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Level raising and symmetric power
functoriality, II

By Laurent Clozel and Jack A. Thorne

Abstract

We apply automorphy lifting techniques to establish new cases of sym-

metric power functoriality for Hilbert modular forms of regular algebraic

weight. The proof is based on a novel application of an automorphy lifting

theorem for residually reducible Galois representations.
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1. Introduction

This paper is devoted to the study of a specific instance of Langlands

functoriality for GL2. Let us begin with a conjecture. For any notation with

which the reader is unfamiliar, we refer to Section 3 below. Let K be a finite

Galois extension of the field Q of rational numbers.

Conjecture 1.1 (SPn+1(K)). Let F be a totally real field, linearly dis-

joint from K over Q. Let (π, χ) be an RAESDC (regular algebraic, essentially

self-dual, cuspidal) representation of GL2(AF ). Suppose that π does not have

CM, i.e., is not the automorphic induction of an algebraic Hecke character

from a quadratic CM extension. Let n ≥ 1 be an integer.

Then the nth symmetric power lifting of π exists, in the following sense.

There exists an RAESDC automorphic representation (Π, ψ) of GLn+1(AF )

such that for any isomorphism ι : Ql
∼= C, there is an isomorphism of associated

Galois representations Symn rι(π) ∼= rι(Π). 1

Of course this is but a special case of Langlands functoriality; the condition

imposed on F of being linearly disjoint from a given field K, recurrent since

Wiles’s work, is due to our deformation-theoretic proofs. (The notation, even if

it is clumsy, will alleviate further statements.) Our main result is the following.

Theorem 1.2. Let l ≥ 5 be a prime. Then the following implication

holds :

SPl−1(K(ζl))⇒ SPl+1(K(ζl)).

Corollary 1.3. Conjectures SP6(Q(ζ5)) and SP8(Q(ζ35)) are true.

Proof. Indeed, SP4(Q) is known to be true; cf. [KS02]. Now use that 5

and 7 are primes. �

In the case of elliptic modular forms of weight k ≥ 2 (thus for F = Q),

then, the expected tensor products Sym5 and Sym7 exist as cuspidal repre-

sentations of GL6, resp. GL8, over the adèles of Q. For a more ample dis-

cussion of Conjecture 1.1, we refer to the paper [CT14], of which this one

is a sequel. In that paper we outlined a strategy for proving some cases of

1. We caution the reader that this conjecture differs slightly in its statement from the

conjecture SPn+1(K) of [CT14].
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SPn+1(K) by reducing it to two other conjectures about automorphic forms,

relating to the existence of automorphic tensor products and the construction

of so-called ‘level-raising’ congruences between automorphic representations on

unitary groups.

In this paper we carry this strategy out in the first nontrivial case. Namely,

we prove a level-raising result for automorphic representations on unitary

groups with certain local data and use this to establish the main theorem

above. Our techniques for raising the level seem quite different from previous

results in this direction. The problem, and the techniques, go back to Ribet

[Rib84]. However we use here an argument introduced by Bellaiche-Graftieaux

[BG06]. It necessitates the fact that certain representations naturally occurring

in our spaces of automorphic forms, and having vectors fixed by the Iwahori

subgroup at the “level-raising” prime, have invariants under a larger group.

(See Theorem 2.7 as well as the proof of Theorem 4.1.) The fact that suitable

representations do occur exactly when needed requires a full understanding of

the spaces of automorphic forms on these groups, fortunately now available

thanks to the work of Mok [Mok].

1.1. Conditionality. Except for some local statements, whose proof is ob-

viously local, in Section 2, we warn the reader that most of the proofs in this

paper rely on Mok’s results [Mok]. (For example, note that the simple local

statement, Theorem 2.7, clearly depends on a global proof contained in Mok’s

paper.) We could certainly have dispensed with this, as is done in [CHL11].

This would, however, considerably obscure the proofs. The reader is therefore

invited to consider the whole paper as conditional on the results in [Mok]. In

turn these results depend on the stabilization of the trace formula.

Since the case of unitary groups is relatively simple compared with Arthur’s

proofs for classical groups [Art13], we can state explicitly what is meant by

this. As the reader may check, Mok’s work becomes unconditional when the

following is known.

Mok’s proofs necessitate the stabilization of the trace formula for all quasi-

split unitary groups of rank n, U(n) for short, relative to a quadratic extension

E/F of number fields — and the stabilization of the twisted trace formula for

GL(n,E) and the Galois conjugation given by the F -form U(n). This is ex-

pressed by the identity of traces (3.23) in Arthur’s book [Art13], expressing

the discrete trace of a function f on the adelic points of U(n) or GL(n,E),

as the case may be, as a sum of stable traces. We refer the reader to [Art13,

§3.2], for the precise identity, and we only note that all the terms are now well

defined due to the proof of the fundamental lemma for units of the Hecke alge-

bra [CL10], [CL12], [Ngô10], [Wal09a], [Wal09b] (implying, by Waldspurger’s

work [Wal97], the corresponding transfer of smooth functions). Moreover, this



306 LAURENT CLOZEL and JACK A. THORNE

identity is known to be true in the “nontwisted case,” i.e., in our case, for

the groups U(n). (As Bergeron, Millson and Mœglin [BMM] point out, this

also assumes a weighted fundamental lemma announced by Chaudouard and

Laumon [CL12]. See [BMM, App. A, footnote 13].) We assume this identity

has been proved: this is one of the assumptions in [Mok, Ch. 4]. There has

now been considerable progress in this direction, mainly due to Waldspurger

and Mœglin. See [Wala], [Walb].

Given the function f , on the adelic points of U(n) or GL(n,E), the sta-

bilization is an identity between a certain distribution evaluated at f — the

“discrete trace ” and a sum of stable distributions evaluated on the images fH

of f on (the adelic points of) endoscopic groups. The function f , and therefore

fH , can be assumed to be decomposed. The second assumption in force is the

following. Assume v is a finite prime of F and the extension E/F is unrami-

fied at v. Then the correspondence fv ; fHv of local functions is compatible

with the natural map between unramified Hecke algebras given by Langlands

functoriality. This implies the properties of the stable expansion formulated

as “decomposition by the ψ-parameters” used by Mok and formulated in his

Lemma 4.3.2. See the discussion in [Art13, §3.3 and foreword, p. xvii].

1.2. Acknowledgements. We would first like to thank Colette Mœglin for

her help with the proof of Theorem 2.7 and for providing the appendix. We

would next like to thank Mark Reeder for making us aware of his papers

[Ree97], [Ree00] and their application to the calculations appearing in the

proof of Proposition 2.9. Finally, we thank the anonymous referee for a careful

reading of our paper.

2. Admissible representations of p-adic groups

Let F be a finite extension of Qp, with residue field kF , ring of integers

OF , uniformizer $F , and set q = #kF . In this section we will consider various

algebraic F -groups G. We will abuse notation slightly by writing G both for

the group and for its group G(F ) of F -points. We will use the paper [Mor99] as

a convenient reference for the facts about Bruhat-Tits theory which we require

here; see [Tit79] or [BT72] for more information.

Let G be a connected reductive group over F . Let P = MN be a parabolic

subgroup of G with Levi subgroup M and unipotent radical N , and let π be

an admissible C[G]-module. The (unnormalized) Jacquet module πN of π

with respect to N is by definition the space of N -coinvariants, equipped with

its natural M -action. We will write πnorm
N = πN ⊗ δ−1/2

P for the normalized

Jacquet module.

Let S ⊂ G be a maximal F -split torus. Associated to the pair (G,S) is the

apartment A=A(G,S), affine space under the vector space V =(X∗(S)⊗Z R)∗.

We write Φ ⊂ V ∗ for the set of roots with respect to the pair (G,S) and Σ
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for the set of affine roots, which are affine functions on A. We fix a choice of

Iwahori subgroup B ⊂ G. This corresponds to a choice of chamber C ⊂ A

and a set of simple affine roots Π ⊂ Σ. To a choice of parahoric subgroup

P containing B, we can associate a subset J ⊂ Π, namely, the set of simple

affine roots which vanish on the facet F fixed by P. We associate to P the

root subsystem ΦJ of Φ consisting of the vector parts of the affine roots in J .

We associate to P a standard Levi subgroup of G as follows. First, let

K ⊂ G denote the reductive subgroup generated by S and the root subgroups

Uα ⊂ G for α in the Z-closure of ΦJ inside Φ. Let Y denote the maximal F -split

torus in the center of K. Then the associated Levi subgroup is M = ZG(Y ).

Proposition 2.1. With notation as in the preceding paragraph, let π be

an admissible representation of G, and let P be any parabolic subgroup of G

containing L as Levi subgroup. Let N denote the unipotent radical of P . Then

there is an isomorphism πP ∼= πP∩MN .

Proof. By [Mor99, Th. 2.1] and [Mor99, Lemma 2.4], P has an Iwahori

decomposition with respect to P , in the sense of [Cas, §1.4]. Similarly, B has an

Iwahori decomposition with respect to the minimal parabolic P0 = M0N0 ⊂ G
containing ZG(S) and contained inside P . There is a commutative diagram

πB // πB∩M0
N0

πP //

OO

πP∩MN .

OO

The bottom arrow is surjective, by [Cas, Th. 3.3.3]. On the other hand, the top

arrow is injective, by [Mor99, Lemma 3.6]. The commutativity of the diagram

now implies that the bottom arrow is also injective, and this completes the

proof. �

2.1. A ramified unitary group. Now suppose that E/F is a ramified qua-

dratic extension and that the residue characteristic of F is not 2. In this case

we define a unitary group as follows. Let n = 2m ≥ 6 be an even integer, and

define a matrix by

J =



1

. .
.

1

−1

. .
.

−1
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and an OF -group by the formula G(R) = {g ∈ GLn(R ⊗OF OE) | tgJgc = J}.
Then G is smooth over OF , and its generic fiber G = Un is a quasi-split unitary

group in n variables. The group K = G(OF ) is a special maximal parahoric

subgroup, and there is a surjective map K → Sp(J, kF ) to the symplectic group

over the residue field of the symplectic form represented by J . The group G is

the integral model of G associated to the maximal parahoric subgroup K as

in [Tit79, §3.4]. An Iwahori subgroup B is the inverse image in K under this

map of the subgroup of upper-triangular matrices. A maximal F -split torus S

of G is the subgroup of matrices of the form

diag(t1, . . . , tm, t
−1
m , . . . , t−1

1 ), ti ∈ F×.

It naturally extends to an OF -split torus S ⊂ G.

Let P ⊂ G denote the subgroup consisting of matrices whose (i, j) entries

vanish if i > j and (i, j) 6= (m+ 1,m). Define P to be the parahoric subgroup

of G which is the pre-image of P(kF ) ⊂ Sp(J, kF ) inside K. The parabolic

subgroup associated to P by the recipe of the previous section is just P , the

generic fiber of P. We write M for its standard Levi subgroup, isomorphic to

(E×)m−1 × U2. The base extension of P to E is, under the canonical isomor-

phism G(E) ∼= GLn(E), the standard parabolic corresponding to the partition

n = 1 + · · ·+ 1︸ ︷︷ ︸
(n−2)/2

+2 + 1 + · · ·+ 1︸ ︷︷ ︸
(n−2)/2

.

Proposition 2.1 now implies the following.

Corollary 2.2. Let π be an admissible representation of G, and let P =

MN denote the Levi decomposition with respect to the maximal F -split torus S.

Then projection induces an isomorphism πP ∼= πP∩MN .

Lemma 2.3. The pro-order of B is q∞(q − 1)m.

Proof. Arguing as in [Tit79, §3.7], we see that the prime-to-q part of the

pro-order of B is the order of ZG(S)(kF ), namely (q − 1)m. �

We now introduce the Iwahori-Hecke algebra HB of G. By definition,

this is the convolution algebra of compactly supported B-biinvariant functions

f : G → Z. If R is a ring, we write HB,R = HB ⊗Z R. If M is a smooth

R[G]-module, then HB,R acts on MB on the left. The algebra HB is non-

commutative and has a canonical anti-involution  given on double cosets by

 : [BgB] 7→ [Bg−1B]. It is useful to recall the following facts.

Proposition 2.4. Let K be a field of characteristic zero.

(1) The assignment π 7→ πB induces an equivalence of categories between the

category of admissible K[G]-modules which are generated by their B-in-

variant vectors and the category of left HB,K-modules which are finite-

dimensional as K-vector spaces.
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(2) Let π be an admissible K[G]-module which is generated by its B-invariant

vectors. Then π∨ corresponds, under the above equivalence, to the module

HomK(πB,K), which we make into a left HB,K-module using the anti-

involution .

Proof. These facts are proved in [Bor76] for semisimple p-adic groups, but

the arguments easily extend to our case. �

Let us now say a little more about the structure of the algebra HB. Fix

an element $ ∈ E such that $2 ∈ F is a uniformizer of F . With respect to

the torus S, a choice of set of positive roots is

{ti/tj | 1 ≤ i < j ≤ m} ∪ {titj | 1 ≤ i ≤ j ≤ m}.

The corresponding simple roots are the elements

αi = ti/ti+1, i = 1, . . . ,m− 1 and αm = t2m.

This root system is of type Cm. We write W0 for its Weyl group. If α ∈ Φ

is a root, we write sα ∈ W0 for the corresponding reflection. We can identify

W0
∼= {±1}moSm. Here Sm, the symmetric group on the set {1, . . . ,m}, acts

on S by permutation of t1, . . . , tm, and a vector µ = (µi)
m
i=1 in {±1}m sends ti to

tµii . We write w0 ∈W0 for the longest element. It is (−1, . . . ,−1) and is central.

Let Z = ZG(S), the maximal torus of G consisting of elements

diag(t1, . . . , tm, tm
−1
, . . . , t1

−1
), ti ∈ E×.

Let Zc ⊂ Z denote the maximal compact subgroup, and set Λ = Z/Zc ∼= Zm.

A basis of Λ is given by the elements

εi = diag(1, . . . , $, . . . ,−1/$, . . . , 1), 1 ≤ i ≤ m,

where $ occupies the ith position. Let N = NG(S). The triple (G,B, N) is

a generalized Tits system (cf. [Cas80], [Iwa66]), and the algebra HB admits

the following presentation. The extended affine Weyl group W = Λ o W0

admits a natural length function l : W → N; on the other hand, it has a

subgroup, the affine Weyl group W af ⊂ W generated by the reflections in the

affine roots; cf. [Tit79, §1.7]. We may write G =
∐
w∈W BwB, where the union

is disjoint. Writing G0 =
∐
w∈W af BwB, G0 ⊂ G is a normal subgroup, and

(G0,B, N ∩ G0) is a Tits system. We write H0 ⊂ HB for the subalgebra of

elements supported in G0.

Let Ψ ⊂ W denote the subgroup of elements of length zero. There is a

decomposition W = W af o Ψ, and G/G0 ∼= Ψ. In our case, the group Ψ has
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order two, the nontrivial element being represented by the matrix

ω =



0 0 · · · 0 1/$

0 1 . . . 0 0
... 0

. . . 0
...

0 0 · · · 1 0

$ 0 · · · 0 0

 .

It is easy to check that ω normalizes B. For each i = 1, . . . ,m, let si = sαi .

Let s0 denote the conjugate of s1 by ω. Then the elements s0, . . . , sm ∈ W af

are the reflections corresponding to the set of simple affine roots induced by B.

Let BW denote the group generated by the elements Tw, w ∈ W , subject to

the relations TwTw′ = Tww′ if l(w) + l(w′) = l(ww′), and define BW af similarly.

Then there is a canonical isomorphism between HB and the quotient of the

group algebra Z[BW ] by the relations (Tsi−1)(Tsi+q) = 0, i = 0, . . . ,m, which

takes BwB to Tw. Similarly, H0 is canonically isomorphic to the quotient

of the group algebra Z[BW af ] by the same set of relations, and there is an

isomorphism

HB
∼= Z[Ψ]‹⊗H0,

where the twisted tensor product is as in [Iwa66, §5].

We now introduce the Bernstein presentation of the algebra HB,C, follow-

ing [Lus89]. This is defined in terms of a root system (X,Y,R, Ř,Π). Here we

take X = Λ and Y = Hom(Λ,Z). The set R ⊂ X of roots is taken to consist

of the elements

{±εi ± εj | 1 ≤ i < j ≤ m} ∪ {±2εi | 1 ≤ i ≤ m},

the simple roots in Π ⊂ R being given by the formulae

βi = εi − εi+1, 1 ≤ i ≤ m− 1, βm = 2εm.

Writing e1, . . . , em for the basis of Y dual to ε1, . . . , εm, the set Ř of coroots is

{±ei ± ej | 1 ≤ i < j ≤ m} ∪ {±ei | 1 ≤ i ≤ m}.

