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Binary quartic forms having bounded
invariants, and the boundedness of
the average rank of elliptic curves

By Manjul Bhargava and Arul Shankar

Abstract

We prove a theorem giving the asymptotic number of binary quartic

forms having bounded invariants; this extends, to the quartic case, the

classical results of Gauss and Davenport in the quadratic and cubic cases,

respectively. Our techniques are quite general and may be applied to count-

ing integral orbits in other representations of algebraic groups.

We use these counting results to prove that the average rank of elliptic

curves over Q, when ordered by their heights, is bounded. In particular,

we show that when elliptic curves are ordered by height, the mean size of

the 2-Selmer group is 3. This implies that the limsup of the average rank

of elliptic curves is at most 1.5.

1. Introduction

1.1. Average ranks of elliptic curves. Any elliptic curve E over Q is iso-

morphic to a unique curve of the form EA,B : y2 = x3+Ax+B, where A,B ∈ Z
and for all primes p: p6 - B whenever p4 | A. Let H(EA,B) denote the (naive)

height of EA,B, defined by H(EA,B) := max{4|A3|, 27B2}. Let ∆(EA,B) and

C(EA,B) denote the discriminant and conductor of EA,B, respectively.

It is an old conjecture, originating in works of Goldfeld [24] and Katz–

Sarnak [28], that a density of 50% of all elliptic curves over Q have rank 0

and 50% have rank 1. These densities are expected to hold true regardless of

whether one orders curves by height, discriminant, or conductor. In particular,

one expects the average rank of all elliptic curves to be 1/2. However, it has

not previously been known that the average rank of all elliptic curves is even

finite (i.e., bounded). Computations have also not been very helpful in this

regard; see [1] for a nice survey.

In [9], Brumer showed that the generalized Riemann hypothesis and the

Birch–Swinnerton-Dyer conjectures together imply that the average rank of all

elliptic curves, when ordered by their heights, is finite and is in fact bounded
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above by 2.3. Still assuming the generalized Riemann hypothesis and the

Birch–Swinnerton-Dyer conjectures, this constant was subsequently improved

to 2 by Heath-Brown [26] and to 25/14 ∼ 1.79 by Young [41].

The purpose of this article is to prove unconditionally that the average

rank of all elliptic curves, when ordered by their heights, is finite. In fact, we

prove the same for the 2-Selmer rank. Recall that the 2-Selmer group S2(E)

of an elliptic curve E over Q fits into an exact sequence

(1) 0→ E(Q)/2E(Q)→ S2(E)→XE [2]→ 0,

where XE [2] denotes the 2-torsion subgroup of the Tate–Shafarevich group

XE of E. The 2-Selmer group is an elementary abelian 2-group of order 2s

for some integer s ≥ 0, and the quantity s is called the 2-Selmer rank of E.

Thus the 2-Selmer rank of E gives an upper bound for the rank of E.

Our main theorem on the 2-Selmer group is as follows.

Theorem 1.1. When all elliptic curves E/Q are ordered by height, the

average size of the 2-Selmer group S2(E) is 3.

We immediately conclude that

Corollary 1.2. When all elliptic curves over Q are ordered by height,

their average 2-Selmer rank is at most 1.5; thus their average rank is also at

most 1.5.

Indeed, note that equation (1) implies that

(2) r2(S2(E)) = r(E) + r2(E(Q)[2]) + r2(XE [2]),

where we have used r(E) to denote the rank of E and r2(G) (for an elementary

abelian 2-group G) to denote dimF2(G). Due to the inequality 2r2(S2(E)) ≤
2r2(S2(E)) = |S2(E)|, Theorem 1.1 bounds the mean of the left-hand side of

(2) by 1.5, and thus the same bound holds also for the average size of each

of the terms on the right-hand side of (2). In particular, the average size of

r2(XE [2]) is also at most 1.5. Meanwhile, it is elementary that the mean size

of r2(E(Q)[2]) is 0, i.e., 0% of elliptic curves possess rational 2-torsion.

We will in fact prove a stronger version of Theorem 1.1, namely

Theorem 1.3. When elliptic curves E : y2 = x3 +Ax+B, in any family

defined by finitely many congruence conditions on the coefficients A and B,

are ordered by height, the average size of the 2-Selmer group S2(E) is 3.

Thus the average size of the 2-Selmer group remains 3 even when one

averages over any subset of elliptic curves defined by finitely many congruence

conditions. We will actually prove Theorem 1.3 for an even larger class of

families, including some that are defined by certain natural infinite sets of

congruence conditions.
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We note that the boundedness of the average rank of elliptic curves has

been known previously in certain special one-parameter families of elliptic

curves. For example, in [23], Fouvry shows that the average rank is bounded in

the family of cubic twists y2 = x3 + k as k varies. In [25], Heath-Brown shows

that the average rank is bounded for the family of “congruent number curves”

y2 = x3 − d2x as d varies and, in fact, he determines the exact distribution

of 2-Selmer ranks, which implies that the average size of the 2-Selmer group

in this family is 3. In more recent work, Swinnerton-Dyer [38] and Kane [27]

have proven that the same distributions hold for any family of quadratic twists

of a single curve with full rational 2-torsion. Our Theorem 1.1 shows that, as

far as 2-Selmer ranks are concerned, general elliptic curves seem to behave, on

average, in a manner similar to curves in a family of twists.

In the function field case, the boundedness of the average rank of all

elliptic curves was proven by de Jong [17], who showed that for a finite field of

characteristic not equal to 3, the average size of the 3-Selmer group of all elliptic

curves over Fq(t) is bounded (and is, in fact, at most 4 + ε(q) for an explicit

function ε(q) that tends to 0 as q →∞). Our main result, Theorem 1.1, may

be viewed as a precise version of de Jong’s theorem over the number field Q,

with the 3-Selmer group replaced by the 2-Selmer group. We will treat the

case of the 3-Selmer group over Q in a forthcoming article.

Theorems 1.1 and 1.3 also confirm two remarkable sets of heuristics in the

literature. In [19], Delaunay used a Cohen–Lenstra-style model to conjecture

the distribution of the Tate–Shafarevich group of elliptic curves. Delaunay’s

heuristics, coupled with the rank distribution conjecture of Goldfeld and Katz–

Sarnak, imply that the average size of the 2-Selmer group is 3. More recently,

by a completely different approach, Poonen and Rains [33] model the Selmer

group as a random intersection of isotropic subspaces of a quadratic space, and

again, they predict that the average size of the 2-Selmer group should be 3.

These heuristics thus give an interpretation for the number 3 that appears in

Theorems 1.1 and 1.3. For a further interpretation of the number 3 in terms

of local masses of 2-coverings of elliptic curves and the Tamagawa number

of PGL2, see Sections 3.3 and 3.6.

1.2. Counting binary forms having bounded invariants (particularly quar-

tic forms). We prove the above theorems by developing techniques to count

integral orbits, having bounded invariants, in certain coregular representations

over Z. We define a coregular representation as a pair (G,V ), where G is an

algebraic group and V is a representation of G (for our purposes, both defined

over Z) such that the ring of relative polynomial invariants of G(C) on V (C)

is a polynomial ring. Although our techniques are quite general, in this article

we concentrate primarily on the case where G = GL2 and V is the space of

binary quartic forms ax4 + bx3y + cx2y2 + dx3y + ey4.
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The problem of counting integral binary forms having bounded invariants

is a classical one. The case of binary quadratic forms was first treated in the

influential work Disquisitiones Arithmeticae of Gauss in 1801. Gauss studied

the action of SL2(Z) on the space of integral binary quadratic forms f(x, y) =

ax2 + bxy + cy2 (a, b, c ∈ Z)1 via linear substitution of variable, in terms

of the unique polynomial invariant for this action, namely, the discriminant

∆(f) = b2−4ac. (The polynomial invariant ∆(f) is “unique” in the sense that

the ring of polynomial invariants is generated by one element, namely, ∆(f).)

Gauss conjectured, and Mertens [30] and Siegel [36] proved, respectively,

that

Theorem 1.4 (Mertens 1874/Siegel 1944). Let hD denote the number of

SL2(Z)-equivalence classes of irreducible integral binary quadratic forms having

discriminant D. Then

(a)
∑

−X<D<0

hD ∼
π

18
·X3/2;

(b)
∑

0<D<X

hD log εD ∼
π2

18
·X3/2;

here εD = (t + u
√
D)/2, where t, u are the smallest positive integral solutions

of t2 −Du2 = 4.

Note that hD and log εD have important algebraic number theoretic in-

terpretations, namely, h(D) is the (narrow) class number and log εD is the reg-

ulator of the unique quadratic order of discriminant D. Thus Theorem 1.4(a)

gives the average size of the class number of imaginary quadratic orders up

to a given absolute discriminant, while (b) gives the average size of the class

number times the regulator of real quadratic orders up to a given discriminant.

The next natural case to consider is that of integral binary cubic forms

f(x, y) = ax3+bx2y+cxy2+dy3 (a, b, c, d ∈ Z). The group GL2(Z) (or SL2(Z))

again naturally acts on such forms, and there is again a unique polynomial

invariant for this action, namely, the discriminant

∆(f) = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2.

The question, as in the case of binary quadratic forms, is: how many classes

h(D) of irreducible binary cubic forms are there with discriminant D, on av-

erage, as D varies?

This question was first answered by Davenport [15].

1Gauss actually considered only forms where b is even; however, from the modern point

of view, it is natural to allow all three coefficients a, b, c to be arbitrary integers.
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Theorem 1.5 (Davenport 1951). Let h(D) denote the number of GL2(Z)-

equivalence classes of irreducible integral binary cubic forms having discrimi-

nant D. Then

(a)
∑

−X<D<0

h(D) ∼ π2

24
·X ;

(b)
∑

0<D<X

h(D) ∼ π2

72
·X.

Davenport’s theorem thus states that the number of equivalence classes

of irreducible binary cubic forms per discriminant is a constant on average.

This too has an important algebraic number theoretic interpretation. Since

equivalence classes of irreducible integral binary cubic forms are in bijection

with orders in cubic fields (see Delone–Faddeev’s work [20]), Theorem 1.5 states

that there are a constant number of (isomorphism classes) of cubic orders per

discriminant, on average. Davenport’s theorem was an essential ingredient in

the classical work of Davenport and Heilbronn on the density of discriminants

of cubic fields (see [16]).

The next natural case to consider is that of binary quartic forms. The

group GL2(Z) again acts on the space of binary quartic forms f(x, y) =

ax4 + bx3y + cx2y2 + dxy3 + ey4 (a, b, c, d, e ∈ Z) by linear substitution of

variable. Note that in each of the cases of binary quadratic and binary cubic

forms, the ring of invariants was generated by one element. Binary quartic

forms historically have been more difficult to treat because the ring of invari-

ants is now generated by two independent invariants, traditionally denoted I

and J . For f(x, y) as above, we have the following explicit formulae for these

invariants:
I(f) = 12ae− 3bd+ c2,

J(f) = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.

Any other polynomial invariant for the action of GL2(Z) on binary quartic

forms can be expressed as a polynomial in these invariants; for example, the

discriminant ∆(f) of a binary quartic form can be expressed in terms of I(f)

and J(f) as follows:

∆(f) := ∆(I(f), J(f)) := (4I(f)3 − J(f)2)/27.

It follows from work of Borel and Harish-Chandra [8, Th. 6.9] that the

number of equivalence classes of integral binary quartic forms, having any

given fixed values of I and J (so long as I and J are not both equal to zero),

is finite.2 This raises the question as to how many classes h(I, J) of irreducible

2It is also true that the number of equivalence classes of binary quartic forms having a

fixed nonzero value of the single invariant ∆(f) = 1
27

(4I(f)3 − J(f)2) is finite since the set
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binary quartic forms with invariants I, J are there, on average, as the pair

(I, J) varies?

To answer this question, we require just a bit of notation. Let us define the

(naive) height of f(x, y) byH(f) := H(I, J) := max{|I3|, J2/4}. (The constant

1/4 on J2 is present for convenience, and is not of any real importance.) Thus

H(f) is a “degree 6” function on the coefficients of f , in the sense that H(rf) =

r6H(f) for any constant r. We prove

Theorem 1.6. Let h(i)(I, J) denote the number of GL2(Z)-equivalence

classes of irreducible binary quartic forms having 4 − 2i real roots in P1 and

invariants equal to I and J . Then

(a)
∑

H(I,J)<X

h(0)(I, J) =
4

135
ζ(2)X5/6 +O(X3/4+ε) ;

(b)
∑

H(I,J)<X

h(1)(I, J) =
32

135
ζ(2)X5/6 +O(X3/4+ε) ;

(c)
∑

H(I,J)<X

h(2)(I, J) =
8

135
ζ(2)X5/6 +O(X3/4+ε) .

In order to obtain the average size of h(i)(I, J), as (I, J) varies, we first

wish to know which pairs (I, J) can actually occur as the invariants of an

integral binary quartic form. In the quadratic and cubic cases, this is easy and

well known: a number occurs as the discriminant of a binary quadratic (resp.

cubic) form if and only if it is congruent to 0 or 1 (mod 4).

In the binary quartic case, we prove that a similar scenario occurs; namely,

an (I, J) is eligible—i.e., it occurs as the invariants of some integral binary

quartic form—if and only if it satisfies any one of a certain specified finite set

of congruence conditions modulo 27. More precisely, we prove

Theorem 1.7. A pair (I, J) ∈ Z×Z occurs as the invariants of an integral

binary quartic form if and only if it satisfies one of the following congruence

conditions :
(a) I ≡ 0 (mod 3) and J ≡ 0 (mod 27),

(b) I ≡ 1 (mod 9) and J ≡ ±2 (mod 27),

(c) I ≡ 4 (mod 9) and J ≡ ±16 (mod 27),

(d) I ≡ 7 (mod 9) and J ≡ ±7 (mod 27).

It follows that the number of eligible (I, J), with H(I, J) < X, is a con-

stant times X5/6; thus, by Theorem 1.6, the number of classes of binary quartic

forms per eligible (I, J) is a finite constant on average. We have the following

theorem.

of integral points on the elliptic curve 4x3 − y2 = 27d is finite for each d 6= 0. However, the

latter fact will not be used here.
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Theorem 1.8. Let h(i)(I, J) denote the number of GL2(Z)-equivalence

classes of irreducible binary quartic forms having 4−2i real roots and invariants

equal to I and J . Let n0 = 4, n1 = 2, and n2 = 2. Then, for i = 0, 1, 2, we have

lim
X→∞

∑
H(I,J)<X

h(i)(I, J)

∑
(I,J) eligible

(−1)i∆(I,J)>0

H(I,J)<X

1
=

2ζ(2)

ni
.

Thus, Theorem 1.8 says that the number of equivalence classes of binary

quartic forms per eligible (I, J), having a given number of real roots, is a

constant on average. This constant is either ζ(2)/2 or ζ(2), depending on

whether the given number of real roots is 4 or less than 4, respectively.

We in fact prove a strengthening of Theorem 1.6; namely, we obtain the

asymptotic count of binary quartic forms, having bounded invariants, satisfying

any specified finite set of congruence conditions. Such a modification will be

crucial for the applications to elliptic curves, which we discuss next.

1.3. Binary quartic forms and 2-Selmer groups of elliptic curves. To use

the latter counting results involving binary quartic forms to understand the

average size of 2-Selmer groups of elliptic curves (as in Theorem 1.1), we recall

that an element of the 2-Selmer group of an elliptic curve E/Q may be thought

of as a “locally soluble 2-covering.” A 2-covering of E/Q is a genus one curve

C/Q together with maps φ : C → E and θ : C → E, where φ is an isomorphism

defined over C, and θ is a degree 4 map defined over Q, such that the following

diagram commutes:

E
[2]
// E.

