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p-adic families
of Siegel modular cuspforms

By Fabrizio Andreatta, Adrian Iovita, and Vincent Pilloni

Abstract

Let p be an odd prime and g ≥ 2 an integer. We prove that a finite slope

Siegel cuspidal eigenform of genus g can be p-adically deformed over the

g-dimensional weight space. The proof of this theorem relies on the con-

struction of a family of sheaves of locally analytic overconvergent modular

forms.
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1. Introduction

After its glorious start in 1986 with H. Hida’s article [Hid86], the theory

of p-adic families of modular forms was developed in various directions and

was applied in order to prove many strong results in Arithmetic Geometry.

One of its first applications was in the proof of the weight two Mazur-Tate-

Teitelbaum conjecture by R. Greenberg and G. Stevens in [GS93] and the

proof of certain cases of the Artin conjecture by K. Buzzard, M. Dickinson,

N. Shepherd-Barron, R. Taylor in [BDSBT01]. An important turn in its history

was marked by R. Coleman’s construction of finite slope p-adic families of

elliptic modular forms ([Col96] and [Col97]) and by the construction of the

eigencurve by R. Coleman and B. Mazur in [CM98]. The eigencurve is a

p-adic rigid analytic curve which parametrizes overconvergent elliptic modular

eigenforms of finite slope.

During the last fifteen years many authors have contributed to set up a

general theory of p-adic automorphic forms on higher rank groups. Some of

them used an approach based on the cohomology of arithmetic groups initiated

by Hida and Stevens. Hida’s idea, later on developed by Emerton ([Eme06]),

was to amalgamate (more precisely, take the projective limit, or as in [Eme06],

alternatively consider the inductive limit followed by p-adic completion of) co-

homology groups with trivial (Zp) coefficients of a chosen tower of Shimura
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varieties. One obtains a large Qp-Banach space with an action of an appro-

priate Galois group of the Qp (or even adelic, depending on the choice of the

tower) points of the group and of a certain Hecke algebra. These data were

used by H. Hida in order to produce a construction of the ordinary part of the

eigenvariety for a large class of Shimura varieties.

In [Eme06] there is also a construction of finite slope eigenvarieties but so

far it cannot be proved that the eigenvarieties thus constructed have the right

dimension except in the cases already known: for elliptic modular forms and

modular forms on Shimura curves. Nevertheless, the very rich structure of the

completed cohomology of towers of Shimura varieties was successfully used to

prove results about the p-adic local (and global) Langlands correspondence.

Stevens’ approach is different; namely, he uses the cohomology of one

Shimura variety (of level type Γ0(Np) with (N, p) = 1) with complicated co-

efficients (usually certain locally analytic functions or distributions on the Zp-
points of the group) as the space (called overconvergent modular symbols or

p-adic families of modular symbols) on which the Hecke operators act. These

data were used by A. Ash and G. Stevens to produce eigenvarieties for GLg/Q
in [AS09]. Recently E. Urban ([Urb11]) developed this method to construct

equidimensional eigenvarieties of the expected dimension for modular eigen-

symbols of finite slope associated to reductive groups G over Q such that G(R)

admits discrete series.

Finally, in constructing the eigencurve some authors (including Hida and

Coleman) used a geometric approach based on Dwork’s ideas and Katz’s the-

ory of p-adic modular forms and overconvergent modular forms. Namely, they

interpolated directly the classical modular forms seen as sections of certain au-

tomorphic line bundles on the modular curve (of level prime to p) by defining

overconvergent modular forms and allowing them to have essential singulari-

ties in “small p-adic disks of very supersingular points.” So far this geomet-

ric approach has only been successful, in the case of higher rank groups, in

producing ordinary families ([Hid02]) or one-dimensional finite slope families

([KL05]). The main theme of our work is to bypass these restrictions. In the

articles [AIS10] and [Pil13] we explained new points of view on the construc-

tion of the eigencurve of Coleman and Mazur. Namely, we showed that over

the open modular curve (of level prime to p), which is the complement of a

disjoint union of “small disks of very supersingular points,” one can interpo-

late the classical automorphic sheaves and even construct p-adic families of

such sheaves. We showed that Coleman’s p-adic families can be seen as global

sections of such p-adic families of sheaves.

The present paper is a development of these ideas for Siegel varieties. We

prove that a cuspidal automorphic form that occurs in the H0 of the coherent

cohomology of some automorphic vector bundle on a Siegel variety can be
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p-adically deformed over the g-dimensional weight space. We believe that the

methods used in this paper would certainly apply to any PEL Shimura variety

of type A and C and maybe even to those of type D (see also [Bra13]).

We now give a more precise description of our main result. Let p be an odd

prime, g ≥ 2 and N ≥ 3 two integers. We assume that (p,N) = 1. Let YIw be

the Siegel variety of genus g, principal level N and Iwahori level structure at p.

This is the moduli space over Spec Q of principally polarized abelian schemes

A of dimension g, equipped with a symplectic isomorphism A[N ] ' (Z/NZ)2g

and a totally isotropic flag Fil•A[p] : 0 = Fil0A[p] ⊂ · · · ⊂ FilgA[p] ⊂ A[p]

where FiliA[p] has rank pi. To any g-uple κ = (k1, . . . , kg) ∈ Zg satisfying

k1 ≥ k2 ≥ · · · ≥ kg, one attaches an automorphic locally free sheaf ωκ on YIw.

Its global sections H0(YIw, ω
κ) constitute the module of classical Siegel modular

forms of weight κ. It contains the submodule of cuspidal forms H0
cusp(YIw, ω

κ)

that vanish at infinity. On these modules we have an action of the unramified

Hecke algebra TNp and of the dilating Hecke algebra Up = Z[Up,1, . . . , Up,g]

at p. Let f be a cuspidal eigenform and Θf : TNp ⊗Up → Q̄ be the associated

character. Since f has Iwahori level at p, Θf (Up,i) 6= 0 and f is of finite

slope. We fix an embedding of Q̄ in Cp and denote by v the valuation on Cp
normalized by v(p) = 1.

Theorem 1.1. Let f be a weight κ cuspidal eigenform of Iwahori level at p.

Then there is an affinoid neighbourhood U of κ ∈ W = Homcont((Z×p )g,C×p ), a

finite surjective map of rigid analytic varieties

w : Ef → U
and a faithful, finite OEf -module M that is projective as an OU -module, such

that

(1) Ef is equidimensional of dimension g.

(2) We have a character Θ: TNp ⊗ Up → OEf .

(3) M is an OEf -module consisting of finite-slope locally analytic cuspidal

overconvergent modular forms. The modular form f is an element of

M⊗κOU Cp, where the notation means that the tensor product is taken with

respect to the OU -module structure on Cp given by the ring homomorphism

OU −→ Cp that is evaluation of the rigid functions on U at κ.

(4) There is a point xf ∈ Ef , with w(xf ) = κ and such that the specialization

of Θ at xf is Θf .

(5) For all µ = (m1, . . . ,mg) ∈ Zg ∩ U satisfying m1 ≥ m2 ≥ · · · ≥ mg ,

v(Θf (Up,i)) < mg−i − mg−i+1 + 1 for 1 ≤ i ≤ g − 1 and v(Θf (Up,g)) <

mg − g(g+1)
2 the following hold :

• there is an inclusion M⊗µOU Cp ↪→ H0
cusp(YIw, ω

µ);

• for any point y in the fiber w−1(µ), the character Θy comes from a

weight µ cuspidal Siegel eigenform on YIw.
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The rigid space Ef is a neighbourhood of the point xf in an eigenvariety E .

We actually prove the following

Theorem 1.2.

(1) There are an equidimensional eigenvariety E and a locally finite map to

the weight space w : E → W . For any κ ∈ W , w−1(κ) is in bijection with

the eigensystems of TNp ⊗Z Up acting on the space of finite slope locally

analytic overconvergent cuspidal modular forms of weight κ.

(2) Let f be a finite slope locally analytic overconvergent cuspidal eigenform of

weight κ and xf be the point corresponding to f in E . If w is unramified at

xf , then there are a neighbourhood Ef of xf in E and a family F of finite

slope locally analytic overconvergent cuspidal eigenforms parametrized by

Ef and passing through f at xf .

We expect w to be unramified at all classical points xf that satisfy the

slope conditions of Theorem 1.1(5), but we do not have any general result in

this direction. See Section 8.3 for a more detailed discussion.

A key step in the proof of these theorems is the construction of the spaces

of analytic overconvergent modular forms of any weight κ ∈ W. They are

global sections of sheaves ω†κw that are defined over some strict neighbourhood

of the multiplicative ordinary locus of XIw, a toroidal compactification of YIw.

These sheaves are locally in the étale topology isomorphic to the w-analytic

induction, from a Borel of GLg to the Iwahori subgroup, of the character κ.

They are particular examples of sheaves over rigid spaces that which we call

Banach sheaves and whose properties are studied in the appendix. We view

these sheaves as possible rigid analytic analogues of quasi-coherent sheaves in

algebraic geometry.

One important feature of the sheaves ω†κw is that they vary analytically

with the weight κ. One can thus define families of analytic overconvergent

modular forms parametrized by the weight and construct Banach spaces of

analytic overconvergent modular forms of varying weight. We have been able

to show that the module of cuspidal families is a projective module. (The

OU -module M appearing in the theorem above is a direct factor defined over

U of this module of cuspidal families.) Therefore one can use Coleman’s spec-

tral theory to construct g-dimensional families of cuspidal eigenforms proving

Theorems 1.1 and 1.2; see Section 8.1.3 for a more detailed discussion. The

fifth part of the Theorem 1.1 is a special case of the main result of [BPS],

where a classicity criterion (small slope forms are classical) for overconvergent

modular forms is proved for many Shimura varieties.

As mentioned above, E. Urban has constructed an eigenvariety using the

cohomology of arithmetic groups. Following Chenevier ([Che05]), one can

prove that the reduced eigenvarieties constructed in [Urb11] and in our paper



628 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

coincide. One way to think about our theorem is that every cuspidal eigenform

gives a point on an equidimensional component of the eigenvariety of dimen-

sion g. In loc. cit. this is proved in general when the weight is cohomological,

regular and the slope is noncritical. One advantage of our construction is that

it provides p-adic deformations of the “physical” modular eigenforms and of

their q-expansions. For the symplectic groups, these carry more information

than the Hecke eigenvalues.

The paper is organized as follows. In the second section, we gather some

useful and now classical results about the p-adic interpolation of the algebraic

representations of the group GLg. The idea is to replace algebraic induction

from the Borel to GLg of a character by analytic induction from the Borel to

the Iwahori subgroup. This is important because the automorphic sheaf ωκ is

locally over XIw the algebraic induction of the character κ. Thus, locally for the

Zariski topology over XIw, interpolating the sheaves ωκ for varying κ is equiv-

alent to interpolating algebraic representations of GLg. The third and fourth

sections are about canonical subgroups. We recall results of [AM04], [AG07]

and [Far11]. Using canonical subgroups we construct Iwahori-like subspaces in

the GLg-torsor of trivializations of the co-normal sheaf of the universal semi-

abelian scheme. They are used in Section 5, where we produce the Banach

sheaves ω†κw . Section 6 is about Hecke operators. We show that they act on

our spaces of analytic overconvergent modular forms and we also construct a

compact operator U . In Section 7 we relate classical modular forms and an-

alytic overconvergent modular forms. This section relies heavily on the main

result of [BPS]. In Section 8 we finally construct families. We let the weight

κ vary in W and study the variation of the spaces of overconvergent analytic

modular forms.

We were able to control this variation on the cuspidal part; i.e., we showed

that the specialization in any p-adic weight of a family of cuspforms is surjective

onto the space of cuspidal overconvergent forms of that weight. The proof of

this result is the technical heart of the paper. The main difference between

the cases g ≥ 2 and g = 1 (see Section 8.1.3 for more details) is the fact that

the strict neighbourhoods XIw(v) of width v of the multiplicative ordinary

locus, in some (any) toroidal compactification of the Siegel modular variety

of Iwahori level, are not affinoids. Therefore, inspired by [Hid02], we studied

the descent of our families of Banach sheaves ω†κ
un

w from the toroidal to the

minimal compactification. The key observation is that the image of the strict

neighbourhood XIw(v) in the minimal compactification is an affinoid, and we

managed to show the acyclicity of certain Banach sheaves on affinoids. This

allows us to prove the desired results — namely, that one can apply Coleman’s

spectral theory to the modules of p-adic families of cusp forms and obtain

eigenfamilies of finite slope. Moreover, that any overconvergent modular form
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of finite slope is the specialization of a p-adic family of finite slope — in other

words, that any overconvergent modular form of finite slope deforms over the

weight space.
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2. Families of representations of the group GLg

We recall some classical results about Iwahoric induction using the BGG

analytic resolution of [Jon11] (see also [Urb11]).

2.1. Algebraic representations. Let GLg be the linear algebraic group of

dimension g realized as the group of g × g invertible matrices. Let B be the

Borel subgroup of upper triangular matrices, T the maximal torus of diagonal

matrices, and U the unipotent radical of B. We let B0 and U0 be the opposite

Borel of lower triangular matrices and its unipotent radical. We denote by

X(T) the group of characters of T and by X+(T) its cone of dominant weights

with respect to B. We identify X(T) with Zg via the map that associates to a

g-uple (k1, . . . , kg) ∈ Zg the characterÜ
t1 0 0

0
. . . 0

0 0 tg

ê
7→ tk1

1 · · · t
kg
g .

With this identification, X+(T) is the cone of elements (k1, . . . , kg) ∈ Zg such

that k1 ≥ k2 ≥ · · · ≥ kg. Till the end of this paragraph, all group schemes are

considered over Spec Qp. For any κ ∈ X+(T), we set

Vκ =
¶
f : GLg → A1 morphism of schemes s.t.

f(gb) = κ(b)f(g) ∀(g, b) ∈ GLg × B
©
.

This is a finite-dimensional Qp-vector space. The group GLg acts on Vκ by the

formula
Ä
g · f
ä
(x) = f(g−1 · x) for any (g, f) ∈ GLg × Vκ. If L is an extension

of Qp, we set Vκ,L = Vκ ⊗Qp L.

2.2. The weight space. Let W be the rigid analytic space over Qp associ-

ated to the noetherian, complete algebra Zp[[T(Zp)]]; recall that T is the split

torus of diagonal matrices in GLg. Let us fix an isomorphism T ' Gg
m. We
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obtain an isomorphism T(Zp)→̃T(Z/pZ) × (1 + pZp)g, which implies that we

have natural isomorphisms as Zp-algebras

Zp[[T(Zp)]]−̃→
Ä
Zp[T(Z/pZ)]

ä
[[(1+pZp)g]]−̃→

Ä
Zp[T(Z/pZ)]

ä
[[X1, X2, . . . , Xg]],

where the second isomorphism is obtained by sending (1, 1, . . . , 1 + p, 1..., 1)

with 1 + p on the i-th component for 1 ≤ i ≤ g, to 1 +Xi.

It follows that the Cp-points of W are described by

W(Cp) = Homcont(T(Zp),C×p ),

and if we denote by Ÿ�T(Z/pZ) the character group of T(Z/pZ), the weight

space is isomorphic to a disjoint union, indexed by the elements of Ÿ�T(Z/pZ),

of g-dimensional open unit polydiscs.

More precisely, we have the following explicit isomorphism:

W→̃Ÿ�T(Z/pZ)×
g∏
i=1

B(1, 1−)

κ 7→
Ä
κ|T(Z/pZ), κ((1 + p, 1, . . . , 1)), κ((1, 1 + p, . . . , 1)), . . .

. . . , κ((1, . . . , 1, 1 + p))
ä
.

The inverse of the above map is defined as follows: (χ, s1, · · · , sg) ∈Ÿ�T(Z/pZ)×∏g
i=1B(1, 1−) is assigned to the character which maps (λ, x1, · · · , xg)

∈ T(Z/pZ)× (1 + pZp)g to

χ(λ)
g∏
i=1

s
log(xi)

log(1+p)

i .

The universal character. If we denote by OW the sheaf of rigid analytic

functions onW, we have a natural continuous group homomorphism, obtained

as the composition

κun : T(Zp) −→
Ä
Zp[[T(Zp)]]

ä× −→ OW(W)×,

where the first map is the tautological one. We call κun the universal character.

It can alternatively be seen as a pairing κun :W(Cp)×T(Zp) −→ C×p satisfying

the property: for every t ∈ T(Zp), κ ∈ W(Cp), we have κun(t)(κ) = κ(t). If

U = Spm A ⊂ W is an admissible affinoid open, we obtain a universal character

for U , T(Zp)→ A× that is the composition of κun with the natural restriction

homomorphism OW(W)× → A×. This character will be also denoted by κun,

and it may be seen as an A-valued weight, i.e., κun ∈ W(A).

Definition 2.2.1. Let w ∈ Q>0. We say that a character κ ∈ W(Cp) is

w-analytic if κ extends to an analytic map

κ : T(Zp)(1 + pwOCp)
g → C×p .
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It follows from the classical p-adic properties of the exponential and the

logarithm that any character κ is w-analytic for some w > 0. In fact, we have

the following proposition.

Proposition 2.2.2 ([Urb11, Lemma 3.4.6]). For any quasi-compact open

subset U ⊂ W , there exists wU ∈ R>0 such that the universal character

κun : U × T(Zp)→ C×p extends to an analytic function

κun : U × T(Zp)(1 + pwUOCp)
g → C×p .

In what follows we construct an admissible affinoid covering ∪w>0W(w)

of the weight space W with the property that for every w, the restriction of

the universal character κun to W(w) is w-analytic.

We start by fixing w ∈]n − 1, n] ∩ Q, and we choose a finite extension K

of Qp whose ring of integers, denoted OK contains an element pw of valuation

w. We set W(w)o = Spf OK〈〈S1, . . . , Sg〉〉; it is a formal unit polydisc over

Spf OK . The formal scheme W(w)o does not depend on w, but the character

it carries will depend on w.

We let T be the formal torus associated to T and define the formal sub-

torus Tw by

Tw(R) = Ker T(R)→ T(R/pwR)

for any flat, p-adically complete OK-algebra R.

We let X ′1, . . . , X
′
g be the coordinates on Tw (so that 1 +Xi = 1 + pwX ′i),

and we attach to W(w)o a formal universal character

κoun : Tw ×W(w)o→ “Gm

(1 + pwX ′1, . . . , 1 + pwX ′g, S1, . . . , Sg) 7→
g∏
i=1

(1 + pwX ′i)
Sip
−w+ 2

p−1
.

Let W(w)o be the rigid analytic generic fiber of W(w)o. We define W(w)

to be the fiber product:

W ×
Homcont

Ä
(1+pnZp)g ,C×p

äW(w)o,

where the maps used to define the fiber product are the following: W −→
Homcont

Ä
(1 + pnZp)g,C×p

ä
is restriction and the map

W(w)o −→ Homcont

Ä
(1 + pnZp)g,C×p

ä
is given by

(s1, s2, . . . , sg)−→
(
(1+pnx1, 1+pnx2, . . . , 1+pnxg)−→

g∏
i=1

(1+pnxi)
sip
−w+ 2

p−1
)
.

ThenW = ∪w>0W(w) is an increasing cover by affinoids. By construction,

the restriction of the universal character κun of W to W(w) is w-analytic.
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2.3. Analytic representations. Let I be the Iwahori subgroup of GLg(Zp)
of matrices whose reduction modulo p is upper triangular. Let N0 be the

subgroup of U0(Zp) of matrices that reduce to the identity modulo p. The

Iwahori decomposition is an isomorphism B(Zp)× N0 → I. We freely identify

N0 with (pZp)
g(g−1)

2 ⊂ A
g(g−1)

2
an , where Aan denotes the rigid analytic affine line

defined over Qp. For ε > 0, we let N0
ε be the rigid analytic space⋃

x∈(pZp)
g(g−1)

2

B(x, p−ε) ⊂ A
g(g−1)

2
an .

Let L be an extension of Qp and F(N0, L) the ring of L-valued functions on

N0. We say that a function f ∈ F(N0, L) is ε-analytic if it is the restriction to

N0 of a necessarily unique analytic function on N0
ε. We denote by Fε-an(N0, L)

the set of ε-analytic functions. A function is analytic if it is 1-analytic. We

simply denote by Fan(N0, L) the set of analytic functions. We let F l-an(N0, L)

be the set of locally analytic functions on N0, i.e., the direct limit of the sets

Fε-an(N0, L) for all ε > 0.

Let ε > 0 and κ ∈ W(L) be an ε-analytic character. We set

V ε-an
κ,L =

¶
f : I→ L, f(ib) = κ(b)f(i) ∀(i, b) ∈ I× B(Zp), f |N0 ∈ Fε-an(N0, L)

©
.

We similarly define V an
κ,L and V l-an

κ,L . They are all representations of the Iwahori

group I.

2.4. The BGG resolution. Let W be the Weyl group of GLg; it acts on

X(T). We set g and t for the Lie algebras of GLg and T. The choice of

B determines a system of simple positive roots ∆ ⊂ X(T). To any α ∈ ∆

are associated an element Hα ∈ t, elements Xα ∈ gα and X−α ∈ g−α such

that [Xα, X−α] = Hα and a co-root α∨. We let sα ∈ W be the symmetry

λ 7→ λ−〈λ, α∨〉α. For any w ∈W and λ ∈ X(T), we set w •λ = w(λ+ ρ)− ρ,

where ρ is half the sum of the positive roots. By the main result of [Jon11],

for all κ ∈ X+(T), and any field extension L of Qp, we have an exact sequence

of I-representations:

0 −→ Vκ,L
d0−→ V an

κ,L
d1−→

⊕
α∈∆

V an
sα•κ,L.(2.4.A)

Let us make explicit the differentials. The map d0 is the natural inclusion,

the map d1 is the sum of maps Θα : V an
κ,L → V an

sα•κ,L whose definitions we

now recall. We let I act on the space of analytic functions on I by the formula

(i?f)(j) = f(j ·i) for any analytic function f and i, j ∈ I. By differentiating we

obtain an action of g and hence of the enveloping algebra U(g) on the space of

analytic functions on I. If f ∈ V an
κ,L, we set Θα(f) = X

〈κ,α∨〉+1
−α ?f . We now show

that Θα(f) ∈ V an
sα•κ,L. First of all let us check that Θα(f) is U(Zp)-invariant.
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It will be enough to prove that Xβ ? Θα(f) = 0 for all β ∈ ∆. If β 6= α, this

follows easily for [Xβ, X−α] = 0. If β = α, we have to use the relation

[Xα, X
〈κ,α∨〉
−α ] = (〈κ, α∨〉+ 1)X−α(Hα − 〈κ, α∨〉).

We now have

Xα ?Θα(f) = [Xα, X
〈κ,α∨〉+1
−α ] ? f

= (〈κ, α∨〉+ 1)X−α(Hα − 〈κ, α∨〉) ? f
= 0.

Let us find the weight of Θα(f). For any t ∈ T(Qp), we have

t ?Θα(f) = Ad(t)(X
〈κ,α∨〉+1
−α )t ? f

=α−〈κ,α
∨〉−1(t)κ(t)Θα(f).

Since we have α−〈κ,α
∨〉−1κ = sα • κ, the map Θα is well defined.

2.5. A classicity criterion. For 1 ≤ i ≤ g − 1, we set di =
(
p−11g−i 0

0 1i

)
∈

GLg(Qp). The adjoint action of di on GLg/Qp stabilizes the Borel subgroup B.

The formula (δi · f)(g) := f(digd
−1
i ) defines an action on the space Vκ for any

κ ∈ X+(T). We now define the action on the spaces V ε-an
κ,L for any κ ∈ W(L).

We have a well-defined adjoint action of di on the group N0. Let f ∈ V ε-an
κ

and j ∈ I. Let j = n · b be the Iwahori decomposition of j. We set δif(j) :=

f(dind
−1
i b). We hence get operators δi on V ε-an

κ,L and V l-an
κ,L . Let zk,l be the (k, l)-

matrix coefficient on GLg. If we use the isomorphism V ε-an
κ,L → Fε-an(N0, L)

given by the restriction of functions to N0, then the operator δi is given by

δi : Fε-an(N0, L)→Fε-an(N0, L)

f 7→ [(zk,l)k<l 7→ f(pnk,lzk,l)],

where nk,l = 1 if k ≥ g − i + 1 and l ≤ g − i and nk,l = 0 otherwise. The

operator δi is norm decreasing and the operator
∏
i δi on V ε-an

κ is completely

continuous.

