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Pseudorandom generators hard
for k-DNF resolution and

polynomial calculus resolution

By Alexander A. Razborov

Abstract

A pseudorandom generator Gn : {0, 1}n → {0, 1}m is hard for a propo-

sitional proof system P if (roughly speaking) P cannot efficiently prove the

statement Gn(x1, . . . , xn) 6= b for any string b ∈ {0, 1}m. We present a func-

tion (m ≥ 2n
Ω(1)

) generator which is hard for Res(ε logn); here Res(k) is

the propositional proof system that extends Resolution by allowing k-DNFs

instead of clauses.

As a direct consequence of this result, we show that whenever t ≥ n2,

every Res(ε log t) proof of the principle ¬Circuitt(fn) (asserting that the

circuit size of a Boolean function fn in n variables is greater than t) must

have size exp(tΩ(1)). In particular, Res(log logN) (N ∼ 2n is the overall

number of propositional variables) does not possess efficient proofs of NP 6⊆
P/poly. Similar results hold also for the system PCR (the natural common

extension of Polynomial Calculus and Resolution) when the characteristic

of the ground field is different from 2.

As a byproduct, we also improve on the small restriction switching

lemma due to Segerlind, Buss and Impagliazzo by removing a square root

from the final bound. This in particular implies that the (moderately) weak

pigeonhole principle PHP2n
n is hard for Res(ε logn/ log logn).

1. Introduction

Propositional proof complexity is an area of study that has seen a rapid

development over the last decade. It plays as important a role in the theory

of feasible proofs as the role played by the complexity of Boolean circuits in

the theory of efficient computations. And in most cases the basic question

of propositional proof complexity boils down to this. Given a mathematical

statement encoded as a propositional tautology φ and a class of admissible

mathematical proofs formalized as a propositional proof system P , what is the

minimal possible complexity of a P -proof of φ?
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1.1. General overview. For most “interesting” propositional proof sys-

tems P , one can easily define the accompanying (nonuniform) complexity

class CP typically consisting of functions computable by lines allowed in ef-

ficient P -proofs. This correspondence leads to a classification of propositional

proof systems that is somewhat imprecise and potentially (and hopefully) time-

dependent but nonetheless very instructive. Namely, we call a propositional

proof system P weak if we (currently) know how to prove super-polynomial

lower bounds for the accompanying circuit class CP and strong otherwise.

There is a steady progress in studying the complexity of proofs in weak

proof systems surveyed, e.g., in [Urq95], [Kra95], [Raz96], [BP01], [Pud98],

[Raz02].

For strong proof systems the current situation is by far more miserable.

Although there are no rigorous results along these lines (and, moreover, this

feeling is not universal — see, e.g., [Kra04]), the empirical evidence strongly

suggests that lower bounds for a proof system P are even harder to attain

than computational lower bounds for the companion class CP . Therefore, with

our current understanding, we cannot apparently hope to show lower bounds

for systems like Frege or Extended Frege without first making a major break-

through in complexity theory.

A more accessible task that (in the author’s opinion) is almost as interest-

ing would be to show at least that proof complexity lower bounds are at most as

hard as comparable problems in the computational world. Let us (informally)

identify this task as

proving lower bounds for strong proof systems P like

Frege or Extended Frege modulo any hardness assump-

tion in the purely computational world, however strong

but still natural and believable

This task will be referred to as proving conditional lower bounds (for the

proof system P ). It should be remarked in this respect that NP 6= co-NP im-

plies lower bounds for any propositional proof system whatsoever. Therefore,

purely computational above refers to the demand that the assumption itself

should speak only about computations and should not attempt to restrict the

power of proofs even in a disguised form.

One extremely exciting and, in a sense, model approach to this task was

gradually developed in the sequence of papers [Raz95b], [BPR97], [Kra97a],

[Pud97] and finally became known as the Efficient Interpolation Property (EIP

in what follows). EIP was shown to be true for some weak proof systems and

it was also remarked that for every proof system (be it weak or strong) EIP

implies conditional lower bounds. Unfortunately, it turned out rather soon
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[KP98], [BPR00] that neither Frege nor Extended Frege have Efficient Inter-

polation modulo (somewhat ironically) hardness assumptions of the same sort

that are needed to prove conditional lower bounds for proof systems with EIP.

This omnipresent hardness assumption is nothing other than the existence

of pseudorandom generators (arbitrary or specific), which also turns out to be

the main primitive of the modern cryptography. After the (apparent) fail-

ure of the efficient interpolation approach, it was independently proposed in

[Kra01a], [ABSRW04] to employ pseudorandom generators for proving con-

ditional lower bounds in a more direct manner. On the conceptual level, a

mapping Gn : {0, 1}n → {0, 1}m, where m > n, is called hard for a propo-

sitional proof system P if P cannot efficiently prove the (properly encoded)

statement Gn(x1, . . . , xn) 6= b for any1 string b ∈ {0, 1}m. Since m > n, for at

least half of all b’s, this statement is a tautology. Therefore, conditional lower

bounds for a proof system P follow from the following task:

prove that for a reasonable class of mappings

Gn : {0, 1}n → {0, 1}m with m > n, their hardness

in any reasonable computational or combinato-

rial sense implies hardness for P .

This will be referred to as the generator approach (to conditional lower bounds

for P ).

The generator approach certainly does not work for arbitrary mappings

Gn believed to be pseudorandom generators in the standard sense of [Yao82],

and specific counterexamples almost immediately follow from the results in

[KP98] on the limitations of EIP. On the positive side, it was observed in

[ABSRW04] that for proof systems P with EIP, there is an easy and general

way of converting any pseudorandom generator that is computationally hard

(in the standard sense) into a pseudorandom generator that is hard for P .

No such general transformation is known for a single nontrivial proof system

without EIP.

Thus, it is vital for the generator approach that we somehow restrict the

class of mappings for which one hopes to trade computational hardness for

proof complexity hardness. Along these lines, [ABSRW04] specifically pro-

posed to consider the class of Nisan-Wigderson generators. (Concrete results

from that paper as well as from later improvements [AR03], [Kra04] will be

reviewed after we are done with this general overview.) Some arguments advo-

cating this choice (as opposed to other classical cryptographic constructions)

1The reader wondering whether it might be more natural to weaken here the condition

“for any string b” to “for some string b” or perhaps to “for some explicit string b” is referred

to an extensive discussion of this issue in [ABSRW04, §1] where the concept was introduced.
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were presented in [ABSRW04] and in the introduction to [Raz04]: the prin-

ciple expressing hardness of NW-generators is tightly related to such familiar

personages in proof complexity as the pigeonhole principle and Tseitin tau-

tologies.

Elaborating on these arguments, we can further remark that the NW-

generator is in a sense the quintessence of the very idea of “local consistency.”

Namely, the information contained in the output bits of a NW-generator is

“local” (in the sense that every output bit depends only on a “small” subset

of input bits that are “nearly independent” for different output bits), and it

is locally consistent to such an extent that no interesting conclusion about

the global behaviour of the generator can be obtained by an “easy” analysis

of this local knowledge. This simple methodology is behind a great deal of

lower bounds existing in proof complexity for weak proof systems, and it is

also behind the efficient interpolation property.

This methodology also has a very clean mathematical meaning. A (nonex-

istent) falsifying assignment to the tautology φ corresponds to a manifold with

given local properties. The proof system P tries to argue that no such manifold

may exist using tools at its disposal. And we (lower bounds provers) try to fool

it by feeding into the potential proof something that looks like a (nonexisting)

manifold to such an extent that P cannot discern the difference. See [Raz98]

for (apparently) the cleanest implementation of this intuitive scheme.

Anyway, the moving forces that make the Nisan-Wigderson generator work

in the computational world are of so general a nature that we are ready to spell

out the formal conjectures that the generator approach always works for Nisan-

Wigderson generators. More specifically (assuming that the constructions are

based on combinatorial designs with the same parameters as in the seminal

paper [NW94]),

Conjecture 1: Any NW-generator based on any poly-time function that is

hard on average for NC1/poly is hard for the Frege proof system.

Conjecture 2: Any NW-generator based on any function in NP ∩ co-NP

that is hard on average for P/poly (e.g., B(f−1(r)), where f(x) is any

one-way permutation and B(x) its hard-core bit) is hard for Extended

Frege.

The suggestion to use Nisan-Wigderson generators for lower bounds in

proof complexity has been recently reiterated in [Kra04]. That paper also

proposes a paradigm similar in spirit to the construction from [Gol11] in the

context of computational complexity: hardness of the resulting mapping should

depend on the randomness of the base functions rather than their complexity.

So far all known results on the hardness of NW-generators for weak proof

systems have not directly appealed to the randomness and used instead specific

combinatorial properties of the base functions. But of course it remains to be
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seen yet which of the two paradigms (if any) will turn out more fruitful in the

long run.

The task of proving lower bounds (even conditional) for strong proof sys-

tems is, in the author’s opinion, extremely interesting and well justified in its

own right (whereas the popular motivation that this should be regarded as an

intermediate step in approaching the NP vs. co-NP problem looks, again in

the author’s opinion, more of a speculation). One venerable way, however, to

make this study even more interesting is to look at the proof complexity of

statements whose validity is also not known and whose importance stretches

well beyond any proof-theoretical studies.

To that end, [Raz95a] proposed2 to study the proof complexity of the

principle ¬Circuitt(fn) expressing that the circuit size of the Boolean function

fn in n variables, given as its truth-table, is lower bounded by t = t(n). (Thus,

e.g., NP 6⊆ P/poly is essentially equivalent to the validity of ¬Circuitt(n)(Satn)

for some t(n) ≥ nω(1).) [Raz95a] put forward the thesis (so far not refuted)

that all existing proofs of lower bounds for restricted classes of circuits and for

explicit functions translate to Extended Frege proofs (often to much weaker

proof systems) of size 2O(n). This makes the question of the efficient provability

of the original principle ¬Circuitt(fn) for general circuits even more intriguing.

The connection of this question to the generator approach above is the

same as in the context of Natural Proofs [RR97]. Namely, if we have a function

pseudorandom generator Gn : {0, 1}t0 → {0, 1}2n that is hard for a proof

system P , such that the associated predicate G(x)y (x ∈ {0, 1}t0 , y ∈ {0, 1}n)

can be computed by a size t circuit, then for every fixed seed x ∈ {0, 1}t0 ,

the Boolean function with the truth-table G(x) is also computed by a size t

circuit. Since for any given fn the system P cannot efficiently refute that fn
is different even from the functions G(x) in the image of the generator G, it is

not capable of efficient proofs of ¬Circuitt(fn). In plain words,

to show that P does not have efficient proofs of the for-

mula ¬Circuitt(fn), it suffices to design a sufficiently con-

structive pseudorandom generator hard for P and such

that the number of output bits, as a function of the num-

ber of input bits, is as large as possible.

The larger number of output bits we can manage, the smaller are the param-

eters t0, t (relatively to n) and the stronger is the result. In particular, in

2[Raz95a] dealt with provability of Σb0-statements in the theories of Bounded Arithmetic,

which is the uniform counterpart of propositional proof complexity. At the suggestion of Jan

Kraj́ıček, in later papers it was recast in more convenient framework of propositional proof

complexity.
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order to conclude the efficient unprovability of NP 6⊆ P/poly (or, for that

matter, that any function fn is not in P/poly), one needs a generator that

stretches n bits to 2n
ε

bits; such generators are commonly known as function

pseudorandom generators.

The tight connection between pseudorandom generators and the tautolo-

gies ¬Circuitt(fn) has also been fruitfully exploited from more structural point

of view. We already remarked above that NP 6= co-NP implies the existence

of hard tautologies for any propositional proof system, but this does not give

any clue as to what these hard tautologies actually are. [IKW02, Th. 35]

proved that under the assumption NEXP ⊂ P/poly, it is the specific tau-

tologies ¬Circuitt(fn) (for any fn whatsoever) that are hard for any proof

system. R. Impagliazzo (see a footnote in [Kra04, §1]), and independently

M. Alekhnovich, recently observed that the same conclusion holds under the

assumption BPP 6⊆ NP (stronger than NP 6= co-NP). Although none of

these two assumptions looks particularly plausible (and none of them is “purely

computational” either), this still serves as another indication of the “distin-

guished” character of the tautologies ¬Circuitt(fn).

The project of proving lower bounds for stronger and stronger classes of

circuits until we arrive at P 6= NP has met a solid obstacle in the form of

Natural Proofs [RR97]. The project of proving lower bounds for stronger and

stronger proof systems until we arrive at the (Extended) Frege proof system

is restricted by the empirical observation that this task is even harder than

the previous one. Given this gloomy background, fulfilling the generator ap-

proach for strong proof systems is certainly not an easy task, and the progress

in this direction is much slower than originally hoped. However, it seems that

we currently do not know of any general reasons (like those for the two previ-

ous projects formulated above) making us suspect that this task is unfeasible

and/or requires an entirely different view of the subject.

1.2. Previous results and our contributions. In all known partial results

along the generator approach, Nisan-Wigderson generators play the central

role. Hardness results for generators of this kind are determined by combina-

torial properties of the underlying set system, conditions imposed on the base

functions, and by the specific way their computation is encoded as a proposi-

tional tautology. Disregarding for the moment all these technical issues, on the

conceptual level [ABSRW04] proved that the NW-generator is hard for Res-

olution but only when the complexity is measured by width. Another result

from [ABSRW04] says that the Nisan generator (that is, the partial case of

the NW-generator in which all base functions must be linear mod 2) is hard

for Polynomial Calculus (PC in what follows) over fields F with char(F) 6= 2.
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The latter result was further extended and generalized in [AR03] to show that

the Nisan-Wigderson generator is hard for PC over any field.

Results for resolution width and polynomial calculus degree are applicable

to function generators stretching n bits to 2n
ε

bits. As long as the size complex-

ity measures are concerned, [ABSRW04] exhibited hard Nisan-Wigderson gen-

erators for the system PCR (that is, a natural common extension of Polynomial

Calculus and Resolution) but only when m ≤ o(n2). This poor input/output

ratio hindered their potential application to proving that NP 6⊆ P/poly is hard

even for Resolution, and this was established by somewhat different methods

in [Raz04], [Raz04].

A prominent general way for enhancing the I/O performance of pseudoran-

dom generators in proof complexity has been recently proposed in [Kra04]. Like

the classical constructions in computational complexity [Yao82], [GGM86], it

is very natural to try to achieve this goal by composing the given generator

with itself. Unfortunately, it is far from clear whether hardness in the con-

text of proof complexity is preserved under composition. [Kra04] proposed a

way around this difficulty by showing that it is indeed the case if hardness is

replaced by a stronger notion of s-iterability (the latter, in turn, being a vari-

ant of a similar notion of freeness earlier introduced in [Kra01b]). As a first

application of this approach, [Kra04] showed that one particular construction

of the Nisan generator from [ABSRW04] can be iterated with itself once, thus

giving a pseudorandom generator with m = n3−ε output bits that is hard for

Resolution.

In the current paper we continue this line of research. Let Res(k) be the

propositional proof system that extends Resolution by allowing as its lines

arbitrary k-DNFs. Our first main result (Theorem 2.7) exhibits Nisan genera-

tors that are hard for Res(k) and stretch n input bits to as many as n(ε logn)/k

output bits. A relatively easy modification of this argument for k = 1 shows

that this generator (from n to nε logn bits) is hard not only for Resolution but

also for its extension PCR (Theorem 2.18).3 These results were proved inde-

pendently of [Kra04]; the proof method uses the resolution width/PC degree

bounds from [ABSRW04] cited above in combination with the machinery from

the recent paper [SBI04] based upon the so-called small restriction switching

lemma. In order to bring these two together, we also introduce a special kind

of random restrictions specifically tailored to deal with Nisan generators.

Then, using a very simple reduction, we show that our generator is not

only hard for Res(k) and PCR but it is in fact exp(nΩ(1))-iterable for these

systems (Theorems 2.10 and 2.19). According to the paradigm from [Kra04],

this implies that if we compose this generator with itself as many as exp(nΩ(1))

3Here and in the rest of introduction we implicitly assume that char(F) 6= 2.
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times, the resulting mapping will still be hard for Res(k)/PCR. Applying in

particular the classical GGM-construction [GGM86], in this way we get a func-

tion generator Gn : {0, 1}n −→ {0, 1}2n
ε

that is hard for Res(ε log n), ε > 0

a sufficiently small constant (Theorem 2.12), and for PCR. As we discussed

in Section 1.1, this implies that neither Res(log logN) (where N ∼ 2n is the

overall number of propositional variables) nor PCR possess efficient proofs of

NP 6⊆ P/poly (Theorems 2.13 and 2.20), which are the first results of this

kind for any propositional proof system that (most likely) does not have the

Efficient Interpolation Property.

In the course of this work we were able to get a quadratic (in k) im-

provement of the small restriction switching lemma from [SBI04] based on

Janson inequality (Lemma 4.4). This in particular implies that the moder-

ately weak pigeonhole principle PHP2n
n is exponentially hard for Res(k) when

k ≤ (ε log n)/ log log n (Theorem 2.15), as opposed to k ≤ ε
»

log n/ log log n

in [SBI04] that in turn was an improvement on the previous papers [BT88]

(k = 1, i.e., resolution) and [ABE02] (k = 2).

Finally we prove a miscellaneous result about the complexity of Nisan

generators themselves that indicates the sensitivity of their proof complexity

behaviour with respect to the choice of encoding. Namely, we show how to

modify the (natural and reasonable) encoding of the Nisan generator used in

the rest of the paper in such a way that this generator becomes hard for PCR

even in the functional case m = 2n
ε

(Theorem 2.21). This encoding, however,

is in a sense very bad: it does not seem to allow any reduction to ¬Circuitt(fn),

and the proof method apparently fails already for Res(2).

