted by A2(M,KM ⊗ E, dV −1
M , dVM ) (resp. the space of holomorphic

sections of KM |S which is L2 integrable with respect to the measure dVM [Ψ]

is denoted by A2(S,KM |S ⊗ E|S , dV −1
M , dVM [Ψ])).

Denote the norm of any continuous section u of KM ⊗ E by

|u|2hdVM := {u, u}h.

Define

{f, f}h := 〈e, e〉h
√
−1

dimS2

f1 ∧ f̄1

for any continuous section f of KS ⊗ E|S , where f = f1 ⊗ e locally (see [16]).

It is clear that {f, f}h is well defined.

Definition 1.1. Let M be a complex manifold with a continuous volume

form dVM , and let S be a closed complex subvariety of M . We say (M,S)

satisfies condition (ab) if M and S satisfy the following conditions:

There exists a closed subset X ⊂M such that

(a) X is locally negligible with respect to L2 holomorphic functions; i.e., for

any local coordinate neighborhood U ⊂ M and for any L2 holomorphic

function f on U \X, there exists an L2 holomorphic function f̃ on U such

that f̃ |U\X = f with the same L2 norm.
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(b) M \ X is a Stein manifold which intersects with every component of S,

such that Ssing ⊂ X.

When S is smooth, condition (ab) is the same as condition (1) in Theo-

rem 4 in [41], [42]. The data (M,S) with the condition (ab) includes all the

following examples:

(1) M is a Stein manifold (including open Riemann surfaces), and S is any

closed complex subvariety of M ;

(2) M is a complex projective algebraic manifold (including compact Riemann

surfaces), and S is any closed complex subvariety of M ;

(3) M is a projective family (see [51]), and S is any closed complex subvariety

of M .

The Hermitian metric h on E is said to be semipositive in the sense of

Nakano if the curvature tensor Θh is semipositive definite as a hermitian form

on TX ⊗ E, i.e. if for every u ∈ TX ⊗ E, we have
√
−1Θh(u, u) ≥ 0 (see [13]).

Let ∆A,h,δ(S) be the subset of functions Ψ in #A(S) which satisfies that

both he−Ψ and he−(1+δ)Ψ are semipositive in the sense of Nakano on M \
(X ∪ S). Let ∆A(S) be the subset of plurisubharmonic functions Ψ in #A(S).

2. Main theorems

In the present section, we state an L2 extension theorem with an optimal

estimate, related to a kind of positive real function cA(t), which will be ex-

plained later on, solving the L2 extension problem with an optimal estimate.

The theorem is stated first in a general setting and then in a less general but

sufficiently useful setting. By the way, the word “optimal” depends on the con-

sidered setting. If the setting becomes narrower, the estimate possibly could

not be optimal again.

Given δ>0, let cA(t) be a positive function on (−A,+∞) (A∈(−∞,+∞)),

which is in C∞((−A,+∞)) and satisfies both
∫∞
−A cA(t)e−tdt <∞ andÇ

1

δ
cA(−A)eA +

∫ t

−A
cA(t1)e−t1dt1

å2

> cA(t)e−t
Ç∫ t

−A

Ç
1

δ
cA(−A)eA +

∫ t2

−A
cA(t1)e−t1dt1

å
dt2 +

1

δ2
cA(−A)eA

å
(2.1)

for any t ∈ (−A,+∞). If cA(t)e−t is decreasing with respect to t, then in-

equality (2.1) holds.

We establish the following L2 extension theorem with an optimal estimate

as follows:
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Theorem 2.1 (Main Theorem 1). Let (M,S) satisfy condition (ab), and

let h be a smooth metric on a holomorphic vector bundle E on M with rank r.

Let Ψ ∈ #A(S) ∩ C∞(M \ S), which satisfies

(1) he−Ψ is semipositive in the sense of Nakano on M \ (S ∪X) (X is as in

the definition of condition (ab));

(2) there exists a continuous function a(t) on (−A,+∞], such that 0 < a(t) ≤
s(t) and a(−Ψ)

√
−1Θhe−Ψ+

√
−1∂∂̄Ψ is semipositive in the sense of Nakano

on M \ (S ∪X), where

s(t) =

∫ t
−A(1

δ cA(−A)eA +
∫ t2
−A cA(t1)e−t1dt1)dt2 + 1

δ2 cA(−A)eA

1
δ cA(−A)eA +

∫ t
−A cA(t1)e−t1dt1

.

Then there exists a uniform constant C = 1, which is optimal, such that, for

any holomorphic section f of KM ⊗ E|S on S satisfying

(2.2)
n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ] <∞,

there exists a holomorphic section F of KM ⊗E on M satisfying F = f on S

and ∫
M
cA(−Ψ)|F |2hdVM

≤ C

Å
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

ã n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ],
(2.3)

where cA(t) satisfies cA(−A)eA := limt→−A+ cA(t)e−t < ∞ and cA(−A)eA

6= 0.

Using Remark 4.10 and Lemma 4.8, which will be discussed later on, we

can replace smoothness of cA in the above theorem by continuity.

Now we consider a useful and simpler class of functions as follows: Let

cA(t) be a positive function in C∞((−A,+∞)) (A ∈ (−∞,+∞]), satisfying∫∞
−A cA(t)e−tdt <∞ and

(2.4)

Ç∫ t

−A
cA(t1)e−t1dt1

å2

> cA(t)e−t
∫ t

−A

∫ t2

−A
cA(t1)e−t1dt1dt2

for any t ∈ (−A,+∞). When cA(t)e−t is decreasing with respect to t and A is

finite, inequality (2.4) holds.

For such a simpler and sufficiently useful class of functions, we establish

the following L2 extension theorem with an optimal estimate, whose simpler

version was announced in [28]:

Theorem 2.2 (Main Theorem 2). Let (M,S) satisfy condition (ab), and

let Ψ be a plurisubharmonic function in ∆A(S)∩C∞(M \(S∪X)). (X is as in

the definition of condition (ab).) Let h be a smooth metric on a holomorphic
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vector bundle E on M with rank r, such that he−Ψ is semipositive in the sense

of Nakano on M \ (S ∪ X). (When E is a line bundle, h can be chosen as

a semipositive singular metric.) Then there exists a uniform constant C = 1,

which is optimal, such that, for any holomorphic section f of KM ⊗E|S on S

satisfying condition (2.2), there exists a holomorphic section F of KM ⊗E on

M satisfying F = f on S and∫
M
cA(−Ψ)|F |2hdVM ≤ C

∫ ∞
−A

cA(t)e−tdt
n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ].

Similarly as before, we can replace smoothness of cA in the above theorem

by continuity.

3. Applications and main corollaries

In this section, we present applications and main corollaries of our main

theorems, among others, solutions of a conjecture of Suita on the equality con-

dition in Suita’s conjecture, the L-conjecture, the extended Suita conjecture; a

relation to Berndtsson’s log-plurisubharmonicity of the Bergman kernel; opti-

mal constant versions of various known L2 extension theorems; an affirmative

answer to a question by Ohsawa about a limiting case for the extension oper-

ators between the weighted Bergman spaces; and so on.

3.1. A conjecture of Suita. In this subsection, we present a corollary of

Theorem 2.2, which solves a conjecture of Suita on the equality condition in

Suita’s conjecture on the comparison between the Bergman kernel and the

logarithmic capacity.

Let Ω be an open Riemann surface, which admits a nontrivial Green func-

tion GΩ. Let w be a local coordinate on a neighborhood Vz0 of z0 ∈ Ω satisfying

w(z0) = 0. Let κΩ be the Bergman kernel for holomorphic (1, 0) forms on Ω.

We define

BΩ(z)|dw|2 := κΩ(z)|Vz0
and

BΩ(z, t̄)dw ⊗ dt̄ := κΩ(z, t̄)|Vz0 .
Let cβ(z) be the logarithmic capacity which is locally defined by

cβ(z0) := exp lim
z→z0

(GΩ(z, z0)− log |w(z)|)

on Ω (see [47]).

Suita’s conjecture in [54] says that on any open Riemann surface Ω as

above, (cβ(z0))2 ≤ πBΩ(z0).

The above conjecture was first proved for bounded planar domains by

Blocki [10], [11] and then by Guan-Zhou [26] for open Riemann surfaces. For

earlier works, see [61].
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In the same paper [54], Suita also conjectured a necessary and sufficient

condition for the equality holding in his inequality:

A conjecture of Suita. (cβ(z0))2 = πBΩ(z0) for z0 ∈ Ω if and only if

Ω is conformally equivalent to the unit disc less a (possible) closed set of inner

capacity zero.

In fact, a closed set of inner capacity zero is a polar set (locally singularity

set of a subharmonic function).

Using Theorem 2.2, we solve the conjecture of Suita:

Theorem 3.1. The above conjecture of Suita holds.

3.2. The L-conjecture. In this subsection, we now give a proof of the

L-conjecture. Let Ω be an open Riemann surface which admits a nontrivial

Green function GΩ and is not biholomorphic to the unit disc less a (possible)

closed set of inner capacity zero.

Assume that GΩ(·, t) is an exhaustion function for any t ∈ Ω. Associated

to the Bergman kernel κΩ(z, t̄), one may define the adjoint L-kernel LΩ(z, t) :=
2
π
∂2GΩ(z,t)
∂z∂t (see [48]). In [57], there is a conjecture on the zero points of the

adjoint L-kernel as follows:

The L-Conjecture (LC). For any t ∈ Ω, ∃z ∈ Ω, we have LΩ(z, t) = 0.

It is known that, for finite Riemann surface Ω, GΩ(·, t) is an exhaustion

function for any t ∈ Ω (see [57]). By Theorem 6 in [57], the L-conjecture for

finite Riemann surfaces is deduced from the above conjecture of Suita. Using

Theorem 3.1, we solve the L-conjecture for any open Riemann surface with

the exhaustion Green function:

Theorem 3.2. The above L-conjecture holds.

The following example shows that the assumption that GΩ(·, t) is an ex-

haustion function for any t ∈ Ω is necessary.

Let m and p denote the numbers of the boundary contours and the genus

of Ω, respectively (see [55]). In fact, for any finite Riemann surface Ω, which is

not simply connected, the Bergman kernel κΩ(z, t̄) of Ω has exactly 2p+m−1

zeros for suitable t (see [55]).

Let Ω be an annulus. Then we have 2p+m− 1 = 1 (see page 93, [48]). It

is known that #{z|LΩ(z, t) = 0}+ #{z|κΩ(z, t̄) = 0} ≤ 4p+ 2m− 2 = 2 for all

t ∈ Ω (see [55]). Note that κΩ(z, t̄) has exactly 2p+m−1 = 1 zeros for suitable

t. Using Theorem 3.2, we have #{z|LΩ(z, t) = 0} = 1 = 4p + 2m − 2 − 1 for

suitable t ∈ Ω. Let t1 ∈ Ω satisfy #{z|LΩ(z, t1) = 0} = 1. Assume that

z1 ∈ {z|LΩ(z, t1) = 0}. Note that z1 6= t1. As GΩ\{z1} = GΩ|Ω\{z1}, then we

have #{z|LΩ\{z1}(z, t1) = 0} = 0.
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3.3. Extended Suita Conjecture. Let Ω be an open Riemann surface, which

admits a nontrivial Green function GΩ. Take z0 ∈ Ω with a local coordinate

z. Let p : ∆→ Ω be the universal covering from unit disc ∆ to Ω.

We call the holomorphic function f (resp. holomorphic (1, 0)-form F ) on

∆ a multiplicative function (resp. multiplicative differential (Prym differen-

tial)) if there is a character χ, which is the representation of the fundamental

group of Ω, such that g∗f = χ(g)f (resp. g∗F = χ(g)F ), where |χ| = 1 and

g is an element of the fundamental group of Ω which naturally acts on the

universal covering of Ω (see [19]). Denote the set of such kinds of f (resp. F )

by Oχ(Ω) (resp. Γχ(Ω)).

As p is a universal covering, then for any harmonic function hΩ on Ω, there

exist a χh and a multiplicative function fh ∈ Oχh(Ω), such that |fh| = p∗ehΩ .

For the Green function GΩ(·, z0), one can also find a χz0 and a multiplica-

tive function fz0 ∈ Oχz0 (Ω), such that |fz0 | = p∗eGΩ(·,z0).

Because g∗|f | = |g∗f | = |χ(g)f | = |f | and g∗(F ∧ F̄ ) = g∗F ∧ g∗F =

χ(g)F ∧ χ(g)F = F ∧ F̄ , it follows that |f | and F ∧ F̄ are fibre constant with

respect to p.

As F ∧ F̄ is fibre constant, one can define the multiplicative Bergman

kernel κχ(x, ȳ) for Γχ(Ω) on Ω×Ω. Let Bχ
Ω(z)|dz|2 := κχΩ(z, z̄). The extended

Suita conjecture is formulated as follows ([57]):

Extended Suita Conjecture c2
β(z0) ≤ πBχ

Ω(z0), and equality holds if

and only if χ = χz0 .

The weighted Bergman kernel κΩ,ρ with weight ρ of holomorphic (1, 0)-

form on a Riemann surface Ω is defined by κΩ,ρ :=
∑
i ei⊗ ēi, where {ei}i=1,2,...

are holomorphic (1, 0)-forms on Ω and satisfy
√
−1
∫

Ω ρ
ei√

2
∧ ēj√

2
= δji .

Let hΩ be a harmonic function on Ω, and let ρ = e−2hΩ . Related to the

weighted Bergman kernel, there is an equivalent form of the extended Suita

conjecture in [57]:

Conjecture c2
β(z0) ≤ πρ(z0)BΩ,ρ(z0), and the equality holds if and only

if χ−h = χz0 .

The reason for the equivalence between the above two conjectures is as

follows: By the above argument, we have f−1
h p∗ej ∈ Γχ−h . Note that the

orthogonal basis of Γχ−h is {f−1
h p∗ej}j=1,2,...; then we have ρ(z0)BΩ,ρ(z0) =

B
χ−h
Ω (z0).

It suffices to show that for any χ such that Γχ has a nonzero element

F0, there is a harmonic function h on Ω which satisfies χ = χh. As Ω is

noncompact, for F0 ∈ Γχ, one can find a holomorphic function h0 on Ω such

that F0p
∗h−1

0 does not have any zero point on ∆. As Ω is noncompact, one

can find a holomorphic (1, 0)-form H0 on Ω such that H0 does not have any

zero point on Ω.
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Then one obtains a holomorphic function f1 :=
F0p∗h

−1
0

p∗H−1
0

, which does not

have any zero point. It is clear that log |f1| is harmonic and fibre constant,

which can be seen as a harmonic function on Ω.

Note that f1 ∈ Oχ(Ω). Set h := log |f1|. Then χh = χ. It is also easy

to see that the equality part of two conjectures are also equivalent. Then we

prove the equivalence of the two conjectures.

In [29], we have proved c2
β(z0) ≤ πρ(z0)BΩ,ρ(z0). Combining this result in

[29] with Theorem 2.2, we completely solve the extended Suita conjecture:

Theorem 3.3 (a complete solution of the extended Suita conjecture).

c2
β(z0) ≤ πρ(z0)BΩ,ρ(z0) holds, and the equality holds if and only if χ−h = χz0 .

3.4. A question posed by Ohsawa. Let Ω be a Stein manifold with a contin-

uous volume form dVΩ. Let D be a strongly pseudoconvex relatively compact

domain in Ω, with a C2 smooth plurisubharmonic defining function ρ. Let δ(z)

be a distance induced by a Riemannian metric from z to the boundary ∂D of D.

Let H be a closed smooth complex hypersurface on Ω. Then there exists

a continuous function s on Ω, which satisfies

(1) H = {s = 0};
(2) s2 is a smooth function on Ω;

(3) log |s| is a plurisubharmonic function on Ω;

(4) for any point z ∈ H, there exists a local holomorphic defining function e

of H, such that 2 log |s| − 2 log |e| is continuous near z.

In fact, associated to the hypersurface H, there exists a holomorphic line

bundle LH on Ω with a smooth Hermitian metric hH and there is a holomorphic

section f of LH , such that {f = 0} = H and df |z 6= 0 for any z ∈ H.

As Ω is Stein, then there exits a smooth plurisubharmonic function s1 on Ω,

which satisfies that s1 + log |f |hH is a plurisubharmonic function on Ω. Let

s := es1 |f |hH . Then we obtain the existence of the function s.

Assume that ∂D intersects with H transversally. Let

A2
α,ϕ(D) :=

ß
f ∈ Γ(D,KΩ)|

∫
D
e−ϕδα|f |2dVΩ <∞

™
and

‖ f ‖2α,ϕ= (α+ 1)

∫
D
e−ϕδα|f |2dVΩ.

We put

A2
−1,ϕ(D) :=

ß
f ∈ Γ(D,KΩ)| lim

α↘−1
(1 + α)

∫
D
e−ϕδα|f |2dVΩ <∞

™
and

‖ f ‖2−1,ϕ:= lim
α↘−1

(1 + α)

∫
D
e−ϕδα|f |2dVΩ <∞.
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In [18], when Ω is Cn and H is a smooth complex hypersurface, Diederich

and Herbort gave an L2 extension theorem from A2
α+1,ϕ(D ∩H) to A2

α,ϕ(D),

where α > −1.

Theorem 3.4 ([18]). The extension operator from A2
α+1,ϕ(D ∩ H) to

A2
α,ϕ(D) is bounded for any α > −1.

In [43], Ohsawa gave an L2 extension theorem from A2
0,ϕ(D ∩ H) to

A2
−1,ϕ(D), which is called a limiting case.

Theorem 3.5 ([43]). The extension operator from A2
0,ϕ(D∩H) to A2

−1,ϕ(D)

is bounded.

In [43], Ohsawa posed a question about unifying Diederich and Herbort’s

theorem with his theorem.

Using Theorem 2.1, we give the Ohsawa’s question an affirmative answer:

Theorem 3.6. Without assuming that ∂D intersects with H transver-

sally, the extension operator from A2
α+1,ϕ(D∩H) to A2

α,ϕ(D) for every α > −1

has a bound C0 max{Cα1 , Cα2 }, where C0, C1 and C2 are positive constants,

which are independent of α (α > −1). Consequently, the extension operator

from A2
0,ϕ(D ∩H) to A2

−1,ϕ(D) is bounded.

3.5. Application to a log-plurisubharmonicity of the Bergman kernel. In

this subsection, we give a relation between Theorem 2.2 and Berndtsson’s

theorem on log-plurisubharmonicity of the Bergman kernel in the following

framework: Let M be a complex (n + m)-dimensional manifold fibred over

complex m-dimensional manifold Y with n-dimensional fibres, and let p : M →
Y be the projection which satisfies, for any point t ∈ Y , that there exists a unit

disc ∆t ⊂ Y such that (p−1(∆t), p
−1(t)) satisfies condition (ab). Let (L, h) be

a semipositive holomorphic line bundle on M with Hermitian metric h over M .

There are two such examples:

(1) M is a pseudoconvex domain in Cn+m with coordinate (z, t), where z ∈ Cn,

t ∈ Cm, and Y is a domain in Cm with coordinate t,

p(z, t) = t;

(2) M is a projective family, Y is a complex manifold, and p is a projection

map.

Let (z, t) be the coordinate of S × Bm, which is the local trivialization of

the fibration p with fibre S, and let e be the local frame of L. Let κMt be the

Bergman kernel of KMt ⊗L on Mt, and let κMt := Bt(z)dz⊗ e⊗dz̄⊗ ē locally.

In this section, we prove that logBt(z) is plurisubharmonic with respect

to (z, t), using our result on the L2 extension with an optimal estimate. It
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should be noted that we cannot get the log-plurisubharmonicity without an

optimal estimate.

Without loss of generality, we assume that Y is 1-dimensional. Then (z, t)

is the coordinate of S ×∆1.

