
Annals of Mathematics 181 (2015), 361–382
http://dx.doi.org/10.4007/annals.2015.181.1.6

Solution of the minimum modulus problem
for covering systems

By Bob Hough

Abstract

We answer a question of Erdős by showing that the least modulus of a

distinct covering system is at most 1016.

1. Introduction

In 1934 Romanoff proved that the numbers of form a prime plus a power

of two have positive lower density. Writing to Erdős, he asked whether there

exists an arithmetic progression of odd numbers none of whose members is

of this form. Erdős’s positive answer to this question introduced the notion

of a distinct covering system of congruences, which is a finite collection of

congruences

ai mod mi, 1 < m1 < m2 < · · · < mk

such that every integer satisfies at least one of them. His paper [4] gives the

example

0 mod 2, 0 mod 3, 1 mod 4, 3 mod 8, 7 mod 12, 23 mod 24.

Erdős posed a number of problems concerning covering systems, of which

two in particular are well known. From [4], the minimum modulus problem asks

whether there exist distinct covering systems for which the least modulus is

arbitrarily large. With Selfridge, Erdős asked if there exists a distinct covering

system with all moduli odd. These two questions appear frequently in Erdős’

collections of open problems [5], [6], [7], [8], [9]. See also [13].

Following Erdős’ paper, a number of covering systems have been exhibited

with increasing minimum modulus [3], [14], [2], [15], [12], with the current

record of 40 due to Nielsen [16]. In [16], Nielsen suggests for the first time that
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the answer to the minimum modulus problem may be negative. We confirm

this conjecture.

Theorem 1. The least modulus of a distinct covering system is at most

1016.

To obtain the bound of 1016 we use some simple numerical calculations

performed in Pari/GP [19], together with a standard explicit estimate for the

counting function of primes. For the reader interested only in the qualita-

tive statement that the minimum modulus has a uniform upper bound, our

presentation is self-contained.

In the spirit of the odd modulus problem, Theorem 1 immediately implies

that any covering system contains a modulus divisible by one of an initial

segment of primes. We may return to give a stronger quantitative statement

of this type at a later time.

Prior to our work, the main theoretical progress on the minimum modulus

problem was made recently by Filaseta, Ford, Konyagin, Pomerance and Yu

[11], who showed, among other results, a lower bound for the sum of the

reciprocals of the moduli of a covering system that grows with the minimum

modulus. We build upon their work. In particular, we use an inductive scheme

in which we filter the moduli of the congruences according to the size of their

prime factors, so that we first consider the subset of congruences all of whose

prime factors are below an initial threshold, and we then increase the threshold

in stages. The paper [11] roughly makes the first stage of this argument.

A detailed overview of our argument is given in the next section, but we

mention here that our proof follows the probabilistic method in the sense that

we give a positive lower bound for the density of integers left uncovered by any

distinct system of congruences for which the minimum modulus is sufficiently

large. The Lovász Local Lemma plays a crucial rôle. The suitability of the

Local Lemma for estimating the density of the uncovered set at each stage of

the argument relies upon a certain regularity of the uncovered set from the

previous stage, and this regularity we are able to guarantee by applying the

Local Lemma a second time, in a relative form.

Notation. Throughout we denote ω(n) the number of distinct prime fac-

tors of natural number n.
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2. Overview

We begin by giving a reasonably detailed overview of the argument. In

this summary we will consider only congruence systems all of whose moduli are

square free. Treating the case of general moduli involves a minor complication,

which we address in the next section.

Let M > 1, and let

M ⊂ {m ∈ N : m square free, m > M}

be a finite set of moduli. We assume that for each m ∈ M , a residue class

am mod m has been given. For M sufficiently large, we argue that for any M ,

and for any assignment of the am, we can give a positive lower bound for the

density of solutions to the system of (non)congruences

R = {z ∈ Z : ∀m ∈M , z 6≡ am mod m}.

The bound will, of course, depend upon M .

We estimate the density of R in stages, so we introduce a sequence of

thresholds 1 = P−1 < P0 < P1 < · · · with Pi → ∞. For the purpose of

this summary we assume that P0 is sufficiently small so that
∏
p≤P0

p < M ,

although to get a better bound for M , we will in practice choose P0 to be

somewhat larger. Let 1 = Q−1, Q0, Q1, . . . be such that

Qi =
∏
p≤Pi

p, i ≥ 0.

We say that a number n is Pi-smooth if n|Qi. Let M0,M1, . . . be given by

Mi = {m ∈M : m|Qi}, i ≥ 0;

that is, Mi is the set of Pi-smooth moduli in M . In particular, by our assump-

tion on P0 we have that M0 is empty. For this reason we set R0 = R−1 = Z
and consider the sequence of unsifted sets R0 ⊃ R1 ⊃ R2 ⊃ · · ·

Ri =
⋂

m∈Mi

{z ∈ Z : z 6≡ am mod m}, i ≥ 1.

Since the sets Mi grow to exhaust M , we eventually have R = Ri, and so it

will suffice to prove that the density of Ri is nonzero for each i. This lower

bound we will give in a uniform way for all congruence systems with minimum

modulus greater than M .

We may view Ri as a subset of Z/QiZ. Thinking of Z/Qi+1Z as fibred

over Z/QiZ, we then have that Ri+1 is contained in fibres over Ri, and we may

estimate the density of Ri+1 by estimating its density in individual fibres over

Ri. In fact, we only consider some ‘good’ fibres over a ‘well-distributed’ subset

of Ri. Thus we do not actually estimate the density of Ri+1, but rather that

of a somewhat smaller set. Also, rather than explicitly estimate the density
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of the smaller set, we will check that the smaller set is nonempty and then

estimate some statistics related to it.