C

φ

OO

θ

>>

Thus a 2-covering C = (C, φ, θ) may be viewed as a “twist over Q of the

multiplication-by-2 map on E.” Two 2-coverings C and C ′ are said to be

isomorphic if there exists an isomorphism Φ : C → C ′ defined over Q, and a

2-torsion point P ∈ E, such that the following diagram commutes:

E
+P
// E.

C

φ

OO

Φ
// C ′

φ′

OO

A soluble 2-covering C is one that possesses a rational point, while a locally

soluble 2-covering C is one that possesses an R-point and a Qp-point for all
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primes p. Then we have natural bijections

{soluble 2-coverings}/ ∼ ←→ E(Q)/2E(Q),

{locally soluble 2-coverings}/ ∼ ←→ S2(E),

giving each set on the left too the structure of a finite abelian 2-group.

How does counting elements of S2(E) lead to counting binary quartic

forms? There is a result of Birch and Swinnerton-Dyer (see [7, Lemma 2]) that

states that any locally soluble 2-covering C possesses a canonically associated

degree 2 divisor defined over Q, thus yielding a double cover C → P1 rami-

fied at 4 points. We thus obtain a binary quartic form over Q, well defined

up to GL2(Q)-equivalence! This connection between 2-Selmer group elements

and binary quartic forms was first introduced and used in the original elliptic

curve computations of Birch and Swinnerton-Dyer, which led them to their

celebrated conjecture. Indeed, this interpretation of binary quartic forms in

terms of 2-Selmer groups is still one of the fastest ways of computing and enu-

merating ranks of elliptic curves in practice, as in, e.g., Cremona’s influential

mwrank program.

We use this connection and the above counting results on binary quartic

forms to prove Theorems 1.1 and 1.3 as follows:

• Given A,B ∈ Z, construct an integral binary quartic form f for each element

of S2(EA,B) such that

– y2 = f(x) gives the desired 2-covering;

– the invariants (I(f), J(f)) of f agree with the invariants (A,B) of the

elliptic curve (at least up to bounded powers of 2 and 3).

• Count these integral binary quartic forms via congruence versions of Theo-

rem 1.6. The relevant binary quartic forms are actually defined by infinitely

many congruence conditions, so a sieve has to be performed.

• A uniformity estimate, which shows that the error term does not grow

too large as more and more of the relevant congruence conditions are im-

posed, must be proven to perform this sieve. This is perhaps the most

technical ingredient in this work. It is accomplished by embedding the

space of binary quartic forms into a certain larger space—namely, the space

of pairs of ternary quadratic forms—where such uniformity estimates are

more amenable and have been studied previously in the context of counting

quartic fields [3].

This paper is organized as follows. In Section 2, we study the distribution

of GL2(Z)-equivalence classes of binary quartic forms with respect to their

fundamental invariants I and J ; in particular, we prove Theorems 1.6–1.8. We

also prove the uniformity estimates that are necessary to count binary quartic

forms satisfying our desired infinite sets of congruence conditions.



ON THE BOUNDEDNESS OF THE AVERAGE RANK OF ELLIPTIC CURVES 199

In Section 3, we describe the precise connection between binary quartic

forms and elements in the 2-Selmer groups of elliptic curves. This connection

allows us, through the use of certain mass formulae for elliptic curves over

Qp, to compute the average size of the 2-Selmer groups of elliptic curves (or

of appropriate families of elliptic curves) via a count of binary quartic forms

satisfying a certain weighted infinite set of congruence conditions. We then

apply the uniformity results of Section 2 to count these binary quartic forms,

thus completing the proofs of Theorems 1.1 and 1.3.

2. The number of classes of integral binary quartic forms

having bounded invariants

Let VR denote the vector space of binary quartic forms over the real num-

bers R. We express an element f ∈ VR in the form f(x, y) = ax4 + bx3y +

cx2y2 + dxy3 + ey4, where a, b, c, d, and e are real numbers. Such an f ∈ VR is

said to be integral if a, b, c, d, e ∈ Z.

In this section, we derive asymptotics for the number of GL2(Z)-equiv-

alence classes of irreducible integral binary quartic forms having bounded in-

variants. We also describe how these asymptotics change when we restrict to

counting those binary quartic forms satisfying certain specified sets of congru-

ence conditions. In particular, we prove Theorems 1.6–1.8.

The group GL2(R) naturally acts on VR; namely, an element γ ∈ GL2(R)

acts on f(x, y) by linear substitution of variable:

(3) γ · f(x, y) = f((x, y) · γ).

This action of GL2(R) on VR is a left action; i.e., (γ1γ2) · f = γ1 · (γ2 · f).

We also consider the action of SL±2 (R) on VR, where SL±2 (R) ⊂ GL2(R)

is the subgroup of elements in GL2(R) having determinant equal to ±1. The

ring of invariants for this action is generated by two independent generators of

degrees 2 and 3, which are traditionally denoted by I and J , respectively. If

f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4, then

I(f) = 12ae− 3bd+ c2,

J(f) = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.
(4)

The quantities I(f) and J(f) are also relative invariants for the action of

GL2(R) on VR: we have

I(γ · f) = (det γ)4I(f),

J(γ · f) = (det γ)6J(f).
(5)

The discriminant ∆(f) of a binary quartic form f , being a relative invariant

of degree 6, can thus be expressed in terms of I and J ; namely, ∆(f) =

(4I(f)3− J(f)2)/27. We define the height H(f) of a binary quartic form f by

(6) H(f) := H(I, J) = max{|I|3, J2/4}.
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The action of GL2(Z) on VR evidently preserves the lattice VZ consisting

of the integral elements of VR, and so we may ask: how many GL2(Z)-classes

of forms are there having height at most X? More precisely, we may ask: how

many GL2(Z)-classes of forms are there with height at most X and a given

number of real roots?

To this end, for i = 0, 1, and 2, let V
(i)
Z denote the set of elements in VZ

having nonzero discriminant and i pairs of complex conjugate roots and 4− 2i

real roots in P1
C. For any GL2(Z)-invariant set S ⊂ VZ, let N(S;X) denote the

number of GL2(Z)-equivalence classes of irreducible elements f ∈ S satisfying

H(f) < X. Then the main theorem of this section is the following restatement

of Theorem 1.6.

Theorem 2.1. We have

(a) N(V
(0)
Z ;X) =

4

135
ζ(2)X5/6 +O(X3/4+ε);

(b) N(V
(1)
Z ;X) =

32

135
ζ(2)X5/6 +O(X3/4+ε);

(c) N(V
(2)
Z ;X) =

8

135
ζ(2)X5/6 +O(X3/4+ε).

Our strategy to prove Theorem 2.1 is as follows. In Section 2.1, we develop

the necessary reduction theory needed to establish convenient fundamental

domains for the action of GL2(Z) on VR. The primary difficulty in counting

points in these fundamental domains is that they are not bounded, but instead

have a rather complicated cuspidal region going off to infinity. To deal with

and effectively handle this cusp, in Section 2.2 we investigate the distribution of

reducible and irreducible points inside these fundamental domains. Specifically,

we prove that the cusp contains only reducible points, while the remainder of

the domain outside the cuspidal region contains primarily irreducible points.

In Section 2.3, we develop a refinement of an averaging method introduced in

[3], [4] to count points in these fundamental regions in terms of the volumes of

these domains. The volumes of the fundamental regions are then computed in

Section 2.4, completing the proof of Theorem 2.1.

In Section 2.5, we prove a stronger version of Theorem 2.1 where we

restrict to counting those binary quartic forms whose coefficients satisfy finitely

many congruence conditions. In Section 2.6, we prove the necessary estimates

that uniformly bound the number of GL2(Z)-orbits on binary quartic forms

having bounded height whose discriminants are divisible by the square of some

large prime. In Section 2.7, we then describe how these uniformity estimates

allow one to count the number of GL2(Z)-orbits of binary quartic forms of

bounded height having squarefree discriminant (or satisfying other similar sets

of infinitely many congruence conditions). We will require such results when

we prove Theorems 1.1 and 1.3 in Section 3.
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2.1. Reduction theory. For i = 0, 1, and 2, let V
(i)
R denote the set of points

in VR having nonzero discriminant and i pairs of complex roots and 4− 2i real

roots in P1
C. Then V

(2)
R is the set of definite forms in VR, i.e., forms f(x, y) that

take only positive or only negative values when evaluated at nonzero vectors

(x0, y0) ∈ R2. Let V
(2+)
R (resp. V

(2−)
R ) denote the subset of V

(2)
R consisting of

the positive definite forms (resp. negative definite forms). Note that for i = 0,

1, and 2 we have V
(i)
Z = V

(i)
R ∩ VZ. We analogously define V

(i)
Z = V

(i)
R ∩ VZ for

i = 2+ and 2−.

We then have the following facts (see [12, Rem. 2]):

(1) The set of binary quartic forms in VR having fixed invariants I and J

consists of just one SL±2 (R)-orbit if 4I3 − J2 < 0; this orbit lies in V
(1)
R .

(2) The set of binary quartic forms in VR having fixed invariants I and J

consists of three SL±2 (R)-orbits if 4I3 − J2 > 0; in that case, there is one

such orbit from each of V
(0)
R , V

(2+)
R , and V

(2−)
R .

Since I(g · f) = (det g)4I(f) and J(g · f) = (det g)6J(f), it follows that

two forms f1, f2 ∈ V
(i)
R are GL2(R)-equivalent if and only if there exists a

positive constant λ ∈ R with I(f1) = λ2I(f2) and J(f1) = λ3J(f2). Given

a pair (I, J) 6= (0, 0), there always exists a positive constant λ such that

H(λ2I, λ3J) = 1. Therefore, for i = 0, 2+, or 2− (resp. for i = 1), a fundamen-

tal set L(i) for the action of GL2(R) on V
(i)
R can be constructed by choosing one

form f ∈ V (i)
R , having invariants I and J , for each (I, J) such that H(I, J) = 1

and 4I3 − J2 > 0 (resp. 4I3 − J2 < 0). Table 1 provides explicit constructions

of such fundamental sets L(i). The key fact that we use about these chosen

fundamental sets L(i) is that the coefficients of all the binary quartic forms in

these L(i) are bounded; i.e., the L(i) all lie in a bounded subset of VR. It follows

L(0) =
{
x3y − 1

3
xy3 − J

27
y4 : −2 < J < 2

}
,

L(1) =
{
x3y − I

3
xy3 +

±2

27
y4 : −1 ≤ I < 1

}
∪
{
x3y +

1

3
xy3 − J

27
y4 : −2 < J < 2

}
,

L(2+) =
{ 1

16
x4 −

√
2− J
3
√

3
x3y +

1

2
x2y2 + y4 : −2 < J < 2

}
,

L(2−) =
¶
f : −f ∈ L2+

©
.

Table 1. Explicit constructions of fundamental sets L(i) for GL2(R)\V (i)
R
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that, for any h lying in a fixed compact subset G0 ⊂ GL2(R), the set h · L(i)

is also a fundamental set for the action of GL2(R) on V
(i)
R , and all coefficients

are then bounded independent of h.

We will have need for the following lemma, whose proof is postponed to

Section 2.8.

Lemma 2.2. Let f be an element in V
(i)
R having nonzero discriminant.

Then the order of the stabilizer of f in GL2(R) is 8 if i = 0 or 2, and 4 if i = 1.

Let F denote Gauss’s usual fundamental domain for GL2(Z)\GL2(R) in

GL2(R). It follows from [35, Ch. 7, Th. 1] that F may be expressed in the

form F = {nαkλ : n(u) ∈ N ′(t), α(t) ∈ A′, k ∈ K,λ ∈ Λ}, where

N ′(t) =

®Ç
1

u 1

å
: u ∈ ν(t)

´
, A′ =

®Ç
t−1

t

å
: t ≥ 4

√
3/
√

2

´
,

Λ =

®Ç
λ

λ

å
: λ > 0

´
,

(7)

and K is as usual the (compact) real orthogonal group SO2(R); here ν(t) is a

union of one or two subintervals of [−1
2 ,

1
2 ] depending only on the value of t.

For i = 0, 1, 2+, and 2−, let 2ni denote the cardinality of the stabilizer

in GL2(R) of an irreducible element v ∈ V (i)
R . Then, by Lemma 2.2, we have

n0 = 4, n1 = 2, n2+ = 4, and n2− = 4. For h ∈ GL2(R), we regard Fh ·L(i) as

a multiset, where the multiplicity of a point x in Fh ·L(i) is given by the cardi-

nality of the set {g ∈ F : x ∈ gh·L(i)}. We claim that the GL2(Z)-equivalence

class of x in V
(i)
R is represented m(x) := #StabGL2(R)(x)/#StabGL2(Z)(x) times

in the multiset Fh · L(i); i.e., the multiplicity of x′ in Fh · L(i), summed over

all x′ ∈ VZ that are GL2(Z)-equivalent to x, is equal to m(x). Indeed, for any

element x ∈ V (i)
R , there exists a unique element xL ∈ h · L(i) that is GL2(R)-

equivalent to x. Suppose g ∈ GL2(R) satisfies g · xL = x. Then for an element

g′ ∈ GL2(R), the element g′ · xL ∈ VZ is GL2(Z)-equivalent to x if and only if

g′ = γgg0 for some γ ∈ GL2(Z) and g0 ∈ StabGL2(R)(xL), i.e., if and only if g

and g′ map to the same element in the double coset space

GL2(Z)\GL2(R)/StabGL2(R)(xL).

The number of such double cosets in the single right coset GL2(Z)g is equal to

(8)
#[gStabGL2(R)(xL)g−1]

#[GL2(Z) ∩ gStabGL2(R)(xL)g−1]
=

#StabGL2(R)(x)

#StabGL2(Z)(x)
= m(x)

as desired.

Since the stabilizer in GL2(Z) of an element x ∈ VR always contains the

identity and its negative, m(x) is always a number between 1 and ni. In fact,

for almost all x ∈ V (i)
R , the quantity m(x) is equal to ni. Indeed, for any fixed
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γ ∈ GL2(Z) not equal to plus or minus the identity, the set of elements in VR
that are fixed by γ has measure 0. Since GL2(Z) is countable, it follows that

the set of elements x ∈ V (i)
R such that m(x) < ni also has measure 0. Thus for

any h ∈ GL2(R), away from a measure zero set, the multiset Fh · L(i) is the

union of ni fundamental domains for the action of GL2(Z) on V
(i)
R .

Therefore, for any h ∈ GL2(R), if we let RX(h · L(i)) denote the multiset

{w ∈ Fh · L(i) : |H(w)| < X}, then the product niN(V
(i)
Z ;X) is equal to the

number of irreducible integral points in RX(h · L(i)), with the slight caveat

that the (relatively rare—see Lemma 2.4) points with GL2(Z)-stabilizers of

cardinality 2r (r > 1) are counted with weight 1/r.

As mentioned earlier, the main obstacle to counting integral points in this

region RX(h ·L(i)) is that it is not bounded, but rather has a cusp going off to

infinity (namely, the part of RX(h ·L(i)) where the first coordinate a becomes

small in absolute value, or equivalently, where the parameter t in (7) becomes

large). We simplify the counting in this cuspidal region by “thickening” the

cusp; more precisely, we compute the number of integral points in the region

RX(h · L(i)) by averaging over a “compact continuum” of such fundamental

regions, i.e., by averaging over the domains RX(h ·L(i)) where h ranges over a

certain compact subset G0 ⊂ GL2(R). This refinement of the method of [4] is

described in more detail in Section 2.3.

However, we first turn in Section 2.2 to bounding the number of reducible

points in the main bodies (i.e., away from the cusps) of our fundamental re-

gions.

2.2. Estimates on reducibility. We consider the integral elements in the

multiset RX(h · L(i)) := {w ∈ Fh · L(i) : |H(w)| < X} that are reducible over

Q, where h is any element in a fixed compact subset G0 of GL2(R). Note that

if a binary quartic form ax4 + bx3y + cx2y2 + dxy3 + ey4 satisfies a = 0 (so

that, in particular, it lies in the cusp of the region RX(h · L(i))), then it is

automatically reducible over Q since y is a factor. The following lemma shows

that for integral binary quartic forms in RX(h · L(i)), reducibility with a 6= 0

does not occur very often (i.e., there are a negligible number of reducible points

in the main body of the fundamental domain).