In order to show that logBt(z) is plurisubharmonic with respect to (z, t),

we need to check that for any complex line L on (z, t), logBt(z)|L is subhar-

monic. As we can change the coordinate locally, we only need to check that

for the complex lines {t|(z, t)}. Then it suffices to check the submean value

inequality for a disc small enough (see Chapter 1 of [13]).

Consider the framework at the beginning of the present subsection. For

any point w0 ∈M , there is a unit disc ∆p(w0) ⊂ Y , such that

(p−1∆p(w0), p
−1(p(w0)))

satisfies condition (ab). Then we have that (p−1(∆1), p−1(p(w)) satisfies con-

dition (ab) for any point w ∈ S ×∆1, by choosing ∆1 small enough.

For any given t, if κMt 6≡ 0, by the extremal property of the Bergman

kernel, there exists a holomorphic section ut of Kp−1(t)⊗L on p−1(t) such that

Bt(z) =
|g(z, t)|2∫

Mt

1
2n {ut, ut}

,

where ut = g(z, t)dz ⊗ e on (z, t).

If logBt0(z) = −∞, we are done. Then we can assume that

Bt0(z) =
|g(z)|2∫

Mt0

1
2n {ut0 , ut0}h

,

where ut0 is a holomorphic section of Kp−1(t0) ⊗ L on p−1(t0), and ut0 =

g(z)dz ⊗ e on (z, t).

Let ∆r be the unit disc with center (z, t0) and radius r on the line {t|(z, t)}.
In Theorem 2.2, let Ψ = log |t|2 and cA ≡ 1, where A = 2 log r. We obtain a

holomorphic section ũ on p−1(p(∆r)) such that

(3.1)

∫
Mt0

{ut0 , ut0}2h ≥
1

πr2

∫
∆r

∫
Mt

ß
ũ

dt
|Mt ,

ũ

dt
|Mt

™
h
dλ∆r(t),

where ũ = g̃(z, t)dz ∧ dt⊗ e on (z, t) and g̃(z, t0) = g(z).

Using the extremal property of the Bergman kernel, we have

Bt(z) ≥
|g̃(z, t)|2∫

Mt

1
2n {

ũ
dt |Mt ,

ũ
dt |Mt}h

,

for any (z, t) ∈ ∆r, if
∫
Mt
{ ũdt |Mt ,

ũ
dt |Mt}h 6= 0.

Note that the Lebesgue measure of {t|
∫
Mt
{ ũdt |Mt ,

ũ
dt |Mt}h = 0} is zero.

Using convexity of function y = ex and inequality (3.1), we have

e2 log |g(z)|−logBt0 (z) =
|g(z)|2

Bt0(z)
≥ e

1
πr2

∫
∆r

(2 log |g̃(z,t)|−logBt(z))dλ∆1
(t)
.(3.2)
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Since log |g̃| is a plurisubharmonic function, then we obtain the relation to

log-plurisubharmonicity of the Bergman kernel:

Corollary 3.7. logBt(z) is a plurisubharmonic function with respect to

(z, t).

The above result is due to [5] and [3] in the case of example (1) and due

to [7] in the case of example (2).

3.6. Lp extension theorems with optimal estimates and Ohsawa’s question.

Denote the smooth form dVM = e−ϕcndz ∧ dz̄ on the local coordinate z =

(z1, . . . , zn).

Using Theorem 2.1 (resp. Theorem 5.2) and a similar method as in the

proof of Proposition 0.2 in [9] (see also [8]), we obtain an Lp (0 < p < 2)

extension theorem with an optimal estimate:

Theorem 3.8. Let M be a Stein manifold, and let S be a closed complex

submanifold of M . Let h be a smooth metric on a holomorphic line bundle L on

M (resp. holomorphic line bundle L with locally integrable singular metric h),

which satisfies

(1)
√
−1p2Θh + 2−p

2

√
−1∂∂̄ϕ+

√
−1∂∂̄Ψ ≥ 0 on M \ S;

(2) a(−Ψ)(p2
√
−1Θh + 2−p

2

√
−1∂∂̄ϕ +

√
−1∂∂̄Ψ) +

√
−1∂∂̄Ψ ≥ 0 on M \ S,

where a and Ψ are as in Theorem 2.1,

respectively,

(1) p
2

√
−1Θh+ 2−p

2

√
−1∂∂̄ϕ+

√
−1∂∂̄Ψ ≥ 0 in the sense of currents on M \S;

(2) p
2

√
−1Θh + 2−p

2

√
−1∂∂̄ϕ + (1 + δ)

√
−1∂∂̄Ψ ≥ 0 in the sense of currents

on M \ S, where Ψ is as in Theorem 5.2.

Then for any holomorphic section f of KM ⊗ L|S on S satisfying

(3.3)
n∑
k=1

πk

k!

∫
Sn−k

|f |phdVM [Ψ] = 1,

there exists a holomorphic section F of KM ⊗ L on M satisfying F = f on S

and

(3.4)

∫
M
cA(−Ψ)|F |phdVM ≤

1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt,

where cA(t) is as in Theorem 2.1 (resp. Theorem 5.2).

By a similar method as in the proof of Theorem 3.6, assume

h = e
− 2
p

(ϕ−α log(−r+ε0|s|2))

and

dVM = cne
−ϕΩdz ∧ dz̄,

where ϕΩ is a smooth plurisubharmonic function on Ω, we answer the above

mentioned Ohsawa’s question for any p (0 < p < 2) as follows:
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Theorem 3.9. Without assuming that ∂D intersects with H transver-

sally, the extension operator from Apα+1,ϕ(D∩H) to Apα,ϕ(D) for each α > −1

has a bound C0 max{Cα1 , Cα2 }, where C0, C1 and C2 are positive constants,

which are independent of α, α > −1. Consequently, the extension operator

from Ap0,ϕ(D ∩H) to Ap−1,ϕ(D) is bounded.

3.7. L
2
m extension theorems with optimal estimates on Stein manifolds.

Replace L by (m− 1)KM + L. Take eϕ as the Hermitian metric on KM . Let

p = 2
m .

Using Theorem 3.8, we give an optimal estimate of the L
2
m extension

theorem:

Theorem 3.10. Let M be a Stein manifold and S be a closed complex

submanifold on M . Let h be a smooth metric on a holomorphic line bundle L on

M (resp. holomorphic line bundle L with locally integrable singular metric h),

which satisfies

(1) 1
m

√
−1Θh +

√
−1∂∂̄Ψ ≥ 0 on M \ S;

(2) a(−Ψ)( 1
m

√
−1Θh +

√
−1∂∂̄Ψ) +

√
−1∂∂̄Ψ ≥ 0 on M \ S, where a is as in

Theorem 2.1,

respectively,

(1) 1
m

√
−1Θh +

√
−1∂∂̄Ψ ≥ 0 in the sense of currents on M \ S;

(2) 1
m

√
−1Θh + (1 + δ)

√
−1∂∂̄Ψ ≥ 0 in the sense of currents on M \ S.

Then for any holomorphic section f of Km
M ⊗ L|S on S satisfying

(3.5)
n∑
k=1

πk

k!

∫
Sn−k

|f |
2
m
h dVM [Ψ] = 1,

there exists a holomorphic section F of mKM ⊗ L on M satisfying F = f on

S and

(3.6)

∫
M
cA(−Ψ)|F |

2
m
h dVM ≤

1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt,

where cA(t) is as in Theorem 2.1 (resp. Theorem 5.2).

Using the arguments in Section 3.5, we obtain the relation to log-plurisub-

harmonicity of the fiberwise m-Bergman kernels on Stein manifolds (see [9]

or [8]).

3.8. Interpolation hypersurfaces in Bargmann-Fock space. In this subsec-

tion, we give an application of Theorem 3.8 to a generalization of interpolation

hypersurfaces in Bargmann-Fock space (see [45]).

We say that W is a uniformly flat submanifold in Cn (the case of hyper-

surface is referred to [45]) if there exists T , which is a plurisubharmonic polar
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function of W on Cn, such that (∂∂̄T ∗ 1B(0,r)

Vol(B(0,r)))(z) has a uniform upper

bound on Cn which is independent of z ∈ Cn and r.

We say that W is an interpolation submanifold if for each f ∈ bfpϕ there

exists F ∈ BFpϕ such that F |W = f , where the plurisubharmonic function ϕ

satisfies
√
−1∂∂̄ϕ ' ω =

√
−1∂∂̄|z|2,

where

bfpϕ :=

ß
f ∈ O(W ) :

∫
W
|f |pe−pϕωn−1 < +∞

™
and

BFpϕ :=

ß
F ∈ O(Cn) :

∫
Cn
|F |pe−pϕωn < +∞

™
.

Let T be a plurisubharmonic function in #(W ) ∩ C∞(Cn \W ). For any

z ∈ Cn and r > 0, consider the (1, 1)-form

ΥW,T (z, r) :=
n∑

i,j=1

Ç
1

Vol(B(z, r))

∫
B(z,r)

∂2 log |T |
∂ξi∂ξ̄j

ωn(ξ)

å√
−1dzi ∧ dz̄j .

The density of W in the ball of radius r and center z is

D(W,T, z, r) := sup

®
ΥW,T (z, r)(v, v)√
−1∂∂̄ϕr(v, v)

:= v ∈ TCn,z − {0}
´
,

where ϕr := ϕ ∗ 1B(0,r)

Vol(B(0,r)) . The upper density of W is

D+(W ) := sup
T

lim sup
r→∞

sup
z∈Cn

D(W,T, z, r).

In [45], one of the main results is

Theorem 3.11 ([45]). Let W be a uniformly flat hypersurface. Let p ≥ 2.

If D+ < 1, then W is an interpolation hypersurface.

Using Theorem 3.8, we obtain a sufficient condition for interpolation sub-

manifold in Bargmann-Fock space for p ≤ 2:

Theorem 3.12. Let W be a uniformly flat submanifold. Let 0 < p ≤ 2.

If D+ < p
2 , then W is an interpolation submanifold.

3.9. Optimal estimate of the L2 extension theorem of Ohsawa. In this

subsection, we give some applications of Theorem 2.2 by giving an optimal

estimate of the L2 extension theorem of Ohsawa in [36]. Assume that (M,S)

satisfies condition (ab).

Let c∞(t) := (1 + e−
t
m )−m−ε, where ε is a positive constant. It is clear

that
∫∞
−∞ c∞(t)e−tdt = m

∑m−1
j=0 Cjm−1(−1)m−1−j 1

m−1−j+ε <∞.
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Using Remark 4.12, we obtain that inequality (2.4) holds for any t ∈
(−∞,+∞). Let Ψ = m log(|g1|2 + · · ·+ |gm|2), where S = {g1 = · · · = gm = 0}
and gi are holomorphic functions on M , which satisfy ∧mj=1dgj |Sreg 6= 0.

Using Theorem 2.2 and Lemma 4.14, we obtain an optimal estimate ver-

sion of the main result in [36] as follows:

Corollary 3.13. For any holomorphic section f of KSreg ⊗ E|Sreg on

Sreg satisfying

πm

m!

∫
Sreg

{f, f}h <∞,

there exists a holomorphic section F of KM ⊗ E on M satisfying F = f ∧∧m
k=1 dgk on Sreg and∫

M
(1 + |g1|2 + · · ·+ |gm|2)−m−ε{F, F}h

≤ C

Ñ
m

m−1∑
j=0

Cjm−1(−1)m−1−j 1

m− 1− j + ε

é
(2π)m

m!

∫
Sreg

{f, f}h,

where the uniform constant C = 1, which is optimal for any m.

When M is Stein, for any plurisubharmomic function ϕ on M, we can

choose a sequence of smooth plurisubharmomic functions {ϕk}k=1,2,..., which

is decreasingly convergent to ϕ. Then the above corollary gives an optimal

estimate version of the main theorem in [36].

Let c∞(t) := (1 + e−t)−1−ε, where ε is a positive constant. Using Re-

mark 4.12, we obtain that inequality (2.4) holds for any t ∈ (−∞,+∞). Let

Ψ = m log(|g1|2 + · · ·+ |gm|2), where S = {g1 = · · · = gm = 0} and gi are the

same as in Corollary 3.13.

Using Theorem 2.2 and Lemma 4.14, we can formulate a similar version

to the above corollary with more concise estimate:

Corollary 3.14. For any holomorphic section f of KSreg ⊗ E|Sreg on

Sreg satisfying

πm

m!

∫
Sreg

{f, f}h <∞,

there exists a holomorphic section F of KM ⊗ E on M satisfying F = f ∧∧m
k=1 dgk on S and∫

M
(1 + (|g1|2 + · · ·+ |gm|2)m)−1−ε{F, F}h ≤ C

1

ε

(2π)m

m!

∫
Sreg

{f, f}h,

where the uniform constant C = 1, which is optimal.

Let M be a Stein manifold, and let S be an analytic hypersurface on M ,

which is locally defined by {wj = 0} on Uj ⊂M , where {Uj}j=1,2,... is an open
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covering of M , and functions {wj}j=1,2,... together give a nonzero holomorphic

section w of the holomorphic line bundle [S] associated to S (see [25]).

Let | · | be a Hermitian metric on [S] satisfying that | · |e−ψ is seminegative,

where ψ is an upper-semicontinuous function on M . Assume that log(|w|2) +

ψ < 0 on M . Let ϕ be a plurisubharmonic function.

Let Ψ := log(|w|2)+ψ. Note that Ψ is plurisubharmonic. By Lemma 4.14,

we have

|F |2dVM [Ψ] = 2
cn−1

F
dw ∧

F̄
dw

|dw|2
e−ψ

for any continuous (n, 0)-form F on M , where |dw| is the Hermitian metric on

[−S]|Sreg induced by the Hermitian metric | · | on [S]|Sreg .

Let c0(t) := 1. It is easy to see that
∫∞
0 c0(t)e−tdt = 1 <∞ and c0(t)e−t is

decreasing with respect to t, and inequality (2.4) holds for any t ∈ (−∞,+∞).

Using Theorem 2.2, we obtain another proof of the following result in [26],

which is an optimal estimate version of main results in [40], [30] and [61], etc.

Corollary 3.15. [26] For any holomorphic section f of KSreg on Sreg

satisfying

cn−1

∫
Sreg

f ∧ f̄
|dw|2

e−ϕ−ψ <∞,

there exists a holomorphic section F of KM on M satisfying F = f ∧ dw on

Sreg and

cn

∫
M
F ∧ F̄ e−ϕ ≤ 2πCcn−1

∫
Sreg

f ∧ f̄
|dw|2

e−ϕ−ψ,

where the uniform constant C = 1, which is optimal.

When w is a holomorphic function on M , the above corollary is an optimal

estimate version of the L2 extension theorems in [34], [40], [49], [50], [2], [15],

[4], [16], [30], [61], [10], etc.

3.10. The optimal constant version of the L2 extension theorems of Manivel

and Demailly.

Theorem 3.16 ([34] and [15]). Let (X, g) be a Stein n-dimensional man-

ifold possessing a Kähler metric g, and let L (resp. E) be a Hermitian holo-

morphic line bundle (resp. a Hermitian holomorphic vector bundle of rank

r over X). Let w be a global holomorphic section of E. Assume that w is

generically transverse to the zero section, and let

H = {x ∈ X : w(x) = 0, ∧rdw(x) 6= 0}.

Moreover, assume that the (1, 1)-form
√
−1Θ(L) + r

√
−1∂∂̄ log |w|2 is semi-

positive and that there is a continuous function α ≥ 1 such that the following
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two inequalities hold everywhere on X :

(a)
√
−1Θ(L) + r

√
−1∂∂̄ log |w|2 ≥ {

√
−1Θ(E)w,w}
α|w|2

;

(b) |w| ≤ e−α.

Then for every holomorphic section f of ∧nT ∗X ⊗ L over H , such that∫
H
|f |2| ∧r (dw)|−2dVH < +∞,

there exists a holomorphic extension F to X such that F
∣∣∣
H

= f and

(3.7)

∫
X

|F |2

|w|2r(− log |w|)2
dVX ≤ C

3r

4

(2π)r

r!

∫
H

|f |2

| ∧r (dw)|2
dVH ,

where C is a uniform constant depending only on r.

Using Theorem 2.1, we obtain the following:

Corollary 3.17. Theorem 3.16 holds with the optimal constant C = 1

in the estimate (3.7).

3.11. The optimal estimate for the L2 extension theorems of McNeal and

Varolin. In [35], McNeal and Varolin defined a function class D.

Definition 3.18. The class D consists of nonnegative functions with the

following three properties:

(I) Each g ∈ D is continuous and increasing.

(II) For each g ∈ D, the improper integral

C(g) =

∫ ∞
1

dt

g(t)
< +∞.

For δ > 0, set

Hδ(y) =
1

1 + δ

Ç
1 +

δ

C(g)

∫ y

1

dt

g(t)

å
,

and note that this function takes values in (0, 1]. Let

gδ(x) =

∫ x

1

1−Hδ(y)

Hδ(y)
dy.

(III) For each g ∈ D, there exists a constant δ > 0 such that

Kδ(g) = sup
x≥1

x+ gδ(x)

g(x)
< +∞.

The extension theorem proved by McNeal and Varolin is stated as below.
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Theorem 3.19. Let X be a Kähler manifold of complex dimension n.

Assume there exists a holomorphic function w on X , such that sup
X
|w| = 1

and dw is never zero on the set H = {w = 0}. Assume there exists an analytic

subvariety V ⊂ X such that H is not contained in V and X\V is Stein. Let

L be a holomorphic line bundle over X together with a singular Hermitian

metric. Let ψ : X −→ [−∞,+∞] be a locally integrable function such that

for any local representative e−ϕ of the metric of L over an open set U , the

function ψ + ϕ is not identically +∞ or −∞ on H ∩ U . Let g be a function

in D. Assume that ψ satisfies that for all γ > 1 and ε > 0 sufficiently small

(depending on γ − 1),
√
−1∂∂̄(ϕ+ ψ + log |w|2) ≥ 0,

g−1
Ä
e−ψg(1− log |w|2)

ä
≥ 1 and

α− g−1
Ä
e−ψg(α)

ä
is plurisubharmonic,

where α = γ − log(|w|2 + ε2). Then for any holomorphic (n − 1)-form f ∈
C∞(H,∧n−1T ∗H ⊗ L) on H with values in L such that∫

H
{f, f}e−ϕ−ψ dVH < +∞,

there is a holomorphic n-form F ∈ C∞(X,∧nT ∗X ⊗ L) with value in L such

that F
∣∣∣
H

= f ∧ dw and

(3.8)

∫
X

{F, F}e−ϕ
|w|2g

Ä
log e

|w|2
ä dVX ≤ 2

π

e
CC(g)

∫
H
{f, f}e−ϕ−ψ dVH ,

where C = 4

Ä
Kδ(g)+

1+δ
δ
C(g)
ä

C(g)

By Theorem 2.2, it follows that

Corollary 3.20. Theorem 3.19 holds with the optimal constant C = 1

in the estimate (3.8), and g only needs to satisfy (I) and (II).

In Section 3 of [35], McNeal and Varolin gave various cases of extension

theorems with gains. We give optimal estimates of their extension theorems:

Let g(t) := 1
cA(t)e−t , where g : [1,+∞]→ [0,+∞] is as in [35] and A = −1. Let

Ψ = log |w|2.

Using Corollary 3.20, we obtain optimal estimates for all extension theo-

rems in Section 3 of [35].

3.12. An optimal estimate for an L2 extension theorem on projective fam-

ilies. In [51], [46] and [6], one has an L2 extension theorem on projective

families:
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Theorem 3.21. Let M be a projective family fibred over the unit ball in

Cm, with compact fibers Mt. Let (L, h) be a holomorphic line bundle on M with

a smooth hermitian metric h of semipositive curvature. Let u be a holomorphic

section of KM0 ⊗ L over M0 such that∫
M0

{u, u}h ≤ 1.

Then there is a holomorphic section ũ of KM ⊗ L over M such that ũ|M0 =

u ∧ dt, and

(3.9)

∫
M
{ũ, ũ}h ≤ Cb.