Let i ≥ 0, and let r ∈ Ri mod Qi. By definition, r has survived sieving by

all of the congruences to moduli dividing Qi, so that the fraction of the fibre

(r mod Qi) that survives into Ri+1 is determined by congruence conditions to

moduli in Mi+1 \Mi. Each such modulus m has a unique factorization as

m = m0n with m0|Qi and n composed of primes in the interval (Pi, Pi+1]. We

call the collection of such n the set of ‘new factors’

∀i ≥ 0, Ni+1 = {n ∈ N : n > 1, n square free, p|n⇒ p ∈ (Pi, Pi+1]}.

This set will play a very important rôle in what follows.

Given r ∈ Ri mod Qi, am0n mod m0n intersects (r mod Qi) if and only

if am0n ≡ r mod m0. If this condition is met, the effect within the fibre is

determined only by am0n mod n. For this reason, we group together the con-

gruence conditions according to common r and n: for each r ∈ Z/QiZ and

each n ∈ Ni+1, we set

An,r = (r mod Qi) ∩
⋃

m0|Qi,m0n∈M

(am0n mod m0n).

We then have

∀i ≥ 0, (r mod Qi) ∩Ri+1 = (r mod Qi) ∩
⋂

n∈Ni+1

Acn,r,

with the interpretation thatRi+1 within (r mod Qi) results from sieving (r mod

Qi) by sets of residues to moduli in Ni+1.

When n1, n2 ∈ Ni+1 are coprime, sieving by the sets An1,r and An2,r are

independent events, by the Chinese Remainder Theorem. If all of the sets

{An,r}n∈Ni+1
were jointly independent, then the density of the fibre r mod Qi

surviving into Ri+1 would be

∏
n∈Ni+1

Ç
1− |An,r mod nQi|

n

å
.
= exp

Ñ
−

∑
n∈Ni+1

|An,r mod nQi|
n

é
.

For a given n, we can bound the average size of |An,r mod nQi| averaged over

r mod Qi:

1

Qi

∑
r mod Qi

|An,r mod nQi| ≤
1

Qi

∑
r mod Qi

∑
m0|Qi

1{am0n ≡ r mod m0}

=
1

Qi

∑
m0|Qi

∑
r mod Qi

1{r ≡ am0n mod m0}

=
1

Qi

∑
m0|Qi

Qi
m0

=
∏
p|Qi

Å
1 +

1

p

ã
= (logPi)

1+o(1).
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With the belief that the typical set An,r has size ≈ logPi, then since

∑
n∈Ni+1

1

n
= −1 +

∏
Pi<p≤Pi+1

Å
1 +

1

p

ã
≈ logPi+1

logPi
,

we might hope that the typical fibre above Ri has density P
−O(1)
i+1 . Thus far

our reasoning in the case i = 0 roughly follows the treatment of [11], but now

we diverge.

One difficulty with this heuristic account is that for generic n1, n2 ∈ Ni+1

it is not generally true that (n1, n2) = 1, so that the congruences in An1,r

and An2,r are not independent. To clarify the situation, we may imagine the

numbers in the set Ni+1 as being split into two types. Within the collection of

numbers that are composed of ‘few’ prime factors, it is generally true that most

pairs of numbers in the set are co-prime. Meanwhile, the numbers composed

of many prime factors are large and sparse, and thus they may be expected

to not contribute significantly to the sieve. This reasoning makes it plausible

that the Lovász Local Lemma can be used to handle the mild dependence that

results from sieving by the moduli in Ni+1. In practice, rather than split the

moduli into two groups, in applying the Local Lemma we are naturally led

to make a smoother decomposition, which assigns to each modulus a weight

according to its number of prime factors.

Unfortunately, it will not generally be true that the Local Lemma applies

to estimate the density of a given fibre, but rather only that it applies on a

certain subset R∗i ⊂ Ri of ‘good’ fibres on which the distribution of the sizes

{|An,r mod nQi|}n∈Ni+1
is under control. Roughly what is needed for a fibre to

be good is that a bound in dilations should hold at each prime p ∈ (Pi, Pi+1],

(1)
∑

n∈Ni+1,p|n

|An,r mod nQi|
n

� 1.

Such a bound controls the dependence among the sets {An,r}n∈Ni+1
. We give

a more precise definition of good fibres in the next section.

In order to demonstrate that a reasonable number of fibres are good we

wish to understand the distribution of values of |An,r mod nQi| for varying r

and n. Recall that we gained a heuristic understanding of the typical behavior

of |An,r mod nQi| by taking the average over Z/QiZ. Similarly, we control the

distribution of |An,r mod nQi| as r varies in subsets Si of Ri by bounding the

moments

1

|Si mod Qi|
∑

r∈Si mod Qi

|An,r mod nQi|k, k = 1, 2, 3, . . . ,
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and making a truncation argument. In practice we use only the third moment

of the sizes |An,r mod nQi|, although other choices would work as well with

appropriately modified parameters.

It transpires that the moments are controlled by statistics∑
m|Qi

`k(m) max
b mod m

|Si ∩ (b mod m) mod Qi|
|Si mod Qi|

, k = 1, 2, 3, . . .

that measure the bias in the set Si. Here `k(m) is a weight, equal to (2k −
1)ω(m) in the case that m is square free. When i = 0, it will not be necessary

to consider subsets of R0 = Z/Q0Z, since the statistics taken over R0 are

unbiased, equal to

(2)
∑
m|Q0

`k(m)

m
=
∏
p<P0

Ç
1 +

2k − 1

p

å
≈ (logP0)

2k−1,

a rate of growth that will be acceptable for us. When i > 0, however, the set

Ri will typically be small and irregular as compared to Z/QiZ, so that our

argument requires searching for good fibres R∗i only within a subset Si ⊂ Ri
chosen to have statistics that approximate (2).