Lemma 2.3. Let h ∈ G0 be any element, where G0 is any fixed compact

subset of GL2(R). Then the number of integral binary quartic forms ax4 +

bx3y + cy2 + dxy3 + ey4 ∈ RX(h · L(i)) that are reducible over Q with a 6= 0 is

O(X2/3+ε), where the implied constant depends only on G0 and ε.

Proof. Let f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be any element in

RX(h · L(i)). We know that RX(h · L(i)) ⊂ N ′A′KΛh · L(i), where h · L(i) lies

in a fixed compact set and 0 < λ < X1/24. Since all the coefficients of all the

elements in KΛh ·L(i) are bounded by O((X1/24)4) = O(X1/6), it follows that
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in N ′A′KΛh · L(i), we still have a = O(X1/6), b = O(X1/6), c = O(X1/6),

ad = O(X2/6), bd = O(X2/6), and ae = O(X2/6). In particular, the latter

estimates clearly imply that the number of points in RX(h · L(i)) with a 6= 0

and e = 0 is O(X4/6+ε).

Let us now assume that a 6= 0 and e 6= 0. We first estimate the number

of forms that have a rational linear factor. The above estimates show that

the number of possibilities for the quadruple (a, b, d, e) is at most O(X4/6+ε).

If px + qy is a linear factor of f(x, y), where p, q ∈ Z are relatively prime,

then p must be a factor of a, while q must be a factor of e; they are thus

both determined up to O(Xε) possibilities. Once p and q are determined,

computing f(−q, p) and setting it equal to zero then uniquely determines c (if

it is an integer at all) in terms of a, b, d, e, p, q. Thus the total number of forms

f ∈ RX(h · L(i)) having a rational linear factor and a 6= 0 is O(X4/6+ε).

We now estimate the number of binary quartic forms in RX(h ·L(i)) that

factor into two irreducible binary quadratic forms over Z, say

ax4 + bx3y + cx2y2 + dxy3 + ey4 = (px2 + qxy + ry2)
(a
p
x2 + sxy +

e

r
y2
)

where p, q, r, s ∈ Z and p, q, r are relatively prime. Since ae = O(X2/6) and

a, e 6= 0, the number of possibilities for the pair (a, e) is O(X2/6+ε). We then

see that p divides a and r divides e, and hence the number of possibilities for

(p, r), once a and e have been fixed, is bounded by O(Xε).

Next, equating coefficients, we see that

a

p
q + ps = b,

e

r
q + rs = d.

(9)

We split into two cases. We first consider the case where ar
pe 6=

p
r ; i.e., the

linear system (9) in the variables q and s is nonsingular. Then the values of

b and d uniquely determine q and s, and so the total number of quadruples

(a, b, d, e)—and hence the total number of octuples (a, b, d, e, p, r, q, s)—is at

most O(X4/6+ε). Furthermore, once this octuple has been fixed, this also

then determines c by equating coefficients of x2y2. Hence there are at most

O(X4/6+ε) possibilities for (a, b, c, d, e) in this case.

Next, we consider the case where ar
pe = p

r , so that the system (9) is singular.

In this case, the value of b determines the value of d uniquely; namely, d =

(r/p)b. We have already seen that there are O(X2/6+ε) possibilities for the

quadruple (a, e, p, r). Since there are only O(X1/6) choices for each of b and c,

and then d is determined by b, the total number of choices for (a, b, c, d, e) is

again O(X4/6+ε), as desired. �
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We also have the following lemma, which bounds the number of GL2(Z)-

equivalence classes of integral binary quartic forms having large stabilizers

inside GL2(Z) (in fact, in GL2(Q)); we defer the proof to Section 2.8.

Lemma 2.4. The number of GL2(Z)-orbits of integral binary quartic forms

f ∈ VZ such that ∆(f) 6= 0 and H(f) < X whose stabilizer in GL2(Q) has size

greater than 2 is O(X3/4+ε).

2.3. Averaging and cutting off the cusp. Let G0 be a compact, semialge-

braic, left K-invariant set in GL2(R) that is the closure of a nonempty open

set and in which every element has determinant greater than or equal to 1.

Then for i = 0, 1, 2+, and 2−, we may write

(10) N(V
(i)
Z ;X) =

∫
h∈G0

#{x ∈ Fh · L ∩ V irr
Z : H(x) < X}dh

ni
∫
h∈G0

dh
,

where V irr
Z denotes the set of irreducible elements in VZ, the set L is equal to

L(i), and dh denotes Haar-measure on GL2(R). We normalize dh as follows. If

we write h ∈ GL2(R) in its Iwasawa decomposition as h = n(u)α(t)kλ, then

dh = t−2du d×t dk d×λ, where d×t = t−1dt, d×λ = λ−1dλ, and
∫
K dk = 1.

Thus, the denominator of the right-hand side of (10) is an absolute constant

C
(i)
G0

greater than zero.

More generally, for any GL2(Z)-invariant subset S ⊂ V
(i)
Z , let N(S;X)

denote the number of irreducible GL2(Z)-orbits in S having height less than X.

Let Sirr denote the subset of irreducible points of S. Then N(S;X) can be

similarly expressed as

(11) N(S;X) =

∫
h∈G0

#{x ∈ Fh · L ∩ Sirr : H(x) < X}dh

C
(i)
G0

.

We use (11) to define N(S;X) even for sets S ⊂ VZ that are not necessarily

GL2(Z)-invariant.

Now, given x ∈ V (i)
R , let xL denote the unique point in L that is GL2(R)-

equivalent to x. We have

(12) N(S;X) =
1

C
(i)
G0

∑
x∈Sirr

H(x)<X

∫
h∈G0

#{g ∈ F : x = gh · xL}dh.

For a given x ∈ Sirr, there exist a finite number of elements g1, . . . , gn ∈ GL2(R)

satisfying gj · xL = x. We then have∫
h∈G0

#{g ∈ F : x = gh · xL}dh =
∑
j

∫
h∈G0

#{g ∈ F : gh = gj}dh

=
∑
j

∫
h∈G0∩F−1gj

dh.
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As dh is an invariant measure on G, we have∑
j

∫
h∈G0∩F−1gj

dh =
∑
j

∫
g∈G0g

−1
j ∩F−1

dg =
∑
j

∫
g∈F

#{h ∈ G0 : gh = gj}dg

=

∫
g∈F

#{h ∈ G0 : x = gh · xL}dg.

Therefore,

N(S;X) =
1

C
(i)
G0

∑
x∈Sirr

H(x)<X

∫
g∈F

#{h ∈ G0 : x = gh · xL}dg

=
1

C
(i)
G0

∫
g∈F

#{x ∈ Sirr ∩ gG0 · L : H(x) < X} dg

=
1

C
(i)
G0

∫
g∈N ′(t)A′ΛK

#{x ∈ Sirr ∩ n
Ä
t−1

t

ä
λkG0 · L : H(x) < X}t−2

× dn d×t d×λ dk .

(13)

Since KG0 = G0 and
∫
K dk = 1, we obtain the following theorem, which

provides a key formula for N(S,X).

Theorem 2.5. For any subset S ⊂ V (i)
Z , we have

(14) N(S;X) =
1

C
(i)
G0

∫
g∈N ′(t)A′Λ

#{x ∈ Sirr ∩B(n, t, λ,X)}t−2dn d×t d×λ,

where C
(i)
G0

= ni
∫
h∈G0

dh and

(15) B(n, t, λ,X) := n
Ä
t−1

t

ä
λG0 · L ∩ {x ∈ V (i)

R : H(x) < X}.

To estimate the number of lattice points in the region B(n, t, λ,X) defined

by (15), we have the following proposition due to Davenport [14].

Proposition 2.6. Let R be a bounded, semialgebraic multiset in Rn hav-

ing maximum multiplicity m and that is defined by at most k polynomial in-

equalities, each having degree at most `. Then the number of integral lattice

points (counted with multiplicity) contained in the region R is

Vol(R) +O(max{Vol(R̄), 1}),

where Vol(R̄) denotes the greatest d-dimensional volume of any projection of

R onto a coordinate subspace obtained by equating n − d coordinates to zero,

where d takes all values from 1 to n − 1. The implied constant in the second

summand depends only on n, m, k, and `.
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Davenport states the above proposition only for the number of lattice

points in compact semialgebraic sets R ⊂ Rn. However, his result imme-

diately implies Proposition 2.6 for a general bounded semialgebraic multiset

R ⊂ Rn, via partitioning the multiset R into semialgebraic sets having con-

stant multiplicity and then applying the result to the closure and boundary of

each such set.

By our construction of the L(i), the coefficients of the binary quartic forms

in G0 ·L are all uniformly bounded. Let C be a constant such that C4 bounds

the absolute values of all the coefficients of all the forms in G0 · L. We then

have the following lemma on the number of lattice points in B(n, t, λ,X) having

nonzero leading coefficient.

Proposition 2.7. The number of lattice points (a, b, c, d, e) inB(n, t, λ,X)

with a 6= 0 is 
0 if Cλ < t;

Vol(B(n, t, λ,X)) +O(t4λ16) otherwise.

Proof. If ax4 +bx3y+cx2y2 +dxy3 +ey4 ∈ B(n, t, λ,X) is a binary quartic

form, then |a|, |b|, |c|, |d|, and |e| are at most C4λ4/t4, C4λ4/t2, C4λ4, C4λ4t2,

and C4λ4t4, respectively. If Cλ/t < 1, then a = 0 is the only possibility for

such an integral binary quartic form.

Now assume Cλ/t ≥ 1. This implies that λ, like t, is bounded below by

a positive constant. Then each of the upper limits C4λ4/t4, C4λ4/t2, C4λ4,

C4λ4t2, and C4λ4t4 for |a|, |b|, |c|, |d|, and |e|, respectively, are also bounded

below by a positive constant, and the upper limit for |a| is the smallest of these

upper limits up to a bounded constant. Therefore, the k-dimensional volume of

any projection of B(n, t, λ,X) onto a subspace defined by setting k coefficients

equal to 0 (where 1 ≤ k ≤ 4) is at most a bounded constant times the product

of the last four upper limits, or O(λ4/t2 ·λ4 ·λ4t2 ·λ4t4) = O(t4λ16). The result

now follows from Proposition 2.6. �

In (14), since L (and therefore also G0 ·L) contains only points with height

at least 1, we observe (by the definition of B(n, t, λ,X)) that the integrand will

be nonzero only if t ≤ Cλ and λ < X1/24. Thus we may write

N(V
(i)
Z ;X) =

1

C
(i)
G0

∫ X1/24

λ= 4√3/(
√

2C)

∫ Cλ

t= 4√3/
√

2

∫
N ′(t)

(Vol(B(n, t, λ,X)) +O(t4λ16))

× t−2dn d×t d×λ+O(X3/4+ε),

(16)

where the error term of O(X3/4+ε) arises due to the bound on reducible forms

in Lemma 2.3 and the bound on forms having nontrivial GL2(Z)-stabilizer in
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Lemma 2.4. The integral of the second summand is immediately evaluated to

be O(X3/4). Meanwhile, the integral of the first summand is

1

C
(i)
G0

∫
h∈G0

Vol(RX(h · L))dh

−
∫ X1/24

λ= 4√3/(
√

2C)

∫ ∞
t=Cλ

∫
N ′(t)

Vol(B(n, t, λ,X))t−2dn d×t d×λ.

(17)

However, Vol(RX(h · L)) is independent of h; also, since Vol(B(n, t, λ,X)) =

O(λ20), by carrying out the integration in the second term of (17), we see that

that this term is also O(X3/4). In other words, the volume of the cuspidal

region, where t > Cλ, is small. We conclude that

(18) N(V
(i)
Z ;X) = Vol(RX(L))/ni +O(X3/4+ε).

To complete the proof of Theorem 2.1, it thus remains only to compute the

volume Vol(RX(L)).

2.4. Computation of the volume. Let i be equal to 0, 1, 2+, or 2−. Our

aim in this subsection is to compute the volume of RX(L(i)) = {w ∈ Fh ·L(i) :

|H(w)| < X}. To this end, let R(i) := Λ · L(i). Then for each (I, J) ∈ R × R
with ∆(I, J) > 0, the sets R(0), R(2+), and R(2−) contain exactly one point

having invariants I and J ; for each (I, J) ∈ R × R with ∆(I, J) < 0, the set

R(1) contains exactly one point having invariants I and J . Let R(i)(X) denote

the set of all those points in R(i) having height less than X. We now consider

a twisted action of GL2(R) on VR given by

(19) γ · f(x, y) := f((x, y) · γ)/(det γ)2

for γ ∈ GL2(R) and f ∈ VR, which induces an action of PGL2(R) on VR.

Let FPGL2 be the image in PGL2(R) of the fundamental domain F for the

action of GL2(Z) on GL2(R). Then FPGL2 is a fundamental domain for the

action of PGL2(Z) on PGL2(R) by left multiplication. Furthermore, we have

RX(L(i)) = FPGL2 ·R(i)(X).

The set R(i) is in canonical one-to-one correspondence with the set {(I, J)

∈ R × R : I3 − J2/4 > 0} if i = 0, 2+, or 2−, and with {(I, J) ∈ R × R :

I3 − J2/4 < 0} if i = 1. There is thus a natural measure on each of these sets

R(i), given by dr = dI dJ . Let ω be a differential that generates the rank 1

module of top-degree differentials of PGL2 over Z. Then ω is well defined up

to sign. To compute the volume of the multiset RX(L(i)) = FPGL2 · R(i)(X),

we use the following proposition.

Proposition 2.8. For any measurable function φ on VR, we have

(20)

∫
FPGL2

·R(i)
φ(v)dv =

1

27

∫
R(i)

∫
PGL2(R)

φ(g · p(i)
I,J)ω(g) dIdJ,
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where p
(i)
I,J ∈ R(i) is the point having invariants equal to I and J and we regard

FPGL2 ·R(i) as a multiset.

The proposition follows from a Jacobian computation and can be veri-

fied directly; for a more noncomputational proof of the above proposition, see

Section 3.3.

Proposition 2.8 may now be used to compute the volume of the multiset

RX(L(i)); we have∫
RX(L(i))

dv =

∫
FPGL2

·R(i)(X)
dv

=
1

27

∫
R(i)(X)

∫
FPGL2

dg dI dJ =
2ζ(2)

27

∫
R(i)(X)

dI dJ,

(21)

where the final equality follows from the fact that

Vol(FPGL2) = Vol(PGL2(Z)\PGL2(R)) = 2ζ(2);

see [29]. When i = 0, 2+, or 2−, we compute
∫
R(i)(X) dI dJ to be

(22)

∫ X1/3

I=0

∫ 2I3/2

J=−2I3/2
dJdI =

8

5
X5/6.

Meanwhile,
∫
R(1)(X) dI dJ is equal to

(23)

∫ X1/3

I=−X1/3

∫ 2X1/2

J=−2X1/2
dJdI −Vol(R(0)(X)) = 8X5/6 − 8

5
X5/6 =

32

5
X5/6.

We conclude that

(24) Vol(RX(L(i))) =


16

135
· ζ(2)X5/6 for i = 0, 2+, and 2−;

64

135
· ζ(2)X5/6 for i = 1.

As n0 = n2+ = n2− = 4 and n1 = 2, equations (18) and (24) now immediately

imply Theorem 2.1.

To deduce Theorem 1.8 from Theorem 2.1, we require a count of the

number of eligible pairs (I, J) ∈ Z × Z satisfying H(I, J) < X. The next

lemma follows immediately from Theorem 1.7, which we prove in Section 2.8:

Lemma 2.9. The set of eligible (I, J) ∈ Z× Z is a union of nine distinct

translates of 9Z× 27Z.