This root system is isomorphic to that of the group Spm(C). It is now easy

to check that the extended affine Weyl group defined in [Lus89, §1] is just

our W above, and the set S of simple reflections constructed there is equal

to {s0, . . . , sm}. (The main point to check is as follows. Let β0 ∈ R be such

that β̌0 ∈ Ř is the lowest root. Then s0 = sβ0β0 ∈ W0 n Λ = W .) Comparing

the above discussion with [Lus89, §3] shows that the algebra H constructed

by Lusztig in terms of the data (X,Y,R, Ř,Π) is canonically identified with

our algebra HB,C, once (in the notation there) v is specialized to q1/2 and the

function L : S → N takes the constant value 1.
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Lusztig defines a presentation, the Bernstein presentation, of the algebra

HB,C as a twisted tensor product

HB,C ∼= H0‹⊗CC[X],

where H0 ⊂ HB,C is the C-subalgebra spanned by the elements Tw, w ∈ W0

and C[X] is the coordinate ring of the complex algebraic torus Hom(Λ,C×). If

β ∈ Π is a simple root and s = sβ ∈W0 is the corresponding simple reflection,

then Ts ∈ H0, and writing Bs = Ts − q, we have the following relation for all

θ ∈ C[X]:

θBs = Bsθ
s + (θs − θ)ζβ,

where ζβ = (q − eβ)/(1 − eβ). Here we write eβ ∈ C[X] for the element

corresponding to β ∈ X, and W0 acts on C[X] by its natural right action.

Finally, we relate this presentation to parabolic induction. Suppose given

an element τ ∈ Hom(Λ,C×). Then τ defines a module Cτ for the group algebra

C[X], which is one-dimensional as C-vector space. Following [Ree97], we define

M(τ)=HB,C ⊗C[X] Cτ .

Proposition 2.5.

(1) Let V be a left HB,C-module, finite-dimensional as C-vector space. There

are functorial isomorphisms

HomHB,C(M(τ), V ) ∼= HomC[X](Cτ , V )

and

HomHB,C(V,M(w0τ)) ∼= HomC[X](V,Cτ ).

(2) Let I(τ) denote the normalized induction of the character τ : Λ → C×,

an admissible C[G]-module. Then there is a canonical isomorphism of left

HB,C-modules I(τ)B ∼= M(w0τ).

Proof. The first part follows immediately from [Ree97, (3.7)] and the

proof of [Ree97, (3.8), Lemma]. For the second part, let π be an admissible

C[G]-module, generated by its Iwahori-fixed vectors. By Frobenius reciprocity,

[Cas80, Prop. 2.4], and the first part of the proposition, there are functorial

isomorphisms

HomG(π, I(τ)) ∼= HomC[X](π
norm
N ,Cτ )

∼= HomC[X](π
B,Cτ ) ∼= HomHB,C(πB,M(w0τ)).

On the other hand, by Proposition 2.4, there is a functorial isomorphism

HomG(π, I(τ)) ∼= HomHB,C(πB, I(τ)B). The result now follows from Yoneda’s

lemma. �
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2.2. Unitary groups and functoriality. Now suppose that n ≥ 6 is an even

integer, and let E/F be a quadratic extension. Let Un denote the quasi-

split unitary group in n variables associated to this extension. Let LF =

WF × SU2(R). The L-group of Un is a semidirect product

LUn = “Go Gal(E/F ) = GLn(C) o Gal(E/F ),

where the nontrivial element c ∈ Gal(E/F ) acts on GLn(C) by the automor-

phism

α(g) = Φn
tg−1Φ−1

n , Φn =



1

−1

1

−1

. .
.

−1


.

We define an admissible parameter to be a homomorphism LF → LUn such that

the projection LF → LUn → Gal(E/F ) is the canonical homomorphism, and

we define Φ(Un) to be the set of admissible parameters taken up to GLn(C)-

conjugation. If n = a + b is a partition into even integers, then there is an

L-homomorphism ξ : L(Ua × Ub)→ LUn given by formulae

ξ(g1, g2, w) =

ÇÇ
g1 0

0 g2

å
, w

å
(w ∈WE),

ξ(wc) =

ÇÇ
Φa 0

0 Φb

å
Φ−1
n , wc

å
,

where wc ∈WF \WE . On the other hand, there is an injective map Φ(Un)→
Φ(GLn(E)) given by restriction of parameters to LE . If G = Un or GLn(E), we

write Φbdd(G) for the subset of parameters ϕ such that ϕ(WE) is a bounded

subset of “G and Πtemp(G) for the set of isomorphism classes of irreducible

admissible representations of G which are tempered.

Lemma 2.6. This map induces a bijection between Φ(Un) and the subset

of Φ(GLn(E)) consisting of those parameters which are conjugate symplectic,

in the sense of [Mok, §2.2].

Proof. This follows from [Mok, Lemma 2.2.1]. It uses that n is even. �

Given ϕ ∈ Φ(G), we define groups

Sϕ = Z
Ĝ

(imϕ), Sϕ = Sϕ/Z(“G)ΓF , Sϕ = π0(Sϕ).

By [Mok, Th. 2.5.1], we can associate to each ϕ ∈ Φbdd(Un) a finite set Πϕ

of isomorphism classes of tempered irreducible admissible representations of

Un, and a bijective mapping Πϕ → Hom(Sϕ,C×). This set is characterized
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by certain character identities. The set Πtemp(Un) is the disjoint union of the

sets Πϕ for ϕ ∈ Φbdd(Un). We refer to Πϕ as the L-packet associated to ϕ. If

π ∈ Πϕ and ϕ is a bounded parameter, then we define the stable base change

BC(π) to be the irreducible admissible representation of GLn(E) corresponding

to the restriction of ϕ in Φbdd(GLn(E)).

We will be interested in a particular L-packet. Suppose once more that

E/F is ramified and that the residue characteristic of F is not 2. We write

Stn,E for the Steinberg representation of GLn(E). The following description of

our L-packet of interest was explained to us by Mœglin, who has kindly written

up a proof in the appendix to this paper. Recall that there is a correspondence

fE ; f between compactly supported, smooth functions on GLn(E) and Un.

This is a correspondence, not a map; we will simply say that fE and f , or

equivalently f and fE , are associated.

Theorem 2.7. The representation ΠE = St2,E �Stn−2,E of GLn(E) is

in the image of the stable base change map. The corresponding L-packet of Un
contains exactly two elements X,Y which may be characterized as follows :

— 〈trX + trY, f〉 = 〈tr ΠE × Ic, fE〉, where the intertwining operator Ic :

ΠE
∼= Πc

E is Whittaker normalized ; cf. Section 3.7.

— dimXP = dimXB = 1 and dimY B = n/2 + 1.

— Xnorm
N0

= [n− 3, n− 5, . . . , 1,−1] and (Y norm
N0

)ss = [1, n− 3, n− 5, . . . , 1] +∑n/2−3
i=1 [n− 3, . . . , n− 1− 2i, 1, n− 3− 2i, . . . , 1] + 2[n− 3, n− 5, . . . , 1, 1] +

[n− 3, n− 5, . . . , 1,−1].

Here we write [a1, . . . , an/2] for the character | · |a1/2 ⊗ · · · ⊗ | · |an/2/2 of

E× × · · · × E×, the F -points of the standard Levi subgroup of the minimal

parabolic P0 ⊂ Un. We remark that the character [n− 3, n− 5, . . . , 1, 1] occurs

in (Y norm
N0

)ss with multiplicity two, while every other character occurs with

multiplicity one.

Proof. Mok’s results imply the existence of two irreducible modulesX ′ and

Y ′ satisfying the first equality in the theorem; cf. [Mok, Th. 3.2.1]. On the other

hand, Mœglin shows the existence of the same equality for the modules X, Y

described in the appendix, 〈trX+ trY, f〉 being replaced by 〈a trX+ b trY, f〉
with a, b 6= 0 [Mœg07, Prop. 5.5]. On the elements of a maximally split torus

T0 of Un and the associated elements of GLn(E), the correspondence is a

simple identity of orbital integrals (twisted for fE). In particular, the orbital

integrals of f are arbitrary, say on regular elements of T0, for f in the image of

the correspondence. It follows that a = b = 1; the Jacquet modules of X + Y ,

X ′ + Y ′ are then determined by this identity (by Casselman’s theorem; see

[Clo90a, (2.4)]). It is now easy to check that X,Y and X ′, Y ′ coincide, up to
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reordering. The second and third assertions of the theorem now follow from

the appendix, except for the statement on XP.

By Proposition 2.1, it suffices to check that XP∩M
N 6= 0. By Frobenius

reciprocity and transitivity of the Jacquet modules, there exists a nontrivial

map from XN to [n − 3, . . . , 1] ⊗ IndU2

P 2
0
| · |−1/2, P 2

0 being the Borel subgroup

in U2. The induced representation has the trivial representation as its only

submodule. �

Proposition 2.8. Let ϕ : HB → C denote the homomorphism giving the

action of HB on XB. Then ϕ ◦  = ϕ.

Proof. This is an immediate consequence of the fact that X is self-dual,

which may be checked as follows. Given the structure of the Jacquet modules

of X and Y , it suffices to show that X + Y is self-dual in the Grothendieck

group of admissible C[Un]-modules. The correspondence fE ; f is compatible

with the anti-involutions g 7→ g−1 (on both groups), so it suffices to check that

there is an isomorphism ΠE
∼= Π∨E , compatible with the Whittaker functional.

However Π∨E is isomorphic to the representation ΠE(Φn
tg−1Φ−1

n ) = ρE , say,

and an isomorphism ΠE → ρE respects the Whittaker functional. �

Fix an odd prime l and an isomorphism ι : Ql
∼= C, and let K ⊂ Ql be a

finite extension of Ql, with ring of integers O and residue field k. We suppose

that K contains a square root of q.

Proposition 2.9.

(1) ι−1X and ι−1Y are defined over K . We write XK , YK for a choice of

admissible K[Un]-modules satisfying

XK ⊗K,ι C ∼= X, YK ⊗K,ι C ∼= Y.

(2) Suppose that l - q(q+1)
∏n/2−2
i=1 (qi−1). Then there exist HB,O-submodules

XB
O ⊂ XB

K and Y B
O ⊂ Y B

K such that the natural maps

XB
O ⊗O K → XB

K and Y B
O ⊗O K → Y B

K

are isomorphisms, and XB
O ⊗O k and Y B

O ⊗O k have no Jordan-Hölder

factors as HB,k-modules in common.

Proof. We give a proof by explicit calculation, using the results of Reeder

[Ree97], [Ree00]. We use the notation for the algebra HB established in the

previous section. If M is a C[Λ]-module and τ : Λ→ C× is a homomorphism,

we write M [τ∞] for the subspace which is annihilated by some power of the

ideal mτ ⊂ C[Λ], kernel of the associated homomorphism C[Λ]→ C.

Let τ0 denote the character [n−3, n−5, . . . , 1, 1] of Λ. As observed above,

Y B[τ∞0 ] has dimension 2. Let τ = w0τ0 = [3 − n, 5 − n, . . . ,−1,−1]. We

claim that Y B is isomorphic, as left HB,C-module, to the submodule of M(τ)
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generated by M(τ)[τ∞0 ]. Indeed, by Proposition 2.5, there is an injection of

HB,C-modules Y B ↪→M(τ). As M(τ)[τ∞0 ] also has dimension 2, this inclusion

induces an isomorphism Y B[τ∞0 ] ∼= M(τ)[τ∞0 ], implying the claim. We now

use this to compute a model for Y B and then calculate its reduction modulo l.

The nontrivial characters of Λ occurring in Y B are τ0, smτ0, and sm−2τ0,

sm−3sm−2τ0, . . . , s1 · · · sm−3sm−2τ0. Using [Ree00, Prop. 2.1], we can calculate

bases for the weight spaces of these characters in Y B and the matrices of the

operators Tsi . Let us treat first the case n = 6, τ0 = [3, 1, 1]. (The module Y B

then corresponds to the module V01 of [Ree97, §13.2]; note that our [3, 1, 1] is

Reeder’s [−3,−1,−1].) The stabilizer of τ in W0 is W0,τ = {1, sm−1} = {1, s2}.
One calculates using [Ree00, Prop. 2.1] and [Ree00, Prop. 2.3] that a basis for

Y B ⊂M(τ) is given by the vectors (Reeder’s notation)

{Hsmw0sm−1 ⊗ 1, Hw0 ⊗ 1, Hw0sm−1 ⊗ 1, Hsm−2w0sm−1 ⊗ 1}
= {Hs3w0s2 ⊗ 1, Hw0 ⊗ 1, Hw0s2 ⊗ 1, Hs1w0s2 ⊗ 1}.

With respect to this basis, the operators Tsi are given by the matrices

Ts1 =

á
−1 0 0 0

0 −1 0 0

0 q −1 1

0 q(q + 1) 0 q

ë
,

Ts2 =

á
−1 0 0 0

0 −1 1 0

0 0 q 0

0 0 0 −1

ë
,

Ts3 =

á
q 2q(q + 1) 0 0

0 −1 0 0

1 2q −1 0

0 0 0 −1

ë
.

The group Λ is freely generated by the elements εi, i = 1, 2, 3, and these

elements act on Y B by the matrices

ε1 =

á
q−3/2 0 0 0

0 q−3/2 0 0

0 0 q−3/2 0

0 0 0 q−1/2

ë
,

ε2 =

á
q−1/2 0 0 0

0 q−1/2 0 0

0 q1/2 − q−1/2 q−1/2 0

0 0 0 q−3/2

ë
,
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ε3 =

á
q1/2 0 0 0

0 q−1/2 0 0

0 q−1/2 − q1/2 q−1/2 0

0 0 0 q−1/2

ë
.

(Note that q1/2 is a canonically defined element of R ⊂ C.) Let YZ[q1/2,q−1/2] de-

note the free Z[q1/2, q−1/2]-module spanned by the above basis elements. Then

Y B
Z[q1/2,q−1/2] ⊂ Y

B

is a HB,Z[q1/2,q−1/2]-submodule and the natural map

Y B
Z[q1/2,q−1/2] ⊗Z[q1/2,q−1/2] C→ Y B

is an isomorphism. The choice of ι induces a homomorphism Z[q1/2, q−1/2]→O.

We set

Y B
O = Y B

Z[q1/2,q−1/2] ⊗Z[q1/2,q−1/2] O

and choose XB
O ⊂ XB

K to be any O-submodule of rank 1. The proposition

now follows in this case from the fact that the above matrices generate, after

reduction mod λ, the whole algebra Endk(Y
B
O ⊗O k) = M4(k). Indeed, it is

easy to see that the matrices ε1, ε2, ε2 generate a subalgebra of M4(k) contain-

ing the diagonal matrices diag(λ, µ, µ, ν), λ, µ, ν ∈ k. Multiplying the matrices

Ts1 , Ts2 and Ts3 on the left and right by matrices of this form, and using that

2q(q2 − 1) is nonzero in k, we obtain the elementary matrices E3,4, E4,3, E1,2

and E3,1, where Ei,j is the matrix with exactly one nonzero entry in the (i, j)

spot, which is equal to 1. Using the matrices ε2 and Ts2 , we obtain all block

diagonal matrices with blocks of size 1 + 2 + 1 = 4. It is now easy to check

that the algebra generated by all of these operators is M4(k).

We treat the general case by induction on n ≥ 8. Suppose the proposi-

tion to be true for the group Un−2. We again choose XB
O ⊂ XB

K to be any

O-submodule of rank 1. We identify Un−2 as the subgroup of Un consisting of

block diagonal matrices, corresponding to the partition n = 1 + (n − 2) + 1.

We write Yn−2 for the corresponding representation of Un−2. Similarly, we

write Bn−2 ⊂ Un−2 for the Iwahori subgroup of this group. We can view

HBn−2,C as a subalgebra of HB,C, namely, the one generated by the elements

Ts2 , . . . , Tsm ∈ H0 and ε±1
2 , . . . , ε±1

m ∈ C[Λ]. One calculates using [Ree00,

Prop. 2.3] that a basis for Y B is given by the elements

{Hsmw0sm−1 ⊗ 1, Hw0 ⊗ 1, Hw0sm−1 ⊗ 1, Hsm−2w0sm−1 ⊗ 1,

Hsm−3sm−2w0sm−1 ⊗ 1, . . . ,Hs1...sm−3sm−2w0sm−1 ⊗ 1}.

We first show that the O-submodule Y B
O of ι−1Y B spanned by these elements

is HB,O-invariant. Indeed, the O-submodule spanned by the first m of these
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elements is preserved by the subalgebra HBn−2,O and is isomorphic to the mod-

ule Y B
n−2,O (in the obvious notation). The operator Ts1 preserves the subspace

spanned by the vectors

Hs2...sn−3sn−2w0sn−1 ⊗ 1, Hs1...sn−3sn−2w0sn−1 ⊗ 1,

and the matrix of its restriction to this subspace isÑ
− q−1
qm−2−1

1
q(qm−3−1)(qm−1−1)

(qm−2−1)2
qm−2(q−1)
qm−2−1

é
.

It acts as multiplication by q on the other basis vectors. It is now easy to see

that the algebra HB,O preserves Y B
O . The character of O[Λ] afforded by XB

O
is distinct from the other characters of O[Λ] appearing in Y B

O , even modulo λ.