2. Definitions and statements of our results

In this section we typically confine ourselves to defining only those notions

that are needed for stating our main results. Auxiliary concepts needed for

their proofs will normally appear in respective places.

Let x be a propositional variable, i.e., a variable that ranges over the set

{0, 1}. A literal of x is either x (denoted sometimes as x1) or x̄ (denoted some-

times as x0). A clause [term] is either a constant 0 or 1 (corresponding to

FALSE and TRUE, respectively) or a disjunction [conjunction, respectively] of

literals. A CNF [DNF] is a conjunction of clauses [disjunction of terms], often

specified as the set of all participating clauses [terms, respectively]. Accord-

ingly, a clause/term/CNF/DNF is a sub-clause/sub-term/sub-CNF/sub-DNF

of another clause/term/CNF/DNF if every literal/literal/clause/term appear-

ing in the first, appears also in the second. A clause/term/CNF/DNF is mono-

tone if it does not contain occurrences of negated literals x̄.

For a Boolean function f [a propositional formula F ], let Vars(f) [Vars(F )]

be the set of its essential variables [the set of variables explicitly occurring in
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F , respectively]. The width of a clause C [of a term t] is defined as w(C)
def
=

|Vars(C)| [w(t)
def
= |Vars(t)|, respectively]. A k-CNF [k-DNF] is a CNF [DNF]

in which all clauses [terms, respectively] are of width at most k. |F | is the

number of terms in a DNF F .

An assignment to a Boolean function f [a propositional formula F ] is

a mapping α : Vars(f) → {0, 1} [α : Vars(F ) → {0, 1}, respectively]. A

restriction of f [of F ] that, depending on the context, will be sometimes called a

partial assignment is a mapping ρ : Vars(f)→ {0, 1, ?} [ρ : Vars(F )→ {0, 1, ?},
respectively]. We let sup(ρ)

def
= ρ−1({0, 1}) denote the set of assigned variables.

The restriction of a function f [of a formula F ] by ρ, denoted f |ρ [F |ρ], is the

Boolean function [propositional formula] obtained from f [from F , respectively]

by setting the value of each xi ∈ sup(ρ) to ρ(xi) and leaving each xi 6∈ sup(ρ)

unassigned. In the case of propositional formulas we assume as usual that

simplifications are performed only when a sub-formula has become explicitly

constant. A variable substitution of variables in V1 by variables in V2 is a

mapping ρ that takes variables in V1 to either propositional constants or literals

of variables in V2. (Thus, restrictions are viewed as a special case of variable

substitutions with V2 = V1.) Variable substitutions ρ of variables in Vars(f) or

Vars(F ) also naturally act on the Boolean function f or propositional formula

F and, as before, we denote the result of this action by f |ρ, F |ρ.
For an integer n, let [n]

def
= {1, 2, . . . , n}. Whenever we use probabilistic

methods, random variables will always appear in the bold face, including deter-

ministic parameters they depend on, if any. We extensively use the Ω-notation

(customary in complexity theory) that is opposite to the ordinary O-notation.

For example, given two functions f, g with values in the set of nonnegative

reals, f ≥ Ω(g) means that there exists an absolute constant ε > 0 such that

f ≥ εg for any specification of the parameters occurring in f, g.

Definition 2.1 ([Kra01a], [ABSRW04]). Let m > n, C be a Boolean circuit

with n inputs x1, . . . , xn and m outputs, and let b ∈ {0, 1}m be an arbitrary

Boolean vector. For every computational gate v of the circuit C, we introduce

a special extension variable yv, and when v is the jth input gate, we identify yv

with the corresponding propositional variable xj . Let VarsC
def
= {x1, . . . , xn} ∪

{yv | v a computational gate of C }.4
By τ(C, b) we denote the CNF in the variables VarsC that expresses the

fact “C(x1, . . . , xn) = b” and consists of the following clauses:

4Although VarsC is in a one-to-one correspondence with the set of all gates, we prefer to

draw a clear distinction between inputs and computational gates.
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(1) yε̄1v1
∨ · · · ∨ yε̄dvd ∨ y

π(ε1,...,εd)
v whenever v := π(v1, . . . , vd) is an instruction of

C of arity d and ε ∈ {0, 1}d is an arbitrary vector;

(2) ybivi when vi is the ith output gate of C, i ∈ [m].

Remark 1. In this paper we will be mostly interested in the case when the

circuit C is linear; that is, it consists only of linear instructions v := v1⊕ v2 of

arity 2. Moreover, the circuits considered will be read-once circuits in which

variables are added one at a time. However, even with these restrictions there

remains an ambiguity about the order in which the variables are introduced,

and this does become important for weak proof systems like those considered

in this paper. The next definition makes this formal.

For A an m × n 0-1 matrix and i ∈ [m], let Ji(A)
def
= {j ∈ [n] | aij = 1}

and Xi(A)
def
= {xj | aij = 1} be the corresponding set of propositional variables.

The set system Ji(A) provides an alternative (and often more convenient) way

to represent the matrix A.

Definition 2.2. An ordering ≤ of an m × n 0-1 matrix A is a tuple (≤1,

. . . ,≤m), where ≤i is a linear ordering of the set Ji(A). Given any ordering ≤,

let C1, . . . , Cm be the (single-output) circuits naturally computing the parity

functions
⊕ {xj | xj ∈ Xi(A)} according to this ordering. That is,

• gates of Ci have the form viΣ, where Σ is a nonempty ≤i-initial segment of

Ji(A);

• when xj is the minimal element of Ji(A), vi{xj} is the input gate xj ;

• instructions have the form viΣ∪{xj} := viΣ ⊕ xj , where Σ is a proper initial

segment of Ji(A) and j is the minimal element in Ji(A) \ Σ;

• viJi(A) is the output gate.

Denote by CA,≤ the m-output linear circuit which is a disconnected union of

C1, . . . , Cm. (That is, these circuits do not have any gates in common except

for input gates.) Let Vars≤(A)
def
= VarsCA,≤ and τ≤(A, b)

def
= τ(CA,≤, b).

Definition 2.3. For a set of rows I ⊆ [m] in the matrix A, we define its

boundary ∂A(I) as the set of all j ∈ [n] (called boundary elements) such that

{aij | i ∈ I } contains exactly one 1. We say that A is an (r, d)-lossless expander

if

(1) ∀I ⊆ [m](|I| ≤ r ⇒
∑
i∈I
|Ji(A)| − |∂A(I)| ≤ d · |I|).

Remark 2. Another useful way to interpret the expansion property (1) in

this definition is to say that rows in I have at most d nonboundary elements on

average. In the regular case (that is, when all Ji(A) have the same cardinality

s), (r, d)-lossless expanders are exactly (r, s, c)-expanders in the terminology of
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[ABSRW04] for c = s − d. We introduce this new definition mainly to stress

that it is in fact the difference between s and c that matters, and for most

applications, we need not know s (and in fact even do not need regularity).

Also, the “ordinary” lossless expanders recently constructed in [CRVW02] cor-

respond to the case d = εs for a small constant ε > 0, whence our choice of

the name.

Despite recent progress, no explicit constructions of (r,d)-lossless expanders

with the parameters sufficient for our purposes are currently known. Fortu-

nately, we will be satisfied with the following simple nonconstructive bound.

Definition 2.4. Am,n is a random m × n 0-1 matrix in which all entries

are independent and P[aij = 1] = n−2/3.

Theorem 2.5. Let m ≤ 2n
ε
, where ε > 0 is a sufficiently small constant.

Then Am,n is an
Ä
nΩ(1), O

Ä
logm
logn

ää
-lossless expander with probability ≥ 1 −

O(1/m).

The proof of Theorem 2.5 is straightforward; it is deferred to Section 7.

Definition 2.6. Res(k) is the propositional proof system whose lines are

k-DNFs, whose only axioms are `∨ ¯̀ (` a literal) and whose inference rules are

given below. (F,G are k-DNFs, 1 ≤ w ≤ k and `, `i are literals.)

F

F ∨ `
(Weakening),

F ∨ `1 · · · F ∨ `w

F ∨ (
w∧
i=1

`i)

(AND-introduction),

F ∨ (
w∧
i=1

`i)

F ∨ `i
(AND-elimination),

F ∨ (
w∧
i=1

`i) G ∨
w∨
i=1

¯̀
i

F ∨G
(Cut).

A Res(k) refutation of a set of k-DNFs is a Res(k) proof of 0 from this

set. In particular, a Res(k) refutation of a CNF τ is a Res(k) refutation of the

set of clauses τ consists of.

We define the size of a Res(k) proof as the number of lines in it. Note

that since in this paper we deal exclusively with lower bounds, this makes our

results only stronger (as opposed to measuring the complexity by the number

of bits).

Note that any variable substitution ρ takes a Res(k) refutation of a CNF

τ into a Res(k) refutation of τ |ρ. This in particular implies that the minimal

size of a Res(k) refutation of τ is at least the same size for τ |ρ.
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Finally, the case k = 1 corresponds to Resolution: this system operates

with clauses and has the only inference rule

F ∨ x G ∨ x̄
F ∨G

called resolution rule. (The weakening rule does not change the power of

Resolution and is usually, often implicitly, also assumed for convenience.) The

width of a resolution proof is the maximal width of a clause occurring in this

proof.

Now we are ready to formulate our main result for Nisan generators. For

the sake of definiteness, all algorithms in this paper are assumed to be base 2.

Theorem 2.7. Let A be an m × n (r, d)-lossless expander, and assume

that

(2) min
i∈[m]

|Ji(A)| ≥ Cd(k + logm)

for a sufficiently large constant C > 0. Let ≤ be an arbitrary ordering of A and

b ∈ {0, 1}m be an arbitrary vector. Then every Res(k) refutation of τ≤(A, b)

must be of size ≥ exp(r/2O(kd)).

Combining Theorems 2.7 and 2.5 we get, in particular,

Corollary 2.8. Let m,n, k be parameters such that

(3) m ≤ n(ε logn)/k,

where ε > 0 is a sufficiently small constant. Then with probability 1−O(1/m),

the following holds. For every ordering ≤ of Am,n and every b ∈ {0, 1}m,

every Res(k)-refutation of τ≤(Am,n, b) must have size ≥ exp(nΩ(1)).

Definition 2.9 ([Kra04]). For an n-input m-output circuit C and a vector

z1, . . . , zm of propositional variables, let τC(x1, . . . , xn, ~y, z1, . . . , zm) be defined

in the same way as τ(C, b) (see Definition 2.1) with the difference that the

“output axioms” ybivi get replaced by the two clauses yvi ∨ z̄i, ȳvi ∨ zi. (Thus,

τ(C, b) is the same as τC(~x, ~y, b).)

For a proof system P and an integer S, the circuit C is S-iterable in P if

for every CNF of the form

(4)
H∧
ν=1

τC(x
(ν)
1 , . . . , x(ν)

n , ~y(ν), q
(ν)
1 , . . . , q(ν)

m ),

every refutation of this CNF in the system P must have size ≥ S. Here

x
(ν)
j , ~y(ν) are pairwise disjoint tuples of variables, and every q

(ν)
i is either a

Boolean constant or belongs to the set
{
x

(µ)
j | j ∈ [n], µ < ν

}
.
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Since τ(C, b) itself has the form (4) (with H = 1), iterability is stronger

than just hardness. As the proof of the following theorem will show, for the

particular case of NW-generators, they are not very much apart from each

other.

Theorem 2.10. Let A be an m× n (r, d)-lossless expander, and assume

that

(5) s
def
= min

i∈[m]
|Ji(A)| ≥ Cd(k + logm)

for a sufficiently large constant C > 0. Then for every ordering ≤ of the

matrix A, the circuit CA,≤ from Definition 2.2 is S-iterable in in Res(k), where

S ≥ exp(min{Ω(s/d), r/2O(d)}).
As in [Kra04], this implies in particular that composing the generator CA,≤

with itself preserves hardness. We will note here only one particular iteration

protocol corresponding to the classical construction from [GGM86].

Definition 2.11. Let C be a Boolean circuit (over an arbitrary basis) with

n inputs and 2n outputs, and let h ≥ 1 be an integer. The circuit Ch with

n inputs and 2hn outputs is constructed as follows. For every binary string u

with |u| ≤ h−1, we prepare an isomorphic copy Cu of C. The inputs of Ch are

the inputs of CΛ (Λ the empty string), and the outputs of Ch are the outputs

of the circuits Cu with |u| = h − 1. Finally, for every u with |u| < h − 1,

the first n outputs of Cu are identified with the inputs of Cu∗0, and the last n

output bits are identified with inputs of Cu∗1. (In everything else these circuits

are completely independent.)

Theorem 2.12. Let ≤ be an arbitrary ordering of an (2n × n) (r, d)-

lossless expander A, and assume that

s
def
= min

i∈[2n]
|Ji(A)| ≥ Cd(k + log n)

for a sufficiently large constant C > 0. Let h ≥ 1 be an arbitrary integer,

and let b ∈ {0, 1}2h·n be an arbitrary vector. Then every Res(k) refutation of

τ(ChA,≤, b) must have size ≥ exp(min{Ω(s/d), r/2O(kd)}).

For a Boolean function fn in n variables5 and t≤2n, denote by Circuitt(fn)

an O(1)-CNF of size 2O(n) encoding the description of a size-t fan-in 2 Boolean

circuit over the standard basis {¬,∧,∨} for computing fn. We will recall

an exact definition in Section 8; for the time being let us just observe that

proving that the circuit size of fn is greater than t is tantamount to showing

that Circuitt(fn) is unsatisfiable.

5Note that the “intended meaning” of n in Theorems 2.13 and 2.20 is completely different

from all other results
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Theorem 2.13. Let fn be any Boolean function in n variables, and let

n2 ≤ t ≤ 2n. Then every Res(ε log t) refutation of Circuitt(fn) (ε > 0 a

sufficiently small constant) must have size exp(tΩ(1)).

Let us now consider the pigeonhole principle.

Definition 2.14. Assume m > n. The (negation of the) onto pigeonhole

principle is the unsatisfiable CNF in the variables {xij | i ∈ [m], j ∈ [n]} de-

noted by ¬onto-PHPmn that is the conjunction of the following clauses:

Qi
def
=

n∨
j=1

xij (i ∈ [m]),

Qi1,i2;j
def
= (x̄i1j ∨ x̄i2j) (i1 6= i2 ∈ [m], j ∈ [n]),

Qj
def
=

m∨
i=1

xij (j ∈ [n]).

(The prefix “onto” refers to the presence of the last group of axioms.)

[SBI04] proved that ¬onto-PHP2n
n is exponentially hard to refute in Res(k)

as long as k ≤
»

log n/ log logn. We improve this as follows.

Theorem 2.15. Every Res(k) refutation of ¬onto-PHP2n
n must have size

exp(n/(log n)O(k)).

This bound is exponential up to k = (ε log n)/ log logn.

Let us now recall another extension of Resolution that is of more algebraic

flavour.

Definition 2.16 ([CEI96]). Let F be a fixed field. Polynomial Calculus (PC

for short) is the proof system whose lines are polynomials f ∈ F[x1, . . . , xn].

(A polynomial f is interpreted as the polynomial equation f = 0.) It has

polynomials x2
i − xi (i ∈ [n]) as default axioms and has two inference rules:

f g

αf + βg
; α, β ∈ F (Scalar Addition),

f

xi · f
(Variable Multiplication).

Definition 2.17 ([ABSRW02]). Again let F be a fixed field. Polynomial

Calculus with Resolution (PCR) is the proof system whose lines are polynomi-

als from F [x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are treated as new formal

variables. PCR has all default axioms and inference rules of PC (including,

of course, those that involve new variables x̄i), plus additional default axioms

xi + x̄i = 1 (i ∈ [n]).
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For a clause C, denote by ΓC the monomial

(6) ΓC
def
=
∏
x̄∈C

x ·
∏
x∈C

x̄,

and for a CNF τ , let Γτ
def
= {ΓC | C ∈ τ }. (Note that τ is unsatisfiable if

and only if the polynomials Γτ have no common root in F satisfying all de-

fault axioms of PCR.) A PCR refutation of a CNF τ is a PCR proof of the

contradiction 1=0 from Γτ .

The degree of a PCR proof is defined as the maximal degree of a polynomial

appearing in it, and its size is the number of different monomials in this proof.

Remark 3. PC and PCR are equivalent with respect to the degree measure

(via the linear transformation x̄i 7→ 1 − xi). Also note that we measure the

size of PCR proofs differently from Definition 2.6; namely, by the number of

monomials. We do not know if our results still hold if the size is measured by

the number of lines.

All our lower bounds for Res(1) (= Resolution) generalize to PCR over

any field F with char(F) 6= 2. That is,

Theorem 2.18. Let A be an m× n (r, d)-lossless expander, and assume

that

(7) min
i∈[m]

|Ji(A)| ≥ Cd logm

for a sufficiently large constant C > 0. Let ≤ be an arbitrary ordering of A,

b∈{0, 1}m be an arbitrary vector, and F be an arbitrary field with char(F) 6=2.

Then every PCR refutation of τ≤(A, b) over the field F must be of size

≥ exp(r/2O(d)).

Theorem 2.19. Let A be an m× n (r, d)-lossless expander such that (7)

holds, and let s
def
= mini∈[m] |Ji(A)|. Then for every ordering ≤ of the matrix

A and for every field F with char(F) 6= 2, the circuit CA,≤ is S-iterable in PCR

over F , where S ≥ exp(min{Ω(s/d), r/2O(d)}).

Let Circuit⊕t (fn) be defined in the same way as Circuitt(fn), with the

exception that besides the standard connectives {¬,∧,∨}, the encoded circuit

also allows PARITY gates of fan-in 2.

Theorem 2.20. Let fn be any Boolean function in n variables, n2 ≤
t ≤ 2n, and F be any field with char(F) 6= 2. Then every PCR refutation of

Circuit⊕t (fn) over F must have size exp(tΩ(1)).