The following proposition is now a simple application of Proposition 2.6

and Lemma 2.9.

Proposition 2.10. Let N+
I,J(X) and N−I,J(X) denote the number of el-

igible (I, J) ∈ Z × Z satisfying H(I, J) < X that have positive discriminant

and negative discriminant, respectively. Then we have
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(a) N+
I,J(X) =

8

135
X5/6 +O(X1/2);

(b) N−I,J(X) =
32

135
X5/6 +O(X1/2).

Proof. Let R±I,J(X) denote the sets

{(i, j) ∈ R2 : |i| < X1/3, |j| < 2X1/2, ±(4i3 − j2) > 0}.

The sizes of the projections of R±I,J(X) onto smaller-dimensional coordinate

hyperplanes are all bounded byO(X1/2). Using Proposition 2.6 and Lemma 2.9

we then see that N±I,J(X) = 9
243Vol(R±I,J(X)) + O(X1/2). The volumes of

R+
I,J(X) and R−I,J(X) were computed in (22) and (23), respectively, and the

proposition follows. �

Theorem 1.8 now follows from Theorem 2.1 and Proposition 2.10.

2.5. Congruence conditions. In this subsection, we prove a version of The-

orem 2.1 where we count integral binary quartic forms satisfying any specified

finite set of congruence conditions.

Suppose S is a subset of VZ defined by finitely many congruence conditions.

We may assume that S ⊂ VZ is defined by congruence conditions modulo some

integer m. Then S may be viewed as the union of (say) k translates L1, . . . ,Lk
of the lattice m · VZ. For each such lattice translate Lj , we may use formula

(14) and the discussion following that formula to compute N(Lj ∩ V (i)
Z ;X),

where each d-dimensional volume is scaled by a factor of 1/md to reflect the

fact that our new lattice has been scaled by a factor of m. With these scalings,

the maximum volume of the projections of B(n, t, λ,X) is seen to be at most

O(t4λ16). Analogous to Proposition 2.7, we see that the number of points

(a, b, c, d, e) in B(n, t, λ,X) ∩ Lj with a 6= 0 is
0 if Cλ

t < 1;

1

m5
Vol(B(n, t, λ,X)) +O(t4λ16) otherwise.

Carrying out the integral for N(Lj ∩ V (i)
Z ;X) as in (16)–(17), we obtain

the following analogue of (18):

N(Lj ∩ V (i)
Z ;X) =

Vol(RX(L(i)))

ni ·m5
+O(X3/4+ε).

Summing over j, we thus obtain

(25) N(S ∩ V (i)
Z ;X) =

kVol(RX(L(i)))

ni ·m5
+O(X3/4+ε).

For any set S in VZ that is definable by congruence conditions, let us

denote by µp(S) the p-adic density of the p-adic closure of S in VZp , where we
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normalize the additive measure µp on VZp so that µp(VZp) = 1. We then have

the following theorem.

Theorem 2.11. Suppose S is a subset of VZ defined by congruence con-

ditions modulo finitely many prime powers. Then we have

(26) N(S ∩ V (i)
Z ;X) = N(V

(i)
Z ;X)

∏
p

µp(S) +O(X3/4+ε),

where µp(S) denotes the p-adic density of S in VZ and where the implied con-

stant depends only on S and ε.

Theorem 2.11 follows from equations (18) and (25), together with the

identity km−5 =
∏
p µp(S).

We will also have occasion to use the following weighted version of Theo-

rem 2.11; the proof is identical.

Theorem 2.12. Let p1, . . . , pk be distinct prime numbers. For j=1, . . . , k,

let φpj : VZ → R be a GL2(Z)-invariant function on VZ such that φpj (f) de-

pends only on the congruence class of f modulo some power p
aj
j of pj . Let

Nφ(V
(i)
Z ;X) denote the number of irreducible GL2(Z)-orbits in V

(i)
Z having

height bounded by X , where each orbit GL2(Z) · f is counted with weight

φ(f) :=
∏k
j=1 φpj (f). Then we have

(27) Nφ(V
(i)
Z ;X) = N(V

(i)
Z ;X)

k∏
j=1

∫
f∈VZpj

φ̃pj (f) df +O(X3/4+ε),

where φ̃pj is the natural extension of φpj to VZpj
, df denotes the additive mea-

sure on VZpj
normalized so that

∫
f∈VZpj

df = 1, and where the implied constant

in the error term depends only on the local weight functions φpj and ε.

2.6. Uniformity estimates. In order to prove Theorems 1.1 and 1.3, we

require a sieve that allows us to count equivalence classes of integral binary

quartic forms of bounded height satisfying certain infinite sets of congruence

conditions. (In particular, this sieve will allow us to count equivalences classes

of integral binary quartic forms having bounded height and squarefree discrim-

inant.) A key ingredient for this sieve—and the purpose of this subsection—is

an estimate that uniformly bounds the error terms in Theorems 2.11 and 2.12

as more and more congruence conditions are imposed.

Specifically, we prove the following theorem.

Theorem 2.13. For a prime p, letWp(V ) denote the set of binary quartic

forms f ∈ VZ such that p2 | ∆(f). Then, for any M > 0, we have

lim
X→∞

N(∪p>MWp(V );X)

X5/6
= O

( 1

log M

)
,

where the implied constant is independent of M .
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Such uniformity estimates can, in general, be quite nontrivial. In the

current case, to prove this estimate, we follow the method of [5] (and also

invoke the results of [3], [39], [18], and [22] in a critical way). The method, in

particular, requires the embedding of binary quartic forms into a representation

with a larger group of symmetries.

Specifically, we embed the space of integral binary quartic forms into the

space of pairs of integral ternary quadratic forms. More precisely, let WZ
denote the space of pairs (A,B) of ternary quadratic forms having coefficients

in Z. We will always identify ternary quadratic forms over Z with their Gram

matrices whose coefficients lie in 1
2Z; we may thus express an element (A,B) ∈

WZ as a pair of 3× 3 symmetric matrices via

2 · (A,B) =

Ö 2a11 a12 a13

a12 2a22 a23

a13 a23 2a33

 ,
 2b11 b12 b13

b12 2b22 b23

b13 b23 2b33


è
,

where aij , bij ∈ Z.

The group GL2(Z) × SL3(Z) acts naturally on the space WZ. Namely,

an element g3 ∈ SL3(Z) acts on WZ by g3 · (A,B) = (g3Ag
t
3, g3Bg

t
3), while

an element g2 = ( p qr s ) ∈ GL2(Z) acts by g2 · (A,B) = (pA + qB, rA + sB).

The ring of polynomial invariants for the action of GL2(Z)× SL3(Z) on WZ is

generated by one element, which is called the discriminant. The discriminant

∆(A,B) of an element (A,B) ∈WZ is given by the discriminant of the binary

cubic form 4 Det(Ax − By) in x and y and, thus, is an invariant of degree 12

in the entries of A and B.

The space VZ of integral binary quartic forms embeds into WZ via the

map φ defined by

φ : ax4 + bx3y + cx2y2 + dxy3 + ey4

7→

Ö 1/2

−1

1/2

 ,
 a b/2 0

b/2 c d/2

0 d/2 e


è
.

(28)

We denote the first matrix in (28) by A1 and the subset of all pairs (A1, B) of

ternary quadratic forms in WZ by WZ,1. The group FZ,1×SO(A1) ⊂ GL2(Z)×
SL3(Z) preserves WZ,1, where FZ,1 is the group of all 2 × 2 lower triangular

matrices over Z with 1’s on the diagonal. We also note that the map φ is

discriminant preserving; i.e., the discriminant of an element of VZ is equal

to the discriminant of its image in WZ. For a binary quartic form f , if we

write φ(f) = (A1, B), then we call the binary form Det(Ax − By) the cubic

resolvent form of f ; note that this form is monic—i.e., its leading coefficient

as a polynomial in x is 1.
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Next, we observe that every FZ,1-equivalence class of WZ,1 contains a

unique element (A1, B) such that the top right entry of B is equal to 0. It

follows that φ maps the space of binary quartic forms VZ bijectively to the set

of FZ,1-orbits on WZ,1 via the composite map

VZ →WZ,1 → FZ,1\WZ,1.

We may ask how the action of GL2(Z) on VZ manifests itself (via φ) as

an action on FZ,1\WZ,1. To answer this, note that the center of GL2(Z) acts

trivially on its representation on binary quadratic forms px2 − 2qxy + ry2

via γ · f(x, y) := f((x, y) · γ)/(det γ). This action of GL2(Z) preserves the

discriminant 4(q2 − pr) of these binary quadratic forms, yielding the map

(29)

ρ : PGL2(Z) → SL3(Z), given explicitly byÇ
a b

c d

å
7→ 1

ad− bc

Ö
d2 cd c2

2bd ad+ bc 2ac

b2 ab a2

è
.

Since A1 is the Gram matrix of the ternary form q2−pr, we see that the image

of PGL2(Z) is contained in the orthogonal group SO(A1,Z) and is, in fact,

equal to it (see [39, Lemma 4.4.2]).

For any ring R, let VR denote the space of binary quartic forms with

coefficients in R. The center of GL2(R) acts trivially under the “twisted action”

of GL2(R) on VR defined by

(30) γ · f(x, y) := (det γ)−2f((x, y) · γ),

yielding an action of PGL2(R) on VR. Note that the PGL2(Z)-orbits on VZ are

the same as the GL2(Z)-orbits on VZ, since
Ä
−1
−1

ä
∈ GL2(Z) acts trivially

on VZ.

It is now easily checked that φ(γ · f) and ρ(γ) ·φ(f) are the same element

in FZ,1\WZ,1 for all γ ∈ PGL2(Z) and f ∈ VZ. Therefore, we have the fol-

lowing theorem, which will be essential in proving the uniformity estimate of

Theorem 2.13.

Theorem 2.14. The map φ defined by (28) gives a canonical bijection

between PGL2(Z)-orbits on VZ and FZ,1 × SO(A1,Z)-orbits on WZ,1.

We thus obtain a natural map

(31) ψ : PGL2(Z)\VZ → (GL2(Z)× SL3(Z))\WZ

given by the composite map

(32) PGL2(Z)\VZ → (FZ,1 × SO(A1,Z))\WZ,1 → (GL2(Z)× SL3(Z))\WZ.

Remark 2.15. It is proven in [2] that the orbit space (GL2(Z)×SL3(Z))\WZ
corresponds to isomorphism classes of pairs (Q,R), where Q is a quartic ring
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and R is a cubic resolvent ring of Q. Meanwhile, using the map (28), Wood [40]

proves that the orbit space PGL2(Z)\VZ corresponds to isomorphism classes

of triples (Q,R, x), where Q is a quartic ring, R is a monogenic cubic resolvent

ring of Q, and x is a monogenizer of R; i.e., x generates R as a Z-algebra (so

that R = Z[x]). It follows that the map ψ in (31) corresponds to the map

{(Q,R, x)} → {(Q,R)},

which takes a quartic ring with a monogenized cubic resolvent ring and simply

forgets its monogenizer (and the fact that R is monogenic).

Before we state and prove the desired uniformity estimate, we require the

following key proposition.

Proposition 2.16. An element of (GL2(Z)× SL3(Z))\WZ with nonzero

discriminant has at most 12 preimages in PGL2(Z)\VZ under the map ψ.

Proof. By Theorem 2.14, it suffices to prove that an element w of GL2(Z)×
SL3(Z)\WZ has at most 12 preimages in FZ,1×SO(A1,Z)\WZ,1. Let {(A1, Bα)}
be a set of FZ,1×SO(A1,Z)-inequivalent preimages of w inWZ,1, where α ranges

over some (possibly infinite) set A. The integral binary cubic forms gα(x, y) :=

4 Det(A1x − Bαy) all have x3-coefficient equal to 1; i.e., gα(1, 0) = 1. Since

the (A1, Bα) are pairwise FZ,1 × SO(A1,Z)-inequivalent but are all GL2(Z)×
SL3(Z)-equivalent, we see that the gα are pairwise FZ,1-inequivalent but are

all GL2(Z)-equivalent.

The deep results in [18] and [22], which assert that g(x, y) = 1 has at most

12 solutions with (x, y) ∈ Z×Z for an integral binary cubic form g of nonzero

discriminant, now imply that the cardinality of A is at most 12. �

We may now proceed to the proof of Theorem 2.13. To this end, let

Wp(V ) ⊂ VZ denote the set of integral binary quartic forms f such that

p2 | ∆(f). We partition Wp(V ) into two disjoint sets W(1)
p (V ) and W(2)

p (V ).

Here, W(1)
p (V ) is the set of all binary quartic forms f whose discriminant is

strongly divisible by p2; i.e., p2 | ∆(f + pg) for all g ∈ VZ. The set W(2)
p (V )

is the set of all binary quartic forms f ∈ VZ whose discriminant, in the ter-

minology of [5], is weakly divisible by p2; i.e., there exists g ∈ VZ such that

p2 - ∆(f + pg).

Then an element f ∈ W(1)
p (V ) is either a multiple of p or the splitting type

of f at p is (131), (1212), (22), or (14); i.e., either f ∈ pVZ or the reduction

of f modulo p factors into irreducible factors over Fp as c(x − αy)3(x − βy),

c(x− αy)2(x− βy)2, c(x2 + αxy + βy2)2, or c(x− αy)4, respectively.

The desired uniformity estimate for W(1)
p (V ) follows by applying the fol-

lowing quantitative version of a result of Ekedahl [21], proven in [5, Th. 3.3].
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Theorem 2.17. Let B be a compact region in Rn having finite measure,

and let Y be any closed subscheme of AnZ of codimension k ≥ 2. Let r and M

be positive real numbers. Then we have

#{v ∈ rB ∩ Zn | v (mod p) ∈ Y (Fp) for some prime p > M}

= O

Å
rn

Mk−1 logM
+ rn−k+1

ã
,

(33)

where the implied constant depends only on B and on Y .

To apply this result, recall that we used FPGL2 to denote the fundamental

domain N ′A′K for the left action of PGL2(Z) on PGL2(R). For 0 < ε < 1, we

denote by F (ε)
PGL2

the subset of elements n(u)a(t)k ∈ FPGL2 where t is bounded

above by a suitable constant to ensure that

Vol(F (ε)
PGL2

) = (1− ε)Vol(FPGL2).

Then, for fixed ε > 0, the set F (ε)
PGL2

· R(i)(X) (with R(i)(X) as defined in

Section 2.4) is a bounded region in VR that expands homogeneously as X

grows. We have the following theorem.

Theorem 2.18. Let 0 < ε < 1 be fixed. For i ∈ {0, 1, 2+, 2−}, we have

(34) #
{
F (ε)

PGL2
·R(i)(X)

⋂
(∪p>MW(1)

p (V ))
}

= O(X5/6/(M logM) +X2/3),

where the implied constant depends only on ε.

Indeed, the discriminants of elements in W(1)
p (V ) are strongly divisible

by p2. Theorem 2.18 thus follows from Theorem 2.17 (with n = 5, k = 2, and

r = X1/6) because, as noted in [5], if an element in v ∈ VZ has discriminant

∆ strongly divisible by p2, then it lies in Y (Fp), where Y is the codimension-2

subscheme of V ∼= A5 defined by the vanishing of ∆ and ∂∆/∂e.

However, a uniformity estimate for W(2)
p (V )—the set of elements in VZ

having discriminant divisible, but not strongly divisible, by p2—is more difficult

to obtain. It is for this case that we consider the embedding (28) of VZ into

WZ, where we can then use previously obtained uniformity estimates for WZ.

We state the relevant estimate for WZ below.

Theorem 2.19 ([3, Prop. 23]). Let W(2)
p (W ) denote the set of elements

in WZ whose discriminants are divisible, but not strongly divisible, by p2.

Then the number of GL2(Z)× SL3(Z)-orbits on W(2)
p (W ) having discriminant

bounded by X is O(X/p2), where the implied constant is independent of p.