The above discussion suggests that there is a second convenient notion of

a good fibre, which is that (r mod Qi) is ‘well distributed’ if for each n ∈ Ni+1,

max
b mod n

|Ri+1 ∩ (b mod n) ∩ (r mod Qi) mod Qi+1|(3)

≈ 1

n
|Ri+1 ∩ (r mod Qi) mod Qi+1|.

Thus in a well-distributed fibre (r mod Qi), for each modulus n ∈ Ni+1, any

residue class modulo n is allowed to hold at most slightly more than its share

of the set Ri+1. A pleasant feature of our argument is that a relative form of

the Lovász Local Lemma guarantees that good fibres in the sense of (1) are

automatically well distributed in the sense of (3), so that with respect to the

moduli in Ni+1 composed of large prime factors, a reasonable choice for the

set Si+1 is the union of good fibres from the previous stage, Si+1 = R∗i ∩Ri+1.

The choice of Si+1 = R∗i ∩ Ri+1 ensures that Si+1 is well distributed to

the moduli in Ni+1 that have only large prime factors, but R∗i ∩ Ri+1 ⊂ Si
may have become poorly distributed as compared to Si with respect to moduli

having smaller prime factors as a result of variable sieving in the fibres above

R∗i . We balance this effect by reweighting R∗i ∩ Ri+1 with a measure µi+1 on

Z/Qi+1Z, with respect to which each fibre over R∗i has equal weight. Thus at

stage i+ 1 ≥ 1 we will in fact consider the bias statistics

βkk (i+ 1) =
∑

m|Qi+1

`k(m) max
b mod m

µi+1(R
∗
i ∩Ri+1 ∩ (b mod m))

µi+1(R∗i ∩Ri+1)
.
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In general we will be able to show that these statistics approximate the unbi-

ased statistics (2) to within an error determined only in terms of the quality of

well-distribution (3) and the proportions of fibres that are good from previous

stages.

To summarize, at stage 0 we do no sieving so that, with a uniform measure,

the bias statistics are under control. This allows us to say that many fibres

over R0 = Z/Q0Z are good, and thus, that the bias statistics at stage 1 do

not grow too rapidly. The argument then iterates, with the possibility of

continuing iteration for arbitrarily large values of the parameters Pi depending

upon growth of the statistics β(i) as compared with growth of the Pi. The proof

is completed by making this comparison for an explicit choice of parameters.

3. The complete argument

We turn to the technical details of the argument. As we now treat con-

gruences to general moduli, we briefly recall some notions from the previous

section, pointing out the minor variation from the square free case.

As above, M > 0 is our upper bound for the minimum modulus of a

covering system, and

M ⊂ {m ∈ Z, m > M}
is a finite collection of moduli. For each m ∈M , we assume that a congruence

class am mod m is given. The uncovered set is

R =
⋂

m∈M

(am mod m)c,

which we show has a nonzero density. In the general case it is convenient to

let

Q = LCM(m : m ∈M ),

so that R is a set defined modulo Q.

We take a sequence of thresholds 1 = P−1 < P0 < P1 < · · · with P0 ≥ 2

and Pi →∞. Setting v = vp = vp(Q) for the multiplicity with which p divides

Q, we let

Q−1 = 1, ∀i ≥ 0, Qi =
∏
p≤Pi

pv.

Then Mi = {m ∈M : m|Qi} is the collection of Pi-smooth moduli in M . The

set R is filtered in stages R−1 ⊃ R0 ⊃ R1 ⊃ · · · by letting R−1 = Z, and, for

i ≥ 0,

Ri =
⋂

m∈Mi

(am mod m)c.

Although Qi now depends in an essential way on the collection of moduli M ,

our argument will, for a given i, treat the properties of Ri uniformly for all

distinct congruence systems having minimum modulus greater than M .
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3.1. The initial stage. We are no longer able to assume that Q0 < M so

that M0 = ∅, but we will assume that M is sufficiently large so that M0 is

quite sparse. Specifically, we let 0 < δ < 1 be a parameter. We may estimate

the density of the set

R0 =
⋂

m∈M0

(am mod m)c

by applying the union bound

|R0 mod Q0| ≤ Q0 −
∑

m∈M0

|(am mod m) mod Q0|

= Q0

Ñ
1−

∑
m∈M0

1

m

é
≤ Q0

Ü
1−

∑
m>M

p|m⇒p≤P0

1

m

ê
,

and we make the condition that

(C0)
∑
m>M

p|m⇒p≤P0

1

m
< δ.

This implies a bound for some bias statistics of R0 as follows.

Let `k(m) be the number of k-tuples of natural numbers having LCM m.

This is a multiplicative function (that is, `k(mn) = `k(m)`k(n) when m and n

are co-prime), and it is given at prime powers by

`k(p
j) = (j + 1)k − jk.

We define the kth bias statistic at stage 0 to be

βkk (0) =
∑
m|Q0

`k(m) max
b mod m

|R0 ∩ (b mod m) mod Q0|
|R0 mod Q0|

.

Putting in the trivial bound |R0 ∩ (b mod m) mod Q0| ≤ Q0

m , we find

βkk (0) ≤ 1

1− δ
∑
m|Q0

`k(m)

m
<

1

1− δ
∏
p≤P0

Ñ
∞∑
j=0

(j + 1)k − jk

pj

é
.

We now leave the initial stage. We will return to choose δ and P0 at the end

of the argument.

3.2. The inductive loop. In sieving stage i + 1, i ≥ 0, we view Z/Qi+1Z
as fibred over Z/QiZ, and we consider the set Ri+1 within individual fibres

over Ri.