We conclude with one miscellaneous result about the hardness of Nisan

generators that is specific to PCR. For these generators we still do not know
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how to get more than nε logn output bits even in the case of Resolution. We

now show how to make a function (that is, with m = 2n
ε

bits) Nisan generator

hard for PCR at the expense of spoiling its encoding.

Every ordering j1, . . . , jd of a finite set J can be also viewed as a cyclic

order — that is, as an injective mapping α : J −→ S1 into the unit circle S1

given by α(jν) = ν/d. A cyclic interval is a set of the form α−1(A), where

A ⊆ S1 is an arc.

Fix a tuple ≤ = (≤1, . . . ,≤m) of orderings of the sets (J1(A), . . . , Jm(A)),

and let

VarsCycl
≤ (A)

def
= {x1, . . . , xn} ∪

®
yi∆

∣∣∣∣∣ i ∈ [m], ∆ a cyclic interval in Ji(A)

such that ∆ = Ji(A) or
|Ji(A)|

3
− 1 ≤ |∆| ≤ 2|Ji(A)|

3
+ 1

´
.

Let τCycl
≤ (A, b) be the 3-CNF consisting of the clauses that result from expand-

ing those constraints of the form

yi∆∪{j}≡ y
i
∆ ⊕ xj (i ∈ [m], j adjacent to ∆),(8)

yi∆1∪∆2
≡ yi∆1

⊕ yi∆2
(i ∈ [m], ∆1,∆2 disjoint and adjacent),(9)

yiJi(A)≡ bi,(10)

in which all variables belong to VarsCycl
≤ (A). (That is, ∆,∆ ∪ {j},∆1,∆2 and

∆1 ∪∆2 must obey the size bound in its definition.)

Let us verify that τCycl
≤ (A, b) is indeed a complete encoding of the linear

system AX = b. (This is not immediately clear due to the presence of the

constraints on |∆|.)

Fact 1. The system of F2-linear equations AX = b is consistent if and

only if τCycl
≤ (A, b) is satisfiable.

Proof. The “only if” part is obvious. For the opposite direction, we only

have to show that the x-part of every satisfying assignment for τCycl
≤ (A, b) also

satisfies the system AX = b.

For any given i ∈ [m], fix an arbitrary partition Ji(A) = ∆i,1
.
∪ ∆i,2

.
∪ ∆i,3

into three cyclic intervals of almost equal sizes: |Ji(A)|
3 −1 ≤ |∆iν | ≤ |Ji(A)|

3 +1.

Then (9) (applied twice) and (10) imply that in every satisfying assignment we

have yi∆i,1
⊕ yi∆i,2

⊕ yi∆i,3
= bi. On the other hand, by summing up appropriate

axioms (8) (with j ∈ ∆iν), we obtain yi∆iν′
⊕⊕j∈∆iν

xj = yi∆iν∪∆iν′
(ν ′ 6= ν)

and then, using again (9),
⊕
j∈∆iν

xj = yi∆iν
for every ν ∈ [3]. The statement

follows. �
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Theorem 2.21. Let A be an m × n (r, d)-lossless expander such that

mini∈[m] |Ji(A)| ≥ Cd logm for a sufficiently large constant C > 0, ≤ be an

arbitrary ordering of A, b ∈ {0, 1}m be an arbitrary vector, and F any field

with char(F) 6= 2. Then every PCR refutation of τCycl
≤ (A, b) over the field F

must have size ≥ exp(r/dO(1)).

The bound of this theorem is as good as we might hope. The encoding

itself, however, is not very useful: it does not correspond to any circuit and,

moreover, the proof of this theorem seems to completely break apart for Res(2).

3. Preliminaries

In this section we begin the proof of Theorem 2.7 by presenting some

known results in the form adapted to our purposes. Recall several definitions

from [ABSRW04].

Definition 3.1. A Boolean function f is `-robust if every restriction ρ such

that f |ρ = const satisfies | sup(ρ)| ≥ `.

Definition 3.2. Let A be an m×n 0-1 matrix. For every Boolean function

f with the property ∃ i ∈ [m](Vars(f) ⊆ Xi(A)), we introduce a new extension

variable yf . Let Vars(A) be the set of all these variables.

Given Boolean functions ~g = (g1, . . . , gm) such that Vars(gi) ⊆ Xi(A),

we denote by τ(A,~g) the CNF in the variables Vars(A) that consists of those

clauses yε1f1
∨ · · · ∨ yεwfw for which there exists i ∈ [m] such that

Vars(f1) ∪ · · · ∪Vars(fw) ⊆ Xi(A)

and

gi ≤ f ε11 ∨ · · · ∨ f
εw
w .

We now have the following (minor) generalization of [ABSRW04, Th. 3.1].

Theorem 3.3. Let A be an (r, d)-lossless expander of size m×n, and let

g1, . . . , gm be `-robust functions with Vars(gi) ⊆ Xi(A), where ` ≥ d+ 1. Then

every resolution refutation of τ(A,~g) must have width > r(`−d)
2` .

Proof. The only difference from [ABSRW04, Th. 3.1] is that we now use

(r, d)-lossless expanders instead of (r, s, c)-expanders with s−c = d. The proof

goes the same way, and we only remark on the changes to be made to its text.

All these changes pertain to the proof of [ABSRW04, Claim 3.3].

First, the bound on the size of ∂A(I) now becomes |∂A(I)| ≥∑i∈I |Ji(A)|−
d · |I| (as opposed to |∂A(I)| ≥ c · |I| in [ABSRW04]). Next, the proof of

the crucial inequality |Ji1(A) ∩ ∂A(I)| ≤ s − ` in [ABSRW04] actually shows
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|Ji1(A) ∩ ∂A(I)| ≤ |Ji1(A)| − `. Last, the final calculation now looks like∑
i∈I
|Ji(A)| − d · |I| ≤ |∂A(I)| ≤

∑
i∈I0
|Ji(A)|+

∑
i∈I1

(|Ji(A)| − `)

=
∑
i∈I
|Ji(A)| − ` · |I1| ≤

∑
i∈I
|Ji(A)| − ` · (|I| − w(C)),

which implies our bound w(C) > r(`−d)
2` since |I| > r/2. �

We will only need the following special case of this.

Corollary 3.4. Let A be an (r, d)-lossless expander of size m× n such

that |Ji(A)| ≥ 2d for all i ∈ [m]. Then for every ordering ≤ and every b ∈
{0, 1}m, every resolution refutation of τ≤(A, b) must have width > r/4.

Proof. In Theorem 3.3, let gi be the function
⊕
j∈Ji(A) xj = bi and ` :=

2d. Since τ≤(A, b) is a sub-CNF of τ(A,~g) (for any ordering ≤), the result

follows. �

Definition 3.5 ([SBI04]). A decision tree is a rooted binary tree such that

every internal node is labelled with a variable, the edges leaving this node

correspond to whether the variable is set to 0 or 1, and the leaves are labelled

with either 0 or 1. As usual, we assume that on every given path no variable

appears more than once. Then every path from the root to a leaf may be

viewed as a partial assignment, and this assignment, in turn, will sometimes

be identified with the corresponding leaf. For a decision tree T and ε ∈ {0, 1},
we write the set of paths (partial assignments) that lead from the root to a leaf

labelled ε as Brε(T ). We say that a decision tree T strongly represents a DNF

F if for every π ∈ Br0(T ) and for all t ∈ F , t|π = 0 and for every π ∈ Br1(T ),

there exists t ∈ F such that t|π = 1. Let the representation height of F , h(F )

be the minimum height of a decision tree strongly representing F .

Proposition 3.6 ([SBI04]). Let τ be an h-CNF, P be a Res(k) refutation

of τ , and let ρ be a partial assignment so that for every line F of P , h(F |ρ) ≤ h.

Then τ |ρ has a resolution refutation of width ≤ kh.

Remark 4. One small technicality is that the system Res(k), as defined in

[SBI04], does not automatically include the axioms ` ∨ ¯̀. Therefore, formally

speaking, an application of their result only implies that τ∗|ρ has a resolution

refutation of the required width, where τ∗ is obtained from τ by adding these

trivial axioms. It is, however, obvious that the latter can be eliminated from

any resolution proof without increasing its width.

Finally, we recall a combinatorial inequality originally proved in [Jan90]

and further generalized in [AS08, §8.1].
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Definition 3.7. For propositional variables x1, . . . , xn and probabilities

p1, . . . , pn ∈ [0, 1], denote by a~p a random assignment that independently

assigns every variable xi to 1 with probability pi and to 0 with probability

(1− pi).

Proposition 3.8. Let t1, . . . , tH be monotone terms (not necessarily dis-

tinct) in the variables x1, . . . , xn, and let p1, . . . , pn ∈ [0, 1]. Let

(11) κ
def
=

∑
α∈[H]

P
[
tα(a~p) = 1

]
be the expectation of the number of terms satisfied by a~p, and let

∆
def
=

∑
α 6=β∈[H]

Vars(tα)∩Vars(tβ)6=∅

P
[
tα(a~p) = tβ(a~p) = 1

]
.

Then

P

 ∧
α∈[H]

tα(a~p) = 0

 ≤ e−κ+ ∆
2 .

Proof. The notation of [AS08, §8.1] corresponds to ours as follows: Ω is

{x1, . . . , xn}, I is [H], Ai := Vars(ti) (i ∈ [H]), and Bi is the event ti(a~p) = 1;

we also renamed µ to κ. After this translation, our proposition is exactly the

second inequality in [AS08, Th. 8.1.1]. �

Remark 5. We will actually need another version of this inequality ([AS08,

Th. 8.1.2]), useful when ∆ � κ. However, we will need to dig into the proof

of that theorem rather deeply. For this reason we do not formulate the cor-

responding general statement here, but rather we incorporate it as an ad hoc

argument in the proof of Lemma 4.4.

4. Small restriction switching lemma

In this section we give a quadratic improvement on the original version

of this lemma from [SBI04]. In our main application, the underlying random

restriction will not act totally independently on different variables, but at

least it will have some “weak local independence” property. We will be able to

capture this property in the main statement so that the proof will not become

more complicated than for truly independent restrictions, but this will require

several auxiliary definitions.

Definition 4.1. We say that a (deterministic) restriction ρ′ is a sub-restric-

tion of another restriction ρ if sup(ρ′) ⊆ sup(ρ) and ρ, ρ′ coincide on sup(ρ′).

For random restrictions ρ,ρ′, ρ′ is a sub-restriction of ρ if there exists a set

Ω, a random variable ω ∈ Ω, and functions π, π′ from Ω to the set of all

restrictions such that



434 ALEXANDER A. RAZBOROV

(1) ρ has the same distribution as π(ω), and ρ′ has the same distribution as

π′(ω);

(2) for every individual ω ∈ Ω, π′(ω) is a sub-restriction of π(ω).

Clearly, if ρ′ is a sub-restriction of ρ, then for any terms t1, . . . , tH we

have the inequality P
î∨

α∈[H](tα|ρ′ ≡ 1)
ó
≤ P

î∨
α∈[H](tα|ρ ≡ 1)

ó
.

Definition 4.2. A weight function is any function µ : {x1, . . . , xn} −→ Z+

from variables to strictly positive integers. The weight µ(V ) of a set of variables

V is defined as µ(V )
def
=
∑
x∈V µ(x), and the weight of a term t is µ(t)

def
=

µ(Vars(t)). We will denote by µtriv the trivial weight function identically equal

to 1; in this case the weight of a term is equal to its width. For arbitrary

weight function µ, we have this in one direction: µ(t) ≥ w(t). A DNF F is a

weighted K-DNF (with respect to a weight function µ) if all terms t ∈ F have

weight ≤ K.

Finally, we define the amount of “weak local independence” needed to

carry out the proof of our switching lemma. It is similar to the ordinary r-wise

independence with one important change. Namely, we do not demand that on

small sets of variables our random restriction behaves exactly as the genuine

independent and identically distributed restriction. We only require that it

can be obtained from the latter by assigning more variables if necessary.

Definition 4.3. Let µ be a weight function, and let p ∈ [0, 1]. For a set

of variables X, let ρµ,X,p be the random restriction of these variables that

independently assigns every x ∈ X to 0,1 with probability pµ(x)/2, and leaves

it unassigned with probability (1 − pµ(x)). Given an integer r, say that a

random restriction ρ is (r, µ, p)-independent if for every subset X of variables

with |X| ≤ r, ρµ,X,p is a sub-restriction of ρ|X .

Thus, if ρ is (r, µ, p)-independent, then for any set of terms t1, . . . , tH such

that X
def
=
⋃H
i=1 Vars(ti) has size at most r, we have

(12) P

 ∨
α∈[H]

(tα|ρµ,X,p ≡ 1)

 ≤ P

 ∨
α∈[H]

(tα|ρ ≡ 1)

 .
(And, as a matter of fact, this is the only property of (r, µ, p)-independent

restrictions we will need.)

The rest of this section is devoted to the proof of the following lemma.

Lemma 4.4. Let µ be a weight function, and let F be a weighted K-DNF

with respect to µ. Suppose that ρ is a random (r, µ, p)-independent restriction.

Then for every h ≤ r,

(13) P[h(F |ρ) > h] ≤ exp(−h(p/2)O(K)).
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Proof. We begin with the case when F is monotone, and in that case we

are going to prove by induction on K that

(14) P[h(F |ρ) > h] ≤ e−h(pε)2K
,

where ε > 0 is a constant chosen sufficiently small so that the arguments for

Cases 1 and 2 below work.6 This clearly implies (13).

Base K = 0 is obvious since F is a constant and h(F |ρ) = 0 with proba-

bility 1.

Inductive step. Let F be a nontrivial monotone weighted K-DNF, and

assume that (14) is established for all weighted K ′-DNF with K ′ < K (and

for all integers h). We define a numerical invariant δ(F ) that represents, up

to a scaling factor, the optimal value of the parameter ∆ in Proposition 3.8

when we attempt to apply it to the formula F . Further analysis will be sharply

divided according to whether δ(F ) is small or large; cf. [SBI04, Th. 3].

First, for a set of variables V , we let

δ(V )
def
=

0 if V = ∅,
(2/p)µ(V ) otherwise.

Next, given a random term t ∈ F (viewed, for the duration of this proof, as a

probability distribution on the set of all terms of F ), we define

δ(t)
def
= E

[
δ(Vars(t) ∩Vars(t′))

]
,

where t′ is an independent copy of t. Finally, let

δ(F )
def
= min

t
δ(t),

where the minimum is taken over all random terms t ∈ F . (This minimum

exists since the space of all probability distributions on terms of F is compact,

and the function δ(t) is continuous.) Let

(15) s
def
= d2h(pε)2Ke

(so that the right-hand side of (14) is roughly e−s/2). Consider two cases.

Case 1: δ(F ) ≤ s−1. Let t ∈ F be the random term for which δ(t) ≤ s−1.

Arguing as in the proof of [AS08, Th. 8.1.2], let t1, . . . , tH be independent

samples from F according to the distribution of t, where

(16) H
def
= ds(2/p)Ke.

6The factor 2 in (14) can be removed by using a slightly more sophisticated analysis in

Case 2 below, but we do not need that precision in what follows.
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Then

E

 ∑
α 6=β∈[H]

δ(Vars(tα) ∩Vars(tβ))

 = H(H − 1)δ(t) ≤ H(H − 1)s−1,

and we fix any particular sampling t1, . . . , tH for which

(17)
∑

α 6=β∈[H]

δ(Vars(tα) ∩Vars(tβ)) ≤ H(H − 1)s−1.

The terms t1, . . . , tH altogether contain at most HK variables, and HK ≤
h ≤ r as long as the constant ε is small enough. Therefore, since ρ is (r, µ, p)-

independent, (12) implies

(18) P[h(F |ρ) > h] ≤ P

 ∧
α∈[H]

(tα|ρ 6≡ 1)

 ≤ P

 ∧
α∈[H]

(tα|ρµ,p 6≡ 1)

 .
Furthermore, since the terms tα are monotone, tα|ρµ,p ≡ 1 if and only if

tα(a) = 1, where a is the random (total) assignment obtained from ρµ,p by

additionally assigning to 0 all unassigned variables. Now, a has the same distri-

bution as the assignment a~̃p from Definition 3.7 for the vector of probabilities

p̃ given by p̃i
def
= pµ(xi)/2. Let pi

def
= (p/2)µ(xi); then pi ≤ p̃i and, since the

event
∨
α∈[H] tα(a) = 0 is anti-monotone in a, we get

(19) P

 ∧
α∈[H]

(tα|ρµ,p 6≡ 1)

 = P

 ∧
α∈[H]

tα(a~̃p) = 0

 ≤ P

 ∧
α∈[H]

tα(a~p) = 0

 .
We are going to upper bound P

î∧
α∈[H] tα(a~p) = 0

ó
, given (17).

For every α ∈ [H] such that µ(tα) < K, introduce a new auxiliary variable

yα with weight K − µ(tα), and replace tα with tα ∧ yα. This operation does

not change the value of the sum
∑
α 6=β∈[H] δ(Vars(tα) ∩ Vars(tβ)) in (17), and

P
î∧

α∈[H] tα(a~p) = 0
ó

may only increase. Therefore, we may assume without

loss of generality that all terms in F have weight exactly K.

And now we apply Proposition 3.8. All events P
[
tα(a~p) = 1

]
have the

same probability (p/2)K ; therefore, the quantity κ given by (11) is equal to

H(p/2)K . Also, whenever Vars(tα) ∩Vars(tβ) 6= ∅, we have

P
[
tα(a~p) = tβ(a~p) = 1

]
= (p/2)µ(tα∧tβ) = (p/2)2Kδ(Vars(tα) ∩Vars(tβ));

therefore,

∆ = (p/2)2K
∑

α 6=β∈[H]

δ(Vars(tα) ∩Vars(tβ)) ≤ (p/2)2KH(H − 1)s−1

≤ H(p/2)K = κ
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by (17) and (16). Applying Proposition 3.8, we get

P

 ∧
α∈[H]

tα(a~p) = 0

 ≤ e−H(p/2)K

2 ≤ e−s/2

which, along with (18) and (19), implies (14).