We may use this uniformity estimate for W(2)
p (W ) to obtain one for

W(2)
p (V ). Specifically, in conjunction with Proposition 2.16, we obtain the
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estimate

(35) N(W(2)
p (V );X) = O(X/p2),

where the implied constant is independent of X and p.

Theorem 2.20. Let 0 < ε < 1 be fixed. For i ∈ {0, 1, 2+, 2−}, we have

(36) #
{
F (ε)

PGL2
·R(i)(X)

⋂
(∪p>MW(2)

p (V ))
}

= O(X5/6/ log M),

where the implied constant is independent of X and M .

Proof. We define R
(ε)
X := F (ε)

PGL2
·R(i)(X) and obtain an individual bound

on #{R(ε)
X ∩W

(2)
p (V )} for each prime p. When viewed as a polynomial in e, the

derivative of ∆ with respect to e is a nonzero cubic polynomial ∂∆/∂e in e. If

a binary quartic form f(x, y) = a0x
4 +b0x

3y+c0x
2y2 +d0xy

3 +e0y
4 belongs to

W(2)
p , then for this form f we must have p2 | ∆ and p - ∂∆/∂e (for otherwise

f would belong to W(1)
p ). Since R

(ε)
X is a homogeneously expanding region

in VR = R5 with each side growing at the order of X1/6, there are O(X4/6)

possibilities for a quadruple (a0, b0, c0, d0) such that f(x, y) ∈ R(ε)
X ∩VZ for some

e0. Given fixed values of a0, b0, c0, and d0, there are at most three choices for

the residue of e0 (mod p) such that p | ∆. Since p - ∂∆/∂e, each such residue

modulo p has a unique lift modulo p2 such that p2 | ∆. Hence, we have

(37) #{R(ε)
X ∩W

(2)
p (V ))} = O(max{X5/6/p2, X4/6}),

where we may use the first estimate for p ≤ X1/12 and the second estimate for

p > X1/12. Since there are O(X1/6/ logX) primes in the range [1, X1/6], and

since
∑
p>X1/6 1/p2 = O(1/(X1/6 logX)), we obtain

#
{
R

(ε)
X

⋂
(∪p>MW(2)

p (V ))
}

= O

Ç∑
p>M

#{R(ε)
X ∩W

(2)
p (V )}

å
= O(X5/6/ logM)

by using (37) to estimate #{R(ε)
X ∩ W

(2)
p (V )} when p < X1/6 and using (35)

when p ≥ X1/6. �

Using the above two uniformity estimates, we obtain a proof of Theo-

rem 2.13.

Proof of Theorem 2.13. Let R(X) denote ∪iR(i)(X). By the results of

Section 2.1, we have

N(∪p>MWp(V ), X) ≤ #{FPGL2 ·R(X)
⋂

(∪p>MWp(V )) ∩ V irr
Z }

≤ #{F (ε)
PGL2

·R(X)
⋂

(∪p>MWp(V ))}

+ #{(FPGL2\F
(ε)
PGL2

) ·R(X) ∩ V irr
Z )}.

(38)
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By Theorems 2.18 and 2.20, the term in the second line of (38) is bounded by

O(X5/6/ log M+X2/3). The results of Sections 2.3 and 2.4 imply that the term

in the third line of (38) is bounded by Vol((FPGL2−F
(ε)
PGL2

)·R(X)) = O(εX5/6).

Since this holds for all ε > 0, the theorem follows. �

2.7. A squarefree sieve. For the applications, we require a more general

congruence version of our counting theorem for binary quartic forms, namely,

one which allows appropriate infinite sets of congruence conditions to be im-

posed and which also allows weighted counts of lattice points (where weights

are also assigned by congruence conditions). More precisely, we say that a func-

tion φ : VZ → [0, 1] ⊂ R is defined by congruence conditions if, for all primes p,

there exist functions φp : VZp → [0, 1] satisfying the following conditions:

(1) For all f ∈ VZ, the product
∏
p φp(f) converges to φ(f).

(2) For each prime p, the function φp is locally constant outside some closed

set Sp ⊂ VZp of measure zero.

Such a function φ is called acceptable if, for sufficiently large primes p, we have

φp(f) = 1 whenever p2 - ∆(f). For example, the characteristic function of

the set of integral binary quartic forms having squarefree discriminant is an

acceptable function.

We then have the following version of Theorem 2.12, in which we allow

weights to be defined by certain infinite sets of congruence conditions.

Theorem 2.21. Let φ : VZ → [0, 1] be an acceptable function that is

defined by congruence conditions via the local functions φp : VZp → [0, 1].

Then, with notation as in Theorem 2.12, we have

(39) Nφ(V
(i)
Z ;X) = N(V

(i)
Z ;X)

∏
p

∫
f∈VZp

φp(f) df + o(X5/6).

Proof. Since φp is locally constant outside some set of measure zero, there

exists an increasing sequence of functions ψp,1 ≤ ψp,2 ≤ · · · that are bounded

above by and converge pointwise to φp, and a decreasing sequence of functions

1 = ψ′p,0 ≥ ψ′p,1 ≥ ψ′p,2 ≥ · · · that are bounded below by and converge pointwise

to φp, such that ψp,n and ψ′p,n are defined on VZp by congruence conditions

modulo pn. It will also be convenient in the formulas that follow to define ψp,0
to equal the constant function 1 on VZp .

By the dominated convergence theorem, we have

(40) lim
n→∞

∫
VZp

ψp,n(f)df = lim
n→∞

∫
VZp

ψ′p,n(f)df =

∫
VZp

φp(f)df.

Furthermore, since φ is acceptable, we have

(41) 1−
∫
VZp

φp(f)df ≤
∫
f∈VZp
p2|∆(f)

df � p−2

for sufficiently large p. (See, for example, [32, Proof of Th. 3.2].)
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For a fixed integer Y , let NY
ψ (V

(i)
Z ;X) (resp. NY

ψ′(V
(i)
Z ;X)) denote the

number of irreducible GL2(Z)-orbits in V
(i)
Z having height bounded by X,

where each orbit GL2(Z) · f is counted with weight∏
p

ψp,bY/pc(f)
(
resp.

∏
p

ψ′p,bY/pc(f)
)
.

The function bY/pc is chosen to take nonzero values only for finitely many

primes p for any fixed Y . Therefore, it follows from Theorem 2.12 that, for

any fixed Y , we have

lim sup
X→∞

Nφ(V
(i)
Z ;X)

X5/6
≤ lim sup

X→∞

NY
ψ′(V

(i)
Z ;X)

X5/6

= lim
X→∞

N(V
(i)
Z ;X)

X5/6

∏
p

∫
f∈VZp

ψ′p,bY/pc(f) df.

Equation (41) implies that the product
∏
p

∫
VZp

φp(f)df converges. Letting Y

tend to infinity, we have by (40) that

(42) lim sup
X→∞

Nφ(V
(i)
Z ;X)

X5/6
≤ lim

X→∞

N(V
(i)
Z ;X)

X5/6

∏
p

∫
f∈VZp

φp(f) df.

We now obtain a lower bound using Theorem 2.13. For sufficiently large p

and n ≥ 1, we have ψp,n(f) = φp(f) = 1 unless p2 | ∆(f). Thus, for sufficiently

large Y , we have

lim inf
X→∞

Nφ(V
(i)
Z ;X)

X5/6
≥ lim inf

X→∞

[NY
ψ (V

(i)
Z ;X)

X5/6
− O(N(∪p>YWp(V );X))

X5/6

]

= lim
X→∞

N(V
(i)
Z ;X)

X5/6
·
∏
p

∫
f∈VZp

ψp,bY/pc(f) df −O(1/ log Y ),

where the first inequality follows because φ is an upper bound for ψp,n unless

n = 0, and the last equality follows from Theorems 2.12 and 2.13. Taking the

limit as Y tends to infinity then yields

(43) lim inf
X→∞

Nφ(V
(i)
Z ;X)

X5/6
= lim

X→∞

N(V
(i)
Z ;X)

X5/6
·
∏
p

∫
f∈VZp

φp(f) df,

where we use (41) to exchange the limit (in Y ) and product, and (40) to

exchange the limit (in Y ) and integral. The theorem now follows from (42)

and (43). �

2.8. Proofs of auxiliary results (Lemmas 2.2 and 2.4 and Theorem 1.7).

The proofs of the auxiliary results referred to in the title all turn out to

have natural interpretations in terms of the monic cubic resolvent forms of

binary quartic forms, as discussed in Section 2.6. More precisely, a monic

binary cubic form g(x, y) is defined as a binary cubic form g(x, y) whose
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leading coefficient as a polynomial in x is equal to 1; i.e., it is of the form

x3 + rx2y + sxy2 + ty3. We denote the space of binary cubic forms over Z by

UZ and the subset of monic binary cubic forms over Z by UZ,1 ⊂ UZ. Note that

if (A,B) ∈ WZ, then 4 Det(Ax − By) ∈ UZ, and note that if (A1, B) ∈ WZ,1,

then 4 Det(A1x−By) ∈ UZ,1.

The group FZ,1 acts naturally on UZ,1 via γ · g(x, y) = g((x, y) · γ). If

g(x, y) = x3 + rx2y + sxy2 + ty3, then one easily sees that the quantities

I(g) := r2 − 3s,

J(g) := −2r3 + 9rs− 27t
(44)

are invariant under the action of FZ,1. The discriminant ∆(g) of the binary

cubic form g can be expressed in terms of these basic invariants I(g) and J(g);

namely, ∆(g) = (4I(g)3 − J(g)2)/27. We again define the height of g by

H(g) := H(I, J) = max{|I(g)3|, J(g)2/4}.
If FQ,1 denotes the group of lower triangular matrices in SL2(Q) with 1’s on the

diagonal, then by using an FQ,1-transformation to clear out the x2y-coefficient,

we see that g(x, y) is FQ,1-equivalent to the monic binary cubic form h(x, y) =

x3 − I(f)
3 xy2 − J(f)

27 y3.

If f ∈ VZ is an integral binary quartic form, then as in Section 2.6 we

define the monic cubic resolvent form of f by g(x, y) = 4 Det(A1x − Bfy),

where (A1, Bf ) is the image of f under the map φ defined in (28). It is easy to

check that I(f) = I(g) and J(f) = J(g). The elliptic curve Ef : z2 = g(x, 1)

(which we may also write as z2 = x3− I(f)
3 x− J(f)

27 ) turns out to be the Jacobian

of the genus one curve Cf in weighted projective space P(1, 1, 2) determined

by the equation z2 = f(x, y); furthermore, the stabilizer of f in PGL2(Q) is

isomorphic to Ef (Q)[2] (see Theorem 30). This connection between f and Ef
will be of key importance in the next section.

We first use this connection to prove Lemma 2.4, which states that the

stabilizer in GL2(R) of f ∈ VR is 8 or 4 in accordance with whether the

discriminant of f is positive or negative, respectively.

Proof of Lemma 2.2. Consider the action of PGL2(R) on VR defined by

(30). If f ∈ VR has nonzero discriminant, then Theorem 3.2 in Section 3

(which does not rely on the results of this section) asserts that StabPGL2(R)(f)

is isomorphic to E(R)[2], where E is the elliptic curve given by y2 = x3 −
I(f)

3 x− J(f)
27 . Therefore, #StabPGL2(R)(f) is equal to 2 if ∆(f) < 0 and equal

to 4 if ∆(f) > 0.

Now if γ ∈ GL2(R) stabilizes f ∈ VR under the usual action (defined in

(3)), then since I(γ ·f) = (det γ)4I(f) and J(γ ·f) = (det γ)6J(f), we see that

det γ = ±1. Hence the image of γ in PGL2(R) also stabilizes f . Since there are

two elements in the center of GL2(R) that stabilize f , the size of the stabilizer
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in GL2(R) of an element f ∈ V (i)
R is 4 when i = 1 (equivalently ∆(f) < 0) and

8 when i = 0 or 2 (equivalently ∆(f) > 0), as desired. �

To prove Lemma 2.4, which states that the number of GL2(Z)-orbits

on binary quartic forms having bounded height and a nontrivial stabilizer in

PGL2(Q) is negligible, we use the following lemma.

Lemma 2.22. The number of FZ,1-orbits on monic integral binary cubic

forms g such that g is reducible over Q and H(g) < X is O(X1/2+ε).

Proof. First, we note that if g(x, y) = x3 + rx2y + sxy2 + ty3 ∈ UZ,1,

then by replacing g with an FZ,1-translate if necessary, we may assume that

r ∈ {−1, 0, 1}. Throughout the rest of this proof, we will assume that this is the

case. If g is such that H(g) < X, then since |I(g)|3 = |r2 − 3s|3 ≤ H(g) < X,

we see that s = O(X1/3). Since J(g)2/4 = (2r3 + 9rs− 27t)2/4 ≤ H(g) < X,

this in turn implies that t = O(X1/2).

Let us now count such forms g that are reducible. If g(x, y) = x3 +rx2y+

sxy2 + ty3 satisfies t = 0 (and r ∈ {−1, 0, 1}), then g is reducible, and the

number of such forms g with H(g) < X is the number of possible values for r

and s, namely, 3 ·O(X1/3) = O(X1/3).

Next, we consider those reducible forms g(x, y) = x3 + rx2y + sxy2 + ty3

satisfying H(g) < X, r ∈ {−1, 0, 1} and t 6= 0. If x−my is a factor of g, then

m | t. Therefore, if we fix t 6= 0, then there are at most tε = O(Xε) choices

for m. Moreover, once r, t, and m are fixed, then setting g(m, 1) equal to 0

determines s. Since t = O(X1/2), and there are at most three possible values

for r, it follows that there are at most O(X1/2+ε) such reducible forms g with

height less than X. �

Proof of Lemma 2.4. Suppose an integral binary quartic form f has a sta-

bilizer of size at least 2 in PGL2(Q). Then Theorem 3.2 asserts that E(Q)[2]

is nontrivial, where E is given by y2 = x3 − I(f)
3 x − J(f)

27 . This implies that

the cubic resolvent form g of f is reducible over Q. If we further assume that

H(f) < X, then Lemma 2.22 implies that there are at most O(X1/2+ε) choices

for the FZ,1-orbit of g.

Now, if the GL2(Z)-orbit of a reducible integral binary cubic form g having

height X is fixed, then [3, Proof of Lemma 12] implies that the number of

GL2(Z)× SL3(Z)-orbits on WZ having g as a cubic resolvent form is bounded

byO(X1/4). In conjunction with Proposition 2.16, this implies that the number

of PGL2(Z)-orbits on VZ having g has a cubic resolvent form is also at most

O(X1/4). Therefore, the number of PGL2(Z)-orbits on VZ having a nontrivial

stabilizer in PGL2(Q) and height less than X is bounded by O(X1/4X1/2+ε) =

O(X3/4+ε). This concludes the proof of Lemma 2.4. �
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Finally, we determine when a pair of invariants (I, J) ∈ Z× Z is eligible,

thus proving Theorem 1.7.

Proof of Theorem 1.7. If an integral binary quartic form has invariants

equal to I and J , then its cubic resolvent form also has invariants equal to

I and J . Conversely, suppose an integral pair (I, J) occurs as the invariants

of an integral monic binary cubic form g(x, y) = x3 + rx2y + sxy2 + ty3.

Then one checks that the cubic resolvent form of the binary quartic form

f(x, y) = x3y+ rx2y2 + sxy3 + ty4 is equal to g, and so f has invariants equal

to I and J . Therefore, the pair (I, J) is eligible. Hence, to prove Theorem 1.7,

it suffices to answer the simpler question: which integral pairs (I, J) occur as

invariants of integral monic binary cubic forms?

Suppose the integral monic binary cubic form g(x, y) = x3 +rx2y+sxy2 +

ty3 ∈ UZ,1 has invariants I and J . By replacing g with an FZ,1-translate

if necessary, we may assume that r ∈ {−1, 0, 1}. This does not change the

invariants I and J . If I ≡ 0 (mod 3), then r = 0, implying that 27 | J . This

is condition (a) in Theorem 1.7.