Introduce the set of ‘new moduli’

Ni+1 = {n : n|Qi+1, n > 1, p|n⇒ Pi < p ≤ Pi+1},
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and notice that each n ∈ Ni+1 is coprime to Qi. Thus each modulus m ∈
Mi+1 \Mi has a unique factorization as m = m0n with m0|Qi and n ∈ Ni+1.

Given r ∈ Ri and n ∈ Ni+1, we set

An,r = (r mod Qi) ∩
⋃

m0|Qi,m0n∈Mi+1

(am0n mod m0n).

Then

(r mod Qi) ∩Ri+1 = (r mod Qi) ∩
⋂

n∈Ni+1

Acn,r.

We wish to consider Ri+1 only in good fibres (r mod Qi) where the sieve

is well behaved. A set of properties that we would like good fibres to have is

the following.

Definition. Let i ≥ 0, and let λ ≥ 0 be a parameter. We say that r ∈
Z/QiZ is λ-well distributed if Ri+1 ∩ (r mod Qi) is nonempty, and if the fibre

satisfies the uniformity property that for each n ∈ Ni+1,

(4) max
b mod n

|Ri+1 ∩ (b mod n) ∩ (r mod Qi) mod Qi+1|
|Ri+1 ∩ (r mod Qi) mod Qi+1|

≤ eλω(n)

n
.

An alternative, more technical characterization of good fibres is as follows.

Definition. Let i ≥ 0, and let λ ≥ 0 be a real parameter. We say that the

fibre r ∈ Ri mod Qi is λ-good if, for each p ∈ (Pi, Pi+1],

(5)
∑

n∈Ni+1,p|n

|An,r mod nQi|eλω(n)

n
≤ 1− e−λ.

If each fibre in a set S ⊂ Ri is λ-good, then we say that the set S is λ-good

as well, similarly λ-well distributed.

A basic observation of our proof is that a λ-good fibre is automatically

λ-well distributed.

Proposition 1. Let i ≥ 0, λ ≥ 0, and let r ∈ Z/QiZ be λ-good. Then r

is λ-well distributed.

The proof of this fact uses a relative form of the Lovász Local Lemma.

Lemma (Lovász Local Lemma, relative form). Let {Au}u∈V be a finite

collection of events in a probability space. Let D = (V,E) be a directed graph,

such that, for each u ∈ V , event Au is independent of the sigma-algebra gen-

erated by the events {Av : (u, v) 6∈ E}. Suppose that there exist real numbers

{xu}u∈V , satisfying 0 ≤ xu < 1, and for each u ∈ V ,

P(Au) ≤ xu
∏

(u,v)∈E
(1− xv).
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Then for any ∅ 6= U ⊂ V ,

(6) P

( ⋂
u∈V

Acu

)
≥ P

( ⋂
u∈U

Acu

)
·
∏

v∈V \U
(1− xv).

In particular, taking U to be a singleton,

(7) P

( ⋂
u∈V

Acu

)
≥
∏
u∈V

(1− xu).

Remark. The conclusion (7) is the standard one; see [1]. The stronger

conclusion (6) follows directly from the proof. For completeness, we show the

argument in Appendix B; see also [18].

The application of the Local Lemma to prove Proposition 1 is as follows.

Write Fr for the fibre (r mod Qi) ⊂ Z/Qi+1Z, and make it a probability space

with the uniform measure Pr. The events are the collection {An,r}n∈Ni+1
.

Since Fr contains Qi+1

Qi
elements, and since An,r is a set defined modulo nQi,

Pr(An,r) =
|An,r mod nQi|

n
.

By first translating by −r and then dilating by 1
Qi

, we map Fr onto Z/Qi+1

Qi
Z.

For n ∈ Ni+1, this map gives a bijection between progressions modulo nQi con-

strained to (r mod Qi), and unconstrained progressions modulo n in Z/Qi+1

Qi
Z.

Applying this map, and then the Chinese Remainder Theorem, makes it clear

that An,r is jointly independent of the σ-algebra generated by the events

{(b mod n′) ∩ (r mod Qi) : n′ ∈ Ni+1, (n, n
′) = 1}.

In particular, a valid dependency graph with which to apply the Local Lemma

has edges between n1, n2 ∈ Ni+1 if and only if n1 6= n2 and (n1, n2) > 1.

Proof of Proposition 1. We first check that

∀n ∈ Ni+1, xn = eλω(n)
|An,r mod nQi|

n

is an admissible set of weights with which to apply the Local Lemma.

Since the fibre r is λ-good, the bound in dilations condition (5) gives that

for all p ∈ (Pi, Pi+1],∑
n∈Ni+1:p|n

|An,r mod nQi|eλω(n)

n
≤ 1− e−λ.

Dropping all but one term in the sum, we see that for each n ∈ Ni+1, 1−xn ≥
e−λ. Thus, by convexity,

1− xn ≥ exp

Å −λ
1− e−λ

xn

ã
.
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Therefore, for a given n ∈ Ni+1,∏
n′∈Ni+1:(n,n′)>1

(1− xn′) ≥
∏
p|n

∏
n′∈Ni+1:p|n′

(1− xn′)

≥ exp

Ñ
−λ

1− e−λ
∑
p|n

∑
n′∈Ni+1:p|n′

eλω(n
′)|An′,r mod n′Qi|

n′

é
≥ exp (−λω(n)) .

It follows that

xn
∏

n′∈Ni+1:(n,n
′)>1

n′ 6=n

(1− xn′) ≥ xn
∏

n′∈Ni+1:(n,n′)>1

(1− xn′) ≥
|An,r mod nQi|

n

so that the Lovász criterion is satisfied. It is then immediate that the fibre

itself is nonempty, since the product in the conclusion (7) of the Local Lemma

is nonzero.