In [46], one can take Cb < 200. In Theorem 2.2, take cA = 1 and let

Ψ := 2m log |t|. We obtain an optimal estimate of the above L2 extension

theorem:

Corollary 3.22. Theorem 3.21 holds with Cb = 2mπm

m! , which is optimal.

3.13. An optimal estimate for an L2 extension theorem of Demailly, Hacon

and Păun. In [17], Demailly, Hacon and Păun gave an L2 extension theorem

in the following framework:

Let M be a Stein manifold and S be a closed complex submanifold with

globally defining function w. Let ϕF , ϕG1 and ϕG2 be plurisubharmonic func-

tions on M .

Let ϕS := ϕG1 − ϕG2 . Assume that αϕF − ϕS is plurisubharmonic on

M , |w|2e−ϕS ≤ e−α, and ϕF ≤ ε0ϕG2 + C on M , where α ≥ 1, ε0 > 1

and C are all real numbers. Let ϕ̄S be a smooth function on M , such that

maxM |w|2e−ϕ̄S <∞.

Demailly-Hacon-Păun’s L2 extension theorem is as follows:

Theorem 3.23 ([17]). Let u be a section of KS satisfying∫
S
{u, u}e−ϕF <∞.

Then there exists a section U of KM , such that U |S = u ∧ dw and

(3.10)

∫
M
{U,U}e−bϕS−(1−b)ϕ̄S−ϕF ≤ Cb

∫
S
{u, u}e−ϕF ,

where 1 ≥ b > 0 is an arbitrary real number, and the constant

Cb = C0b
−2
Å

max
M
|w|2e−ϕ̄S

ã1−b
,

where C0 depends only on the dimension.

Using Theorem 2.1, we obtain an optimal estimate of the above extension

theorem:
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Corollary 3.24. Theorem 3.23 holds with

Cb = 2π

Å
αe−bα +

1

b
e−bα

ãÅ
max
M
|w|2e−ϕ̄S

ã1−b
,

which is optimal, without assuming that ϕF ≤ ε0ϕG2 + C on M .

4. Some results used in the proof of main results and applications

In this section, we give some lemmas which will be used in the proofs of

main theorems and corollaries of the present paper.

4.1. Some results used in the proofs the main results. In this subsection,

we recall some lemmas on L2 estimates for some ∂̄ equations (for general cases,

see [32], [53], etc.) and give some useful lemmas. Denote by ∂̄∗ or D′′∗ the

Hilbert adjoint operator of ∂̄.

Lemma 4.1 (see [40] or [44]). Let (X,ω) be a Kähler manifold of dimen-

sion n with a Kähler metric ω. Let (E, h) be a hermitian holomorphic vec-

tor bundle. Let η, g > 0 be smooth functions on X . Then for every form

α ∈ D(X,Λn,qT ∗X ⊗ E), which is the space of smooth differential forms with

values in E with compact support, we have

‖(η + g−1)
1
2D′′∗α‖2 + ‖η

1
2D′′α‖2

≥
¨¨

[η
√
−1ΘE −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α

∂∂
.

(4.1)

Lemma 4.2. Let X and E be as in the above lemma and θ be a continuous

(1, 0)-form on X . Then we have

[
√
−1θ ∧ θ̄,Λω]α = θ̄ ∧ (αx(θ̄)])

for any (n, 1)-form α with value in E. Moreover, for any positive (1, 1)-form

β, we have [β,Λω] is semipositive.

Proof. For any x ∈ X, we choose a local coordinate (z1, . . . , zn) near x,

such that

(1) θ|x = adz1,

(2) ω|x =
√
−1dz1 ∧ dz̄1 + · · ·+

√
−1dzn ∧ dz̄n.

It suffices to prove [
√
−1dz1 ∧ dz̄1,Λω]α = dz̄1 ∧ (αx(dz̄1)]

ä
.

At x, we have Λωα =
Ä
αx(
√
−1dz1 ∧ dz̄1 + · · · +

√
−1dzn ∧ dz̄n)]

ä
. It is

clear that
√
−1dz1 ∧ dz̄1 ∧ Λωα =

√
−1dz1 ∧ dz̄1 ∧

Ä
αx(
√
−1dz1 ∧ dz̄1)]

ä
.

Let α|x = αjej =
∑n
k=1 α

j
k

∧n
l=1 dzl∧dz̄k⊗ej , where {ej} is an orthonormal

basis of Ex. Then we haveÄ
αx(
√
−1dz1 ∧ dz̄1)]

ä
|x = −

√
−1(−1)n−1αj1

n∧
l=2

dzl ⊗ ej
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and î√
−1dz1 ∧ dz̄1,Λω

ó
α =
√
−1dz1 ∧ dz̄1 ∧ (Λωα)

=αj1

n∧
l=1

dzl ∧ dz̄1 ⊗ ej

=dz̄1 ∧
Ä
αx(dz̄1)]

ä
. �

Lemma 4.3 (see [15], [16]). Let X be a complete Kähler manifold equipped

with a (not necessarily complete) Kähler metric ω, and let E be a Hermitian

vector bundle over X . Assume that there are smooth and bounded functions η,

g > 0 on X such that the (Hermitian) curvature operator

B :=
î
η
√
−1ΘE −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω

ó
is positive definite everywhere on Λn,qT ∗X ⊗E for some q ≥ 1. Then for every

form λ ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′λ = 0 and
∫
X〈B−1λ, λ〉dVω < ∞,

there exists u ∈ L2(X,Λn,q−1T ∗X ⊗ E) such that D′′u = λ and∫
X

(η + g−1)−1|u|2dVω ≤
∫
X
〈B−1λ, λ〉dVω.

For any point x ∈ S, we have a neighborhood Ux ⊂ M of x and a bi-

holomorphic map p from Ux to ∆n, such that p(Ux ∩ S) = ∆dimSx , and

p(Ux \ S) = ∆dimSx × (∆codimSx)∗. Then we can use the following lemma

to study high dimension cases:

Lemma 4.4. Let ∆ be the unit disc and ∆r be the disc with radius r.

Then for any holomorphic function f on ∆, which satisfies∫
∆
|f |2dλ <∞,

we have a uniformly constant Cr = 1
1−r2 , which is only dependent on r, such

that ∫
∆
|f |2dλ ≤ Cr

∫
∆\∆r

|f |2dλ,

where λ is the Lebesgue measure on C.

Proof. By Taylor expansion at o ∈ C, it suffices to check the lemma for

f = zj . By some simple calculations, the lemma follows. �

Let L2
h(M) := {F |F ∈ Λn,0T ∗M ⊗ E,

∫
M{F, F}h < ∞}. We now discuss

the convergence of holomorphic (n, 0)-forms with values in E as follows:

Lemma 4.5. Let M be a complex manifold with dimension n and a con-

tinuous volume form dVM . Let E be a holomorphic vector bundle with rank r



A SOLUTION OF A SHARP L2 EXTENSION PROBLEM 1161

and h be a Hermitian metric on E. Let {Fj}j=1,2,... be a sequence of holomor-

phic (n, 0)-forms with values in E. Assume that for any compact subset K of

M , there exists a constant CK > 0, such that

(4.2)

∫
K
|Fj |2hdVM ≤ CK

holds for any j = 1, 2, . . . . Then we have a subsequence of {Fj}j=1,2,..., which

is uniformly convergent to a holomorphic section of KM ⊗ E on any compact

subset of M .

Proof. We can choose a covering {Ui}i=1,2,... of M , which satisfies

(1) Ui ⊂⊂M , and ∃Ki ⊂⊂ Ui, such that ∪∞i=1Ki = M ;

(2) E|Ui is trivial with holomorphic basis ei1, . . . , e
i
r;

(3) KM |Ui is trivial with holomorphic basis vi.

Then we may write Fj |Ui = fkj,ie
i
k⊗vi, where fkj,i are holomorphic functions on

Ui. As h is a Hermitian metric and Ui ⊂⊂M , there exists a constant BK > 0,

such that ∑
1≤k,l≤r

h(eik, e
i
l)f

k
j,if̄

l
j,i ≥ BK

r∑
k=1

|fkj,i|2.

By inequality (4.2), it follows that

(4.3)

∫
Uj

r∑
k=1

|fkj,i|2cnvi ∧ v̄i ≤
CK
BK

for any j = 1, 2, . . . .

We can obtain a subsequence of {Fj}j=1,2,... which is uniformly convergent

on any compact subset of M by the following steps:

(1) On U1, by inequality (4.3), we can obtain subsequence {F ′1j}j=1,2,... of

{Fj}j=1,2,... which is uniformly convergent on K1;

(2) On U2, by inequality (4.3), we can obtain subsequence {F ′2j}j=1,2,... of

{F ′1,j}j=1,2,... which is uniformly convergent on K2;

(3) On U3, by inequality (4.3), we can obtain subsequence {F ′3j}j=1,2,... of

{F ′2,j}j=1,2,... which is uniformly convergent on K3 . . . .

As the transition matrix of E is invertible, we see that {F ′jj}j=1,2,... is uniformly

convergent on any compact subset of M . Thus we have proved the lemma. �

Lemma 4.6. Let M be a complex manifold. Let S be a closed complex

submanifold of M . Let {Uj}j=1,2,... be a sequence of open subsets on M , which

satisfies
U1 ⊂ U2 ⊂ · · · ⊂ Uj ⊂ Uj+1 ⊂ · · · ,

and
⋃∞
j=1 Uj = M \ S. Let {Vj}j=1,2,... be a sequence of open subsets on M ,

which satisfies
V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ,

Vj ⊃ Uj , and
⋃∞
j=1 Vj = M .



1162 QI’AN GUAN and XIANGYU ZHOU

Let {gj}j=1,2,... be a sequence of positive Lebesgue measurable functions

on Uk, which satisfies that gj are almost everywhere convergent to g on any

compact subset of Uk (j ≥ k), and gj have uniformly positive lower and upper

bounds on any compact subset of Uk (j ≥ k), where g is a positive Lebesgue

measurable function on M \ S.

Let E be a holomorphic vector bundle on M , with Hermitian metric h.

Let {Fj}j=1,2,... be a sequence of holomorphic (n, 0)-form on Vj with values in

E. Assume that limj→∞
∫
Uj
{Fj , Fj}hgj = C, where C is a positive constant.

Then there exists a subsequence {Fjl}l=1,2,... of {Fj}j=1,2,..., which satisfies

that {Fjl} is uniformly convergent to an (n, 0)-form F on M with value in E

on any compact subset of M when l→ +∞, such that∫
M
{F, F}hg ≤ C.

Proof. As lim infj→∞
∫
Uj
{Fj , Fj}hgj = C < ∞, it follows that there ex-

ists a subsequence of {Fj}, denoted still by Fj without ambiguity, such that

limj→∞
∫
Uj
{Fj , Fj}hgj = C.

By Lemma 4.4, for any compact set Kk ⊂⊂M , it follows that there exists

K̃jk ⊂⊂M \ S, which satisfies K̃jk ⊂ Ujk , and∫
Kk

{Fj , Fj}h ≤ Ck
∫
K̃jk

{Fj , Fj}hgj ,

for any j ≥ jk, where Ck is a constant which is only dependent on k.

Using Lemma 4.5, we have a subsequence of Fj , which is uniformly con-

vergent on K◦k , denoted still by Fj without ambiguity. Assume
⋃∞
k=1K

◦
k = M

and Kk ⊂⊂ Kk+1.

Using the diagonal method for k, we obtain a subsequence of Fj , de-

noted by Fj without ambiguity, which is uniformly convergent to a holomorphic

(n, 0)-form F with value in E on any compact subset of M .

Given K̃ ⊂⊂ M \ S, as {Fj} (resp. gj) is uniformly convergent to F

(resp. g) for j ≥ kK̃ , we have
∫
K{F, F}hg ≤ limj→∞

∫
Uj
{Fj , Fj}hgj , where kK̃

satisfies UkK̃ ⊃ K̃. It is clear that
∫
M{F, F}hg ≤ limj→∞

∫
Uj
{Fj , Fj}hgj . �

We now give a remark to illustrate the extension properties of holomorphic

sections of holomorphic vector bundles from M \X to M .

Remark 4.7. Let (M,S) satisfy condition (ab), and let h be a singular

metric on a holomorphic line bundle L on M (resp. continuous metric on

holomorphic vector bundle E on M with rank r) such that h has locally a

positive lower bound. Let F be a holomorphic section of KM\X ⊗ E|M\X ,

which satisfies
∫
M\X |F |2h < ∞. As h has locally a positive lower bound and
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M satisfies (a) of condition (ab), there is a holomorphic section F̃ of KM ⊗ L
on M (resp. KM ⊗ E), such that F̃ |M\X = F .

We now give an approximation property of the function cA(t) (A < +∞)

as follows:

Lemma 4.8. Let cA(t) be a positive function in C∞((−A,+∞)), which

satisfies
∫∞
−A cA(t)e−tdt < ∞ and inequality (2.4), for any t ∈ (−A,+∞).

Then there exists a sequence of positive C∞ smooth functions {cA,m(t)}m=1,2,...

on (−A,+∞), which satisfies

(1) cA,m(t) are continuous near +∞ and limt→+∞ cA,m(t) > 0;

(2) cA,m(t) are uniformly convergent to cA(t) on any compact subset of

(−A,+∞), when m goes to ∞;

(3)
∫∞
−A cA,m(t)e−tdt is convergent to

∫∞
−A cA(t)e−tdt when m approaches to∞;

(4) for any t ∈ (−A,+∞),Ç∫ t

−A
cA,m(t1)e−t1dt1

å2

> cA,m(t)e−t
∫ t

−A

∫ t2

−A
cA,m(t1)e−t1dt1dt2

holds.

Proof. We give a construction of cA,m. First, we consider the case that

A < +∞. Let gB(t) := cA(t) when t ∈ (−A,−A + B]. We can choose gB(t),

which is a positive continuous decreasing function on t ∈ [−A + B,∞), and

smooth on (−A+B,∞), which satisfies limt→+∞ gB(t) > 0, such that

(4.4)

∫ ∞
−A+B

gB(t)e−tdt < B−1,

where B > 0.

As gB(t) = cA(t) when t ∈ (−A,−A+B), we have

(4.5)

Ç∫ t

−A
gB(t1)e−t1dt1

å2

> gB(t)e−t
∫ t

−A

∫ t2

−A
gB(t1)e−t1dt1dt2

holds for any t ∈ (−A,−A+ B). As gB(t) is decreasing on [−A+ B,+∞), it

is clear that inequality (4.5) holds for any t ∈ (−A,+∞), and

lim
B→+∞

∫ ∞
−A

gB(t)e−tdt =

∫ ∞
−A

cA(t)dt

by inequality (4.4).

Given εB small enough, such that

[−A+B − εB,−A+B + εB] ⊂⊂ (−A,+∞),

one can find a sequence of functions {gB,j(t)}j=1,2,... in C∞(−A,+∞), satisfy-

ing gB,j(t) = gB(t) when t /∈ [−A+B − εB,−A+B + εB], which is uniformly
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convergent to GB. Then it is clear that for j big enough,Ç∫ t

−A
gB,j(t1)e−t1dt1

å2

> gB,j(t)e
−t
∫ t

−A

∫ t2

−A
gB,j(t1)e−t1dt1dt2

holds for any t ∈ (−A,+∞).

For any given B, we can choose jB large enough such that

(1)

∣∣∣∣∫ ∞
−A

gB,jB (t)e−tdt−
∫ ∞
−A

gB(t)dt

∣∣∣∣ < B−1;

(2) max
t∈(−A,+∞)

|gB,jB (t)− gB(t)| < B−1;

(3)

Ç∫ t

−A
gB,jB (t1)e−t1dt1

å2

> gB,jB (t)e−t
∫ t

−A

∫ t2

−A
gB,jB (t1)e−t1dt1dt2 ∀t ∈ (−A,+∞).

(4.6)

Let cA,m := gm,jm ; thus we have proved the case that A < +∞. Secondly,

we consider the case that A = +∞. Let gB(t) := c∞(t) when t ∈ (−∞, B),

gB(t) := c∞(B) when t ∈ [B,∞), where B > 0. Using the same construction

as the case A < +∞, we obtain the case that A = +∞. �

Remark 4.9. Let cA(t) be the positive function in Theorems 2.1 and 5.2.

By the construction in the proof of the above lemma, one can choose a se-

quence of positive smooth functions {cA,m(t)}m=1,2,... on (−A,+∞), which are

continuous on [−A,+∞] and uniformly convergent to cA(t) on any compact

subset of (−A,+∞), and satisfying the same conditions as cA(t) in Theo-

rems 2.1 and 5.2, such that
∫∞
−A cA,m(t)e−tdt + 1

δ cA,m(−A)eA are convergent

to
∫∞
−A cA(t)e−tdt+ 1

δ cA(−A)eA when m goes to ∞.

In fact, we may replace smoothness of cA(t) by continuity:

Remark 4.10. Using partition of unity {ρj}j on (−A,+∞) and smoothing

for ρjcA, we can replace smoothness of cA(t) by continuity in Lemma 4.8.

Now we introduce a relationship between inequalities (2.4) and (2.1).

Lemma 4.11. Let cA(t) satisfy
∫+∞
−A cA(t)e−tdt <∞ and inequality (2.4)

(A ∈ (−∞,+∞]). For each A′ < A, there exist A′′ and δ′′ > 0, such that

A > A′′ > A′ and there exists cA′′(t) ∈ C0([−A′′,+∞)) satisfying

(1) cA′′(t) = cA(t)|[−A′,+∞);

(2)
∫+∞
−A′′ cA′′(t)e

−tdt+ 1
δ′′ cA′′(−A

′′)eA
′′

=
∫+∞
−A cA(t)e−tdt;

(3)
∫ t
−A′′(

1
δ′′ cA′′(−A

′′)eA
′′

+
∫ t2
−A′′ cA′′(t1)e−t1dt1)dt2 + 1

δ′′2
cA′′(−A′′)eA

′′
<∫ t

−A(
∫ t2
−A cA(t1)e−t1dt1)dt2.
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Proof. Given A′ < A, let g(t)|[−A′,+∞) := cA(t)|[−A′,+∞). As cA(t) satisfies∫+∞
−A cA(t)e−tdt < ∞ and inequality (2.4) holds (A ∈ (−∞,+∞]), we can

choose a continuous function g(t) such that it is decreasing rapidly enough on

[A′′, A′] (A′′ can be chosen near A′ enough), and the following holds:

(1)
∫+∞
−A′′ cA′′(t)e

−tdt+ 1
δ′′ cA′′(−A

′′)eA
′′

=
∫+∞
−A cA(t)e−tdt;

(2)
∫ t
−A′′(

1
δ′′ cA′′(−A

′′)eA
′′

+
∫ t2
−A′′ cA′′(t1)e−t1dt1)dt2 + 1

δ′′2
cA′′(−A′′)eA

′′
<∫ t

−A(
∫ t2
−A cA(t1)e−t1dt1)dt2.

Thus we have proved the lemma. �

Since A may be chosen as positive infinity, we have a sufficient condition

for inequality (2.4) holding:

Remark 4.12. Assume that d
dtcA(t)e−t > 0 for t ∈ (−A, a), and d

dtcA(t)e−t

≤ 0 for t ∈ [a,+∞), where A = +∞ and a > −A. Assume d2

dt2
log(cA(t)e−t)

< 0 for t ∈ (−A, a). Then inequality (2.4) holds.

Proof. Let H(t, f) := (
∫ t
−A f(t1)dt1)2 − f(t)

∫ t
−A(

∫ t2
−A f(t1)dt1)dt2, where

f(t) is a positive smooth function on (−A,+∞). Inequality (2.4) becomes

H(t, cA(t)e−t) > 0 for any t ∈ (−A,+∞); that is, H(t,cA(t)e−t)
cA(t)e−t > 0 for any

t ∈ (−A,+∞).

It suffices to prove d
dt
H(t,cA(t)e−t)
cA(t)e−t > 0 for any t ∈ (−∞, a), and therefore

H

Å
t,
d

dt
(cA(t)e−t)

ã
> 0

for any t ∈ (−∞, a).