If κ ∈ X(T)+, the map d0 in the exact sequence (2.4.A) is δi-equivariant.

Regarding the map d1, we have the following variance formula:

δiΘα = α(di)
〈κ,α∨〉+1Θαδi.

Indeed for any f ∈ V ε-an
κ,L , we have

δiΘα(f) = di · (d−1
i X

〈κ,α∨〉+1
−α ? f)

=α(di)
〈κ,α∨〉+1di · (X〈κ,α

∨〉+1
−α d−1

i ? f)

=α(di)
〈κ,α∨〉+1Θα(δif).

Let v = (v1, . . . , vg−1) ∈ Rg−1. We let V
l−an,<v
κ be the union of the generalized

eigenspaces where δi acts by eigenvalues of valuation strictly smaller than vi.

We are now able to give the classicity criterion.
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Proposition 2.5.1. Let κ = (k1, . . . , kg) ∈ X+(T). Set vg−i = ki −
ki+1 + 1 for 1 ≤ i ≤ g − 1. Then any element f ∈ V l−an,<v

κ,L is in Vκ,L.

Proof. One easily checks that any element f ∈ V
l−an,<v
κ,L is actually an-

alytic because the operators δi increase the radius of analyticity. Using the

exact sequence (2.4.A), we need to see that d1.f = 0. Let α be the simple

positive root given by the character (t1, . . . , tg) 7→ ti.t
−1
i+1. Since δg−iΘα(f) =

pki+1−ki−1Θαδg−i(f), we see that Θα(f) is a generalized eigenvector for δg−i
for eigenvalues of negative valuation. But the norm of δg−i is less than 1, so

Θα(f) has to be zero. �

3. Canonical subgroups over complete discrete valuation rings

3.1. Existence of canonical subgroups. Let p > 2 be a prime integer and

K a complete valued extension of Qp for a valuation v : K → R ∪ {∞} such

that v(p) = 1. Let K̄ be an algebraic closure of K. We denote by OK the ring

of elements of K having nonnegative valuation and set v : OK/pOK → [0, 1]

to be the truncated valuation defined as follows. If x ∈ OK/pOK and x̂

is a (any) lift of x in OK , set v(x) = inf{v(x̂), 1}. For any w ∈ v(OK),

we set m(w) = {x ∈ K, v(x) ≥ w} and OK,w = OK/m(w). If M is an

OK-module, then Mw denotes M ⊗OK OK,w. If M is a torsion OK-module of

finite presentation, there is an integer r such that M ' ⊕r
i=1OK,ai for real

numbers ai ∈ v(OK). We set degM =
∑
i v(ai).

Let H be a group scheme over OK , and let ωH denote the co-normal sheaf

along the unit section of H. If H is a finite flat group scheme, ωH is a torsion

OK-module of finite presentation and the degree of H, denoted degH, is by

definition the degree of ωH . (See [Far10], where the degree is used to define

the Harder-Narasimhan filtration of finite flat group schemes.)

Let G be a Barsotti-Tate group over Spec OK of dimension g. (For exam-

ple, the Barsotti-Tate group associated to an abelian scheme of dimension g.)

Consider the OK,1-module Lie G[p]. We denote by σ the Frobenius endomor-

phism of OK,1. The module Lie G[p] is equipped with a σ-linear Frobenius

endomorphism whose determinant, called the Hasse invariant of G, is denoted

Ha(G). The Hodge height of G, denoted Hdg(G), is the truncated valuation

of Ha(G).

Canonical subgroups have been constructed by Abbes and Mokrane, An-

dreatta and Gasbarri, Tian, and Fargues. In the sequel we quote mostly results

of Fargues.

Theorem 3.1.1 ([Far11, Thm. 6]). Let n ∈ N. Assume that Hdg(G) <
1

2pn−1 (resp. 1
3pn−1 if p = 3). Then the n-th step of the Harder-Narasimhan

filtration of G[pn], denoted Hn, is called the canonical subgroup of level n of

G. It enjoys the following properties :
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(1) Hn(K̄) ' (Z/pnZ)g .

(2) degHn = ng − pn−1
p−1 Hdg(G).

(3) For any 1 ≤ k ≤ n, Hn[pk] is the canonical subgroup of level k of G.

(4) In G|Spec OK,1−Hdg(G)
we have that H1|Spec OK,1−Hdg(G)

is the kernel of

Frobenius.

(5) For any 1 ≤ k < n, Hdg(G/Hk) = pkHdg(G) and Hn/Hk is the canon-

ical subgroup of level n− k of G/Hk.

(6) Let GD be the dual Barsotti-Tate group of G. Denote by H⊥n the anni-

hilator of Hn under the natural pairing G[pn] × GD[pn] → µpn . Then

Hdg(GD) = Hdg(G) and H⊥n is the canonical subgroup of level n of GD.

The theorem states, in particular, that if the Hodge height of G is small,

there is a (canonical) subgroup of high degree and rank g inside G[p]. The

converse is also true.

Proposition 3.1.2. Let H ↪→ G[p] be a finite flat subgroup scheme of

G[p] of rank g. The following are equivalent :

(1) degH > g − 1
2 if p 6= 3 or degH > g − 1

3 if p = 3;

(2) Hdg(G) < 1
2 if p 6= 3 or Hdg(G) < 1

3 if p = 3, and H is the canonical

subgroup of level 1 of G.

Proof. In view of Theorem 3.1.1, we only need to show that the first point

implies the second. Set v = g − degH. It is enough to prove that v < 1
2 if

p 6= 3 or v < 1
3 if p = 3 implies that Hdg(G) ≤ v. Indeed, by Theorem 3.1.1,

G will admit a canonical subgroup of level 1, which is a step of the Harder-

Narasimhan filtration of G[p]. On the other hand, Proposition 15 of [Far11]

shows that H is a step of the Harder-Narasimhan filtration of G[p]. It follows

that H is the canonical subgroup of level 1 of G.

Let H̄ and Ḡ[p] denote the restrictions of H and G[p] to Spec OK,1. Note

that there are canonical identifications ωḠ[p] ' ωG[p] ' ωG/pωG and ωH ' ωH̄ .

We use the superscripts (p) to denote base change by the Frobenius map

σ : OK,1 → OK,1. We have a functorial Vershiebung morphism V : H̄(p) → H̄

and V : Ḡ[p](p) → Ḡ[p]. Taking the induced map on the co-normal sheaves we

obtain the following commutative diagram with exact rows:

0 // ωḠ[p]/H̄
//

V ∗

��

ωḠ[p]

φ //

V ∗

��

ωH̄
//

V ∗

��

0

ω
(p)

Ḡ[p]/H̄
// ω

(p)

Ḡ[p]

φ⊗1 // ω
(p)

H̄
// 0.
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We have an isomorphism OgK,1 ' ωG[p] and Kerφ ⊂ p1−vωG[p] since

degG[p]/H = v by [Far10, Lemma 4]. As a result, there is a surjective map

ωH̄ → O
g
K,1−v. We thus obtain a surjective map ω

(p)

H̄
= ωH̄ ⊗OK,1,σ OK,1 →

OgK,1−v ⊗OK,1,σ OK,1 ' O
g
K,1. The map φ ⊗ 1: ω

(p)

Ḡ[p]
→ ω

(p)

H̄
is a surjective

map between two finite OK,1-modules that are isomorphic, so it is an isomor-

phism. As Hdg(G) can also be computed as the truncated valuation of the

determinant of V ∗ on ω
(p)

Ḡ[p]
, we conclude that Hdg(G) = deg(ω

(p)

Ḡ[p]
/V ∗ωḠ[p]) =

deg(ω
(p)

H̄
/V ∗ωH̄). We are thus reduced to compute the map V ∗ at the level of

the group H̄.

After possibly extending K, we can find an increasing filtration of HK

by finite flat subgroups {FiliHK}0≤i≤g where FiliHK has rank pi. Taking

schematic closures we obtain an increasing filtration of H by finite flat sub-

groups {FiliH}0≤i≤g where FiliH has rank pi. We set GrkH = FilkH/Filk−1H.

This is a finite flat group scheme of order p for every k. We let {FiliH̄}0≤i≤g be

the filtration of H̄ obtained via base change to Spec OK,1 and {FiliH̄
(p)}0≤i≤g

be the filtration of H̄(p) induced by pullback under σ. We obtain a decreasing

filtration on the differentials by setting FiliωH̄ = Ker(ωH̄ → ωFiliH̄
). Tak-

ing differentials in the exact sequence 0 → Filk−1H → FilkH → GrkH → 0

provides an isomorphism GrkωH̄ := Filk−1ωH̄/FilkωH̄ ' ωGrkH̄
. Similarly,

we set Filiω
(p)

H̄
= Ker(ω

(p)

H̄
→ ω

(p)

FiliH̄
) and there is a surjective map ω

(p)

GrkH̄
→

Grk(ω
(p)

H̄
). But as before, it is easy to see that both modules are isomorphic

to OK,1 and this map is an isomorphism.

The map V ∗ respects these filtrations, and a straightforward calculation

using Oort-Tate theory shows that deg(ω
(p)

GrkH̄
/V ∗ωGrkH̄) = 1 − deg(GrkH).

Hence, deg(ω
(p)

H̄
/V ∗ωH̄) ≤ ∑

k deg Grkω
(p)

H̄
/V ∗GrkωH̄ = g − ∑k deg(GrkH).

Since
∑
k deg(GrkH) = degH, we conclude that Hdg(G) = deg(ω

(p)

H̄
/V ∗ωH̄) ≤

g − degH = v as claimed. �

3.2. The Hodge-Tate maps for Hn and G[pn]. In this section we work

under the hypothesis of Theorem 3.1.1; i.e., let us recall that G was a Barsotti-

Tate group of dimension g such that v := Hdg(G) < 1
2pn−1 (resp. 1

3pn−1 if p = 3)

and we denoted by Hn ⊂ G[pn] its level n canonical subgroup. We now define

the Hodge-Tate map for HD
n (viewed as a map of abelian sheaves on the fppf-

topology),

HTHD
n

: HD
n → ωHn ,

by sending an S-valued point x ∈ HD
n (S), i.e., a homomorphism of S-group

schemes x : Hn,S → µpn,S , to the pullback x∗(dt/t) ∈ ωHn(S) of the invariant

differential dt/t of µpn,S . (See [Mes72, p. 117] for a more complete discussion.)
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Following the conventions of Section 3.1 we write ωG[pn],w, resp. ωHn,w for

ωG[pn] ⊗OK OK,w, resp. ωHn ⊗OK OK,w.

Proposition 3.2.1.

(1) The differential of the inclusion Hn ↪→ G[pn] induces an isomorphism

ω
G[pn],n−v p

n−1
p−1

∼−→ ω
Hn,n−v p

n−1
p−1

.

(2) The linearized Hodge-Tate map

HTHD
n
⊗ 1: HD

n (K̄)⊗Z OK̄ → ωHn ⊗OK OK̄
has cokernel of degree v

p−1 .

Proof. We have an exact sequence

0→ Hn → G[pn]→ G[pn]/Hn → 0

that induces an exact sequence

0→ ωG[pn]/Hn → ωG[pn] → ωHn → 0.

We know that ωG[pn] ' O
g
K,n and that degG[pn]/Hn = pn−1

p−1 v, so the first

claim follows.

There is a commutative diagram

HD
n (K̄)⊗Z OK̄

HT
HDn
⊗1
//

��

ωHn ⊗OK OK̄

��
HD

1 (K̄)⊗Z OK̄
HT

HD
1
⊗1

// ωH1 ⊗OK OK̄ .

We know by the proof of Theorem 4 of [Far11] that HTHD
1
⊗ 1 has cokernel of

degree v
p−1 . The same holds for the Hodge-Tate map HTHD

n
⊗ 1. �

Although the results of Proposition 3.2.1 are all that we need for later

use, we would like to go further and analyze the Hodge-Tate map for the

group G[pn]:

HTn : G[pn](OK̄)→ ωGD[pn] ⊗OK OK̄ .
The following result is implicit in [Far11]. (See also [AG07, §13.2] when n = 1.)

Proposition 3.2.2. We use the notation of Proposition 3.2.1. Assume

that v < p−1
p(pn−1) . Then the following natural sequence is exact :

0→ Hn(K̄)→ G[pn](K̄)
HTG[pn]→ ωGD[pn] ⊗OK OK̄ .

Furthermore, the cokernel of the map HTG[pn] ⊗ 1: G[pn](K̄) ⊗Z OK̄ →
ωGD[pn] ⊗OK OK̄ is of degree v

p−1 .
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Proof. An easy calculation using Oort-Tate theory shows that for any

group scheme H → Spec OK̄ of order p and degree at least 1− 1
p , the Hodge-

Tate map HTH : H(K̄)→ ωHD is zero. By hypothesis we have degHn ≥ ng− 1
p ,

and we can thus filter Hn by group schemes such that each graded quotient

is of order p and has degree at least 1 − 1
p . A straightforward dévissage now

proves that the map HTHn : Hn(K̄) → ωHD
n
⊗OK OK̄ is zero and so the map

HTG[pn] : Hn(K̄) → ωGD[pn] is also zero. The rest of the proposition follows

from the proof of Theorem 4 of [Far11] as in Proposition 3.2.1. �

Applying this proposition to GD and using the fact that H⊥n is the canon-

ical subgroup of GD, we obtain a map

ĤT: HD
n (K̄)→ ωG[pn] ⊗OK OK̄ ,

which is a lift of the map HTHD
n

.

Remark 3.2.3. There is a rationality issue with the map ĤT. If K ′ is the

finite extension of K fixed by an open subgroup Γ of Gal(K̄/K), we obtain an

induced map,

ĤT: HD
n (K ′)→ (ωG[pn] ⊗OK OK̄)Γ.

There is an injection ωG[pn] ⊗OK OK′ ↪→ (ωG[pn] ⊗OK OK̄)Γ that may be

strict, and there is no reason for ĤT(HD
n (K ′)) to lie in ωG[pn]⊗OK OK′ . But if

we reduce modulo p
n−v p

n−1
p−1 , then ĤT coincides with HTHD

n
in ω

G[pn],n−v p
n−1
p−1

=

ω
Hn,n−v p

n−1
p−1

.

3.3. Canonical subgroups for semi-abelian schemes. We will need to apply

the results of the last section in the setting of semi-abelian schemes. Let S be

a noetherian scheme and U a dense open subset. We will use the notions of

1-motives over U and Mumford 1-motives over U ↪→ S as follows.

Definition 3.3.1 ([Del74, Def. 10.1.1], [Str10, Def. 1.3.1]). A 1-motive over

U is a complex of fppf abelian sheaves [Y → G̃] concentrated in degree −1 and

0, where

(1) G̃→ U is a semi-abelian scheme that is an extension

0→ T → G̃→ A→ 0

with T a torus and A an abelian scheme;

(2) Y → U is an isotrivial sheaf.

A Mumford 1-motive over U ↪→ S is the data of

(1) A semi-abelian scheme G̃→ S that is an extension

0→ T → G̃→ A→ 0

with T a torus over S and A an abelian scheme over S,
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(2) Y → S an isotrivial sheaf,

(3) [YU → G̃U ] a 1-motive over U .

Given M = [Y → G̃] a 1-motive over U and an integer n, we define the

n-torsion of M as the H−1 of the cone of the multiplication by n map M →M .

It comes with a filtration Fil•. The group G̃ is an extension 0 → T → G̃ →
A→ 0, and Fil0 = T [n], Fil1 = G̃[n], Fil2 = M [n].

Assume that S = Spec OK and that U = Spec K. We say that a Mumford

1-motive M = [Y → G̃] over U ↪→ S has a canonical subgroup of level n if G̃

has a canonical subgroup of level n.

4. Canonical subgroups in families and applications

4.1. Families of canonical subgroups. We start by introducing some cate-

gories of OK-algebras. We let Adm be the category of admissible OK-algebras,

by which we mean flat OK-algebras that are quotients of rings of restricted

power series OK〈X1, . . . , Xr〉 for some r ≥ 0. We let NAdm be the category

of normal admissible OK-algebras.

Let R be an object of Adm. We have a supremum semi-norm on R[1/p]

denoted by | |. If R is in NAdm, then | | is a norm and the unit ball for this

norm is precisely R.

For any object R in Adm, we let R−Adm be the category of R-algebras

that are admissible as OK-algebras. We define similarly R−NAdm.

If w ∈ v(OK), we set Rw = R⊗OK OK,w as before. For any R-module M ,

Mw means M ⊗R Rw.

Till the end of this section we fix an object R of NAdm. We set S =

Spec R, and Srig is the rigid analytic space associated to R[1
p ]. We will study

the p-adic properties of certain semi-abelian schemes over S and their canonical

subgroups. We make the following assumptions.

Let U be a dense open subscheme of S and G a semi-abelian scheme over S

such that G|U is abelian. We assume that there exist G̃, a semi-abelian scheme

over S with constant toric rank, Y an isotrivial sheaf over S and M = [Y → G̃]

a Mumford 1-motive over U ↪→ S such that M [pn] ' G[pn] over U and that

G̃[pn] ↪→ G[pn]. For x ∈ Srig, we write Hdg(x) for Hdg
Ä
G̃x[p∞]

ä
.

Remark 4.1.1. The group G[pn] is not finite flat in general (unless G has

constant toric rank over S), but under the hypothesis above it has a finite flat

subgroup G̃[pn], which we use as a good substitute.

Remark 4.1.2. In our applications R will come from the p-adic completion

of an étale affine open subset of the toroidal compactification of the Siegel

variety. If this open subset does not meet the boundary, then the semi-abelian

scheme G will be abelian and the situation is simple. On the other hand, we
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can cover the boundary by étale affine open subsets such that G comes by

approximation from a semi-abelian scheme constructed out of a 1-motive M

(by Mumford’s construction). In the approximation process it is possible to

preserve the pn-torsion of M as explained in [Str10, §2.3].

Using the previous notation and assumptions on S and G, we now make

further assumptions on the Hodge height. Let v < 1
2pn−1 (resp. v < 1

3pn−1

if p = 3) such that for any x ∈ Srig, Hdg(x) < v. For any point x ∈ Srig,

G has a canonical subgroup of order n. By the properties of the Harder-

Narasimhan filtration there is a finite flat subgroup Hn,K ⊂ G|Srig interpolating

the canonical subgroups of level n for all the points x ∈ Srig.

Proposition 4.1.3. The canonical subgroup extends to a finite flat sub-

group scheme Hn ↪→ G[pn] over S.

Proof. We first assume n = 1. Let Gr → S = Spec R be the proper

scheme that parametrizes all finite flat subgroups of G̃[p] of rank pg over S.

We have a section s : SK → GrK given by the canonical subgroup. Let T be

the schematic closure of s(SK) in Gr. The map T → S is proper. We let

H → T be the universal subgroup. We first show that T → S is finite. Let k

be the residue field of OK . It is enough to prove that for all x ∈ Tk, Hx is the

kernel of the Frobenius morphism; indeed, this will imply that T → S is quasi-

finite, hence finite. So let x ∈ Tk, and let x1  x2  · · ·  x be a sequence

of immediate specializations of maximal length. Clearly, x1 ∈ TK since T is

the closure of its generic fiber. So let xj and xj+1 be such that xj ∈ TK and

xj+1 ∈ Tk. Let V be the closure of xj in T , V ′ be the localization of V at

xj+1 and V ′′ be the normalization of V ′. Then V ′′ is a discrete valuation ring

of mixed characteristic. So HV ′′ is generically the canonical subgroup, and by

the general theory over discrete valuation rings (see Theorem 3.1.1), Hxk is

the kernel of Frobenius. As a result Hx is the kernel of Frobenius as well. Now

set T = Spec B. By construction B is torsion free, and hence it is flat, as

OK-module. Furthermore, it is a finite R-module and RK = BK . Since R is

normal, B = R.

By induction, we assume that the proposition is known for n − 1 and

prove it for n ≥ 2. We define Hn by the cartesian square (where Hn/H1 is the

canonical subgroup of level n− 1 for G̃[pn]/H1 by Theorem 3.1.1):

Hn
//

��

G̃[pn]

��

Hn/H1
// G̃[pn]/H1;

all vertical maps are finite flat. Since Hn/H1 is finite flat over S, we are

done. �
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4.2. The Hodge-Tate map in families. In this paragraph we investigate

the properties of the map of fppf abelian sheaves HTHD
n

: HD
n → ωHn . We

work using the notation and assumptions of Section 4.1.

Proposition 4.2.1. Let w ∈ v(OK), with w < n−v p
n−1
p−1 . The morphism

of coherent sheaves ωG → ωHn induces an isomorphism ωG,w → ωHn,w.

Proof. Possibly after replacing R with an open affine formal covering,

we may assume that ωG is a free R-module. Fix an isomorphism ωG ∼= Rg.

Consider the surjective map α : Rg ∼= ωG → ωHn,w given by the inclusion

Hn ⊂ G. It suffices to show that any element (x1, . . . , xg) ∈ Ker(α) satisfies

xi ∈ pwR for every i = 1, . . . , g. As R is normal, it suffices to show that for

every codimension-1 prime ideal P of R containing (p), we have xi ∈ pwRP

or equivalently xi ∈ pw“RP. Here, RP is a discrete valuation ring of mixed

characteristic and “RP is its p-adic completion. We are then reduced to prove

the claim over a complete discrete valuation ring and this is the content of

Proposition 3.2.1. �

Proposition 4.2.2. Assume that HD
n (R) ' (Z/pnZ)g . The cokernel of

the map

HTHD
n
⊗ 1: HD

n (R)⊗Z R→ ωHn

is killed by p
v
p−1 .

Proof. Possibly after localization on R, we may assume that ωG is a free

R-module of rank g. We have a surjection Rg ' ωG → ωHn . If we fix a

basis of HD
n (R), we also have a surjection Rg → HD

n (R) ⊗Z R ' Rgn. In

these presentations, the map HTHD
n
⊗ 1 is given by a matrix γ ∈ Mg(R). Let

d ∈ R be the determinant of the matrix γ. Then d annihilates the cokernel

of γ. It suffices to prove that p
v
p−1 ∈ dR. As R is normal, it suffices to prove

that p
v
p−1 ∈ dRP for every codimension-1 prime ideal P of R containing p. It

follows from Proposition 3.2.1 that p
v
p−1 ∈ dR

P,n−v p
n−1
p−1

. As v
p−1 < n− v p

n−1
p−1 ,

we conclude that p
v
p−1 ∈ dRP as wanted. �

4.3. The locally free sheaf F . We work in the hypothesis of Section 4.1;

i.e., let us recall that we have fixed R ∈ NAdm and a semi-abelian scheme G

over S := Spec(R) such that the restriction of G to a dense open subscheme

U of S is abelian. We also fix a rational number v such that v < 1
2pn−1

(resp. v < 1
3pn−1 if p = 3) with the property that for any x ∈ Srig, Hdg(x) < v.

Here Hdg(x) := Hdg
Ä
Gx[p∞]

ä
. Let Hn denote the canonical subgroup of G of

level n over S. From now on, we also assume that HD
n (R) ' (Z/pnZ)g. We

then have the following fundamental proposition.
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Proposition 4.3.1. There is a free subsheaf of R-modules F of ωG of

rank g containing p
v
p−1ωG that is equipped, for all w ∈]0, n−v pn

p−1 ], with a map

HTw : HD
n (R[1/p])→ F ⊗R Rw

deduced from HTHD
n

, which induces an isomorphism

HTw ⊗ 1: HD
n (R[1/p])⊗Z Rw → F ⊗R Rw.

Proof. Set w0 = n−v p
n−1
p−1 . Let x1, . . . , xg be a Z/pnZ-basis ofHD

n (R[1/p]).

Let H̃THD
n

(xi) be lifts to ωG of HTHD
n

(xi) ∈ ωHn . We set F to be the sub-

module of ωG generated by

{H̃THD
n

(x1), . . . , H̃THD
n

(xg)}.