Case 2: δ(F ) ≥ s−1. Note first that

δ(t) = E
[
δ(Vars(t) ∩Vars(t′))

]
=
∑
V

δ(V ) ·P
[
Vars(t) ∩Vars(t′) = V

]
≤
∑
V

δ(V ) ·P
[
V ⊆ Vars(t) ∧ V ⊆ Vars(t′)

]
=
∑
V 6=∅

(2/p)µ(V )P[V ⊆ Vars(t)]2 ;

therefore, we also have

min
t

∑
V 6=∅

(2/p)µ(V )P[V ⊆ Vars(t)]2 ≥ s−1.

Let t be the random term on which the quadratic form∑
V 6=∅

(2/p)µ(V )P[V ⊆ Vars(t)]2

in the variables pt
def
= P[t = t] describing the density function of the as-

sociated distribution attains its minimal value δ ≥ s−1. Denoting further

P[V ⊆ Vars(t)] (viewed as a linear form in the variables pt) by pV we have

∑
t∈F
pt 6=0

∂(
∑
V 6=∅(2/p)

µ(V )p2
V )

∂pt
pt = 2

∑
V 6=∅

(2/p)µ(V )p2
V = 2δ.

Since
∑

t∈F
pt 6=0

pt = 1, this implies the existence of some t0 ∈ F with pt0 6= 0 and

such that

∂(
∑
V 6=∅(2/p)

µ(V )p2
V )

∂pt0
= 2

∑
V 6=∅

V⊆Vars(t0)

(2/p)µ(V )pV ≥ 2δ.

Therefore, for any term t ∈ F (even when pt = 0!), we also have∑
V 6=∅

V⊆Vars(t)

(2/p)µ(V )pV ≥ δ

since otherwise, by setting pt0 to 0 and pt to pt + pt0 , we would have ob-

tained contradiction with the assumption that t minimizes the quadratic form∑
V 6=∅(2/p)

µ(V )P[V ⊆ Vars(t)]2.
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Summarizing the above argument, we have found coefficients pV ≥ 0 (V a

nonempty set of variables) and δ ≥ s−1 such that∑
V 6=∅

(2/p)µ(V )p2
V = δ,(20)

∀t ∈ F
Ç ∑

V 6=∅
V⊆Vars(t)

(2/p)µ(V )pV ≥ δ
å
.(21)

These are the only properties of pV s we will need in the rest of the proof; in

particular, at this point we can forget their interpretation as certain probabil-

ities.

Let us order all nonempty sets of variables V in decreasing order with

respect to the coefficient pV : pV1 ≥ pV2 ≥ pV3 ≥ · · · . Assume without loss of

generality that the variables x1, . . . , xn are enumerated in the order in which

they appear for the first time in the sequence V1, V2, V3, . . . . (equivalently, we

require that every union V1 ∪ V2 ∪ · · · ∪ VH should be an initial segment in the

set of variables ordered according to their indices). For a nonempty V , denote

by i(V ) the maximal index i for which xi ∈ V .

Now we classify terms t ∈ F as follows. Represent a given term t ∈ F

in the form t = xi1 ∧ xi2 ∧ · · · ∧ xiw (i1 < i2 < · · · < iw). For a nonempty

V ⊆ Vars(t), let µt(V )
def
= µ(xi1 ∧ xi2 ∧ · · · ∧ xi(V )). (In other words, this is the

weight of the minimal initial segment in Vars(t) containing V .) We split the

sum in (21) with respect to the value of µt(V ), and we classify t according to

which part is large enough. Formally, let

Fµ
def
=

t ∈ F
∣∣∣∣∣∣∣∣

∑
µt(V )=µ
V⊆Vars(t)

pV ≥ δ(p/4)µ

 ;

let us see that F =
∨K
µ=1 Fµ. Assume for the sake of contradiction that for

some t ∈ F and all real µ, we have∑
µt(V )=µ
V⊆Vars(t)

pV < δ(p/4)µ < δ(p/2)µ.

Summing these inequalities with coefficients (2/p)µ, we would get∑
V⊆Vars(t)

pV (2/p)µt(V ) < δ,

which would be in contradiction with (21) since clearly µt(V ) ≥ µ(V ) for all

t, V . This contradiction shows that t ∈ Fµ for at least one µ that is indeed

F =
∨K
µ=1 Fµ.
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Then, noting that µt(V ) ≥ µ(V ) for all t, V , we have F =
∨K
µ=1 Fµ. This

clearly implies h(F |ρ) ≤
∑K
µ=1 h(Fµ|ρ) for every restriction ρ. (The concate-

nation of decision trees strongly representing Fµ|ρ for µ = 1, . . . ,K, strongly

represents F |ρ.) Thus, we obtain

(22) P[h(F |ρ) > h] ≤
K∑
µ=1

P
î
h(Fµ|ρ) > h2−µ

ó
,

and we treat every term in the right-hand side separately.

So, let us fix µ, 1 ≤ µ ≤ K, and let us fix t ∈ Fµ; t = xi1 ∧ xi2 ∧ · · · ∧
xiw (i1 < i2 < · · · < iw). Let d be the index for which µ(xi1∧xi2∧· · ·∧xid) = µ.

Then d ≤ µ, which implies that there are at most 2µ subsets V ⊆ t with

µt(V ) = µ. Consulting the definition of Fµ, we see that there exists a particular

V ⊆ Vars(t) with µt(V ) = µ such that pV ≥ δ(p/8)µ.

Let this particular V have rank ` in our enumeration of all nonempty

subsets. We are going to upper bound
∑`
ν=1 |Vν |. Notice that, according to

the choice of this enumeration, pVν ≥ pV for all ν ∈ [`]. Therefore,

∑̀
ν=1

(2/p)µ(Vν)p2
Vν ≥ p

2
V ·
∑̀
ν=1

(2/p)µ(Vν)

≥ δ2(p2/64)µ
∑̀
ν=1

µ(Vν) ≥ δ2(p2/64)µ
∑̀
ν=1

|Vν |.

Comparing this with (20), we get

(23)
∑̀
ν=1

|Vν | ≤ δ−1(64/p2)µ ≤ s(64/p2)µ.

The conclusion (23) holds for every t ∈ Fµ. Therefore, if we define `µ as

the maximal value ` for which the bound (23) holds, then for every t ∈ Fµ,

V1∪· · ·∪V`µ will contain some V ⊆ Vars(t) with µt(V ) = µ. Since V1∪· · ·∪V`µ
is an initial segment in {x1, . . . , xn}, this implies that

µ((V1 ∪ · · · ∪ V`µ) ∩Vars(t)) ≥ µ.

Now let Tµ be the (oblivious) decision tree that queries all variables in

V1∪· · ·∪V`µ (in an arbitrary order). Our analysis implies that for every leaf π

of Tµ, (Fµ)|π is a monotone weighted (K − µ)-DNF. Therefore, we may apply

the inductive assumption (14) and conclude that for each leaf π,

P

ï
h((Fµ|π)|ρ) >

1

2
h2−µ

ò
≤ e−

1
2
h2−µ(pε)2(K−µ)

.

By the definition of `µ and (15), the height of Tµ does not exceed h(pε)2K ·
{O(1/p2)}µ, which is at most 1

4h2−µ(pε)2(K−µ), as long as ε is small enough.
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Summing over all leaves of Tµ,

P

ï
∃π ∈ {0, 1}V1∪···∪V`µ

Å
h((Fµ|π)|ρ) >

1

2
h2−µ

ãò
≤ e−

1
4
h2−µ(pε)2(K−µ)

.

Noting that the height of the tree (Tµ|ρ) never exceeds 1
2h2−µ, the latter event

is logically implied by h(Fµ|ρ) > h2−µ. Comparing with (22),

P[h(F |ρ) > h] ≤
K∑
µ=1

e−
1
4
h2−µ(pε)2(K−µ) ≤

K∑
µ=1

e−h(pε)2K · 1
4

(
1

2ε2

)µ
,

which is at most e−h(pε)2K
, as long as ε is small enough.

This proves (14) in Case 2, completes the inductive step, and completes

the proof of Lemma 4.4 for monotone F .

In order to extend this lemma to the general case, let us note first that,

by symmetry, we automatically have it when the DNF F is pseudo-monotone,

defined as those DNF that can be turned into monotone by negating some vari-

ables. Now, every DNF F (interpreted as a set of terms) has a straightforward

fractional cover by pseudo-monotone DNFs of acceptable size; that is, it pos-

sesses a random pseudo-monotone sub-DNF G that contains every individual

term t ∈ F with sufficiently large probability. This G is generated simply by

picking a (total) assignment a at random and including those terms that satisfy

it. If it were an ordinary cover, we would have been trivially done. The follow-

ing general lemma (which will also be repeatedly used in both our applications

of Lemma 4.4) shows how to handle the more general fractional case.

Lemma 4.5. Let F be a k-DNF, and let G be a random sub-DNF such that

(24) ∀t ∈ F (P[t ∈ G] ≥ ε),

where ε is an arbitrary parameter. Let ρ be a random restriction such that for

every fixed G from the support of G,

P[h(G|ρ) > h] ≤ δ,

where δ is another parameter. Then

P

ï
h(F |ρ) > h

Å
2k

ε
+ k + 1

ãò
≤ 2δ/ε.

Proof of Lemma 4.5. Arguing by averaging over the distribution of G, we

get P[h(G|ρ) > h] ≤ δ, whereG and ρ are assumed independent. By Markov’s

inequality,

Pρ[PG[h(G|ρ) > h] ≥ ε/2] ≤ 2δ/ε.

Therefore, we only have to show that for every individual restriction ρ,

(25) P[h(G|ρ) > h] < ε/2

logically implies h(F |ρ) ≤ h
Ä

2k
ε + k + 1

ä
.
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This is done by an adaptation of the “block sensitivity” method [Nis91],

[BBC+01] to our setting. Assume that (25) holds. We want to construct a

decision tree of height ≤ h
Ä

2k
ε + k + 1

ä
strongly representing F |ρ. We begin

with a recursive construction of a sequence of decision trees T0, T1, . . . , T`, . . .

that goes as follows.

T0 is the trivial tree of height 0. In order to construct T`+1 from T`,

examine one-by-one all leaves π of T`. If either t|π = 0 for all t ∈ F |ρ, or

t|π = 1 for some t ∈ F |ρ, we leave π alone. Otherwise, pick up an arbitrary

nontrivial term t`+1 ∈ (F |ρ)|π, and append to the leaf π the oblivious decision

tree querying all variables in Vars(t`+1) \ (sup(ρ) ∪ sup(π)). Repeating this

procedure for all leaves π of T`, we get T`+1.

We terminate this construction after s
def
= d(2h/ε)e steps. The only leaves

π of Ts that still may violate Definition 3.5 are those for which the procedure

of appending a new tree was repeated all s times before we arrived at π. Let us

fix any such leaf π, and let t1, t2, . . . , ts be the terms picked by our algorithm

along the path to π.

By (24),

E[|{t1, t2, . . . , ts} ∩G|] ≥ s · ε.

On the other hand, denoting by Bad the indicator function of the event

h(G|ρ) > h, (25) implies

E[|{t1, t2, . . . , ts} ∩G| ·Bad] ≤ s ·E[Bad] < s · ε
2
.

Therefore, E[|{t1, t2, . . . , ts} ∩G| · (1−Bad)] > sε
2 ≥ h; pick up a particular

sub-DNF G that contains (h+1) terms tα1 , . . . , tαh+1
from the list {ti | i ∈ [s]}

(and possibly some other terms) such that h(G|ρ) ≤ h. Let Tπ be the decision

tree of height ≤ h strongly representing G|ρ. We complete out construction by

appending the tree Tπ to the leaf π (all vertices asking questions from sup(π)

are contracted in the process), and repeating this for all leaves π that still

violate Definition 3.5.

Clearly, the final tree constructed in this way has height at most sk+h ≤
h
Ä

2k
ε + k + 1

ä
, and we claim that it strongly represents F |ρ. For that we only

have to check the leaves of the form π ∗ σ, where π is a problematic leaf of Ts
and σ is a leaf of Tπ such that π and σ are consistent.

For every ν ∈ [h + 1], let Vν
def
= Vars(tαν ) \ ⋃α<αν Vars(tα). Then Vν are

disjoint and nonempty; therefore, since | sup(σ)| ≤ h, there exists at least one

ν0 ∈ [h+ 1] such that Vν0 ∩ | sup(σ)| = ∅. Now, the values of π at the variables

Vν0 can be changed in such a way that for the resulting partial assignment

π′, we have tαν0 |π′ = 1. Vν0 ∩ | sup(σ)| = ∅ implies that π′ and σ are still

consistent, hence tαν0 |σ 6≡ 0 and, since tαν0 ∈ G|ρ, σ ∈ Br0(Tπ) is impossible.
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Thus, σ ∈ Br1(Tπ), which implies that there exists a term t ∈ G|ρ ⊆ F |ρ such

that t|σ = 1, and that implies t|π∗σ = 1.

We have constructed (under the assumption (25)) a tree of height ≤
h
Ä

2k
ε + k + 1

ä
strongly representing F |ρ. The proof of Lemma 4.5 is com-

pleted. �

Let us now finish the proof of Lemma 4.4 for arbitrary weighted K-DNF F .

For every (total) assignment a to F , let Fa be the set of all terms in F sat-

isfied by a. Then Fa is a pseudo-monotone sub-DNF of F ; therefore, we

already have for it the required bound (13). Next, if a is picked completely

at random, then for every t ∈ F , P[t ∈ Fa] = 2−w(t) ≥ 2−K . Thus, we may

apply Lemma 4.5 with k := K, G := Fa, ε := 2−K , h := h
2K2K+K+1

and

δ := exp
Ä
− h

2K2K+K+1
(p/2)O(K)

ä
≤ exp(−h(p/2)O(K)), and this completes the

proof of Lemma 4.4 in the general situation. �

5. Hardness of Nisan generator for Res(k)

In this section we prove Theorem 2.7. The proof is technically involved,

and for that reason, it is split into a chain of auxiliary claims. They will be

assembled together only at the end of the section, although some informal

intuition as to what we are doing will be provided as we go along.

For the rest of the section, let us fix an m× n (r, d)-lossless expander A,

its ordering ≤, b ∈ {0, 1}m, and an integer k ≥ 1 such that (2) holds. Without

loss of generality we can assume that r ≥ k (since otherwise the bound is

trivial) and that d ≥ 1 (since otherwise τ≤(A, b) is consistent and hence does

not possess any refutations whatsoever). The overall strategy of our proof

appeared for the first time in [BP96] and has since become a standard tool in

proof complexity. Namely, we want to design a random partial assignment ρ

of the variables Vars≤(A) that has the following two properties:

Height-reduction: for every fixed k-DNF F , h(F |ρ) is small with high prob-

ability;

Width-preservation: with high probability every resolution refutation of

τ≤(A, b)|ρ must have large width.

Now, if a small size Res(k) refutation P of τ≤(A, b) existed, then with high

probability h(F |ρ) would be small for every F ∈ P by the Height-reduction

property, and we could apply Proposition 3.6. Its conclusion, however, would

be in immediate contradiction with the Width-preservation property.

We begin realizing this plan with Width-preservation (mostly because

this part is by far easier), and we will show that large width of resolution

refutations of τ≤(A, b)|ρ is implied by a simple combinatorial property of ρ.
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Some conventions on notation. In the rest of the paper we will be abbre-

viating the extension variables yi
viΣ

(where Σ is a nonempty ≤i-initial segment

of Ji(A)) by yiΣ. For technical reasons it will be also convenient to introduce

the variables yi∅, along with the axioms ȳi∅. Likewise, it will be convenient not

to identify yi{j} with xj and with each other (as required in the general Def-

inition 2.1), but to introduce instead new axioms yi{j} ∨ x̄j , ȳ
i
{j} ∨ xj . These

conventions imply that all variables in the vectors ~x, ~yi (i ∈ [m]) are pairwise

distinct, and the axioms of τ≤(A, b) become of particularly symmetric form

(26) yi∅ = 0, yiΣ∪{j} = yiΣ ⊕ xj , yiJi(A) = bi (i ∈ [m]).

(More precisely, they are clauses of width ≤ 3 resulting from the straightfor-

ward CNF expansion of these linear equations mod 2.)

Definition 5.1. A restriction ρ of the variables Vars≤(A) is closed if ρ(yi∅)

= 0 and ρ(yiJi(A)) = bi for all i ∈ [m]. Let Jx(ρ)
def
= {j ∈ [n] | xj ∈ sup(ρ)}. ρ is

sparse if it is closed and for every i ∈ [m] and every two different initial seg-

ments Σ⊂Σ′ in Ji(A) such that yiΣ, y
i
Σ′ ∈sup(ρ), we have |(Σ′ \ Σ) \ Jx(ρ)|≥2d.

Claim 5.2. If ρ is sparse, then every resolution refutation of τ≤(A, b)|ρ
must be of width > r/4.

Proof. Given a closed restriction ρ of the variables Vars≤(A), define the

matrix A|ρ as follows. For every row i of the original matrix A, let ∅ =

Σi
0 ⊂ Σi

1 ⊂ · · · ⊂ Σi
si = Ji(A) be the complete list of those initial segments

Σ in Ji(A) for which yiΣ ∈ sup(ρ). Then the rows of the matrix A|ρ are, by

definition, indexed by the pairs (i, ν) (i ∈ [m], ν ∈ [si]), its columns are indexed

by [n] \ Jx(ρ) (i.e., by those x-variables that are left unassigned by ρ), and the

underlying set system is described as Ji,ν(A|ρ)
def
= (Σi

ν \ Σi
ν−1) \ Jx(ρ).