If I is not divisible by 3, then r equals 1 or −1 and we have I ≡ 1 (mod 3).

Thus I must be congruent to 1, 4, or 7 (mod 9), which happens exactly when

s is congruent to 0, 2, or 1 (mod 3), respectively. Because r2 = 1, we see that

J ≡ r(9s − 2) (mod 27). It follows that I ≡ 1, 4, 7 (mod 9) corresponds to

J ≡ ±2, ±16, ±7 (mod 27), respectively, yielding conditions (b), (c), and (d).

Therefore, if a pair (I, J) occurs as the invariants of an integral monic bi-

nary cubic form, then it must satisfy one of the conditions of Theorem 1.7. The

converse also follows easily by reversing the above arguments. This concludes

the proof of Theorem 1.7. �

3. The average size of the 2-Selmer groups of elliptic curves

Recall that every elliptic curve E over Q can be written in the form

(45) EA,B : y2 = x3 +Ax+B,

where A,B ∈ Z and p4 - A if p6 | B. For any elliptic curve E = EA,B over Q
written in the form (45), we define the quantities I = I(E) and J = J(E) by

I(E) := −3A,

J(E) := −27B,
(46)

and denote the curve EA,B also by EI,J . The height of EA,B = EI,J is then

defined by

H(EA,B) = max{4|A3|, 27B2} =
4

27
max{I(E)3, J(E)2/4}.

In this section, we shall work with the slightly different height H ′(E) defined by

(47) H ′(E) := H(I(E), J(E)) = max{|I(E)|3, J(E)2/4}
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so that the height agrees with the height defined for binary quartic forms in (6).

Note that H and H ′ only differ by a constant factor; namely, for every elliptic

curve E over Q, we have 27H(E) = 4H ′(E).

Our purpose in this section is to prove Theorem 1.3 by computing the

average size of the 2-Selmer group of elliptic curves E/Q when these curves

are ordered by their heights. (Note that the two heights H and H ′ give the

same ordering on every set of elliptic curves.) Theorem 1.1, being a special

case of Theorem 1.3, will then follow.

In fact, we prove a statement stronger than Theorem 1.3. To state this

result, we need some notation. For each prime p, let Σp be a closed subset of

Z2
p\{∆ 6= 0} whose boundary has measure 0. To such a collection (Σp)p, we

associate the set FΣ of elliptic curves over Q, where EI,J ∈ FΣ if and only if

(I, J) ∈ Σp for all p. We then say that FΣ is a family of elliptic curves over

Q that is defined by congruence conditions. We can also impose “congruence

conditions at infinity” on FΣ by insisting that an elliptic curve EI,J belongs

to FΣ if and only if (I, J) belongs to Σ∞, where Σ∞ is equal to {(I, J) ∈ R2 :

∆(I, J) > 0}, {(I, J) ∈ R2 : ∆(I, J) < 0}, or {(I, J) ∈ R2 : ∆(I, J) 6= 0}.
If F is any nonempty family of elliptic curves over Q defined by congruence

conditions, then let Inv(F ) denote the set {(I(E), J(E)) : E ∈ F}. We define

Invp(F ) to be the set of those elements (I, J) in the p-adic closure of Inv(F )

⊂ Z2
p such that ∆(I, J) := (4I3 − J2)/27 6= 0. Also, we define Inv∞(F )

by {(I, J) ∈ R2 : ∆(I, J) > 0}, {(I, J) ∈ R2 : ∆(I, J) < 0}, or {(I, J) ∈
R2 : ∆(I, J) 6= 0} in accordance with whether F contains only curves of

positive discriminant, negative discriminant, or both. A family F of elliptic

curves defined by congruence conditions is then said to be large if, for all but

finitely many primes p, the set Invp(F ) contains all pairs (I, J) ∈ Zp × Zp
such that p2 - ∆(I, J). In this section, we prove the following strengthening of

Theorem 1.3.

Theorem 3.1. When all elliptic curves E in any large family are ordered

by height, the average size of the 2-Selmer group S2(E) is 3.

Note that the family of all elliptic curves is large. So too is the family of

elliptic curves E : y2 = g(x) defined by finitely many congruence conditions

on the coefficients of g. Thus Theorems 1.1 and 1.3 indeed follow from The-

orem 3.1. Finally, we note that the family of all semistable elliptic curves is

also large.

3.1. Preliminary results on binary quartic forms and 2-coverings of elliptic

curves. The key to proving Theorem 3.1 is the use of a classical correspondence

between elements in the 2-Selmer group of an elliptic curve EI,J over Q and lo-

cally soluble integral binary quartic forms having invariants 24I and 26J . This
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correspondence was originally introduced by Birch and Swinnerton-Dyer [7]

and was developed further by Cremona [11] (see also [37], [13], and [6]). We

collect here the results that we will need on this correspondence. Throughout

this section, we use the action of PGL2 on V as defined by (30).

We say that a binary quartic form over a field K is K-soluble if the equa-

tion z2 = f(x, y) has a solution with x, y, z ∈ K and (x, y) 6= (0, 0). The first

paragraph of the following theorem is contained in [37, Prop. 2.2], while the

second follows from [13, §§3–5 and Rem. 1]. (For more details, see [6, §4.1].)

Theorem 3.2. Let K be a field having characteristic not 2 or 3. Let

E : y2 = x3− I
3x−

J
27 be an elliptic curve over K . Then there exists a bijection

between elements in E(K)/2E(K) and PGL2(K)-orbits of K-soluble binary

quartic forms having invariants I and J , given by

(ξ, η) + 2E(K) 7→ PGL2(K) ·
Å

1

4
x4 − 3

2
ξx2y2 + 2ηxy3 +

Å
I

3
− 3

4
ξ2
ã
y4
ã
.

Under this bijection, the identity element in E(K)/2E(K) corresponds to the

PGL2(K)-orbit of binary quartic forms having a linear factor over K .

Furthermore, the stabilizer in PGL2(K) of any (not necessarily K-soluble)

binary quartic form f in VK , having nonzero discriminant and invariants I

and J , is isomorphic to E(K)[2], where E is the elliptic curve defined by y2 =

x3 − I
3x−

J
27 .

Next, recall that a binary quartic form f ∈ VQ is called locally soluble if

f is R-soluble and Qp-soluble for all primes p. We then have the following

proposition. (See [7, Lemma 2] and the discussion following it.)

Proposition 3.3. Let E : y2 = x3− I
3x−

J
27 be an elliptic curve over Q.

Then there exists a bijection between isomorphism classes of locally soluble

2-coverings of E and PGL2(Q)-orbits of locally soluble binary quartic forms in

VQ having invariants I and J .

Furthermore, the set of rational binary quartic forms having a rational

linear factor and invariants equal to I and J lie in a single PGL2(Q)-orbit,

and this orbit corresponds to the identity element in the 2-Selmer group of E.

In order to prove Theorem 3.1, we will also require the following lemma,

which follows from Lemmas 3, 4, and 5 of [7].

Lemma 3.4. Let f ∈ VQ be a locally soluble binary quartic form having

integral invariants I and J such that (24 · 3) | I and (26 · 33) | J . Then f is

PGL2(Q)-equivalent to an integral binary quartic form.

Since E = EI,J is also isomorphic to the elliptic curve defined by y2 =

x3− 24I(E)
3 x− 26J(E)

27 , Proposition 3.3 and Lemma 3.4 now imply the following

theorem.



224 MANJUL BHARGAVA and ARUL SHANKAR

Theorem 3.5. Let E = EI,J be an elliptic curve over Q. Then the

elements of the 2-Selmer group of E are in one-to-one correspondence with

PGL2(Q)-equivalence classes of locally soluble integral binary quartic forms

having invariants equal to 24I and 26J .

Furthermore, the set of integral binary quartic forms that have a ratio-

nal linear factor and invariants equal to 24I and 26J lie in one PGL2(Q)-

equivalence class, and this class corresponds to the identity element in the

2-Selmer group of E.

3.2. A weighted set S(F ) of integral binary quartic forms associated to

a large family F of elliptic curves. Theorem 3.5 asserts that nonidentity el-

ements in the 2-Selmer group of an elliptic curve EI,J over Q are in bijec-

tive correspondence with PGL2(Q)-equivalence classes of locally soluble inte-

gral binary quartic forms having invariants 24I and 26J that do not possess

a rational linear factor. In Section 2, we computed the asymptotic number

of GL2(Z)-orbits of irreducible integral binary quartic forms having bounded

height. By Lemma 2.3, the number of GL2(Z)-orbits of binary quartic forms

of bounded height that are the product of two irreducible integral binary qua-

dratic forms is negligible. Furthermore, GL2(Z)-orbits on VZ are exactly the

same as PGL2(Z)-orbits on VZ. Therefore, the same asymptotic formula in

Theorem 3.5 holds also for the number of PGL2(Z)-orbits of integral binary

quartic forms having bounded height and no rational linear factor.

In order to adapt the latter results to compute the number of PGL2(Q)-

equivalence classes of locally soluble integral binary quartic forms with bounded

height and no rational linear factor, we need to count each PGL2(Z) or-

bit, PGL2(Z) · f , weighted by 1/n(f), where n(f) is equal to the number

of PGL2(Z)-orbits inside the PGL2(Q)-equivalence class of f in VZ. For this

purpose, it suffices to count the number of PGL2(Z)-orbits of locally soluble

integral binary quartic forms having bounded height and no rational linear

factor where each orbit PGL2(Z) · f is weighted by 1/m(f), where

m(f) :=
∑

f ′∈B(f)

#AutQ(f ′)

#AutZ(f ′)
=

∑
f ′∈B(f)

#AutQ(f)

#AutZ(f ′)
;

here B(f) denotes a set of representatives for the action of PGL2(Z) on the

PGL2(Q)-equivalence class of f in VZ, and AutQ(f) (resp. AutZ(f)) denotes

the stabilizer of f in PGL2(Q) (resp. PGL2(Z)). The reason it suffices to weight

by 1/m(f) instead of 1/n(f) is that, by Lemma 2.4, all but a negligible number

of PGL2(Z)-orbits of integral binary quartic forms with nonzero discriminant

and bounded height have trivial stabilizer in PGL2(Q); thus all but a negligible

number of PGL2(Z)-equivalence classes of integral binary quartic forms with

nonzero discriminant and bounded height satisfy m(f) = n(f).
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Let us use S(F ) to denote the set of all locally soluble integral binary

quartic forms having invariants 24I and 26J , where (I, J) ∈ Inv(F ). Assign

to each element f ∈ S(F ) the weight 1/m(f). Then we conclude that the

weighted number of irreducible PGL2(Z)-orbits of height less than X in S(F )

is asymptotically equal to the number of nonidentity 2-Selmer elements of all

elliptic curves of height less than X in F . In the remainder of this section, our

goal is therefore to count the weighted number of irreducible orbits in S(F )

having bounded height.

The global weights m(f) (as opposed to n(f)) are useful for the following

reason. For a prime p and a binary quartic form f ∈ VZp , define mp(f) by

mp(f) :=
∑

f ′∈Bp(f)

#AutQp(f ′)

#AutZp(f ′)
=

∑
f ′∈Bp(f)

#AutQp(f)

#AutZp(f ′)
,

where Bp(f) denotes a set of representatives for the action of PGL2(Zp) on

the PGL2(Qp)-equivalence class of f in VZp , and AutQp(f) (resp. AutZp(f))

denotes the stabilizer of f in PGL2(Qp) (resp. PGL2(Zp)).
Then we have the following proposition.

Proposition 3.6. Suppose f ∈ VZ has nonzero discriminant. Then

m(f) =
∏
pmp(f).

Proof. Let PGL2(Q)f (resp. PGL2(Qp)f ) denote the set of elements γ ∈
PGL2(Q) (resp. PGL2(Qp)) such that γ · f ∈ VZ (resp. VZp). Then we have a

natural map from PGL2(Q)f to the set of PGL2(Z)-orbits on the PGL2(Q)-

equivalence class of f in VZ via γ 7→ PGL2(Z)γ ·f . Two elements in PGL2(Q)f
map to the same orbit if and only if they map to the same element in the

double coset space

PGL2(Z)\PGL2(Q)f/AutQ(f).

Thus, the number of elements in PGL2(Z)\PGL2(Q)f that map to a fixed orbit

PGL2(Z) · f ′ is equal to #AutQ(f)/#AutZ(f ′), implying that

#[PGL2(Z)\PGL2(Q)f ] =
∑

f ′∈B(f)

#AutQ(f)

#AutZ(f ′)
= m(f).

Similarly, we have that

#[PGL2(Zp)\PGL2(Qp)f ] =
∑

f ′∈Bp(f)

#AutQp(f)

#AutZp(f ′)
= mp(f).

Now we consider the map

τ : PGL2(Z)\PGL2(Q)f →
∏
p

PGL2(Zp)\PGL2(Qp)f

given by the diagonal embedding. Since PGL2(Qp)f = PGL2(Zp) for all primes

p not dividing the discriminant of f (see the proof of Proposition 3.18 for



226 MANJUL BHARGAVA and ARUL SHANKAR

a stronger result), the product
∏
p PGL2(Zp)\PGL2(Qp)f is in fact a finite

product. It is easy to see that τ is well defined and injective. (For injectivity,

note that if γ1 and γ2 are elements in PGL2(Q)f that map to the same element

under τ , then γ1γ
−1
2 is an element of PGL2(Q) and of PGL2(Zp) for all p. This

implies that γ1γ
−1
2 ∈ PGL2(Z), as desired.)

The group PGL2(Q) has class number 1 (see [31, Chap. 8]). Hence if

σ ∈ ∏p PGL2(Zp)\PGL2(Qp)f , then there exists an element γ ∈ PGL2(Q)

such that γ maps to σ under the diagonal embedding. Since γ · f ∈ VZp for

all p, we see that γ · f ∈ VZ, implying γ ∈ PGL2(Q)f . Thus τ is surjective,

completing the proof of the proposition. �

Thus the global weights of elements in S(F ) are products of local weights,

and so we may express the global weighted density of the set S(F ) in VZ as a

product of local weighted densities of the closures of S(F ) in VZp . We compute

these local densities next, in terms of local masses of 2-coverings of elliptic

curves.

3.3. Local densities of the weighted set S(F ) in terms of local masses of

2-coverings of elliptic curves in F . Let F be a large family of elliptic curves.

Let S(F ) again denote the set of all locally soluble integral binary quartic

forms having invariants 24I and 26J where (I, J) ∈ Inv(F ), and let Sp(F )

denote the p-adic closure of S(F ) in VZp . We now determine the p-adic density

of Sp(F ), where each element f ∈ Sp(F ) is weighted by 1/mp(f), in terms

of a local (p-adic) mass Mp(V, F ) involving all isomorphism classes of soluble

2-coverings of elliptic curves over Qp whose invariants lie in Invp(F ). To do so

we need the following proposition, which is a reformulation of the change-of-

measure assertion of Proposition 2.8 with Zp in place of R; we postpone the

proof to Section 3.4.

Proposition 3.7. Let p be a prime, and let φ be a continuous function

on VZp . Then

∫
VZp

φ(f)df

=

∣∣∣∣ 1

27

∣∣∣∣
p

∫
(I,J)∈Z2

p

∆(I,J)6=0

Ç ∑
f∈

VZp (I,J)

PGL2(Zp)

1

#AutZp(f)

∫
g∈PGL2(Zp)

φ(g · f)ω(g)

å
dIdJ,

(48)

where
VZp (I,J)

PGL2(Zp) denotes a set of representatives for the action of PGL2(Zp) on

elements in VZp having invariants I and J .

In certain special cases where φ(f) is additionally weighted by 1/mp(f),

equation (48) takes on a particularly nice form:
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Corollary 3.8. Let p be a prime, and let φ be a continuous PGL2(Qp)-

invariant function on VZp such that every element f ∈ VZp in the support of φ

has nonzero discriminant, is soluble, and satisfies 24 ·3 | I(f) and 26 ·33 | J(f).