As d
dt(cA(t)e−t) > 0 for any t ∈ (−∞, a), it suffices to prove that

d

dt

H(t, ddt(cA(t)e−t))
d
dt(cA(t)e−t)

> 0

for any t ∈ (−∞, a), which is H(t, ddt
d
dt(cA(t)e−t)) > 0 for any t ∈ (−∞, a).

Note that H(t, ddt
d
dt(cA(t)e−t)) = −(cA(t)e−t)2 d

dt
d
dt log(cA(t)e−t). Thus we

have proved the present remark. �

In the last part of this section, we recall a theorem of Fornæss and

Narasimhan on the approximation property of plurisubharmonic functions of

Stein manifolds.

Lemma 4.13 ([20]). Let X be a Stein manifold and ϕ ∈ PSH(X). Then

there exists a sequence {ϕn}n=1,2,... of smooth strongly plurisubharmonic func-

tions such that ϕn ↓ ϕ.
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4.2. Properties of polar functions. In this subsection, we give some lem-

mas on properties of polar functions.

Lemma 4.14. Let M be a complex manifold of dimension n and S be an

(n − l)-dimensional closed complex submanifold. Let Ψ ∈ ∆(S). Assume that

there exists a local coordinate (z1, . . . , zn) on a neighborhood U of x ∈M such

that {zn−l+1 = · · · = zn = 0} = S∩U and ψ := Ψ− l log(|zn−l+1|2 + · · ·+ |zn|2)

is continuous on U . Then we have dλz[Ψ] = e−ψdλz′ , where dλz and dλz′

denote the Lebesgue measures on U and S ∩ U . Especially,

|f ∧ dzn−l+1 ∧ · · · ∧ dzn|2hdλz[Ψ] = 2l{f, f}he−ψ,

where f is a continuous (n − l, 0) form with value in the Hermitian vector

bundle (E, h) on S ∩ U .

Proof. Note that

dλz[l log(|zn−l+1|2 + · · ·+ |zn|2)] = dλz′

for z = (z′, zn−l+1, . . . , zn). According to the definition of generalized residue

volume form dλz[Ψ] and the continuity of ψ, the lemma follows. �

Using a similar method as in the proof of the above lemma, we obtain a

remark as follows:

Remark 4.15. Let M be a complex manifold of dimension n and S be an

(n− l)-dimensional closed complex submanifold. Let Ψ ∈ ∆(S). Assume that

there exists a local coordinate (z1, . . . , zl, w2l+1, . . . , w2n) on a neighborhood

U of x ∈ M such that {w2l+1 = · · · = w2n = 0} = S ∩ U and ψ := Ψ −
l log(|w2l+1|2 + · · · + |w2n|2) is continuous on U , where z′ = (z1, . . . , zl) are

complex coordinates, and w2l+1, . . . , w2n are real coordinates. Then we have

dVz′,w[Ψ] = e−ψdλz′ , where dVz′,w and dλz′ denote the Lebesgue measures on

U and S ∩ U . Especially,

|F |S |2hdλz[Ψ] =
{F, F}h
dVz′,w

dVz′,w[Ψ] =
{F, F}h
dVz′,w

e−ψdλz′ ,

where F is a continuous (n, 0)-form with value in the Hermitian vector bundle

(E, h) on U .

Lemma 4.16. Let d1(t) and d2(t) be two positive continuous functions on

(0,+∞), which satisfy∫ +∞

0
d1(t)e−tdt =

∫ +∞

0
d2(t)e−tdt <∞,

d1(t)|{t>r1}∪{t<r3} = d2(t)|{t>r1}∪{t<r3},
d1(t)|{r2<t<r1} > d2(t)|{r2<t<r1},
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and

d1(t)|{r3<t<r2} < d2(t)|{r3<t<r2},

where 0 < r3 < r2 < r1 < +∞. Let f be a holomorphic function on ∆, then

we have ∫
∆
d1(− ln(|z|2))|f |2dλ ≤

∫
∆
d2(− ln(|z|2))|f |2dλ < +∞,

where λ is the Lebesgue measure on ∆. Moreover, the equality holds if and

only if f ≡ f(0).

Proof. Set

f(z) =
∞∑
k=0

akz
k,

a Taylor expansion of f at 0, which is uniformly convergent on any given

compact subset of ∆.

As ∫
∆
d1(− ln(|z|2))zk1 z̄k2dλ = 0

when k1 6= k2, it follows that∫
∆
d1(− ln(|z|2))|f |2dλ =

∫
∆

∞∑
k=0

d1(− ln(|z|2))|ak|2|z|2kdλ

= π
∞∑
k=0

|ak|2
∫ +∞

0
d1(t)e−kte−tdt

(4.7)

and ∫
∆
d2(− ln(|z|2))|f |2dλ =

∫
∆

∞∑
k=0

d2(− ln(|z|2))|ak|2|z|2kdλ

= π
∞∑
k=0

|ak|2
∫ +∞

0
d2(t)e−kte−tdt.

(4.8)

As ∫ +∞

0
d1(t)e−tdt =

∫ +∞

0
d2(t)e−tdt <∞,

d1(t)|{r2<t<r1} > d2(t)|{r2<t<r1},
and

d1(t)|{r3<t<r2} < d2(t)|{r3<t<r2},
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it follows that∫ r2

r3

(d2(t)− d1(t))e−kte−tdt >

∫ r2

r3

(d2(t)− d1(t))e−kr2e−tdt

=

∫ r1

r2

(d1(t)− d2(t))e−kr2e−tdt

>

∫ r1

r2

(d1(t)− d2(t))e−kte−tdt;

(4.9)

therefore ∫ r1

r3

d1(t)e−kte−tdt <

∫ r1

r3

d2(t)e−kte−tdt

for every k ≥ 1.

Since

d1(t)|{t>r1}∪{t<r3} = d2(t)|{t>r1}∪{t<r3},

we have ∫ +∞

0
d1(t)e−kte−tdt <

∫ +∞

0
d2(t)e−kte−tdt

for every k ≥ 1.

Comparing equalities (4.7) and (4.8), we obtain that the inequality in the

lemma holds, and the equality in the lemma holds if and only if ak = 0 for any

k ≥ 1; i.e., f = f(0). Then we are done. �

Let Ω be an open Riemann surface. Let z0 ∈ Ω, and let Vz0 be a neigh-

borhood of z0 with local coordinate w, such that w(z0) = 0.

Using the above lemma, we have the following lemma on open Riemann

surfaces:

Lemma 4.17. Assume that there is a negative subharmonic function Ψ on

Ω, such that Ψ|Vz0 = ln |w|2, and Ψ|Ω\Vz0 ≥ supz∈Vz0 Ψ(z). Let d1(t) and d2(t)

be two positive continuous functions on (0,+∞) as in Lemma 4.16. Assume

that {Ψ < −r3 + 1} ⊂⊂ Vz0 is a disc with the coordinate z. Let F be a

holomorphic (1, 0)-form, which satisfies F |z0 = dw. Then we have∫
Ω
d1(−Ψ)

√
−1F ∧ F̄ ≤

∫
Ω
d2(−Ψ)

√
−1F ∧ F̄ < +∞.

Moreover, the equality holds if and only if F |Vz0 = dw.

Proof. It is clear that∫
Ω
d1(−Ψ)

√
−1F ∧ F̄ =

∫
{log |w|2<−r3+1}

d1(−Ψ)
√
−1| F

dw
|2dw ∧ dw̄

+

∫
Ω\{log |w|2<−r3+1}

d1(−Ψ)
√
−1F ∧ F̄ ,

(4.10)
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Ω
d2(−Ψ)

√
−1F ∧ F̄ =

∫
{log |w|2<−r3+1}

d2(−Ψ)
√
−1| F

dw
|2dw ∧ dw̄

+

∫
Ω\{log |w|2<−r3+1}

d2(−Ψ)
√
−1F ∧ F̄ .

(4.11)

Note that −Ψ|Ω\{log |w|2<−r3+1} < r3 − 1. Then∫
Ω\{log |w|2<−r3+1}

d1(−Ψ)
√
−1F ∧ F̄ =

∫
Ω\{log |w|2<−r3+1}

d2(−Ψ)
√
−1F ∧ F̄ .

Applying Lemma 4.16 to the rest of the parts of equalities (4.10) and

(4.11), we get the present lemma. �

Let Ω be an open Riemann surface with a Green function. Let p : ∆→ Ω

be the universal covering of Ω. We can choose Vz0 small enough, such that p

restricted on any component of p−1(Vz0) is biholomorphic. Let h be a harmonic

function on Ω and ρ = e−2h. As h is harmonic on Ω, then there exists a

multiplicative holomorphic function fh on ∆, such that |fh| = ep
∗h = p∗eh.

Let f−h := f−1
h . Let f−h,j := f−h|Uj and pj := p|Uj , where Uj is a component

of p−1(Vz0) for any fixed j.

Using Lemma 4.16, we obtain the following lemma:

Lemma 4.18. Let Ω be an open Riemann surface with a Green function

GΩ. Let z0 ∈ Ω, and let Vz0 be a neighborhood of z0 with local coordinate w,

such that w(z0) = 0. Assume that there is a negative subharmonic function

Ψ on Ω, such that Ψ|Vz0 = ln |w|2 and Ψ|Ω\Vz0 ≥ supz∈Vz0 Ψ(z). Let d1(t)

and d2(t) be two positive continuous functions on (0,+∞) as in Lemma 4.16.

Assume that {Ψ < −r3 +1} ⊂⊂ Vz0 , which is a disc with the coordinate w. Let

F be a holomorphic (1, 0)-form, which satisfies ((pj)∗(f−h,j))F |z0 = dw. Then

we have ∫
Ω
d1(−Ψ)

√
−1ρF ∧ F̄ ≤

∫
Ω
d2(−Ψ)

√
−1ρF ∧ F̄ .

Moreover, the equality holds if and only if ((pj)∗(f−h,j))F |Vz0 = dw.

Proof. It is clear that∫
Ω
d1(−Ψ)ρ

√
−1F ∧ F̄ =

∫
{log |w|2<−r3+1}

d1(−Ψ)ρ
√
−1| F

dw
|2dw ∧ dw̄

+

∫
Ω\{log |w|2<−r3+1}

d1(−Ψ)ρ
√
−1F ∧ F̄ ,

(4.12)

∫
Ω
d2(−Ψ)ρ

√
−1F ∧ F̄ =

∫
{log |w|2<−r3+1}

d2(−Ψ)ρ
√
−1| F

dw
|2dw ∧ dw̄

+

∫
Ω\{log |w|2<−r3+1}

d2(−Ψ)ρ
√
−1F ∧ F̄ .

(4.13)
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Note that −Ψ|Ω\{log |w|2<−r3+1} < r3 − 1. Then one has∫
Ω\{log |w|2<−r3+1}

d1(−Ψ)ρ
√
−1F ∧F̄ =

∫
Ω\{log |w|2<−r3+1}

d2(−Ψ)ρ
√
−1F ∧F̄ .

Applying Lemma 4.16 to the rest of the parts of equalities (4.12) and

(4.13), we get the present lemma. �

4.3. Basic properties of the Green function. Let Ω be an open Riemann

surface with a Green function GΩ, and let z0 be a point of Ω with a fixed local

coordinate w on the neighborhood Vz0 of z0, such that w(z0) = 0.

Remark 4.19 (see [47] or [56]). GΩ(z, z0) = supu∈∆0(z0) u(z), where ∆0(z0)

is the set of negative subharmonic functions on Ω satisfying that u − log |w|
has a locally finite upper bound near z0.

Remark 4.20 (see [47] or [56]). GΩ(z, z0) is harmonic on Ω \ {z0}, and

GΩ(z, z0)− log |w| is harmonic near z0.

4.4. Results used in the proofs of the conjecture of Suita, the L-conjecture

and the extended Suita conjecture. In this subsection, we give some results

which are used to prove the conjecture of Suita, the L-conjecture and the

extended Suita conjecture.

Using Theorem 2.2 and Lemma 4.17, we obtain the following proposition,

which will be used in the proof of the conjecture of Suita.

Proposition 4.21. Let Ω be an open Riemann surface with a Green func-

tion GΩ. Let z0 ∈ Ω, and let Vz0 be a neighborhood of z0 with local coordinate

w, such that w(z0) = 0 and GΩ|Vz0 = log |w|. Assume that there is a unique

holomorphic (1, 0)-form F on Ω, which satisfies F |z0 = b0dw (b0 is a complex

constant which is not 0), such that∫
Ω

√
−1F ∧ F̄ ≤ π

∫
z0

|b0dw|2dVΩ[2G(z, z0)].

Then F |Vz0 = b0dw.

Remark 4.22. In Theorem 2.2, let Ψ := 2GΩ(·, z0) + 2GΩ(·, z2), where

z2 near z0 and z0 6= z2, cA(t) ≡ 1 and A = 0. Then we have F2 such that

F2|z0 = b0dw, F2|z2 = 0 and∫
Ω

√
−1F2 ∧ F̄2 ≤ π

∫
z0

|b0dw|2dVΩ[2GΩ(·, z0) + 2GΩ(·, z2)] < +∞.

If there exists a holomorphic (1, 0)-form, which satisfies∫
Ω

√
−1F ∧ F̄ < π

∫
z0

|b0dw|2dVΩ[2G(z, z0)],
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then there exists ε0 > 0, such that for any ε ∈ (0, ε0),∫
Ω

√
−1((1− ε)F + εF2) ∧ ((1− ε)F + εF2) < π

∫
z0

|b0dw|2dVΩ[2G(z, z0)].

Since ((1−ε)F+εF2)|o = b0dw, and ((1−ε)F+εF2) also satisfies the inequality

in Proposition 4.21, it is a contradiction to the uniqueness of F . Then we have∫
Ω

√
−1F ∧ F̄ = π

∫
z0

|b0dw|2dVΩ[2G(z, z0)].

Proof of Proposition 4.21. Let Ψ := 2GΩ(·, z0). We can choose r3 big

enough, such that {Ψ < −r3} ⊂⊂ {Ψ < −r3 + 1} ⊂⊂ Vz0 , and {Ψ < −r3 + 1}
is a disc with the coordinate w. Let d1(t) = 1. One can find smooth d2(t) as

in Lemma 4.17, such that d2(t)e−t is decreasing with respect to t.

Using Theorem 2.2, we have a holomorphic (1, 0) form F1 on Ω, which

satisfies F1|z0 = b0dw and∫
Ω
d2(−Ψ)

√
−1F1 ∧ F̄1 ≤ π

∫
z0

|b0dw|2dVΩ[Ψ].

Using Lemma 4.17, we have∫
Ω

√
−1F1 ∧ F̄1 ≤

∫
Ω
d2(−Ψ)

√
−1F1 ∧ F̄1.

Therefore, ∫
Ω

√
−1F1 ∧ F̄1 ≤ π

∫
z0

|b0dw|2dVΩ[Ψ].

According to the assumption of uniqueness of F and the above remark, it

follows that ∫
Ω
d1(−Ψ)

√
−1F1 ∧ F̄1 =

∫
Ω
d2(−Ψ)

√
−1F1 ∧ F̄1

and F1 = F . Using Lemma 4.17, we have F1|Vz0 = b0dw, and therefore F |Vz0 =

b0dw. �

Let Ω be an open Riemann surface with a Green function GΩ. Let z0 ∈ Ω,

and let Vz0 be a neighborhood of z0 with local coordinate w, such that w(z0) =

0. Note that there exists a holomorphic function f0 near z0, which is locally

injective near z0, such that |f0| = eGΩ(·,z0).

Let w = f0. Then we have a local coordinate w, such that GΩ(·, z0) =

log |w| near z0. Using Theorem 2.2 and Lemma 4.18, we obtain the following

proposition, which will be used in the proof of the extended Suita conjecture.

Proposition 4.23. Let Ω be an open Riemann surface with a Green func-

tion GΩ. Let z0 ∈ Ω, and let Vz0 be a neighborhood of z0 with local coordinate w,

such that w(z0) = 0 and GΩ(z, z0)|Vz0 = log |w|. Assume that there is a unique
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holomorphic (1, 0)-form F on Ω, which satisfies ((pj)∗(f−h,j))F |z0 = b0dw (b0
is a complex constant which is not 0), and∫

Ω

√
−1ρF ∧ F̄ ≤ π

∫
z0

ρ|b0dw|2dVΩ[2G(z, z0)].

Then ((pj)∗(f−h,j))F |Vz0 = b0dw.

Remark 4.24. In Theorem 2.2, let Ψ := 2GΩ(·, z0) + 2GΩ(·, z2), where

z2 near z0 and z0 6= z2, cA(t) ≡ 1 and A = 0. Then we have F2 such that

F2|z0 = b0dw, F2|z2 = 0, and∫
Ω

√
−1ρF2 ∧ F̄2 ≤ π

∫
z0

ρ|b0dw|2dVΩ[2G(z, z0) + 2GΩ(·, z2)] < +∞.

If there exists a holomorphic (1, 0)-form F , which satisfies∫
Ω

√
−1ρF ∧ F̄ < π

∫
z0

ρ|b0dw|2dVΩ[2G(z, z0)],

then there exists ε0 > 0, such that for any ε ∈ (0, ε0),∫
Ω

√
−1ρ((1− ε)F + εF2) ∧ ((1− ε)F + εF2) < π

∫
z0

ρ|b0dw|2dVΩ[2G(z, z0)].

Since ((1−ε)F +εF2)|o = b0dw, and (1−ε)F +εF2 also satisfies the inequality

in the present proposition, it is a contradiction to the uniqueness of F . Then

we have ∫
Ω

√
−1ρF ∧ F̄ = π

∫
z0

ρ|b0dw|2dVΩ[2G(z, z0)].

Proof of Proposition 4.23. Let Ψ := 2GΩ(·, z0). We can choose r3 big

enough, such that {Ψ < −r3} ⊂⊂ {Ψ < −r3 + 1} ⊂⊂ Vz0 , and {Ψ < −r3 + 1}
is a disc with the coordinate w.

Let d1(t) = 1. One can find smooth d2(t) as in Lemma 4.18, which satisfies

that d2(t)e−t is decreasing with respect to t.

From Theorem 2.2, it follows that there exists a holomorphic (1, 0)-form

F1 on Ω, which satisfies F1|z0 = b0dw, and∫
Ω
d2(−Ψ)

√
−1ρF1 ∧ F̄1 ≤ π

∫
z0

ρ(z0)|b0dw|2dVΩ[Ψ].

Using Lemma 4.18, we have∫
Ω

√
−1ρF1 ∧ F̄1 ≤

∫
Ω
d2(−Ψ)ρ

√
−1F1 ∧ F̄1.

Therefore, ∫
Ω

√
−1ρF1 ∧ F̄1 ≤ π

∫
z0

ρ(z0)|b0dw|2dVΩ[Ψ].
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From the assumption of uniqueness of F and the above remark, it follows

that ∫
Ω
d1(−Ψ)ρ

√
−1F1 ∧ F̄1 =

∫
Ω
d2(−Ψ)ρ

√
−1F1 ∧ F̄1

and F1 = F .

Using Lemma 4.18, we have

((pj)∗(f−h,j))F1|Vz0 = b0dw;

therefore

((pj)∗(f−h,j))F |Vz0 = b0dw.

We have thus proved the proposition. �

Let Ω be an open Riemann surface with a Green function G, and let z0

be a point of Ω with a fixed local coordinate w on the neighborhood Vz0 of z0,

such that w(z0) = 0.

Let Az0 be a family of analytic functions f on Ω satisfying the normal-

ization condition: f |z0 = 0 and df |z0 = dw. Analytic capacity cB is defined as

follows:

cB := cB(z0) =
1

minf∈Az0
supz∈Ω |f(z)|

.