For the uniformity property (4), let n ∈ Ni+1 and let b mod n maximize

|Ri+1 ∩ (r mod Qi) ∩ (b mod n) mod Qi+1|
|Ri+1 ∩ (r mod Qi) mod Qi+1|

=
Pr

ÄÄ⋂
n′∈Ni+1

Acn′,r
ä
∩ (b mod n)

ä
Pr

Ä⋂
n′∈Ni+1

Acn′,r
ä .

Dropping part of the intersection, the numerator is bounded above by

Pr

ÑÑ ⋂
n′∈Ni+1,(n′,n)=1

Acn′,r

é
∩ (b mod n)

é
=

1

n
Pr

Ñ ⋂
n′∈Ni+1,(n′,n)=1

Acn′,r

é
.

Now by the stronger conclusion (6) of the Local Lemma,

Pr

Ñ ⋂
n′∈Ni+1

Acn′,r

é
≥ Pr

Ñ ⋂
n′∈Ni+1,(n′,n)=1

Acn′,r

é ∏
n′∈Ni+1,(n′,n)>1

(1− xn′).

Since we checked above that∏
n′∈Ni+1,(n′,n)>1

(1− xn′) ≥ e−λω(n),

it follows that

|Ri+1 ∩ (b mod n) ∩ (r mod Qi) mod Qi+1|
|Ri+1 ∩ (r mod Qi) mod Qi+1|

≤ 1

n

∏
n′∈Ni+1,(n′,n)>1

(1− xn′)−1

≤ eλω(n)

n
,

which is the condition of uniformity.

�
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Let R∗−1 = Z, and for i ≥ 0, let R∗i be the λ-good fibres within R∗i−1∩Ri. It

remains to describe how we may find good fibres above a large well-distributed

set.

It will be convenient to reweight Z/QiZ at each stage with a measure µi,

supported on the set R∗i−1 ∩ Ri. The advantage of using this measure is that

it will balance the effect of the variation in size of the various good fibres from

previous stages, so that at stage i+1 we isolate the effects of sieving by moduli

in Ni+1. We define µi iteratively by setting

µ0(r) =


1

|R0 mod Q0| r ∈ R0 mod Q0,

0 r 6∈ R0 mod Q0.

For i ≥ 0 and for r ∈ R∗i ∩ Ri+1 mod Qi+1, we reduce r mod Qi to determine

µi(r), and we set

(8) µi+1(r) =


µi(r mod Qi)

|Ri+1∩(r mod Qi) mod Qi+1| r ∈ R∗i ∩Ri+1 mod Qi+1,

0 r 6∈ R∗i ∩Ri+1 mod Qi+1.

Along with the measures µi, we track a collection of bias statistics.

Definition. Let i ≥ 0 and k ≥ 1. The kth bias statistic of set R∗i−1 ∩Ri ⊂
Z/QiZ is defined by

βkk (i) =
∑
m|Qi

`k(m) max
b mod m

µi(R
∗
i−1 ∩Ri ∩ (b mod m))

µi(R∗i−1 ∩Ri)
.

Since we require R∗−1 = Z and since µ0 is uniform on R0, this agrees with

our definition of the bias statistics for R0 given in the initial stage. These bias

statistics will be the main tool used to produce good fibres, a discussion that

we briefly postpone.

The primary virtue of the measure µi is that it allows us to bound the itera-

tive growth of the bias statistics only in terms of the size of the well-distributed

set R∗i and its parameter of well-distribution, λ. Before demonstrating this,

we record the notation

πgoodi =
µi(R

∗
i )

µi(R∗i−1 ∩Ri)

for the proportion relative to µi of good fibres in R∗i−1 ∩Ri, and we record the

following simple lemma.

Lemma 2. Let i ≥ 0. For a fixed r ∈ R∗i mod Qi, the measure µi+1 is

constant on Ri+1 ∩ (r mod Qi). The total mass of µi+1 is given by

µi+1(R
∗
i ∩Ri+1) = πgoodi µi(R

∗
i−1 ∩Ri).
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Proof. The first observation is immediate from the definition.

The total mass is given by

µi+1(R
∗
i ∩Ri+1) =

∑
r∈R∗i ∩Ri+1 mod Qi+1

µi+1(r)

=
∑

r0∈R∗i mod Qi

µi(r0)

×
∑

r∈Ri+1∩(r0 mod Qi) mod Qi+1

1

|Ri+1 ∩ (r0 mod Qi) mod Qi+1|

=
∑

r0∈R∗i mod Qi

µi(r0)

= πgoodi µi(R
∗
i−1 ∩Ri). �

The main proposition regarding the measures µi now is as follows.

Proposition 3. Let i ≥ 0 and k ≥ 1, and suppose that R∗i is λ-good. We

have

βkk (i+ 1) ≤ βkk (i)

πgoodi

∏
Pi<p≤Pi+1

Ñ
1 + eλ

vp∑
j=1

(j + 1)k − jk

pj

é
.

Proof. Recall that

(9) βkk (i+ 1) =
∑

m|Qi+1

`k(m) max
b mod m

µi+1(R
∗
i ∩Ri+1 ∩ (b mod m))

µi+1(R∗i ∩Ri+1)
.

Given m|Qi+1, factor m = m0n with m0|Qi and n ∈ {1} ∪Ni+1. Let b mod m

maximize µi+1(R
∗
i ∩Ri+1 ∩ (b mod m)). Fibring over Z/QiZ, we have

µi+1(R
∗
i ∩Ri+1 ∩ (b mod m)) =

∑
r0∈R∗i mod Qi

r0≡b mod m0

µi+1((r0 mod Qi) ∩ (b mod n))

=
∑

r0∈R∗i mod Qi

r0≡b mod m0

µi(r0)
|Ri+1 ∩ (b mod n) ∩ (r0 mod Qi) mod Qi+1|

|Ri+1 ∩ (r0 mod Qi) mod Qi+1|
.