Then

∫
VZp

φ(f)

mp(f)
df

=

∣∣∣∣ 1

27

∣∣∣∣
p
Vol(PGL2(Zp))

∫
(I,J)∈Z2

p

∆(I,J)6=0

1

#E[2](Qp)

Ç ∑
σ∈E(Qp)/2E(Qp)

φ(fσ)

å
dIdJ,

(49)

where where we use E to denote EI,J , and fσ is any element in VZp that

corresponds to σ under the correspondence of Theorem 3.2. (The existence of

such an fσ ∈ VZp is the content of Lemma 3.4.)

Proof. Proposition 3.7 implies that we have

∫
VZp

φ(f)

mp(f)
df

=

∣∣∣∣ 1

27

∣∣∣∣
p

∫
(I,J)∈Z2

p

∆(I,J) 6=0

Ç ∑
f∈

VZp (I,J)

PGL2(Zp)

1

#AutZp(f)

∫
g∈PGL2(Zp)

φ(g · f)

mp(g · f)
dg

å
dIdJ

=

∣∣∣∣ 1

27

∣∣∣∣
p
Vol(PGL2(Zp))

∫
(I,J)∈Z2

p

∆(I,J)6=0

Ç ∑
f∈

VZp (I,J)

PGL2(Zp)

φ(f)

mp(f)#AutZp(f)

å
dIdJ

(50)

since both φ and mp are PGL2(Zp)-invariant. We now evaluate the sum within

the integral in the second line of (50). For f ∈ VZp , let f = f1, f2, . . . , fk be

the set of all elements in
VZp (I,J)

PGL2(Zp) that are PGL2(Qp)-equivalent to f . Then

since φ and mp are PGL2(Qp)-invariant, we have

k∑
i=1

φ(fi)

mp(fi)#AutZp(fi)
=

φ(f)

mp(f)

k∑
i=1

1

#AutZp(fi)

= φ(f)

Ç k∑
i=1

#AutQp(f)

#AutZp(fi)

å−1 k∑
i=1

1

#AutZp(fi)

=
φ(f)

#AutQp(f)
.
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Therefore, we obtain

(51)∫
VZp

φ(f)

mp(f)
df=

∣∣∣∣ 1

27

∣∣∣∣
p
Vol(PGL2(Zp))

∫
(I,J)∈Z2

p

∆(I,J)6=0

Ç ∑
f∈

VZp (I,J)

PGL2(Qp)

φ(f)

#AutQp(f)

å
dIdJ,

where
VZp (I,J)

PGL2(Qp) analogously denotes a set consisting of one element from each

PGL2(Q)-equivalence class in VZp having invariants I and J . Theorem 3.2

and Lemma 3.4 imply that soluble elements in
VZp (I,J)

PGL2(Qp) are in bijective corre-

spondence with elements in E(Qp)/2E(Qp). Theorem 3.2 further states that

AutQp(f) is isomorphic to EI(f),J(f)[2](Qp). Therefore, Corollary 3.8 follows

from (51). �

We now have the following proposition, which determines the necessary

local p-adic masses.

Proposition 3.9. We have∫
Sp(F )

1

mp(f)
df = |210/27|p ·Vol(PGL2(Zp)) ·Mp(V, F ),

where

(52) Mp(V, F ) :=

∫
(I,J)∈Invp(F )

#(EI,J(Qp)/2E
I,J(Qp))

#EI,J(Qp)[2]
dIdJ.

Proof. The set Sp(F ) consists of all Qp-soluble binary quartic forms having

invariants 24I and 26J with (I, J) ∈ Invp(F ). Proposition 3.9 thus follows

directly from Corollary 3.8 since EI,J(Qp) is isomorphic to E24I,26J(Qp) and

the volume of {(24I, 26J)|(I, J) ∈ Invp(F ) = |210|p ·Vol(Invp(F )). �

3.4. A change-of-measure formula. In this subsection, our aim is to prove

the change-of-variables formula that is contained in Propositions 2.8 and 3.7

over R and over Qp, respectively. We begin by proving first the following result

over C.

Proposition 3.10. Let ω, dv, and dIdJ be as in Proposition 2.8. Let

R ⊂ C2 be an open set and s : R→ VC be a continuous function such that the

binary quartic form sI,J := s(I, J) has invariants equal to I and J for each

(I, J) ∈ R. Then there exists a nonzero rational number J such that for any

measurable function φ : VC → R, we have∫
v∈PGL2(C)·s(R)

φ(v)dv = |J |
∫
R

∫
PGL2(C)

φ(g · sI,J)ω(g) dIdJ,

where we regard PGL2(C) · s(R) as a multiset.
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Proof. Let us begin with the special case when the function s is locally

analytic. Then we know that

(53)∫
v∈PGL2(C)·s(R)

φ(v)dv =

∫
(I,J)∈C2

∫
PGL2(C)

Js(g, I, J)φ(g · sI,J)ω(g) dIdJ,

where Js(g, I, J) is the Jacobian change of variables of the map

ψs : PGL2(C)×R→ VC

(g, (I, J)) 7→ g · sI,J .
(54)

Note that Js(g, I, J) is continuous in g, I, and J . In what follows, we prove

that Js(g, I, J) is independent of g, I, J , and s.

Step 1: Js(g, I, J) is independent of g ∈ PGL2(C).

Suppose there exists (I, J) ∈ R and g1, g2 ∈ PGL2(C) such that

Js(g1, I, J) 6= Js(g2, I, J).

Then, by continuity and the fact that ω(g) is PGL2(C)-invariant, there exists

an open set B1 ⊂ PGL2(C) containing g1 such that∫
B1

Js(g, I, J)ω(g) 6=
∫
g2g
−1
1 B1

Js(g, I, J)ω(g).

By continuity, there then exists an open set N ⊂ R containing (I, J) such that

(55)∫
(I,J)∈N

∫
B1

Js(g, I, J)ω(g)dIdJ 6=
∫

(I,J)∈N

∫
g2g
−1
1 B1

Js(g, I, J)ω(g)dIdJ.

From (53) it follows that the left-hand side of (55) is equal to the volume of

B1 ·N while the right-hand side of (55) is equal to the volume of g2g
−1
1 B1 ·N .

Since the map g2g
−1
1 : VC → VC is via an element in SL(VC), we obtain the

desired contradiction.

Step 2: Js(I, J) := Js(g, I, J) is independent of s.

Let s′ : R→ VC be another locally analytic function such that the invari-

ants of s′I,J := s′(I, J) are I and J for each (I, J) ∈ R. Since PGL2(C) · s(R)

and PGL2(C) · s′(R) are the same multisets, we have∫
v∈PGL2(C)·s′(R)

φ(v)dv =

∫
v∈PGL2(C)·s(R)

φ(v)dv

=

∫
(I,J)∈C2

∫
PGL2(C)

Js(I, J)φ(g · sI,J)ω(g) dIdJ.
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For each (I, J) ∈ C2, let gI,J ∈ PGL2(C) be such that gI,J · sI,J = s′I,J . Then,

because ω(g) is both a left and a right Haar-measure, we obtain∫
(I,J)∈C2

∫
g∈PGL2(C)

Js(I, J)φ(g · sI,J)ω(g)dIdJ

=

∫
C2

∫
PGL2(C)

Js(I, J)φ(ggI,J · sI,J)ω(g)dIdJ

=

∫
C2

∫
PGL2(C)

Js(g, I, J)φ(g · s′I,J)ω(g)dIdJ.

Hence it follows that∫
v∈PGL2(C)·s′(R)

φ(v)dv =

∫
(I,J)∈C2

∫
PGL2(C)

Js(I, J)φ(g · s′I,J)ω(g) dIdJ.

Thus Js′(I, J) = Js(I, J) as desired.

Step 3: J (I, J) := Js(I, J) is a nonzero polynomial in I and J with

rational coefficients.

We can choose s such that the coefficients of sI,J are rational polynomials

in I and J ; for example, let sI,J := x3y − I
3xy

3 − J
27y

4. Since J (I, J) is the

determinant of a 5× 5 matrix whose entries are polynomials in the coefficients

of sI,J , it follows that J (I, J) is a rational polynomial in I and J . Because

ψs(PGL2(C),C2) is a full measure set in VC, we obtain that J (I, J) is nonzero.

Step 4: J := J (I, J) is a nonzero rational constant.

Let G0 ⊂ PGL2(C) be a bounded subset having volume 1, and let R0 be

any bounded measurable set in C2. We denote the set of all elements sI,J with

(I, J) ∈ R0 by B = B(R0). Then

(56)

∫
G0·B

dv =

∫
(I,J)∈R0

J (I, J)dIdJ,

where we view G0 ·B as a multiset. Now for any c ∈ C, we have by (56) that

(57)

∫
cG0·B

dv = |c|5
∫
G0·B

dv = |c|5
∫

(I,J)∈R0

J (I, J)dIdJ

because VC has dimension 5. On the other hand, we may evaluate the left-

hand side of (57) in another way; namely, using (56) with cB in place of B, we

obtain ∫
cG0·B

dv =

∫
G0·cB

dv =

∫
(c−2I,c−3J)∈R0

J (I, J)dIdJ

=

∫
(I′,J ′)∈R0

J (c2I ′, c3J ′) |c2| dI ′ |c3|dJ ′
(58)
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because I and J are homogeneous polynomials of degree 2 and 3, respectively.

Comparing the right-hand sides of (57) and (58), we obtain

(59)

∫
(I,J)∈R0

J (I, J)dIdJ =

∫
(I,J)∈R0

J (c2I, c3J)dIdJ.

Since, by Step 3, J (I, J) is a nonzero polynomial in I and J having rational

coefficients, and since the equality (59) is true for all R0 and all c, we conclude

that J (I, J) must be a nonzero rational constant.

Finally, as every continuous function can be locally uniformly approxi-

mated as closely as desired by locally analytic functions (by the Stone–Weier-

strass theorem), the proposition follows. �

Proposition 2.8, with 1/27 replaced by J , now follows from Proposi-

tion 3.10 and the principle of permanence of identities. More generally, we

have obtained the following result.

Proposition 3.11. Let K be R, C, or Zp for some prime p. Let dv be

the standard additive measure on VK , the space of all binary quartic forms with

coefficients in K . Let R be an open subset of K ×K and let s : R → VK be

a continuous function such that the invariants of sI,J := s(I, J) are I and J .

Then there exists a rational nonzero constant J such that for any measurable

function φ on VK , we have

(60)

∫
v∈PGL2(K)·s(R)

φ(v)dv = |J |
∫
R

∫
PGL2(K)

φ(g · sI,J)ω(g) dIdJ,

where we regard PGL2(K) · s(R) as a multiset, ω is as defined in Section 2.4,

and |J | denotes the usual absolute value of J as an element of K .

We next wish to prove the statement of Proposition 3.7, with 1/27 replaced

by J . To do this, because every continuous function on VZp is locally constant

outside a set of arbitrarily small measure, we may assume that φ is locally

constant. Also, it suffices to prove the statement locally; i.e., for every element

f ∈ VZp (we may also assume that ∆(f) 6= 0), there exists a neighborhood Bf
of f such that (48), with 1/27 replaced by J , is true when φ is the characteristic

function of Bf .

Given f ∈ VZp\{∆ = 0}, we now construct such a neighborhood Bf . Let

P ⊂ VZp be a generic 2-dimensional plane passing through f defined by linear

equations over Q; then there exists a neighborhood P0 ⊂ P of f such that

the invariants of any two elements in P0 are distinct in Z2
p and the size of the

stabilizers in PGL2(Zp) of any two elements in P0 are equal. The first claim

in the previous statement follows from the inverse function theorem for local

fields (see [34, Prop. 4.3]) used on the usual map from PGL2(Zp)× P to VZp .

Then we define Bf to be PGL2(Zp) · P0 (regarded as a set, not a multiset).
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Since the plane P was defined by linear equations over Q, Proposition 3.10 and

the principle of permanence of identities imply that

#AutZp(f) ·Vol(Bf ) = |J |p ·Vol(PGL2(Zp)) ·
∫

Invp(P0)
dIdJ,

where Invp(P0) denotes the set of all (I, J) ∈ Z2
p that occur as invariants of

some element in P0. We have thus proven Proposition 3.7, with 1/27 replaced

by J . In fact, our argument yields the following result.

Proposition 3.12. Let K be R, C, or Zp for some prime p, and let φ

be a measurable function on VK . Then there exists a rational constant J ,

independent of K and φ, such that

∫
VK

φ(f)df

= |J |
∫

(I,J)∈K2

∆(I,J)6=0

Ç ∑
f∈ VK(I,J)

PGL2(K)

1

#AutK(f)

∫
g∈PGL2(K)

φ(g · f)ω(g)

å
dIdJ,

(61)

where VK(I,J)
PGL2(K) denotes a set of representatives for the action of PGL2(K) on

elements in VK having invariants I and J .

To complete the proof of Proposition 3.7, it only remains to show that

the absolute value of J is equal to 1/27. We accomplish this by computing

the value of |J |p for each prime p. Namely, for each prime p, we pick an

appropriate set S ⊂ VZp and then use (60) to express |J |p in terms of the

volume of S. We then consider S̄, the reduction of S modulo p, and determine

its cardinality to explicitly compute the volume of S, and thereby determine

the value of |J |p.
To this end, we have the following proposition.

Proposition 3.13. Let p be a fixed prime number. Let S ⊂ VZp be a

set defined by congruence conditions modulo p, and let S̄ ⊂ VFp denote the

reduction of S modulo p. Assume that S = π−1(π(S)), where π is given by

taking invariants. Then

(62)

|J |p =

#PGL2(Fp) ·
( ∑
f∈PGL2(Fp)\S̄

1

#AutFp(f)

)
pdimV ·Vol(PGL2(Zp)) ·

(∫
(I,J)∈π(S)

∑
f∈

VZp (I,J)

PGL2(Zp)

1

#AutZp(f)
dIdJ

) .
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Proof. Using Proposition 3.12 with φ replaced by the characteristic func-

tion of S, we obtain

(63) Vol(S) = |J |pVol(PGL2(Zp))
∫

(I,J)∈π(S)

( ∑
f∈

VZp (I,J)

PGL2(Zp)

1

#AutZp(f)

)
dIdJ.

Since S is defined by congruence conditions modulo p, and since S̄ is PGL2(Fp)
invariant (a consequence of the PGL2(Zp)-invariance of S), we have

(64) Vol(S) =
#S̄

pdimV
=

1

pdimV
#PGL2(Fp) ·

( ∑
f∈PGL2(Fp)\S̄

1

#AutFp(f)

)
,

where the final equality follows from the orbit-stabilizer formula. Equating the

right-hand sides of (63) and (64) yields the proposition. �

Remark 3.14. Thus far, we have not used anything specific about binary

quartic forms, and the analogues of the statements and proofs of Proposi-

tions 3.11–3.13 continue to hold if we replace the pair (PGL2, V ) with any

representation (G,W ) defined over Z, as long as the following conditions hold:

(1) G is a semisimple group, and W is a coregular representation of G; i.e., the

ring of invariants for the action of GC on WC is freely generated, say, by

the polynomials I1, . . . , Ik (which we may take to be integral polynomials).

(2) The stabilizer in GC of any element v ∈WC outside a measure 0 set of WC
is finite and absolutely bounded.

(3) The sum of the degrees of the Ij ’s is equal to the dimension of W . (In the

case of binary quartic forms, we had 2+3 = 5.) This condition is necessary

to prove that the relevant Jacobian change of variables J is independent

of the values of I1, . . . , Ik in Step 4.

(4) There exists a rational polynomial map φ : Ck →WC such that φ(i1, . . . , ik)

has invariants (i1, . . . , ik) for each k-tuple in Ck.