Note that A|ρ satisfies all assumptions of Corollary 3.4. Indeed, the bound

|Ji,ν(A|ρ)| ≥ 2d is exactly the definition of sparseness. Next, given any set

{(i1, ν1), . . . , (i`, ν`)} of rows in the matrix A|ρ with ` ≤ r, applying the expan-

sion property (1) for the original matrix A to the set {i1, . . . , i`} gives us

(27)
∑

i∈{i1,...,i`}
|Ji(A)| − |∂A({i1, . . . , i`})| ≤ d · |{i1, . . . , i`}| ≤ d · `.

On the other hand, it is easy to see that

∑̀
α=1

|Jiα,να(A|ρ)| − |∂A|ρ({(i1, ν1), . . . , (i`, ν`)})|

≤
∑

i∈{i1,...,i`}
|Ji(A)| − |∂A({i1, . . . , i`})|.

(28)
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Indeed, let `j
def
= | {α ∈ [`] | j ∈ Jiα,να(A|ρ)} |; then the left-hand side of (28)

can be equivalently rewritten as
∑n
j=1 f(`j), where

f(x)
def
=

0, x ≤ 1,

x, x ≥ 2

is a nondecreasing function. Likewise, the right-hand side is equal to
∑n
j=1f(̂̀j),

where ̂̀j def
= | {i ∈ {i1, . . . , i`} | j ∈ Ji(A)} |. But `j ≤ ̂̀j since for every fixed i,

the sets {Jiα,να(A|ρ) | iα = i} are mutually disjoint, whence (28) follows.

Now, (27) and (28) imply that A|ρ is an (r, d)-lossless expander, and there-

fore all assumptions of Corollary 3.4 are fulfilled.

We now define (in a natural way) the assignment b|ρ of the rows of the

matrix A|ρ by letting

(b|ρ)|i,ν
def
= ρ(yiΣiν−1

)⊕ ρ(yiΣiν )⊕
⊕

j∈(Σiν\Σiν−1)∩Jx(ρ)

ρ(xj).

Finally, let ≤ |ρ be the ordering of the matrix A|ρ, where (≤ |ρ)|i,ν is the

restriction of ≤i onto Ji,ν(A|ρ).
We extend the restriction ρ to a variable substitution ρ′ of variables in

Vars≤(A) by variables in Vars≤|ρ(A|ρ) defining it outside of sup(ρ) as follows.

All xj 6∈ sup(ρ) are simply left alone: ρ′(xj)
def
= xj . For every yiΣ 6∈ sup(ρ), we

identify the index ν such that Σi
ν−1 ⊂ Σ ⊂ Σi

ν , and we let

ρ′(yiΣ)
def
= y

(i,ν)

(Σ\Σiν−1)\Jx(ρ)
⊕ ρ(yiΣiν−1

)⊕
⊕

j∈(Σ\Σiν−1)∩Jx(ρ)

ρ(xj);

cf. the definition of b|ρ. It is straightforward to check that this extension of

the original restriction ρ takes every equation in (26) either to 0 = 0 or to

an equation of the same form corresponding to τ≤|ρ′ (A|ρ′ , b|ρ′) and, therefore,

maps every resolution refutation P of τ≤(A, b)|ρ to a resolution refutation P |ρ′
of τ≤|ρ′ (A|ρ′ , b|ρ′). By Corollary 3.4 (applied to (A|ρ′ ,≤ |ρ′ , b|ρ′)), P |ρ′ must

contain a clause of width > r/4. Hence its preimage in P also has width

> r/4. Claim 5.2 is proved. �

Our second (and much more complicated) goal is to design a distribution

on sparse restrictions that fullfils the Height-reduction property. After some

consideration it becomes clear that in full generality this is impossible. Namely,

if a term t contains a couple of variables yiΣ, y
i
Σ′ with Σ,Σ′ close to each other,

then no sparse restriction whatsoever can set t to 1, which completely ruins the

whole argument. Thus, our most immediate task is to get rid of such “nasty”

terms.
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More notation. For a term t in the variables Vars≤(A), by Jx(t) we denote

the set {j∈ [n] | xj∈Vars(t)}, and we let dom(t)
def
=
{
i∈ [m]

∣∣∣ ∃Σ(yiΣ∈Vars(t))
}

.

For a DNF F , dom(F )
def
=
⋃
t∈F dom(t). For a nonempty ≤i-initial segment

Σ, let r(Σ) be its right end (maximal element). For uniformity of notation,

we let r(∅) def
= nili, where nili is an imaginary element with nili <i j for all

j ∈ Ji(A). In this notation, the difference Σ′ \Σ of two initial segments Σ ⊆ Σ′

coincides with the interval (r(Σ), r(Σ′)]. For subsets L,R ⊆ [n], Conv(L,R) is

the minimal interval containing them both.

Definition 5.3. Let t be a term in the variables Vars≤(A). For every

i ∈ dom(t), list in the form Σi
1 ⊂ Σi

2 ⊂ · · · ⊂ Σi
ki

all initial segments Σ such

that yiΣ ∈ Vars(t). Say that t is protected if there exists a system of subsets

Liν , Riν ⊆ Ji(A) (i ∈ dom(t), ν ∈ [ki]) such that

(1) Li,1 <i r(Σ
i
1) <i Ri,1 <i Li,2 <i r(Σ

i
2) <i . . . <i r(Σ

i
ki

) <i Ri,ki ;

(2) |Liν |, |Riν | = 3d;

(3)
∑
i∈dom(t)

∑
ν∈[ki] |Conv(Liν , Riν)| ≤ 20kd;

(4) all Liν , Riν are disjoint with Jx(t).

The pair (Liν , Riν) (often also written in the form (LiΣ, RiΣ), where Σ = Σi
ν),

will be called a protection of the variable yiΣiν
∈ Vars(t), and the entire set

system {Liν , Riν} will be called a protection of the term t. (Protections are,

of course, not necessarily uniquely defined.) A DNF F is protected if all terms

t ∈ F have this property.

We now show that every term t with w(t) ≤ k can be replaced by a pro-

tected DNF that will be denoted by R(t). For that purpose we will pick in a

special way several “anchor” variables yiΣ; those will be left intact. All other

y-variables will be expanded as linear forms in x-variables modulo our knowl-

edge of the value of a nearby anchor variable (see Definition 5.6 for details),

and R(t) will then be the naive DNF-expansion of the resulting
∧⊕

-circuit.

Definition 5.4. Let t be a term of width ≤ k in the variables Vars≤(A).

Denote by t′ the term obtained from t by appending to it the literals ȳi∅ ∧
(yiJi(A))

bi for every i ∈ dom(t). (If t contains either yi∅ or (yiJi(A))
b̄i for some

i ∈ [m], we immediately abort the construction and let R(t)
def
= 0.)

For a fixed i ∈ dom(t), list all initial segments Σ with yiΣ ∈ Vars(t′):

∅ = Σi
0 ⊂ Σi

1 ⊂ · · · ⊂ Σi
ki+1 = Ji(A), and let riν

def
= r(Σi

ν). Let

(29) Keri(t)
def
= Ji(A) ∩ (Jx(t) ∪

⋃
i′∈dom(t)\{i}

Ji′(A)).

Construct the graph Gi on {0, 1, . . . , ki + 1} by connecting (ν − 1) with

ν if |(ri,ν−1, riν ] \ Keri(t)| < 6d, and let Γi,0,Γi,1, . . . ,Γi`i be the connected
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components of this graph. Γiα is an interval in {0, 1, . . . , ki + 1}; let Γiα =

[ν`iα, ν
r
iα], and let Γ̂iα

def
= (ri,ν`iα

, ri,νriα ] be the corresponding interval in Ji(A).

Claim 5.5.

(a)

(30)
∑

i∈dom(t)

|Keri(t) ∪
`i⋃
α=0

Γ̂iα| ≤ 14kd;

(b) `i ≥ 1 for every i ∈ [m]. (That is, yi∅ and yiJi(A) are not in the same

connected component.)

Proof. (a) We have

Keri(t) ∪
`i⋃
α=0

Γ̂iα = Keri(t) ∪
⋃

(ν−1,ν)∈Gi

(ri,ν−1, riν ]

= Keri(t) ∪
⋃

(ν−1,ν)∈Gi

((ri,ν−1, riν ] \Keri(t))

= (Ji(A) ∩
⋃

i′∈dom(t)\{i}
Ji′(A))

∪ (Ji(A) ∩ (Jx(t) \
⋃

i′∈dom(t)\{i}
Ji′(A)))

∪
⋃

(ν−1,ν)∈Gi

((ri,ν−1, riν ] \Keri(t)).

Accordingly, ∑
i∈dom(t)

|Keri(t) ∪
`i⋃
α=0

Γ̂iα|

≤
∑

i∈dom(t)

|Ji(A) ∩
⋃

i′∈dom(t)\{i}
Ji′(A)|

+
∑

i∈dom(t)

|Ji(A) ∩ (Jx(t) \
⋃

i′∈dom(t)\{i}
Ji′(A))|

+
∑

i∈dom(t)

∑
(ν−1,ν)∈Gi

|(ri,ν−1, riν ] \Keri(t)|.

(31)

The first summand in the right-hand side is bounded by kd due to the expansion

property (1). Sets appearing in the second summand are disjoint, therefore,

it is bounded by |Jx(t)| ≤ k. Finally, |(ri,ν−1, riν ] \ Keri(t)| < 6d for every

i ∈ dom(t) and (ν−1, ν) ∈ Gi, and also
∑
i∈dom(t) |Gi| ≤

∑
i∈dom(t)(ki+1) ≤ 2k.

Therefore, the third summand is bounded by 12kd. (30) follows.

Part (b) of this claim immediately follows from part (a) and the bound (2).

�
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Definition 5.6 (construction of R(t) continued). Now fix one representa-

tive νiα in every connected component Γiα such that νi,0 = 0 and νi`i = ki + 1.

(Claim 5.5(b) guarantees that this is possible.) These will be the “anchor” vari-

ables mentioned before Definition 5.4, and they will serve as reference points

for variables yiΣiν
with ν ∈ Γα. Let εiα be the sign with which the anchor vari-

able yiΣiνiα
appears in t′. Then, since both t′ and R(t) assert that yiΣiνiα

= εiα,

modulo this fact we can replace y-variables corresponding to all others ν 6= νiα
in Γiα as a linear form in x-variables only.

Formally, we define the expression R̃(t) as the result of replacing in the

term t′ all variables yiΣiν
with ν ∈ Γiα and ν 6= νiα by the following linear forms:

(32) yiΣiν 7→
⊕{

xj
∣∣∣ j ∈ Σi

ν4Σi
νiα

}
⊕ εiα.

Finally, we let R(t) be the straightforward DNF expansion of R̃(t), in which we

also remove all “cosmetic” literals ȳi∅, (yiJi(A))
bi inserted there at the beginning

of the construction.

Claim 5.7.

(a) R(t) is a protected DNF such that |Vars(R(t))| ≤ O(kd).

(b) There exist Res(O(kd)) inferences of R(t) from t, τ≤(A, b) and, vice

versa, of t from R(t), τ≤(A, b) that have size exp(O(kd)) and contain

at most O(kd) variables.

Proof. (a) The bound on |Vars(R(t))| follows from the construction and

Claim 5.5(a). We protect terms in R(t) as follows. Let yiΣiνiα
∈ Vars(R(t)).

(Note that Σi
νiα 6∈ {∅, Ji(A)}.) Protect this variable by the sets Liα, Riα,

where Liα consists of (3d) right-most points in (rν`iα−1, rν`iα
] \Keri(t), and Riα

consists of (3d) left-most points in (rνriα , rν
r
iα+1] \Keri(t). Let us check that all

requirements of Definition 5.3 are fulfilled.

Since (ν`iα − 1, ν`iα), (νriα, ν
r
iα + 1) 6∈ Gi, the sets (rν`iα−1, rν`iα

] \Keri(t) and

(rνriα , rν
r
iα+1] \ Keri(t) have cardinality ≥ 6d each, which implies (1). (2) is

obvious.

For (3) note that the intervals Conv(Liα, Riα) are disjoint for every fixed

i and that Conv(Liα, Riα) ⊆ Keri(t) ∪ Liα ∪ Γ̂iα ∪Riα. Hence

∑
i∈dom(t)

∑
α

|Conv(Liα, Riα)| =
∑

i∈dom(t)

∣∣∣∣∣⋃
α

Conv(Liα, Riα)

∣∣∣∣∣ ;
applying Claim 5.5(a) as well as the obvious estimate

∑
i∈dom(t) |

⋃
α(Liα ∪Riα)|

≤ 6kd, we get the required bound.

Finally, (4) immediately follows from the construction. Indeed, given any

fixed protection (Li0α0 , Ri0α0), all new x-variables introduced in Ji0(A) by the
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substitution (32) either belong to Keri0(t) or belong to
⋃
α Γ̂i0α. Both sets are

disjoint with Li0α0 , Ri0α0 .

(b) As we explained inside Definition 5.6, the axioms from (26) pertaining

to the same connected component of Gi semantically imply the equivalence of

both sides in (32) in the presence of the literal (yiΣiνiα
)ε
i
α , contain the axioms

ȳi∅, (yiJi(A))
bi , and thus semantically imply t ≡ R(t). Now we only have to refer

to the implicational completeness of Res(k) and to the well-known fact that

everything provable in this theory (and, in fact, even in Resolution) also has a

proof of size at most exponential in the number of variables. �

Remark 6. It is worth noting that the construction of R(t) in fact gives

yet another property crucial for the argument: the protections Liα, Riα are

pairwise disjoint (even when i varies). This property, however, will be reestab-

lished in the proof of Claim 5.13 anyway and, for this reason, is not included

in Definition 5.3.

Claim 5.8. Assume that τ≤(A, b) has a Res(k) refutation of size S. Then

it also has an Res(O(kd)) refutation of size S ·exp(O(kd)) in which all lines are

of the form F ∨F ′, where F is a protected O(kd)-DNF and |Vars(F ′)| ≤ O(kd).

Proof. For a k-DNF F , let R(F )
def
=
∨
t∈F R(t). Claim 5.7(b) implies that

every axiom C ∈ τ≤(A, b) (of width ≤ 3) gets converted to a DNF R(C) that

has an inference P from τ≤(A, b) of size exp(O(kd)) and with |Vars(P )| ≤
O(kd). Also, the image of any inference rule in Definition 2.6 is admissible,

which can be seen by decoding and then encoding back the principal formula.

For example, we simulate the R-image of AND-introduction as follows:

R(F ) ∨R(`1)

R(F ) ∨ `1
· · ·

R(F ) ∨R(`w)

R(F ) ∨ `w

R(F ) ∨
w∧
ν=1

`ν

R(F ) ∨R(
w∧
ν=1

`ν)

.

In order to do this encoding/decoding, we simply use the inferences from

Claim 5.7(b) weakened by R(F ). Since weakening does not change the number

of lines, this induced inference has all the required properties. �

The claims proved so far will allow us to concentrate for the purpose

of Height-reduction on protected DNFs, and we now define a distribution on

sparse restrictions that, with an overwhelming probability, will reduce the rep-

resentation height of any such DNF.
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Definition 5.9. The random restriction ρ of the variables Vars≤(A) is con-

structed as follows. Pick a subset J ⊆ [n] completely at random. Then for

every i ∈ [m], independently apply the following construction.

Pick a random set of variables Ỹ i ⊆
{
yiΣ | Σ an initial segment of Ji(A)

}
by including there the cosmetic variables yi∅ and yiJi(A) with probability 1, and

every other yiΣ with probability 1/(2d), independently of each other. Say that

yiΣ, y
i
Σ′ ∈ Ỹ i with Σ ⊂ Σ′ collide if |(Σ′ \ Σ) \ J | < 2d. Remove from Ỹ i all

variables yiΣ 6∈ {yi∅, y
i
Ji(A)} that collide with at least one other variable in Ỹ i

(possibly, with yi∅ or yiJi(A)). Let Y i ⊆ Ỹ i be the resulting set.

By definition, ρ assigns yi∅ to 0, assigns yiJi(A) to bi, and assigns all other

variables in {xj | j ∈ J } ∪
⋃m
i=1 Y

i at random (and independently of each

other).

Claim 5.10. P[ρ is sparse] ≥ 1/2.

Proof. By inspecting definitions, ρ may be not sparse only in the “patho-

logical” case when for some i ∈ [m], we have Y i = {yi∅, y
i
Ji(A)}. We bound the

probability of this bad event separately for every i ∈ [m].

By the bound (2), we may choose s ≥ C logm
9 disjoint intervals ∆1, . . . ,∆s

in Ji(A), of length 9d each. Subdivide every ∆ν into three sub-intervals

∆`
ν ,∆

c
ν ,∆

r
ν , where |∆`

ν | = |∆r
ν | = 4d and |∆c

ν | = d. Then the following events:

• |∆`
ν ∩ J | ≤ 2d, |∆r

ν ∩ J | ≤ 2d;

• Ỹ i contains exactly one variable yiΣ with r(Σ) ∈ ∆c
ν and no variables with

r(Σ) ∈ ∆`
ν ∪∆r

ν

have probability Ω(1) each, are independent, and logically imply that the vari-

able yiΣ ∈ Ỹ i with r(Σ) ∈ ∆c
ν does not collide with any other variable and

hence stays in Y i. Therefore, the probability that this happens for at least

one ν ∈ [s] (and in particular Y i 6= {yi∅, y
i
Ji(A)}) is at least 1 − 1/(2m), pro-

vided the constant C in (2) is large enough. By the union bound, this implies

P
î
∀i ∈ [m](Y i 6= {yi∅, y

i
Ji(A)})

ó
≥ 1/2. �

We are going to apply Lemma 4.4 to show that for any protected DNF,

h(F |ρ) is small with high probability. For that we need to know that the

restriction ρ, when restricted to the set of variables Vars(F ), satisfies the weak

independence property from Definition 4.3. The intuitive reason why it should

be the case is already suggested by the proof of Claim 5.10. (The role of

the “wings” ∆`
ν ,∆

r
ν in that proof will be played by protections.) The major

problem is, of course, that protections need not be disjoint, may be inconsistent

for different occurrences of the same variable etc. We circumvent this by

showing that F has a relatively small fractional cover by sub-DNFs for which

these problems already do not occur, whereupon we will apply Lemma 4.5.
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More notation. Given a protected DNF F , we fix once and for all protec-

tions {LiΣ(t), RiΣ(t)} for every t ∈ F . Let also PiΣ(t)
def
= LiΣ(t) ∪RiΣ(t).