If Y B
O ⊗O k and XB

O ⊗O k have a common Jordan-Hölder constituent as HB,k-

modules, then they must also have a common Jordan-Hölder constituent as

HBn−2,k-modules, contradicting the induction hypothesis. This completes the

proof of the proposition. �

Corollary 2.10. Suppose that M is an HB,O-module which is finite

flat as an O-module and such that M ⊗O,ι C ∼= (XB)a ⊕ (Y B)b for some

integers a, b ≥ 0. Suppose that l - q(q + 1)
∏n/2−2
i=1 (qi − 1). Let MX denote the

intersection of M with the XB
K -isotypic component of M ⊗O K , and similarly

for MY . Then there is a direct sum decomposition of HB,O-modules

M = MX ⊕MY .

Proof. Consider the map MX ⊕MY → M . It is injective, and surjective

after tensoring with K. To show that it is surjective, it suffices to show that

the induced map

MX ⊗O k ⊕MY ⊗O k →M ⊗O k
is injective. However, the kernel of this map can be viewed as a submodule

of MX ⊗O k and as a submodule of MY ⊗O k. By Proposition 2.9, these two

spaces have no simple subquotients as HB,k-modules in common. Therefore

the kernel must be trivial, and this implies the result. �

3. Automorphic representations

3.1. GLn. Let p be a prime, and let K be a finite extension of Qp. Let Ω

denote an algebraically closed field of characteristic zero. There is a bijection

recK : AdmC GLn(K)↔WDn
CWK ,

characterized by a certain equality of ε- and L-factors on either side; cf.

[HT01], [Hen02]. When n = 1, it is induced by the local Artin map, nor-

malized to take uniformizers to geometric Frobenius elements. Here we write

AdmΩ GLn(K) for the set of isomorphism classes of irreducible admissible
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representations of this group over Ω and WDn
ΩWK for the set of Frobenius-

semisimple Weil-Deligne representations (r,N) of WK valued in GLn(Ω). We

define recTK(π) = recK(π| · |(1−n)/2). This is the normalization of the local

Langlands correspondence with good rationality properties; in particular, for

any σ ∈ Aut(C) and any π ∈ AdmC GLn(K), there is an isomorphism

recTK(σπ) ∼= σ recTK(π).

This can be seen using, for example, the characterization of recK and the

description given in [Tat79, §3] of the action of Galois on local ε- and L-factors.

It follows that for any Ω, we can define a canonical bijection

recTK : AdmΩ GLn(K)↔WDn
ΩWK .

Suppose instead that K is a finite extension of R. Then there is a bijection

(Langlands’ normalization):

recK : AdmC GLn(K)↔ RepnCWK .

Here we write AdmC GLn(K) for the set of infinitesimal equivalence classes of

irreducible admissible representations of GLn(K) and RepnCWK for the set of

continuous semisimple representations of WK into GLn(C).

We define recTK(π) = recK(π| · |(1−n)/2). If K is isomorphic to C, then we

say that a character K× → C× is algebraic if it has the form x 7→ σ(x)nστ(x)nτ

for some integers nσ, nτ , and σ, τ the distinct R-isomorphisms K ∼= C. We then

say that π is regular algebraic if recTK(π) is a direct sum of pairwise distinct

algebraic characters. If K = R, we say that π is regular algebraic if recTK(π)|C×
is a direct sum of pairwise distinct algebraic characters.

Now let E be an imaginary CM field. We write F for the maximal totally

real subfield of E and c ∈ Gal(E/F ) for the nontrivial element.

Definition 3.1.

(1) We say that an automorphic representation π of GLn(AE) is RACSDC

(regular algebraic, conjugate self-dual, cuspidal) if it satisfies the following

conditions:

— It is conjugate self-dual: πc ∼= π∨.

— It is cuspidal.

— It is regular algebraic.

(2) We say that a pair (π, χ) of an automorphic representation π of GLn(AE)

and a character χ : F×\A×F → C× is RAECSDC (regular algebraic, essen-

tially conjugate self-dual, cuspidal) if it satisfies the following conditions:

— It is essentially conjugate self-dual: πc ∼= π∨ ⊗ χ ◦ NE/F .
— π is cuspidal.
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— π is regular algebraic.

— χ is an algebraic character such that χv(−1) = (−1)n for each place

v|∞.

(3) We say that a pair (π, χ) of an automorphic representation π of GLn(AF )

and a character χ : F×\A×F → C× is RAESDC (regular algebraic, essen-

tially self-dual, cuspidal) if it satisfies the following conditions:

— It is essentially self-dual: π ∼= π∨ ⊗ χ.

— π is cuspidal.

— π is regular algebraic.

— χ is an algebraic character such that χv(−1) is independent of the

place v|∞.

If π is a regular algebraic cuspidal automorphic representation of GLn(AE),

then for each embedding τ : E ↪→ C, we are given a representation rτ : C× →
GLn(C), induced by recEv(πv), where v is the infinite place induced by τ , and

the isomorphism E×v
∼= C× induced by τ . There exists (cf. [Clo90b, Lemma

4.9]) an integer w ∈ Z such that this representation has the form

rτ (z) =
Ä
zaτ,1zw−aτ,1 , . . . , zaτ,nzw−aτ,n

ä
,

where aτ,i ∈ (n− 1)/2 + Z and aτ,1 > · · · > aτ,n. (Note that w = 0 if and only

if π is unitary; this will be the case if π is conjugate self-dual.) We will refer

to the tuple a = (aτ,1, . . . , aτ,n)τ∈Hom(E,C) as the infinity type of π. We also

define a tuple λ = (λτ )τ∈Hom(E,C) = (λτ,1, . . . , λτ,n)τ∈Hom(E,C), which we call

the weight of π, by the formula λτ,i = −aτ,n+1−i+(n−1)/2− (n− i). Then for

each τ : E ↪→ C, we have λτ,1 ≥ · · · ≥ λτ,n, and the irreducible admissible rep-

resentation of GLn(C) corresponding to rτ has the same infinitesimal character

as the dual of the algebraic representation of GLn(C) with highest weight λτ .

If π is a regular algebraic cuspidal automorphic representation of GLn(AF ),

then for each embedding F ↪→ C, we get a representation rτ = recFv(πv)|C× ,

where v is the place of F corresponding to τ . In this case we use the same

formulae to define the infinity type and the weight of π.

We will also have cause to consider representations which are not cuspidal.

Suppose that σ1, σ2 are conjugate self-dual cuspidal automorphic representa-

tions of GLn1(AE),GLn2(AE), respectively, and that Σ = σ1 � σ2 is regular

algebraic. Then the representations σi| · |(ni−n)/2 are regular algebraic. We

call a representation Σ arising in this way an RACSD sum of cuspidal repre-

sentations. In this case, define ai = (aiτ )τ∈Hom(E,C) by the requirement that

(aiτ,1 +(ni−n)/2, . . . , aiτ,ni +(ni−n)/2) equal the infinity type of σi| · |(ni−n)/2,

and define b = (bτ )τ∈Hom(E,C) by the formula

(bτ,1, . . . , bτ,n) = (a1
τ,1, . . . , a

1
τ,n1

, a2
τ,1, . . . , a

2
τ,n2

).
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Let Sn denote the symmetric group on {1, . . . , n}. There is a unique tuple

w = (wτ )τ∈Hom(E,C) ∈ S
Hom(E,C)
n such that for each τ ∈ Hom(E,C), we have

bτ,wτ (1) > · · · > bτ,wτ (n).

The infinity type of Σ is defined to be (bτ,wτ (1), . . . , bτ,wτ (n))τ∈Hom(E,C).

Theorem 3.2.

(1) Let π be an RACSD sum of cuspidals or an RAECSDC automorphic rep-

resentation of GLn(AE), and fix an isomorphism ι : Ql
∼= C. Then there

exists a continuous semisimple representation

rι(π) : GE → GLn(Ql)

satisfying the following property. For every finite place v of E not divid-

ing l, there is an isomorphism

WD(rι(π)|GEv )F-ss ∼= recTEv(ι
−1πv).

For each place v of E dividing l, rι(π)|GEv is de Rham, and if τ : Ev ↪→ Ql

is an embedding and a the infinity type of π, then the Hodge-Tate weights

with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

(2) Let (π, χ) be an RAESDC automorphic representation of GLn(AF ), and

fix an isomorphism ι : Ql
∼= C. Then there exists a continuous semisimple

representation

rι(π) : GF → GLn(Ql)

satisfying the following property : for every finite place v of F not dividing l,

there is an isomorphism

WD(rι(π)|GEv )F-ss ∼= recTFv(ι
−1πv).

For each place v of F dividing l, rι(π)|GFv is de Rham, and if τ : Fv ↪→ Ql

is an embedding and a the infinity type of π, then the Hodge-Tate weights

with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

Proof. This theorem is due to many people. We give references for the

case of an RACSDC automorphic representation π, from which the others can

be deduced. In this case the existence of the representation rι(π) is proved in

[CH13, Th. 3.2.3]. The strong form of local-global compatibility is proved in

[Car12]. �
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Lemma 3.3. Let π be one of the above types of automorphic representa-

tions, and fix an isomorphism ι : Ql
∼= C. Let σ be a continuous automorphism

of Ql. Then ισι−1
π is defined, by [Clo90b, Th. 3.13]. There are isomorphisms

rι(
ισι−1

π) ∼= rισ(π) ∼= σrι(π).

Proof. This follows from local-global compatibility, the rationality of the

local Langlands correspondence for GLn, and the Chebotarev density theorem.

�

We will use the following convention for residual representations. If ρ :

GF → GLn(Ql) is a continuous representation, then after choosing an invariant

lattice, defined over a finite extension of Ql, we obtain by reduction modulo l a

residual representation valued in GLn(Fl). By the principle of Brauer-Nesbitt,

the semisimplification of this representation depends, up to isomorphism, only

on ρ, and it will be denoted ρ : GF → GLn(Fl).

3.2. Ordinary forms. Let L = E or F . If π is a regular algebraic auto-

morphic representation of GLn(AL) of infinity type a and weight λ, we define

Hecke operators U jλ,v as follows at primes v above l. They depend on a choice

of isomorphism ι : Ql
∼= C, which we fix for the rest of this section, as well as

a choice of uniformizer $v of OLv . Define a matrix

αjv = diag($v, . . . , $v︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)

and set

U jλ,v =
∏
τ

ι−1τ($v)
−λτ,n−···−λτ,n+1−j

î
Iwc(v)αjv Iwc(v)

ó
.

By definition, the subgroup Iwc(v) ⊂ GLn(OLv) is the subgroup of matrices

whose reduction modulo $c
v is an upper-triangular matrix with 1’s on the

diagonal, and the product runs over embeddings τ : L ↪→ C such that ι−1τ

induces the place v of L. We note that by [Ger, Lemma 2.3.3], the Hecke

operators U jλ,v commute with the inclusions ι−1π
Iwc(v)
v → ι−1π

Iwc′ (v)
v when

c′ ≥ c. It therefore makes sense to omit c from the notation defining U jλ,v.

We also write Tc(v) ⊂ Iwc(v) for the group of diagonal matrices with integral

entries which are congruent to 1 modulo $c
v, ev for the absolute ramification

index of [Lv : Ql], fv for the absolute residue degree, and val : Q×l → Q for the

valuation such that val(l) = 1.

Definition 3.4. Let π be a regular algebraic automorphic representation

of GLn(AL) of weight λ. We say that π is ι-ordinary if for each place v of L

dividing l, there is an integer c ≥ 1 and a line inside ι−1π
Iwc(v)
v which is invariant

under each operator U jλ,v and such that the eigenvalues of these operators on

this line are all l-adic units.
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The next lemma follows immediately from [CT14, Lemma 2.5] and [CT14,

Lemma 2.6].

Lemma 3.5.

(1) The subspace of lim−→
c

ι−1π
Iwc(v)
v where each operator U jλ,v acts with eigen-

value a unit has dimension at most one.

(2) Suppose that π1, π2 are cuspidal conjugate self-dual automorphic represen-

tations of GLn1(AE) and GLn2(AE), respectively. Suppose that Π = π1�π2

is regular algebraic. Then the representations πi| · |(ni−n)/2 are regular al-

gebraic, and Π is ι-ordinary if and only if π1| · |(n1−n)/2, π2| · |(n2−n)/2 are

ι-ordinary and the following condition on infinity types holds. Recall the

tuple w = (wτ )τ∈Hom(E,C) of permutations associated to the infinity types

of π1, π2. Then wτ depends only on the place v of E dividing l induced by

the embedding ι−1τ : E ↪→ Ql.

3.3. Definite unitary groups. We now let E be an imaginary CM field with

totally real subfield F and suppose that [F : Q] is even. Let G be a unitary

group in n variables associated to the extension E/F , quasi-split at every finite

place, such that G(R) is compact. Such a group exists since [F : Q] is even,

and it is uniquely determined up to isomorphism. We can choose the matrix

algebra B = Mn(E) and an involution † of B of the second kind so that G is

defined by

G(R) = {g ∈ (B ⊗F R)× | g†g = 1}
for any F -algebra R. We may choose an order OB ⊂ B, stable under †, so that

OB,w is maximal for any place w of E split over F . This defines an integral

model of G over OF , and for any place v of F split as v = wwc in E, we can

choose an isomorphism

OB ⊗OF OFv ∼= Mn(OEw)×Mn(OEwc )

such that † acts as (g1, g2) 7→ (g2,
tg1). Projection onto the first factor induces

an isomorphism ιw : G(Fv)→ GLn(Ew) such that ιw(G(OFv)) = GLn(OEw).

Let l be a prime, and suppose that every prime of F above l splits in E.

Let Sl denote the set of primes of F above l. We choose a prime ṽ of E above

v for each v ∈ Sl, and we let S̃l denote the set of these primes. Then, as above,

we are given an isomorphism ιṽ : G(Fv) → GLn(Eṽ). We write Il for the set

of embeddings F ↪→ Ql and Ĩl for the set of embeddings E ↪→ Ql inducing an

element of S̃l. These two sets are therefore in canonical bijection.

Let K ⊂ Ql be a finite extension of Ql, with ring of integers O and residue

field k. We suppose that K contains the image of E under every embedding

E ↪→ Ql. To a tuple λ = (λτ,1, . . . , λτ,n)
τ∈Ĩl

of dominant weights of GLn, we

associate a representation Mλ of the group
∏
v∈Sl G(OFv) as in [Ger, Def. 2.2.3].
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It is an O-lattice inside the representation Wλ = ⊗
τ∈Ĩl

(Wλτ ⊗Fv ,τ K), where

Wλτ is the algebraic representation of GLn(Fv) of highest weight λτ and v is

the place of F induced by τ .

Fix λ and an open compact subgroup U =
∏
v Uv ⊂ G(A∞F ), such that

Uv ⊂ G(OFv) for each v ∈ Sl. Let A be an O-algebra. We can then define

a space of automorphic forms with A-coefficients as follows. By definition,

Sλ(U,A) is the set of functions f : G(F )\G(A∞F )→Mλ⊗O A such that for all

u ∈ U , we have f(gu) = u−1
l · f(g). Here ul denotes the projection of u to its∏

v∈Sl G(OFv)-component. If λ = 0, then we write Sλ(U,A) = S(U,A).

The relation with classical automorphic forms is given by the following

result. Let A denote the space of automorphic forms on G(F )\G(A), and let

ι : Ql
∼= C be an isomorphism. There is an algebraic representation Wιλ of

G(F ⊗Q R), defined by the formula ⊗
τ∈Ĩl

Wλτ ⊗Fv ,ιτ C.

Proposition 3.6. There is a canonical isomorphism(
lim−→
U

Sλ(U,K)

)
⊗K,ι C ∼= HomG(F⊗QR)(W

∨
ιλ,A).

In particular, for any irreducible subrepresentation σ ⊂ A, there is a canonical

subspace ι−1(σ∞)U ⊂ Sλ(U,Ql), and lim−→
U

Sλ(U,K) is a semisimple admissible

representation of G(A∞F ).

Proof. This is proved just as [CHT08, Prop. 3.3.2]. �

If π is an automorphic representation of GLn(AE) and σ is an automorphic

representation of G(AF ), we say that π is the base change of σ if for any finite

place w of E, the following condition is satisfied:

— If w is split over the place v of F , then πw is the standard base change

of σv.

— If w is inert over the place v of F and σv is unramified, then πw is the

standard unramified base change of σv (cf. [Mı́n11, Th. 4.1]).

Proposition 3.7.

(1) Suppose that σ is an automorphic representation of G(AF ). Then there ex-

ist discrete and conjugate self-dual representations π1, . . . , πs of GLn(AE)

such that π = π1 � · · ·� πs is the base change of σ in the above sense.

Proof. This follows from [Lab11b, Corollaire 5.3]. �

Proposition 3.8. Let σ be an automorphic representation of G(AF ).

Then there exists a unique continuous semisimple representation

rι(σ) : GE → GLn(Ql)
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satisfying the following condition : for every place w of E split over F , we have

WD(rι(σ)|GEw )F-ss ∼= recTEw(ι−1(σv ◦ ιw)).