This module is free of rank g. Indeed, let
∑g
i=1 λiH̃THD

n
(xi) = 0 be a nonzero

relation with coefficients in R. We may assume that there is an index i0
such that λi0 /∈ p

w0− v
p−1R. Projecting this relation in ωG,w0 = ωHn,w0 (see

Proposition 4.2.1), we contradict Proposition 4.2.2. By Proposition 4.2.2,

p
v
p−1ωG ⊂ F and the module F is independent of the choice of a particu-

lar lifts H̃THD
n

(xi). Let r : ωHn → ωG,w0 denote the projection. The map

HTHD
n
◦ r factors through F/F ∩ pw0ωG. For all w ∈]0, n − v pn

p−1 ], we have

F ∩pw0ωG ⊂ pwF . We can thus define HTw as the composite of HTHD
n
◦ r and

the projection F/F ∩pw0ωG → F/pwF . Finally, the last claim follows because

the map HTw ⊗ 1 is a surjective map between two free modules of rank g over

Rw and so has to be an isomorphism. �

Remark 4.3.2. The sheaf F is independent of n ≥ 1; it is functorial in

R, and it coincides with the sheaf constructed using p-adic Hodge theory in

[AIS10, Prop. 2.6], where it was denoted F0.

Remark 4.3.3. Let Ω be an algebraic closure of Frac(R). Let R̄ be the

inductive limit of all finite, étale R-algebras contained in Ω, and let ̂̄R denote its

p-adic completion. Assume that G is ordinary. Let H∞ ⊂ G be the canonical

subgroup of order “∞” and Tp(H
D
∞)(̂̄R) be the Tate module of its dual HD

∞.

We have an isomorphism

HTHD
∞
⊗ 1: Tp(H

D
∞)
Ä̂̄Rä⊗Z

̂̄R→ ωG ⊗R ̂̄R.
Proposition 4.3.1 is a good substitute for this isomorphism in the non ordinary

case.

4.4. Functoriality in G. We assume the hypothesis of Section 4.1. More-

over, we suppose that we have an isogeny φ : G → G′ over S, where G′ is a

second semi-abelian scheme over S satisfying the same assumptions as G; i.e.,

for all x ∈ Srig, Hdg(Gx),Hdg(G′x) ≤ v.
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By functoriality of the Harder-Narasimhan filtration the isogeny induces

a map φ : Hn → H ′n, where Hn and H ′n are the canonical subgroups of level n

of G and G′.

We assume further that HD
n (R[1/p]) ' (Z/pnZ)g and that H ′n

D(R[1/p]) '
(Z/pnZ)g. We let F and F ′ be the subsheaves of ωG and ωG′ constructed in

Proposition 4.3.1.

Proposition 4.4.1. Let w ∈]0, n−v pn

p−1 ]. The isogeny φ gives rise to the

diagram

ωG′
φ∗ // ωG

F ′ //

OO

��

F

OO

��
F ′/pwF ′ // F/pwF .

H ′n
D(R[1/p])

φD //

HTw

OO

HD
n (R[1/p])

HTw

OO

Proof. Set w0 = n − v p
n−1
p−1 . We check that φ∗(F ′) ⊂ F . Let ω ∈ ωG′

such that ω mod pw0 belongs to the R-span 〈HTw0(H ′n
D(R[1/p])〉. Then φ∗ω

mod pw0 belongs to the R-span 〈HTw0(φDH ′n
D(R[1/p])〉. The rest now follows

easily. �

4.5. The main construction. In this section we work in the hypothesis of

Section 4.1, and we make the further assumptions that v < 1
2pn−1 (resp. v <

1
3pn−1 if p = 3), that HD

n (R[1/p]) ' (Z/pnZ)g and that w ∈]0, n− v pn

p−1 ].

Let GRF → S be the Grassmannian parametrizing all flags Fil0F = 0 ⊂
Fil1F ⊂ · · · ⊂ FilgF = F of the free module F ; see [Kol96, §I.1.7] for the

construction. Let GR+
F be the T-torsor over GRF that parametrizes flags

Fil•F together with basis ωi of the graded pieces GriF .

We fix an isomorphism ψ : (Z/pnZ)g ' HD
n (R[1/p]) and call x1, . . . , xg the

Z/pnZ-basis of HD
n (R[1/p]) corresponding to the canonical basis of (Z/pnZ)g.

Out of ψ, we obtain a flag Filψ• = {0 ⊂ 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xg〉 =

HD
n (R[1/p])}. We also have a basis xi mod Filψi−1 of the graded piece Grψi .

Let R′ be an object in R−Adm. We say that an element Fil•F ⊗R R′ ∈
GRF (R′) is w-compatible with ψ if Fil•F ⊗R R′w = HTw(Filψ• )⊗Z R

′
w.

We say that an element (Fil•F ⊗R R′, {wi}) ∈ GR+
F (R′) is w-compatible

with ψ if Fil•F⊗RR′w = HTw(Filψ• )⊗ZR
′
w and wi mod pwF⊗RR′+Fili−1F⊗R

R′ = HTw(xi mod Filψi−1).
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We now define functors:

IWw : R−Adm→ SET

R′ 7→
¶
w − compatible Fil•F ⊗R R′ ∈ GRF (R′)},

IW+
w : R−Adm→ SET

R′ 7→
¶
w − compatible (Fil•F ⊗R R′, {wi}) ∈ GR+

F (R′)}.

These two functors are representable by affine formal schemes, which can

be described as follows. Let f1, . . . , fg be an R-basis of F lifting the vectors

HTw(x1), . . . ,HTw(xg).

The given basis identifies GRF with GLg/B× S and IWw with the set of

matrices à
1 0 . . . 0

pwB(0, 1) 1 . . . 0
...

...
. . .

...

pwB(0, 1) pwB(0, 1) . . . 1

í
×Spf OK Spf R,

where we have denoted by B(0, 1) = Spf OK〈X〉 the formal unit ball.

Similarly, the given basis identifies GR+
F with GLg/U× S and IW+

w with

the set of matricesà
1 + pwB(0, 1) 0 . . . 0

pwB(0, 1) 1 + pwB(0, 1) . . . 0
...

...
. . .

...

pwB(0, 1) pwB(0, 1) . . . 1 + pwB(0, 1)

í
×Spf OK Spf R.

We let T→ Spf OK be the formal completion of T along its special fiber.

Let Tw be the formal torus defined by

Tw(R′) = Ker
Ä
T(R′)→ T(R′/pwR′)

ä
for any object R′ ∈ Adm. The formal scheme IW+

w is a torsor over IWw

under Tw.

All these constructions are functorial in R. They do not depend on n but

only on w. We denote by IWw and IW+
w the rigid analytic generic fibers of

these formal schemes. They are admissible opens of the rigid spaces associated

to GRF and GR+
F respectively.

5. The overconvergent modular sheaves

5.1. Classical Siegel modular schemes and modular forms. We fix an in-

teger N ≥ 3 such that (p,N) = 1. Recall that K denotes a finite extension

of Qp, OK its ring of integers and k its residue field. The valuation v of K is

normalized such that v(p) = 1.
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The Siegel variety of prime to p level. Let Y be the moduli space of princi-

pally polarized abelian schemes (A, λ) of dimension g equipped with a principal

level N structure ψN over Spec OK . Let X be a toroidal compactification of

Y and G → X be the semi-abelian scheme extending the universal abelian

scheme (see [FC90]).

The Siegel variety of Iwahori level. Let YIw → Spec OK be the moduli

space parametrizing principally polarized abelian schemes (A, λ) of dimension

g, equipped with a level N structure ψN and an Iwahori structure at p: this

is the data of a full flag Fil•A[p] of the group A[p] satisfying Fil⊥• = Fil2g−•.

Let XIw be a toroidal compactification of this moduli space (see [Str10]). We

choose the polyhedral decompositions occurring in the constructions of X and

XIw in such a way that the forgetful map YIw → Y extends to a map XIw → X.

The classical modular sheaves. Let ωG be the co-normal sheaf ofG along its

unit section, T =HomX(Og
X , ωG) be the space of ωG and T ×=IsomX(Og

X , ωG)

be the GLg-torsor of trivializations of ωG. We define a left action GLg×T → T
by sending ω : Og

X → ωG to ω ◦ h−1 for any h ∈ GLg.

We define an automorphism κ 7→κ′ of X(T) by sending any κ=(k1, . . . , kg)

∈ X(T) to κ′ = (−kg,−kg−1, . . . ,−k1) ∈ X(T). This automorphism stabilizes

the dominant cone X+(T). Let π : T × → X be the projection. For any

κ ∈ X+(T), we let ωκ be the subsheaf of π∗OT × of κ′-equivariant functions for

the action of B (with GLg acting on the left on π∗OT × by f(ω) 7→ f(ωg) for

any section f of π∗OT × viewed as a function over the trivializations ω and any

g ∈ GLg). The global sections H0(X,ωκ) form the module of Siegel modular

forms of weight κ over X.

5.2. Application of the main construction : the sheaves ω†,κw . We denote

by X the formal scheme obtained by completing X along its special fiber Xk

and by Xrig the associated rigid space. We have a Hodge height function

Hdg : Xrig → [0, 1] (see Sections 3.1 and 4.1). Let v ∈ [0, 1]. We set X (v) =

{x ∈ Xrig, Hdg(x) ≤ v}; this is an open subset of Xrig. Let v ∈ v(OK).

Consider the blowup X̃(v) = ProjOX[X,Y ]/
Ä
HaX + pvY

ä
of X along the

ideal (Ha, pv). Let X(v) be the p-adic completion of the normalization of the

greatest open formal subscheme of X̃(v) where the ideal (Ha, pv) is generated

by Ha. This is a formal model of X (v).

Let n ∈ N>0 and v < 1
2pn−1 ∈ v(OK) (resp. v < 1

3pn−1 ∈ v(OK) if p = 3).

We have a canonical subgroup Hn of level n over X (v). Let X1(pn)(v) =

IsomX (v)((Z/pnZ)g, HD
n ) be the finite étale cover of X (v) parametrizing trivi-

alizations of HD
n . We let ψ be the universal trivialization over X1(pn)(v). Let

X1(pn)(v) be the normalization of X(v) in X1(pn)(v). The group GLg(Z/pnZ)

acts on X1(pn)(v). We let XIw(pn)(v) be the quotient X1(pn)(v)/B(Z/pnZ). It
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is also the normalization of X(v) in X1(pn)(v)/B(Z/pnZ). We also denote by

XIw+(pn)(v) the quotient X1(pn)(v)/U(Z/pnZ).

5.2.1. Modular properties. The formal schemes X1(pn)(v) and XIw(pn)(v)

have nice modular interpretations away from the boundary. Let Y1(pn)(v) and

YIw(pn)(v) be the open formal subschemes that are the complements of the

boundaries in X1(pn)(v) and XIw(pn)(v) respectively.

Proposition 5.2.1.1. For any object R ∈ NAdm,

(1) Y1(pn)(v)(R) is the set of isomorphism classes of quadruples (A, λ, ψN , ψ)

where (A → Spf R, λ) is a principally polarized formal abelian scheme of

dimension g such that for all rig-points x in R, we have Hdg
Ä
Ax[p∞]

ä
≤ v;

ψN is a principal level N structure; ψ : Z/pnZg → HD
n is a trivialization

of the dual canonical subgroup of level n over R[1/p].

(2) YIw(pn)(v)(R) is the set of isomorphism classes of quadruples (A,λ,ψN ,Fil•)

where (A → Spf R, λ) is a principally polarized formal abelian scheme of

dimension g such that for all rig-points x in R, we have Hdg
Ä
Ax[p∞]

ä
≤ v;

ψN is a principal level N structure; Fil• is a full flag of locally free Z/pnZ-

modules of the dual canonical subgroup of level n over R[1/p].

Proof. The proof is similar to the proof of [AIS14, Lemma 3.1]. �

5.2.2. The modular sheaves ω†,κw . Let w ∈ v(OK)∩]n− 1 + v
p−1 , n− v

pn

p−1 ].

By Proposition 4.3.1 there is a rank g locally free subsheaf F of ωG/X1(pn)(v).

It is equipped with an isomorphism

(HTw ◦ ψ)⊗ 1: (Z/pnZ)g ⊗Z OX1(pn)(v)/p
wOX1(pn)(v) ' F ⊗OK OK,w.

Remark 5.2.2.1. The hypothesis w ∈]n−1+ v
p−1 , n−v

pn

p−1 ] is motivated by

Proposition 5.3.1. This entire paragraph would make sense under the hypoth-

esis 0 < w < n − v pn

p−1 , but in this way we normalize n and our construction

only depends on κ, w and v. Remark that if w < n− 1− v p
n−1

p−1 , we could use

X1(pn−1)(v) as a base.

By Section 4.5 we have a chain of formal schemes:

IW+
w
π1→ IWw

π2→ X1(pn)(v)
π3→ XIw(pn)(v)

π4→ XIw(p)(v).

We recall that IWw parametrizes flags in the locally free sheaf F that are

w-compatible with ψ and that IW+
w parametrizes flags and bases of the graded

pieces that are w-compatible with ψ.

We recall that IW+
w is a torsor over IWw under the formal torus Tw. We

also have an action of the group B(Z/pnZ) on X1(pn)(v) over XIw(pn)(v). We

let Bw be the formal group defined by

Bw(R) = Ker
Ä
B(R)→ B(R/pwR)

ä
for all R ∈ Adm.
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There is a surjective map Bw → Tw with kernel the “unipotent radi-

cal” Uw. All these actions fit together in an action of B(Zp)Bw on IW+
w over

XIw(pn)(v). (The unipotent radical Uw acts trivially.)

The morphisms π1, π2, π3 and π4 are affine. Set π = π4 ◦ π3 ◦ π2 ◦ π1. Let

κ ∈ W(K) be a w-analytic character. The involution κ 7→ κ′ of X(T) extends

to an involution ofW, mapping w-analytic characters to w-analytic characters.

The character κ′ : T(Zp)→ O×K extends to a character κ′ : T(Zp)Tw → ĜmO×K
and to a character κ′ : B(Zp)Bw → Ĝm with U(Zp)Uw acting trivially.

We use the notion of formal Banach sheaf given in Definition A.1.1.1.

Proposition 5.2.2.2. The sheaf π∗OIW+
w

[κ′] is a formal Banach sheaf.

Proof. Let κo′ be the restriction of κ′ to Tw. Since the map π1 is a torsor

under the group Tw, the sheaf (π1)∗OIW+
w

[κo′] is an invertible sheaf. Since the

map π2 is affine, (π2◦π1)∗OIW+
w

[κo′] is a formal Banach sheaf. It remains to take

the pushforward by the finite map π4◦π3 and the invariants under T(Z/pnZ) for

the action twisted by κ as in the paragraph preceeding Proposition A.2.2.4. �

Definition 5.2.2.3. The formal Banach sheaf of w-analytic, v-overconver-

gent modular forms of weight κ is

w†κw = π∗OIW+
w

[κ′].

5.2.3. Integral overconvergent modular forms.

Definition 5.2.3.1. The space of integral w-analytic, v-overconvergent mod-

ular forms of genus g, weight κ, principal level N is

M†κw (XIw(p)(v)) = H0(XIw(p)(v),w†κw ).

An element f of the module

H0
Ä
YIw(p)(v),w†κw

ä
,

called weakly holomorphic modular form, is a rule that associates functorially

to a septuple
Ä
R,A, λ, ψN , ψ,Fil•FR, {ωi}

ää
an element

f
Ä
R,A, λ, ψN , ψ,Fil•FR, {ωi}

ää
∈ R.

Here R is an object in NAdm, the quadruple (A, λ, ψN , ψ) defines a point of

Y1(pn)(v)(R), Fil•FR is a w-compatible flag of FR and {ωi} is a w-compatible

basis of each GriFR.

Moreover this association satisfies the functional equation

f(R,A, λ, ψN , b.ψ,Fil•FR, b · {ωi}) = κ′(b)f(R,A, λ, ψN , ψ,Fil•FR, {wi})
for all b ∈ B(Zp)Bw(R).

5.2.4. Locally analytic overconvergent modular forms. Let κ ∈ W(K) and

v, w > 0. Suppose that κ is w-analytic. If there is n ∈ N satisfying v < 1
2pn−1

(resp. v < 1
3pn−1 if p = 3) and w ∈]n − 1 + v

p−1 , n − v pn

p−1 ], then we have

constructed a sheaf w†κw on XIw(v). As a result for all κ, if we take v > 0
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sufficiently small and w /∈ N big enough (so that κ is w-analytic), there is a

unique n ∈ N satisfying the conditions above, and so the modular sheaf w†κw
exists. Let κ, n, v, w satisfy all the required conditions for the existence of the

sheaf w†κw . Clearly, if v′ < v, then κ, n, v′, w also satisfy the conditions and the

sheaf w†κw on XIw(v′) is the restriction of the sheaf on XIw(v).

If κ is w-analytic, it is also w′ analytic for any w′ > w. Let n′ ∈ N and

v > 0 such that κ, n, v, w and κ, n′, v, w′ satisfy the conditions, so that we have

two sheaves w†κw and w†κw′ over XIw(v).

There is a natural inclusion

IW+
w′ ↪→ IW+

w ×X1(pn)(v) X1(pn
′
)(v),

which follows from the fact that w′-compatibility implies w-compatibility.

This induces a natural map w†κw → w†κw′ and thus a map M†κw (XIw(v)) →
M†κw′(XIw(v)). We are led to the following definition.

Definition 5.2.4.1. Let κ ∈ W. The space of integral locally analytic

overconvergent modular forms of weight κ and principal level N is the inductive

limit

M†κ(XIw(v)) = lim
v→0,w→∞

M†κw (XIw(p)(v)).

5.3. Rigid analytic interpretation. We let Tan, T ×an , GLg,an be the rigid

analytic spaces associated to the OK-schemes T , T × and GLg. We also let

T, T× and ‘GLg be the completions of T , T × and GLg along their special

fibers and Trig, T ×rig and GLg,rig be their rigid analytic fibers. We have actions

GLg,an×Tan → Tan, GLg,rig×Trig → Trig and ‘GLg×T→ T. When the context

is clear, we just write GLg instead of GLg,an, GLg,rig or ‘GLg. For example, we

have T ×rig/B = T ×an/B, because T ×/B is complete. Over T ×rig/B, we have the

following diagram:

T ×rig/U //

��

T ×an/U

{{
T ×rig/B,

where T ×rig/U is a torsor under Urig/Brig = Trig and T ×an/U is a torsor under

Uan/Ban = Tan.

We let IW+
w and IWw be the rigid spaces associated to IW+

w and IWw

respectively. We have a chain of rigid spaces

IW+
w → IWw → X1(pn)(v)→ XIw(p)(v).

The natural injection F ↪→ ωGX1(pn)(v) is an isomorphism on the rigid

fiber. More precisely, we can cover X1(pn)(v) by affine open formal schemes
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Spf R such that F and ωG are free R modules of rank g. We choose a ba-

sis for F compatible with ψ and a basis for ωG such that the inclusion is

given by an upper triangular matrix M ∈ Mg(R) with diagonal given by

diag(β1, . . . , βg) where βi ∈ R and v(
∏
i βi(x)) = 1

p−1Hdg(Gx) for all closed

points x of Spec R[1/p] (see Proposition 3.2.1).

We thus obtain an open immersion

IWw ↪→ T ×rig/BX1(pn)(v).

This immersion is locally isomorphic to the inclusion

M

à
1 0 · · · 0

pwB(0, 1) 1 · · · 0
...

...
. . . 0

pwB(0, 1) · · · pwB(0, 1) 1

í
↪→ (GLg)rig/B.

Similarly, we have an open immersion

IW+
w ↪→ T ×an/BX1(pn)(v)

that is locally isomorphic to the inclusion

M

à
1+pwB(0, 1) 0 · · · 0

pwB(0, 1) 1+pwB(0, 1) · · · 0
...

...
. . . 0

pwB(0, 1) · · · pwB(0, 1) 1+pwB(0, 1)

í
↪→(GLg)an/U.

Let XIw(pn)(v) = X1(pn)(v)/B(Z/pnZ) be the rigid space associated to

XIw(pn)(v), and let XIw+(pn)(v)=X1(pn)(v)/U(Z/pnZ). The map XIw+(pn)(v)

→ XIw(pn)(v) is an étale cover with group T(Z/pnZ). The action of B(Z/pnZ)

on X1(pn)(v) lifts to an action on the rigid space IWw → X1(pn)(v) since

the notion of w-compatibility of the flag only depends on ψ mod B(Z/pnZ).

Taking quotients we get a rigid space IWo
w → XIw(pn)(v). Similarly, the

action of U(Z/pnZ) on X1(pn)(v) lifts to an action on the rigid space IW+
w →

X1(pn)(v) since the notion of w-compatibility of the flag and the bases of the

graded pieces only depends on ψ mod U(Z/pnZ). Taking quotients we obtain

a rigid space IWo+
w → XIw+(pn)(v). From the open immersions above we get

open immersions

IWo
w ↪→ T ×rig/BXIw(pn)(v) and IWo+

w ↪→ T ×an/UXIw+ (pn)(v),

where BXIw(pn)(v) and UXIw+ (pn)(v) are the base changes of the algebraic groups

B and U to XIw+(pn)(v).

Proposition 5.3.1. Since w > n − 1 + v
p−1 , the compositions IWo

w ↪→
T ×rig/BXIw(pn)(v)→T ×rig/BXIw(p)(v) and IWo+

w ↪→T ×an/UXIw(pn)(v)→T ×an/UXIw(p)(v)

are open immersions.
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Proof. We can work étale locally over XIw(p)(v). Let S be a set of rep-

resentatives in the Iwahori subgroup I(Zp) ⊂ GLg(Zp) of I(Z/pnZ)/B(Z/pnZ).

Over a suitable open affinoid U of X1(pn)(v), the map

(IWo
w)|U → (T ×rig/BXIw(p)(v))|U

is isomorphic to the following projection:

h :
∐
γ∈S

M

à
1 0 · · · 0

pwB(0, 1) 1 · · · 0
...

...
. . . 0

pwB(0, 1) · · · pwB(0, 1) 1

í
.γ → (GLg)rig/B.

There is a matrix M ′ with integral coefficients such that M ′ ·M = p
v
p−1 Idg. It

is trivial to check that M ′ ◦ h is injective and so h is injective. The proof of

the second part of the proposition is similar. �

We have the following diagram:

T ×an/UXIw(p)(v)

��

IWo+
w

f1 //

g1

��

i1oo XIw+(pn)(v)

��
T ×rig/BXIw(p)(v)

''

IWo
w

f2 //

g2

��

i2oo XIw(pn)(v)

ww
XIw(p)(v).

The maps i1 and i2 are open immersions, and the maps f1 and f2 have

geometrically connected fibers. The torus T(Zp) acts on IWo+
w over IWo

w.

This action is compatible with the maps f1 and f2 and the action of T(Z/pnZ)

on XIw+(pn)(v) over XIw(pn)(v). It is also compatible with the maps i1 and i2
and the action of Tan on T ×an/UXIw(p)(v) over T ×rig/BXIw(p)(v).

Set g = g2◦g1. Let κ be a w-analytic character. Then ω†κw = g∗OIWo+
w

[κ′] is

the projective Banach sheaf of w-analytic, v-overconvergent weight κ modular

forms over XIw(p)(v). It is the Banach sheaf associated to the formal Banach

sheaf w†κw by Proposition A.2.2.4.

Remark 5.3.2. Let Tw be the rigid-analytic torus that is the rigid analytic

fiber of Tw. For example, we have Tw(Cp) = (1 + pwOCp)
g. The rigid space

IWo+
w is a T(Zp)Tw-torsor over IWo

w. By Lemma 2.1 of [Pil13], it makes no

difference in the definition of ω†κw to take κ′-equivariant functions for the action

of T(Zp) or of the bigger group T(Zp)Tw.
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Definition 5.3.3. Let κ ∈ W. The space of w-analytic, v-overconvergent

modular forms of weight κ is

M†κw (XIw(p)(v)) = H0(XIw(p)(v), ω†κw ).

The space of locally analytic overconvergent modular forms of weight κ is

M†κ(XIw(p)) = colimv→0,w→∞M†κw (XIw(p)(v)).

The space M†κw (XIw(p)(v)) is a Banach space for the norm induced by the

supremum norm on IWo+
w . Its unit ball is the space M†κw (XIw(p)(v)) of integral

forms.

Proposition 5.3.4. If κ ∈ X+(T), then there is a canonical restriction

map

ωκ|XIw(p)(v) ↪→ ω†κw

induced by the open immersion IWo+
w ↪→ Tan/UXIw(p)(v).

This map is locally isomorphic, in the étale topology, to the inclusion

Vκ′ ↪→ V w-an
κ′

of the algebraic induction into the analytic induction.

Corollary 5.3.5. For any κ ∈ X+(T), we have an inclusion

H0(XIw, ω
κ) ↪→ M†,κw (XIw(p)(v))

from the space of classical forms of weight κ into the space of w-analytic,

v-overconvergent modular forms of weight κ.