Definition 5.11. A protected DNF F is weakly regular if the following three

properties hold:

(1) the sets
⋃
t∈F Jx(t) and

⋃
t∈F

⋃
i,Σ PiΣ(t) are disjoint;

(2) for every yiΣ ∈ Vars(F ), the protection (LiΣ(t), RiΣ(t)) does not actu-

ally depend on the term t (and henceforth will be denoted simply by

(LiΣ, RiΣ));

(3) for every fixed i ∈ [m], intervals Conv(LiΣ, RiΣ), where Σ runs over all

≤i-initial segments with yiΣ ∈ Vars(F ), are pairwise disjoint.

Remark 7. The adjective “weakly” refers to the fact that we do not re-

quire the protections PiΣ to be disjoint for different i. Recall (Remark 6) that

this disjointness property automatically follows from our construction for pro-

tections in any fixed term t ∈ F . This, however, seems to be of absolutely

no help whatsoever for the uniform version, when t varies. The only way to

enforce the disjointness of protections uniformly that we know of additionally

requires |F | to be small, and for that reason it will be incorporated in the proof

of Claim 5.13.

Claim 5.12. For every protected O(kd)-DNF F , there exists a random

weakly regular sub-DNF G ⊆ F such that mint∈F P[t ∈ G] ≥ exp(−O(kd)).

Proof. The proof consists of three independent steps, and at every step

we enforce one property required in Definition 5.11.

Step 1. For a colouring χ : [n] −→ {0, 1}, let

Gχ
def
=

t ∈ F
∣∣∣∣∣∣ χ(Jx(t)) ≡ 0 ∧ χ(

⋃
i,Σ

PiΣ(t)) ≡ 1

 .
Then for every χ, Gχ has property (1) in Definition 5.11. Let χ : [n] −→ {0, 1}
be picked completely at random. Then, due to property (3) in Definition 5.3,

P[t ∈ Gχ] ≥ exp(−O(kd)) for every particular t ∈ F .

Step 2. The idea behind enforcing property (2) in Definition 5.11 is similar

to Step 1, but calculations get substantially more involved. For any system of

protections ~P =
(
PiΣ

∣∣∣ yiΣ ∈ Vars(F )
)
, the sub-DNF

G~P

def
=
{
t ∈ F

∣∣∣ ∀yiΣ ∈ Vars(t)(PiΣ(t) = PiΣ)
}

has the required property (2). We only need to construct a random system ~P

in such a way that

(33) min
t∈F

P
î
t ∈ G~P

ó
≥ exp(−O(kd)).
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All PiΣ will be mutually independent. In order to construct PiΣ for a

fixed variable yiΣ ∈ Vars(F ), first pick an integer µiΣ ≥ 6d according to the

distribution P[µiΣ = µ] = 26d−µ−1 (µ ≥ 6d). Next, let ∆iΣ be the interval

of length 2µiΣ centered at r(Σ). (If |Σ| < µiΣ or |Ji(A) \ Σ| < µiΣ, then

we abort the construction and output PiΣ arbitrarily.) Finally, pick PiΣ as a

random subset of ∆iΣ that has cardinality 6d.

Consider an arbitrary t ∈ F , and let µiΣ(t)
def
= |Conv(LiΣ(t), RiΣ(t))|.

Then P[µiΣ = µiΣ(t)] ≥ exp(−O(µiΣ(t))) and P[PiΣ = PiΣ(t) |µiΣ = µiΣ(t) ]

≥
(2µiΣ(t)

6d

)−1
≥
(
µiΣ(t)
d

)−O(d)
. Combining these bounds together, we get

P[PiΣ = PiΣ(t)] ≥ exp(−O(µiΣ(t))) ·
(
µiΣ(t)
d

)−O(d)
. Multiplying over all yiΣ ∈

Vars(t),

P
î
t ∈ G~P

ó
≥

∏
yiΣ∈Vars(t)

{
exp(−O(µiΣ(t))) ·

Ç
µiΣ(t)

d

å−O(d)
}
.

Since
∑
yiΣ∈Vars(t) µiΣ(t) ≤ O(kd) by property (3) in Definition 5.3, the first

term in this product is bounded from below by exp(−O(kd)). In order to

bound the second term, we apply the arithmetic-geometric mean inequality.

Denoting the number of y-variables in t by w (which, due to properties (2) and

(3) in Definition 5.3, is bounded by O(k)), we have the calculation

∏
yiΣ∈Vars(t)

Ç
µiΣ(t)

d

å−O(d)

≥
(∑

yiΣ∈Vars(t) µiΣ(t)

dw

)−O(dw)

≥ (O(k/w))−O(dw) ≥ exp(−O(kd)).

This proves (33) and concludes the analysis at Step 2.

Step 3. For this step we additionally assume that F already satisfies the

consistency property (2) in Definition 5.11 and let ~P be the corresponding

system of protections of the variables yiΣ ∈ Vars(F ). Choose Ỹ i according to

Definition 5.9. Say that yiΣ, y
i
Σ′ ∈ Vars(F ) ∩ Ỹ i ~P -collide if Conv(LiΣ, RiΣ) ∩

Conv(LiΣ′ , RiΣ′) 6= ∅. For every ~P -colliding pair yiΣ, y
i
Σ′ identify arbitrarily

any one point j in the above intersection, and remove from Ỹ i that variable

yiΣ0
(Σ0 ∈ {Σ,Σ′}) for which the ≤i-distance between r(Σ0) and j is larger

(both yiΣ and yiΣ′ if these distances are equal). Let Y i(~P ) be the set of remain-

ing variables.

Clearly, the sub-DNF

GY (~P )

def
=

t ∈ F
∣∣∣∣∣∣Vars(t) ⊆ {x1, . . . , xn} ∪

⋃
i∈dom(t)

Y i(~P )
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has the required property (3). Further, every variable yiΣ may be removed from

Ỹ i only if it ~P -collides with some yiΣ′ such that the ≤i-distance between r(Σ)

and r(Σ′) does not exceed 2|Conv(LiΣ, RiΣ)|.
Now, for every particular term t ∈ F , mark all those variables yiΣ′ in

Vars(F ) for which the above bound on the ≤i-distance holds for at least

one yiΣ ∈ Vars(t). Property (3) in Definition 5.3 implies that altogether

we have marked at most O(kd) variables. Therefore, the event “for every

marked variable yiΣ, yiΣ ∈
⋃
i∈dom(t) Ỹ

i if and only if yiΣ ∈ Vars(t)” has

probability ≥ exp(−O(kd)). On the other hand, since variables in Vars(t)

never ~P -collide with each other (due to property (1) in Definition 5.3), this

event logically implies that Vars(t) ⊆ {x1, . . . , xn} ∪
⋃
i∈dom(t) Y

i(~P ). Thus,

P
[
t ∈ GY (~P )

]
≥ exp(−O(kd)), which completes the analysis of Step 3.

Combining things together, the random sub-DNF Gχ∩G~P ∩GY (~P ) (where

χ, ~P and the auxiliary random variables Ỹ i are independent) has all the

required properties. This completes the proof of Claim 5.12. �

We assume that any weakly regular DNF F is weighted according to the

following weight function µF : µF (xj)
def
= 1 and µF (yiΣ)

def
= |Conv(LiΣ, RiΣ)|.

Claim 5.13. There exists an absolute constant p > 0 such that for every

weakly regular protected DNF F , the random restriction ρ restricted to the

variables Vars(F ) is (r, µF , p)-independent.

Proof. Let Z ⊆ Vars(F ) be a set of variables with |Z| ≤ r. Denote by I

the set of all i ∈ [m] for which Z contains at least one variable yiΣ. Clearly,

|I| ≤ r. Therefore, by the expansion property (1), there exists i0 ∈ I such that

(34) |Ji0(A) ∩
⋃

i∈I\{i0}
Ji(A)| ≤ d.

This implies that for every Σ with yi0Σ ∈ Vars(F ), there exist L′i0Σ ⊆ Li0Σ and

R′i0Σ ⊆ Ri0Σ of size 2d each that are disjoint with
⋃
i∈I\{i0} Ji(A). In particular,

these L′i0Σ, R
′
i0Σ are disjoint not only between themselves (by property (3) in

Definition 5.11), but also with any other PiΣ when i 6= i0. Next, choose

i1 ∈ I\{i0} such that |Ji1(A)∩⋃i∈I\{i0,i1} Ji(A)| ≤ d and repeat this procedure

until we find pairwise disjoint subsets L′iΣ ⊆ LiΣ, R
′
iΣ ⊆ RiΣ for all yiΣ ∈ Z.

As before, let P ′iΣ
def
= L′iΣ ∪R′iΣ.

Now, the space Ω required in Definition 4.1 consists of three parts: Ω =

Ω1 × Ω2 × Ω3, and ω = (ω1,ω2,ω3), where ωi ∈ Ωi are independent. The

role of ω1 is played by the random set {xj | j ∈ J } ∪
⋃m
i=1 Ỹ

i from Defini-

tion 5.9, and ω2 consists of additional independent Bernoulli variables used

for assigning {xj | j ∈ J } ∪
⋃m
i=1 Y

i. π depends only on ω1, ω2 and represents

the construction of the random variable ρ from that definition.
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Next, we construct the second required mapping π′(ω1, ω2, ω3) as follows.

Let J
def
= {j | xj ∈ ω1 }, and let Ỹ i consist of all yiΣ ∈ ω1. First, define from

J and Ỹ i random subsets J ′ ⊆ J and (Y i)′ ⊆ Ỹ i ∩ Z. (The third random

variable ω3 accounts for the extra randomness used in this construction.) Let

j ∈ J ′ with probability 2p, independently for all j ∈ J ∩Z. If yiΣ ∈ Ỹ i∩Z and

either J ∩ P ′iΣ 6= ∅ or Ỹ i contains any other yiΣ′ with r(Σ′) ∈ Conv(L′iΣ, R
′
iΣ),

then yiΣ 6∈ (Y i)′. Otherwise, yiΣ is included into (Y i)′ with some probability

piΣ to be specified later, independently for all variables yiΣ (and independently

of J ′). Finally, π′(ω1, ω2, ω3) assigns variables in {xj ∈ Z | j ∈ J ′ }∪⋃i∈I (Y i)′

using ω2.

yiΣ ∈ (Y i)′ can take place only if J ∩ P ′iΣ = ∅ and Ỹ i does not contain

any yiΣ′ with r(Σ′) ∈ Conv(L′iΣ, R
′
iΣ) other than yiΣ. This implies that yiΣ

cannot collide with any other variable in Ỹ i. Therefore, (Y i)′ ⊆ Y i, and

π′(ω1,ω2,ω3) is a sub-restriction of π(ω1,ω2) ≈ ρ.

We are only left to show that for a suitable choice of the probabilities piΣ,

π′(ω1,ω2,ω3) will be equidistributed with ρµF ,Z,p.

The properties listed in Definition 5.11, along with the disjointness prop-

erty of L′iΣ, R
′
iΣ ensured at the beginning of our proof, imply that the facts

j ∈ J ′, yiΣ ∈ (Y i)′ (xj , y
i
Σ ∈ Z) depend on the behaviour of J, Ỹ i on pairwise

different variables. Therefore, if we also randomize over J , Ỹ i, all these events

are independent of each other. Denote by A the following event: “J ∩P ′iΣ = ∅
and yiΣ ∈ Ỹ i and Ỹ i does not contain any yiΣ′ with r(Σ′) ∈ Conv(L′iΣ, R

′
iΣ)

other than yiΣ”: this is exactly the prerequisite for including yiΣ into (Y i)′.

The last remark implies that the three parts of this event are independent, and

hence we conclude

P[A] = 2−4d 1

2d

Å
1− 1

2d

ã|Conv(L′iΣ,R
′
iΣ)|−1

≥ 2−4d · 1

2d

Å
1− 1

2d

ãµ(yiΣ)−1

≥ exp(−O(µ(yiΣ))),

where for the last estimate we used the obvious bound µ(yiΣ) ≥ 6d. Hence,

(35) P
î
yiΣ ∈ (Y i)′

ó
= P[A] ·P

î
yiΣ ∈ (Y i)′ |A

ó
≥ exp(−O(µ(yiΣ)))piΣ.

Therefore, if p > 0 is small enough, the probabilities piΣ ≤ 1 can be chosen

in such a way that P
î
yiΣ ∈ (Y i)′

ó
= pµ(yiΣ) and, clearly, P[j ∈ J ′] = p for

xj ∈ Z. Thus, π′(ω1,ω2,ω3) has the same distribution as ρµF ,Z,p, which

completes the proof of Claim 5.13. �

Now we have at our disposal all tools necessary for proving the following

switching lemma for protected DNFs.

Claim 5.14. Let F be a protected O(kd)-DNF. Then for every h ≤ r,

P[h(F |ρ) ≥ h] ≤ exp(−h/2O(kd)).
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Proof. Assume first that F is weakly regular, and let µ = µF . Then

property (3) in Definition 5.3 implies that F is even a weighted O(kd)-DNF.

With this remark, our claim for weakly regular F immediately follows from

Lemma 4.4 and Claim 5.13.

In order to generalize this to the case of arbitrary protected O(kd)-DNF,

we use Lemma 4.5 in combination with Claim 5.12, just in the same way as at

the end of Section 4. �

Now we can easily finish the proof of Theorem 2.7. Let P be a Res(k)

refutation of τ≤(A, b) that has size S. We need to prove that S ≥ exp(r/2O(kd)).

Applying Claim 5.8, for some K = O(kd) we get a Res(K) refutation P ′

of τ≤(A, b) that has size ≤ S2K , and in which every line has the form F ∨ F ′,
where F is a protected K-DNF and |Vars(F ′)| ≤ K. By Claims 5.10 and 5.2,

(36) P[every resolution refutation of τ≤(A, b)|ρ has width > r/4] ≥ 1/2.

Comparing this with Proposition 3.6 (k := K and h := r/(4K)), we get

(37) P
[
∃G ∈ P ′(h(G|ρ) > r/(4K))

]
≥ 1/2.

On the other hand,

(38) P
[
∃G ∈ P ′(h(G|ρ) > r/(4K))

]
≤ S2K · max

G∈P ′
P[h(G|ρ) > r/(4K)] ,

and we treat every line G ∈ P ′ individually. Let G = F ∨ F ′, where F is a

protected K-DNF and |Vars(F ′)| ≤ K. Obviously, h(F ′|ρ) ≤ K, and we can

assume without loss of generality that K < r/(8K). (Otherwise, the bound

we are proving becomes trivial.) Thus,

(39) P[h(G|ρ) > r/(4K)] ≤ P[h(F |ρ) > r/(8K)] .

Applying Claim 5.14 (with h := r/(8K)− 1), we find

(40) P[h(F |ρ) > r/(8K)] ≤ exp(−r/2O(kd)).

Theorem 2.7 follows by comparing (40), (39) and (38) with (37).

6. Stretching the number of output bits

In this section we prove Theorems 2.10 and 2.12.

Proof of Theorem 2.10. Let A be an m × n (r, d)-lossless expander such

that the bound (5) holds, and let ≤ be an arbitrary ordering of A. Let S be

the minimal size of a Res(k) refutation P of any CNF having the form

(41)
H∧
ν=1

τC≤,A(x
(ν)
1 , . . . , x(ν)

n , ~y(ν), q
(ν)
1 , . . . , q(ν)

m ),

from Definition 2.9. First we remark that we may assume without loss of

generality that H ≤ S.
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Indeed, P may contain at most S axioms; therefore, there exist at most

S indices ν ∈ [H] for which P contains an axiom from

τC≤,A(x
(ν)
1 , . . . , x(ν)

n , ~y(ν), q
(ν)
1 , . . . , q(ν)

m ).

Remove from (41) all other conjunctive terms; then P will still be a Res(k)

refutation of the resulting sub-CNF. This sub-CNF itself has the form (41),

with the only exception that some q
(ν)
i may be equal to variables not appearing

in the lists ~x(ν), ~y(ν). Substituting them arbitrarily with Boolean constants 0,1,

we get a CNF of the form (41) with H ≤ S that still has a Res(k) refutation

of size S.

Note that (41) encodes the system of linear equations⊕
j∈Ji(A)

x
(ν)
j = q

(ν)
i (ν ∈ [H], i ∈ [m]).

Let us transfer those q
(ν)
i that actually appear in the list

{
x

(µ)
j | j ∈ [n], µ < ν

}
to the left-hand side. Then we get a linear system with constant right-hand

side, and it also has the form ÂX = b̂ for some matrix Â and vector b̂. It will

turn out that Â has almost as good expansion properties as A itself, and we

will apply to it Theorem 2.7.

In order to formalize this intuition, let AH be the direct sum of H copies

of A. That is, rows of AH are indexed by [H] × [m], columns are indexed by

[H]× [n], and

aH(ν,i),(µ,j)
def
=

aij if ν = µ,

0 if ν 6= µ.

Let Â be obtained from AH by additionally setting â(ν,i),(µ,j) := 1 whenever

q
(ν)
i = x

(µ)
j . Also let

b̂(ν,i)
def
=

q
(ν)
i if q

(ν)
i is a Boolean constant,

0 if q
(ν)
i is a variable.