Since the good set R∗i is λ-well distributed, the last sum is bounded by

eλω(n)

n

∑
r0∈R∗i mod Qi

r0≡b mod m0

µi(r0).

Therefore, using the multiplicativity of `k(m), we find

βkk (i+ 1) ≤
∑

n∈{1}∪Ni+1

`k(n)eλω(n)

n

∑
m0|Qi

`k(m0) max
b mod m0

µi(R
∗
i ∩ (b mod m0))

µi+1(R∗i ∩Ri+1)
.
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Since {1} ∪Ni+1 has the structure of a direct product, the sum over n factors

as the product of the proposition. Meanwhile, using R∗i ⊂ R∗i−1 ∩ Ri and

µi+1(R
∗
i ∩Ri+1) = πgoodi µi(R

∗
i−1 ∩Ri), we bound the sum over m0 by∑

m0|Qi

`k(m0) max
b mod m0

µi(R
∗
i ∩ (b mod m0))

µi+1(R∗i ∩Ri+1)

≤ 1

πgoodi

∑
m0|Qi

`k(m0) max
b mod m0

µi(R
∗
i−1 ∩Ri ∩ (b mod m0))

µi(R∗i−1 ∩Ri)
=
βkk (i)

πgoodi

. �

It remains to demonstrate the utility of the bias statistics for generating

good fibres. For n ∈ Ni+1, k ≥ 1 and R∗i−1 ∩Ri defined modulo Qi, define the

kth moment of |An,r mod nQi| to be

Mk
k (i, n) =

1

µi(R∗i−1 ∩Ri)
∑

r∈R∗i−1∩Ri mod Qi

µi(r)|An,r mod nQi|k.

The bias statistics control these moments.

Lemma 4. Let i ≥ 0 and let n ∈ Ni+1. We have Mk(i, n) ≤ βk(i).

Proof. Recall that

An,r = (r mod Qi) ∩

Ñ ⋃
m0|Qi,m0n∈M

(am0n mod m0n)

é
.

A given congruence (am0n mod m0n) intersects r mod Qi if and only if r ≡
am0n mod m0. If it does intersect, it does so in a single residue class modulo

nQi. Thus, the union bound gives

|An,r mod nQi| ≤
∑
m0|Qi

1{r ≡ am0n mod m0}.

It follows that, considering R∗i−1 ∩Ri as a subset of Z/QiZ,

Mk
k (i, n) ≤ 1

µi(R∗i−1 ∩Ri)
∑

r∈R∗i−1∩Ri

µi(r)

×
∑

m1,...,mk|Qi

1{∀1 ≤ j ≤ k, r ≡ amjn mod mj}

=
1

µi(R∗i−1 ∩Ri)
∑

m1,...,mk|Qi

×
∑

r∈R∗i−1∩Ri

µi(r)1{∀1 ≤ j ≤ k, r ≡ amjn mod mj}.

The inner condition restricts r to at most one class modulo the LCM of

m1, . . . ,mk. Grouping m1, . . . ,mk according to their LCM, and writing `k(m)
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for the number of ways in which m is the LCM of a k-tuple of natural numbers,

we find

Mk
k (i, n) ≤ 1

µi(R∗i−1 ∩Ri)

×
∑
m|Qi

`k(m) max
b mod m

µi(R
∗
i−1 ∩Ri ∩ (b mod m)) = βkk (i). �

Since the above estimate is uniform in n, we have convexity-type control

over mixtures of the sizes {|An,r mod nQi|}n∈Ni+1
.

Lemma 5. Let i ≥ 0 and k ≥ 1. Let {wn}n∈Ni+1
be a set of nonnegative

weights, not all zero. Then for all B > 0 and any k ≥ 1,

1

µi(R∗i−1 ∩Ri)
µi

Ñ
r ∈ R∗i−1 ∩Ri :

∑
n∈Ni+1

wn|An,r mod nQi| > B

é
≤ βkk (i)

Bk

Ñ ∑
n∈Ni+1

wn

ék

.

Proof. Set w′n = wn∑
ñ
wñ

, which is a probability measure on Ni+1. Con-

vexity givesÑ ∑
n∈Ni+1

w′n|An,r mod nQi|

ék

≤
∑

n∈Ni+1

w′n|An,r mod nQi|k,

so that

1

µi(R∗i−1 ∩Ri)
∑

r∈R∗i−1∩Ri

µi(r)

Ñ ∑
n∈Ni+1

w′n|An,r mod nQi|

ék

≤
∑

n∈Ni+1

w′nM
k
k (i, n) ≤ βkk (i).

The result now follows from Markov’s inequality. �

We now complete our argument by using the bias statistics to guarantee

the existence of good fibres.

For a given p ∈ (Pi, Pi+1], the dilation condition of good fibres (5) at p is

the statement that ∑
n∈Ni+1,p|n

|An,r mod nQi|eλω(n)

n
≤ 1− e−λ.

By applying the convexity lemma, Lemma 5, with weights

wn = 1p|n
eλω(n)

n
,
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we find that the relative proportion of fibres failing this condition is bounded

by

min
k

βkk (i)

(1− e−λ)k

Ñ ∑
n∈Ni+1:p|n

eλω(n)

n

ék

.

Since∑
n∈Ni+1,p|n

eλω(n)

n
≤ eλ

p− 1

∑
n∈{1}∪Ni+1

eλω(n)

n
≤ eλ

p− 1

∏
Pi<p′≤Pi+1

Ç
1 +

eλ

p′ − 1

å
,

making a union bound, we find that the total relative proportion of fibres

failing some dilation condition is bounded by

min
k
βkk (i)

ekλ

(1− e−λ)k

Ñ ∏
Pi<p≤Pi+1

Ç
1 +

eλ

p− 1

åék ∑
Pi<p≤Pi+1

1

(p− 1)k
.