Proof. This now follows from Theorem 3.2. �

Let U =
∏
v Uv be an open compact subgroup as above, and suppose that there

exists an integer c ≥ 1 such that for each v ∈ Sl, Uv = ι−1
ṽ Iwc(ṽ). For each

prime v ∈ Sl, fix a uniformizer $ṽ of OEṽ , and define the matrix

αjv = diag($ṽ, . . . , $ṽ︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

).

We define an endomorphism U jλ,v of the space Sλ(U,O) by the formula

U jλ,v =
∏
τ

ι−1τ($ṽ)
−λτ,n−···−λτ,n+1−j ι−1

ṽ

î
Iwc(ṽ)αjv Iwc(ṽ)

ó
.

If λ = 0, then we write U jλ,v = U jv . If σ is an automorphic representation of

G(AF ), we say that σ is ι-ordinary if there exist an integer c ≥ 1 and an open

compact subgroup U of this form such that these operators on (ι−1σ∞)U have

a common line where they all act with eigenvalues which are l-adic units.

Lemma 3.9.

(1) Let σ be an automorphic representation of G(AF ), and let π denote its base

change to GLn(AE). Then σ is ι-ordinary if and only if π is ι-ordinary.

(2) Let v ∈ Sl. Then the subspace ι−1σord
v of lim−→

c

ι−1σ
ι−1
ṽ Iwc(ṽ)
v where each

operator U jλ,v acts with eigenvalues which are l-adic units has dimension

at most one. If σ
ι−1
ṽ Iwc(ṽ)
v 6= 0, then we have ι−1σord

v ⊂ ι−1σ
ι−1
ṽ Iwc(ṽ)
v .

Proof. Since l is split, by assumption, this follows from the corresponding

facts for GLn(AE) and the definition of base change. �

Let σ be an automorphic representation ofG(AF ). We will write (ι−1σ∞)ord

for the subspace

ι−1σl,∞ ⊗
⊗
v∈Sl

ι−1σord
v ⊂ ι−1σ∞.

This is an admissible representation of G(Al,∞F ) and is nonzero precisely when

σ is ι-ordinary.

Proposition 3.10. Let σ be an ι-ordinary automorphic representation of

G(AF ) of weight λ. Let U =
∏
v Uv ⊂ G(A∞F ) be an open compact subgroup

as above, and suppose that σU 6= 0. Let λ′ be another choice of weight. Then

there exists an ι-ordinary automorphic representation σ′ of G(AF ) of weight
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λ′ such that rι(σ) ∼= rι(σ′) and for every finite place v of F not dividing l,

(σ′v)
Uv 6= 0.

Proof. This is an easy consequence of Hida theory; cf. [Ger, Lemma 2.6.4].

In this reference it is assumed that the extension E/F is everywhere unramified,

but in our situation this makes no difference. �

3.4. Endoscopic transfer. We continue with the notation and assumptions

of the previous section. We make the following further hypotheses:

— n ≥ 6 is even.

— There exist places v0, . . . , vs of F not dividing 2l which are ramified in E.

We write w0, . . . , ws for the places of E above v0, . . . , vs.

— E/F is unramified at every finite place v 6= v0, . . . , vs.

— For each place v of F dividing l, the local degree [Fv : Ql] is even.

We fix for each place v of F inert in E a hyperspecial maximal compact

subgroup Uv ⊂ G(Fv). We fix also an isomorphism ι : Ql
∼= C. For each

i = 0, . . . , s, we have defined an L-packet {Xi, Yi} of representations of G(Fvi);

cf. Theorem 2.7. Define a function εi : {Xi, Yi} → {±1} by

εi(Xi) = −1, εi(Yi) = +1.

Theorem 3.11.

(1) Let π1, π2 be RACSDC automorphic representations of GL2(AE),

GLn−2(AE), respectively. Suppose that π = π1 � π2 satisfies the follow-

ing :

— π has weight zero.

— π is ι-ordinary.

— If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is

split over F .

— For each i = 0, . . . , s, we have π1,wi
∼= St2,Ewi

and π2,wi
∼= Stn−2,Ewi

.

Then there are exactly 2s automorphic representations σ of G(AF ) which

have base change equal to π and such that if v is a place of F inert in

E, then σUvv 6= 0. They are in bijective correspondence with elements

d ∈ ∏s
i=1{Xi, Yi}, this correspondence d ↔ σ(d) being characterized by

the relation

σ(d)vi
∼= di, i = 1, . . . , s.

These representations each appear with multiplicity one and satisfy the

further condition

ε0(σ(d)v0) ·
s∏
i=1

εi(di) = 1.



326 LAURENT CLOZEL and JACK A. THORNE

(2) Suppose that π is an RACSDC automorphic representation of GLn(AE)

satisfying the following :

— If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is

split over F .

— π has weight zero.

— For each i = 0, . . . , s, πwi
∼= St2,Ewi

�Stn−2,Ewi
.

Then there are exactly 2s+1 automorphic representations σ of G(AF ) such

that π is the base change of σ and such that if v is a place of F inert

in E, then σUvv 6= 0. They are in bijective correspondence with elements

d ∈ ∏s
i=0{Xi, Yi}, this correspondence d ↔ σ(d) being characterized by

the relation

σ(d)vi
∼= di, i = 0, . . . , s.

These representations each appear with multiplicity one.

(3) Suppose that π is an RACSDC automorphic representation of GLn(AE)

satisfying the following :

— If w 6= w0, . . . , ws is a place of E at which πw is ramified, then w is

split over F .

— π has weight zero.

— πw0 is an unramified twist of the Steinberg representation.

— For each i = 1, . . . , s, πwi
∼= St2,Ewi

�Stn−2,Ewi
.

Then there are exactly 2s automorphic representations σ of G(AF ) such

that π is the base change of σ and such that if v is a place of F inert

in E, then σUvv 6= 0. They are in bijective correspondence with elements

d ∈ ∏s
i=1{Xi, Yi}, this correspondence d ↔ σ(d) being characterized by

the relation

σ(d)vi
∼= di, i = 1, . . . , s.

These representations each appear with multiplicity one.

The rest of Section 3 will be devoted to the proof of Theorem 3.11,

which depends on the stabilization of the trace formula for the definite unitary

group G. We write G∗ for the quasi-split inner form of G. The other elliptic

endoscopic groups of G are isomorphic to U(a) × U(b), a, b ≥ 1, a + b = n,

where U(m) denotes the quasi-split unitary group in m variables attached to

the extension E/F . We will be especially interested in the group

H = U(2)× U(n− 2).
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We recall that we have defined an L-embedding ξ : LH → LG as

ξ(g1, g2, w) =

ÇÇ
g1 0

0 g2

å
, w

å
(w ∈WE),

ξ(wc) =

ÇÇ
Φ2 0

0 Φn−2

å
Φ−1
n , wc

å
,

where wc ∈WF is a representative of complex conjugation. Stable base change

is associated to the L-group homomorphism

LG = LG∗ → L(ResE/F G) = GLn(C)×GLn(C) oWF ,

(g, w) 7→ (g, g, w)

(cf. [Mı́n11, p. 402], [Mok, (2.1.9)]). The analogue of the above theorem with

G replaced by its quasi-split inner form G∗ has been proved by Mok [Mok,

Th. 2.5.2]. Let π be one of the automorphic representations of GLn(AE) ap-

pearing in the statement of the theorem, and let S be a finite set of places of

F containing the archimedean primes and the places dividing a place at which

π is ramified. Let ψ denote the data of the Hecke matrix tπw for w coprime

to S. (This is the data used by Arthur [Art13] and Mok.) By unramified base

change [Mı́n11], ψ defines an unramified representation σv of G∗(Fv) for v 6∈ S,

characterized for v inert in E by the property σUvv 6= 0.

Mok describes the full subspace of L2
disc(G

∗(F )\G∗(AF )) associated to

ψ. At the archimedean places and the places v0, . . . , vs, there is an L-packet

Π(ψv) of representations of G∗(Fv), and the choice of a local representation

σv ∈ Π(ψv) is subject to a global sign condition; cf. [Mok, Th. 2.5.2]. If π

is cuspidal, then this condition is vacuous and every representation σ in the

global L-packet (restricted direct product of local L-packets) appears with

multiplicity one.

We need the analogous result, however, for G and not G∗, and Arthur’s

description of the spectrum has not been achieved in this case. We will deduce

what we need from Mok’s results; we apologize for the obvious redundancy of

our arguments.

3.5. Geometric transfer factors. Assume that f = ⊗vfv is a decomposed,

smooth, K∞-finite function on G(AF ). We will need the associated functions

fH on H(AF ), where H is an endoscopic group for G (or G∗). This depends

on a choice of transfer factors ∆(γ, δ), where (γ, δ) are associated (strongly

regular) elements in H(Fv), G(Fv).

At the finite places, we use the Whittaker normalization of transfer factors

[KS99, §5.3], [Mok, §3]. This is possible since G is quasi-split at the finite

places. At the archimedean places we will use Kottwitz’s transfer factors,

explicitly described for unitary groups in [Clo11]. We must check that such

choices are compatible, i.e., that they satisfy a product formula for rational



328 LAURENT CLOZEL and JACK A. THORNE

elements (γ, δ). The local factors at the finite places are defined by the formula

∆(γ, δ) = ε(V, ψ)∆0(γ, δ),

where ∆0 is the Langlands-Shelstad factor in the quasi-split case [KS99, p. 65].

Here V = VG − VH is a virtual representation of Gal(F v/Fv), with VG =

X∗(“TG)⊗C, and similarly for VH , and ψ is an additive character. In our case,

VG ∼= VH and ∆(γ, δ) = ∆0(γ, δ).

For γ, δ ∈ H(F∞), G(F∞), consider now the product ∆K,∞(γ, δ) of Kot-

twitz’s transfer factors at the real primes. If G is replaced by G∗, then

∆G∗
K,∞(γ, δ) = (±(i)2(n−2))d∆0,∞(γ, δ)

([Lab11a, p. 414]), where i =
√
−1 and d = [F : Q]. We now use Labesse’s

argument: the groups G, G∗, and H can be chosen so as to contain the diagonal

torus T = U(1)n (compatibly with [Clo11]). For γ ∈ T ,

∆G∗
K,∞(γ, γ) =

∏
v|∞

(−1)q(G
∗)−q(G)∆G

K,∞(γ, γ),

where q(G) is half the real dimension of the symmetric space of G [Lab11a,

p. 414]. In our case, then,

∆G
K,∞(γ, γ) = εd∆0,∞(γ, γ)

on T , where ε = ±i2(n−2)(−1)n/2. The two factors therefore coincide on T . The

compatibility of the factors ∆0 thus implies compatibility of our chosen factors

on T and therefore on (G,H) by the essential uniqueness of local transfer

factors.

3.6. Spectral transfer factors, real places. Once we have defined the asso-

ciation of f and fH , there follow identities between (signed) traces of f and

fH in associated L-packets. We describe this in the case of interest to us,

namely, when the global parameter ψ arises from a regular algebraic automor-

phic representation π = π1 �π2 of weight zero, and π1, π2 are RACSDC. Note

that the datum of ψ, outside an arbitrary finite set S, uniquely determines π1

and π2, and thus their infinity types, by the theorems of Jacquet-Shalika. In

particular, it makes sense to consider the induced local parameter ψv at an

infinite place v of E; cf. [Mok, §2.3].

Let us write a, b for the infinity types of π1, π2, respectively; cf. Sec-

tion 3.1. We recall that we have defined a tuple of permutations w = (wτ )τ :E↪→C
in terms of these infinity types. The Langlands parameters of π1, π2 at the in-

finite place induced by an embedding τ : E ↪→ C are given by homomorphisms

z 7→ ((z/z)aτ,1 , (z/z)aτ,2),

z 7→ ((z/z)bτ,1 , (z/z)bτ,2 , . . . , (z/z)bτ,n−2).
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Let ψv,H : WR → LH be the sum of our two parameters, uniquely extended to

WR. Let σv denote the trivial representation of G(Fv) for v|∞, associated to

the parameter

ψv : z 7→ ((z/z)(n−1)/2, . . . , (z/z)(1−n)/2)

(extended to WR). There is a spectral transfer factor ∆v(ψv,H , σv) satisfying

the identity for fv, f
H
v associated,

〈Θψv,H , f
H
v 〉 = ∆v(ψv,H , σv)〈Θσv , fv〉.

In this identity Θψv,H is the stable character on H(Fv) associated to the

L-packet given by ψv,H ; Θσv is the character of the trivial representation.

(We note once and for all that in the identity

SOδ(f
H) =

∑
γ

∆(γ, δ)Oγ(f)

there is an implicit choice of Haar measures on H(Fv) and G(Fv). The same

measures are used to define the integrals against Θψv,H and Θσv .)

Lemma 3.12. For any v|∞, ∆(ψv,H , σv) = detwτ , where τ : E ↪→ C is

an embedding inducing the place v of F .

Proof. This follows immediately from the exposition in [Clo11]. �

3.7. Spectral transfer factors, p-adic places. We now describe the charac-

ter identities at the p-adic primes vi for the particular representations which

will concern us. We first recall the characterization of the L-packet {Xi, Yi}
associated to the representation ΠE = St2,Ewi

�Stn−2,Ewi
. Recall the cor-

respondence of Section 2.2 between functions f ∈ C∞c (G∗(Fvi)) and fE ∈
C∞c (GLn(Ewi)), characterized by an identity of stable (twisted) orbital inte-

grals. Then for f, fE associated,

〈trXi + trYi, f〉 = 〈ΠE × Ic, fE〉,

where Ic is the intertwining operator ΠE
∼= Πc

E normalized by the Whittaker

model; cf. [Mok, Th. 3.2.1]. Consider now the endoscopic group H = U(2) ×
U(n − 2). The parameter ψvi can be seen as a parameter ψvi,H for H, which

defines the tensor product StH of the two Steinberg representations.

Proposition 3.13. For any f ∈ C∞c (G(Fvi)), we have

〈trYi − trXi, f〉 = 〈εi(Xi) trXi + εi(Yi) trYi, f〉 = 〈tr StH , f
H〉.

Before sketching the proof we note that this is plausible. One property of

the signs εi (for the Whittaker normalization) is that we should have ε(Z)=1

when Z is the representation in the L-packet for G having a Whittaker model.
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The computation of the Jacquet modules shows that Yi is the “bigger” repre-

sentation in the L-packet. Presumably it has a Whittaker model, although we

have not checked this.

Proof. We sketch the proof in the case n = 6; it will be clear that the proof

extends. For the duration of this proof we also simplify notation by removing

the dependence of the various objects on the subscript i. Thus

Xnorm
N0

= [3, 1,−1],

(Y norm
N0

)ss = [3, 1,−1] + 2[3, 1, 1] + [1, 3, 1].

Let T0 = ZUn(S) denote the maximal torus consisting of elements

diag(t1, t2, t3, t3
−1
, t2
−1
, t1
−1

), ti ∈ E×.

The torus T0 (or a stably conjugate torus in H) has trivial Galois cohomology,

so the relation between f and fH on elements conjugate to this torus is simply

Oδ(f
H) = ∆(δ, γ)Oγ(f)

(δ ∈ H, γ ∈ G regular semisimple and associated).

We already know, thanks to Mok’s results [Mok, Th. 3.2.1], that such an

identity exists: only the signs of Xi and Yi have to be determined. Thus we

can choose f to be supported on the G-conjugates of the following subset of T0:

T+
0 = {(t1, t2, t3) | |t1| < |t2| < |t3| < 1}.

Similarly, in H we have

T+
0 (H) = {(t1, t2, t3) | |t1| < 1, |t2| < |t3| < 1}.

Assume that f is such a function on a quasi-split group G′ (which may be G

or H), and let π be an admissible representation of G′. The identity [Clo90a,

(2.4)] (note that G need not be unramified there) yields

〈trπ, f〉 =

∫
t∈T+

0

Θ(πnorm
N0

)(t)D(t)Ot(f) dt.

Here πnorm
N0

= πN0δ
−1/2
P0

is the normalized Jacquet module, Θ(πnorm
N0

) is its trace,

and

D(t) =
∏
α>0

|tα/2 − t−α/2|.

Indeed, by [Clo90a, (2.4)], we first have

〈trπ, f〉 =

∫
t∈T+

0

Θ(πnorm
N0

)f̄P0(t) dt,
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where f̄P0(t) = δ
1/2
P0

(t)
∫
N0
f̄(tn) dn and f̄ is the conjugation K-average of f for

a good, maximal compact subgroup K of G. By a formula of Harish-Chandra

(see, e.g., [Car79, Lemma 4.1], and make the change of variable n→ tnt−1),

f̄P0(t) = δ
−1/2
P0

(t)∆(t)Ot(f)

for t regular in T0, where ∆(t) = |det(1−Adn0(t))|. Now

δ
−1/2
P0

(t)∆(t) =
∏
α>0

|t−α/2||1− tα| =
∏
α>0

|t−α/2 − tα/2| = D(t).

We first apply this to G, giving for such functions

〈trY − trX, f〉 =

∫
t∈T+

0

(2e1 + e2)(t)DG(t)Ot(f)dt,

where e1 = [3, 1, 1] and e2 = [1, 3, 1] are characters of T0.