About a relation between cβ and cB, it is well known that one has c2
β(z0) ≥

c2
B(z0). Furthermore, one has the following lemma:

Lemma 4.25. If there is a holomorphic function g on Ω, which satisfies

|g(z)| = expG(z, z0), then we have c2
β(z0) = c2

B(z0).

Proof. For the sake of completeness, we give a proof of the inequality

c2
β(z0) ≥ c2

B(z0).

Consider

A M
z0 := Az0 ∩ {f ||f | ≤M}.

As |g(z)| = expG(z, z0), then A M
z0 is not empty.

As A M
z0 is a normal family, there exists a holomorphic function f1 ∈ Az0 ,

such that supz∈Ω |f1| = minf∈Az0
supz∈Ω |f(z)|. That is, |f1(z)|cB(z0) < 1 for

any z ∈ Ω. Note that log(|f1(z)|cB(z0)) − log |w(z)| is locally finite on Vz0 .

Then by Remark 4.19, we have log |f1(z)|cB(z0) ≤ G(z, z0); therefore,

(4.14) lim
z→z0

(log(|f1(z)|cB(z0))− log |w(z)|) ≤ lim
z→z0

(G(z, z0)− log |w(z)|).

As df1|z0 = dw, we have limz→z0(log(|f1(z)| − log |w(z)|) = 0. Then

inequality (4.14) implies that cB(z0) ≤ limz→z0(G(z, z0)− log |w(z)|) = cβ(z0).

Then we prove c2
β(z0) = c2

B(z0) under the assumption in the present lemma.

Suppose that there is a holomorphic function g on Ω which satisfies |g(z)| =
expG(z, z0). As supz∈Ω |f1| = minf∈Az0

supz∈Ω |f(z)|, we have sup |f1(z)| ≤
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sup |g(z)|
|g′(z0)| , and therefore

(4.15) log |f1||g′(z0)| ≤ 0,

where g′(z0) = dg
dw |z0 .

As log |f1(z))||g′(z0)|− log |w(z)| has a locally finite upper bound near z0,

we have log |f1||g′(z0)| ≤ G(z, z0) = log |g| by Remark 4.19 (see [1] or [56]).

Note that

lim
z→z0

log(|f1(z)||g′(z0)|− log |w(z)|) = log |g′(z0)| = lim
z→z0

(log |g(z)|− log |w(z)|).

It follows that

lim
z→z0

(log |f1(z)||g′(z0)| − log |g(z)|) = 0,

and therefore

lim
z→z0

(log |f1(z)||g′(z0)| −G(z, z0)) = 0.

From inequality (4.15), it follows that log(|f1(z)||g′(z0)|) − G(z, z0) is a

negative subharmonic function on Ω.

Applying the maximal principle to log(|f1(z)||g′(z0)|)−G(z, z0), since

lim
z→z0

(log |f1(z)||g′(z0)| −G(z, z0)) = 0,

we have

log |f1(z)||g′(z0)| −G(z, z0) = 0,

i.e.,

|f1||g′(z0)| = |g|.

Then it follows that

cB(z0) =
1

supz∈Ω |f1|
=

|g′(z0)|
supz∈Ω |g(z)|

= |g′(z0)|.

As

cβ(z0) := exp lim
z→z0

(G(z, z0)− log |w(z)|)

= exp lim
z→z0

(log |g(z)| − log |w(z)|) = |g′(z0)| = cB(z0),

we have cβ(z0) = cB(z0). �

Let us recall the following result of Suita in [54]:

Lemma 4.26 ([54]). Assume that Ω admits a Green function. Then πBΩ(z)

≥ c2
B(z) for any z ∈ Ω. There exists z0 ∈ Ω such that equality holds if and

only if Ω is conformally equivalent to the unit disc less a (possible) closed set

of inner capacity zero.
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Remark 4.27. We now present the relationship between the definition of

cB(z0) := sup{f |fz0=0&|f |<1} |f ′(z0)| in [54] and the definition of cB(z0) used in

the present paper. When A M
z0 is not empty, for any element g in A M

z0 , one

can normalize the norm of g by supz∈Ω |g| denoted by sup |g| for convenience.

Then it is clear that

sup
{f |f(z0)=0&|f |<1}

|f ′(z0)| =
Ç

min
{f |f(z0)=0&|f |<1}

|f ′(z0)|−1

å−1

=

(
min

{g|g(z0)=0&| g
sup |g| |<1}

| d
dt

g

sup |g|
|z0 |−1

)−1

=

(
min

{g|g(z0)=0&| g
sup |g| |<1}

|
dg
dt |z0

sup |g|
|−1

)−1

=

(
min
g∈AM

z0

sup |g|
)−1

=

Ç
min
g∈Az0

sup |g|
å−1

,

(4.16)

where g ∈ A M
z0 . If A M

z0 is not empty (i.e., {f |f(z0) = 0 & |f | < 1} does not

only contain 0), the above two definitions of cB(z0) are equivalent. If A M
z0 is

empty (i.e., {f |f(z0) = 0 & |f | < 1} only contains 0), the above two definitions

of cB(z0) are both 0. Then the above two definitions of cB(z0) are the same.

Now we prove an identity theorem of holomorphic maps between complex

spaces, which is useful.

Lemma 4.28. Let X be a irreducible complex space and Y be a complex

space. Let f, g : X → Y be holomorphic maps. Assume that for a point a ∈ X ,

the germs fa and ga of holomorphic maps f and g satisfy fa = ga. Then we

have f = g.

Proof. Consider a map (f, g) : X→Y ×Y , which is (f, g)(x)=(f(x), g(x)).

Denote that A := {x ∈ X|f(x) = g(x)}. Note that A = (f, g)−1(∆Y ), where

∆Y is the diagonal of Y × Y . Then A is an analytic set. As fa = ga, there is

a neighborhood Ua of a in X, such that f |Ua = g|Ua .

Using the Identity Lemma in [24], we obtain A = Xa, which is the ir-

reducible component of X containing a. As X is irreducible, it is clear that

X = Xa = A. Thus we have proved the lemma. �

Remark 4.29. By the above lemma, one can see that if two holomorphic

maps f and g from irreducible complex space X to complex space Y , which

satisfy f |S = g|S , where S is totally real with maximal dimension in X, then

f ≡ g.
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Lemma 4.30. Let g1 and g2 be two holomorphic functions on domain Ω

in C, such that |g1| = |g2|, and dg1 = dg2. Assume that dg1 = dg2 do not

vanish identically. Then we have g1 = g2.

Proof. As |g1| = |g2|, we have g1ḡ1 = g2ḡ2. Then g1∂̄ḡ1 = g2∂̄ḡ2. It is

known that the zero sets of ∂̄ḡ1 and ∂̄ḡ2 are both analytic sets on ∆. From

the assumption, it follows that dḡ1 = ∂̄ḡ1 = ∂̄ḡ2 = dḡ2.

As dg1 and dg2 do not vanish identically and so are ∂̄ḡ1 and ∂̄ḡ2, then

g1 = g2 on an open subset of ∆. It is clear that g1 = g2 on ∆ by the identity

theorem of holomorphic functions. �

Lemma 4.31 (see [4] and [60]). Let H be a Hilbert space with norm ‖ · ‖,
and let C be a convex subset of H. Let α ∈ C, such that ‖α‖ = infβ∈C ‖β‖.
Then α is unique.

Proof. If not, there are α1 and α2 in C, such that

‖α1‖ = ‖α2‖ = inf
β∈C
‖β‖.

As

‖α1 + α2

2
‖2 + ‖α1 − α2

2
‖2 =

‖α1‖2 + ‖α2‖2

2

and ‖α1−α2
2 ‖ > 0, we have

(4.17) ‖α1 + α2

2
‖ <

 
‖α1‖2 + ‖α2‖2

2
= inf

β∈C
‖β‖.

Note that α1+α2
2 ∈ C. Then inequality (4.17) contradicts ‖α1‖ = ‖α2‖ =

infβ∈C ‖β‖. �

Remark 4.32. Let Ω be an open Riemann surface with a Green function

GΩ, and let z0 be a point of Ω with a fixed local coordinate w on the neigh-

borhood Vz0 of z0, such that w(z0) = 0. Let c0(t) = 1, Ψ = 2GΩ(·, z0).

From Theorem 2.2 and the definition

cβ := exp lim
z→z0

(GΩ(z, z0)− log |w(z)|),

it follows that there is a holomorphic (1, 0)-form F on Ω, which satisfies F |z0 =

dw|z0 and

√
−1

∫
Ω
F ∧ F̄ ≤ π

∫
z0

|dw|2dVΩ[2GΩ(z, z0)] =
2π

c2
β(z0)

.

Therefore,

πBΩ(z0) ≥ c2
β(z0),

by the extremal property of the Bergman kernel.
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If there is another holomorphic (1, 0)-form F̃ on Ω, which satisfies F̃ |z0 =

dw|z0 , and
√
−1

∫
Ω
F̃ ∧ ¯̃F ≤ 2π

c2
β(z0)

,

then the holomorphic (1, 0)-form F+F̃
2 on Ω satisfies F+F̃

2 |z0 = dw|z0 . Accord-

ing to the proof of Lemma 4.31, it follows that

√
−1

∫
Ω

F + F̃

2
∧ F + F̃

2
<

2π

c2
β(z0)

.

Therefore,

πBΩ(z0) > c2
β(z0),

by the extremal property of the Bergman kernel.

Remark 4.33. Let Ω be an open Riemann surface with a Green function

GΩ, and let z0 be a point of Ω with a fixed local coordinate w on the neigh-

borhood Vz0 of z0, such that w(z0) = 0. Let c0(t) = 1, Ψ = 2GΩ(·, z0), h = ρ.

By Theorem 2.2 and cβ := exp limz→z0(GΩ(z, z0)− log |w(z)|), there is a holo-

morphic (1, 0)-form F on Ω, which satisfies F |z0 = dw|z0 , such that

√
−1

∫
Ω
ρF ∧ F̄ ≤ π

∫
z0

ρ(z0)|dw|2dVΩ[2GΩ(z, z0)] =
2πρ(z0)

c2
β(z0)

.

Therefore,

πρ(z0)BΩ,ρ(z0) ≥ c2
β(z0),

by the extremal property of the Bergman kernel.

If there is another holomorphic (1, 0)-form F̃ on Ω, which satisfies F̃ |z0 =

dw|z0 , and
√
−1

∫
Ω
ρF̃ ∧ ¯̃F ≤ 2πρ(z0)

c2
β(z0)

,

then (1, 0)-form F+F̃
2 on Ω, which satisfies F+F̃

2 |z0 = dw|z0 . From the proof of

Lemma 4.31, it follows that

√
−1

∫
Ω
ρ
F + F̃

2
∧ F + F̃

2
<

2πρ(z0)

c2
β(z0)

.

Therefore,

πρ(z0)BΩρ(z0) > c2
β(z0),

by the extremal property of the Bergman kernel.

We now show a lemma which will be used to discuss the uniform bound

of a sequence of holomorphic functions:
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Lemma 4.34. Let ϕ be a plurisubharmonic function on Ω ⊂⊂ Cn, which

is not identically −∞. Let {fn}n=1,2,... be a sequence of holomorphic functions

on Ω, such that
∫

Ω |fn|2eϕ < C , where C is a positive constant which is in-

dependent of n. Then the sequence {fn}n=1,2,... has a uniform bound on any

compact subset of Ω.

Proof. Let K be a compact subset of Ω, such that 0 < 2r < dist(K, ∂Ω).

Let Ω0 := {z|dist(z,K) < r}. As ϕ is plurisubharmonic, then there is N > 0,

such that
∫
Ω e
− ϕ
N dVΩ < C0 < +∞.

Note thatÇ∫
Ω0

|fn|2eϕdVΩ

å 1
N+1
Ç∫

Ω0

e−
ϕ
N dVΩ

å N
N+1

≥
∫

Ω0

|fn|
2

N+1dVΩ

≥ πnr2n

n!
|fn(w)|

2
N+1 ,

(4.18)

where w ∈ K. Then the lemma follows. �

5. Proofs of the main theorems

In this section, we give proofs of the main theorems.

5.1. Proof of Theorem 2.1. By Remark 4.7, it suffices to prove the case

that M is a Stein manifold. By Lemma 4.6 and Remark 4.9, it suffices to prove

the case that cA is smooth on (A,+∞) and continuous on [A,+∞], such that

limt→+∞ cA(t) > 0. Since M is a Stein manifold, there is a sequence of Stein

manifolds {Dm}∞m=1 satisfying Dm ⊂⊂ Dm+1 for all m and
∞
∪
m=1

Dm = M . It

is known that all Dm \ S are complete Kähler ([22]). Since M is Stein, there

is a holomorphic section F̃ of KM on M such that F̃ |S = f .

Let ds2
M be a Kähler metric on M , and let dVM be the volume form with

respect to ds2
M . Let {vt0,ε}t0∈R,ε∈(0, 1

4
) be a family of smooth increasing convex

functions on R, such that

(1) vt0,ε(t) = t, for t ≥ −t0 − ε; vt0,ε(t) is a constant depending on t0 and ε,

for t < −t0 − 1 + ε;

(2) the sequence v′′t0,ε(t) is pointwise convergent to I{−t0−1<t<−t0} when ε→ 0,

and 0 ≤ v′′t0,ε(t) ≤ 2 for any t ∈ R;

(3) the sequence vt0,ε(t) is C1 convergent to bt0(t) —

bt0(t) :=

∫ t

−∞
(

∫ t2

−∞
I{−t0−1<t1<−t0}dt1)dt2 −

∫ 0

−∞
(

∫ t2

−∞
I{−t0−1<t1<−t0}dt1)dt2

is also a C1 function on R — when ε → 0, and 0 ≤ v′t0,ε(t) ≤ 1 for any

t ∈ R.
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We can construct the family {vt0,ε}t0∈R,ε∈(0, 1
4

) by setting

vt0,ε(t) :=

∫ t

−∞

∫ t1

−∞

1

1− 2ε
I{−t0−1+ε<s<−t0−ε} ∗ ρ 1

4
εdsdt1

−
∫ 0

−∞

∫ t1

−∞

1

1− 2ε
I{−t0−1+ε<s<−t0−ε} ∗ ρ 1

4
εdsdt1,

(5.1)

where ρ 1
4
ε is the kernel of convolution satisfying supp(ρ 1

4
ε) ⊂ (−1

4ε,
1
4ε). Then

we have

v′t0,ε(t) =

∫ t

−∞

1

1− 2ε
I{−t0−1+ε<s<−t0−ε} ∗ ρ 1

4
εds

and

v′′t0,ε(t) =
1

1− 2ε
I{−t0−1+ε<t<−t0−ε} ∗ ρ 1

4
ε.

Let s and u be two undetermined real functions which will be deter-

mined later on after doing calculations based on Lemmas 4.1 and 4.2. Let

η = s(−vt0,ε ◦Ψ) and φ = u(−vt0,ε ◦Ψ), where s ∈ C∞((−A,+∞)) satisfying

s ≥ 1
δ and u ∈ C∞((−A,+∞)) satisfying limt→+∞ u(t) exists (which will be

determined to be = − log(1
δ cA(−A)eA +

∫∞
−A cA(t)e−tdt)). Let h̃ = he−Ψ−φ.

Now let α ∈ D(X,Λn,1T ∗Dm\S⊗E) be an E-valued smooth (n, 1)-form with

compact support on Dm \ S. Using Lemmas 4.1 and 4.2 and the assumption√
−1Θhe−Ψ ≥ 0 on Dm \ S, we get

‖(η + g−1)
1
2D′′∗α‖2

Dm\S,h̃
+ ‖η

1
2D′′α‖2

Dm\S,h̃

≥
¨¨

[η
√
−1Θh̃ −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α

∂∂
Dm\S,h̃

=
¨¨

[η
√
−1∂∂̄φ+ η

√
−1Θhe−Ψ

−
√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α

∂∂
Dm\S,h̃

,

(5.2)

where g is a positive continuous function on Dm \ S.

We need some calculations to determine g. We have

∂∂̄η = −s′(−vt0,ε ◦Ψ)∂∂̄(vt0,ε ◦Ψ) + s′′(−vt0,ε ◦Ψ)∂(vt0,ε ◦Ψ) ∧ ∂̄(vt0,ε ◦Ψ)

(5.3)

and

∂∂̄φ = −u′(−vt0,ε ◦Ψ)∂∂̄vt0,ε ◦Ψ + u′′(−vt0,ε ◦Ψ)∂(vt0,ε ◦Ψ) ∧ ∂̄(vt0,ε ◦Ψ).

(5.4)
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Therefore,

η
√
−1∂∂̄φ−

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η

= (s′ − su′)
√
−1∂∂̄(vt0,ε ◦Ψ)

+ ((u′′s− s′′)− gs′2)
√
−1∂(vt0,ε ◦Ψ) ∧ ∂̄(vt0,ε ◦Ψ)

= (s′ − su′)((v′t0,ε ◦Ψ)
√
−1∂∂̄Ψ + (v′′t0,ε ◦Ψ)

√
−1∂(Ψ) ∧ ∂̄(Ψ))

+ ((u′′s− s′′)− gs′2)
√
−1∂(vt0,ε ◦Ψ) ∧ ∂̄(vt0,ε ◦Ψ).

(5.5)

We omit the composite item (−vt0,ε ◦Ψ) after s′− su′ and (u′′s− s′′)− gs′2 in

the above equalities.

It is natural to ask u′′s− s′′ > 0. Let g = u′′s−s′′
s′2 ◦ (−vt0,ε ◦Ψ). We have

η+g−1 = (s+ s′2

u′′s−s′′ )◦(−vt0,ε◦Ψ). Since
√
−1Θhe−Ψ ≥ 0, a(−Ψ)

√
−1Θhe−Ψ +√

−1∂∂̄Ψ ≥ 0 on M \ S, and 0 ≤ v′t0,ε ◦Ψ ≤ 1, we have

(5.6) η(1− v′t0,ε ◦Ψ)
√
−1Θhe−Ψ + (v′t0,ε ◦Ψ)(η

√
−1Θhe−Ψ +

√
−1∂∂̄Ψ) ≥ 0

on M \ S for t0 big enough, which means that

(5.7) η
√
−1Θhe−Ψ + (v′t0,ε ◦Ψ)

√
−1∂∂̄Ψ ≥ 0

on M \ S.

From equality (5.5), in order to obtain the L2 estimate, it is natural to let

s′ − su′ > 0; since to find s and u is an extremal problem, it is natural to let

s′ − su′ be a constant; by the boundary condition, the constant should be 1.

Using the inequality v′t0,ε ≥ 0, Lemma 4.2, equality (5.5), and inequali-

ties (5.2) and (5.7), one has

〈Bα,α〉h̃ = 〈[η
√
−1Θh̃ −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α〉h̃

≥ 〈[(v′′t0,ε ◦Ψ)
√
−1∂Ψ ∧ ∂̄Ψ,Λω]α, α〉h̃

= 〈(v′′t0,ε ◦Ψ)∂̄Ψ ∧ (αx(∂̄Ψ)]
ä
, α〉h̃.

(5.8)

Using the definition of contraction, the Cauchy-Schwarz inequality and

inequality (5.8), we have

|〈(v′′t0,ε ◦Ψ)∂̄Ψ ∧ γ, α̃〉h̃|
2 =|〈(v′′t0,ε ◦Ψ)γ, α̃x(∂̄Ψ)]

∂
h̃
|2

≤〈(v′′t0,ε ◦Ψ)γ, γ〉h̃(v′′t0,ε ◦Ψ)|α̃x(∂̄Ψ)]
∣∣∣2
h̃

=〈(v′′t0,ε ◦Ψ)γ, γ〉h̃〈(v
′′
t0,ε ◦Ψ)∂̄Ψ ∧ (α̃x(∂̄Ψ)]

ä
, α̃〉h̃

≤〈(v′′t0,ε ◦Ψ)γ, γ〉h̃〈Bα̃, α̃〉h̃

(5.9)

for any (n, 0)-form γ and (n, 1)-form α̃.