In our case of binary quartic forms, to apply Proposition 3.13 we may

choose S, e.g., to be the set of binary quartic forms in VZp having some fixed

invariants (I, J) modulo p. The following lemma is then useful in evaluating

the right-hand side of (62).

Lemma 3.15. Let p be a fixed prime, and let (I, J) ∈ Z2
p be an element in

the image of π such that p2 - ∆(I, J). Then

∑
f∈

VZp (I,J)

PGL2(Zp)

1

#AutZp(f)
= 1.
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Let p 6= 3 be a prime, and let (I, J) ∈ F2
p be an element such that ∆(I, J) 6= 0.

Then ∑
f∈

VFp (I,J)

PGL2(Fp)

1

#AutFp(f)
= 1.

Proof. Since p2 - ∆(I, J), Theorem 3.2 and Proposition 3.18 imply that

(65) AutZp(f) = AutQp(f) = EI,J(Qp)[2].

For odd primes p, Theorem 3.2 and [7, Lemmas 3, 4] show that the number

of PGL2(Qp)-equivalence class in VZp having invariants I and J is equal to

#(EI,J(Qp)/2E
I,J(Qp)), while the results in [37, §6] show that the number

of PGL2(Q2)-equivalence class in VZ2 having invariants I and J is equal to
1
2#(EI,J(Q2)/2EI,J(Q2)). The first assertion of Lemma 3.15 now follows from

Lemma 3.20, which states that the value of

#(EI,J(Qp)/2E
I,J(Qp))/#E

I,J(Qp)[2]

is 1 if p 6= 2 and 2 if p = 2.

For p ≥ 5, the second assertion of Lemma 3.15 follows from Theorem 3.2

with K replaced by Fp and the fact that #(EI,J(Fp)/2EI,J(Fp))/#EI,J(Fp)[2]

is 1. For p = 2, the lemma follows from a finite computation. �

Let us now choose some specific sets S ⊂ VZp for each prime p. If p 6= 3,

let (I0, J0) ∈ F2
p be a fixed element such that ∆(I0, J0) 6= 0. We then define

S to be the set of all f ∈ VZp such that the reduction of (I(f), J(f)) modulo

p is equal to (I0, J0). Then Proposition 3.13 in conjunction with Lemma 3.15

implies that

|J |p =
#PGL2(Fp)

p5Vol(PGL2(Zp))(1/p2)
= 1.

Because the definition of ∆ in terms of I and J requires division by

27, specifying a given value of (I, J) modulo 3 cannot alone guarantee that

3 - ∆(I, J). (This is indeed the reason for excluding the case p = 3 in Lemma

3.15.) Hence, in the case p = 3, we choose instead a set S defined by

conditions on the invariants (I, J) modulo a higher power of 3. For exam-

ple, let S be the set of all f ∈ VZ3 such that I(f) ≡ 3 (mod 9). The

proof of Theorem 1.7 immediately implies that if f ∈ VZ3 and I(f) ≡ 0

(mod 3), then the only condition on J is that J(f) ≡ 0 (mod 27). Thus, if

f(x, y) = ax4 +bx3y+cx2y2 +dxy3 +ey4 ∈ S, then ∆(f) 6≡ 0 (mod 3), and we

may use the first statement of Lemma 3.15. Next, note that I(f) ≡ 3 (mod 9)

precisely when c ≡ 0 (mod 3) and ae− bd ≡ 1 (mod 3). Let ā, b̄, c̄, d̄, and ē

denote the reductions modulo 3 of a, b, c, d, and e, respectively. Then f ∈ S
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if and only if c̄ = 0 and āē − b̄d̄ = 1. There are 24 values of (ā, b̄, c̄, d̄, ē) ∈ F5
p

satisfying these two conditions. Therefore,

|J |3 =
24

35Vol(PGL2(Zp))Vol(π(S))
=

24

35(1− 1/32)(1/35)
= 27.

This completes the proof of Proposition 3.7.

Alternatively, we could choose S to be the set of f ∈ VZp such that p -
∆(f). Then S̄, the reduction of S modulo p, is the set of all f ∈ VFp such that

∆(f) 6= 0. An element of S̄ is determined, up to scaling by elements in F×p , by

its roots in P1
Fp

. For example, the number of elements in S̄ having four distinct

roots in P1(Fp) is (p− 1) 1
24(p+ 1)p(p− 1)(p− 2). An elementary computation

then yields the following equality:

#S̄ = p2(p+ 1)(p− 1)2.

Therefore, (63) and Lemma 3.15 imply that we have

|J |p=
Vol(S)

Vol(PGL2(Zp))Vol(π(S))
=

#S̄

p5Vol(PGL2(Zp))Vol(π(S))
=

p− 1

pVol(π(S))
.

The set π(S) consists of eligible pairs (I, J) ∈ Z2
p such that p - ∆(I, J). (A pair

(I, J) ∈ Z2
p is said to be eligible if it occurs as the invariants of some f ∈ VZp .)

We may thus use Theorem 1.7 and compute the volume of π(S) to be (p−1)/p

when p 6= 3 and 2/81 when p = 3. We thus again obtain |J |p = 1 for p 6= 3

and |J |3 = 27, yielding Proposition 3.7.

3.5. The number of elliptic curves of bounded height in a large family.

Suppose F is a large family of elliptic curves. To prove Theorem 3.1 we need

to estimate the number of elliptic curves in F that have height bounded by X.

In this section, we determine exact asymptotics for the number of elliptic curves

having bounded height in any large family F of elliptic curves.

As an elliptic curve is determined by its invariants I and J , we estimate

the number of pairs (I, J) that belong to Inv(F ) and have height less than X.

It follows from an easy application of Proposition 2.6 that the number of pairs

(I, J) ∈ Z × Z satisfying H(I, J) < X and 4I3 − J2 > 0 (resp. H(I, J) < X

and 4I3 − J2 < 0) is equal to the volume of R+
X (resp. R−X) up to an error of

O(X1/2), where the sets R±X were defined in the proof of Proposition 2.10. For

any set S ⊂ Z× Z, let N(S;X) denote the number of pairs (I, J) ∈ S, having

height bounded by X, satisfying ∆(I, J) 6= 0.

Now, the set Inv(F ) ⊂ Z × Z is defined by (perhaps infinitely many)

congruence conditions. To determine the asymptotics of N(Inv(F );X) as X

goes to infinity, we need the following uniformity estimate.
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Proposition 3.16. The number of elliptic curves E over Q having height

less than X such that p2 divides the discriminant of E is O(X5/6/p3/2), where

the implied constant is independent of p.

Proof. This proof is very similar to (but much easier than) the proof of

the uniformity estimate for binary quartic forms in Theorem 2.13. We start

with embedding the set {x3 + Ax + B : A,B ∈ Z} into the bigger space of

all integral binary cubic forms. Let UZ denote the space of all integral binary

cubic forms. The group GL2(Z) acts on UZ by linear substitution of variables.

Consider the composite map ψ = ψ2 ◦ ψ1 given by

ψ : {x3 +Ax+B : A,B ∈ Z} → UZ → GL2(Z)\UZ,

where the first map ψ1 sends x3 + Ax + B to the integral binary cubic form

x3+Axy2+By3. As in the proof of Proposition 2.16, an element in GL2(Z)\UZ
has at most 12 preimages under ψ. This can be seen as follows. If f is in

the preimage of the GL2(Z)-orbit of v ∈ UZ, then there exists an element

γ ∈ GL2(Z) such that γ · v = ψ1(f). Then v((1, 0) · γ) = 1 since ψ1(f) has x3-

coefficient equal to 1. The results in [18] and [22] assert that there are at most

12 solutions (a, b) ∈ Z×Z to the equation v(a, b) = 1. This implies that v has

at most 12 preimages under ψ because each preimage yields a different solution

to v(a, b) = 1. From [16, Prop. 1], it follows that the number of GL2(Z)-orbits

on UZ having discriminant divisible by p2 is bounded by O(X/p2). Therefore,

the number of elliptic curves having discriminant divisible p2 is bounded by

O(X/p2) as well.

To complete the proof of the above proposition, we partition the set of

elliptic curves having discriminant divisible by p2 into two subsets. First,

consider elliptic curves EA,B : y2 = x3 + Ax + B having additive reduction

at a prime p > 3. This happens if and only if p | A and p | B. The number

of such pairs (A,B) ∈ Z × Z having height less than X is clearly bounded

by O(X5/6/p2 +X1/2/p+ 1). Therefore, the number of elliptic curves having

additive reduction at p and height less than X is bounded both by O(X/p2)

and by O(X5/6/p2 +X1/2/p+ 1). These combined estimates yield a bound of

O(X5/6/p5/3), which is sufficient.

Now consider those elliptic curves EA,B such that p2 | ∆(EA,B), EA,B has

multiplicative reduction at p, and H ′(EA,B) < X. Assuming that p > 3, we

now have p - A. Since EA,B has height bounded by X, there are O(X1/3)

possible choices for A and O(X1/2) possible choices for B. With A fixed, there

are then O(1) possible choices for the reduction of B modulo p2. Therefore, the

number of such elliptic curves is bounded by O(X1/3 ·(X1/2/p2+1)). Combined

with the previously obtained bound of O(X/p2), we see that the number of

such elliptic curves EA,B is bounded by O(X5/6/p3/2). This concludes the

proof. �
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Analogously to Mp(V, F ), we define the local mass Mp(F ) by

(66) Mp(F ) =

∫
(I,J)∈Invp(F )

dIdJ.

We also define the following analogues at infinity of Mp(F ) and Mp(V, F ),

respectively:

M∞(F ;X) :=

∫
(I,J)∈Inv∞(F )
H(I,J)<X

dIdJ,

M∞(V, F ;X) :=

∫
(I,J)∈Inv∞(F )
H(I,J)<X

#(EI,J(R)/2EI,J(R))

#EI,J(R)[2]
dIdJ.

(67)

We now have the following theorem, which follows from Proposition 3.16

just as Theorem 2.21 followed from Theorem 2.13.

Theorem 3.17. Let F be a large family of elliptic curves, and let N(F ;X)

denote the number of elliptic curves E ∈ F such that H ′(E) < X . Then

(68) N(F ;X) = M∞(F ;X)
∏
p

Mp(F ) + o(X5/6).

3.6. Proofs of the main theorems (Theorems 1.1, 1.3, and 3.1). Let us say

that an element f ∈ VZ is bad at p if either f is not Qp-soluble or mp(f) 6= 1.

To deduce Theorem 3.1 from Theorem 2.21, we need the following result.

Proposition 3.18. If an integral binary quartic form f is bad at a prime

p > 2, then p2 | ∆(f).

Proof. If mp(f) 6= 1, then there exists γ ∈ PGL2(Qp)\PGL2(Zp) such that

γ · f ∈ VZp . By replacing f with a PGL2(Zp)-translate if necessary, we may

assume that γ =
Ä
pa

pb

ä
, with a > b = 0. It then follows that the x4-coefficient

of f is divisible by p2 and the x3y-coefficient of f is divisible by p, implying

that p2 | ∆(f).

We now show that if f ∈ VZ is not Qp-soluble, then f has splitting type

(1212), (22), or (14) at p, implying that p2 | ∆(f). First, if the discriminant of

f ∈ VZp is prime to p, then f is Qp-soluble (see [11, Chap. 3.6]). Also, if the

splitting type of f at p is (1211) or (131), then the reduction of f modulo p

has a simple root in P1(Fp), which then lifts to a root in P1(Qp) by Hensel’s

Lemma. Thus f is Qp-soluble.

It remains to prove that if the splitting type of f at p is (122), then

f is Qp-soluble. If f ∈ VZp has splitting type (122), then the reduction of

f modulo p can be assumed to be of the form āx2(x2 − n̄y2), where n̄ is a

nonresidue modulo p. Hence we may assume that f = a(x2− kpy2)(x2−ny2),

where a, n, k ∈ Zp, the element n ∈ Zp is a nonresidue when reduced modulo

p, and p - a. If a is a square in Qp, then f(1, 0) is a square in Qp and we

are done. So we may assume that a is a nonsquare. Now if p - x0, then
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x2
0 − kp is a square in Qp; so it suffices to prove the existence of x̄0 ∈ F×p such

that x̄2
0 − n̄ is a quadratic nonresidue modulo p. Consider the first quadratic

residue x̄2
0 = (c + 1)n̄ appearing in the sequence n̄, 2n̄, . . . , (p − 1)n̄. Then

x̄2
0 − n̄ = (c+ 1)n̄− n̄ = cn̄ is a nonresidue, as was desired. �

Analogously to the sets Sp(F ), we define S∞(F ) to be the set of all

R-soluble binary quartic forms in VR whose invariants belong to Inv∞(F ).

Since #(EI,J(R)/2EI,J(R))/#EI,J(R)[2] is always equal to 1/2, the compu-

tation of the volume of the sets RX(L(i)) in Section 2.4 and the definition of

M∞(F ;X) implies that

N(VZ ∩ S∞(F );X) =
1

27
Vol(PGL2(Z)\PGL2(R))M∞(V, F ;X) +O(X3/4+ε).

We now prove the following theorem, from which Theorem 3.1 will be seen

to follow.

Theorem 3.19. Let F be a large family of elliptic curves. Then we have

lim
X→∞

∑
E∈F

H′(E)<X

(#S2(E)− 1)

∑
E∈F

H′(E)<X

1

(69)

= Vol(PGL2(Z)\PGL2(R))
M∞(V, F ;X)

M∞(F ;X)

∏
p

ñ
Vol(PGL2(Zp))

Mp(V, F )

Mp(F )

ô
.

Proof. Note that by Theorem 3.5, the numerator of the first line of (69) is

equal to the number of locally soluble PGL2(Z)-orbits on S(F inv) having height

bounded by 212X and no rational linear factor, where each orbit PGL2(Z) ·f is

counted with weight 1/m(f). Thus, by Theorem 2.21 and Propositions 3.6, 3.9,

and 3.18, we have

∑
E∈F

H′(E)<X

(#S2(E)− 1) = N(VZ ∩ S∞(X); 212X)
∏
p

∫
Sp(F )

1

mp(f)
df + o(X5/6)

=
210

27
Vol(PGL2(Z)\PGL2(R))M∞(V, F ;X)

×
∏
p

∣∣∣∣∣210

27

∣∣∣∣∣
p

Vol(PGL2(Zp))Mp(V, F ) + o(X5/6)

= Vol(PGL2(Z)\PGL2(R))M∞(V, F ;X)

×
∏
p

Vol(PGL2(Zp))Mp(V, F ) + o(X5/6).

(70)
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Meanwhile, Theorem 3.17 implies that we have

(71)
∑
E∈F

H′(E)<X

1 = M∞(F ;X)
∏
p

Mp(F ) + o(X5/6).

Taking the ratio of (70) and (71) now yields Theorem 3.19. �

To evaluate the second line of (69), we require the following fact (see [10,

Lemma 3.1]).

Lemma 3.20. Let E be an elliptic curve over Qp. Then

#(E(Qp)/2E(Qp)) =


#E(Qp)[2] if p 6= 2;

2 ·#E(Qp)[2] if p = 2.

Combining Lemma 3.20 with (52) and (66), we obtain that

(72)

Mp(V, F )

Mp(F )
=

∫
(I,J)∈Invp(F )

#(EI,J(Qp)/2E
I,J(Qp))

#EI,J(Qp)[2]
dIdJ∫

(I,J)∈Invp(F )
dIdJ

=


1 if p 6= 2;

2 if p = 2.

Since we also know that M∞(V, F ;X)/M∞(F ;X) = 1/2, Theorem 3.19 implies

that ∑
E∈F

H′(E)<X

(#S2(E)− 1)

∑
E∈F

H′(E)<X

1
= Vol(PGL2(Z)\PGL2(R))

∏
p

Vol(PGL2(Zp)),

which is then equal to 2ζ(2)
∏
p(1 − p−2) = 2, the Tamagawa number of

PGL2(Q). We have proven Theorem 3.1 (and thus also Theorems 1.1 and 1.3).
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