Consider now fH on H. The exponent of the normalized Jacquet module

of StH = StU(2)⊗StU(4) is, with the same notation, e = [1; 3, 1]. The or-

bital integrals of fH need not be supported in T+
0 (H). However, we can write

fH =
∑
w χwf

H =
∑
fHw , where w ∈ W (H,T0) and χw is the characteristic

function of the set of elements contracting w · N0. An easy calculation then

shows that the formula

〈tr StH , f
H〉 =

∫
t∈T+

0 (H)
e(t)DH(t)Ot(f

H)dt

remains true. (Note that DH(t) is invariant.) Now if t = (t1, t2, t3) ∈ T+
0 then

it has three distinct conjugates in T+
0 (H); namely,

(t1, t2, t3), (t2, t1, t3), and (t3, t1, t2).

Assuming the identity

DH(tH)OtH (fH) = DG(t)Ot(f),

we then see that

〈tr StH , f
H〉 =

∫
t∈T+

0

(2e1 + e2)(t)DG(t)Ot(f)dt

since e(t1, t2, t3) = e2(t) and e(t2, t1, t3) = e(t3, t1, t2) = e1(t). Thus we have

to check the identity

DH(tH)OtH (fH) = DG(t)Ot(f),

where f, fH are related by the identity OtH (fH) = ∆(tH , t)Ot(f). Recall that

∆(tH , t) = ∆I∆II∆III,1∆III,2∆IV ,

where ∆IV is simply DG(t)/DH(tH). We check that the other factors are equal

to 1 for the Langlands-Shelstad transfer factors (quasi-split case) of [LS87],

which coincide with the Whittaker-normalized transfer factors in our case; cf.

Section 3.5.
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The factors ∆I [LS87, p. 241] and ∆III,1 [LS87, p. 245] are defined by a

cup-product with H1(F, Tsc); here T = T0, Tsc = T∩SU6 and H1(F, Tsc) = {1}
(apply Hilbert 90 twice). The factor ∆II is defined in [LS87, p. 243]. It re-

quires the choice of data aα ∈ E× and χα (a character of E×) for the roots α

of (G,T0). In our case it is easily checked that aα = 1, χα = 1 are suitable and

then ∆II = 1, by definition.

The term ∆III,2 [LS87, p. 246–247] is ostensibly the most complicated.

However [LS87, Def. p. 247], we have

∆III,2(tH , t) = χ(tH),

where χ is a character of T0(H) defined by Langlands functoriality for tori.

Here χ is defined by an element a ∈ H1(WF , T̂0) where we have written F =

Fvi . In turn a is obtained by comparing the (tautological) embeddings LT0 →L

G, LT0(H)→L H and the natural embedding LH →L G; cf. Section 2.2. In our

case one finds that a is trivial. This completes the proof of Proposition 3.13. �

3.8. Transfer. We now note that by [Lab11b, Prop. 5.6] there is an iden-

tity

TGdisc(f) =
∑
E
ι(G, E)ST Edisc(f

E)

for f, fH which are associated, the sum being over the elliptic endoscopic data

of G. The terms ST Edisc(f
E) have been computed by Mok; cf. [Mok, Th. 5.1.2].

If f = ⊗vfv = f∞f∞ = fSfS is chosen so that f∞ is an Euler-Poincaré

function for the trivial representation of G(F∞) (e.g., the constant function),

then f traces in only finitely many automorphic representations of G. By a

separation of eigenvalues argument (cf. [CHL11, p. 487]), we can even choose

fS so that the only nontrivial contributions in the above formula come from

the groups G∗ and H, and only the parameter ψ contributes in the expression

for the stable trace of [Mok, Th. 5.1.2].

Let us first suppose that the parameter ψ corresponds to an RACSDC

automorphic representation of GLn(AE), as in the second part of Theorem 3.11.

In this case we obtain a formula (Mok’s notation)

TGdisc(f) = fG
∗
(ψ) =

∏
v-∞

fG
∗

v (ψv).

(Strictly speaking we use here the analogue of Lemma 3.12 for the endoscopic

group G∗ of G, which states that ∆v(ψv,G∗ , σv) = 1 for each infinite place v

of F .) The theorem now follows in this case from the identity

fGvi (ψvi) = 〈trXi + trYi, fvi〉,

when πwi
∼= St2,Ewi

�Stn−2,Ewi
. The third part of Theorem 3.11 follows in

a similar manner, taking into account that the L-packet of representations of

G(Fv0) corresponding to the representation Stn,Ew0
(ψ) of GLn(Ew0) contains
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a single element. Note that there is a similar identity, relating twisted trace

and trace, for the Steinberg representations of U(n) and of GL(n,Ew).

Now suppose that the parameter ψ corresponds to a sum π = π1 � π2 of

RACSDC automorphic representations of GL2(AE) and GLn−2(AE), respec-

tively, such that π is ι-ordinary and regular algebraic of weight zero, as in the

first part of Theorem 3.11. It follows that π1 and π2 are ι-ordinary and the

infinity types a, b satisfy the following condition (cf. Lemma 3.5):

— Let w = (wτ )τ :E↪→C ∈ S
Hom(E,C)
n be the tuple of permutations associated

to π1, π2; cf. Section 3.1. Then wτ depends only on the place of E induced

by the embedding ι−1τ : E ↪→ Ql.

Choose for each place v of F dividing l an embedding τ(v) : E ↪→ C such that

ι−1τ induces the place v. We have by Lemma 3.12 a formula∏
v|∞

∆(ψv,H , σv) =
∏
v|l

detw
[Fv :Ql]
τ(v) .

Since the local degrees [Fv : Ql] are even by hypothesis, this product is equal

to 1 and we obtain a formula

TGdisc(f) = (fG
∗
(ψ) + fH(ψH))/2 =

Ñ∏
v-∞

fGv (ψv) +
∏
v-∞

fHv (ψv,H)

é
/2.

The contribution from the places v0, . . . , vs is (by Proposition 3.13)

1

2

(
s∏
i=0

fGvi (ψvi) +
s∏
i=0

fHvi (ψvi,H)

)
=
∑
d

[
1

2

(
1 +

s∏
i=0

εi(di)

)
s∏
i=0

〈tr di, fvi〉
]
,

where the notation d is as in the statement of the theorem. This completes

the proof.

4. Raising the level

Let E be an imaginary CM field with totally real subfield F . We fix a

prime l ≥ 5 and an isomorphism ι : Ql
∼= C. Let n = l + 1. We make the

following hypotheses:

— For each place v|l of F , v splits in E and [Fv : Ql] is even. In particular,

[F : Q] is even and there exists a unitary group G in n variables over F

such that G(F∞) is compact and G is quasi-split at every finite place.

— Let v0, . . . , vs be the places of F ramified in E. Then s ≥ 1, qv0 ≡ −1 mod l

and for each i = 1, . . . , s, l does not divide qvi(qvi+1)
∏n/2−2
j=1 (qjvi−1). (This

will be the case if, for example, qvi is a primitive root modulo l.)

We write w0, . . . , ws for the places of E above v0, . . . , vs. We fix RACSDC

automorphic representations π2, πl−1 of GL2(AE) and GLl−1(AE), respectively,

satisfying the following hypotheses:
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— π2 and πl−1 are ι-ordinary. For each embedding τ : E ↪→ C, the infinity

type of πl−1 at τ is

((n− 3)/2, (n− 5)/2, . . . , (5− n)/2, (3− n)/2)

and the infinity type of π2 at τ is

((n− 1)/2, (1− n)/2).

— The residual representations r2 = rι(π2) and rl−1 = rι(πl−1) are irre-

ducible.

— For each i = 0, . . . , s, we have isomorphisms

π2,wi
∼= St2,Ewi

and πl−1,wi
∼= Stl−1,Ewi

.

The residual representations r2|GEwi and rl−1|GEwi are ramified and send

a generator of tame inertia at each of these places to a regular unipotent

element (that is, having a single Jordan block).

— Any finite place w 6= w0, . . . , ws of E at which π2 or πl−1 is ramified is split

over F .

In this section we intend to prove the following theorem.

Theorem 4.1. With hypotheses as above, there exists an RACSDC au-

tomorphic representation Π of GLn(AE) which is ι-ordinary of weight 0, such

that rι(Π) ∼= rι(π2 � πl−1), and such that Πw0 is an unramified twist of the

Steinberg representation.

In Section 2.2 we introduced L-packets {Xi, Yi} of representations of the

groups G(Fvi) corresponding to the representations St2,Ewi
�Stl−1,Ewi

of

GLn(Ewi). Let Bvi denote an Iwahori subgroup of G(Fvi). Then these repre-

sentations are characterized within their L-packet by the equations

dimX
Bvi
i = 1, dimY

Bvi
i = n/2 + 1;

cf. Theorem 2.7. By Theorem 3.11, there exists an automorphic representation

σ0 of G(AF ) with base change π2 � πl−1. We observe that σ0 is ι-ordinary, by

Lemma 3.5.

We define an open compact subgroup U1 =
∏
v U1,v of G(A∞F ) as follows:

— U1,v0 = Pv0 , the subgroup, containing the Iwahori subgroup, defined in

Section 2.1.

— For each i = 1, . . . , s, U1,vi = Bvi .

— For each place v|l of F , choose a place ṽ of E above it, and set U1,v =

ι−1
ṽ Iwc(ṽ) for some integer c > 0.

— For each place v of F inert in E, U1,v is a hyperspecial maximal compact

subgroup of G(Fv).
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— For some place v, U1,v contains no nontrivial elements of finite order. (This

condition is sometimes referred to by saying that U1 is sufficiently small.)

— σU1
0 6= 0.

We define another open compact subgroup U =
∏
v Uv by the formulae Uv0 =

Bv0 and Uv = U1,v if v 6= v0. Thus U ⊂ U1 and [U1 : U ] = [U1,v0 : Uv0 ] = qv0+1.

Fix a finite extension K ⊂ Ql of Ql, with ring of integers O, residue field

k, and maximal ideal λ. We write S(U1,O) for the space of automorphic forms

on G with trivial coefficients and level U1, as defined in Section 3.3. Let T

denote the set of finite places of F above which E or π is ramified or such

that U1,v is not hyperspecial maximal compact. (Thus T contains the places

dividing l.) We then define the Hecke algebra T(U1,O) to be the O-subalgebra

of EndO(S(U1,O)) generated by the unramified Hecke operators at places of

F not in T and split in E, and the operators U jv for each v|l. It is a finite flat

O-algebra. (We recall that the definition of U jv depends on a choice of place ṽ

of E above v and a uniformizer of Eṽ, but these choices play no role here.)

The representation σ0 gives rise to a homomorphism T(U1,O)→ Fl, and

we write m for the kernel of this homomorphism. Then S(U1,O)m is anO-direct

summand of S(U1,O), and every automorphic representation σ ofG(AF ) which

contributes to S(U1,O)m is ι-ordinary. Moreover, T(U1,O)m⊗OK is a semisim-

ple K-algebra.

Now suppose that V =
∏
v Vv ⊂ U1 is an open compact subgroup such

that for each place v of F such that either v|l or v 6∈ T , Vv = U1,v. We can

define the space S(V,O) and Hecke algebra T(V,O) and a natural surjective

homomorphism T(V,O)→ T(U1,O). In an abuse of notation, we will write m

also for the pullback of this maximal ideal to T(V,O).

Using Theorem 3.11, we see that there is a direct sum decomposition

S(U,O)m ⊗O Ql =
⊕
σ

(ι−1σ∞)U,ord =
⊕
π

⊕
σ

BC(σ)=π

(ι−1σ∞)U,ord.

Here the first sum in the third term runs over automorphic representations π

of GLn(AE). The second, inner, sum in the third term runs over automorphic

representations σ of G(AF ) which contribute to S(U,O)m and such that π

is the base change of σ. We will say that a representation π for which the

π-summand in the above expression is nontrivial is relevant.

Proposition 4.2. Let π be relevant. Then one of the following is true:

— π = πa � πb, where πa, πb are RACSDC automorphic representations

of GL2(AE), GLl−1(AE), respectively, and for each i = 0, . . . , s, πwi
∼=

St2,Ewi
�Stl−1,Ewi

.

— π is cuspidal, and for each i = 0, . . . , s, πwi
∼= St2,Ewi

�Stl−1,Ewi
.

— π is cuspidal and πw0 is an unramified twist of the Steinberg representation,

and for each i = 1, . . . , s, πwi
∼= St2,Ewi

�Stl−1,Ewi
.
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Proof. Let π be as in the statement of the theorem. By Proposition 3.7,

we can write π ∼= π1�· · ·�πr, where the πi are discrete and conjugate self-dual

automorphic representations of GLni(AF ). Let ρ = rι(π). Then ρ is a direct

sum of two irreducible representations of distinct dimensions. In particular, we

must have either r = 1 and π is cuspidal, or r = 2, n1 = 2, n2 = n− 2 = l − 1

and π1 and π2 are both cuspidal. In this case π1 and π2 are also regular

algebraic. We now apply the following.

Lemma 4.3. Let π be relevant. Then for each i = 0, . . . , s, πwi has an

Iwahori-fixed vector.

Proof. We fix i to be one of 0, . . . , s for the duration of the proof. Assume

first that π is cuspidal. By the identity at the beginning of Section 3.8 and

[Lab11b, Th. 4.12] we obtain, after separation of Hecke eigenvalues,∑
σ

〈trσ, f〉 = 〈trπv0 ⊗ · · · ⊗ πvs ⊗ π∞ × Ic, fE〉.

Here f is a function on G(F∞×
∏s
i=0 Fvi), fE is a function on G(E∞×

∏s
i=0Ewi)

associated to f by stable base change, and σ runs over the local components

of automorphic representations of G(AF ) associated to π. We may further

assume that f∞ = 1. (If we use Mok’s full results, then the sum is finite, each

term occurring with multiplicity one, since the same identity obtains for G∗,

isomorphic to G at the finite places. We do not need this.)

Now fix v = vi, w = wi for some i = 0, . . . , s. Choosing the functions for

v′ 6= v suitably, we obtain

c
∑
σ

〈trσ, fv〉 = 〈trπw × Ic, fEw〉,

with c 6= 0. The representation of G(AF ) is admissible, so the left-hand side

contains a finite number of semistable representations σ with finite multiplicity.

(A semistable representation is, by definition, one that has a nonzero Jacquet

module for N0, composed of unramified characters.)

Consider a function fv with support in the elements contracting N0. We

may further assume that the constant term f
P0(t) (cf. Section 3.7) is an un-

ramified function. By the descent formula for the traces (Section 3.7), the

left-hand side is then a finite sum over the semistable representations:

c
∑
σ

〈trσnorm
N0

, f
P0〉T0 .

By assumption, the sum contains a representation σ0 such that (σ0)N0 is a

sum of unramified characters; note that there is no cancellation in the sum.

However, the identity of orbital integrals shows that we can take for fEw a

function whose orbital integrals have the same property. The right-hand side
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of the identity is then equal to

〈trπnorm
N0(E), (fEw)P0〉,

and this implies that πw is semistable. (Mœglin [Mœg07] shows that in fact the

resulting identity of Jacquet modules extends from the contracting elements

to all of T0 and T0(E).)

Consider now the case where π = π2 � πn−2 with π2, πn−2 cuspidal. In

this case the relevant equality is given by Section 3.8. The sum
∑
σ〈trσ, f〉 is

equal to the sum of two terms, one pertaining to G∗:

1/2〈trπ × Ic, fE〉,

where, however, π is an Eisenstein representation π = π2 � πn−2. This is the

term (4.4.2) in [CHL11]; the proof is identical. The second term is

1/2〈tr(π2 ⊗ πn−2)× Ic, fHE 〉,

where H = U(2)×U(n− 2) is the endoscopic group of our datum. We choose

fv and the fv′ for v′ 6= v as above, so the previous argument applies to
∑
σ,

nonzero by assumption. If the first term does not vanish, the local component

of π2 �πn−2 at v is semistable; it follows that the local components of π2, πn−2

at v are also semistable. If the H-term does not vanish, the computation of the

transfer in Section 3.7 shows that we may choose fH unramified, with regular

support, thus also fHE , the transfer being obvious on the split torus. Again

this implies that the local components of π2 and πn−2 at v are semistable. �

We now return to the proof of Proposition 4.2. Suppose first that r = 2,

so that ρ = ρa(1 − n/2) ⊕ ρb(−1), where ρa = rι(πa) and ρb = rι(πb). The

hypotheses on the residual representations ρa
∼= r2, ρb

∼= rl−1 now imply that

for each i = 0, . . . , s, the representation πa,wi (resp. πb,wi) is an unramified

twist of St2,Ewi
(resp. Stl−1,Ewi

). Indeed, it is easy to see that since πwi has an

Iwahori-fixed vector, the same must be true for the representations πa,wi and

πb,wi . We therefore have, for example, an isomorphism

πb,wi
∼= Stb1,Ewi (ψ1) � · · ·� Stbt,Ewi (ψt),

where b1 + · · · + bt = n − 2 = l − 1 and each ψ1, . . . , ψt : E×wi → C× is

an unramified character. Let twi ∈ Iwi denote a generator of the l-part of

tame inertia. Local-global compatibility in its strong form (cf. [Car12]) now

implies that ρb(twi) is a unipotent matrix with Jordan form corresponding to

the partition b1 + · · · + bt = l − 1. After conjugating and possibly enlarging

K, we can assume that ρb takes values in GLl−1(O) and that the composite

GE → GLl−1(O) → GLl−1(k) is equal to rl−1. By hypothesis, rl−1(twi) is a

regular unipotent matrix. It follows that we must have t = 1, and then πb,wi
is an unramified twist of the Steinberg representation, as claimed. To see that

the first bullet point holds in this situation, we must check that these twists
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are all actually trivial. To do this we look at the Frobenius eigenvalues of ρa
and ρb. Let us treat, for example, πb,w0

∼= Stl−1,Ew0
(ψ). Since ψψc = 1 (as πb

is of unitary type) and ψ = ψc (as ψ is unramified), we see that ψ2 = 1 and we

must rule out the case that ψ is the nontrivial unramified character of order 2.