Take λ = ∂̄[(1− v′t0,ε(Ψ))F̃ ], γ = F̃ and α̃ = B−1∂̄Ψ ∧ F̃ . It follows that

〈B−1λ, λ〉h̃ ≤ (v′′t0,ε ◦Ψ)|F̃ |2
h̃
,
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and therefore ∫
Dm\S

〈B−1λ, λ〉h̃dVM ≤
∫
Dm\S

(v′′t0,ε ◦Ψ)|F̃ |2
h̃
dVM .

By Lemma 4.3, there exists an (n, 0)-form γm,t0,ε with value in E on Dm\S
satisfying

∂̄γm,t0,ε = λ,

and ∫
Dm\S

|γm,t0,ε|2h̃(η + g−1)−1dVM ≤
∫
Dm\S

(v′′t0,ε ◦Ψ)|F̃ |2
h̃
dVM .(5.10)

Let µ1 = evt0,ε◦Ψ, µ = µ1cA(−vt0,ε ◦Ψ)eφ. It is natural to ask η and φ to

satisfy µ ≤ C(η+g−1)−1, which will be discussed at the end of this subsection,

where C is just the constant in Theorem 2.1.

As vt0,ε(Ψ) ≥ Ψ, we have

∫
Dm\S

|γm,t0,ε|2hcA(−vt0,ε ◦Ψ)dVM ≤
∫
Dm\S

|γm,t0,ε|2h̃cA(−vt0,ε ◦Ψ)µ1e
φdVM .

(5.11)

From inequalities (5.10) and (5.11), it follows that∫
Dm\S

|γm,t0ε|2hcA(−vt0,ε ◦Ψ)dVM ≤ C

∫
Dm\S

(v′′t0,ε ◦Ψ)|F̃ |2
h̃
dVM ,

under the assumption µ ≤ C(η + g−1)−1.

For any given t0, there exists a neighborhood U0 of {Ψ = −∞} ∩Dm on

M , such that for any ε, v′′t0,ε ◦ Ψ|U0 = 0. Therefore, ∂̄γm,t0,ε|U0\S = 0. As

Ψ is upper-semicontinuous and φ is bounded on Dm, it is easy to see that

γm,t0,ε is locally L2 integrable along S. Then γm,t0,ε can be extended to U0 as

a holomorphic function, which is denoted by γ̃m,t0,ε.

It follows from Ψ ∈ #(S) that e−Ψ is disintegrable near S. Then γ̃m,t0,ε
satisfies

γ̃m,t0,ε|S = 0,

and

(5.12)

∫
Dm

|γ̃m,t0,ε|2hcA(−vt0,ε ◦Ψ)dVM ≤
C

eAt0

∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2he−ΨdVM ,

where At0 := inft≥t0{u(t)}.
As

lim
t→+∞

u(t) = − log(
1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt),

it is easy to see that

lim
t0→∞

1

eAt0
=

1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt.



1182 QI’AN GUAN and XIANGYU ZHOU

Let Fm,t0,ε := (1− v′t0,ε ◦Ψ)‹F − γ̃m,t0,ε. By γ̃m,t0,ε|S = 0, then Fm,t0,ε is a

holomorphic (n, 0)-form with value in E on Dm satisfying

Fm,t0,ε|S = F̃ |S ,

and inequality (5.12) can be reformulated as follows:∫
Dm

|Fm,t0,ε − (1− v′t0,ε ◦Ψ)F̃ |2hcA(−vt0,ε ◦Ψ)dVM

≤ C

eAt0

∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2he−ΨdVM .

(5.13)

Given t0 and Dm, it is easy to check that (v′′t0,ε ◦Ψ)|F̃ |2
he−Ψ has a uniform

bound on Dm independent of ε. Then∫
Dm

|(1− v′t0,ε ◦Ψ)F̃ |2hcA(−vt0,ε ◦Ψ)dVM ,

and ∫
Dm

v′′t0,ε ◦Ψ|F̃ |2he−ΨdVM

has a uniform bound independent of ε for any given t0 and Dm.

Using ∂̄Fm,t0,ε = 0 and Lemma 4.5, we can choose a subsequence of

{Fm,t0,ε}ε, such that the chosen sequence is uniformly convergent on any com-

pact subset of Dm, still denoted by {Fm,t0,ε}ε without ambiguity.

For any compact subset K on Dm, it is easy to check that Fm,t0,ε,

(1 − v′t0,ε ◦ Ψ)F̃ and (v′′t0,ε ◦ Ψ)|F̃ |2
he−Ψ have uniform bounds on K indepen-

dent of ε.

By the dominated convergence theorem on any compact subset K of Dm

and inequality (5.13), it follows that∫
K
|Fm,t0 − (1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

≤ C

eAt0

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2he−ΨdVM ,
(5.14)

which implies that∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

≤ C

eAt0

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2he−ΨdVM .

(5.15)
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From the definition of dVM [Ψ] and the inequality
∑n
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ]

<∞, it follows that

lim sup
t0→+∞

∫
Dm

(I{−t0−1<t<−t0} ◦Ψv)|F̃ |2he−ΨdVM

≤ lim sup
t0→+∞

∫
M

IDm(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2he−ΨdVM

≤
n∑
k=1

πk

k!

∫
Sn−k

IDm |f |
2
hdVM [Ψ] ≤

n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ] <∞.

(5.16)

Then
∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2
he−ΨdVM has a uniform bound indepen-

dent of t0 for any given Dm, and

lim sup
t0→+∞

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2he−ΨdVM

≤
n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ] <∞.
(5.17)

It is clear that ∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

has a uniform bound independent of t0 for any given Dm. Using the fact that∫
Dm

|(1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

has a uniform bound independent of t0, inequality (5.15), and the following

inequality, Ç∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

å 1
2

+

Ç∫
Dm

|(1− b′t0(Ψ))F̃ |2hcA(−bt0(Ψ))dVM

å 1
2

≥
Ç∫

Dm

|Fm,t0 |2hcA(−bt0(Ψ))dVM

å 1
2

,

(5.18)

we obtain that
∫
Dm
|Fm,t0 |2hcA(−bt0(Ψ))dVM has a uniform bound independent

of t0.

Using ∂̄Fm,t0 =0 and Lemma 4.5, we can choose a subsequence of {Fm,t0}t0 ,

such that the chosen subsequence is uniformly convergent on any compact sub-

set of Dm, still denoted by {Fm,t0}t0 without ambiguity.

For any compact subset K on Dm, it is clear that both Fm,t0 and

(1− b′t0 ◦Ψ)F̃ have uniform bounds on K independent of t0.
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By inequality (5.15), inequality (5.17), the equality

lim
t0→∞

1

eAt0
=

1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt,

and the dominated convergence theorem on any compact subset K of Dm, it

follows that∫
Dm

IK |Fm|2hcA(−Ψ)dVM

≤ C

Ç
1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ],
(5.19)

which implies that∫
Dm

|Fm|2hcA(−Ψ)dVM

≤ C

Ç
1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ],
(5.20)

where the Lebesgue measure of {Ψ = −∞} is zero.

Define Fm = 0 on M\Dm. Then the weak limit of some weakly convergent

subsequence of {Fm}∞m=1 gives a holomorphic section F of KM ⊗ E on M

satisfying F |S = F̃ |S , and∫
M
|F |2hcA(−Ψ)dVM

≤ C

Ç
1

δ
cA(−A) +

∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ].

To finish the proof of Theorem 2.1, it suffices to determine η and φ such

that (η + g−1) ≤ Cc−1
A (−vt0,ε ◦ Ψ)e−vt0,ε◦Ψe−φ = Cµ−1 on Dm. Recall that

η = s(−vt0,ε ◦ Ψ) and φ = u(−vt0,ε ◦ Ψ). So we have (η + g−1)evt0,ε◦Ψeφ =

(s+ s′2

u′′s−s′′ )e
−teu ◦ (−vt0,ε ◦Ψ).

Summarizing the above discussion about s and u, we are naturally led to

a system of ODEs:

(1)

Ç
s+

s′2

u′′s− s′′

å
eu−t =

C

cA(t)
,

(2) s′ − su′ = 1,

(5.21)

where t ∈ (−A,+∞) and C = 1; s ∈ C∞((−A,+∞)) satisfies s ≥ 1
δ and u ∈

C∞((−A,+∞)) satisfies limt→+∞ u(t) = − log(1
δ cA(−A)eA +

∫∞
−A cA(t)e−tdt)

such that u′′s− s′′ > 0.
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We solve the above system of ODEs in Section 5.4 and get the solution of

the system of ODEs (5.21):

(1) u = − log

Ç
1

δ
cA(−A)eA +

∫ t

−A
cA(t1)e−t1dt1

å
,

(2) s =

∫ t
−A(1

δ cA(−A)eA +
∫ t2
−A cA(t1)e−t1dt1)dt2 + 1

δ2 cA(−A)eA

1
δ cA(−A)eA +

∫ t
−A cA(t1)e−t1dt1

.

(5.22)

One can check that s ∈ C∞((−A,+∞)), and u ∈ C∞((−A,+∞)) with

limt→+∞ u(t) = − log(1
δ cA(−A)eA +

∫+∞
−A cA(t1)e−t1dt1).

It follows from su′′−s′′ = −s′u′ and u′ < 0 that u′′s−s′′ > 0 is equivalent

to s′ > 0. It is easy to see that the inequality (2.1) is just s′ > 0. Therefore,

u′′s − s′′ > 0. In conclusion, we have proved Theorem 2.1 with the constant

C = 1.

Remark 5.1. Both C and the power of δ in Theorems 2.1 and 5.2 are opti-

mal on the ball Bm(0, e
A

2m ) with trivial holomorphic line bundle when S = {0}.

5.2. A singular metric version of Theorem 2.1. In this subsection, we

formulate and prove the following singular metric version of Theorem 2.1:

Theorem 5.2. Let (M,S) satisfy condition (ab), and let h be a singular

metric on a holomorphic line bundle L on M , which is locally integrable on

M . Then, for any function Ψ on M such that Ψ ∈ ∆A,h,δ(S), there exists

a uniform constant C = 1, which is optimal, such that, for any holomorphic

section f of KM ⊗L|S on S satisfying the L2 integrable condition (2.2), there

exists a holomorphic section F of KM ⊗ L on M satisfying F = f on S and

the optimal estimate (2.3).

Proof. By Remark 4.7, it suffices to prove the case that M is a Stein

manifold. By Lemma 4.6 and Lemma 4.8, it suffices to prove the case that cA is

smooth on (A,+∞) and continuous on (A,+∞], such that limt→+∞ cA(t) > 0.

Since M is a Stein manifold, we can find a sequence of Stein manifolds

{Dm}∞m=1 satisfying Dm ⊂⊂ Dm+1 for all m and
∞
∪
m=1

Dm = M .

As ϕ+ Ψ and ϕ+ (1 + δ)Ψ are plurisubharmonic functions on M , then by

Lemma 4.13, we have smooth functions ϕk and Ψk on M , such that ϕk + Ψk

and ϕk + (1 + δ)Ψk are plurisubharmonic functions on M , which are deceasing

convergent to ϕ+ Ψ and ϕ+ (1 + δ)Ψ respectively.

Since M is Stein, there is a holomorphic section F̃ of KM on M such that

F̃ |S = f . Let ds2
M be a Kähler metric on M and dVM be the volume form

with respect to ds2
M . Let {vt0,ε}t0∈R,ε∈(0, 1

4
) be a family of smooth increasing

convex functions on R, such that
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(1) vt0,ε(t) = t for t ≥ −t0 − ε, and vt0,ε(t) is a constant for t < −t0 − 1 + ε

depending on t0, ε;

(2) v′′t0,ε(t) is pointwise convergent to I{−t0−1<t<−t0} when ε → 0, and 0 ≤
v′′t0,ε(t) ≤ 2 for any t ∈ R;

(3) vt0,ε(t) is C1 convergent to bt0(t) (and bt0(t) :=
∫ t
−∞(

∫ t2
−∞ I{−t0−1<t1<−t0}dt1)

dt2 −
∫ 0
−∞
Ä∫ t2
−∞ I{−t0−1<t1<−t0}dt1

ä
dt2 is also a C1 function on R) when

ε→ 0, and 0 ≤ v′t0,ε(t) ≤ 1 for any t ∈ R.

As before, let η = s(−vt0,ε ◦ Ψk) and φ = u(−vt0,ε ◦ Ψk), where s ∈
C∞((−A,+∞)) satisfies s ≥ 1

δ , and u ∈ C∞((−A,+∞)) ∩ C∞([−A,+∞))

satisfies limt→+∞ u(t) = − log(1
δ cA(−A)eA +

∫∞
−A cA(t)e−tdt), such that u′′s−

s′′ > 0 and s′ − u′s = 1. Let h̃ = e−ϕk−Ψk−φ.

Now let α ∈ D(X,Λn,1T ∗Dm) be a smooth (n, 1)-form with compact support

on Dm. Using Lemmas 4.1 and 4.2, the inequality s ≥ 1
δ and the fact that

ϕk + Ψk is plurisubharmonic on Dm, we get

‖(η + g−1)
1
2D′′∗α‖2

Dm,h̃
+ ‖η

1
2D′′α‖2

Dm,h̃

≥
¨¨

[η
√
−1Θh̃ −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α

∂∂
Dm,h̃

≥
≠≠

[η
√
−1∂∂̄φ+

1

δ

√
−1∂∂̄(ϕk + Ψk)

−
√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α

∂∂
Dm,h̃

,

(5.23)

where g is a positive continuous function on Dm. We need some calculations

to determine g.

We have

∂∂̄η = −s′(−vt0,ε ◦Ψk)∂∂̄(vt0,ε ◦Ψk)

+ s′′(−vt0,ε ◦Ψk)∂(vt0,ε ◦Ψk) ∧ ∂̄(vt0,ε ◦Ψk)
(5.24)

and

∂∂̄φ = −u′(−vt0,ε ◦Ψk)∂∂̄vt0,ε ◦Ψk

+ u′′(−vt0,ε ◦Ψk)∂(vt0,ε ◦Ψk) ∧ ∂̄(vt0,ε ◦Ψk).
(5.25)

Therefore,

η
√
−1∂∂̄φ−

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η

= (s′ − su′)
√
−1∂∂̄(vt0,ε ◦Ψk)

+ ((u′′s− s′′)− gs′2)
√
−1∂(vt0,ε ◦Ψk) ∧ ∂̄(vt0,ε ◦Ψk)

= (s′ − su′)((v′t0,ε ◦Ψk)
√
−1∂∂̄Ψk

+ (v′′t0,ε ◦Ψk)
√
−1∂(Ψk) ∧ ∂̄(Ψk))

+ ((u′′s− s′′)− gs′2)
√
−1∂(vt0,ε ◦Ψk) ∧ ∂̄(vt0,ε ◦Ψk).

(5.26)
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We omit the composite item (−vt0,ε ◦Ψk) after s′ − su′ and (u′′s− s′′)− gs′2
in the above equalities.

Let g = u′′s−s′′
s′2 ◦(−vt0,ε◦Ψk). We have η+g−1 = (s+ s′2

u′′s−s′′ )◦(−vt0,ε◦Ψk).

Since ϕk+Ψk and ϕk+(1+δ)Ψk are plurisubharmonic on M and 0 ≤ v′t0,ε◦Ψk

≤ 1, we have

(5.27) (1−v′t0,ε◦Ψk)
√
−1∂∂̄(ϕk+Ψk)+(v′t0,ε◦Ψk)

√
−1∂∂̄(ϕk+(1+δ)Ψk) ≥ 0

on M \ S, which means that

(5.28)
1

δ

√
−1∂∂̄(ϕk + Ψk) + (v′t0,ε ◦Ψk)∂∂̄Ψk ≥ 0,

on M .

As v′t0,ε ≥ 0 and s′ − su′ = 1, using Lemma 4.2, equality (5.26), and

inequalities (5.23) and (5.28), we have

〈Bα,α〉h̃ =〈[η
√
−1Θh̃ −

√
−1∂∂̄η −

√
−1g∂η ∧ ∂̄η,Λω]α, α〉h̃

≥〈[(v′′t0,ε ◦Ψk)
√
−1∂Ψk ∧ ∂̄Ψk,Λω]α, α〉h̃

=〈(v′′t0,ε ◦Ψk)∂̄Ψk ∧ (αx(∂̄Ψk)
]
ä
, α〉h̃.

(5.29)

Using the definition of contraction, the Cauchy-Schwarz inequality and

inequality (5.29), we have

|〈(v′′t0,ε ◦Ψ)∂̄Ψ ∧ γ, α̃〉h̃|
2 =|〈(v′′t0,ε ◦Ψ)γ, α̃x(∂̄Ψ)]

∂
h̃
|2

≤〈(v′′t0,ε ◦Ψ)γ, γ〉h̃(v′′t0,ε ◦Ψ)|α̃x(∂̄Ψ)]
∣∣∣2
h̃

=〈(v′′t0,ε ◦Ψ)γ, γ〉h̃〈(v
′′
t0,ε ◦Ψ)∂̄Ψ ∧ (α̃x(∂̄Ψ)]

ä
, α̃〉h̃

≤〈(v′′t0,ε ◦Ψ)γ, γ〉h̃〈Bα̃, α̃〉h̃

(5.30)

for any (n, q)-form γ and (n, q + 1)-form α̃ with values in E.

Take λ = ∂̄[(1− v′t0,ε(Ψ))F̃ ], γ = F̃ , and α̃ = B−1∂̄Ψ ∧ F̃ . We have

〈B−1λ, λ〉h̃ ≤ (v′′t0,ε ◦Ψ)|F̃ |2
h̃
.

Then it is easy to see that∫
Dm\S

〈B−1λ, λ〉h̃dVM ≤
∫
Dm\S

(v′′t0,ε ◦Ψ)|F̃ |2
h̃
dVM .

From Lemma 4.3, it follows that there exists an (n, 0)-form γm,t0,ε,k on

Dm satisfying ∂̄γm,t0,ε,k = λ and

∫
Dm

|γm,t0,ε,k|2h̃(η + g−1)−1dVM ≤
∫
Dm

(v′′t0,ε,k ◦Ψk)|F̃ |2h̃dVM .(5.31)
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Let µ1 = evt0,ε◦Ψk , µ = µ1cA(−vt0,ε ◦ Ψk)e
φ. Claim that we can choose η

and φ satisfying µ ≤ C(η + g−1)−1, which will be discussed at the end of this

subsection, where C is just the constant in Theorem 5.2.

Let Fm,t0,ε,k := (1− v′t0,ε ◦Ψk)‹F − γm,t0,ε,k. Then inequality (5.31) means

that

∫
Dm

|Fm,t0,ε,k − (1− v′t0,ε ◦Ψk)‹F |2e−ϕk−Ψk+vt0,ε◦ΨkcA(−vt0,ε ◦Ψk)dVM

≤
∫
Dm

(v′′t0,ε ◦Ψk)|F̃ |2h̃dVM .

(5.32)

Note that for any compact subset K of Dm, we obtainÅ∫
K
|Fm,t0,ε,k − (1− v′t0,ε ◦Ψk)‹F |2e−ϕk−Ψk+vt0,ε◦ΨkcA(−vt0,ε ◦Ψk)dVM

ã1/2

+

Å∫
K
|(v′t0,ε ◦Ψk)‹F |2e−ϕk−Ψk+vt0,ε◦ΨkcA(−vt0,ε ◦Ψk)dVM

ã1/2

≥
Å∫

K
|Fm,t0,ε,k − ‹F |2e−ϕk−Ψk+vt0,ε◦ΨkcA(−vt0,ε ◦Ψk)dVM

ã1/2

.

(5.33)

Note that

(1) e−ϕk−Ψk , evt0,ε◦Ψk and cA(−vt0,ε ◦Ψk) have uniform positive lower bounds

independent of k;

(2) |v′t0,ε ◦Ψk)‹F |2e−Ψ and
∫
Dm

(v′′t0,ε ◦Ψk)|F̃ |2h̃dVM have uniform positive upper

bounds independent of k;

(3) e−ϕ is locally integrable on M , and the sequence ϕk + Ψk is decreasing

with respect to k.