5.4. Overconvergent and p-adic modular forms. We compare the notion

p-adic modular forms introduced by Katz and used by Hida ([Hid02]) to con-

struct ordinary eigenvarieties to the notion of overconvergent locally analytic

modular forms. Let X1(p∞)(0) be the projective limit of the formal schemes

X1(pn)(0). It is a pro-étale cover of XIw(p)(0) with group the Iwahori sub-

group of GLg(Zp), denoted by I. In particular, we have an action of B(Zp) on

the space H0(X1(p∞)(0),OX1(p∞)(0)). Any character κ ∈ W can be seen as a

character of B(Zp), trivial on the unipotent radical.

Definition 5.4.1. Let κ ∈ W(K) be an OK-valued character of the group

T(Zp). The space of p-adic modular forms of weight κ is

M∞κ := H0(X1(p∞)(0),OX1(p∞)(0))[κ
′].

Over X1(p∞)(0), we have a universal trivialization ψ : Zgp ' Tp
Ä
GD[p∞]

äet

of the p-adic étale Tate module of GD[p∞] and a comparison theorem

HTGD∞
: Zgp ⊗Z OX1(p∞)(0)

∼→ ωG ⊗OX
OX1(p∞)(0).
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As a result, for all w ∈]n− 1, n], we have the following diagram:

X1(p∞)(0)
i //

��

IW+
w

yy
X1(pn)(0).

Let Un(Zp) be the subgroup of U(Zp) of matrices that are trivial modulo

pnZp. The map i factorizes through an immersion X1(p∞)(0)/Un(Zp) ↪→ IW+
w

that is equivariant under the action of B(Zp). This provides a map

M†κw (XIw(p)(0))→ M∞κ.

Remark 5.4.2. A space analogue to M†κw (XIw(p)(0)) appears in the work

[SU06] of Skinner-Urban for GSp4 . The space of semi-ordinary modular forms

is a direct factor of M†κw (XIw(p)(0)) cut out by a projector.

Proposition 5.4.3. There is a natural injective map

M†κ(XIw(p)) ↪→ M∞κ.

As a result, locally analytic overconvergent modular forms are p-adic modular

forms.

Proof. This map is obtained as the limit of the maps M†κw (XIw(p)(v)) →
M†κw (XIw(p)(0)) → M∞κ. All spaces are torsion free OK-module so the injec-

tivity can be checked after inverting p. The injectivity of M†κw (XIw(p)(v)) →
M†κw (XIw(p)(0)) for v small enough follows from the the surjectivity of the map

on the connected components Π0(XIw(p)(0))→ Π0(XIw(p)(v)). The injectivity

of the map M†κw (XIw(p)(0))→ M∞κ[1/p] can be checked locally over XIw(p)(0).

This boils down to the injectivity of the restriction map: V w-an
κ′ → F0(I) where

F0(I) is the space of continuous, OK-valued functions on I. �

5.5. Independence of the compactification. We will see that our modules of

overconvergent modular forms are in fact independent of the compactifications.

If S is a rigid space, we say that a function f on S is bounded if the supre-

mum norm supx∈S |f(x)| is finite. If S is quasi-compact, then this property is

automatically satisfied (see [Bos15, p. 23]). We now recall the following result.

Theorem 5.5.1 ([Lüt74, Thm. 1.6.1]). Let S be a smooth, quasi-compact

rigid space and Z a co-dimension ≥ 1 Zariski-closed subspace. Then any

bounded function on S\Z extends uniquely to S.

Let Y an
Iw be the analytification of YIw. (See, for example, [Bos15, §1.13].)

Set XIw(p)(v) ∩ Y an
Iw = YIw(v). The space YIw(v) does not depend on the

compactification. We say that f ∈ H0(YIw(v), ω†κw ) is bounded if it is bounded

when considered as a function on the rigid space IWo+
w ×XIw(v) YIw(v).
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Proposition 5.5.2. The module of w-analytic and v-overconvergent mod-

ular forms is exactly the submodule of bounded sections of H0(YIw(v), ω†κw ). In

particular, M†κw (XIw(p)(v)) is independent on the choice of the toroidal com-

pactification.

Proof. The map M†κw (XIw(p)(v)) → H0(YIw(v), ω†κw ) is clearly injective.

Let

f ∈ H0(YIw(v), ω†κw )

be a bounded section. This is a bounded function on IWo+
w ×XIw(v) YIw(v),

homogeneous for the action of the torus T(Zp). By Theorem 5.5.1, it extends

to a function on IWo+
w , which is easily seen to be homogeneous of the same

weight. �

Remark 5.5.3. The module M†κw (XIw(p)(v)) could thus have been defined

without reference to any compactification. Nevertheless, compactifications will

turn out to be quite useful in the last sections, allowing us to prove properties

of these modules.

5.6. Dilations. For our study of Hecke operators, it is useful to define

slight generalizations of the spaces IWo+
w . This section is technical and may

be skipped at the first reading. Let n ∈ N, v < 1
2pn−1 (resp. v < 1

3pn−1 if p = 3),

and let w = (wi,j)1≤j≤i≤g ∈] v
p−1 , n − v

pn

p−1 ]
g(g+1)

2 satisfying wi+1,j ≥ wi,j and

wi,j−1 ≥ wi,j . We will call (wi,j) a dilation parameter. Let IWo+
w be the open

subset of Tan/UXIw(p)(v) such that for any finite extension L of K, an element

in IWo+
w (L) is the data of

• an OL-point of XIw(p)(v), coming from a semi-abelian scheme G → OL,

with Hn its canonical subgroup of level n, and a flag Fil•Hn;

• a flag of differential forms Fil•F ∈ Trig/B(OL) and for all 1 ≤ j ≤ g, an

element ωj ∈ GrjF such that there is a trivialization ψ : HD
n (K̄) ' Z/pnZg

where ψ is compatible with Fil•H1, and the following holds:

– Denote by e1, . . . , eg the canonical basis of Z/pnZg, set w0 = n−v pn

p−1 ,

and by abuse of notation set HTw0 for the map HTw0 ◦ψ; then for all

1 ≤ i ≤ g, we have

ωi mod Fili−1F + pw0F =
∑
j≥i

aj,iHTw0(ej),

where aj,i ∈ OL and v(aj,i) ≥ wj,i if j > i and v(ai,i − 1) ≥ wi,i.
When wi,j = w for all 1 ≤ j ≤ i ≤ g and there exists n ∈ N such that w ∈

]n−1+ v
p−1 , n−v

pn

p−1 ], we have IWo+
w = IWo+

w . The spaces IWo+
w are dilations

of the space IWo+
w0

in the sense that we relax the w0-compatibility with ψ and

impose a weaker condition. The rigid space IWo+
w is locally isomorphic in the
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étale topology over XIw(p)(v) toá
1 + pw1,1B(0, 1) 0 · · · 0

pw2,1B(0, 1) 1 + pw2,2B(0, 1) · · · 0
...

...
. . . 0

pwg,1B(0, 1) · · · pwg,g−1B(0, 1) 1 + pwg,gB(0, 1)

ë
.I/U(Zp).

If κ is an infi{wi,i}-analytic character, we can define Banach sheaves ω†κw
and the space M†κw

Ä
XIw(p)(v)

ä
of w-analytic, v-overconvergent modular forms

as in Section 5.3.

Remark 5.6.1. If w and w′ are two dilation parameters satisfying wi,j =

w′i,j as soon as i 6= j, and if κ is a infi,j{wi,i, w′j,j} analytic character, then the

sheaves ω†κw and ω†κw′ are canonically isomorphic.

6. Hecke operators

In this section we define an action of the Hecke operators on the space of

overconvergent modular forms and we single out one of these operators that is

compact.

6.1. Hecke operators outside p. Let q be a prime integer with (q, p) = 1,

and let γ ∈ GSp2g(Qq)∩M2g(Zq). Let Cγ ⊂ YIw×YIw×Spec K be the moduli

space over K classifying pairs (A,A′) of principally polarized abelian schemes

of dimension g, equipped with level N structures (ψN , ψ
′
N ), flags Fil•A[p] and

Fil•A
′[p] of A[p] and A′[p], and an isogeny π : A → A′ of type γ, compatible

with the level structures, the flags and the polarizations (see [FC90, Ch. 7]).

We have two finite étale projections p1, p2 : Cγ → YIw,K . They extend to pro-

jections on the analytifications p1, p2 : Can
γ → Y an

Iw,K . There is an issue with

the boundary: in general, it is not possible to find toroidal compactifications

for Cγ and YIw in such a way that the projections p1 and p2 extend to finite

morphisms. Moreover, if one varies γ, it is not possible to find toroidal com-

pactifications of YIw and the Cγ ’s such that all projections extend to the com-

pactifications. Therefore, we will define Hecke operators on H0(YIw(v), ω†κw )

and show that these Hecke operators map bounded functions to bounded func-

tions, thus defining an action on M†κw (XIw(p)(v)) (see Section 5.5).

The isogeny π induces a map π∗ : ωA → ωA′ , hence a map π∗ : p∗2T ×an/U→
p∗1T ×an/U that is an isomorphism. Let n ∈ N, v < 1

2pn−1 (resp < 1
3pn−1 if p = 3.

Set Can
γ (v) = Can

γ ×p1 YIw(v) = Can
γ ×p2 YIw(v). The last equality follows from

the facts that level prime-to-p isogenies are étale in characteristic p and that the

Hodge height is preserved under étale isogenies. Let w ∈]n−1+ v
p−1 , n−v

pn

p−1 ].

Lemma 6.1.1. The map π∗ induces an isomorphism

π∗ : p∗2IWo+
w |YIw(v) ' p∗1IWo+

w |YIw(v).
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Proof. We can check the equality at the level of points. Let L be a finite

extension of K, and let A, A′ be two semi-abelian schemes over Spec OK
with canonical subgroup of level n, say Hn and H ′n. Enlarging L, we may

assume that Hn(L) ' H ′n(L) ' Z/pnZg. Let π : A → A′ be an isogeny of

type γ. It induces a group isomorphism Hn(L)→̃H ′n(L). We have the following

ommutative diagram (see Section 4.4):

F ′ π∗ //

��

F

��
F ′/pw // F/pw.

(H ′n)D(L)
πD //

HTw

OO

HD
n (L)

HTw

OO

Since the bottom line is an isomorphism and the maps HTw ⊗ 1 are isomor-

phisms, it follows that π∗ is an isomorphism. �

We let π∗−1 be the inverse of the isomorphism given by the proposition.

We can now define the Hecke operator Tγ as the composition

Tγ : H0(YIw(v), ω†κw )
p∗2−→ H0(Cγ(v), p∗2ω

†κ
w )

π∗−1

−−−→ H0(Cγ(v), p∗1ω
†κ
w )

Trp1−−−→ H0(YIw(v), ω†κw ).

6.2. Hecke operators at p. We now define an action of the dilating Hecke

algebra at p. For i = 1, . . . , g, let Ci be the moduli scheme over K parametriz-

ing principally polarized abelian schemes A, a level N structure ψN , a self-

dual flag Fil•A[p] of subgroups of A[p] and a lagrangian subgroup L ⊂ A[p2] if

i = 1, . . . , g − 1 or L ⊂ A[p] if i = g, such that L[p] ⊕ FiliA[p] = A[p]. There

are two projections p1, p2 : Ci → YIw,K . The first projection is defined by

forgetting L. The second projection is defined by mapping (A,ψN ,Fil•A[p])

to (A/L,ψ′N ,Fil•A/L[p]), where ψ′N is the image of the level N structure and

Fil•A/L[p] is defined as follows:
• for j = 1, . . . , i, FiljA/L[p] is simply the image of FiljA[p] in A/L;

• for j = i + 1, . . . , g, FiljA/L[p] is the image in A/L of FiljA[p] +

p−1(FiljA[p] ∩ pL).
As before we consider the analytifications p1, p2 : Can

i → Y an
Iw .

6.2.1. The operator Up,g . We start by recalling the following result.

Proposition 6.2.1.1 ([Far11, Prop. 17]). Let G be a semi-abelian scheme

of dimension g over OK , generically abelian. Assume that Hdg(G) < p−2
2p−2 .

Let H1 be the canonical subgroup of level 1 of G, and let L be a subgroup of

GK [p] such that H1 ⊕ L = GK [p]. Then Hdg(G/L) = 1
pHdg(G), and G[p]/L

is the canonical subgroup of level 1 of G/L.
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Let Cg(v) = Can
g ×p1,Y an

Iw
YIw(v). If v < p−2

2p−2 , by the previous proposition,

we have the diagram

Cg(v)

p1{{
p2 $$

YIw(v) YIw(vp).

Let π : A → A′ be the universal isogeny over Cg(v). It induces a map π∗ : ωA′

→ ωA and a map π∗ : p∗2T ×an/U→ p∗1T ×an/U. This map is an isomorphism. Let

n ∈ N and v < inf{ 1
4pn−1 }. Let w ∈]n − 1 + v 1

p−1 , n − v
pn

p−1 ]. We have the

lemma whose proof is identical to the proof of Lemma 6.1.1:

Lemma 6.2.1.2. The map π∗ induces an isomorphism

π∗ : p∗2IWo+
w |YIw(v) ' p∗1IWo+

w |YIw(v).

We let π∗−1 be the inverse of this map. Let κ be a w-analytic character.

We now define the Hecke operator Up,g as the composition

H0(YIw(
v

p
), ω†κw )

p∗2−→ H0(Cg(v), p∗2ω
†κ
w )

π∗−1

−−−→ H0(Cg(v), p∗1ω
†κ
w )

p
−g(g+1)

2 Trp1−−−−−−−−→ H0(YIw(v), ω†κw ).

The operator Up,g hence improves the radius of overconvergence. Remark also

that we normalize the trace of the map p1 by a factor p−
g(g+1)

2 that is an

inseparability degree (see [Pil12, §A.1]). By a slight abuse of notation we also

denote by Up,g the endomorphism of H0(YIw(v), ω†κw ) defined as the composition

of the operator we just defined with the restriction map H0(YIw(v), ω†κw ) →
H0(YIw(vp), ω†κw ).

6.2.2. The operators Up,i, i = 1, . . . , g − 1. Let F be a finite extension of

K and (A,ψN ,Fil•A[p], L) be an F -point of Ci. Let (A′ = A/L,ψ′N ,Fil•A
′[p])

be the image by p2 of (A,ψN ,Fil•A[p], L). Set π : A→ A/L for the isogeny.

Proposition 6.2.2.1. If Hdg
Ä
A[p∞]

ä
< p−2

2p2−p and FilgA[p] is the canon-

ical subgroup of level 1, then Hdg
Ä
A[p∞]/L) ≤ Hdg

Ä
A[p∞]

ä
and FilgA

′[p] is

the canonical subgroup of level 1 of A′.

Proof. We assume that Hdg(A[p∞]) ≤ p−2
2p2−p , and we are reduced by

Proposition 3.1.2 to show that FilgA
′[p] has degree greater or equal to g −

Hdg(A[p∞]). Let H2 be the canonical subgroup of level 2 in A and x1, . . . , xg
be a basis of H2(K̄) as a Z/p2Z-module. We complete it to a basis x1, . . . , x2g

of A[p2](K̄). We can assume that Fil•A[p] is given by 0 ⊂ 〈px1〉 ⊂ · · · ⊂
〈px1, . . . , pxg〉 = H1 and that L is given by 〈pxi+1, . . . , px2g−i, x2g−i+1, . . . , x2g〉.
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Set H̃1 = 〈px1, . . . , pxi, xi+1, . . . , xg〉. With this notation, FilgA
′[p] = H̃1/L.

We will show that deg H̃1/L ≥ g − Hdg(A[p∞]). We have a generic isomor-

phism

H2/H1
diag(p1i,1g−i)−−−−−−−−−→ H̃1/〈pxi+1, . . . , pxg〉,

which implies that deg H̃1/〈pxi+1, . . . , pxg〉 ≥ g − pHdg(A[p∞]) (by [Far10,

Cor. 3, p. 10]). By Proposition 3.1.2,

Hdg(A[p∞]/〈pxi+1, . . . , pxg〉) ≤ pHdg(A[p∞])

and H̃1/〈pxi+1, . . . , pxg〉 is the canonical subgroup of A/〈pxi+1, . . . , pxg〉 of

level 1. At the level of the generic fiber, we have

A/〈pxi+1, . . . , pxg〉[p] = 〈pxg+1, . . . , px2g〉 ⊕ H̃1/〈pxi+1, . . . , pxg〉.

By Proposition 6.2.1.1 we obtain deg H̃1/〈pxi+1, . . . , px2g〉 ≥ g −Hdg(A[p∞]).

We conclude, since the map H̃1/〈pxi+1, . . . , px2g〉 → H̃1/L is a generic isomor-

phism. �

We set Ci(v) = Can
i ×p1,Y an

Iw
YIw(v). If v ≤ p−2

2p2−p , we have the diagram

Ci(v)

p1{{ p2 $$
YIw(v) YIw(v).

Let π : A → A/L be the universal isogeny over Ci(v). We have a map

π∗ : ωA/L → ωA. It induces a map π̃∗ : p∗2T ×an → p∗1T ×an that sends a basis

ω′1, . . . , ω
′
g of ωA/L to p−1π∗ω′1, . . . , p

−1π∗ωg−i, π
∗ω′g−i+1, . . . , π

∗ω′g. This map

is an isomorphism; we call π̃∗−1 its inverse and by the same symbol denote the

quotient map π̃∗−1 : p∗1T ×an/U→ p∗2T ×an/U.

Let n ∈ N, v < inf{ 1
3pn−1 ,

p−2
2p2−p} and w = (wi,j)1≤j≤k≤g be a dilation

parameter such that wk,j ∈]0, n− 2− v pn

p−1 ].

Proposition 6.2.2.2. We have π̃∗−1p∗1IWo+
w ⊂ p∗2IWo+

w′ , where

w′k,j = wk,j if j ≤ k ≤ i,
w′k,j = 1 + wk,j if j ≤ i and k ≥ i+ 1,

w′k,j = wk,j if j ≥ i+ 1.

Proof. Let (A,Fil•A[p], ψN , L) be an F -point of Ci(v). We set A′ = A/L

and assume that F is large enough to trivialize the group schemes Hn, HD
n ,

H ′n and H ′n
D. There are Z/pnZ-basis e1, . . . , eg for Hn(F ) and e′1, . . . , e

′
g for

H ′n(F ) such that the flags on H1(F ) and H ′1(F ) are given by

Filj = 〈pn−1eg, p
n−1eg−1, . . . , p

n−1eg−j+1〉
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and

Fil′j = 〈pn−1e′g, p
n−1e′g−1, . . . , p

n−1e′g−j+1〉,
and the isogeny π induces a map Hn(F ) → H ′n(F ) given by diag(pIdg−i, Idi)

in the basis. Let x1, . . . , xg and x′1, . . . , x
′
g be the dual basis of HD

n (F ) and

H ′n
D(F ) (for a choice of a primitive pn-th root of unity). The flags on HD

1 (F )

and H ′1
D(F ) are given by Filj = 〈x1, x2, . . . , xj〉 and Fil′j = 〈x′1, x′2, . . . , x′j〉,

and the map πD : H ′n
D(F ) → HD

n (F ) is given by diag(pIdg−i, Idi). Set w0 =

n− v pn

p−1 . We have the following commutative diagram:

F ′ π∗ //

��

F

��
F ′/pw0 // F/pw0 .

(H ′n)D(L)
πD //

HTw0

OO

HD
n (L)

HTw0

OO

Let (Fil•F ′, {ω′i ∈ GriF ′}) be an element of p∗2T ×an/U over A′. We assume

that π̃∗(Fil•F ′, {ω′i ∈ GriF ′}) = (Fil•F , {ωi ∈ GriF}) ∈ p∗1IWo+
w . This means

p−1π∗ω′j =
g∑
k=j

ak,jHTw0(xk) mod pw0F + Filj−1F for 1 ≤ j ≤ g − i,

π∗ω′j =
g∑
k=j

ak,jHTw0(xk) mod pw0F + Filj−1F for g − i+ 1 ≤ j ≤ g,

where (ak,j)1≤j≤k≤g ∈ O
g(g+1)

2
L satisfy v(ak,k − 1) ≥ wk,k and v(ak,j) ≥ wk,j for

k > j. We obtain, for 1 ≤ j ≤ g − i,

π∗ω′j =
g−i∑
k=j

ak,jHTw0(πDx′k)+
g∑

k=g−i+1

pak,jHTw0(πDx′k) mod pw0F+Filj−1F

and for g − i+ 1 ≤ j ≤ g,

π∗ω′j =
g∑
k=j

ak,jHTw0(πDx′k) mod pw0F + Filj−1F .

Since pF ⊂ π∗F ′, we now get that, for 1 ≤ j ≤ g − i,

ω′j =
g−i∑
k=j

ak,jHTw0(x′k) +
g∑

k=g−i+1

pak,jHTw0(x′k) mod pw0−1F ′ + Filj−1F ′

and for g − i+ 1 ≤ j ≤ g,

ω′j =
g∑
k=j

ak,jHTw0(x′k) mod pw0−1F ′ + Filj−1F ′. �
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Let w and w′ be as in the proposition. Let κ be a infj{wj,j}-analytic

character. We now define the Hecke operator Up,i as

Up,i : H0(YIw(v), ω†κw′)
p∗2−→ H0(Cγ(v), p∗2ω

†κ
w′)

π̃−1∗
−−−→ H0(Cγ(v), p∗1ω

†κ
w )

p−i(g+1)Trp1−−−−−−−−→ H0(YIw(v), ω†κw ).

This Hecke operator improves analyticity. Note the normalization of the

trace map by a factor p−(g+1)i that is an inseparability degree. We also denote

by Up,i the endomorphism of M†κw
Ä
XIw(p)(v)

ä
obtained by composing the above

operator with the restriction

M†κw
Ä
XIw(p)(v)

ä
→ M†κw′

Ä
XIw(p)(v)

ä
.

6.2.3. The relationship between Up,i and δi. In this paragraph we establish

the relationship between the operators Up,i and the operators δi of Section 2.5.

Let 1 ≤ i ≤ g − 1, and consider the correspondence p1, p2 : Ci(v)→ XIw(v).

Proposition 6.2.3.1. Let L be a finite extension of K , x, y ∈ YIw(v)(L)

such that y ∈ p2(p−1
1 ){x}. Let w > 0 and κ be a w-analytic character. There

exists a commutative diagram where the vertical maps are isomorphisms :

(ω†κw )y
π̃∗−1

// (ω†κw )x

V w-an
κ′,L

δi //

OO

V w-an
κ′,L

OO
.

Proof. This follows from the definition; see also Lemma 5.1 of [Pil12]. �

6.2.4. A compact operator. Let n ∈ N, v < inf{ 1
3pn−1 ,

p−2
2p2−p}, w ∈] v

p−1 ,

n− g − 1− v pn

p−1 ] and κ a w-analytic character.

The composite operator
∏g
i=1 Up,i induces a map from M†κw′(XIw(vp)) →

M†κw (XIw(v)), where w′ = (w′i,j) is defined by

w′i,j = i− j + w.

The natural restriction map res : M†κw (XIw(v))→ M†κw′(XIw(vp)) is compact. We

let U =
∏g
i=1 Up,i ◦ res. This is a compact endomorphism of M†κw (XIw(v)).

6.3. Summary. For all q - pN , let Tq be the spherical Hecke algebra

Z[GSp2g(Qq)/GSp2g(Zq)].

Let TNp be the restricted tensor product of the algebras Tq. We have defined

an action of TNp on the Frechet space M†κ(XIw). Consider the dilating Hecke

algebra, Up, defined as the polynomial algebra over Z with indeterminates

X1, . . . , Xg. We have also defined an action of Up, sending Xi to Up,i. We
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proved that the operator U =
∏
i Up,i is compact. Let us denote by T†κ the

image of TNp ⊗Z Up in End
Ä
M†κ(XIw)

ä
and call it the overconvergent Hecke

algebra of weight κ.

7. Classicity

7.1. Statement of the main result. Let κ = (k1, . . . , kg) ∈ X+(T). We

have a series of natural restriction maps,

H0(XIw, ω
κ)

r1→ H0(XIw(p)(v), ωκ)
r2−→ H0(XIw(p)(v), ω†κw ),

and we establish a criterion for an element in H0(XIw(p)(v), ω†κw ) to be in the

image of r2 ◦ r1. Let a = (a1, . . . , ag) ∈ Rg≥0. We set M†κw (XIw(p)(v))<a for the

union of the generalized eigenspaces where Up,i has slope < ai for 1 ≤ i ≤ g.