Let $w0 be a uniformizer of Ew0 , and let N = ρb(tw0) − 1 ∈ Ml−1(O).

Then N mod λ is a regular nilpotent element, by hypothesis, and the natural

map

(kerN)⊗O k → ker(N mod λ)

is an isomorphism. In particular, ρb preserves the line ker(N mod λ) and

Frobenius acts with eigenvalue

ι−1ψ($w0)ε(Frobw0)−1ql−2
w0
≡ ι−1ψ($w0) mod λ.

Since πl−1,w0 is, by hypothesis, the untwisted Steinberg representation, per-

forming the same calculation for rl−1 gives ι−1ψ($w0) ≡ 1 mod λ, and hence

ψ = 1.

Now suppose that r = 1 so that π is cuspidal. Let 0 ≤ i ≤ s. Since πwi
has Iwahori-fixed vectors, there is an isomorphism

πwi
∼= Stn1,Ewi

(ψ1) � · · ·� Stnt,Ewi (ψt)

for some t ≥ 1, where the ψi are unramified characters of E×wi . The congruence

ρ ∼= rι(σ0) implies that the nilpotent conjugacy class of GLn corresponding to

the partition n = n1 + · · · + nt specializes to the class corresponding to the

partition 2 + (n − 2). This rules out all but the possibilities n = 2 + (n − 2),

n = 1 + (n − 1), and n = n. We must rule out the case n = 1 + (n − 1) and

show that in case n = 2 + (n − 2) the characters ψ1, ψ2 are trivial, and that

in case n = n we necessarily have i = 0. This will complete the proof of the

proposition.

To rule out the case n = 1 + (n − 1), we note that no representation

ψ1 � Stn−1,Ewi
(ψ2) with ψ1, ψ2 unramified is in the image of the stable base

change map, as the corresponding parameter is not conjugate symplectic; cf.

Lemma 2.6. Suppose instead that πwi
∼= St2,Ewi

(ψ1) � Stl−1,Ewi
(ψ2). Af-

ter conjugating, we may assume that ρ takes values in GLn(O) and that

ρ mod λ is semisimple. Let N = ρ(twi) − 1. For each j ≥ 0, the natural map

(kerN j)⊗O k → ker(N j mod λ) is an isomorphism, and comparing the eigen-

values of Frobenius on ker(N mod λ) of ρ and r2(1− n/2)⊕ rl−1(−1), we get

ι−1ψ1($wi)q
n/2
wi ≡ q

n/2
wi mod λ and ι−1ψ2($wi)q

l−1
wi ≡ q

l−1
wi mod λ.

We again have ψ2
1 = ψ2

2 = 1. It follows that ψ1 and ψ2 are both trivial. Fi-

nally, suppose that we have πwi
∼= Stn,Ewi (ψ) for some unramified character

ψ : E×wi → C×. Comparing the Frobenius eigenvalues at wi of ρ and rι(σ0)
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shows that

ι−1ψ($wi){qlwi , q
l−1
wi , . . . , qwi , 1} ≡ {q

n/2
wi , q

n/2−1
wi , ql−1

wi , q
l−2
wi , . . . , qwi} mod λ,

where again ψ($wi) = ±1. Suppose for contradiction that i > 0. If ψ($wi) =

1, then the above equality of sets of eigenvalues cannot hold since q
n/2−1
wi =

q
(l−1)/2
wi ≡ −1 mod l. If ψ($wi) = −1, then the injection (kerN3) ⊗O k ↪→

ker(N3 mod λ) shows that

{−qlwi ,−q
l−1
wi ,−q

l−2
wi } mod λ ⊂ {qn/2wi , q

n/2−1
wi , ql−1

wi , q
l−2
wi , q

l−3
wi } mod λ,

or equivalently

{−qwi ,−1,−1/qwi} mod λ ⊂ {−qwi ,−1, 1, 1/qwi , 1/q
2
wi} mod λ.

It follows that −1/qwi mod λ ∈ {1, 1/qwi , 1/q2
wi} mod λ, again giving a con-

tradiction. This completes the proof. �

Corollary 4.4. Let π be relevant. Then each automorphic representa-

tion σ of G(AF ) with base change π and (σ∞)U 6= 0 occurs with multiplicity

one in the space of automorphic forms on G. Moreover, we have the following

possibilities :

(1) If π is not cuspidal, then there are exactly 2s such representations σ. We

index them by a choice of element d = (d1, . . . , ds) ∈
∏s
i=1{Xi, Yi}. The

corresponding automorphic representation σ(d) is uniquely characterized

by the condition

σ(d)vi
∼= di, i = 1, . . . , s.

It satisfies the condition

ε0(σ(d)v0) ·
s∏
i=1

εi(di) = 1,

where εi : {Xi, Yi} → {±1} is defined by εi(Xi) = −1, εi(Yi) = 1.

(2) If π is cuspidal and πw0
∼= St2,Ew0

�Stl−1,Ew0
, then there are exactly 2s+1

such representations, corresponding as above to a choice of element of∏s
i=0{Xi, Yi}.

(3) If π is cuspidal and πw0 is an unramified twist of the Steinberg representa-

tion, then there are exactly 2s such representations, corresponding as above

to a choice of element of
∏s
i=1{Xi, Yi}.

Proof. This follows from Proposition 4.2 and Theorem 3.11. �

This corollary has the following consequence. Let d = (X1, . . . , Xs) if s is

odd and d = (Y1, X2, . . . , Xs) if s is even. Let π be relevant, and suppose that

π is not cuspidal. Then σ(d)v0
∼= X0. We fix this choice of d for the remainder

of this section. (In fact, any choice of d ∈ ∏s
i=1{Xi, Yi} with

∏s
i=1 εi(di) = −1

would suffice for what follows.)
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Now let V ⊂ U be an open compact subgroup of the kind considered

above. There is a pairing

〈·, ·〉V : S(V,O)× S(V,O)→ O

given by the formula (for any two functions f, g ∈ S(V,O))

〈f, g〉 =
∑

x∈G(F )\G(A∞F )/V

f(x)g(x).

This is clearly a perfect pairing, and it moreover satisfies the formula

〈[VvgvVv]x, y〉 = 〈x, [Vvg−1
v Vv]y〉 for any gv ∈ G(Fv), x, y ∈ S(V,O). There

is a canonical isomorphism S(V,O) ⊗O k ∼= S(V, k), and the induced pairing

on S(V, k) is still perfect. (These two assertions use that assumption that the

open compact subgroup U is sufficiently small.)

This pairing need not restrict to a perfect duality on S(V,O)m. In fact, for

any automorphic representation σ of G(AF ) which contributes to S(V,O), its

admissible dual σ∨ also contributes. We write m∨ ⊂ T(U,O) for the maximal

ideal corresponding to the Hecke eigenvalues of σ∨0 . We have the following

result.

Proposition 4.5.

— The above pairing restricts to a perfect duality

〈·, ·〉V,m : S(V,O)m × S(V,O)m∨ → O.

— The induced pairing

〈·, ·〉U,m : S(U, k)m × S(U, k)m∨ → k

vanishes on restriction to the subspace S(U1, k)m×S(U1, k)m∨ . (Note that

for any subgroup V ⊂ U1, there are isomorphisms

S(V,O)⊗O k ∼= S(V, k)

compatible with the action of Hecke operators.)

Proof. For the first part, we decompose

S(V,O)⊗O Ql
∼=
⊕
σ

(ι−1σ∞)V .

A separation of eigenvalues argument shows that if f ∈ (ι−1σ∞)V and g ∈
(ι−1(σ′)∞)V , then 〈f, g〉V = 0 unless σ′ ∼= σ∨. The claim of the proposition

easily follows from this statement.

For the second part, let i : S(U1, k) → S(U, k) denote the natural inclu-

sion. This can be identified with the trivial Hecke operator for the pair of

subgroups U ⊂ U1, and so for any f, g ∈ S(U1, k), we find the formula

〈if, ig〉U = 〈f, i∗ig〉U1 ,
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where i∗ denotes adjoint with respect to the different dualities. An easy cal-

culation (cf. [Tay89, Lemma 2]) shows that i∗i, viewed as endomorphism of

S(U1, k) is multiplication by [U1 : U ] = [Pv0 : Bv0 ] = qv0 + 1 ≡ 0 mod λ.

Restricting to the given subspace gives the desired result. �

We now come to the proof of Theorem 4.1. Suppose for contradiction

that there are no relevant automorphic representations π such that πv0 is an

unramified twist of the Steinberg representation. The space M = S(U,O)m
receives commuting actions of the Iwahori-Hecke algebras HBv0 ,O, . . . ,HBvs ,O.

By Corollary 2.10, it admits a direct sum decomposition

M =
⊕

d′∈
∏s
i=1
{Xi,Yi}

M(d′),

each summand being characterized by the equality (the first sum running over

relevant π)

M(d′)⊗O Ql =
⊕
π

⊕
σ

BC(σ)=π
σvi
∼=d′i,i=1,...,s

(ι−1σ∞)ord,U .

By choice of d, if σ appears in the decomposition ofM(d)⊗OQl and the base

change of σ is not cuspidal, then σv0
∼= X0. In particular, there is an isotypic

decomposition of HBv0 ,C-modules

M(d)⊗O,ι C ∼= (X
Bv0
0 )a ⊕ (Y

Bv0
0 )b,

where a > b. Indeed, a, b can be calculated as follows. For each relevant

automorphic representation π, let σ(π) = ι−1σ(d)v0l∞ ⊗⊗v|l ι
−1σ(d)ord

v , an

admissible representation of G(Av0l∞F ), where σ(d) is as in Corollary 4.4. We

have

a =
∑
π

dimσ(π)U
v0l
, b =

∑
π cuspidal

dimσ(π)U
v0l
.

A priori, one need only have a ≥ b, strict inequality occurring only when there

are endoscopic representations contributing to the sum. This is the case here,

due to our assumption on the existence of σ0.

Let M = M(d). We define N = S(U,O)m∨ and N = N (d) in an analo-

gous manner. Let M1 = MU1 ⊂ M and N1 = NU1 ⊂ N . The perfect duality

〈·, ·〉U,m restricts to a perfect duality 〈·, ·〉 : M ×N → O satisfying the relation

〈hx, y〉 = 〈x, (h)y〉 for all h ∈ HBv0 ,O, x ∈ M , y ∈ N . By Proposition 4.5,

the induced perfect duality M ⊗O k ×N ⊗O k → k vanishes on the subspace

M1 ⊗O k ×N1 ⊗O k.

We recall the abelian subalgebra O[Λ] ⊂ HBv0 ,O; cf. Section 2.1. If

η : O[Λ] → k is a character of this algebra, we write M(η) for its generalized

eigenspace, i.e., the localization at ker η as O[Λ]-module. Given a homomor-

phism η : O[Λ] → k, we obtain a new homomorphism η : O[Λ] → k, and
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the pairing restricts to a perfect pairing 〈·, ·〉η : M(η)×N(η)→ O, where we

write N(η) for the generalized η-eigenspace of O[Λ].

By Theorem 2.7, the characters of K[Λ] appearing amongst the Jordan-

Hölder constituents of M ⊗O K as K[Λ]-module are amongst the characters

[1, n−3, n−5, . . . , 1], [n−3, . . . , n−1−2i, 1, n−3−2i, . . . , 1], i = 1, . . . , n/2−2,

and

[n− 3, n− 5, . . . , 1,−1].

These all arise from characters O[Λ] → O, and the last of these, the charac-

ter [n − 3, n − 5, . . . , 1,−1], has distinct reduction modulo λ from the others.

Write η0 for the character O[Λ] → k arising from reduction modulo λ of this

character. Then M(η0) is a direct summand O[Λ]-submodule of M and (in

the notation of Proposition 2.9, with X = X0 and B = Bv0) XB
O = XB

O (η0).

We denote by MX the intersection of M with the X0-isotypic piece of

M ⊗O,ι C. Thus MX ⊂ M is a finite free O-module of rank a, and M/MX

is O-torsion free. We have MX ⊂ M1, by Theorem 2.7 applied at the place

v0, which shows that X
Bv0
0 = X

Pv0
0 . Defining NX ⊂ N in the same manner,

we have NX ⊂ N1, and NX is a finite free O-module of rank a. Moreover, we

have MX = MX(η0). We also have NX = NX(η0), since XB
O = XB

O (η0), by

Proposition 2.8.

We now see that the perfect pairing

〈·, ·〉η0 : M(η0)⊗O k ×N(η0)⊗O k → k

vanishes on the subspace MX⊗Ok×NX⊗Ok. By construction, M(η0)⊗Ok has

dimension a+b as a k-vector space, and the subspaces MX⊗O k, NX⊗O k have

dimension a. Since they annihilate each other, we must therefore have a ≤ b.

This contradicts the assumption above that a > b, and this contradiction

completes the proof of the theorem.

5. Construction of a special automorphic representation

Let E be an imaginary CM field with maximal totally real subfield F , and

let π be an RACSDC automorphic representation of GL2(AE) of weight zero.

Let l ≥ 5 be prime, and let n = l+ 1. Fix an isomorphism ι : Ql
∼= C. In order

to reduce notation, we now write ρ = rι(π). We suppose that the following

hypotheses are in effect:

— For each place v|l of F , v is split in E and [Fv : Ql] is even. Moreover, π

is ι-ordinary.

— The residual representation ρ : GE → GL2(Fl) is irreducible, and its image

contains SL2(Fla) up to conjugation for some a > 1. (This assumption will

be used to ensure that certain symmetric powers of ρ are irreducible and,

furthermore, that their images are adequate, in the sense of [Tho12].)
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— The (l − 2)th symmetric power of π exists in the following sense: there

exists an RACSDC automorphic representation πl−1 of GLl−1(AE) such

that rι(πl−1) ∼= Syml−2 ρ.

— Let y0, . . . , ys denote the places of F ramified in E. Then s ≥ 1. Let zi
denote the place of E above yi. For each i = 0, . . . , s, πzi

∼= St2,Ezi
, ρ is

ramified at zi, and qzi is a primitive element modulo l, and is odd.

— There exists an everywhere unramified totally real quadratic extension

F ′/F , linearly disjoint over F from the extension of E(ζl) cut out by ρ, in

which each place y0, . . . , ys is inert. We write ωF ′/F for the corresponding

quadratic character of GF .

— If w 6= z0, . . . , zs is a place of E at which π is ramified, then w is split

over F .

Let χ = det ρ, and let ϕ denote a continuous automorphism of Ql lifting the

arithmetic Frobenius. There is an isomorphism (cf. [CT14, §4])

(Syml ρ)ss ∼= ϕρ⊕ χ⊗ Syml−2 ρ.

In this section we will prove the following result.

Theorem 5.1. There exists a soluble CM extension M/E, linearly dis-

joint over E from the extension of E(ζl) cut out by ρ, and an RACSDC auto-

morphic representation Π of GLn(AM ) satisfying the following :

(1) Π is ι-ordinary of weight zero.

(2) There is an isomorphism rι(Π) ∼= (Syml ρ)ss|GM .

(3) There exists a place w of M above z0 such that Πw is an unramified twist

of the Steinberg representation.

Let G denote the (unique up to isomorphism) unitary group in two vari-

ables attached to the extension E/F which is quasi-split at all finite places and

compact at infinity. By Proposition 3.10 and strong base change for G (see,

for example, [Rog90, Ch. 11] and [Lab11b, Théorème 5.9]), we can find an

RACSDC automorphic representation π2 of GL2(AE) satisfying the following:

— π2 is ι-ordinary. Writing ρ′ = rι(π2), we have

HTτ (ρ′) = {(1− l)/2, (1 + l)/2}

for every embedding τ : E ↪→ Ql.

— For each i = 0, . . . , s, π2,zi has an Iwahori-fixed vector.

— ρ′ ∼= ε(l−1)/2 ⊗ ρ, where ε denotes the cyclotomic character.

— If π2 is ramified at a place w 6= z0, . . . , zs of E, then w is split over F .
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Then the representation πl+1 = ϕπ2 � πl−1 ⊗ ιεχ is conjugate self-dual and

regular algebraic of weight zero, and we have

rι(πl+1) = ε(1−l)/2 ⊗ ϕρ′ ⊕ χ⊗ Syml−2 ρ.