According to inequality (5.33), it follows that
∫
K |Fm,t0,ε,k − ‹F |2dVM has

a uniform bound independent of k for any compact subset K of Dm.

Using Lemma 4.5, we have a subsequence of {Fm,t0,ε,k}k, still denoted by

{Fm,t0,ε,k}k, which is uniformly convergent to a holomorphic (n, 0)-form Fm,t0,ε
on any compact subset of Dm.

As all the terms evt0,ε◦Ψk , cA(−vt0,ε ◦ Ψk), (1 − v′t0,ε ◦ Ψk)‹F , and

(v′′t0,ε ◦ Ψk)|F̃ |2e−ϕk−Ψk−φ have uniform positive upper bounds independent

of k, and vt0,ε(Ψk) ≥ Ψk, it follows from the dominated convergence theorem

that ∫
K
|Fm,t0,ε − (1− v′t0,ε ◦Ψ)‹F |2e−ϕk−Ψk+vt0,ε◦ΨcA(−vt0,ε ◦Ψ)dVM

≤
∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−Ψ−u(−vt0,ε(Ψ))dVM

(5.34)

for any compact subset K of Dm.
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As the sequence ϕk+Ψk is decreasing convergent to ϕ+Ψ, it follows from

Levi’s theorem that∫
K
|Fm,t0,ε − (1− v′t0,ε ◦Ψ)‹F |2e−ϕ−Ψ+vt0,ε◦ΨcA(−vt0,ε ◦Ψ)dVM

≤
∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−Ψ−u(−vt0,ε(Ψ))dVM

(5.35)

for any compact subset K of Dm, which means∫
Dm

|Fm,t0,ε − (1− v′t0,ε ◦Ψ)‹F |2e−ϕ−Ψ+vt0,ε◦ΨcA(−vt0,ε ◦Ψ)dVM

≤
∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−Ψ−u(−vt0,ε(Ψ))dVM .
(5.36)

Note that e−Ψ is not integrable along S, and Fm,t0,ε and (1− v′t0,ε ◦Ψ)‹F
are both holomorphic near S. Then (Fm,t0,ε − (1 − v′t0,ε ◦ Ψ)‹F )|S = 0, and

therefore Fm,t0,ε|S = ‹F |S . It is clear that Fm,t0,ε is an extension of f .

Note that vt0,ε(Ψ) ≥ Ψ. Then the inequality (5.36) becomes∫
Dm

|Fm,t0,ε − (1− v′t0,ε ◦Ψ)‹F |2e−ϕcA(−vt0,ε ◦Ψ)dVM

≤
∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−Ψ−u(−vt0,ε(Ψ))dVM

≤ 1

eAt0

∫
Dm

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−ΨdVM ,

(5.37)

where At0 := inft≥t0{u(t)}.
As

lim
t→+∞

u(t) = − log(
1

δ
cA(−A) +

∫ +∞

−A
cA(t)e−tdt),

it is clear that

lim
t0→∞

1

eAt0
=

1

δ
cA(−A) +

∫ +∞

−A
cA(t)e−tdt.

Given t0 and Dm,

(v′′t0,ε ◦Ψ)|F̃ |2e−ϕ−Ψ

has a uniform bound on Dm independent of ε. Then both∫
Dm

|(1− v′t0,ε ◦Ψ)F̃ |2e−ϕcA(−vt0,ε ◦Ψ)dVM

and ∫
Dm

v′′t0,ε ◦Ψ|F̃ |2e−ϕ−ΨdVM

have uniform bounds independent of ε for any given t0 and Dm.

Using the equation ∂̄Fm,t0,ε = 0 and Lemma 4.5, we can choose a subse-

quence of {Fm,t0,ε}ε, such that the chosen sequence is uniformly convergent on

any compact subset of Dm, still denoted by {Fm,t0,ε}ε without ambiguity.
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For any compact subset K on Dm, all terms Fm,t0,ε, (1 − v′t0,ε ◦ Ψ)F̃ ,

cA(−vt0,ε◦Ψ) and (v′′t0,ε◦Ψ)|F̃ |2e−ϕ−Ψ have uniform bounds on K independent

of ε.

Using the dominated convergence theorem on any compact subset K of

Dm and inequality (5.37), we have∫
K
|Fm,t0 − (1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM

≤ C

eAt0

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM ,
(5.38)

which implies∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM

≤ C

eAt0

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM .

(5.39)

According to the definition of dVM [Ψ] and the assumption
n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ] <∞,

it follows that

lim sup
t0→+∞

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM

≤ lim sup
t0→+∞

∫
M

IDm(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM

≤
n∑
k=1

πk

k!

∫
Sn−k

ID|f |
2
hdVM [Ψ] ≤

n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ] <∞.

(5.40)

Then ∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM

has a uniform bound independent of t0 for any given Dm, and

lim sup
t0→+∞

∫
Dm

(I{−t0−1<t<−t0} ◦Ψ)|F̃ |2e−ϕ−ΨdVM

≤
n∑
k=1

πk

k!

∫
Sn−k

|f |2e−ϕdVM [Ψ] <∞.
(5.41)

Therefore, ∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM

has a uniform bound independent of t0 for any given Dm.

Since ∫
Dm

|(1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM
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has a uniform bound independent of t0, andÇ∫
Dm

|Fm,t0 − (1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM

å 1
2

+

Ç∫
Dm

|(1− b′t0(Ψ))F̃ |2e−ϕcA(−bt0(Ψ))dVM

å 1
2

≥
Ç∫

Dm

|Fm,t0 |2e−ϕcA(−bt0(Ψ))dVM

å 1
2

,

(5.42)

it follows from inequality (5.39) that
∫
Dm
|Fm,t0 |2e−ϕcA(−bt0(Ψ))dVM has a

uniform bound independent of t0.

Using the equation ∂̄Fm,t0 = 0 and Lemma 4.5, we can choose a subse-

quence of {Fm,t0}t0 , such that the chosen sequence is uniformly convergent on

any compact subset of Dm, still denoted by {Fm,t0}t0 without ambiguity.

For any compact subset K on Dm, both Fm,t0 and (1 − b′t0 ◦ Ψ)F̃ have

uniform bounds on K independent of t0.

Using inequalities (5.39) and (5.41), the following equality,

lim
t0→∞

1

eAt0
=

∫ +∞

−A
cA(t)e−tdt,

and the dominated convergence theorem on any compact subset K of Dm, we

have ∫
Dm

IK |Fm|2e−ϕcA(−Ψ)dVM

≤ C

Ç∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2e−ϕdVM [Ψ],
(5.43)

which implies∫
Dm

|Fm|2e−ϕcA(−Ψ)dVM

≤ C

Ç∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2e−ϕdVM [Ψ],
(5.44)

where the Lebesgue measure of {Ψ = −∞} is zero.

Define Fm = 0 on M\Dm. Then the weak limit of some weakly convergent

subsequence of {Fm}∞m=1 gives a holomorphic section F of KM ⊗ E on M

satisfying F |S = F̃ |S , and

∫
M
|F |2e−ϕcA(−Ψ)dVM

≤ C

Ç
1

δ
cA(−A)eA +

∫ +∞

−A
cA(t)e−tdt

å n∑
k=1

πk

k!

∫
Sn−k

|f |2e−ϕdVM [Ψ].

(5.45)
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To finish the proof of Theorem 5.2, it suffices to determine η and φ such

that (η + g−1) ≤ Cc−1
A (−vt0,ε ◦Ψ)e−vt0,ε◦Ψe−φ = Cµ−1 on Dv.

As η = s(−vt0,ε ◦Ψ) and φ = u(−vt0,ε ◦Ψ), we have (η+ g−1)evt0,ε◦Ψeφ =

(s+ s′2

u′′s−s′′ )e
−teu ◦ (−vt0,ε ◦Ψ).

We naturally obtain the system of ODEs (5.21), where t ∈ (−A,+∞),

C = 1, s ∈ C∞((−A,+∞)) satisfying s ≥ 1
δ , u ∈ C∞((−A,+∞)) satisfying

limt→+∞ u(t) = − log(1
δ cA(−A)eA +

∫∞
−A cA(t)e−tdt), and u′′s− s′′ > 0.

We solve the system of ODEs (5.21) in Subsection 5.4 and get the solution

(1) u = − log

Ç
1

δ
cA(−A)eA +

∫ t

−A
cA(t1)e−t1dt1

å
,

(2) s =

∫ t
−A(1

δ cA(−A)eA +
∫ t2
−A cA(t1)e−t1dt1)dt2 + 1

δ2 cA(−A)eA

1
δ cA(−A)eA +

∫ t
−A cA(t1)e−t1dt1

.

(5.46)

One can check that s∈C∞((−A,+∞)), limt→+∞ u(t)=− log(1
δ cA(−A)eA

+
∫+∞
−A cA(t1)e−t1dt1), and u ∈ C∞((−A,+∞)).

As su′′ − s′′ = −s′u′ and u′ < 0, it is clear that u′′s− s′′ > 0 is equivalent

to s′ > 0, and inequality (2.1) means that s′ > 0. Then we obtain u′′s−s′′ > 0.

In conclusion, we have proved Theorem 5.2. �

Using Remark 4.10 and Lemma 4.8, we may replace smoothness of cA
by continuity. When we take cA = 1, using the above Theorems 2.1 and 5.2,

one obtains the main results in [27] and [29], which are the optimal estimate

versions of the main theorems in [38], [41], [42].

5.3. Proof of Theorem 2.2. By Remark 4.7, it suffices to prove the case

that M is a Stein manifold. By Lemmas 4.6 and 4.8, it is enough to prove

the case that cA is smooth on (A,+∞) and continuous on (A,+∞], such that

limt→+∞ cA(t) exists and is bigger than 0.

Since M is a Stein manifold, we can find a sequence of Stein manifolds

{Dm}∞m=1 satisfying Dm ⊂⊂ Dm+1 for all m and
∞
∪
m=1

Dm = M . All Dm \ S
are complete Kähler ([22]).

As Ψ is a plurisubharmonic function on M , then

(1) when A < +∞, supz∈Dm Ψ(z) < A− ε, where ε > 0;

(2) when A = +∞, supz∈Dm Ψ(z) < Am, where Am < +∞ is sufficient large.

We just consider our proof for condition (1). (The case under condition (2)

can be proved similarly.) By Lemma 4.11, for any given A′ < A, it follows that

there exists cA′′ and δ′′ > 0 satisfying conditions (1), (2) and (3) in Lemma 4.11,

where A′′ < A and A′′ > A− ε.
Note that

√
−1∂∂̄Ψ ≥ 0, and

√
−1Θhe−Ψ ≥ 0 on M \S implies conditions

(1) and (2) in Theorem 2.1 for any δ′′ > 0.
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Using Theorem 2.1, we obtain a holomorphic (n, 0)-form Fm,A′′ with value

in E on Dm, which satisfies Fm|S = f and∫
Dm

cA′′(−Ψ)|Fm,A′′ |2hdVM ≤ C

∫ ∞
−A

cA(t)e−tdt
n∑
k=1

πk

k!

∫
Sn−k

|f |2hdVM [Ψ].

Note that cA′′(−Ψ) is uniformly convergent to cA(−Ψ) on any compact

subset of Dm, as A′′ → A. Let A′ → A (A′′ → A), and then let m → +∞.

Using Lemma 4.6, we prove the present theorem.

Remark 5.3. C is optimal on the ball Bm(0, e
A

2m ) for trivial holomorphic

line bundle when S={0} and Ψ=2m log |z|. When A=+∞, Bm(0, e
A

2m ) :=Cm.

Using Theorem 2.2 and Corollary 4.17 by taking d2 = 1, we obtain

Corollary 5.4. Let Ω be an open Riemann surface which admits a Green

function G, and let Ψ := 2G(z, z0). Let Vz0 be a neighborhood of z0 with a

local coordinate w, (w(z0) = 0), which satisfies Ψ|Vz0 ≤ Ψ|Ω\Vz0 and Ψ|Vz0 =

log |w|2.

If there is a unique holomorphic (1, 0)-form F , such that F |z0 = dw and∫
Ω

√
−1F ∧ F̄ ≤ π

∫
z0

|dw|2dVΩ[Ψ],

then we have F |Vz0 = dw.

5.4. Solution of the ODE system (5.21). We now solve equations (5.21)

as follows: By (2) of equation (5.21), it follows that su′′ − s′′ = −s′u′. Then

(1) of equation (5.21) can be reformulated to

(s− s′

u′
)eu−t =

C

cA(t)
;

i.e.,

su′ − s′

u′
eu−t =

C

cA(t)
.

By (2) of equation (5.21) again, it follows that

C

cA(t)
=
su′ − s′

u′
eu−t =

−1

u′
eu−t,

and therefore

de−u

dt
= −u′e−u =

cA(t)e−t

C
.

Note that (2) of equation (5.21) is equivalent to d(se−u)
dt = e−u.
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As s ≥ 0, we obtain the solution
u = − log(a+

∫ t
−A cA(t1)e−t1dt1),

s =

∫ t
−A

(a+
∫ t2
−A

cA(t1)e−t1dt1)dt2+b

a+
∫ t
−A

cA(t1)e−t1dt1
,

when C = 1, where a ≥ 0 and b ≥ 0.

As limt→+∞ u(t) = − log(1
δ cA(−A)eA +

∫+∞
−A cA(t1)e−t1dt1), we have a =

1
δ cA(−A)eA. As s ≥ 1

δ , we have b
a ≥

1
δ .

As u′ < 0 and su′′ − s′′ = −s′u′, it is clear that u′′s− s′′ > 0 is equivalent

to s′ > 0. By inequality s′ > 0, it follows that a2 ≥ cA(−A)eAb. Then we get

b = 1
δa.

5.5. Verifications of Remarks 5.1 and 5.3. Let Bm(0, e
A

2m ) be the unit ball

with radius e
A

2m on Cm (Bm(0,+∞) := Cm), with coordinate z = (z1, . . . , zm).

Let

ϕ(z) = (1 + δ)mmax{log |z|2, log |a|2}

and

Ψ(z) = −mmax{log |z|2, log |a|2}+m log |z|2 +A− ε,

where a ∈ (0,+∞) and ε > 0.

As both ϕ and ϕ+ (1 + δ)Ψ are plurisubharmonic, and

ϕ+ Ψ =
δϕ+ (ϕ+ (1 + δ)Ψ)

1 + δ
,

it is clear that Ψ(z) ∈ ∆ϕ,δ(S), where S = {z = 0}.
For any f(0) 6= 0, it suffices to prove

lim
a→0

min
F∈Hol(Bm(0,e

A
2m ))

∫
Bm(0,e

A
2m )
|F |2cA(−Ψ)e−ϕdλ

a−2δeε−A|F (0)|2

=
πm

m!

Ç∫ +∞

−A+ε
cA(t)e−tdt+

1

δ
cA(−A+ ε)eA−ε

å
,

(5.47)

where F (0) = f(0).

Because e−ϕdλ[Ψ] = a−2δeεδ0 (by Lemma 4.14), where δ0 is the Dirac

function at 0, let ε go to zero. Then we see that the constant of Theorem 2.2

is optimal.

Set the Taylor expansion of F (z) at 0 ∈ Cm of F (z) =
∑∞
k=0 akz

k, where

k = {k1, . . . , km}, ak are complex constants, and zk = zk1
1 · · · zkmm .
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Note that
∫

∆ z
k1 z̄k2e−ϕdλ = 0 when k1 6= k2, and

∫
∆ z

k1 z̄k2e−ϕdλ > 0

when k1 = k2. It is clear that

min
F∈Hol(Bm(0,e

A
2m ))

∫
Bm(0,e

A
2m )

cA(−Ψ)|F |2e−ϕdλ

=

∫
Bm(0,e

A
2m )

cA(−Ψ)|F (0)|2e−ϕdλ.

It is not hard to see that∫
Bm(0,e

A
2m )

cA(−Ψ)e−ϕdλ

=
πm

m!

Ç
a−2δe−A+ε

∫ +∞

−A+ε
cA(t)e−tdt+ cA(−A+ ε)

a−2δ − e−δA

δ

å
and

lim
a→0

a−2δ − e−δA

δa−2δ
=

1

δ
.

As
∫∞
−A cA(t)e−tdt < ∞, cA(−A)eA < ∞ and cA(−A)eA 6= 0, then we have

proved the equality (5.47).

Now we finish proving Remark 5.1. Let ϕ = 0 and Ψ = m log |z|2. Then

we obtain Remark 5.3 on Bm(0, e
A

2m ), where A ∈ (−∞,+∞].

6. Proofs of the main corollaries

In this section, we give proofs of the main corollaries including a conjecture

of Suita on the equality conditions in Suita’s conjecture and the extended Suita

conjecture, optimal estimates of various known L2 extension theorems, optimal

estimate for Lp extension and for the L
2
m extension, etc.

6.1. Proof of Theorem 3.1. It is well known that if Ω is conformally equiv-

alent to the unit disc less a (possible) closed set of inner capacity zero, then

πBΩ(z0) = c2
β(z0).

It suffices to prove that if πBΩ(z0) = c2
β(z0) holds, then Ω is conformally

equivalent to the unit disc less a (possible) closed set of inner capacity zero.

As Ω is a noncompact Riemann surface, there exists a holomorphic func-

tion g0 on Ω, which satisfies dg0|z0 6= 0, g0|z0 = 0, and g0|Ω\{z0} 6= 0.

Let p : ∆→ Ω be the universal covering of Ω. We can choose a connected

component Vz0 small enough, such that p is biholomorphic on any connected

component of p−1(Vz0).

Since p∗(GΩ(z, z0)− log |g0(z)|) is a harmonic function on ∆ (by Lemma

4.20), then there exists a holomorphic function f1 on ∆, such that the real

part of f1 is p∗(GΩ(z, z0)− log |w|).
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We want to show that for any z1 ∈ Ω, p∗(g0) exp f1 is constant along the

fibre p−1(z1). Note that

log |p∗((p∗(g0) exp f1)|U0)| = GΩ(z, z0)|Vz0 ,

where U0 is a fixed connected component of p−1(Vz0). By assumption πBΩ(z0)

= c2
β(z0), and by Remark 4.32, there is a unique holomorphic (1, 0)-form F on

Ω, which satisfies F |z0 = dp∗((p
∗(g0) exp f1)|U0)|z0 , and

√
−1

∫
Ω
F ∧ F̄ ≤ π

∫
z0

|dp∗((p∗(g0) exp f1)|U0)|2dVΩ[2GΩ(z, z0)].

Using Proposition 4.21, we have

dp∗(p
∗(g0) exp f1|U0) = F |Vz0 ,

and therefore

d(p∗(g0) exp f1|U0) = (p∗F )|U0 .

Using Lemma 4.28, we have d(p∗(g0) exp f1) = p∗F .

For z1 ∈ Ω, there exists Vz1 , a connected neighborhood small enough, such

that p is biholomorphic on any connected component of p−1(Vz1), and U1 and

U2 are any two connected components of p−1(Vz1). Let

g1 = (p|U1)∗((p
∗(g0) exp f1)|U1)

and

g2 = (p|U2)∗((p
∗(g0) exp f1)|U2);

they are holomorphic functions on Vz1 .

As d(p∗(g0) exp f1) = p∗F , therefore

(p|U1)∗(d(p∗(g0) exp f1)|U1) = (p|U2)∗((dp
∗(g0) exp f1)|U2),

i.e.,

dg1 = dg2.

As |p∗(g0) exp f1| = exp(p∗GΩ(·, z0)), which restricted on p−1(z) takes the same

value, we have |g1| = |g2|, which are not constant on Vz1 .