Finally, we order the rows of AH according to the ordering ≤ of the matrix A.

Whenever we add in Â the new 1-entry (µ, j) to the row (ν, i) (that is, when

q
(ν)
i = x

(µ)
j ), we declare it to be the largest element in J(i,ν)(Â). Denote the

resulting ordering of Â by ≤̂.

Given the above intuition, it is straightforward to check that there exists

a (naturally defined) variable substitution that takes every clause in (41) into

a clause having a resolution inference from τ≤̂(Â, b̂) of size O(1). This implies

that τ≤̂(Â, b̂) has a Res(k) refutation of size O(S).

On the other hand, it is easy to see that the direct sum of (r, d)-lossless

expanders is still an (r, d)-lossless expander. Also, if we append at most one
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1-entry per row to an (r, d)-lossless expander, we come up with an (r, d + 1)-

lossless expander. Applying Theorem 2.7, we see that either condition (2) is

violated for Â or we have S ≥ exp(r/2O(kd)) (in which case we are done). It

remains to note that in the first case we have s ≤ Cd(k + log(mH)), which

implies (if the constant in (5) is twice as large as the constant in (2)) that

H ≥ exp(Ω(s/d)). Since S ≥ H, Theorem 2.10 follows in this case as well. �

Proof of Theorem 2.12 (cf. [Kra04]). Given any Boolean circuit C with n

inputs and 2n outputs and any b ∈ {0, 1}2h·n, τ(Ch, b) can be expressed in the

form (4) as
∧
|u|≤h−1 τC(x

(u)
1 , . . . , x

(u)
n , ~y(u), q

(u)
1 , . . . , q

(u)
2n ), where

q
(u)
i

def
=


x

(u∗0)
i if |u| < h− 1, i ≤ n,
x

(u∗1)
n−i if |u| < h− 1, i ≥ n+ 1,

b(u∗0),i if |u| = h− 1, i ≤ n,
b(u∗1),i if |u| = h− 1, i ≥ n+ 1.

Now Theorem 2.12 immediately follows from Theorem 2.10. �

7. Random matrices have good expansion properties

Statements of this sort have been reappearing in the literature at a steady

rate beginning from [Pin73]. However, we have not been able to find any

particular source handling the matter in the generality needed for our purposes.

Thus, we prove Theorem 2.5 from scratch. (This is not hard anyway.)

Let

r
def
= nδ, d

def
= C

logm

log n
,

where δ is a sufficiently small and C a sufficiently large constant; assume for

simplicity that d is even. Note that d ≤ nε, where ε is the constant from the

statement of the theorem. We claim that if a set I of rows with |I| = ` ≤ r in

the matrix Am,n violates the expansion property (1), then there exists a set of

`d/2 columns J such that Am,n contains at least `d ones in the rectangle I×J .

Indeed, let J
def
= {j ∈ [n] | | {i ∈ I | j ∈ Ji(A)} | ≥ 2} (=

⋃
i∈I Ji(A) \ ∂A(I)).

The bound `d on the number of ones in I×J follows from our assumption that

I violates (1). Hence, if |J | ≤ `d/2, we are done. (Add `d/2−|J | columns to J

arbitrarily.) Otherwise, its arbitrary subset of cardinality exactly `d/2 would

do. Calling a rectangle I × J such that |I| ≤ r, |J | = d
2 |I| and I × J contains

at least d|I| ones dense, it remains to show that the probability of existence of

at least one dense rectangle is O(1/m).

For any fixed value of `, there exist at most m` choices of I with |I| = `,

at most n`d/2 choices of J with |J | = `d/2, and at most (`d)O(`d) choices of `d
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positions in I × J . Therefore, the probability that for given ` there exists at

least one dense `× (`d/2) rectangle does not exceed

m`n`d/2(`d)O(`d)(n−2/3)`d ≤ m`

Ç
(`d)O(1)

n

å`d/6
.

Next, this is ≤ m`n−Ω(`d) provided the constants ε, δ are small enough which,

in turn, is ≤ m−2` provided the constant C in the definition of d is large

enough.

This is the bound on the probability that Am,n contains a dense rectangle

I×J with |I| = `. Therefore, the probability that Am,n is not an (r, d)-lossless

expander is bounded by
∑∞
`=1m

−2` ≤ O(1/m). Theorem 2.5 is proved.

8. Unprovability of circuit lower bounds by small Res(k) proofs

The general idea toward extracting Theorem 2.13 from a pseudorandom

function generator was extensively discussed in the introduction. We are, how-

ever, dealing with a rather weak proof system and, moreover, Definition 2.2

severely restricts the choice of the encoding for the circuit ChA,≤. Thus, we

should be careful in checking that the natural reduction can be indeed carried

over with the limited tools at our disposal; cf. the previous arguments of this

sort in [Raz98], [Raz04], [Raz04], [Kra04].

Let fn be a Boolean function in n variables and n2 ≤ t ≤ 2n. We begin

with reproducing the formal definition of the CNF Circuitt(fn) from [Raz98],

[Raz04].

First, we list all variables of Circuitt(fn) (some of them have peculiar long

names like InputType′ν(v)), along with their intended meaning:

yav (a ∈ {0, 1}n, v ∈ [t])− the Boolean value computed at

the computational node v on

the input string a;

yaνv (a ∈ {0, 1}n, ν ∈ {1, 2}, v ∈ [t])− the value on a brought to v by

the ν’s input to v;

Fanin(v)− this is 0 if v is NOT-gate and 1 if

v is AND-gate or OR-gate;

Type(v)−when Fanin(v) = 1, this is 0 if v

is AND-gate and 1 if v is OR-gate;

InputTypeν(v)− this is 0 if ν’s input to v is a

constant or a variable and 1 if it

is one of the previous computational gates;
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InputType′ν(v)−when InputTypeν(v) = 0, this is 0

if ν’s input to v is a constant,

and 1 if it is a variable;

InputType′′ν(v)−when InputTypeν(v) =

InputType′ν(v) = 0, this equals the

ν’s input to v;

InputVarν(v, i) (i ∈ [n])−when InputTypeν(v) = 0,

InputType′ν(v) = 1, this is 1 if and only

if ν’s input to v is the ith variable;

INPUTVARν(v, i)− equals
∨
i′≤i InputV ar(v, i

′),

introduced to keep bottom fan-in

bounded;

InputNodeν(v, v′) (v′ < v)−when InputTypeν(v) = 1, this is 1

if and only if ν’s input to v is the

previous gate v′;

INPUTNODEν(v, v′)− analogously to INPUTVARν(v, i).

Circuitt(fn) is the conjunction of (conjunctive normal forms equivalent to) the

following axioms:

¬InputTypeν(v) ∧ ¬InputType′ν(v) −→ (yaνv ≡ InputType′′ν(v));

¬InputTypeν(v) ∧ InputType′ν(v) −→ ¬(InputVarν(v, i) ∧
InputVarν(v, i′)) (i 6= i′);

¬InputTypeν(v) ∧ InputType′ν(v) −→ (INPUTVARν(v, i) ≡
(INPUTVARν(v, i− 1) ∨ InputVarν(v, i)))

(INPUTVARν(v, 0)
def
= 0);

¬InputTypeν(v) ∧ InputType′ν(v) −→ INPUTVARν(v, n);

¬InputTypeν(v) ∧ InputType′ν(v) ∧ InputVarν(v, i) −→ (yaνv ≡ ai);
the analogous group of axioms for InputNode;

¬Fanin(v) −→ (yav ≡ ¬ya1v);

Fanin(v) ∧ ¬Type(v) −→ (yav ≡ (ya1v ∧ ya2v));

Fanin(v) ∧ Type(v) −→ (yav ≡ (ya1v ∨ ya2v));

yat ≡ f(a).

Let t0
def
= δ
»
t/n, δ be a sufficiently small constant. Note that t0 ≥ tΩ(1)

(since t ≥ n2). Fix an arbitrary (2t0 × t0) (tΩ(1), O(1))-lossless expander A
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such that |Ji(A)| ≥ tΩ(1) for all i ∈ [2t0]. (Its existence follows from Theo-

rem 2.5.) Fix an arbitrary ordering ≤ of A, and consider the iterated circuit

Cn+1
A,≤ from Section 6. Let b ∈ {0, 1}2n+1t0 be given by baj

def
= fn(a1, . . . , an) (a ∈

{0, 1}n, j ∈ [2t0]).

In order to prove Theorem 2.13, we are going to reduce τ(Cn+1
A,≤ , b) to

Circuitt(fn). (That is, substitute variables of Circuitt(fn) by “simple” formu-

las in the variables of τ(Cn+1
A,≤ , b) so that “simple” (which in our context means

Res(k)) refutations of Circuitt(fn) get transformed into simple (Res(2k)) refu-

tations of τ(Cn+1
A,≤ , b).) For that purpose we will convert the circuit Cn+1

A,≤ (with

t0 inputs and 2n+1t0 outputs, naturally split into 2n groups with 2t0 bits each,

of which we will select one bit per group) to the (single-output) Boolean circuit

Dn,~x in n Boolean variables z1, . . . , zn parametrized by t0 variables x1, . . . , xt0 .

We will require that Dn,~x(a1, . . . , an) is equal to the ath selected bit in Cn+1
A,≤ (x)

and that the size of Dn,~x is polynomial in n. We employ the same construction

that was used for self-defeating Natural Proofs [RR97, Th. 4.1]. But since we

need to check that this transformation can be carried over in a rather week

proof system, we provide a few (tedious) technical details. The new parameter

` below corresponds to the iteration level.

The skeleton of Dn,~x consists of the gates v[`, i,Σ], where 0 ≤ ` ≤ n,

i ∈ [2t0], and Σ is an initial segment in Ji(A) computing Boolean functions

f~x[`, i,Σ] in the variables z1, . . . , zn. The values f~x[`, i,Σ](a1, . . . , an) of these

functions are defined as follows. We take the circuit (CA,≤)a1...a` from Defi-

nition 2.11, look at the gate viΣ in this circuit (which we will denote in what

follows by viΣ(a1 . . . a`)), and output as f~x[`, i,Σ](a1, . . . , an) its value when

τ(Cn+1
A,≤ , b) is fed with x1, . . . , xt0 (We also naturally let f~x[`, i, ∅](a1, . . . , an)

def
=

0.) Then these functions have the following recursive definition:

f~x[`, i, ∅] := 0,

f~x[0, i,Σ ∪ {j}] := f~x[0, i,Σ]⊕ xj ,
f~x[`, i,Σ ∪ {j}] := f~x[`, i,Σ]⊕ {(z̄` ∧ f~x[`− 1, j, Jj(A)])

∨ (z` ∧ f~x[`− 1, j + t0, Jj+t0(A)])}, ` ≥ 1.

(42)

We define Dn,~x as the circuit resulting from expanding these recursive defi-

nitions in the standard basis {¬,∧,∨}. We let the output gate of Dn,~x be

v[n, 1, J1(A)]; cf. the definition of b above.

Dn,~x has size O(t20n), which is at most t if the constant δ in the defini-

tion of t0 is small enough. We begin constructing the required substitution

ρ by first assigning all structural variables Fanin(v),Type(v) etc., except for

InputType′′ν(v), to appropriate Boolean constants describing the topology of

Dn,~x. We also let ρ(InputType′′ν(v))
def
= xj whenever v is the gate of Dn,~x

(necessarily resulting from an instruction in (42) of the second type) whose ν’s
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input is xj . In the case InputTypeν(v) = 1, we let ρ(yaνv)
def
= ρ(yav′) (ρ(yav′)

themselves are yet to be defined), where (v′, v) is the ν’s input leading to v

in Dn,~x. If ¬InputTypeν(v), then ν’s input to v is either one of the variables

zi or a known Boolean constant ε ∈ {0, 1} or one of the unknown constants

xj , and we let ρ(yaνv) be ai, ε or xj , respectively. Further, if the gate v[`, i,Σ]

explicitly appears in (42), then we let ρ(ya,v[`,i,Σ])
def
= yi

viΣ(a1...a`)
(which is the

variable of τ(Cn+1
A,≤ , b)).

However, we cannot extend ρ as a variable substitution to the remain-

ing variables yav, where v is an auxiliary gate resulting from expanding in-

structions in (42) in the standard basis {¬,∧,∨}. But even in this case we

still can let ρ(yav) be a Boolean function of just two variables yi
viΣ(a1...a`)

and

yj
∗

vj
∗
Jj∗ (A)

(a1...a`−1)
, where j∗ = j (the right end of Σ) if a` = 0 and j+t0 if a` = 1.

Summarizing the above argument, we have constructed a substitution ρ

that takes every variable of Circuitt(fn) to a Boolean function depending of

at most two variables of τ(Cn+1
A,≤ , b). Let us extend this substitution to k-DNF

formulas F by letting ρ(F )
def
=
∨
t∈F
‘ρ(t), where ‘ρ(t) is the straightforward

DNF expansion of ρ(t). Clearly, ρ(F ) is a 2k-DNF, and the ρ-image of any

inference rule of Res(k) can be simulated in Res(2k) by an inference of size

exp(O(k)). Further, given the “intended interpretation,” it is easy to check by

inspection that for every axiom C of Circuitt(fn), ρ(C) has a Res(2) inference

of size O(1) from τ(Cn+1
A,≤ , b).

These remarks imply that every Res(k) refutation of Circuitt(fn) of size

S gives rise to a Res(2k) refutation of τ(Cn+1
A,≤ , b) of size S · exp(O(k)). The

proof of Theorem 2.13 is now completed by applying Theorem 2.12 (with n :=

t0; r, s ≥ tΩ(1); d ≤ O(1); h := n+ 1).

9. Pigeonhole principle

In this section we prove Theorem 2.15. We first review some more material

from [SBI04].

Let m = 2n. (The same proof works with m = (1 + ε)n, for any ab-

solute constant ε > 0.) For a bipartite graph G = ([m] ∪ [n], E) (E ⊆
[m] × [n]), let ¬onto-PHP(G) be the CNF in the variables {xij | (i, j) ∈ E }
that is obtained from ¬onto-PHPmn by the restriction assigning to 0 all vari-

ables {xij | (i, j) 6∈ E }. Let ρG be the random restriction constructed in the

following way. Pick a random subset J ⊆ [n] by including there every j ∈ [n]

with probability 1/4 independently of each other. For j ∈ J , select uniformly

(and independently for different j) one neighbour ij of j in G, assign xijj to

1, and assign to 0 all other xij with (i, j) ∈ E and i 6= ij .
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Proposition 9.1 ([SBI04]). There exists a graph G of maximal degree

O(log n) such that

P
î
every resolution refutation of ¬onto-PHP(G)|ρG has width > n/24

ó
≥ 1/2.

Proof. This is essentially [SBI04, Lemma 18], with the only difference that

we have additionally included the group of onto axioms Qj . This does not affect

its proof in any way. �

From now on, fix any particular graph G with properties from Proposi-

tion 9.1, and let ∆ ≤ O(log n) be its maximal degree. Since ¬onto-PHP(G)

is obtained from ¬onto-PHPmn by a restriction, it is sufficient to prove the re-

quired bound for ¬onto-PHP(G). The proof follows the pattern laid out in

Section 5, although in the current case it is much simpler.

Definition 9.2. A term in the variables {xij | (i, j) ∈ E } is reduced if it is

monotone and does not contain any sub-term of the form xij ∧ xi′j , i 6= i′. A

DNF F is reduced if all terms t ∈ F have this property.

Reduced DNFs will play the role of protected ones in Section 5. Let us

mention for the record (we will need this in the proof of Claim 9.4) that every

reduced DNF that mentions at most k pigeons contains at most k∆ variables

and O(∆k) clauses.

Definition 9.3. For a term t, let us denote by R(t) the reduced DNF that

is constructed as follows. Let R̃(t) be the result of replacing in the term t all

negative literals x̄ij with
∨{

xi′j | (i′, j) ∈ E ∧ i′ 6= i
}
. Let R(t) be the straight-

forward DNF expansion of R̃(t), in which we remove all terms containing at

least one sub-term of the form xij ∧ xi′j (i′ 6= i).

Claim 9.4. Let t be a term of width ≤ k in the variables {xij | (i, j) ∈ E }.
(a) R(t) is a reduced DNF.

(b) There exist Res(O(k))-inferences of R(t) from t,¬onto-PHP (G) and,

vice versa, of t from R(t),¬onto-PHP(G) that have size ∆O(k) and contain

at most k∆ variables.

Proof. (a) is obvious. For part (b) we could have used the same reasoning

based on implicational completeness as in the proof of Claim 5.7, but this would

have led to an inference of size exp(O(k∆)), at least a priori. We circumvent

this by the following ad hoc hybrid-type argument.

Let {i1, . . . , i`} (` ≤ k) be an enumeration of all pigeons mentioned in

t. For 0 ≤ ν ≤ `, split the term t as t = t′ν ∧ t′′ν , where t′ν is the part

corresponding to the pigeons {i1, . . . , iν} and t′′ν corresponds to the remaining

pigeons {iν+1, . . . , i`}. Let Rν(t)
def
= R(t′ν) ∧ t′′ν , so that R0(t) = t and R`(t) =

R(t). We consequently infer in Res(k) all equivalences Rν(t) ≡ Rν+1(t) and
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then combine them together. Since by an earlier observation, every reduced

DNF Rν(t) contains only O(∆k) clauses, it can be done by an inference of size

∆O(k). �

Claim 9.5. Assume that ¬onto-PHP (G) has a Res(k) refutation of size

S. Then it also has an Res(O(k)) refutation of size S ·∆O(k) in which all lines

are of the form F ∨ F ′, where F is a reduced k-DNF, and |Vars(F ′)| ≤ k∆.

Proof. As in the proof of Claim 5.8, for a DNF F , let R(F )
def
=
∨
t∈F R(t).