In particular, the reduction modulo l of this representation is the same as

that of Syml ρ. We claim that for each i = 0, . . . , s, there is an isomorphism

πl+1,zi
∼= St2,Ezi

(ωF ′/F ) � Stl−1,Ezi
. In fact, it is easy to see that we have

πl+1,zi
∼= St2,Ezi

(ψ2)�Stl−1,Ezi
(ψl−1) for some unramified characters ψ2, ψl−1.

Since πl+1,zi is conjugate self-dual, these characters must be quadratic; we must

show that ψ2 is nontrivial, while ψl−1 is trivial. This can be done by looking,

exactly as in the proof of Proposition 4.2, at the eigenvalues of a Frobenius lift

at the place zi.

Now let L denote the extension of E(ζl) cut out by ρ. We may choose a

set S1 of places of E such that every place of F below a place of S1 is split

in F ′, and any finite extension E′/E which is S1-split is linearly disjoint over

E from L. We can, moreover, assume that π and L are unramified above S1

(see [BLGGT14, Lemma A.2.2]). Let S0 denote the set of places of F below a

place of S1. Let b denote the least positive integer such that qbz0 ≡ −1 mod l,

and choose a cyclic totally real extension F1/F of degree b which is S0-split

and in which y0 is inert and each place y1, . . . , ys splits. (This is possible, by

the Grunwald-Wang theorem, since qz0 is odd.) We write v0 for the place of F1

above y0 and v1, . . . , vbs for the places of F1 above y1, . . . , ys. Let E1 = E ·F1,

and let wi denote the place of E1 above vi. Let π′l+1 denote the base change of
ϕπ2⊗ωF ′/F�πl−1⊗ιεχ to E1. Then π′l+1 is regular algebraic and conjugate self-

dual. Moreover, for each i = 0, . . . , bs, we have π′l+1,wi
∼= St2,E1,wi

�Stl−1,E1,wi
.

Therefore, we can apply Theorem 4.1 to π′l+1 to deduce the existence of an

automorphic representation Π′ of GLn(AE1) such that Π′ is ι-ordinary of weight

zero, Π′w0
is an unramified twist of the Steinberg representation, and

rι(Π′) ∼=
Ä
ωF ′/F ⊗ ϕρ⊕ χ⊗ Syml−2 ρ

ä ∣∣∣
GE1

.

Now let M = E1 · F ′. Then M/E is a soluble extension, and S1-split. Let

Π denote the base change of Π′ to M . Then Π is an RACSDC automorphic

representation of GLn(AM ) which is ι-ordinary of weight zero, such that Πw

is an unramified twist of the Steinberg representation for any place w of M

above w0, and such that

rι(Π) ∼=
Ä
ϕρ⊕ χ⊗ Syml−2 ρ

ä ∣∣∣
GM

.

This completes the proof of Theorem 5.1.
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6. Proof of Theorem 1.2

In this section we prove the theorem from the introduction. Fix through-

out this section a prime l ≥ 5, an isomorphism ι : Ql
∼= C, and a finite Galois

extension K/Q. We assume throughout this section the following hypothesis.

Conjecture 6.1 (SPl−1(K(ζl))). Let F be a totally real number field,

linearly disjoint over Q from K(ζl). Let (π, χ) be an RAESDC automorphic

representation of GL2(AF ) without CM. Then the (l − 2)th symmetric power

lifting exists in the following sense. There exists an RAESDC automorphic

representation (πl−1, χl−1) of GLl−1(AF ) and an isomorphism

Syml−2 rι(π) ∼= rι(πl−1).

We must show that SPl+1(K(ζl)) holds. We begin by proving a special

case, using the results accumulated above. We will reduce the general case to

this one.

Theorem 6.2. Let F be a totally real number field. Let (π, χ) be an

RAESDC automorphic representation of GL2(AF ), and suppose that the fol-

lowing hypotheses hold :

— π is ι-ordinary of weight zero.

— Let ρ = rι(π). Then the residual representation ρ : GF → GL2(Fl) is

irreducible, and its image contains SL2(Fla), up to conjugation, for some

a > 1.

— There exists a place v of F such that πv is an unramified twist of the

Steinberg representation and qv is a primitive root modulo l. Moreover, ρ

is ramified at v.

Then Syml ρ is automorphic.

Proof. Let F0/F denote a totally real quadratic extension in which v is

inert, and let ωF0/F : GF → Q×l denote the corresponding quadratic character.

Let E/F be a CM imaginary quadratic extension which is ramified at v and

in which every place of F dividing l splits. By [CHT08, Lemma 4.1.4] we

can find an algebraic character ψ : GE → Q×l , unramified above v such that

ψψc = rι(χ)|GE . Let F1/F be a soluble extension satisfying the following:

— The place v splits in F1.

— Let E1 = E · F1. If w - v is a place of E1 at which πE or ψE is ramified,

then w is split over F1.

— The extension E1/F1 is unramified away from places dividing v. The ex-

tension F1 · F0/F1 is everywhere unramified.

— For each place v|l of F1, the local degree [F1,v : Ql] is even.
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By choosing these extensions so that certain auxiliary primes split, we can

force F0 ·E1 to be disjoint over F from the extension of F (ζl) cut out by ρ (see

[BLGGT14, Lemma A.2.2]). The hypotheses of Section 5 are now satisfied,

either for the automorphic representation (π ⊗ ιψ−1)E1 of GL2(AE1) or its

twist (π ⊗ ιψ−1ωF0/F )E1 . (Since the representation (π ⊗ ιψ−1)E1 is conjugate

self-dual, its local component at a prime w dividing v is isomorphic either

to St2,E1,w or its twist by the quadratic unramified character of E×1,w.) We

may assume without loss of generality that it is the former. We deduce by

Theorem 5.1 the existence of a soluble CM extension M/E1 disjoint over E1

from the extension of E1(ζl) cut out by ρ, and an automorphic representation

Π of GLl+1(AM ) such that Π is ι-ordinary, such that for some place w of M

above v, Πw is an unramified twist of the Steinberg representation, and such

that

rι(Π) ∼= (Syml(ρ⊗ ψ−1
))|ssGM .

We claim that the hypotheses of [Tho14, Th. 7.1] now apply, and thus Syml ρ⊗
ψ−1|GM is automorphic. Indeed, it remains to check the following points:

— The irreducible constituents of (Syml ρ)ss|GM(ζl)
are adequate, in the sense

of [Tho12, §3].

— The extension M(ζl) is not contained in the extension of M cut out by ad ρ.

The first point follows from our hypothesis on the image of ρ and [Gur, Th. 1.5].

For the second point, we note that by construction we have M ∩ Q(ζl) = Q,

while the image of ad ρ contains a simple normal subgroup of index at most 2.

It now follows by soluble descent (see [BLGHT11, Lemma 1.4] and [BLGHT11,

Lemma 1.5]) that Syml ρ is automorphic, and this completes the proof. �

We now reduce the general case of SPl+1(K(ζl)) to the above one using

a chain of congruences. The arguments are similar to those of [CT14, §5],

but since the hypotheses of the above theorem are more stringent we work a

little harder. We begin by fixing a totally real field F , linearly disjoint over Q
from K(ζl), and an RAESDC automorphic representation (π, χ) of GL2(AF )

without CM. Arguing as in the proof of [CT14, Prop. 5.3], we can assume (after

replacing F by a soluble extension and passing to a congruent automorphic

representation) that there is a finite set T of places of F , a place u of F not in

T , and that π satisfies the following:

(1) π is unramified outside T ∪ {u}.

(2) π is of weight zero.

(3) For each place v|l, πv is an unramified twist of the Steinberg representation

(and hence π is ι-ordinary).
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(4) There exists a rational prime t > l2 such that qu ≡ −1 mod t and

rι(π)|IFu ∼=
Ç
ψu 0

0 ψquu

å
,

where ψu : IFu → Q×l is a character of order t. Moreover, the place u is split

in the maximal abelian extension of F of exponent 2 which is unramified

away from T . (We note that this implies that the representation rι(π)|GFu
is absolutely irreducible, even after reduction modulo l.)

Fix an open compact subgroup U ⊂ GL2(A∞F ) such that (π∞)U 6= 0, and let

π1, . . . , πn denote the RAESDC automorphic representations of GL2(AF ) such

that (π∞i )U 6= 0 and πi satisfies the above conditions. We can assume after

renumbering that π1 = π.

For each i = 1, . . . , n, the residual representation rι(πi) is irreducible, and

its image contains SL2(Fla) up to conjugation for some a > 1. This follows

from an argument of Khare-Wintenberger as follows. Let us write ρ = rι(πi).

Since t > l2, the projective image of ρ contains an element of order t > 5. The

classification of finite subgroups of PGL2(Fl) (see, for example, [Suz82, Ch. 3,

§6]) implies that the projective image of ρ is conjugate either to PSL2(Fla) or

PGL2(Fla), or to a dihedral subgroup. In the first case, we must have a > 1

since t > l2, by hypothesis. If the projective image is dihedral, then there exist

a quadratic extension M/F and a continuous character α : GM → F×l such

that ρ ∼= IndFM α. Since ρ is totally odd, M is totally imaginary.

If the extension M/F is ramified at a place y of F , then ρ and hence π

is ramified at y, and so y ∈ T ∪ {u}. In fact, we have y ∈ T , since ρ(IFu) has

order t, prime to 2. Thus M/F is unramified outside T , and the place u splits

in M . This implies that the representation ρ|GFu is reducible, a contradiction.

Proposition 6.3. There exist a prime p > 2(l + 2), an isomorphism

ιp : Qp
∼= C, and an automorphic representation π′ satisfying conditions (2)–

(4) above, as well as the following conditions :

— rιp(π
′) ∼= rιp(π).

— The image of the residual representation rι(π′) contains SL2(Fla) up to

conjugation for some a > 1.

— There exists a place v of F such that qv is odd and is a primitive root

modulo l and π′v is an unramified twist of the Steinberg representation,

and the restriction of rι(π′) to GFv is ramified.

— The symmetric lth power lifting of π exists if and only if the symmetric lth

power lifting of π′ exists.

Proof. We construct π′ by raising the level from π, modulo p. To ease

notation, let us write ρi = rι(πi) for i = 1, . . . , n. Choose a prime p > t and
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an isomorphism ιp : Qp
∼= C such that the image of rιp(π) contains SL2(Fp) up

to conjugation, and set ρ0 = rιp(π). We say that one of the representations

ρi admits level raising at the place v of F if ρi is unramified at v and the

eigenvalues α, β of ρi(Frobv) satisfy α = q±1
v β. This condition depends only on

the image of Frobv under the projective representation associated to ρi.

We claim that to prove the proposition, it suffices to exhibit a place v of F

such that qv is odd and is a primitive root modulo l, and ρ0 admits level-raising

at the place v of F , but none of ρ1, . . . , ρn admits level raising at v. Indeed,

in this case using, e.g., [Gee11, Cor. 3.1.7], we can construct an automorphic

lift of ρ0 which corresponds to an RAESDC automorphic representation π′

unramified outside T ∪ {u, v} and satisfying the desired properties, except

possibly for the following:

— rι(π′) is irreducible, and its image contains SL2(Fla), up to conjugation,

for some a > 1.

— The restriction of rι(π′) to GFv is ramified.

— The symmetric lth power lifting of π exists if and only if the symmetric lth

power lifting of π′ exists.

We check that these conditions also hold. We first note that rι(π′) is, by

construction, irreducible even after restriction to GFu . We claim that it is

ramified after restriction to GFv . If not, then applying [Gee11, Cor. 3.1.7] once

more we can find an RAESDC automorphic representation π′′ which satisfies

conditions (1)–(4) above and such that rι(π′′) ∼= rι(π′). Then there exists

1 ≤ i ≤ n such that π′′ = πi, and this implies that ρi admits level-raising at

v, a contradiction. In particular, the image of rι(π′) contains an element of

order l. Since it also contains an element of order t, the classification of finite

subgroups of GL2(Fl) now shows that the image must contain a conjugate of

SL2(Fla) for some a > 1. (Since the image is an irreducible subgroup, it can not

be contained in a Borel subgroup.) To complete the proof of the claim, we must

show that the symmetric lth power lifting of π exists if and only if the symmetric

lth power lifting of π′ exists. Since both rιp(π) and rιp(π
′) are potentially

Barsotti-Tate, hence potentially diagonalizable, and their symmetric lth powers

are adequate, this follows from [BLGGT14, Th. 4.2.1] (cf. the proof of [CT14,

Prop. 5.2]).

We now introduce some more notation. Let Fi denote the extension of F

cut out by the projective representation associated to ρi, i = 0, . . . , n. Let L

denote the compositum of the extensions F1, . . . , Fn. Let us write Lab and F ab
0

for the maximal subextensions of L and F0, respectively, which are abelian

over F . Let G = Gal(L/F ), Gi = Gal(Fi/F ). For each i = 1, . . . , n, there

is a surjective homomorphism pi : G → Gi. The group Gi contains a simple

normal subgroup of index at most 2, isomorphic to PSL2(Fla) for some a > 1.
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By the Chebotarev density theorem, it now suffices to construct an element

σ ∈ Gal(L · F0 · F (ζp, ζl)/F ) satisfying the following conditions:

(1) The projection of σ to Gal(F (ζl)/F ) generates this group.

(2) The projection of σ to Gal(F0(ζp)/F ) is trivial.

(3) For each i = 1, . . . , n, the eigenvalues α, β (which are defined only up to

scalars) of pi(σ) satisfy

α 6= ε(σ)±1β.

We first note that the extensions F (ζl) and F0(ζp) are linearly disjoint over F .

Indeed, F ab
0 (ζp) is unramified at the primes dividing l. It follows that we can

choose an element σ0 ∈ Gal(L ·F0 ·F (ζp, ζl)/F ) satisfying the first two require-

ments above. We now claim that we can choose τ ∈ Gal(L·F0(ζp, ζl)/F0(ζp, ζl))

such that σ = τ · σ0 satisfies all three requirements. Note that multiplying by

such an element τ does not disturb the first two points.

We will in fact choose an element τ ∈ Gal(L·F0 ·F (ζp, ζl)/L
ab ·F0(ζp, ζl)) =

H, say. The group H is a product of simple groups, each isomorphic to

PSL2(Fla) for some a > 1, and each map pi|H : H → Gi has image of index at

most 2. We show by induction on j that we can choose τ such that the condi-

tion on eigenvalues is satisfied for i = 1, . . . , j. For the case j = 1, we look at

the image of σ0 in G1. Either the condition is satisfied for p1(σ0) ∈ PGL2(Fla)

or we can choose x ∈ PSL2(Fla) such that the condition is satisfied for p1(σ0)x.

We now take τ be be an arbitrary lift of x to H.

For the induction step, we look at pj+1(τσ0) ∈ PGL2(Fla). If the condition

is satisfied for this element, then we are done. If the condition is not satisfied,

then the extensions Fj+1 · Lab(ζp, ζl) and F1 · · · · · Fj · Lab(ζp, ζl) are linearly

disjoint over Lab(ζp, ζl). For otherwise, there exists i ∈ {1, . . . , j} such that

Fi · Lab(ζp, ζl) = Fj+1 · Lab(ζp, ζl); on the other hand, one knows that every

automorphism of PSL2(Fla) is a composite of conjugation by an element of

PGL2(Fla) and the automorphism induced by a power of Frobenius, and such

an automorphism does not affect the condition α 6= ε(σ)±1β. We can therefore

choose an element τ ′ ∈ H such that pi(τ) = pi(τ
′) for each i = 1, . . . , j and

pj+1(τ ′σ0) satisfies the condition on eigenvalues. �

This proposition implies the result, since Theorem 6.2 now shows that the

symmetric lth power lifting of π′ exists.

Annexe A. Calculation of Jacquet modules

by Colette Mœglin

A.1. Le cas quasi déployé, introduction. On fixe une extension quadra-

tique E/F de corps p-adiques ; on s’intéresse au groupe U(n,E/F ) et G̃L(n,E)

est la composante non neutre qui intervient dans l’endoscopie tordue.
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On écrit abusivement les induites en oubliant le parabolique mais on

considère les paraboliques standard, le Borel étant les triangulaires supérieures

de sorte que la représentation de Steinberg de U(n,E/F ) a pour module de

Jacquet pour le Borel
⊗

`∈[(n−1)/2,1/2] | |`.
Pour π une représentation de U(n,E/F ) et pour χ un caractère de E× (en

général une puissance d’une valeur absolue | |x, avec x demi-entier), on note

Jacχπ l’élément du groupe de Grothendieck de U(n−2, E/F ) tel que le module

de Jacquet de π pour le parabolique maximal de Levi E××U(n−2, E/F ) est de

la forme χ⊗Jacχπ⊕
⊕
χ′ 6=χ,π′ χ

′⊗π′. Pour π̃ une représentation de G̃L(n,E), on

note JacGLχ π̃ la même chose sauf que l’on regarde le Levi E××G̃L(n−2, E)×E×
(on peut avoir n = 2 mais je ne l’utiliserai pas) et le module de Jacquet est

la somme de χ ⊗ JacGL
χ π̃ ⊗ χ−1 plus d’autres termes où au moins l’une des

composantes E× agit par un autre caractère. Comme π̃ est muni d’une action

de θ, de fait JacGL
χ (π̃) en a une aussi tout à fait canoniquement. Pour nous,

cela n’interviendra pas car on évite cette difficulté.