Theorem 7.1.1. Let a = (a1, . . . , ag) with ai = kg−i − k(g−i)+1 + 1 when

1 ≤ i ≤ g − 1 and ag = kg − g(g+1)
2 . Then we have

M†κw (XIw(v))<a ⊂ H0(XIw, ω
κ).

The proof of this theorem is split in two parts. We first show that

M†κw (XIw(p)(v))<a ⊂ H0(XIw(p)(v), ωκ). This is a classicity statement at the

level of sheaves, and it is easily deduced from the results of Section 2; see

Proposition 7.2.1.

We conclude by applying the main theorem of [BPS] as follows. Since

Up,g is a compact operator on H0(XIw(p)(v), ωκ), for all ag ∈ R≥0 we can

define H0(XIw(p)(v), ωκ)<ag , which is the sum of generalized eigenspaces for

Up,g with eigenvalues of slope less than ag.

Theorem 7.1.2 ([BPS]). Let ag=kg− g(g+1)
2 . Then H0(XIw(p)(v), ωκ)<ag

is a space of classical forms.

7.2. Relative BGG resolution. We now take w ∈] v
p−1 , 1 − v

p
p−1 ]. We re-

mark that for such a w, the fibers of the morphism π : IWo
w → XIw(p)(v) are

connected. Consider the cartesian diagram

IWo+
w × T ×an

π1

��

// T ×an

��
IWo+

w
//

π2

''

T ×an/U

��
XIw(p)(v).

We have an action of the Iwahori subgroup I on IWo+
w ×T ×an , and by differen-

tiating we obtain an action of the enveloping algebra U(g) on

(π2 ◦ π1)∗OIWo+
w ×T ×an

,
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denoted ?. We have already defined an inclusion d0 : ωκ → ω†κw . For all α ∈ ∆,

we now define a map Θα : ω†κw → ω†sα•κw . We first define an endomorphism of

(π2 ◦ π1)∗OIWo+
w ×T ×an

by sending a section f to X<κ,α∨>+1
−α ? f . It follows from Section 2.4 that this

map restricted to ω†κw produces the expected map Θα. We then set d1 : ⊕
Θα : ω†κw → ⊕

α∈∆ ω
†sα•κ
w . We have the following relative BGG resolution,

which is a relative version of the theory recalled in Section 2.4.

Proposition 7.2.1. There is an exact sequence of sheaves over XIw(p)(v)

as follows :
0→ ωκ

d0−→ ω†κw
d1−→

⊕
α∈∆

ω†sα•κw .

Proof. Tensoring-completing the exact sequence (2.4.A) (or more precisely

its w-analytic version — see the remark below) by OXIw(p)(v) we get the fol-

lowing sequence:
(7.2.A)

0 −→ Vκ′⊗̂OXIw(p)(v)
d0⊗1−−−→ V w-an

κ′ ⊗̂OXIw(p)(v)
d1⊗1−−−→

⊕
α∈∆

V w-an
sα•κ′⊗̂OXIw(p)(v).

Note that the image of d1 is closed in
⊕

α∈∆ V
an
sα•κ′ and is a direct factor

of an orthonormalizable Banach module by the main theorem of [Jon11]. It

follows that there exists an isomorphism of Banach modules V w-an
κ′ = Im(d1)⊕

Vκ′ splitting the sequence 0 → Vκ′ → V w-an
κ′ → Im(d1) → 0. As a result, the

sequence (7.2.A) is exact. By Proposition 5.3.4, this exact sequence is locally,

for the étale topology, isomorphic to the sequence of the proposition, whichis

exact. �

Remark 7.2.2. The definition of the map Θα does not require the condition

w ∈] v
p−1 , 1− v

p
p−1 ], but it is needed for the exactness of the sequence.

The maps Θα do not commute with the action of the Hecke operators Up,i
for i = 1, . . . , g − 1. Precisely, we have the following result for v ≤ p−2

2p2−p .

Proposition 7.2.3. For 1 ≤ i ≤ g−1, we have the following commutative

diagram :

H0(XIw(p)(v), ω†κw )

Up,i
��

Θα // H0(XIw(p)(v), ω†sα•κw )

α(dg−i)〈κ,α
∨〉+1Up,i

��
H0(XIw(p)(v), ω†κw )

Θα // H0(XIw(p)(v), ω†sα•κw ).

Proof. Let f ∈ H0(XIw(p)(v), ω†κw ). We need to check that

ΘαUp,if = α(dg−i)
〈κ,α∨〉+1Up,iΘαf.

We apply Proposition 6.2.3.1 to reduce to the results of Section 2.5. �
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7.3. Classicity at the level of the sheaves. We now assume only that v

is small enough for the operators Up,i to be defined. We make no particular

assumption on w.

Proposition 7.3.1. The submodule of M†κw (XIw(p)(v)) on which Up,i acts

with slope strictly less than kg−i − kg−i+1 + 1 for 1 ≤ i ≤ g − 1 and Up,g acts

with finite slope is contained in H0(XIw(p)(v), ωκ).

Proof. Let f ∈ M†κw (XIw(p)(v)). For simplicity, let us assume that f is an

eigenvector for all operators Up,i with corresponding eigenvalue ai. The opera-

tor
∏g−1
i=1 Up,i increases analyticity. Since we have f =

∏g−1
i=1 a

−1
p,i

∏g−1
i=1 Up,if , we

can assume that w ∈] v
p−1 , 1 − v

p
p−1 ]. We endow the space H0(XIw(p)(v), ω†κw )

and H0(XIw(p)(v), ω†sα•κw ) for all simple positive roots α with the supremum

norm over the ordinary locus. This is indeed a norm by the analytic con-

tinuation principle. (But of course H0(XIw(p)(v), ω†κw ) may not be complete

for this norm.) For this choice, the Up,i operators have norm less or equal

to 1. By the relative BGG exact sequence of Proposition 7.2.1 it is enough

to prove that Θαf is 0. Let α be the character (t1, . . . , tg) 7→ ti.t
−1
i+1. Since

Up,g−iΘα(f) = pki+1−ki−1ΘαUp,g−i(f), we see that Θα(f) is an eigenvector for

Up,g−i for an eigenvalue of negative valuation. Since the norm of Up,g−i is less

than 1, Θα(f) has to be zero. �

8. Families

Recall that the weight space W = Hom(T(Zp),C×p ) was defined in Sec-

tion 2.2. For any affinoid open subset U ofW, by Proposition 2.2.2 there exists

wU > 0 such that the universal character κun : T(Zp)×W → C×p restricted to

U extends to an analytic character κun : T(Zp)(1 + pwUOCp)× U → C×p .

8.1. Families of overconvergent modular forms.

8.1.1. The universal sheaves ω†κ
un

w . Let n ∈ N, v ≤ 1
2pn−1 (resp. 1

3pn−1

if p = 3) and w ∈]n − 1 + v
p−1 , n − v pn

p−1 ] satisfying w ≥ wU . We deduce

immediately from Proposition 2.2.2 that the construction given in Section 5

works in families:

Proposition 8.1.1.1. There exists a sheaf ω†κ
un

w on XIw(p)(v)× U such

that for any weight κ ∈ U , the fiber of ω†κ
un

w over XIw(p)(v)× {κ} is ω†κw .

Proof. We consider the projection π×1: IWo+
w ×U → XIw(p)(v)×U . We

take ω†κ
un

w to be the subsheaf of (π × 1)∗OIWo+
w ×U of (κun)′-invariant sections

for the action of T(Zp). �

Let A be the ring of rigid analytic functions on U . Let Mv,w be the

A-Banach module H0(XIw(v)× U , ω†κun

w ). Passing to the limit on v and w we

get the A-Frechet space M † = lim
v→0,w→∞

Mv,w.
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It is clear that the geometric definition of Hecke operators given in Sec-

tion 6 works in families. We thus have an action of the Hecke algebra of level

prime to Np, TNp on the space Mv,w. We also have an action of Up, the

dilating Hecke algebra at p, on Mv,w for v small enough.

Let D be the boundary in XIw(v). We let ω†κ
un

w (−D) be the cuspidal

subsheaf of ω†κ
un

w of sections vanishing along D. Let Mv,w,cusp be the A-Banach

module H0(XIw(p)(v)×U , ω†κw (−D)) and M †cusp = lim
v→0,w→∞

Mv,w,cusp. All these

modules are stable under the action of the Hecke algebra. We wish to construct

an eigenvariety out of this data.

8.1.2. Review of Coleman’s Spectral theory. A convenient reference for the

material in this section is [Buz07]. The datum we are given are

• a reduced, equidimensional affinoid Spm A (e.g., U = Spm A is an admis-

sible affinoid open of the weight space W);

• a Banach A-module M (e.g., the A- module of p-adic families of modular

forms Mv,w defined above for suitable v, w);

• a commutative endomorphism algebra T of M over A (e.g., the Hecke

algebra);

• a compact operator U ∈ T (e.g., the operator
∏
i Up,i).

Definition 8.1.2.1.

(1) Let I be a set. Let C(I) be the A-module of functions {f : I → A,

limi→∞ f(i) = 0}, where the limit is with respect to the filter of com-

plements of finite subsets of I. The module C(I) is equipped with its

supremum norm.

(2) A Banach A-module M is orthonormalizable if there is a set I such that

M ' C(I).

(3) A Banach-A module M is projective if there is a set I and a Banach A-

module M ′ such that M ⊕M ′ = C(I).

The following lemma follows easily from the universal property of projec-

tive Banach modules given in [Buz07, p. 18].

Lemma 8.1.2.2. Let

0→M →M1 → · · · →Mn → 0

be an exact sequence of Banach A-modules, where the differentials are contin-

uous and for all 1 ≤ i ≤ n, Mi is projective. Then M is projective.

We suppose now that M is projective. Since U is a compact operator,

the following power series P (T ) := det(1− TU |M) ∈ A[[T ]] exists. It is known

that P (T ) = 1 +
∑
n≥1 cnT

n where cn ∈ A and |cn|rn → 0 when n→∞ for all

positive r ∈ R. As a result, P (T ) is a rigid analytic function on Spm A×A1
an.
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Definition 8.1.2.3. The spectral variety Z is the closed rigid subspace of

Spm A× A1
an defined by the equation P (T ) = 0.

A pair (x, λ) ∈ Spm A × A1
an is in Z if and only if there is an element

m ∈M ⊗A k(x) such that U ·m = λ−1m.

Proposition 8.1.2.4 ([Buz07, Thm. 4.6]). The map p1 : Z → Spm A is

locally finite flat. More precisely, there is an admissible cover of Z by open

affinoids {Ui}i∈I with the property that the map Ui → p1(Ui) is finite flat.

Let i ∈ I, and let B be the ring of functions on p1(Ui). To Ui is associated

a factorization P (T ) = Q(T )R(T ) of P over B[[T ]], where Q(T ) is a polynomial

and R(T ) is a power series co-prime to Q(T ). Moreover, Ui is defined by the

equation Q(T ) = 0 in p1(Ui) × A1
an. To Ui, one can associate a direct factor

M(Ui) of M . This is the generalized eigenspace of M ⊗AB for the eigenvalues

of U occurring in Q(T ). The rule Ui 7→ M(Ui) gives a coherent sheaf M of

OZ -modules, which can be viewed as the universal generalized eigenspace.

Definition 8.1.2.5. The eigenvariety E is the affine rigid space over Z
associated to the coherent OZ -algebra generated by the image of T in EndOZM.

The map w : E → Spm A is locally finite, and E is equidimensional. For

each x ∈ Spm A, the geometric points of w−1(x) are in bijection with the set

of eigenvalues of T acting on M ⊗A k(x), which are of finite slope for U (i.e.,

the eigenvalue of U is nonzero).

The space E parametrizes eigenvalues. One may sometimes ask for a

family of eigenforms. We have the following

Proposition 8.1.2.6. Let x ∈ E and f ∈ M ⊗A k(x) be an eigenform

corresponding to x. Assume that w is unramified at x. Then there is a family

of eigenforms F passing through f . More precisely, there exist Spm B, an

admissible open affinoid of E containing x and F ∈M ⊗A B such that

• for all φ ∈ T, φ · F = F ⊗ φ;

• the image of F in M ⊗A k(x) is f .

Proof. Let Spm B be an admissible open affinoid of E containing x such

that w : Spm B → w(Spm B) is finite unramified. Let C be the ring of rigid

analytic functions of w(SpmB). Let e be the projector inB⊗CB corresponding

to the diagonal. The projective B-module eM(B) ⊗C B is the submodule of

M(B) ⊗C B of elements m satisfying b.m = m ⊗ b for all b ∈ B. We have a

reduction map

M(B)⊗C B →M(B)⊗A k(x),

and f is in the image of eM(B)⊗CB. Any element F of eM(B)⊗CB mapping

to f is a family of eigenforms passing through f . �
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8.1.3. Properties of the module Mv,w,cusp. In Proposition 8.2.3.3 we will

prove the following structure result about the module Mv,w,cusp.

Proposition 8.1.3.1.

(a) The Banach A-module Mv,w,cusp is projective.

(b) For any κ ∈ U , the specialization map

Mv,w,cusp → H0(XIw(p)(v), ω†κw (−D))

is surjective.

Granted this proposition, one can apply Coleman’s spectral theory as

described in Section 8.1.2 to construct an equidimensional eigenvariety over

the weight space. Thanks to Theorem 7.1.1 we also get precise information

about the points of this eigenvariety. This is enough to prove Theorems 1.1

and 1.2 of the introduction.

The rest of this chapter will be devoted to the proof of Proposition 8.2.3.3.

Let us point out two main differences between the case g = 1 treated in [AIS10]

and [Pil13] and the case g ≥ 2 treated in the present article. First of all, the

ordinary locus in modular curves over a p-adic field is an affinoid, whereas it is

not an affinoid in the toroidal compactification of Siegel modular varieties of

genus g ≥ 2. Secondly, for modular curves, the classical modular sheaves are

interpolated by coherent sheaves, whereas for g ≥ 2, the sheaves ω†κw are only

Banach sheaves.

In the modular curve case, because of the two reasons mentioned above,

it is easy to see by a cohomological argument that the proposition holds even

in the noncuspidal case (see [Pil13, Cor. 5.1]). We believe that the cuspidality

assumption is necessary when g ≥ 2.

Because the proof of Proposition 8.2.3.3 is quite involved, we will first

explain the strategy of the proof. (For technical reasons the actual proof

of the proposition follows a slightly different line of arguments than the one

sketched below, but the ideas are presented faithfully.) Let XIw(p)? be the

minimal compactification of YIw(p). Let XIw(p)?rig be the rigid analytic fiber of

XIw(p)? and ξ : XIw(p)rig → XIw(p)?rig be the projection. We define XIw(p)?(v)

as the image of XIw(p)(v) in XIw(p)?rig. If v ∈ Q, this is an affinoid. We have

a Banach sheaf ω†κ
un

w on XIw(p)(v) × U . We will show that there exists an

affinoid covering U = (Xi)i∈I of X ?Iw(v) such that (1) for every multi-index

i ∈ It, for 1 ≤ t ≤ ]I the Banach A-module H0
Ä
(ξ× 1)−1

Ä
Xi×U

ä
, ω†κ

un

w (−D)
ä

is projective, and (2) the Chech sequence

0→M → ⊕iH0
Ä
(ξ × 1)−1

Ä
Xi × U

ä
, ω†κ

un

w (−D)
ä
→ · · ·

is exact. This implies that M is a projective A-module. In other words, the

first part of the proposition can be checked working locally on the minimal
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compactification. Of course, locally on the toroidal compactification the pro-

jectivity holds. On the other hand, the acyclicity of the Chech complex relies

on the fact that XIw(p)?rig is affinoid. To use both facts we are reduced to

study the sheaf ω†κ
un

w (−D) along the boundary, and we conclude by some ex-

plicit computations. The second point of the proposition follows by similar

arguments.

If the sheaf (ξ × 1)∗ω
†κun

w (−D) on XIw(p)?(v) × U were a Banach sheaf

and we had an acyclicity result à la Kiehl for Banach sheaves relatively to

affinoid coverings of XIw(p)?(v), the existence of an affinoid covering satisfying

properties (1) and (2) would be immediately true. Our approach to prove

this property in this special situation is via formal models as discussed in

Section A.1.

8.1.4. An integral family. We consider the map defined in Section 5.2.2:

ζ = π1 ◦ π2 ◦ π3 : IW+
w → X1(pn)(v).

There is an action of the torus Tw on IW+
w over X1(pn)(v). For all κo ∈

W(w)o(K), we set w̃†κ
o

w = ζ∗OIW+
w

[κo
′
].

Let κ ∈ W(w) mapping to κo. Let π4 : X1(pn)(v) → XIw(p)(v) be the

finite projection. One recovers w†κw by taking the direct image π4,∗w̃
†κo
w and the

κ′-equivariant sections for the action of B(Zp)Bw or equivalently the invariants

under the action B(Z/pnZ) of the sheaf π4,∗w̃
†κo
w (−κ′) with twisted action by

−κ′. (After this twist, the action of B(Zp)Bw factors through its quotient

B(Z/pZ).) The group B(Z/pnZ) is of order divisible by p and has higher

cohomology on Zp-modules. For this reason, we will implement the strategy

of Section 8.1.3 at the level of X1(pn) for a while, and at the very end, invert

p and take into account the action of B(Z/pnZ); see Proposition 8.2.3.3.

The sheaves w̃†κ
o

w can be interpolated. Consider the projection

ζ × 1: IW+
w ×W(w)o → X1(pn)(v)×W(w)o

and the family of formal Banach sheaves

w̃†κ
oun

w =
Ä
ζ × 1

ä
∗OIW+

w×W(w)o [κ
oun′].

8.1.5. Description of the sections. We denote by SpfR an open affine sub-

formal scheme of X1(pn). We let ψ : (Z/pnZ)g → HD
n (R[1/p]) be the pullback

of the universal trivialization. We have an isomorphism

(HTw ◦ ψ)⊗ 1: Z/pnZg ⊗Z R/p
wR→ F/pwF .

We denote by e1, . . . , eg the canonical basis of (Z/pnZ)g. Let f1, . . . , fg
be a basis of F lifting the vectors HTw ◦ ψ(e1), . . . ,HTw ◦ ψ(eg). With these
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choices, IW+
w |SpfR is identified with the set of matricesà

1 0 . . . 0

pwB(0, 1) 1 . . . 0
...

...
. . .

...

pwB(0, 1) pwB(0, 1) . . . 1

í
×

à
1 + pwB(0, 1)

1 + pwB(0, 1)
...

1 + pwB(0, 1)

í
×Spf OK Spf R,

where the first g×g matrix parametrizes the position of the flag and the second

column vector the basis of the graded pieces.

For 1 ≤ j < i ≤ g, we let Xi,j be the coordinate of the ball on the i-th line

and j-th column in the g× g matrix and we let X1, . . . , Xg be the coordinates

on the column vector.

A function f on IW+
w |Spf R is a power series:

f(Xi,j , Xk) ∈ R〈〈Xi,j , Xk, 1 ≤ j < i ≤ g, 1 ≤ k ≤ g〉〉.

Let κo ∈W(w)o. Then f ∈ w̃†κ
o

w (R) if and only if

f(Xi,j , λ.Xk) = κo
′
(λ)f(Xi,j , Xk) ∀λ ∈ Tw(R′).

We deduce the following lemma.

Lemma 8.1.5.1. A section f ∈ w̃†κ
o

w (R) has a unique decomposition

f(Xi,j , Xk) = g(Xi,j)κ
o′(1 + pwX1, . . . , 1 + pwXg),

where g(Xi,j) ∈ R〈〈Xi,j , 1 ≤ i < j ≤ g〉〉. This decomposition sets a bijection

w̃†κ
o

w (R) ' R〈〈Xi,j , 1 ≤ i < j ≤ g〉〉.

Similarly,

Lemma 8.1.5.2. A section f ∈ w̃†κ
oun

w (R⊗̂OK〈〈S1, . . . , Sg〉〉) has a unique

decomposition

f(Xi,j , Xk) = g(Xi,j)κ
oun′(1 + pwX1, . . . , 1 + pwXg),

where g(Xi,j) ∈ R〈〈S1, . . . , Sg, Xi,j〉〉. This decomposition sets a bijection

w̃†κ
oun

w (R) ' R〈〈S1, . . . , Sg, Xi,j〉〉.

Lemma 8.1.5.3. Let $ ∈ OK be the uniformizing element. We have

κoun
Ä
(1 + pwXi)1≤i≤g

ä
∈ 1 +$OK〈〈S1, . . . , Sg, X1, . . . , Xg〉〉×.

Proof. We have

(1 + pwXi)
Sip
−w+ 2

p−1

=
∑
k≥0

Sip
−w+ 2

p−1 (Sip
−w+ 2

p−1 − 1) · · · (Sip−w+ 2
p−1 − k + 1)

k!
(pwXi)

k.
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The constant term of this series is 1. Recall that for any integer k ≥ 1,

v(k!) ≤ k−1
p−1 . As a result the k-th coefficient of the series for k > 0 has

valuation at least kw − kw + 2k
p−1 −

k−1
p−1 > 0. �

For allm ∈ N, we letX1(pn)(v)m,W(w)om be the schemes overOK/$mOK
obtained by reduction modulo $m from X1(pn)(v) and W(w)o. We let w̃†κ

oun

w,m

(respectively w̃†κ
o

w,m) be the quasi-coherent sheaf over X1(pn)(v)m × W(w)om
(respectively X1(pn)(v)m) obtained by pullback.

Corollary 8.1.5.4. The quasi-coherent family of sheaves w̃†κ
oun

w,1 over

X1(pn)(v)1 × W(w)o1 is constant : the sheaf w̃†κ
oun

w,1 is the inverse image on

X1(pn)(v)1 ×W(w)o1 of a sheaf defined on X1(pn)(v)1.

Proof. In view of Lemmas 8.1.5.1, 8.1.5.2 and 8.1.5.3, the sheaf w̃†κ
oun

w,1

equals the pullback of the sheaf ω†κ
o

w,1 for any κo ∈ W(w)o(K). �

8.1.6. Dévissage of the sheaves. We have just given a description of the lo-

cal sections of w̃†κ
o

w . This description depends on the choice of a basis f1, . . . , fg
of F lifting the universal basis e1, . . . , eg of HD

1 (R′[1/p]). We would now like

to investigate the dependence on the choice of the basis f1, . . . , fg.

Let (f ′1, . . . , f
′
g) be another compatible choice of basis for F with P = Idg+

pwM ∈ GLg(R
′) the changes of basis matrix from f1, . . . , fg to f ′1, . . . , f

′
g. This

second trivialization of F determines new coordinates X ′i,j , X
′
k on IW+

w |Spf R.

Lemma 8.1.6.1. We have the congruences

X ′i,j = Xi,j +mi,j mod pwR〈〈Xs,t, Xu〉〉,
X ′k = Xk +mk mod pwR〈〈Xs,t, Xu〉〉

for all 1 ≤ j < i ≤ g and all 1 ≤ k ≤ g, where mi,j is the coefficient of M

on the i-th line and j-th column and mk is the coefficient on the k-th diagonal

entry.

Proof. Let X and X ′ be the lower triangular matrices with Xi,j and X ′i,j
on the i-th line and j-th column and Xk, X

′
k on the k-th diagonal entry. We

have

(Idg + pwM)(Idg + pwX) = Idg + pw(M +X) +O(p2w).

There is a unique upper triangular matrix N with 0 on the diagonal such that

(Idg + pwM)(Idg + pwX)(Idg + pwN) = Idg + pwX ′.

We have

(Idg + pwM)(Idg + pwX)(Idg + pwN) = Idg + pw(M +X +N) +O(p2w).

We deduce that N = (−mi,j)1≤i<j≤g + O(pw) and that M + X + N = X ′

mod pw. �
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Corollary 8.1.6.2. Let κo ∈ W(w)o(K). The quasi-coherent sheaf w̃†κ
o

w,1

is an inductive limit of coherent sheaves that are extensions of the trivial sheaf.