Notice that R does not change the monotone axioms Qi, Qj and that R(Qi1,i2;j)

= Qj . With these remarks in mind, the rest of the proof is identical to the

proof of Claim 5.8. �

Finally, let us prove the following PHP-oriented switching lemma.

Claim 9.6. For any reduced k-DNF F and any parameter h,

P[h(F |ρ) > h] ≤ exp(−h/∆O(k)).

Proof. Call a reduced DNF F regular if Vars(F ) does not contain any

pair of variables xij , xi′j with i 6= i′. Then for every regular F , ρG acts

independently on the variables from Vars(F ) and, moreover, P
î
ρG(xij) = 0

ó
,

P
î
ρG(xij) = 1

ó
≥ 1

4∆ . This implies that the restriction of ρG to the variables

in Vars(F ) is (∞, µtriv, 1/(2∆))-independent. Applying Lemma 4.4, we prove

our claim in the case F is regular.

For the general case, we apply the same trick as before. Let the function

θ : [n] −→ [2n] be picked completely at random, and let

Gθ
def
= {t ∈ F | ∀xij ∈ Vars(t)(i = θ(j))} .

Then Gθ is regular, and ∀t ∈ F (P[t ∈ Gθ] ≥ ∆−k). Now the proof is completed

by applying Lemma 4.5. �

The proof of Theorem 2.15 is completed in exactly the same way as the

proof of Theorem 2.7 at the end of Section 5.

10. Polynomial Calculus with Resolution

Throughout this section we fix an arbitrary field F with char(F) 6= 2. First

we need the following generalization of Corollary 3.4.

Corollary 10.1. Let A be an (r, d)-lossless expander of size m×n such

that |Ji(A)| ≥ 2d for all i ∈ [m]. Then for every ordering ≤ and every b ∈
{0, 1}m, every PCR refutation of τ≤(A, b) must have degree > r/8.

Proof. Although this follows by the technique of [BGIP01] (cf. remark in

[ABSRW04] before Theorem 3.10), it is easier to apply a more general result
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from [BSI10], which for our purposes can be stated as follows. If a CNF τ

results from expanding a set of F2-linear equations, then every PCR refutation

of τ over F (remember that char(F) 6= 2) gives rise to a resolution refutation

of τ whose width is at most twice as large as the degree of P .

Remark 8. Strictly speaking, [BSI10, Th. 2.7] is formulated in terms of

so-called Gaussian refutations, but it is a well-known fact that for systems of

linear equations, Gaussian width and resolution width coincide. It is also worth

mentioning here (we will need this observation in the proof of Claim 10.4 below)

that the overhead factor of two comes from the following stronger property that

is a byproduct of their proof: for every clause C appearing in the resulting

resolution refutation, we have Vars(C) ⊆ Vars(m1)∪Vars(m2), where m1 and

m2 are some monomials in the original PCR refutation.

Since τ≤(A, b) always has this “linear” form, Corollary 10.1 follows from

Corollary 3.4. �

Now the proofs of Theorems 2.18, 2.19 and 2.20 are more or less straight-

forward adaptation of the corresponding results for Resolution (= Res(1)).

Proof of Theorem 2.18. Monomials in the variables x1, . . . , xn, x̄1, . . . , x̄n
can be identified, via the transformation (6) and up to a multiplicative constant

α ∈ F∗, with respective clauses. In this way, variable substitutions naturally act

on polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] and take PCR inferences to PCR

inferences of the same (or lesser) size. This remark, along with Corollary 10.1,

implies the following analogue of Claim 5.2 (proved in exactly the same way).

Claim 10.2. If ρ is sparse, then every PCR refutation of τ≤(A, b)|ρ must

have degree > r/8.

The analogue of (36) will thus be

(43) P[every PCR refutation of τ≤(A, b)|ρ has degree > r/8] ≥ 1/2.

Consider the mapping R from Definitions 5.4 and 5.6 restricted to literals

(R, in fact, is almost always identical, except for literals of those variables yiΣ
for which either Σ or Ji(A)\Σ is very small). Let RF denote the corresponding

polynomial homomorphism over the field F. RF takes any PCR refutation P of

τ≤(A, b) into another PCR refutation in which every line has the form RF(f)·f ′,
where f ∈ P and deg(f ′) ≤ O(d). Note that unlike Claim 5.8, we do not make

any conclusions about the size of the refutation RF(P ). (In fact it may grow

out of control.)

Next, we remark that the proof of Claim 5.14 actually allows a finer anal-

ysis for protected O(d)-DNF of the form R(C), C a clause. Namely, assuming

k = 1, we get
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Claim 10.3. For every clause C in the variables Vars≤(A), and every

h ≤ r, either |Vars(R(C))| ≤ h or

P[R(C)|ρ 6= 1] ≤ exp(−h/2O(d)).

(Unlike all previous claims of this sort, R(C)|ρ 6= 1 here simply means that

R(C)|ρ is not semantically equal to 1.)

Proof of Claim 10.3. Assume that |Vars(R(C))|>h. Applying Claim 5.14,

we get that with the required probability 1 − exp(−h/2O(d)), there exists a

decision tree Tρ of height < h strongly representing R(C)|ρ. Inspecting the

proof of Lemma 4.4 for monotone F , we see that the tree T given by this

construction actually has a stronger property. Namely, whenever π ∈ Br0(T ),

then not only (t|ρ)|π = 0 for all t ∈ F (as required by Definition 3.5) but, in

fact, even t|π = 0. The proof of Lemma 4.5 can be easily modified to preserve

this property: we only have to go over terms t ∈ F (rather than t ∈ F |ρ) in

the construction of the sequence T0, T1, . . . , T`, . . . . Therefore, we may also

assume that the tree T |ρ also has this stronger property.

R(C), however, is the result of a DNF expansion of a disjunction of linear

forms. Such DNFs can be set to 0 only by restrictions that assign all their

variables. Therefore, since |Vars(R(C))| > h and the height of T |ρ is at most

h, we have Br0(T |ρ) = ∅. R(C)|ρ = 1 (in the semantical sense) follows. �

We now finish the proof of Theorem 2.18. Let P be a PCR refutation of

τ≤(A, b). From (43), we get in particular

P[∃g ∈ RF(P )(deg(g|ρ) > r/8)] ≥ 1/2.

As we remarked above, every line in the refutation RF(P ) has the form RF(f)·f ′
with f ∈ P and deg(f ′) ≤ O(d) ≤ r/16. Next, deg(RF(f)|ρ) > r/16 implies

that there exists a monomial α · ΓC in f (α ∈ F∗) such that |Vars(R(C))| >
r/16 and RF(ΓC)|ρ 6= 0. Applying Claim 10.3 (with h := r/16), we see that

the probability of this event for every particular α · ΓC ∈ P is bounded by

exp(−r/2O(d)). Theorem 2.18 now follows by the same calculation as at the

end of Section 5. �

All proofs in Section 6 hold for any proof system that is closed under

variable substitutions. In particular, Theorem 2.19 (as well as the analogue of

Theorem 2.12 for PCR not stated explicitly in Section 2) follows from Theo-

rem 2.18 by the same proof.

The only problem with the proof of Theorem 2.13 is that the reduction

ρ constructed in Section 8 is not a variable substitution (and, as we already

remarked above in the proof of Theorem 2.18, the size of PCR proofs may

blow up exponentially from applying such ρ). The only variables that create

this problem are yav, where v is an auxiliary gate resulting from expanding
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the instructions in (42). This time, however, our circuit Dn,~x is also allowed to

contain the parity gates; therefore, such auxiliary gates are confined to be one

of z̄`∧f [`−1, j, Jj(A)], z`∧f [`−1, j+t0, Jj+t0(A)], (z̄`∧f [`−1, j, Jj(A)])∨(z`∧
f [`−1, j+ t0, Jj+t0(A)]) explicitly appearing in (42). It remains to notice that

for every fixed a ∈ {0, 1}n, every one of these three gates computes either zero

or one of the two functions f [`−1, j, Jj(A)], f [`−1, j+ t0, Jj+t0(A)]. Thus, at

the expense of allowing ⊕-gates, ρ can be turned into a variable substitution,

and the rest of the proof carries over to PCR without any further changes.

We now turn to the proof of our last result, Theorem 2.21, which does not

seem to have any obvious analogue for Res(k).

Let ρ be a restriction of the variables VarsCycl
≤ (A). Denote by Ei(ρ) the

set of all endpoints of all cyclic intervals ∆ 6= Ji(A) with yi∆ ∈ sup(ρ). Ei(ρ)

defines a partition of Ji(A) into cyclic intervals ∆i
1(ρ), . . . ,∆i

`i(ρ)(ρ) such that

whenever yi∆ ∈ sup(ρ), ∆ is a disjoint union of some of these intervals. Say

that ρ is consistent if whenever yi∆(1), . . . , y
i
∆(w) ∈ sup(ρ), and ∆(1) ⊕ · · · ⊕

∆(w) = 0, we have ρ(∆(1)) ⊕ · · · ⊕ ρ(∆(w)) = 0. Like in Section 5, let

Jx(ρ)
def
= {j ∈ [n] | xj ∈ sup(ρ)}, and say that ρ is sparse if |∆i

ν(ρ)\Jx(ρ)| ≥ 2d

for every i ∈ [m], ν ∈ [`i(ρ)].

For a clause C in the variables VarsCycl
≤ (A), let

Jx(C)
def
= {j ∈ [n] | xj ∈ Vars(C)}

and

dom(C)
def
=
{
i ∈ [m]

∣∣∣ ∃∆ 6= Ji(A)(yi∆ ∈ Vars(C))
}
.

Call the quantity wA(C)
def
= |Jx(C)|+|dom(C)| theA-width of the clause C. The

A-degree of a monomial α·ΓC (α ∈ F∗) is defined as degA(α·ΓC)
def
= wA(C), and

the A-degree of a polynomial is the maximal A-degree of a monomial occurring

in it.7 The A-width of a resolution proof [A-degree of a PCR proof] is the

maximal A-width [A-degree] of a clause [polynomial, respectively] occurring

in it.

Claim 10.4. If ρ is consistent and sparse, then every PCR refutation

P of τCycl
≤ (A, b) must contain a monomial m such that degA(m) > r/8 and

m|ρ 6≡ 0.

Proof. This is analogous to the proof of Claim 5.2, so we only remark the

differences. First, in the cyclic case the reduction ρ constructed in the proof of

that claim is no longer a variable substitution: ρ(yi∆) is in general the parity

7Our notion of A-degree is slightly different from the one used in [ABSRW04], mainly

since the variables we consider here are automatically stratified with respect to rows i ∈ [m].
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of two variables in VarsCycl
≤|ρ (A|ρ). If, however, we extend in a natural way

the notions of A-width and A-degree to clauses/monomials in the variables

VarsCycl
≤|ρ (A|ρ) (simply by ignoring the second superscript ν in y

(i,ν)
∆ ), then it

turns out that ρ still does not increase A-degree. Assuming (for the sake

of contradiction) that no monomial m with the required properties exist, we

conclude that degA(P |ρ) ≤ r/8.

Next, we use the same argument from [BSI10] as in the proof of Corol-

lary 10.1 to convert P |ρ into a resolution refutation of τCycl
≤|ρ (A|ρ, b|ρ). As we

already noticed above (see Remark 8), for every clause C in the resulting res-

olution refutation, Vars(C) ⊆ Vars(m1) ∪ Vars(m2), where m1,m2 are some

monomials in the original PC refutation. Hence, the A-width of this resulting

refutation of τCycl
≤|ρ (A|ρ, b|ρ) is at most r/4.

Finally, when Corollary 3.4 is applied to the triple (A|ρ,≤ |ρ, b|ρ), it can be

generalized in two ways. First, τ≤|ρ(A|ρ, b|ρ) can be replaced by τCycl
≤|ρ (A|ρ, b|ρ)

(since, like τ≤|ρ(A|ρ, b|ρ), this is also a sub-CNF of τ(A|ρ, ~g) for the same ~g).

Second, and this is more crucial, width can be replaced by A-width. This is also

done by an easy adjustment of [ABSRW04, Th. 3.1] and Theorem 3.3. The only

nontrivial thing to be remarked in this respect is that in the matrix A|ρ, the ex-

pansion property holds for every set of rows {(i1, ν1), . . . , (i`, ν`)} whose projec-

tion {i1, . . . , i`} onto the first coordinate has size ≤ r (cf. the bound (27) in the

proof of Claim 5.2), that is, to every set of the form dom(C) with wA(C) ≤ r.
The generalization of Corollary 3.4 obtained in this way gives the required

contradiction with degA(P |ρ) ≤ r/8 and completes the proof of Claim 10.4. �

Next, similarly to Definition 5.9, we define a consistent random restriction

ρ of the variables VarsCycl
≤ (A). As before, ρ assigns x-variables completely at

random (with P[ρ(xj) = 0] = P[ρ(xj) = 1] = 1/4). y-variables are assigned

as follows. Pick a random subset of endpoints Ẽi by including there every

endpoint with probability (1/2d), independently of each other. Ẽi induces a

partition of Ji(A) into cyclic intervals ∆̃i
1, . . . , ∆̃

i
˜̀
i
. We take all those ∆̃i

ν for

which |∆̃i
ν \ Jx(ρ)| < 2d, and we remove from Ẽi both endpoints of these

intervals. Let Ei be the resulting set of endpoints and ∆i
1, . . . ,∆

i
`i

be the

corresponding partition into cyclic intervals. We pick at random Boolean values

bi,1, . . . , bi,`i subjected to the only linear constraint
⊕`i
ν=1 bi,ν = bi, and in the

natural way we assign all those variables yi∆ ∈ VarsCycl
≤ (A) for which both

endpoints of ∆ are in Ei. That is, if ∆ =
.⋃
ν∈Γ ∆i

ν , then ρ(yi∆)
def
=
⊕

ν∈Γ bi,ν .

Clearly, ρ is consistent with probability 1.

Claim 10.5. P[ρ is sparse ] ≥ 1/2.

Proof. By exactly the same analysis as in the proof of Claim 5.10. �
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Lastly, we need the following simple version of Claim 10.3 (Note the poly-

nomial dependence on d — this is where our choice of the encoding will be

used.)

Claim 10.6. Let C be any clause in the variables VarsCycl
≤ (A) with wA(C)

≤ r. Then

P[C|ρ 6≡ 1] ≤ exp(−wA(C)/dO(1)).

Proof. We may assume without loss of generality that C consists either

only of x-variables, or only of y-variables. In the first case the claim is obvious

(since ρ acts on x-variables completely at random). In the second, for every

i ∈ dom(C), choose arbitrarily a cyclic interval ∆i with |Ji(A)|
3 − 1 ≤ |∆i| ≤

2|Ji(A)|
3 + 1 such that yi∆i ∈ Vars(C). Let ji1, j

i
2 be its endpoints, and for

α = 1, 2, let Liα, Riα be the two cyclic intervals, of length 5d each, with the

endpoint jiα. Note that, due to the constraints on |∆i|, we have Conv(Li1, Ri1)∩
Conv(Li2, Ri2) = ∅, and we use Liα, Riα as we used protections in Section 5.

The property of weak regularity is immediate (C does not contain x-variables,

and for every i ∈ [m] contains at most one yi∆), therefore we need neither the

reduction operator R nor any analogue of Claim 5.12.

In the proof of Claim 5.13, the sub-protections L′iα, R
′
iα will now have

cardinalities 4d (as opposed to 2d), and we can save by relaxing the requirement

J ∩ P ′iα 6= ∅ in the definition of (Y i)′ to |J ∩ L′iα|, |J ∩ R′iα| ≤ 2d. Then in

(35) we have the better bound P
î
yiΣ ∈ (Y i)′

ó
≥ Ω(piΣ/d), and with the same

argument we get that ρ restricted to Vars(C) is (r, µtriv,Ω(1/d))-independent.

Claim 10.6 follows. �

Theorem 2.21 is immediately implied by Claims 10.4, 10.5 and 10.6.

11. Open problems

The central open problem in this area is obvious: construct pseudo-

random generators that would be hard for as strong proof systems as possible

and get as many pseudo-random output bits as possible. We complement this

with several other (more minor) questions.

Does there exist a function pseudorandom generator of Nisan-Wigderson

type that is hard for Resolution? Say, do there exist any A,≤, b such that

m = 2n
ε

and the minimal resolution refutation size of τ≤(A, b) is exponential

in n? The importance of this problem is, of course, greatly undermined by

the iterability trick that allowed us to turn around it in Theorem 2.13. Still,

this problem might be interesting in its own right. Also, it is not clear at the

moment how general this trick will turn out so, after all, a better understanding

of the hardness of NW-generators themselves still may be useful in further

research.
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The next problem is of similar flavour. Even nΩ(logn) output bits we were

able to get only for Nisan generators, that is, when the base functions are parity

functions. Get more than quadratic number of output bits for a wider class of

base functions. Suppose for example that m = O(n2), and the functions ~g are

picked at random. Is τ(Amn, ~g) hard for Resolution?

If the last problem is solved, then we might ask to extend the resulting

bound to the system PCR over fields of characteristic 2. (This case is left

completely open by the current paper.)

Does PCR possess efficient proofs of NP 6⊆ P/poly when the latter class

is defined by circuits over the standard basis {¬,∧,∨}? The natural attempt

to simply ignore the difficulty occurred in the proof of Theorem 2.20 leads

to the system PCRes(2), which is a natural hybrid of PC and Res(2). Now,

lower bounds for this system are known (see the much more general result in

[Kra97b]), but what we really need is a pseudo-random generator hard for it.

Last, but not the least, construct explicit lossless expanders (ideally, ex-

panders with parameters close to those in Theorem 2.5). The importance of

this last problem stretches of course well beyond proof complexity. (See, e.g.,

the impressive list of potential applications of expanders in [CRVW02].)
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