For a value 0 < πgood < 1, we make the constraint that this quantity is bounded

by 1− πgood; that is,

(C1)

eλ

1− e−λ
∏

Pi<p≤Pi+1

Ç
1+

eλ

p− 1

å
≤max

k

(1− πgood)
1
k

βk(i)

Ñ ∑
Pi<p≤Pi+1

1

(p− 1)k

é− 1
k

,

which guarantees that, with respect to µi, the proportion of good fibres in

R∗i−1 ∩Ri is at least πgood.

3.3. Proof of Theorem 1. The iterative stage of our argument is summa-

rized in the following technical theorem.

Theorem 2. Let i ≥ 0, and let 0 < πgood < 1. Let the set R∗i−1 ⊂
Z/Qi−1Z be such that R∗i−1 ∩ Ri is nonempty, let µi be a measure on Z/QiZ
with support in R∗i−1 ∩ Ri, and denote the bias statistics of µi by βk(i), k =

1, 2, 3, . . . . Suppose that λ > 0 and Pi+1 > Pi satisfy the constraint

(C1)

∏
Pi<p≤Pi+1

Ç
1 +

eλ

p− 1

å
≤ 1− e−λ

eλ
max
k

(1− πgood)
1
k

βk(i)

Ñ ∑
Pi<p≤Pi+1

1

(p− 1)k

é− 1
k

.

Then there exists R∗i ⊂ R∗i−1 ∩Ri defined modulo Qi with
µi(R

∗
i )

µi(R∗i−1∩Ri)
≥ πgood,

such that the density of Ri+1 in each fibre above R∗i is positive, and such that

the associated bias statistics βk(i+ 1) of R∗i ∩Ri+1 with respect to µi+1 defined

by (8) satisfy

βkk (i+ 1) ≤ βkk (i)

πgood

∏
Pi<p≤Pi+1

Ñ
1 + eλ

vp∑
j=1

(j + 1)k − jk

pj

é
, k = 1, 2, . . . .
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We now make specific choices for our parameters and prove Theorem 1.

Proof of Theorem 1. Set M = 1016 as in Theorem 1. For i ≥ 0, let Pi =

e11+i. Set eλ = 2, πgood = 1
2 . It will suffice to check that the density of the

set R0 is positive and that the constraint (C1) of Theorem 2 is met for every

i ≥ 0.

By Rankin’s trick, for any σ > 0,

∑
m>M

p|m⇒p≤P0

1

m
≤M−σ

∑
m:p|m⇒p≤P0

1

m1−σ = M−σ
∏
p≤P0

Å
1− 1

p1−σ

ã−1
.

Choosing σ = 0.19, we verify in Pari-GP [19] that the right-hand side is less

than 0.859, so that R0 is nonempty and, in particular, δ = 0.86 in the initial

stage is permissible.

We will argue throughout with the third bias statistic. We calculate

β3(0) ≤

Ñ
(1− δ)−1

∏
p≤P0

Ñ
∞∑
j=0

3j2 + 3j + 1

pj

éé 1
3

< 731.8.

We use the following explicit estimates, which are verified in Appendix A.

For all n ≥ 11, ∏
en<p≤en+1

Å
1 +

2

p− 1

ã
< 1.2,

∏
en<p≤en+1

Ñ
1 + 2

∞∑
j=1

(j + 1)3 − j3

pj

é
< 3.4,Ñ ∑

en<p≤en+1

1

(p− 1)3

é− 1
3

> (2ne2n)
1
3 .

Thus the constraint (C1) is satisfied at i = 0 since

∏
e11<p≤e12

Å
1 +

2

p− 1

ã
< 1.2 <

(1− 0.5)
1
3

4

1

731.8

Ñ ∑
e11<p≤e12

1

(p− 1)3

é−1
3

.

The constraint holds for all i since the growth of the bias statistics guarantees

that for i ≥ 0,

β3(i+ 1)

β3(i)
<

Å
3.4

0.5

ã 1
3

< e
2
3 ,

which is less than the growth of
(
(22 + 2i)e22+2i

) 1
3 from i to i+ 1. �
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Appendix A. Explicit estimates with primes

A standard reference for explicit prime sum estimates is [17]. Slightly

stronger estimates are now known (see, e.g., [10]), but the following will suffice

for our purpose.

Theorem 6 ([17, Cor. 2]). Let θ(x) =
∑
p≤x log p. For x ≥ 678407, we

have

(10) |θ(x)− x| < x

40 log x
.

We now check the explicit estimates used in the proof of Theorem 1.

Lemma 7. For any n ≥ 11,

∏
en<p≤en+1

Å
1 +

2

p− 1

ã
< 1.2,

∏
en<p≤en+1

Ñ
1 + 2

∞∑
j=1

(j + 1)3 − j3

pj

é
< 3.4,

∑
en<p≤en+1

1

(p− 1)3
<

1

2ne2n
.

Proof. Using Pari-GP [19] we verified these estimates numerically for n =

11, 12, 13. For n > 13, they follow by partial summation against (10). For the

first,

log
∏

en<p≤en+1

Å
1 +

2

p− 1

ã
≤ 2

∑
en<p≤en+1

1

p− 1
≤ 2

1− e−n
∫ en+1

en

dθ(x)

x log x
.