Proof. Covering X1(pn)(v) by affine open formal subschemes Spf R and

choosing a basis (f1, . . . , fg) of F compatible with ψ, we can expand the sec-

tions of w̃†κ
o

w,1|Spf R as polynomials in the variables (Xi,j)1≤j<i≤g. By Lemma

8.1.6.1, the total degree of a section is independent of the choice of the basis,

so we can write w̃†κ
o

w,1 as the inductive limit as r ∈ N grows of the subsheaves

w̃†κ
o

w,1|≤r of sections of degree bounded by r. In w̃†κ
o

w,1|≤r, we can consider for all

1 ≤ k, l ≤ g, the subsheaf w̃†κ
o

w,1|≤r,k,l locally generated by the polynomials of

degree less than r in the variables Xi,j for i ≥ k and j ≤ l. This subsheaf is

well defined by Lemma 8.1.6.1. The sheaves

w̃†κ
o

w,1|
≤r,k,l mod ω̃†κ

o

w,1|
≤r,k−1,l + w̃†κ

o

w,1|
≤r,k,l−1

are isomorphic to the trivial sheaf. �

In general, one can always write w̃†κw,m as an inductive limit of coherent

sheaves in a reasonable way as follows. Let ∪iUi be a finite Zariski cover of

X1(pn) by affine formal subschemes Ui = Spf Ri such that over each Ui we

have the description of the sections of w̃†κ
o

w (Ri) as in Lemma 8.1.5.1. We let

Ri,m be the reduction modulo $m of Ri and Ui,m = Spec Ri,m. We have that

w̃†κ
o

w,m(Ui,m) ' Ri,m[Xi,j , 1 ≤ i < j ≤ g]. We let w̃†κ
o≤r

w,i,m be the coherent sheaf

over Ui,m associated to the submodule of w̃†κ
o

w,m(Ui,m) of polynomials of degree

bounded by r. We also let w̃†κ
o≤r

w,m be the subsheaf of w̃†κ
o

w,m defined as the kernel

of ∏
i

w̃†κ
o≤r

w,i,m −→
∏
i,j

w̃†κ
o

w,m|Ui,m∩Uj,m .

It is a quasi-coherent sheaf as it is the kernel of a morphism of quasi-coherent

sheaves. Furthermore, for every i the natural map w̃†κ
o≤r

w,m |Ui,m → w̃†κ
o≤r

w,i,m is

injective. As w̃†κ
o≤r

w,i,m is a coherent sheaf over Ui,m for every i, we deduce

that w̃†κ
o≤r

w,m |Ui,m is a coherent sheaf as well. Furthermore, as colimrw̃
†κo≤r
w,j,m =

w̃†κ
o

w,m|Uj,m for every j, we conclude that w̃†κ
o

w,m = colimrw̃
†κo≤r
w,m . Of course, the

sheaves w̃†κ
o≤r

w,m depend on the choice of the cover ∪iUi and on the choice of a

basis of F|Ui if m ≥ 2. If we fix two choices of cover and basis, we get two

inductive limits:

w̃†κ
o

w,m = colimrw̃
†κo≤r,1
w,m = colimrw̃

†κo≤r,2
w,m .

It is easy to check that in any case, for all r, there is r′ ≤ r′′ such that

w̃†κ
o≤r′,2

w,m ↪→ w̃†κ
o≤r,1

w,m ↪→ w̃†κ
o≤r′′,2

w,m .

The preceding discussion still makes sense for w̃†κ
oun

w,m .
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8.2. The base change theorem.

8.2.1. The boundary of the compactification. Let V = ⊕2g
i=1Zei be a free

Z-module of rank 2g equipped with the symplectic form of matrix J=
Ä

0 1g
−1g 0

ä
.

For all totally isotropic direct factor V ′, we consider C(V/V ′⊥) the cone of

symmetric semi-definite bilinear forms on V/V ′⊥ ⊗ R with rational radical. If

V ′ ⊂ V ′′, we have an inclusion C(V/V ′′⊥) ⊂ C(V/V ′⊥). We let C be the set of

all totally isotropic direct factors V ′ ⊂ V and C be the quotient of the disjoint

union: ∐
V ′∈C

C(V/V ′
⊥

)

by the equivalence relation induced by the inclusions C(V/V ′′⊥) ⊂ C(V/V ′⊥).

The given basis of V gives a “principal level N structure”: ψN : Z/NZ2g '
V/NV . The vectors e1, . . . , eg give a “Siegel principal level pn structure”:

ψ : (Z/pnZ)g ↪→ V/pnV.

Let Γ be the congruence subgroup of G(Z) stabilizing ψN and Γ1(pn) be

the congruence subgroup stabilizing ψ and ψN . Let S be a rational polyhedral

decomposition of C that is Γ-admissible (see [FC90, §IV. 2]).

We now recall some facts about the toroidal compactifications following

the presentation adopted in [Str10]; see, for example, Sections 1.4.3, 2.1 and

2.2. For any V ′ ∈ C and σ ∈ S lying in the interior of C(V/V ′⊥), there is a

diagram

MV ′
//

$$

MV ′,σ
//

��

MV ′,S

zz
BV ′

��
YV ′ ,

where

• YV ′ is the moduli space of principally polarized abelian schemes of dimension

g − r, with r = rkZV
′, with principal level N structure.

• Let AV ′ be the universal abelian scheme over YV ′ . The scheme BV ′ → YV ′

is an abelian scheme. Moreover, there is an isogeny i : BV ′ → ArV ′ of degree

a power of N . Over BV ′ , there is a universal semi-abelian scheme

0→ TV ′ → G̃V ′ → AV ′ → 0,

where TV ′ is the torus V ′ ⊗Z Gm.
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• MV ′ is a moduli space of principally polarized 1-motives with principal

level N structure, and the map MV ′ → BV ′ is a torsor under a torus with

character group SV ′ , isogenous to Hom(Sym2V/V ′⊥,Gm).

• MV ′ → MV ′,σ is an affine toroidal embedding attached to the cone σ ∈
C(V/V ′⊥) and the Z-module SV ′ .

• MV ′ → MV ′,S is a toroidal embedding, locally of finite type associated

to the polyhedral decomposition S. The scheme MV ′,σ is open affine in

MV ′,S .

We shall denote by Zσ the closed stratum inMV ′,σ and by ZV ′ the closed

stratum inMV ′,S . We let ΓV ′ be the stabilizer of V ′ in Γ; it acts on C(V/V ′⊥)

and on the toroidal embedding MV ′,S . We assume that {S} is a smooth and

projective admissible polyhedral decomposition. The existence is guaranteed

by the discussion in [FC90, §V.5]. Let Y be the moduli space classifying

principally polarized abelian varieties over OK with principal level N structure.

Let Y ⊂ X be the toroidal compactification associated to S. The hypothesis

that S is projective guarantees that X is a projective scheme and not simply

an algebraic space.

Theorem 8.2.1.1 ([FC90]).

(1) The toroidal compactification X carries a stratification indexed by C/Γ.

For all V ′ ∈ C, the completion of X along the V ′-stratum is isomorphic to

the space ”MV ′,S/ΓV ′ where ”MV ′,S is the completion of MV ′,S along the

strata ZV ′ .

(2) The toroidal compactification X carries a finer stratification indexed by

S/Γ. Let σ ∈ S . The corresponding stratum in X is Zσ . Let Z be an affine

open subset of Zσ . Then the henselization of X along Z is isomorphic to

the henselization of MV,σ along Z .

The Hasse invariant of the semi-abelian scheme on the special fiber of”MV ′,S is the Hasse invariant of the abelian part of the semi-abelian scheme.

We can thus identify Ha with the Hasse invariant defined over the special fiber

of YV ′ .

Recall from Section 5.2 that we have defined a formal scheme X(v) with

a morphism X(v)→ X to the formal completion X of X along its special fiber.

We can now describe the boundary of X(v) — namely, the complement of the

inverse image Y(v) of the formal completion Y ⊂ X of Y . We will need some

notation:

• YV ′ is the completion of YV ′ along its special fiber.

• YV ′(v) is largest formal open subset of the formal admissible blowup of YV ′

along the ideal (pv,Ha) where the ideal (pv,Ha) is generated by Ha (see 5.2).
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• BV ′ is the completion of BV ′ along its special fiber, and BV ′(v) is the

fiber product BV ′ ×YV ′ YV ′(v). We define similarly MV ′(v), MV ′,σ(v) and

MV ′,S(v), Zσ(v), ZV ′(v).

Proposition 8.2.1.2. The formal scheme X(v) has a fine stratification

indexed by S/Γ over a coarse stratification indexed by C/Γ. For all σ ∈ S , the

corresponding strata is ZV ′,σ(v). For any open affine subscheme Z of ZV ′,σ(v),

the henselization of X(v) along Z is isomorphic to the henselization of MV ′,σ(v)

along Z. For all V ′ ∈ C′, the completion of X(v) along the V ′-strata of X(v) is

isomorphic to the completion M̂V ′,S(v) of MV ′,S(v) along ZV ′(v).

Proof. As admissible blowups commute with flat base change, this follows

easily from Theorem 8.2.1.1. �

In Section 5.2 we have introduced a covering X1(pn)(v)→ X(v). We now

describe the boundary of X1(pn)(v), i.e., the complement of the inverse image

of Y(v) ⊂ X(v). Let C′ be the subset of C of totally isotropic spaces satisfying

ψ((Z/pnZ)g) ⊂ V ′⊥. We let C′ be the quotient of the disjoint union∐
V ′∈C′

C(V/V ′
⊥

)

by the equivalence relation induced by the inclusions C(V/V ′′⊥) ⊂ C(V/V ′⊥).

Clearly, Γ1(pn) acts on C′, and the polyhedral decomposition S induces a

polyhedral decomposition S ′ of C′ that is Γ1(pn)-admissible.

Let V ′ ∈ C′ of rank r. We have an exact sequence

0→ V ′/pnV ′ → V ′
⊥
/pnV ′

⊥ → V ′⊥/V ′ + pnV ′
⊥ → 0.

The image of ψ(Z/pnZg) in V ′⊥/V ′ + pnV ′⊥ is a totally isotropic subspace

of rank pg−r, which we denote by W . The map ψ also provides a section

s : W ↪→ V ′⊥/pnV ′⊥. By duality, ψ provides an isomorphism, which we again

denote by ψ:

ψ : (Z/pnZ)g 'W∨ ⊕ V/(pnV + V ′
⊥

).

To describe the local charts, we need some notation:

• YV ′(v) is the rigid fibre of YV ′(v).

• We let Hn,V ′ be the canonical subgroup of the universal abelian scheme AV ′

over YV ′(v). We denote by Y1(pn)V ′(v) the torsor IsomYV ′ (v)(W
∨, HD

n,V ′),

and we let ψV ′ be the universal trivialisation.

• Y1(pn)V ′(v) is the normalization of YV ′(v) in Y1(pn)V ′(v).

• Recall that there is an isogeny i : B(v)→ ArV ′ of degree a power of N . We

let ican : AV ′ → AV ′/Hn,V ′ be the canonical projection. We set

B1(pn)V ′ = B(v)×i,Ar
V ′ ,i

D
can

(AV ′/Hn,V ′)
r.
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The abelian scheme B1(pn)V ′ → Y1(pn)V ′ carries a universal diagram

V ′∨ // A′V

V ′∨ //

Id

OO

AV ′/Hn,V ′ ,

iDcan

OO

which is equivalent to the diagram

0 // TV ′ //

Id

��

G̃V ′

j
��

// AV ′

ican

��

// 0

0 // TV ′ // G̃′V ′
// AV ′/Hn,V ′

// 0.

The group Ker j is a lift to G̃V ′ [p
n] of Hn,V ′ .

Over the rigid fiber, we thus have Hn = TV ′ [p
n] ⊕ Ker j and HD

n =

V/(pnV + V ′⊥) ⊕ Ker jD. The map ψV ′ provides an isomorphism W∨ '
Ker jD. The map ψ now provides an isomorphism ψ : Z/pnZg ' HD

n .

• We define M1(pn)V ′(v), M1(pn)V ′,σ(v) and M1(pn)V ′,S′(v), Z1(pn)σ(v),

Z1(pn)V ′(v) by the fiber product of MV ′(v), MV ′,σ(v), MV ′,S′(v), Zσ(v),

ZV ′(v) with B1(pn)V ′ over BV ′ .

Proposition 8.2.1.3. The formal scheme X1(pn)(v) has a fine stratifi-

cation indexed by S ′/Γ1(pn) over a coarse stratification indexed by C′/Γ1(pn).

For all σ ∈ S ′, the corresponding strata is Z1(pn)V ′,σ(v). For any open affine

subscheme Z of Z1(pn)V ′,σ(v), the henselization of X1(pn)(v) along Z is iso-

morphic to the henselization of M1(pn)V ′,σ(v) along Z. For all V ′ ∈ C′, the

completion of X1(pn)(v) along the V ′-strata of X1(pn)(v) is isomorphic to the

completion ÿ�M1(pn)V ′,S′(v) of M1(pn)V ′,S′(v) along Z1(pn)V ′(v).

Proof. Over the rigid fiber, this is a variant of Theorem 8.2.1.1. In partic-

ular, we know that the rigid fiber of the local charts of level Γ1(pn) are correctly

described. It is now easy to check that our formal local charts of level Γ1(pn)

are normal, and as a result, they are the normalization of the formal local

charts of level Γ. Since normalization commutes with étale localization, we

conclude. �

Remark 8.2.1.4. The process of obtaining toroidal compactifications by

normalization is studied in [FC90, p. 128], in a different situation.

8.2.2. Projection to the minimal compactification. There is a projective

scheme X? called minimal compactification and a proper morphism ξ : X →
X?. Let us recall some properties of the minimal compactification:
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Theorem 8.2.2.1 ([FC90, Thm. V.2.7]). The minimal compactification

X? is stratified by C/Γ, and the morphism ξ is compatible with the stratification.

• For any V ′ ∈ C, the V ′-strata is YV ′ .

• For a geometric point x of the V ′ strata, we have÷OX?,x =
( ∏
λ∈SV ′∩C(V/V ′⊥)∨

H0
Ä’BV ′,x,L(λ)

ä)ΓV ′
,

where

• ÷OX?,x is the completion of the strict henselization of OX? along x;

• ’BV ′,x is the formal completion of BV ′ along its fiber over x;

• L(λ) is the invertible sheaf over BV ′ of λ-homogeneous functions

on MV ′ .

The Hasse invariant Ha descends to a function on the special fiber of X?.

We let X? be the completion of X along its special fiber. We denote by X?(v)

the p-adic completion of the normalization of the greatest open subscheme of

the blowup of X? along the ideal (pv,Ha) on which this ideal is generated by Ha.

Proposition 8.2.2.2. For all V ′ ∈ C′, the V ′-stratum of X?(v) is YV ′(v).

Proof. This follows from the fact that (Ha, pv) is a regular sequence in

YV ′ and in X?. This implies that the blowup along (Ha, pv) is in both cases a

closed subscheme of a relative one-dimensional projective space with equation

T Ha−Spv (where T , S are homogeneous coordinates). �

We have the following diagram:

X1(pn)(v)
η

%%

π4 // X(v)

ξ

��
X?(v).

We let X1(pn)(v)m, X?(v)m, M1(pn)V ′,σ(v)m, B1(pn)V ′(v)m, . . . be the

schemes obtained by reduction modulo $m from X1(pn)(v), M1(pn)V ′,σ(v),

B1(pn)V ′(v), . . . . We will also consider the projection η × 1: X1(pn)(v) ×
W(w)o → X?(v) × W(w)o. Finally, we use D to denote the boundary in

X1(pn), X1(pn)(v), . . . .

Theorem 8.2.2.3. Consider the following diagram for l, m ∈ N and

m ≥ l:

X1(pn)(v)l
i //

ηl
��

X1(pn)(v)m

ηm

��
X?(v)l

i′ // X?(v)m.



p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 675

Then we have the base change property

i′
∗
(ηm)∗w̃

†κo
w,m(−D) = ηl,∗w̃

†κo
w,l (−D).

In particular,
Ä
η∗w̃

†κo
w (−D)

ä
is a formal Banach sheaf over X?(v). Similarly,

(η × 1)∗
Ä
w̃†κ

oun

w (−D)
ä

is also a formal Banach sheaf over X?(v)×W(w)o.

Proof. The property is local for the fppf-topology on X?(v)m. Let x ∈
X?(v)m be a geometric point. We can write w̃†κ

o

w,m as an inductive limit of

coherent sheaves colimw̃†κ
o≤r

w,m by the discussion at the end of Section 8.1.6.

By the theorem on formal functions [Gro61, §4], and because direct images

commute with inductive limits, we have that

ηm,∗w̃
†κo
w,m(−D)

Ä⁄�X?(v)m,x
ä

= colimrH
0
Ä ¤�X1(pn)(v)m,x, w̃

†κo≤r
w,m (−D)

ä
,

where⁄�X?(v)m,x is the completion of the strict henselization of X?(v)m at x and¤�X1(pn)(v)m,x is the completion of X1(pn)(v)m along η−1
m (x). This completion

is isomorphic to a finite disjoint union of spaces ¤�M1(pn)V ′,S′(v)m,y/Γ1(pn)V ′ ,

where y is a geometric point in Y1(pn)V ′(v)m. This space fits in the following

diagram:¤�M1(pn)V ′,S′(v)m,y
h2//

h1
��

¤�M1(pn)V ′,S′(v)m,y/Γ1(pn)V ′

h3
��

// ¤�X1(pn)(v)m,x

¤�B1(pn)V ′(v)m,y
h4 // ¤�Y1(pn)V ′(v)m,y,

where ¤�B1(pn)V ′(v)m,y and ¤�M1(pn)V ′,S(v)m,y are the formal completions of

B1(pn)V ′(v)m andM1(pn)V ′,S(v)m over their fibers at y. We are thus reduced

to prove the following

Claim. The formation of the module

colimrH
0
Ä ¤�M1(pn)V ′,S′(v)m,y/Γ1(pn)V ′ , w̃

†κo≤r
w,m (−D)

ä
commutes with reduction modulo $l for l ≤ m.

We provide two proofs.

The first proof. We identify the module in the claim with

H0
(
Γ1(pn)V ′ , colimrH

0
Ä ¤�M1(pn)V ′,S′(v)m,y, h

∗
2w̃
†κo≤r
w,m (−D)

ä)
.

We remark that we have a formal semi-abelian scheme G̃V ′ over ¤�B1(pn)V ′(v)m,y,

extension of the universal g− r-dimensional formal abelian scheme AV ′ by the

r-dimensional formal torus “TV ′ := V ′ ⊗ “Gm. It admits a canonical subgroup

scheme Hn ⊂ G̃V ′ [p
n] extension of the canonical subgroup Hn,V ′ ⊂ AV ′ [p

n]
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by “TV ′ [pn] and, as explained in Propositions 4.2.1 and 4.2.2, the tautolog-

ical principal pn-level structure and the Hodge-Tate morphism for Hn pro-

vide a morphism HT: (Z/pnZ)g → ωG̃V ′
/pw. Thus, proceeding as in Proposi-

tion 4.3.1, we obtain a sheaf F ⊂ ωG̃V ′
and an isomorphism HTw : (Z/pnZ)g ⊗

O⁄�B1(pn)V ′ (v)m,y
−→ Fw. The Levi quotient of Γ1(pn)V ′ is a subgroup of GLg(V

′)

× GSp(V ′⊥/V ′). We let Γ′1(pn)V ′ be the projection of Γ1(pn)V ′ onto its

GLg(V
′) factor. As ¤�B1(pn)V ′(v)m,y classifies extensions by AV ′ and “TV ′ with

a level N -structure, the group Γ′1(pn)V ′ acts on “TV ′ , on ¤�B1(pn)V ′(v)m,y and

on F and we get an induced action of the group Γ1(pn)V ′ through the nat-

ural morphism Γ1(pn)V ′ → Γ′1(pn)V ′ . We thus obtain an action of Γ1(pn)V ′

on F so that HTw is Γ1(pn)V ′-equivariant. The functoriality of F and HTw

implies that their base change via h1 coincide with the base change via h2

of the sheaf F and the map HTw for the universal degenerating semi-abelian

scheme over ¤�X1(pn)(v)m,x. As in Section 4.5 we get an affine formal scheme

IW+
w,m −→ ¤�B1(pn)V ′(v)m,y, with an equivariant action of Γ1(pn)V ′ , such that

its base change via h1 is the reduction modulo $m of the base change via h2 of

the formal scheme IW+
w naturally defined over ¤�X1(pn)(v)m,x. Taking κ′ invari-

ant functions on IW+
w,m as in Definition 5.2.2.3, we introduce a quasi-coherent

sheaf w̃†κ
o

w,m over ¤�B1(pn)V ′(v)m,y, with an equivariant action of Γ′1(pn)V ′ and

hence of Γ1(pn)V ′ . As explained in Section 8.1.6, we can write w̃†κ
o

w,m as an in-

ductive limit of coherent sheaves colimrw̃
†κo≤r
w,m . Then, each colimrh

∗
1w̃
†κo≤r
w,m is

naturally a Γ1(pn)V ′-equivariant sheaf through the diagonal action of Γ1(pn)V ′

on colimrw̃
†κo≤r
w,m and on O ¤�M1(pn)V ′,S(v)

m,y

. Due to the definition of w̃†κ
o≤r

w,m in

Section 8.1.6 it follows that we have a Γ1(pn)V ′-equivariant isomorphism of

quasi-coherent sheaves over ¤�M1(pn)V ′,S′(v)m,y:

colimrh
∗
2

Ä
w̃†κ

o≤r
w,m

ä
= colimrh

∗
1

Ä
w̃†κ

o≤r
w,m

ä
.

By the projection formula, we have that

colimrH
0
Ä ¤�M1(pn)V ′,S′(v)m,y/Γ1(pn)V ′ , w̃

†κo≤r
w,m (−D)

ä
= H0

(
Γ1(pn)V ′ , colimrH

0
Ä ¤�M1(pn)V ′,S′(v)m,y, h

∗
1w̃
†κo≤r
w,m (−D)

ä)
=
(
colimr

∏
λ∈S′V ∩C(V/V ′⊥)∨,λ>0

H0
Ä ¤�B1(pn)V ′(v)m,y,L(λ)⊗ w̃†κ

o≤r
w,m

ä)Γ1(pn)V ′
.

The action of Γ1(pn)V ′ on SV ′ and on the product above factors via Γ′1(pn)V ′ .

Furthermore, Γ′1(pn)V ′ acts freely on the elements λ ∈ S′V ∩ C(V/V ′⊥)∨ that

are definite positive. (Indeed, the stabilizer of an element would be a compact
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group, hence finite, but Γ′1(pn)V ′ has no finite subgroups because of the prin-

cipal level N structure.) Let S0 be a set of representative of the orbits. We

then have(
colimr

∏
λ∈S′V ∩C(V/V ′⊥)∨,λ>0

H0
Ä ¤�B1(pn)V ′(v)m,y,L(λ)⊗ w̃†κ

o≤r
w,m

ä)Γ1(pn)V ′

= colimr

∏
λ∈S0

H0
Ä ¤�B1(pn)V ′(v)m,y,L(λ)⊗ w̃†κ

o≤r
w,m

ä
.

So it remains to see that the formation of H0
Ä ¤�B1(pn)V ′(v)m,y,L(λ) ⊗

w̃†κ
o≤r

w,m

ä
commutes with reduction modulo $l for l ≤ m. We have an exact

sequence of sheaves over ¤�B1(pn)V ′(v)m,y:

0→ L(λ)⊗ w̃†κ
o≤r

w,m−l
$l→ L(λ)⊗ w̃†κ

o≤r
w,m → L(λ)⊗ w̃†κ

o≤r
w,l → 0.

By induction, we may assume that l = m− 1. It is enough to show that

H1
Ä ¤�B1(pn)V ′(v)1,y,L(λ)⊗ w̃†κ

o≤r
w,1

ä ∼= 0.

Note that L(λ), for λ ∈ S0, is a very ample sheaf on the abelian scheme

B1(pn)V ′(v), due to the principal levelN -structure withN ≥ 3; see the proof of

[FC90, Thm. V.5.8]. The vanishing of the cohomology follows by the vanishing

theorem of [Mum70, §III.16], the theorem of formal functions [Gro61, §4] and

the fact that w̃†κ
o≤r

w,1 is an iterated extension of the trivial sheaf as seen by

Corollary 8.1.6.2 and its proof.

The second proof. In order to prove the claim, it suffices to consider the

case l = m − 1. From the local description of the sheaves w̃†κ
o≤r

w,m (−D) (see

Section 8.1.6) it follows that the kernel of colimrw̃
†κo≤r
w,m → colimrw̃

†κo≤r
w,m−1 is

isomorphic to w̃†κ
o

w,1. The latter is an inductive limit of coherent sheaves that

are extensions of the trivial sheaf OX1(pn)(v)1
by Corollary 8.1.6.2. To prove the

claim it then suffices to show that R1η∗OX1(pn)(v)1
(−D) = 0, and this follows

from Proposition 8.2.2.4 below.