A.1.1. Le cas de U(4, E) .

Proposition. L’induite de la représentation de Steinberg de GL(2, E) à

U(4, E/F ) est réductible.

Ceci résulte de [Gol93, Th. 2.11], étant donné que cette représentation de

Steinberg provient par changement de base stable de U(2).

Lemme. L’induite de la proposition précédente est de longueur deux. L’un

de ses sous-modules a un module de Jacquet (pour le Borel) de longueur 3 ;

on note cette représentation π4,+. L’autre représentation π4,− a un module de

Jacquet irréductible. Avec des notations intuitives, le semi-simplifié du module

de Jacquet de π4,+ contient le terme :

| |1/2 ⊗ | |1/2 (1)

avec multiplicité 2 et le module de Jacquet de π4,+ et π4,− contiennent tous

deux avec multiplicité 1 le terme

| |1/2 ⊗ | |−1/2. (2)

Le module de Jacquet de toute l’induite contient exactement les 2 termes

décrits, chacun avec multiplicité 2 et chacune des sous-représentations irré-

ductibles contient au moins avec multiplicité 1 le terme (2) par réciprocité

de Frobenius. Fixons π′, un des sous-modules irréductible dont le module de

Jacquet contient avec multiplicité au moins 1, le terme

| |1/2 ⊗ | |1/2.
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On montre qu’il contient ce terme avec multiplicité au moins 2 : en effet on

calcule le module de Jacquet de π′ par rapport au parabolique, P2, de Levi

GL(2, E). Par transitivité le calcul du module de Jacquet de π′ par rapport

au Borel se calcule en prenant d’abord le module de Jacquet par rapport au

parabolique P2 puis en passant de GL(2, E) au Borel de GL(2, E). Donc dans

la première opération, on a nécessairement une représentation de GL(2, E) de

support cuspidal | |1/2, | |1/2. Il n’y a qu’une représentation de GL(2, E) ayant

cette propriété, c’est l’induite de | |1/2 ⊗ | |1/2 qui est irréductible. Le module

de Jacquet de cette induite a bien le terme (1) de l’énoncé avec multiplicité 2.

D’où le lemme.

A.2. Le cas de U(n,E), n pair et > 4.

A.2.1. Nombre de séries discrètes dans le paquet.

Proposition. Il existe exactement 2 représentations elliptiques dans le

paquet associé à St(2),St(n− 2) et ce sont des séries discrètes.

J’admets essentiellement cette proposition : [Mœg14, 7.1] où ici Jord(π)

est, par définition, l’ensemble à deux éléments (trivial, 2), (trivial, 4).

A.2.2. Rappel d’un petit lemme technique.

Lemme. Soit π une série discrète irréductible pour U (n,E/F) et χ un

caractère de E× de la forme | |x.

(i) Jacχπ est soit nul soit x > 0 ; si Jacχπ 6= 0, alors Jacχπ est irréductible.

De plus si Jacχπ n’est pas nul alors π est un sous-module irréductible de

l’induite de χ ⊗ Jacχπ pour le parabolique standard de Levi E× × U(n −
2, E/F ).

(ii) Soit π et π′ deux séries discrètes irréductibles et inéquivalentes ; alors on

ne peut avoir Jacχπ = Jacχπ
′ sauf si ces deux modules sont nuls.

En fait il y a unicité du sous-module irréductible dans (i) mais on n’en a

pas besoin.

La première assertion de (i) est uniquement le critère de Casselman pour

les séries discrètes : [Cas, Th. 4.4.6].

Pour l’irréductibilité de (i), c’est [Mœg14, cor. de 2.7(i)]. Montrons l’inclu-

sion : la non nullité de Jacχπ entrâıne que le module de Jacquet de π pour le

parabolique standard de Levi isomorphe à E× × U(n− 2, E/F ) a un quotient

irréductible de la forme χ ⊗ σ ; par irréductibilité de Jacχπ, nécessairement

σ = Jacχπ. Par réciprocité de Frobenius, on a alors une inclusion de π dans

l’induite comme annoncé.

Pour (ii) c’est [Mœg14, cor. 2.7(ii)] avec le fait que toute série discrète est

dans un paquet stable ([Mœg14, 2.4], ou n’importe quelle autre référence).
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A.2.3. Calcul des modules de Jacquet. On peut aller plus loin, en utilisant

le fait que le module de Jacquet commute au transfert. On a, pour n ≥ 6,

JacGL
χ (St(2) × St(n − 2)) = 0 sauf exactement si χ = | |1/2 ou χ = | |(n−3)/2.

On a JacGL
| |1/2St(2) × St(n − 2) = St(n − 2) et JacGL

| |(n−3)/2St(2) × St(n − 2) =

St(2) × St(n − 4) et il n’y a pas de multiplicité ; donc l’action de θ est bien

déterminée à un signe près, dont on se moque.

Proposition. On suppose que n ≥ 6

(i) On suppose que π est dans le paquet de séries discrètes associées à St(2),

St(n − 2). Alors Jacχπ = 0 sauf éventuellement si χ = | |1/2 ou χ =

| |(n−3)/2.

(ii) Jac| |1/2(π) = 0 ou est la représentation de Steinberg de U(n − 2, E/F ),

chacun de ces deux cas se produisant pour un bon choix de π dans le paquet ;

on note πn,+ celle des deux représentations du paquet telle que Jac| |1/2π 6= 0

et πn,− l’autre représentation.

(iii) Avec la définition glissée dans (ii) et celle du paragraphe A.1.1, pour tout

n ≥ 6, on a pour ζ = ±, Jac| |(n−3)/2πn,ζ = πn−2,ζ .

Le (i) est juste la compatibilité des modules de Jacquet au transfert. Pour

(ii) et (iii) on introduit les notations suivantes : soit πi pour i = 1, 2 les deux

séries discrètes dans le paquet considéré. Soit ai des nombres complexes non

nuls tels que σ := a1π1 + a2π2 est stable.

Montrons (ii) : Jac| |1/2σ est une distribution stable (compatibilité de la

stabilité à la restriction) et elle se transfère (à un scalaire près ) en la trace

tordue de la représentation de Steinberg de GL(n − 2, E) ; donc Jac| |1/2σ est

nécessairement (à un scalaire près) la représentation de Steinberg de

U(n− 2, E/F ). Par l’irréductibilité rappelée ci-dessus (A.2.2(i)) et le fait que

Jacχπ1 6= Jacχπ2 si l’un des deux modules de Jacquet est non nul (A.2.2(ii)),

il existe exactement un i tel que Jac| |1/2πi 6= 0 et ce module de Jacquet vaut

alors la représentation de Steinberg de U(n− 2, E/F ).

Pour (iii), Jac| |(n−3)/2(a1π1+a2π2) est (via la trace) une distribution stable

et elle se transfère à un scalaire près en la trace tordue de Ind St(2)⊗St(n−4).

Si n = 6, l’induite Ind St(2) ⊗ St(n − 4) n’est pas θ-elliptique c’est une in-

duite à partir d’une représentation θ-stable. Son caractère est le transfert de la

représentation de U(4, E/F ), IndStGL(2,E)(2) et on a calculé cette distribution ;

c’est le caractère de π4,+ + π4,−. On montre par récurrence sur n que a1 = a2

et l’égalité d’ensembles non ordonnés :

(Jac| |(n−3)/2π1, Jac| |(n−3)/2π2) = (πn−2,+, πn−2,−).

Initialiser la récurrence avec n = 6 se fait en même temps que le pas général.
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En effet, quitte à multiplier a1 et a2 par le même nombre complexe non

nul Jac| |(n−3)/2(a1π1 +a2π2) = πn−2,+ + πn−2,−, car c’est (à un scalaire près) la

distribution stable portée par πn−2,+ et πn−2,− que l’on connâıt pour n = 6, on

vient de le rappeler, et par l’hypothèse de récurrence pour n > 6. Le membre

de gauche vaut

a1Jac| |(n−3)/2π1 + a2Jac| |(n−3)/2π2

et chaque terme est soit nul soit une représentation irréductible, les deux ne

pouvant être simultanément non nuls et égaux (A.2.2(i) et (ii)). Ainsi a1 =

a2 = 1 et l’égalité d’ensemble non ordonné annoncée.

Supposons que Jac| |(n−3)/2π1 = πn−2,+ donc Jac| |(n−3)/2π2 = πn−2,−. On

sait (A.2.2(i)) que π2 ↪→ Ind| |(n−3)/2 ⊗ πn−2,−.

On traite d’abord le cas de n = 6 qui est le seul cas où Jac| |1/2πn−2,− 6= 0.

Dans ce cas, par les formules générales de calcul de module de Jacquet, on a :

Jac| |1/2Ind(| |5/2 ⊗ π4,−) = Ind| |5/2 ⊗ | |−1/2,

car Jac| |1/2π4,−= | |−1/2 d’après la description donnée dans le paragraphe A.1.1.

Par exactitude du module de Jacquet, on a l’inclusion :

Jac| |1/2π6,− ↪→ Ind| |5/2 ⊗ | |−1/2 ' Ind| |−1/2 ⊗ | |5/2;

l’isomorphisme est, par transitivité, une propriété de GL(2, E) et dans ce

groupe l’induite de | |5/2 ⊗ | |−1/2 est irréductible. Ainsi si Jac| |1/2π6,− est non

nul c’est un sous-module irréductible de l’induite Ind| |−1/2 ⊗ | |5/2. D’où une

inclusion (cf. A.2.2(i))

π6,− ↪→ Ind(| |1/2 ⊗ Jac| |1/2π6,−) ↪→ Ind| |1/2 ⊗ | |−1/2 ⊗ | |5/2.

Ceci est impossible pour une série discrète car 1/2+(−1/2) = 0 et cela contredit

le critère de Casselman. Ainsi Jac| |1/2π6,− = 0.

On suppose n > 6. Par hypothèse de récurrence Jac| |1/2πn−2,− = 0 et

(n− 3)/2 6= ±1/2 ; donc les formules standard de calcul de module de Jacquet

donnent

Jac| |1/2Ind| |(n−3)/2 ⊗ πn−2,− = Ind(| |(n−3)/2 ⊗ Jac| |1/2πn−2,−) = 0,

par l’hypothèse de récurrence puisque n − 2 ≥ 6. Par exactitude des modules

de Jacquet cela force aussi Jac| |1/2π2 = 0 donc π2 6= πn−2,+ ; d’où π1 = πn−2,+

par (ii). Cela termine la preuve de (iii).

Corollaire. Ici on suppose n ≥ 4.

(i) Le module de Jacquet (pour le Borel) de πn,− est de longueur 1 ; il est

réduit à ⊗
`∈[(n−3)/2,−1/2]

| |`

où on décale de 1 en 1 (et non 1/2 )
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(ii) Le module de Jacquet (pour le Borel) de πn,+ est de longueur (n−2)/2+2.

Il contient avec multiplicité 1 le terme⊗
`∈[(n−3)/2,−1/2]

| |`

avec multiplicité 2 le terme ⊗
`∈[(n−3)/2,1/2]

| |` ⊗ | |1/2

et avec mutliplicité 1 tous les termes⊗
`∈[(n−3)/2,1/2]

| |`

et où on glisse | |1/2 juste à gauche de l’un des | |` avec ` > 1/2.

Le corollaire est vrai pour n = 4 grâce au paragraphe A.1.1. Pour n > 4

on le démontre ainsi.

Le (i) se démontre par récurrence : on sait que Jacχπn,− = 0 sauf pour χ =

| |(n−3)/2 et Jac| |(n−3)/2πn,− = πn−2,−. Par transitivité, le module de Jacquet

pour le Borel de πn,− est le produit tensoriel de | |(n−3)/2 avec le module de

Jacquet (pour le Borel) de πn−2,−.

Pour (ii) le même argument que pour (i) calcule tous les termes du module

de Jacquet de πn,+ qui commencent par | |(n−3)/2 et il faut ajouter les termes

qui commencent par | |1/2. Mais il n’y a en qu’un puisque Jac| |1/2 = StU(n−2)

et c’est la description de l’énoncé : le module de Jacquet de StU(n−2) est

évidemment égal à
⊗

`∈[(n−3)/2,1/2] | |`.
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Inst. Hautes Études Sci. 111 (2010), 1–169. MR 2653248. Zbl 1200.

22011. http://dx.doi.org/10.1007/s10240-010-0026-7.

http://www.ams.org/mathscinet-getitem?mr=1923967
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1040.11036
http://dx.doi.org/10.2307/3062134
http://www.ams.org/mathscinet-getitem?mr=1687096
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0958.22013
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0958.22013
http://www.ams.org/mathscinet-getitem?mr=2856378
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1255.11027
http://www.ams.org/mathscinet-getitem?mr=2856380
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1255.11027
http://www.ams.org/mathscinet-getitem?mr=0909227
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0644.22005
http://dx.doi.org/10.1007/BF01458070
http://www.ams.org/mathscinet-getitem?mr=0991016
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0715.22020
http://dx.doi.org/10.2307/1990945
http://dx.doi.org/10.2307/1990945
http://www.ams.org/mathscinet-getitem?mr=2856377
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1255.11027
http://www.ams.org/mathscinet-getitem?mr=2366373
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1157.22010
http://dx.doi.org/10.2140/pjm.2007.233.159
http://dx.doi.org/10.2140/pjm.2007.233.159
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06315737
http://dx.doi.org/10.1090/conm/614/12254
http://www.arxiv.org/abs/1206.0882
http://www.ams.org/mathscinet-getitem?mr=1713308
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0937.22011
http://dx.doi.org/10.1023/A:1001019027614
http://dx.doi.org/10.1023/A:1001019027614
http://www.ams.org/mathscinet-getitem?mr=2653248
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1200.22011
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1200.22011
http://dx.doi.org/10.1007/s10240-010-0026-7


358 LAURENT CLOZEL AND JACK A. THORNE

[Ree97] M. Reeder, Nonstandard intertwining operators and the structure of

unramified principal series representations, Forum Math. 9 (1997), 457–

516. MR 1457135. Zbl 0882.22020. http://dx.doi.org/10.1515/form.

1997.9.457.

[Ree00] M. Reeder, Matrices for affine Hecke modules, J. Algebra 231 (2000),

758–785. MR 1778170. Zbl 0979.20008. http://dx.doi.org/10.1006/jabr.

1999.8369.

[Rib84] K. A. Ribet, Congruence relations between modular forms, in Proceed-

ings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw,

1983), PWN, Warsaw, 1984, pp. 503–514. MR 0804706. Zbl 0575.10024.

[Rog90] J. D. Rogawski, Automorphic Representations of Unitary Groups in

Three Variables, Ann. of Math. Studies 123, Princeton Univ. Press,

Princeton, NJ, 1990. MR 1081540. Zbl 0724.11031.

[Suz82] M. Suzuki, Group Theory. I, Grundl. Math. Wissen. 247, Springer-

Verlag, New York, 1982, translated from the Japanese by the author.

MR 0648772. Zbl 0472.20001.

[Tat79] J. Tate, Number theoretic background, in Automorphic Forms, Repre-

sentations and L-Functions (Proc. Sympos. Pure Math., Oregon State

Univ., Corvallis, Ore., 1977, Part 2), Proc. Sympos. Pure Math. XXXIII,

Amer. Math. Soc., Providence, RI, 1979, pp. 3–26. MR 0546607.

Zbl 0422.12007.

[Tay89] R. Taylor, On Galois representations associated to Hilbert modular

forms, Invent. Math. 98 (1989), 265–280. MR 1016264. Zbl 0705.11031.

http://dx.doi.org/10.1007/BF01388853.

[Tho12] J. Thorne, On the automorphy of l-adic Galois representations with

small residual image, J. Inst. Math. Jussieu 11 (2012), 855–920, with

an appendix by Robert Guralnick, Florian Herzig, Richard Taylor

and Thorne. MR 2979825. Zbl 1269.11054. http://dx.doi.org/10.1017/

S1474748012000023.

[Tho14] J. A. Thorne, Automorphy lifting for residually reducible l-adic Galois

representations, J. Amer. Math. Soc., electronically published on June 6,

2014. http://dx.doi.org/10.1090/S0894-0347-2014-00812-2.

[Tit79] J. Tits, Reductive groups over local fields, in Automorphic Forms, Rep-

resentations and L-Functions (Proc. Sympos. Pure Math., Oregon State

Univ., Corvallis, Ore., 1977, Part 1), Proc. Sympos. Pure Math. XXXIII,

Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 0546588.

Zbl 0415.20035.

[Wala] J.-L. Waldspurger, Stabilisation de la formule des traces tordue I:

endoscopie tordue sur un corps local. arXiv 1401.4569.

[Walb] J.-L. Waldspurger, Stabilisation de la formule des traces tordue II:
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