Write dθ(x) = dx + d(θ(x) − x). Integrating the second term by parts, we

obtain∫ en+1

en

dθ(x)

x log x
≤ log

n+ 1

n
+
|θ(en+1)− en+1|

(n+ 1)en+1
+
|θ(en)− en|

nen

+

∫ en+1

en

|θ(x)− x|
x2

Ç
1

log x
+

1

(log x)2

å
dx

≤ log
15

14
+

1

40 · 152
+

1

40 · 142
+

2

40 · 14
log

15

14
< 0.0695

so that

2

1− e−14
∫ en+1

en

dθ(x)

x log x
< 0.14 < log 1.2.
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For the second,

log
∏

en<p≤en+1

Ñ
1 + 2

∞∑
j=1

(j + 1)3 − j3

pj

é
≤ 2

∑
en<p≤en+1

∞∑
j=1

(j + 1)3 − j3

pj

≤ 14
∑

en<p≤en+1

1

p− 3

≤ 14

1− 3e−14

∑
en<p≤en+1

1

p

<
14

1− 3e−14
· 0.07 < 1 < log(3.4).

For the third, proceed as for the first,∑
en<p≤en+1

1

(p− 1)3
≤ 1

n(1− e−n)3

Ç∫ en+1

en

dx

x3
+

∫ en+1

en

d(θ(x)− x)

x3

å
≤ 1

(1− e−n)3

ñ
1− e−2

2ne2n
+

1

40n2e2n
+

1

40n(n+ 1)e2(n+1)
+

3

40n2

∫ en+1

en

dx

x3

ô
≤ 1

2ne2n
1

(1− e−14)3
ï
1− e−2 +

1

20 · 14
+

1

20e2 · 15
+

3

40 · 14

ò
<

0.88

2ne2n
. �

Appendix B. The relative Lovász Local Lemma

For completeness, and for the reader’s convenience, we record a proof

of the relative form of the Lovász Local Lemma used in our argument. We

emphasize that the proof is the standard one (see, e.g., [1, pp. 54–55]), although

the conclusion that we need is not typically recorded.

Recall the statement of the lemma.

Lemma (Lovász Local Lemma, relative form). Let {Au}u∈V be a finite

collection of events in a probability space. Let D = (V,E) be a directed graph,

such that, for each u ∈ V , event Au is independent of the sigma-algebra gen-

erated by the events {Av : (u, v) 6∈ E}. Suppose that there exist real numbers

{xu}u∈V , satisfying 0 ≤ xu < 1, and for each u ∈ V ,

P(Au) ≤ xu
∏

(u,v)∈E
(1− xv).

Then for any ∅ 6= U ⊂ V ,

(11) P

( ⋂
u∈V

Acu

)
≥ P

( ⋂
u∈U

Acu

)
·
∏

v∈V \U
(1− xv).
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In particular, taking U to be a singleton,

(12) P

( ⋂
u∈V

Acu

)
≥
∏
u∈V

(1− xu).

Proof. By assigning an ordering to V , identify it with the set {1, 2, . . . , n}
for some n. Assume that in this ordering U is identified with {1, 2, . . . ,m} for

some m. The following is to be shown by induction. For k = 1, 2, . . . , n,

(1) For any S ⊂ {1, . . . , n}, |S| = k−1, and for any 1 ≤ i ≤ n, i 6∈ S, we have

P

Ñ
Ai

∣∣∣∣∣ ⋂
j∈S

Acj

é
≤ xi.

(2) For any S ⊂ {1, . . . , n}, |S| = k we have

P

Ñ⋂
j∈S

Acj

é
≥
∏
j∈S

(1− xj).

Obviously (12) is the second item when k = n. The conclusion (11) is also

easily deduced:

P

(
n⋂
i=1

Aci

)
=P

(
m⋂
i=1

Aci

)
·

n∏
j=m+1

P

Ñ
Acj

∣∣∣∣∣
j−1⋂
i=1

Aci

é
≥P

(
m⋂
i=1

Aci

)
·

n∏
j=m+1

(1−xj).

When k = 1, the conditional statement is to be interpreted as if there is

no conditioning, and both statements are then obvious.

To induce, let 1 < k ≤ n and assume the truth of both statements for

any 1 ≤ k′ < k. We first prove statement (1) in case k. Note that by the case

k − 1 of statement (2), the conditional probability in (1) is well defined. Let

S1 = {j ∈ S : (i, j) ∈ E}, and let S2 = S \ S1. We may obviously assume that

S1 = {j1 < j2 < · · · < jr} is nonempty, since otherwise the result is immediate

by independence. We have

P

Ñ
Ai

∣∣∣∣∣ ⋂
j∈S

Acj

é
=

P

Ç
Ai ∩

⋂
j∈S1

Acj

∣∣∣∣∣ ⋂j∈S2
Acj

å
P

Ç⋂
j∈S1

Acj

∣∣∣∣∣ ⋂j∈S2
Acj

å .

For the denominator, we have the lower bound

P

Ñ
Acj1

∣∣∣∣∣ ⋂
j∈S2

Acj

é
·P

Ñ
Acj2

∣∣∣∣∣ Acj1 ∩ ⋂
j∈S2

Acj

é
· . . . ·P

Ñ
Acjr

∣∣∣∣∣ r−1⋂
`=1

Acj` ∩
⋂
j∈S2

Acj

é
≥

r∏
`=1

(1− xj`)

by applying (1) of the inductive assumption in cases k′ < k.
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For the numerator, we have the upper bound

P

Ñ
Ai ∩

⋂
j∈S1

Acj

∣∣∣∣∣ ⋂
j∈S2

Acj

é
≤ P

Ñ
Ai

∣∣∣∣∣ ⋂
j∈S2

Acj

é
= P(Ai) ≤ xi

∏
j:(i,j)∈E

(1− xj).

Combined, these two bounds prove (1) in case k.

To prove (2) in case k, let S = {j1 < j2 < · · · < jr} and observe

P

Ñ⋂
j∈S

Acj

é
=

r∏
`=1

P

Ñ
Ac`

∣∣∣∣∣ ⋂
1≤m<`

Acm

é
≥

r∏
`=1

(1− x`),

which uses (1) in case k. �
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