The proof of the second part of the proposition goes exactly along the

same lines since the family of sheaves w̃†κ
oun

w,1 is trivial over the weight space by

Corollary 8.1.5.4. �

Recall that X1(pn)(v) is defined by the choice of a smooth and projective

admissible polyhedral decomposition in the sense of [FC90, Def. V.5.1]. In

particular, for every V ′ as above, there exists a Γ1(pn)V ′-admissible polarization

function h : CV ′ → R, i.e., a function satisfying

(i) h(x) > 0 if x 6= 0 and h(tx) = th(x) for all t ∈ R≥0 and every x ∈ CV ′ .
(ii) h is upper convex; namely, h

Ä
tx+ (1− t)y

ä
≥ th(x) + (1− t)h(y) for every

x and y ∈ CV ′ and every 0 ≤ t ≤ 1.
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(iii) h is S-linear; i.e., h is linear on each Σ ∈ S.

(iv) h is strictly upper convex for S; i.e, S is the coarsest among the fans

S ′ of CV ′ for which h is S ′-linear. Equivalently, the closure of the top

dimensional cones of S are exactly the maximal polyhedral cones of CV ′

on which h is linear.

(v) h is Z-valued on the set of N times the subset of CV ′ consisting of sym-

metric semi-definite bilinear and integral valued forms on V/V ′⊥.

Consider the morphism η : X1(pn)(v) → X ?(v) from a toroidal to the

minimal compactification. Then,

Proposition 8.2.2.4. We have Rqη∗OX1(pn)(v)(−D) = 0 for every q ≥ 1.

Proof. We use the notation of the proof of Theorem 8.2.2.3. We write“ZV ′ := ¤�M1(pn)V ′,S′(v)1,y and ‹ZV ′ := “ZV ′/Γ1(pn)V ′ to simplify the nota-

tion. By the theorem of formal functions [Gro61, §4] it suffices to prove that

Hq
Ä‹ZV ′ ,OẐV ′

(−D)
ä

= 0 for every q ≥ 1.

We recall the construction of “ZV ′ . We have fixed a smooth Γ1(pn)V ′-

admissible polyhedral decomposition S of the cone CV ′ := C(V/V ′⊥) of sym-

metric semi-definite bilinear forms on V/V ′⊥ ⊗R with rational radical. Every

Σ ∈ S defines an affine relative torus embedding ZΣ over the abelian scheme

B1(pn)V ′(v)1,y, which we view over the spectrum of the local ring underlying¤�Y1(pn)V ′(v)1,y. The ZΣ’s glue to define a relative torus embedding ZV ′ stable

for the action of Γ1(pn)V ′ . For every Σ, we let WΣ :=
∑
ρ∈Σ(1)o Dρ be the

relative Cartier divisor defined by the set Σ(1)o of one-dimensional faces of Σ

contained in the interior CoV ′ of the cone CV ′ . Put WV ′ := ∪ΣWΣ. Write “ZΣ

(resp. “ZV ′) for the formal scheme given by the completion of ZΣ (resp. ZV ′)

with respect to the ideal OZΣ

Ä
−WΣ

ä
(resp. OZV ′

Ä
−WV ′

ä
). Then, “ZV ′ = ∪Σ

“ZΣ.

Fix a Γ1(pn)V ′-admissible polarization function h : CV ′ → R≥0. As in

[FC90, Def. V.5.6], we define

D′Σ,h := −
∑

ρ∈Σ(1)

aρDρ, D′h := ∪ΣDΣ,h,

where the sum is over the set Σ(1) of all one-dimensional faces of Σ (not simply

over the set Σ(1)o as in the definition of WΣ). More explicitly, for every Σ ∈ S
and every ρ ∈ Σ(1), there exists a unique primitive integral element n(ρ) ∈ Σ

such that ρ = R≥0nρ. We then set aρ := h
Ä
n(ρ)

ä
. As h(x) 6= 0 if x 6= 0 and

h(x) ∈ Z for integral elements x ∈ CV ′ , we deduce that aρ is a positive integer

for every Σ and every ρ ∈ Σ(1). Moreover, the Cartier divisor D′h of ZV ′ is

Γ1(pn)V ′-invariant.

Take a positive integer s. As the set of integers {aρ} is Γ1(pn)V ′-invariant,

it is finite. Thus there exists ` ∈ Z such that 0 < saρ < ` for every ρ. Recall
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that given a Q-divisor E :=
∑
ρ eρDρ, with eρ ∈ Q, one defines the “round

down” Cartier divisor bEc :=
∑
ρbeρcDρ by setting beρc to be the smallest

integer ≤ eρ. In particular, we compute

b`−1sD′hc =
∑

ρ∈Σ(1)

−Dρ := −D,

where D defines the boundary of ZΣ. Multiplication by ` on the cone CV ′

preserves the polyhedral decomposition S and for every Σ ∈ S defines a finite

and flat morphism Φ`,Σ : ZΣ → ZΣ over B1(pn)V ′(v)1,y. As Φ∗`,Σ(WΣ) = `WΣ,

the morphism Φ`,Σ induces a morphism on the completions with respect to

the ideal OZΣ
(−WΣ) and we get finite and flat morphisms “Φ`,Σ : “ZΣ −→ “ZΣ.

They glue to provide a finite flat, Γ1(pn)V ′-equivariant morphism of formal

schemes “Φ` : “ZV ′ → “ZV ′ over ¤�B1(pn)V ′(v)1,y. After passing to the quotients by

Γ1(pn)V ′ , we get a finite and flat morphism of formal schemes‹Φ` : ‹ZV ′ → ‹ZV ′ .
As sD′h−Φ∗` (−D) =

∑
ρ(`−saρ)Dρ is an effective Cartier divisor, by adjunction

we have natural inclusions of invertible sheaves

ι` : OZV ′ (−D)→ Φ`,∗
Ä
OZV ′ (sD

′
h)
ä
, ι̂` : O

ẐV ′
(−D)→ “Φ`,∗

Ä
O
ẐV ′

(sD′h)
ä
.

In [CLS11, Lemmas 9.2.6 and 9.3.4] a canonical splitting of ι` as OZV ′ -modules

is constructed in terms of the cone CV ′ and the integers {aρ|ρ ∈ Σ(1)}. In par-

ticular, it is Γ1(pn)V ′-equivariant and it defines a Γ1(pn)V ′-equivariant splitting

of ι̂` as O
ẐV ′

-modules after passing to completions. Taking the quotient un-

der Γ1(pn)V ′ , we get a split injective map ι̃` : O
Z̃V ′

(−D) → ‹Φ`,∗OZ̃V ′
(sD′h) of

O
Z̃V ′

-modules. Taking cohomology for every q ∈ N, we get a split injective

map

Hq
Ä‹ZV ′ ,OZ̃V ′

(−D)
ä
→ Hq

Ä‹ZV ′ ,‹Φ`,∗
Ä
O
Z̃V ′

(sD′h)
ä ∼= Hq

Ä‹ZV ′ ,OZ̃V ′
(sD′h)

ä
.

If we show that there exists s ∈ N such that Hq
Ä‹ZV ′ ,OZ̃V ′

(sD′h)
ä

= 0 for every

q ≥ 1, we are done. This follows if we prove that there exists s such that

O
Z̃V ′

(sD′h) is a very ample invertible sheaf.

It follows from [FC90, Thm. V.5.8] that the map η : X1(pn)(v)→ X ?(v) is

the normalization of the blowup of X ?(v) defined by a sheaf of ideals J such

that η∗(J ) restricted to ‹ZV ′ is O
Z̃V ′

(dD′h) for a suitable d. In particular, as

η is the composite of a finite map and a blowup, the sheaf η∗(J ) is ample

relatively to η. We conclude that O
Z̃V ′

(dD′h) is an ample sheaf on ‹ZV ′ . In

particular, there exists a large enough multiple s of d so that O
Z̃V ′

(sD′h) is

very ample, as claimed.
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Alternatively, to prove that O
Z̃V ′

(D′h) is ample, it suffices to prove that

its restriction to the boundary ∂‹ZV ′ is ample. As ∂‹ZV ′ = WV ′/Γ1(pn)V ′ is

proper over ◊�Y1(pn)V ′(v)m,y, it suffices to prove ampleness after passing to the

residue field k(y) of ◊�Y1(pn)V ′(v)m,y. It then follows from the Nakai-Moishezon

criterion for ampleness [Kle65] that it suffices to prove that the restriction of

O
ẐV ′

(D′h) to the fiber of the boundary WV ′ of “ZV ′ over y is ample in the

sense that the global sections of O
ẐV ′⊗k(y)

(dD′h) for d ≥ 1 form a basis of

the topology of WV ′ ⊗ k(y). (See the footnote to [FC90, Def. 2.1, appendix].)

This follows if we prove the stronger statement that OZV ′ (dD
′
h) is very ample

for every d ≥ 1, i.e., that the elements of H0
Ä
ZV ′ ,OZV ′ (dD

′
h)
ä

form a basis

of the Zariski topology of ZV ′ . If f : ZV ′ → B1(pn)V ′(v)1,y is the structural

morphism, then f∗
Ä
OZV ′ (dD

′
h)
ä

= ⊕λ≥dhL(λ), where the sum is taken over all

integral elements λ ∈ SV ′ ∩ C(V/V ′⊥)∨ such that for every Σ ∈ S and every

ρ ∈ Σ, we have λ(ρ) ≥ dh(ρ); see [Dem70, §IV.4]. In particular,

H0
Ä
ZV ′ ,OZV ′ (dD

′
h)
ä

= ⊕λ≥dhH0
Ä
B1(pn)V ′(v)1,y,L(λ)

ä
.

Assuming conditions (i), (iii) and (v) in the definition of polarization function

given above, then condition [Dem70, Cor. IV.4.1(iii)] is equivalent to con-

ditions (ii) and (iv) above. As dh is also a polarization function, we con-

clude from [Dem70, Cor. IV.4.1(i) and proof of Thm. IV.4.2] that the mor-

phism ZV ′ → Proj
(
⊕sf∗

Ä
OZV ′ (dD

′
h)
ä⊗s)

of schemes over B1(pn)V ′(v)1,y de-

fined by f∗
Ä
OZV ′ (dD

′
h)
ä

is a closed immersion. The sheaf L(λ) is very am-

ple on the abelian scheme B1(pn)V ′(v)1,y for every integral, nonzero element

λ ∈ SV ′ ∩ C(V/V ′⊥)∨ due to the principal level N -structure with N ≥ 3; see

the proof of [FC90, Thm. V.5.8]. As the condition λ ≥ dh implies λ > 0, the

very ampleness of OZV ′ (dD
′
h) follows. �

8.2.3. Applications of the base change theorem : the proof of Proposi-

tion 8.2.3.3. We let U = (Vi)1≤i≤r be an affine covering of X?(v). We let

i = (i1, i2, . . . , in′) be a multi-index with 1 ≤ i1 < · · · < in′ ≤ r. We

let Vi be the intersection of Vi1 , Vi2 , . . . ,Vin′ . This is again an affine for-

mal scheme. We denote by Vi,m the scheme obtained by reduction modulo

$m. We let Mi,m = H0(Vi,m × W(w)om, (η × 1)∗w̃
†κoun

w,m (−D)) and Mi,∞ =

H0(Vi ×W(w)o, (η× 1)∗w̃
†κoun

w (−D)) = limmMi,m. Finally, let A be the alge-

bra of W(w)o.

Corollary 8.2.3.1. The module Mi,∞ is isomorphic to the p-adic com-

pletion of a free A-module.

Proof. The module Mi,∞ is p-torsion free and the reduction map Mi,∞ →
Mi,1 is surjective. The A/$A-module Mi,1 is free by Corollary 8.1.5.4. Fix
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a basis (ēi)i∈I for this module. We lift the vectors ēi to vectors ei in Mi,∞.

We let ”AI be the p-adic completion of the module AI . Now consider the map”AI → Mi,∞ that sends (ai)i∈I ∈ ”AI to
∑
i aiei. We claim that this map is

an isomorphism. It is surjective by the topological Nakayama lemma. It is

injective, for if
∑
i aiei is 0 and (ai)i∈I 6= 0, there is n ∈ N, (a′i)i∈I ∈ ”AI

such that $na′i = ai and an index i0 such that a′i0 /∈ $A. Since Mi,∞ is $-

torsion free, we have
∑
i a
′
iei = 0, and reducing this relation modulo $ we get

a contradiction. �

Set M=H0
Ä
X1(pn)(v)×W(w)o, w̃†κ

oun

w (−D)
ä

[p−1] and Mi=Mi,∞[p−1].

Corollary 8.2.3.2. The module M is a projective Banach-A[1
p ]-module.

For any κ∈W(w)o, the specialization map M→H0
Ä
X1(pn)(v), w̃†κ

o

w (−D)
ä
[p−1]

is surjective.

Proof. Notice that w̃†κ
oun

w (−D) is a small formal Banach sheaf thanks

to Corollary 8.1.6.2. It follows from Propositions 8.2.2.4 and A.1.3.1 that

(η × 1)∗w̃
†κoun

w (−D) is also a small formal Banach sheaf. Since X ?(v)×Wo is

affinoid and X?(v) is a normal integral formal scheme by construction, Theo-

rem A.1.2.2 implies that the Chech complex associated the covering U of X?(v)

provides a resolution of the module M by the projective A-modules Mi and as

a result M is projective.

We now prove the surjectivity of the specialization map. Let Pκo be the

maximal ideal of κo inA[p−1]. We consider the Koszul resolution ofA[p−1]/Pκo :

Ko(κo) : 0→A[p−1]→A[p−1]g→ · · · →A[p−1]g→A[p−1]→A[p−1]/Pκo → 0.

For any multi-index i, the tensor product Ko(κo) ⊗ (η × 1)∗w̃
†κoun

w (−D)
Ä
Vi

ä
is a resolution of η∗w̃

†κo
w (−D)

Ä
Vi

ä
[p−1] by A-modules that are isomorphic to

direct sums of the A-modules (η × 1)∗w̃
†κoun

w (−D)
Ä
Vi

ä
[p−1].

We consider the following double complex, obtained by taking the Chech

complex Ko(κ) ⊗ (η × 1)∗w̃
†κoun

w (−D)
Ä
Vi

ä
attached to the covering U = (Vi)

(we think of Ko(κ)⊗(η×1)∗w̃
†κoun

w (−D)
Ä
Vi

ä
as a vertical complex for fixed i):

0→ Ko(κo)⊗ (η × 1)∗w̃
†κoun

w (−D)
Ä
X?(v)

ä
−→ ⊕iKo(κo)⊗ (η × 1)∗w̃

†κoun

w (−D)
Ä
Vi

ä
→ · · · .

For any multi-index i, the complex Ko(κo)⊗(η×1)∗w̃
†κoun

w (−D))
Ä
Vi

ä
is exact,

as remarked above. All the rows of the double complex are exact by the

acyclicity Theorem A.1.2.2. It follows that the first column is also exact,

proving the claim on specialization. �

We now prove Proposition 8.2.3.3. Let B be the algebra of rigid analytic

functions on W(w).
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Proposition 8.2.3.3.

(a) The module H0(XIw(v) × W(w), ω†κ
un

w (−D)) is a projective Banach

B-module;

(b) for every κ ∈ W(w), the specialization map

H0(XIw(v)×W(w), ω†κ
un

w (−D))→ H0(XIw(v), ω†κw (−D))

is surjective.

Proof. We use the notation of the Corollary 8.2.3.2. By definition,

H0(XIw(v)×W(w), ω†κ
un

w (−D)) =
Ä
M ⊗A[ 1

p
] B(−κun′)

äB(Z/pnZ)
.

Here, B(−κun′) is the free B-module with action of B(Z/pnZ)Bw via the char-

acter −κun′ . Then, M ⊗A B(−κun′) is viewed as a B(Z/pnZ)Bw-module with

diagonal action. This action factors through the group B(Z/pnZ), and the

invariants are precisely H0(XIw(v) × W(w), ω†κ
un

w (−D)). Thus, this module

is a direct factor in a projective B-module by Corollary 8.2.3.2, so it is pro-

jective. Now, let κ ∈ W(w). We let κo be its image in W(w)o. Let mκ be

the maximal ideal of κ in B. Set Mκo = H0
Ä
X1(pn)(v), w̃†κ

o

w (−D)
ä
[p−1]. The

specialization map M → Mκo is surjective thanks to Corollary 8.2.3.2. The

map M ⊗A B(−κun)→Mκo ⊗A B/mκ(−κ) is surjective, and the mapÄ
M ⊗A B(−κun′)

äB(Z/pnZ) →
Ä
Mκo ⊗A B/mκ(−κ′)

äB(Z/pnZ)

is still surjective since B(Z/pnZ) has no higher cohomology on Qp-modules.

As

H0(XIw(v), ω†κw (−D)) =
Ä
Mκo ⊗A B/mκ(−κ′)

äB(Z/pnZ)
,

the claim concerning the specialization follows. �

8.3. Properties of the morphism from the eigenvariety to the weight space.

We end with some comments concerning the unramifiedness hypothesis in The-

orem 1.2. We would like to rise the following question.

Open problem 1. Let xf ∈ E be a classical point. Is the map w : E → W
unramified at xf ?

When g = 1, the tame level is trivial, f is of weight k and v(Up(xf )) 6=
k−2

2 , Coleman and Mazur have proved that the answer is positive (see [CM98,

Cor. 7.6.3]). Coleman and Mazur’s approach is purely Hecke theoretic. It

relies on the duality between the Hecke algebra and the cuspidal modular

forms provided by the first Fourier coefficient in the q-expansion. This duality

does not exist when g ≥ 2. When g = 1, M. Kisin ([Kis03, Thm. 11.10]) proved

that the answer is positive in many cases using Galois deformation theoretic

methods. Moreover, G. Chenevier studied this problem for certain unitary

groups in [Che11] and also obtained a positive answer in many cases. His
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method uses multiplicity results for automorphic forms on unitary groups and

some properties of the Galois representations attached to these automorphic

forms. As he suggested to us, his results should hold in our (Siegel modular

forms) case if we knew certain facts about the automorphic forms for GSp2g. To

conclude this paper, we state a result for level 1 forms and g = 2 in this spirit.

Remark 8.3.1. In the paper at hand, we have so far worked using an

auxiliary tame level N ≥ 3 structure in order to have the representability

of the Siegel variety. It is easy to define the level 1 eigenvariety as a closed

subvariety of the level N eigenvariety as follows.

We freely use the notation of Section 8.1.1 and fix an integer N ≥ 3. Let

Mv,w,cusp be the A-Banach module of v-overconvergent, w-analytic cuspidal

modular forms of tame level N . This module carries an action of the finite

group GSp2g(Z/NZ), which commutes with all Hecke operators of level prime

to Np. Let Nv,w,cusp be the direct factor of Mv,w,cusp fixed by GSp2g(Z/NZ).

We define Nn,w,cusp to be the A-Banach module of v-overconvergent, w-analytic

cuspidal modular forms of tame level 1. We remark that taking invariants by

this finite group commutes with any base change on A (the weight space), so

there is no ambiguity in the definition and, moreover, Nv,w,cusp is independent

on the choice of N . One can apply the recipe of Section 8.1.2 to Nv,w,cusp in

order to obtain the tame level 1 spectral variety and the tame level 1 eigenva-

riety. Finally, let us remark that the classicity theorem holds for tame level 1

forms as well. Indeed, let f be a classical form of level N whose restriction to

the space of overconvergent, locally analytic modular forms has tame level 1

(or equivalently, is invariant under GSp2g(Z/NZ)). Then f has tame level 1.

Proposition 8.3.2. Let E be the tame level 1 eigenvariety for GSp4.

Let xf ∈ E be a classical point of weight (k1, k2) ∈ Z2 that satisfies the slope

condition

v(Θf (Up,1)) < k2 − k1 + 1 and v(Θf (Up,2)) < k2 − 3.

Let π(f) be an irreducible constituant of the automorphic representation gen-

erated by f . Assume that π(f) is tempered and that π(f)p is an unramified

principal series with distinct Satake parameters. Then w is étale at xf .

Proof. We recall that the eigenvariety and the map w can be described as

follows, using affinoid neighborhoods of xf and w(xf ):

• Spm A is an admissible affinoid open of W containing w(xf ).

• M is a free A-module of finite rank. It consists of locally analytic overcon-

vergent finite slope modular forms and f ∈M ⊗A k(w(xf )).

• C is a finite A-algebra (a quotient of the Hecke algebra) that acts faithfully

on M , and Spm C is an admissible affinoid open neighborhood of xf in E .



684 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

Because local rings in rigid geometry are henselian, we may also assume

that xf is the only point of Spm C over w(xf ). Let Πf be the global L-packet

associated to f . By [Art04, theorem on p. 76], all π ∈ Πf are tempered and

occur with multiplicity one. Now, M ⊗A k(w(xf )) is included in the space

of classical cuspidal forms of weight (k1, k2) and Iwahori level at p by the

classicity theorem. Moreover, it consists of the generalized eigenvectors for

Θf . We claim that M has dimension 1. This implies that C = A, and the

conclusion of the proposition follows. Let K =
∏
`6=p GSp4(Z`)× I, with I the

Iwahori subgroup of GSp4(Zp). Let π ∈ Πf such that πK 6= 0. For such a π,

π` is an unramified principal series for all ` 6= p and must be equal to π(f)`.

At p, πp is tempered, has Iwahori fixed vectors, and πIp contains an eigenvector

for Up,1 and Up,2 with eigenvalues Θf (Up,1) and Θf (Up,2). An examination of

Tables 1, 2 and 3 of [Sch05] tells us that if πp had no spherical vectors, this

would contradict the temperdness of π(f)p. It follows that πp = π(f)p. Finally,

π∞ is a holomorphic discrete series. Thus π = π(f) is uniquely determined.

It follows that M ⊗A k(w(x)) can be identified with a subspace of π(f)Ip. The

vector space π(f)Ip has dimension 8 and by assumption, the operators Up,1 and

Up,2 act semi-simply on it with distinct systems of eigenvalues. The character

Θf encodes the choice of one system of eigenvalues (the p-stabilisation of f)

and thus, the generalized eigenspace for Θf in π(f)Ip is one dimensional. In

other words, M ⊗A k(w(x)) is generated by f . �

Appendix A. Banach and formal Banach sheaves

A.1. Formal Banach sheaves and their properties.

A.1.1. Definition. Let X be a flat formal scheme of finite type over Spf OK .

Let $ be a uniformizing element in OK . We denote by Xn the scheme over

Spec OK/$nOK deduced from X by reduction modulo $n.

Definition A.1.1.1. A formal Banach sheaf on X is a family of quasi-

coherent sheaves F = (Fn)n∈N where

(1) Fn is a sheaf on Xn, flat over OK/$n;

(2) for all n ≥ m, if i : Xm ↪→ Xn is the closed immersion, we have i∗Fn = Fm.

For U ↪→ X an open formal subscheme, we set F(U) := limn Fn(U). It is

the sheaf on X defined by the inverse limit limn Fn.

If f : X′ → X is a morphism of formal schemes and if F is a formal Banach

sheaf over X, then f∗F := (f∗Fn)n is readily verified to be a formal Banach

sheaf.

We say that a formal Banach sheaf F =
Ä
Fn
ä
n∈N on X is a sheaf of flat

OX-modules if Fn is a flat OXn-module for every n ∈ N.
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A.1.2. An acyclicity criterion for formal Banach sheaves. Let X be a flat

formal scheme, locally of finite type over Spf OK . We say that X is normal (re-

spectively integral) if there exists a covering by open affine formal subschemes

Ui = SpfAi such that Ai is a normal ring (respectively an integral domain).

We say that X is quasi-projective if there exists an immersion (namely, an

isomorphism onto an open formal subscheme of a closed formal subscheme) of

$-adic formal schemes from X into the formal scheme associated to PnOK .

We now introduce a finiteness condition.

Definition A.1.2.1. We say that a formal Banach sheaf F is small if there

exists a coherent sheaf G on X1 such that

(a) F1 can be written as the direct limit of coherent sheaves limj∈N F1,j ;

(b) F1,0 and for every j ∈ N, the quotient F1,j+1/F1,j are direct summands

of G .

The following acyclicity result justifies the definition of a small formal

Banach sheaf.