Using Lemma 4.30, we have g1 = g2. Therefore (p∗(g0) exp f1)|p−1(z) is

constant for any z ∈ Ω. Then we obtain a well-defined holomorphic function

g(z) := (p∗(g0) exp f1)|p−1(z)

on Ω, which satisfies |g(z)| = expGΩ(z, z0). Using Lemma 4.25, we have

cB(z0) = cβ(z0). By the assumption πBΩ(z0) = c2
β(z0), it follows that πBΩ(z0)

= c2
B(z0). Using Lemma 4.26, we obtain that Ω is conformally equivalent to

the unit disc less a (possible) closed set of inner capacity zero.
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6.2. Proof of Theorem 3.2. Let {Ωm}m=1,2,... be domains with smooth

boundaries, which satisfy Ωm ⊂⊂ Ωm+1 and ∪∞m=1Ωm = Ω. Assume that

t ∈ Ω1. Denote BΩm by Bm, LΩm by Lm, and GΩm by Gm. Denote BΩ by B,

LΩ by L, and GΩ by G. Denote exp limz→t(Gm(z, t) − log |z − t|) by cβ,m(t),

where z is the local coordinate near t.

It is known that Bm = 2
π
∂2Gm(z,t)
∂z∂t̄ and Lm = 2

π
∂2Gm(z,t)
∂z∂t by [48] (see also

[55]). Note that Bm(z, t̄)dz = −Lm(z, t)dz for z ∈ Ω and t ∈ ∂Ωm (see [55]).

If Lm(z, t) has no zeros for a t, then we obtain a subharmonic function

Hm,t(z) := | Bm(z, t̄)

−Lm(z, t)
exp−2Gm(z, t)|

which is 1 at ∂Ωm.

By maximum principle, it follows that Hm,t(z) ≤ 1 for any z ∈ Ω. As

Lm(z, t)− 1
π(z−t)2 is holomorphic near t (see [48, p. 92]), then we have

lim
z→t
|Lm(z, t)| exp 2Gm(z, t)

= lim
z→t

exp(2Gm(z, t))

π|z − t|2

=
1

π
exp 2 lim

z→t
(Gm(z, t)− log |z − t|)

=
c2
β,m(t)

π
.

(6.1)

Note that limm→+∞ cβ,m(t) = cβ(t) and limm→+∞Bm(t, t̄) = B(t, t̄), and

by Corollary 3.1, it follows that

Bm(t, t̄) > lim
z→t
|Lm(z, t)| exp 2Gm(z, t)(6.2)

for m big enough, therefore Hm,t(t) > 1. This contradicts that Hm(z) ≤ 1 for

any z ∈ Ω when m is big enough. Then Theorem 3.2 follows.

6.3. Proof of Theorem 3.3. Let p : ∆ → Ω be the universal covering of

Ω. We can choose Vz0 small enough, such that p is biholomorphic on any

component Uj (j = 1, 2, . . . ) of p−1(Vz0).

Let z0 ∈ Ω with local coordinate w = (p|Uj )∗(fz0 |Uj ) for a fixed j. It is

known that if χ−h = χz0 , then c2
β(z0) = πρ(z0)BΩ,ρ(z0) holds (see [57]). Then

it suffices to prove that if

c2
β(z0) = πρ(z0)BΩ,ρ(z0)

holds, then

χ−h = χz0 .

By the assumption

c2
β(z0) = πρ(z0)BΩ,ρ(z0)
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and by Remark 4.33, it follows that there is a unique holomorphic (1, 0)-form

F on Ω, which satisfies ((p|Uj )∗(f−h|Uj ))F |z0 = dw, and

√
−1

∫
Ω
F ∧ F̄ ≤ π

∫
z0

|dw|2dVΩ[2GΩ(z, z0)].

It follows from Proposition 4.23 that ((p|Uj )∗(f−h|Uj ))F |Vz0 = dw. Then we

have

f−h(p∗F )|Uj = (p|Uj )∗dw = dfz0 |Uj .

It follows from Lemma 4.28 that f−hp
∗F = dfz0 . As p∗F is single-valued and

dfz0 ∈ Γχz0 , it is clear that χ−h = χz0 .

6.4. Proof of Theorem 3.6. Note that −rδ has uniform positive upper and

lower bound on D. Then we can consider the function −r instead of δ in the

present theorem.

Let Ψ := − log(− r
ε0|s|2 + 1)|D < 0, where ε0 is a positive constant small

enough. As r is strictly plurisubharmonic (see [33]) on D̄, we have r− ε0|s|2 is

a plurisubharmonic function on D for ε0 small enough. Note that − log(−t) is

increasing convex when t < 0. Then − log(−r + ε0|s|2) is a plurisubharmonic

function on D. As log ε0|s|2 is a plurisubharmonic function on D, then Ψ is a

plurisubharmonic function on D.

Let c0(t)|0<t<1 := tα and c0(t)|t≥1 := 1. Then we have
∫+∞

0 c0(t)e−tdt <
1

1+α + 1. Let h := e−(ϕ−α log(−r+ε0|s|2)). Then we have Θhe−Ψ ≥ 0.

Note that there are positive constants C3 and C4, which are independent

of α, such that c0(−Ψ)eα log(−r+ε0|s|
2)

rα ≤ max{Cα3 , Cα4 } on D.

By the similar method in the proof of Theorem 2.2, it follows that when

h is C2 smooth, Ψ is C2 plurisubharmonic function, and Θhe−Ψ ≥ 0, then

Theorem 2.2 also holds.

For any point z ∈ H, there exists a local holomorphic defining function e

of H, such that 2 log |s|−2 log |e| is continuous near z. Then using Lemma 4.14,

for any holomorphic section f on H ∩D, we have an extension F of f on D,

such that∫
D
|F |2(−r)αe−ϕdλ

≤ C(D,H) max{Cα3 , Cα4 }
2 + α

1 + α
e−ε0

∫
D∩H

|f |2(−r)1+αe−ϕdλH ,

where C(D,H) only depends on D and H. As −rδ has uniform upper and lower

bounds on D, we have proved Theorem 3.6.

6.5. Proof of Theorem 3.8. As M is a Stein manifold, then for any given

f , there exists a holomorphic section F1 on KM ⊗ L, such that F1|S = f .
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Note that
√
−1Θhe−(2−p) log |F1|h ≥

√
−1

p

2
Θh +

2− p
2

√
−1∂∂̄ϕ.

Then the metric he−(2−p) log |F1|h and Ψ satisfy conditions (1) and (2) in The-

orem 2.1 on the Stein manifold M \ {F1 = 0}.
Since M is a Stein manifold, we can find a sequence of Stein subdomains

{Dj}∞j=1 satisfying Dj ⊂⊂ Dj+1 for all j and
∞
∪
j=1

Dj = M , and all Dj \ S are

complete Kähler ([22]).

Let A1 :=
∫
Dj
cA(−Ψ)|F1|phdVM < +∞. By the upper semicontinuity of

log |F1|h on M , it follows that there exists a new extension F2 on M of f

satisfying

(6.3)

∫
Dj

cA(−Ψ)|F2|2he−(2−p) log |F1|hdVM ≤
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt.

By Hölder’s inequality, it follows that

∫
Dj

cA(−Ψ)|F2|phdVM =

∫
Dj

cA(−Ψ)
|F2|ph

|F1|
p− p

2

2
h

|F1|
p− p

2

2
h dVM

≤
Ç∫

Dj

cA(−Ψ)|F2|2he−(2−p) log |F1|hdVM

å p
2
Ç∫

Dj

cA(−Ψ)|F1|phdVM
å1− p

2

,

(6.4)

which is smaller than

max

®Å
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

ã p
2

A
1− p

2
1 ,

1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

´
=: A2.

If
A1 ≤

1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt,

then we are done. We only need to consider the case that

A1 >
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt.

In this case, A2 < A1.

We can repeat the same argument with F1 replaced by F2 etc., and get a

decreasing sequence of numbers Ak, such that

Ak+1 := max

®Å
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

ã p
2

A
1− p

2
k ,

1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

´
for k ≥ 1.
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It is clear that

Ak+1 >
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt

and Ak+1 < Ak. Then limk→∞Ak exists. By the definition of Ak, it follows

that

lim
k→∞

Ak =
1

δ
cA(−A)eA +

∫ ∞
−A

cA(t)e−tdt.

Then the present theorem for Dj has been proved. Let j tend to ∞. Thus we

have proved the present theorem.

6.6. Proof of Theorem 3.12. Let h := e−ϕr , where

ϕr := ϕ ∗
1B(0,r)

Vol(B(0, r))
.

Let

Ψ := 2(T − T ∗
1B(0,r)

Vol(B(0, r))
),

where T is a plurisubharmonic polar function of W on Cn, such that (∂∂̄T ∗
1B(0,r)

Vol(B(0,r)))(z) has a uniformly upper bound on Cn which is independent of

z ∈ Cn and r.

As D+(W ) < p
2 , there exists T , for r large enough, we have D(W,T, z, r) <

(1− ε)p2 , (ε > 0), which implies that
√
−1∂∂̄((1 + δ)Ψ + ϕr) ≥ 0

for positive δ small enough.

Note that Ψ has uniformly upper bound on Cn. There exists positive

constants C and C ′, such that Cω <
√
−1∂∂̄ϕ < C ′ω. Then we have ϕr−ϕ <

Cr < +∞, where ω =
√
−1∂∂̄|z|2. Let cA = 1. Using Theorem 3.8, we obtain

the present theorem.

6.7. Proof of Corollary 3.17. Let cA(t) := ett−2. It is easy to see that∫∞
−A cA(t)e−tdt < +∞ and cA(t)e−t is decreasing with respect to t, where

t ∈ (−A,+∞) and A = −2r.

Let Ψ = r log(|w|2) < −2r, where S = {s = 0}. Let δ = 1
r . Note that

s(t) =
(1+ 1

r
)t−log t−1

2− 1
t

≥ t
2 in Theorem 2.1, and

{
√
−1Θ(E)w,w}
|w|2

≥ −
√
−1∂∂̄ log |w|2,

then condition (2) in Theorem 2.1 holds.

Note that

|f |2

| ∧r (dw)|2
dVH =

√
−1

(n−r)2
®

f

∧r(dw)
,

f

∧r(dw)

´
h

e−ψ
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(see Remark 12.7 in [16]), and

2r
√
−1

(n−r)2
®

f

∧r(dw)
,

f

∧r(dw)

´
h

e−ψ = |f |2hdVM [Ψ].

Then it follows from Remark 4.15 and Theorem 2.1 that Corollary 3.17 holds.

Then we illustrate that the estimate is optimal.

Let M be the disc ∆e−1 ⊂ C. Let E be a trivial line bundle with Hermitian

metric hE,a = e−max{log |z|2,log |a|2}−2, and w = z. Let L be a trivial line bundle

with Hermitian metric hL,a = e−2 max{log |z|2,log |a|2}. It is clear that r = 1,

δ = 1. Let α = 1. Then

|w| = |z|e
1
2

(−max{log |z|2,log |a|2}−2) ≤ e−1 = e−α

satisfying inequality (b) in Theorem 3.16, and inequality (a) in Theorem 3.16

becomes

√
−1∂∂̄2 max{log |z|2, log |a|2} − 2

√
−1∂∂̄(max{log |z|2, log |a|2}+ 2) ≥ 0.

Note that

√
−1Θ(L) + r

√
−1∂∂̄ log |w|2 =

√
−1∂∂̄2 max{log |z|2, log |a|2}

−
√
−1∂∂̄(max{log |z|2, log |a|2}+ 2) ≥ 0

(6.5)

and 1
δ cA(−A)eA +

∫+∞
2 cA(t)e−tdt = 1

4 +
∫+∞

2 t−2dt = 3
4 .

Let a go to zero, by arguments in the proof of Remark 5.1. It follows that

the estimate in Corollary 3.17 is optimal.

6.8. Proof of Corollary 3.20. It is not hard to see that ϕ+ψ and log |w|
2

e −
g−1(e−ψg(1− log |w|2)) are plurisubharmonic functions. It suffices to prove the

case that M is a Stein manifold and L is a trivial line bundle with singular

metric e−ϕ globally.

Let ϕn + ψn and ψ̃n be smooth plurisubharmonic functions, which are

decreasingly convergent to ϕ+ψ and log |w|
2

e − g
−1(e−ψg(1− log |w|2)) respec-

tively, when n→ +∞.

Let g(t) := 1
c−1(t)e−t , Ψ := log e

|w|2 + ψ̃n2 , and h = e−ϕn1−ψn1+ψ̃n2 . Since

M is a Stein manifold, we can find a sequence of Stein subdomains {Dm}∞m=1

satisfying Dm ⊂⊂ Dm+1 for all m and
∞
∪
m=1

Dm = M .

Note that log |w|
2

e − g
−1(e−ψg(1 − log |w|2)) < 0. Given n2, for m large

enough, we have Ψ|Dm = − log e
|w|2 + ψ̃n2 |Dm < 1.

√
−1∂∂̄Ψ ≥ 0 and

√
−1Θhe−Ψ ≥ 0 on M \ S imply conditions (1) and (2)

in Theorem 2.2.
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Using Theorem 2.2 and Lemma 4.14, we obtain a holomorphic (n, 0)-form

Fm,n1,n2 on Dm, which satisfies Fm,n1,n2 |S = f and∫
Dm

c−1(log
e

|w|2
− ψ̃n2)|Fm,n2,n1 |2hdVM

≤ C2π

∫ ∞
−A

c−1(t)e−tdt

∫
S
|f |2e−ϕn1−ψn1dVS

≤ C2π

∫ ∞
−A

c−1(t)e−tdt

∫
S
|f |2e−ϕ−ψdVS ,

(6.6)

and therefore∫
Dm

ee−ϕn1−ψn1

|w|2g(log e
|w|2 − ψ̃n2)

|Fm,n2,n1 |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .

As ee−ϕn1−ψn1

|w|2g(log e
|w|2
−ψ̃n2 )

has a uniform lower bound for any compact subset of

Dm\S, which is independent of n1, it follows from Lemma 4.6 that there exists

a subsequence of {Fm,n2,n1}n1 , which is uniformly convergent to a holomorphic

(n, 0)-form Fm,n2 on any compact subset of Dm.

By dominated convergence theorem, it follows that∫
Dm

ee−ϕn1−ψn1

|w|2g(log e
|w|2 − ψ̃n2)

|Fm,n2 |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .

By Levi’s theorem, it follows that∫
Dm

ee−ϕ−ψ

|w|2g(log e
|w|2 − ψ̃n2)

|Fm,n2 |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .

As ee−ϕ−ψ

|w|2g(log e
|w|2
−ψ̃n2 )

has a uniform lower bound for any compact subset of

Dm\S, which is independent of n2, it follows from Lemma 4.6 that there exists

a subsequence of {Fm,n2}n2 , which is uniformly convergent to a holomorphic

(n, 0)-form Fm on any compact subset of Dm.

Note that ee−ψ

|w|2g(log e
|w|2
−ψ̃n2 )

is decreasingly convergent to e
|w|2g(log e

|w|2
)
. It

follows from Levi’s theorem that∫
Dm

ee−max{ϕ,K}

|w|2g(log e
|w|2 )
|Fm,n2 |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS ,

where K is a real number.

From dominated convergence theorem on M \ S, it follows that∫
Dm

ee−max{ϕ,K}

|w|2g(log e
|w|2 )
|Fm|2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .
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Using Lemma 4.6, we have a subsequence of {Fm}m, which is uniformly con-

vergent to a holomorphic (n, 0)-form F on any compact subset of M . Using

dominated convergence theorem on M \ S, we have∫
Dm

ee−max{ϕ,K}

|w|2g(log e
|w|2 )
|F |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .

When K goes to −∞, using Levi’s theorem, we have∫
M

ee−ϕ

|w|2g(log e
|w|2 )
|F |2dVM ≤ C2πC(g)

∫
S
|f |2e−ϕ−ψdVS .

Thus the present corollary follows.

6.9. Proof of Corollary 3.24. Let Ψ := log(|s|2e−ϕS ) and h := e−ϕF−ϕS .

Then it is clear that Ψ ≤ −α and A = −α. Let c−α(t) := e(1−b)t and δ = 1
α .

Then we have c−α(α)e−α = e−bα and
∫+∞
α c−α(t)e−tdt = 1

be
−bα.

When ϕS and ϕF are both smooth, using Theorem 2.1 and Remark 4.14,

we obtain Cb = 2π(αe−bα + 1
be
−bα)(maxM |s|2e−ϕ̄S )1−b.

Now we discuss the general case. (ϕS and ϕF may not be smooth.) As

M is Stein, we can choose relatively compact strongly pseudoconvex domains

{Ωn}n=1,2,... of M exhausting M .

Note that ϕF = αϕS − (αϕS −ϕF ). By Lemma 4.13, it follows that there

exist smooth functions {ϕS,j}j=1,2,... and {ϕF,j}j=1,2,..., such that

(1) {ϕS,j}j=1,2,... are plurisubharmonic functions;

(2) {αϕS,j − ϕF,j}j=1,2,... are plurisubharmonic functions;

(3) {ϕS,j}j=1,2,... and {αϕS,j − ϕF,j}j=1,2,... are decreasingly convergent to ϕS
and αϕS − ϕF respectively;

(4) given n, there exists jn such that for any j ≥ jn, |w|2e−ϕS,j |Ωn ≤ e−α.

Using the smooth case which we have already discussed, we obtain holo-

morphic (n, 0)-forms {Un,j}n,j satisfying the optimal estimate (3.10) on Ωn for

ϕS,j and ϕF,j .

Note that bϕS,j + ϕF,j = −b(αϕF,j − ϕS,j) + (bα + 1)ϕF,j . While ϕF,j is

invariant, let αϕF,j − ϕS,j go to αϕF − ϕS . From Lemma 4.34 it follows that

there exists a subsequence of {Un,j}j , denoted by {Un,j}j , which is uniformly

convergent on any compact subset of Ωn.

First let αϕF,j − ϕS,j go to αϕF − ϕS , and then let αϕF,j go to αϕF .

Using Levi’s Theorem, we obtain that the limit Un of {Un,j}j satisfies the

estimate (3.10) on Ωn.

Using weak compactness of unit ball in the Hilbert space

L2
e−bϕS−ϕF−(1−b)ϕ̄S (Ωn) ∩ {holomorphic (n, 0)-form},

Lemma 4.34 and the diagonal method, we have a subsequence of {Un}n, still

denoted by {Un}n, uniformly convergent to a holomorphic (n, 0)-form U on any
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compact subset of Ω for n large enough, such that U satisfies the estimate (3.10)

on any Ωn. Therefore, U satisfies the estimate (3.10) on Ω. Then Corollary 3.24

follows.

We conclude the present subsection by pointing out that Cb is optimal.

Let M be the disc ∆
e−

α
2
⊂ C. By Remark 5.1, and letting eϕ̄S be decreasingly

convergent to |s|2, we can obtain that the estimate in Corollary 3.24 is optimal.
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vanishing and the existence of good minimal models, Acta Math. 210

(2013), 203–259. MR 3070567. Zbl 1278.14022. http://dx.doi.org/10.1007/

s11511-013-0094-x.

[18] K. Diederich and G. Herbort, Extension of holomorphic L2-functions with

weighted growth conditions, Nagoya Math. J. 126 (1992), 141–157. MR 1171597.

Zbl 0759.32002. Available at http://projecteuclid.org/euclid.nmj/1118783179.

[19] H. M. Farkas and I. Kra, Riemann Surfaces, Grad. Texts in Math. 71,

Springer-Verlag, New York, 1980. MR 0583745. Zbl 0475.30001.

[20] J. E. Fornæss and R. Narasimhan, The Levi problem on complex spaces

with singularities, Math. Ann. 248 (1980), 47–72. MR 0569410. Zbl 0411.32011.

http://dx.doi.org/10.1007/BF01349254.

[21] J. E. Fornæss and N. Sibony, Some open problems in higher dimen-

sional complex analysis and complex dynamics, Publ. Mat. 45 (2001), 529–547.

MR 1876919. Zbl 0993.32001. http://dx.doi.org/10.5565/PUBLMAT 45201 11.

[22] H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige
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