Theorem A.1.2.2. Let X be an integral, normal, quasi-projective formal

scheme over Spf OK such that the rigid analytic generic fiber X of X is an

affinoid. Let F be a small formal Banach sheaf on X. Let U = {Ui}i∈I be a

finite, open, affine covering of X. Then the augmented Chech complex tensored

with K ,

C•(F)[1/p] : 0→ H0(X,F)[1/p]→ ⊕iH0(Ui,F)[1/p]→ · · · ,

is exact.

Proof. (1) Assume first that there exists a projective morphism of formal

schemes γ : X→ Z with Z = SpfA affine formal scheme, where A is a flat and

topologically of finite type OK-algebra. Let L be an ample invertible sheaf on

X relatively to Z such that Hi
Ä
X1,G ⊗ L1

ä
= 0 for all i > 0. It follows that

Hi
Ä
X1,F1,j ⊗ L1

ä
= 0 for all i > 0 and j ≥ 0, and hence, Hi

Ä
X1,F1 ⊗ L1

ä
= 0

for all i > 0. As the cohomology groups Hi
Ä
X1,F1 ⊗ L

ä
are computed by the

Chech complex

C•
Ä
F1 ⊗ L1

ä
: 0→ H0

Ä
X1,F1 ⊗ L1

ä
→ ⊕iH0

Ä
Ui,1,F1 ⊗ L1

ä
→ · · · ,

it follows that C•
Ä
F1 ⊗ L1

ä
is exact. Moreover, we have

C•
Ä
F1 ⊗ L1

ä ∼= C•
Ä
F ⊗ L

ä
⊗OK OK/$OK ,

and as C•
Ä
F⊗ L

ä
is a complex of flat and $-adically complete and separated

OK-modules, it follows that it is exact.

Let L be the invertible sheaf on X associated to L. We denote H0(X ,L)

= L and H0(X ,OX ) = B. As X is an affinoid and L is coherent, L is the
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sheaf associated to the B-module L. It follows that L is a projective, rank one

B-module. Moreover, since X1 is quasi-projective, it is separated as a scheme

and, therefore, all the opens Ui1,i2,··· ,ik appearing in the Chech complex are

affine. It follows that we have a natural isomorphism of B-modules,

C•(F⊗ L)[1/p] ∼= C•(F)[1/p]⊗B L,

which implies the claim.

(2) We now show that, under the assumptions of the theorem, there ex-

ists a projective morphism of formal schemes γ : X → Z as claimed. Since

X is assumed to be affinoid, there exits an affine formal scheme Z = SpfA

with A flat and topologically of finite type as OK-algebra such that X is the

associated rigid analytic fiber. In particular, using Raynaud’s description of

quasi-compact and quasi-separated rigid varieties as the category of formal

schemes localized with respect to admissible blowups, we deduce that there

exits a formal scheme Y and admissible blowups f : Y→ Z and g : Y→ X. In

particular, the rigid analytic fibers of f and g are isomorphisms.

Let U ⊂ X be an open affine formal scheme with U = SpfC and C

an integral normal domain. Since g is an admissible blowup, its restriction

g−1(U) → U is the map of formal schemes associated to an algebraic blowup

of schemes g̃ : YU → U = Spec(C). As C is normal and g̃ is birational, then

g̃∗
Ä
OYU
ä

= OU by Zariski’s Main Theorem. Furthermore, g̃ is surjective as

its image is closed and dense since U is irreducible. This implies that g is

surjective as a map of topological spaces and that g∗
Ä
OY

ä
= OX. We conclude

that the map f factors via g, i.e., that there exists a morphism h : X→ Z such

that f = h ◦ g; it is defined on each formal affine subscheme U = SpfC of X by

the map of OK-algebras

A→ C = OX(U)→ g∗
Ä
OY

ä
(U) = OY

Ä
g−1(U)

ä
defined by the map of ringed spaces f .

The map of schemes h1 : X1 → Z1 := Spec(A/$A), defined by h modulo

$, is separated and of finite type as X1 is quasi-projective over k. It is also

universally closed as f is projective and, hence, universally closed, and g is

surjective. We conclude that h1 is proper. Since X is quasi-projective over

OK , then h factors via an immersion into the formal scheme associated to PnA,

and by the properness of h1 it is a closed immersion. Thus h is projective.

�

A.1.3. Direct images of formal Banach sheaves. Let φ : X → Y be a

proper morphism between two flat formal schemes, locally of finite type over

Spf OK . As before we denote by Xn and Yn the schemes obtained by reduction

modulo $n and by φn : Xn → Yn the induced map.
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Let F = (Fn)n∈N be a small formal Banach sheaf on X. In particular, there

exists a coherent sheaf G on X1 such that F1 is the direct limit of coherent

sheaves limj∈N F1,j and F1,0 and, for every j ∈ N, the quotients F1,j+1/F1,j are

direct summands of G .

For all n ≥ m, we have the following cartesian diagram:

Xn
i //

φn
��

Xm

φm
��

Yn
j // Ym.

Proposition A.1.3.1. Assume that for all n ≥ m, we have the base

change property
j∗
Ä
φm,∗Fm

ä
' φn,∗Fn

and that
Riφ1,∗G = 0∀ i ≥ 1.

Then φ∗F is a small formal Banach sheaf.

Proof. Indeed, φ∗F =
Ä
φn,∗Fn

ä
n∈N is a formal Banach sheaf. Furthermore,

φ1,∗F1 = limn φ1,∗F1,n and, moreover, φ1,∗F1,n and φ1,∗G are coherent for all n.

By induction on i one proves that Riφ1,∗F1,n = 0 for every n and every i ≥ 1.

This implies that φ1,∗F1,n+1/φ1,∗F1,n
∼= φ1,∗

Ä
F1,n+1/F1,n

ä
and the latter is a

direct summand in φ1,∗G . The claim follows. �

A.2. Banach sheaves.

A.2.1. Banach modules. Let A be a K-affinoid algebra equipped with a

norm | |, and let M be an A-module. We say that M is a normed A module

if there is a norm function | | : M → R≥0 such that

(1) |m| = 0 for some m ∈M implies that m = 0;

(2) |m+ n| ≤ sup{|m|, |n|} for every m and n ∈M ;

(3) |am| ≤ |a||m| for every a ∈ A and every m ∈M .

If | | satisfies only conditions (2) and (3), we call it a semi-norm. We say

that M is a Banach A-module if M is a complete normed A-module. It may

be useful to recall the open mapping theorem:

Theorem A.2.1.1 ([Bou81, Chap. I, §3.3, Thm. 1]). A surjective contin-

uous map φ : M → N between Banach A-modules is open.

If (M, | |) is a Banach A-module, then any other norm | |′ on M inducing

the same topology on M is equivalent to | |. For this reason, from now on, we

will not consider that our Banach modules are equipped with a specific norm.

If M is an A-module, and if A0 is an open and bounded sub-ring of A and

M0 is p-adically complete sub-A0-module of M such that M0[1/p] = M , then

M is naturally an A-Banach module, with unit ball M0.
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If M and M ′ are two A-Banach modules, we define an A-Banach module

M⊗̂AM ′ as follows. Let | | and | |′ be norms on M andM ′. Denote byM⊗̂AM ′
the separation and completion of the semi-normed A-module M ⊗AM ′, where

the semi-norm of an element x is the infimum over all the expressions x =∑
imi ⊗m′i of the supremum supi |mi||m′i|′.

A Banach A-module is called projective if it is a direct factor in an or-

thonormalizable Banach A-module.

We now make the following definition.

Definition A.2.1.2. Let X be a rigid space and F be a sheaf of OX -

modules on X . We say that F is a Banach sheaf if

(I) for every affinoid open subset U of X , the OX (U)-module F (U) is a

Banach module;

(II) the restriction maps are continuous;

(III) there exists an admissible affinoid covering U = {Ui}i∈I of X such that for

every i ∈ I and for every affinoid V ⊂ Ui, the map induced by restriction,

OX (V)⊗̂OX (Ui)F (Ui)→ F (V),

is an isomorphism of OX (V)-Banach modules.

If the admissible affinoid covering in (III) can be chosen in such a way that

F (Ui) is a projective Banach OX (Ui)-module for all i, then F is called a

projective Banach sheaf.

A.2.2. The rigid analytic generic fiber of a formal Banach sheaf. Let X

be a flat formal scheme, locally of finite type over Spf OK . Let X be its rigid

analytic fiber. Let F =
Ä
Fn
ä
n∈N be a formal Banach sheaf over X. We associate

to F a sheaf F on X , valued in the category of K-vector spaces, by setting

U 7→ F (U) := F(U)⊗OK K.

For every open subset U ↪→ X, with rigid fiber U , the OX (U)-module F (U) is

a Banach module for the norm for which F(U) is the unit ball of F (U).

We recall that if F were a coherent sheaf, then F would extend uniquely

to a sheaf on X . The main goal of this section is to prove a similar result for

the class of flat formal Banach sheaves. We start with the following technical

lemma.

Lemma A.2.2.1. Let h : X′ → X be an admissible blowup of X, and let F

be a flat formal Banach sheaf. Then h∗F :=
Ä
h∗Fn

ä
n∈N is a flat formal Banach

sheaf on X′.

Moreover, the adjunction maps Fn → h∗h
∗Fn =: F′n give rise to a map

F→ limn F
′
n whose kernel and cokernel are annihilated by a power of $.
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Proof. The fact that h∗F is a flat formal Banach sheaf follows directly

from the flatness of F. For the other statements, we can work locally on X,

and therefore we may assume that X = Spf R is affine. Put Rn := R/$nR.

Let Fn = Fn(X) so that F(X) = F = limn Fn. By assumption, Fn is a flat

Rn-module for every n ∈ N. Let R′ = H0(X′,OX′) and R′n = H0(X′n,OX′n).

Thus, R′ = limnR
′
n. Since h is an admissible blowup, it is the map of for-

mal schemes defined by an algebraic blowup h̃ : X ′ → Spec R concentrated on

the special fiber. In particular, R′ is a finite R-module as h̃ is a projective

morphism, and the map α : R→ R′ is injective with cokernel killed by $N for

some integer N as h̃ is an isomorphism after inverting $. Hence multiplication

by $N on R′ factors via an R-linear morphism β : R′ → R. Since R and R′ are

flat OK-modules, the composite maps β ◦α and α◦β are multiplication by $N

on R (resp. on R′). As X′ is flat over Spf OK , the map R′/$nR′ → R′n is injec-

tive with cokernel contained in
Ä
R1h∗OX′

ä
(X). The latter is a finite, $-torsion

R-module so that it is annihilated by $M for some M . We deduce that the

cokernel of R′/$nR′ → R′n is annihilated by $M . Reducing α and β modulo

$n, we get maps αn : Rn → R′n and γn := βn ·$M : R′n → Rn, compatible for

varying n, and such that γn ◦ αn and αn ◦ γn are multiplication by $N+M .

Write F′n := h∗h
∗Fn. We claim that H0(X,F′n) = Fn ⊗Rn R′n (projection

formula). Let us remark that it is enough to prove that H0
Ä
X′, h∗(Fn)

ä
=

Fn ⊗Rn R′n; therefore let {Ui = Spf Ai}i be a finite covering of X′ by open

affine formal subschemes. (The topological space of X′ is quasi-compact.) As

h is separated, the intersections of Ui and Uj are still affine formal schemes

Spf Bij . Let Ai,n and Bi,j,n be the reductions modulo $n of these rings. We

tensor the exact sequence 0 → R′n → ⊕iAi,n → ⊕ijBi,j,n by Fn over Rn, and

we use on the one hand the flatness of Fn as Rn-module and on the other hand

the fact that we have natural isomorphisms H0
Ä
Ui, h

∗(Fn)
ä ∼= Ai,n⊗Rn Fn and

H0
Ä
Ui,j , h

∗(Fn)
ä ∼= Bi,j,n ⊗Rn Fn. The claim follows.

We can now show that the map a : F → limn Fn ⊗Rn R′n has kernel and

cokernel killed by $N+M . Using the maps limn 1⊗ αn, we get the adjunction

map a : F = limn Fn → limn

Ä
Fn⊗RnR′n

ä
:= F ′, and using the maps limn 1⊗γn

we get a map b : F ′ → F such that a ◦ b and b ◦a are multiplication by $N+M .

Thus a has kernel and cokernel annihilated by $N+M as wanted. �

Assume that F is a flat formal Banach sheaf on X. Let U be a quasi-

compact open subset of X . By Raynaud’s description of quasi-compact and

quasi-separated rigid varieties as the category of formal schemes localized with

respect to admissible blowups, there exists an admissible blow up h : X′ → X

such that U is the rigid analytic fiber of an open formal subscheme U′ of X′.

We define

F (U) := h∗F(U′)⊗OK K.
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Lemma A.2.2.2. F (U) described above is independent of the admissible

blowup h : X′ → X used to define it.

Proof. If g : X′′ → X′ is an admissible blowup, then from Lemma A.2.2.1

it follows that

h∗F(U′)⊗OK K = g∗g
∗h∗F(U′)⊗OK K = (h ◦ g)∗F

Ä
g−1(U′)

ä
⊗OK K.

Let U ⊂ X be a quasi-compact open subspace. Using Raynaud’s theory, any

two admissible blowups of X, such that U is the rigid fiber of an open for-

mal subscheme in both, are dominated by a third one. We deduce that the

definition of F (U) is independent of the choice of the blowup h. �

Now let V ⊂ U be an inclusion of quasi-compact open subspaces of X .

Then there exists an admissible blowup h : X′ → X such that the inclusion V ⊂
U is the rigid analytic fiber of an inclusion of open formal subschemes V′ ⊂ U′

of X′. Using Lemma A.2.2.2, we define a restriction map F (U)→ F (V) using

the restriction map h∗F(U′) → h∗F(V′). It is immediate that F thus defined

is a presheaf on X .

Proposition A.2.2.3. The definition above attaches functorially to every

flat formal Banach sheaf F on X a Banach sheaf F , called the rigid analytic

generic fiber of F. Moreover, condition (III) in Definition A.2.1.2 holds for

every admissible affinoid covering of X defined upon taking the rigid analytic

fiber of a covering of X by open affine formal subschemes.

Proof. Using Raynaud’s theory every admissible (finite) covering {Ui}i of

U by quasi-compact open subspaces of X can be realized as follows. There

are a formal blowup h : X′ → X, a formal open subscheme U′ of X′ and formal

open covering {U′i}i of U′ such that the rigid analytic generic fibers of U′, U′i are

respectively U , Ui for all i. The sheaf property for h∗F with respect to the cov-

ering {U′i}i implies that F satisfies the sheaf property for the cover {Ui}i of U .

Now let {Ti}i be a covering of X by formal open affine subschemes with

rigid analytic generic fibres {Ti}i. Let V be an open affinoid of Ti. Let Spf S

be an admissible affine formal model of V. There exist an admissible blowup

h : Yi → Ti = Spf R and an open formal subscheme V ⊂ Yi such that V is its

rigid analytic generic fiber. Moreover, using Raynaud’s theory, we can assume

that V is an admissible blowup of Spf S. Then F (V) = h∗F(V) ⊗OK K by

definition. Set Vn as the scheme obtained from V by reduction modulo $n,

Rn := R/$nR, Fn := Fn(Ti), R
′
n := H0

Ä
Vn,OVn

ä
, R′ := limnR

′
n and R′′n :=

R′/$nR′ ↪→ R′n. As in the proof of the projection formula in Lemma A.2.2.1,

it follows from the flatness of Fn as Rn-module that h∗(Fn)(V) = Fn ⊗Rn R′n
so that passing to the limits over n and inverting p, we get that

(lim
n
Fn ⊗Rn R′n)⊗OK K = F (V).
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Note that H1(V,OV) is a finite type torsion S-module, so it is annihilated by

$N for some integer N . Set F := F(Ti). By the very definition of the com-

pleted tensor product, to check that F (V) = F (Ti)⊗̂OX (Ti)OX (V), it suffices

to check that the map

s : lim
n
F ⊗Rn R′′n → lim

n
Fn ⊗Rn R′n

is injective with cokernel killed by $N . Since R′′n injects in R′n and Fn is flat

over Rn, then Fn ⊗Rn R′′n → Fn ⊗Rn R′n is injective, and passing to the limit,

we get the injectivity of the map s. On the other hand $NR′n ⊂ R′′n so that

there exists a map s′ : limn Fn ⊗Rn R′n → limn F ⊗Rn R′′n with the property

that s ◦ s′ is multiplication by $N . This implies the claim. �

Example 1. Let A be an affinoid algebra and X = Spm A. Let M be an A-

Banach module. We can define a presheaf M on the category of affinoid open

subsets of X by M(U) = M⊗̂AAU , where U = Spm AU is an open affinoid

subset of X . Recall that we a Banach A-module M is projective if it is a direct

factor of an orthonormalizable Banach module. Assume that A = A0[1/p] with

A0 $-adically complete and separated, flat and topologically of finite type as

OK-algebra. If M is projective, then M admits an open and bounded sub-

A0-module M0 such that for all n, M0/$
n is A0/$

n-flat. Proposition A.2.2.3

shows that M is a sheaf in that case.

As mentioned above, our main interest in this article is to study overcon-

vergent modular sheaves. These are formal Banach sheaves, but they are not

necessarily flat. Therefore we need a slight generalization of the above result

as follows. Let g : X → Y be a finite map of admissible formal schemes, and

denote by f : X → Y the associated morphism of rigid spaces. Let F be a flat

formal Banach sheaf on X with rigid analytic fiber F , a Banach sheaf on X .

We denote by G a finite group acting on X over Y, and we suppose that the

action lifts compatibly to F.

Remark that g∗F := (g∗Fn)n is a formal Banach sheaf as g∗ is an exact

functor. We now define the sheaf of invariants
Ä
g∗F
äG

:= (
Ä
g∗F
äG
n

)n∈N as

follows. For every n ∈ N, we let
Ä
g∗F
äG
n

be the sheaf associated to the presheaf

Hn whose values over an open subset U of Y are
Ä
g∗F(U)

äG ⊗OK OK/$n. As

the presheaves Hn, for varying n, satisfy the properties of Definition A.1.1.1,

we conclude that
Ä
g∗F
äG

is a formal Banach sheaf.

Proposition A.2.2.4. The sheaf
Ä
f∗F

äG
is a Banach sheaf over Y .

Moreover,
Ä
f∗F

äG
is related to

Ä
g∗F)G by the property that for every admis-

sible blowup h : Y′ → Y and every open formal subscheme V ⊂ Y′ with rigid

analytic fiber V ⊂ Y , we haveÄ
f∗F

äG
(V) = h∗

Ä
g∗F
äG

(V)⊗OK K.
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Proof. We claim that the sheaf G := f∗F is a Banach sheaf. Condition

(I) and (II) in Definition A.2.1.2 are easily verified. For condition (III) we

remark that thanks to Proposition A.2.2.3 we can take an admissible affinoid

covering of X defined by the inverse image under f of the rigid analytic fiber

of an affine covering of Y, as g is finite.

For any OK [G]-module M there is a trace map tr : M → MG which

maps m ∈ M to
∑
g∈G g · m. If i : MG → M is the inclusion, then tr ◦ i

is the multiplication by the order a of G. As a is invertible in K, the map

e := (1/a)i◦ tr for the sheaf G is an idempotent such that Im(e) =
Ä
G
äG

. This

implies that
Ä
G
äG

is a Banach sheaf, being a direct summand of G .

Next, for any OK [G]-module M and for every integer n ≥ 0, we use

the notation Mn := M/$nM . If M is flat as OK-module, by taking the

G-invariants of the exact sequence

0→M
$n→ M →Mn → 0,

we obtain an injective map MG/$nMG ↪→MG
n whose cokernel is a subgroup

of H1
Ä
G,M

ä
, and therefore it is annihilated by the order a of G.

In particular, using the notation above, we have a natural injective map

Hn →
Ä
g∗Fn

äG
with cokernel annihilated by a. Thus a ·tr (where tr is the trace

for the G-action) defines a map g∗Fn → Hn. This induces, after sheafification,

an injective map αn :
Ä
g∗F
äG
n
→
Ä
g∗Fn

ä
and a map βn :

Ä
g∗Fn

ä
→
Ä
g∗F
äG
n

such

that βn ◦ αn is multiplication by a2 and αn ◦ βn = a · tr. Using h∗(αn) and

h∗(βn), we obtain maps

sn : h∗
Ä
g∗F
äG
n
→ h∗g∗Fn, tn : h∗g∗Fn → h∗

Ä
g∗F
äG
n

such that tn ◦ sn is multiplication by a2 and sn ◦ tn = a · tr. Passing to the

inverse limits sheaves, we obtain maps s and t such that t ◦ s is multiplication

by a2 and s ◦ t = a · tr. We conclude that the map s defines an isomorphism

of sheaves on Y:

lim
n
h∗
Ä
g∗F
äG
n
⊗OK K →

Ä
lim
n
h∗g∗Fn

äG ⊗OK K.
Thus, to conclude the proof of the claim, we are left to show that for every

open formal subscheme V ⊂ Y′ with rigid analytic fiber V ⊂ Y, we have

G (V) = G′(V)⊗OK K,

where G := g∗F and G′ := h∗G.

Let h × g : X′ → X be the projective map obtained by base change. It is

dominated via a map u : X′′ → X′ by an admissible blowup t : X′′ → X. Let

F′ := (h× g)∗F. Arguing as in Lemma A.2.2.1, using that u is projective, one

shows that the adjunction F′ → u∗u
∗F′ has kernel and cokernel killed by a

power of $. If g′ : X′ → Y′ is the induced finite map, then by construction, we
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have G (V) = g′∗u∗u
∗(F′)(V′)⊗K. But we have just proven that this K-module

coincides with g′∗F
′
Ä
V′
ä
⊗OK K. As g is finite, we have g′∗F

′ = G′. This proves

the displayed equality and concludes the proof. �

Appendix B. List of symbols

B standard Borel in GLg, Section 2.1;

U ⊂ B unipotent radical, Section 2.1;

T ⊂ B standard torus, Section 2.1;

B0 Borel opposite to B, Section 2.1;

U0 ⊂ B0 unipotent radical, Section 2.1;

I Iwahori subgroup of GLg(Zp), Section 2.3;

T, Tw, formal torus, Section 4.5;

Bw, Uw, formal groups, Section 5.2.2;

W weight space, Section 2.2;

W(w), W(w)o, Section 2.2;

κun, universal character, Proposition 2.2.2;

κ 7→ κ′, involution on weights, Section 5.1;

Y moduli space of principally polarized abelian schemes (A, λ) of dimension

g equipped with a principal level N , Section 5.1;

Y ⊂ X toroidal compactification, Section 5.1;

Y ⊂ X?, minimal compactification, Section 8.2.2;

X, formal scheme associated to X, Section 5.2;

YIw moduli space with principal level N structure and Iwahori structure

at p, Section 5.1;

YIw ⊂ XIw toroidal compactification, Section 5.1;

X1(pn)(v), XIw+(pn)(v), XIw(pn)(v), X(v) formal schemes, Section 5.2;

X (v) rigid space, neighbourhood of ordinary locus of width v, Section 5.2;

X1(pn)(v), XIw+(pn)(v), XIw(pn)(v), rigid spaces, Section 5.3;

F , Proposition 4.3.1;

IWw, Grassmannian of w-compatible flags in F , Section 4.5;

IW+
w , Grassmannian of w-compatible flags in F and bases elements of the

graded pieces, Section 4.5;

IW+
w , rigid space over X1(pn)(v) associated to IW+

w , Section 5.3;

IWw, rigid space over X1(pn)(v) associated to IWw, Section 5.3;

IWo+
w , descent of IW+

w to XIw+(pn)(v), Section 5.3;
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IWo
w, descent of IWw to XIw(pn)(v), Section 5.3;

IWo+
w , rigid space with dilations parameters, Section 5.6;

w†κw the formal Banach sheaf of w-analytic, v-overconvergent modular

forms of weight κ, Definition 5.2.2.3;

ω†κw Banach sheaf of w-analytic, v-overconvergent weight κ modular forms,

Section 5.3;

M†κw (XIw(p)(v)), M†κ(XIw(p)) space of overconvergent modular forms of

weight κ, Definition 5.3.3;

ω†κ
un

w , Mv,w, M † families of overconvergent modular forms, Section 8.1.1;

w̃†κ
oun

w , family of integral overconvergent modular forms, Section 8.1.4;

ω†κw , M†κw (XIw(p)(v)), variants with dilations parameters, Section 5.6;

Up,g, U operator, Section 6.2.1;

Up,i, U operator, Section 6.2.2.
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