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On the Erdős distinct distances
problem in the plane

By Larry Guth and Nets Hawk Katz

Abstract

In this paper, we prove that a set of N points in R2 has at least c N
logN

distinct distances, thus obtaining the sharp exponent in a problem of Erdős.

We follow the setup of Elekes and Sharir which, in the spirit of the Erlangen

program, allows us to study the problem in the group of rigid motions of

the plane. This converts the problem to one of point-line incidences in

space. We introduce two new ideas in our proof. In order to control points

where many lines are incident, we create a cell decomposition using the

polynomial ham sandwich theorem. This creates a dichotomy: either most

of the points are in the interiors of the cells, in which case we immediately

get sharp results or, alternatively, the points lie on the walls of the cells,

in which case they are in the zero-set of a polynomial of suprisingly low

degree, and we may apply the algebraic method. In order to control points

incident to only two lines, we use the flecnode polynomial of the Rev.

George Salmon to conclude that most of the lines lie on a ruled surface.

Then we use the geometry of ruled surfaces to complete the proof.

1. Introduction

In [Erd46], Paul Erdős posed the question “how few distinct distances are

determined by N points in the plane?” Erdős checked that if the points are

arranged in a square grid, then the number of distinct distances is ∼ N√
logN

.

He conjectured that for any arrangement of N points, the number of distinct

distances is & N√
logN

. (Throughout this paper, we use the notation A & B to

mean that there is a universal constant C > 0 with A > CB.)

In the present paper, we prove

Theorem 1.1. A set of N points in the plane determines & N
logN distinct

distances.

Various authors have proved lower bounds for the number of distinct

distances. These include, but are not limited to, [Mos52], [CST92], [Szé97],
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[ST01], and [Tar03]. The most recent lower bound, in [KT04], says that the

number of distances is & N .8641. For a more thorough presentation of the

history of the subject, see the recent book [GIS11].

In [ES11], Elekes and Sharir introduced a completely new approach to

the distinct distances problem, which uses the symmetries of the problem in

a novel way. They laid out a plan to prove Theorem 1.1, which we follow in

this paper. Their approach connects the distinct distances problem to three-

dimensional incidence geometry. Using their arguments, Theorem 1.1 follows

from the following estimate about the incidences of lines in R3.

Theorem 1.2. Let L be a set of N2 lines in R3. Suppose that L contains

. N lines in any plane or any regulus. Suppose that 2 ≤ k ≤ N . Then the

number of points that lie in at least k lines is . N3k−2.

A regulus is a quadratic surface in R3 which is doubly ruled. Doubly

ruled means that each point in the surface lies in two lines in the surface.

An example is the surface defined by the equation z = xy. Taking finitely

many of the lines in a regulus one can build a configuration of lines with

many intersection points. The term regulus is used in the incidence geometry

community (cf. the first paper on the joints problem [CEGea92]) and in the

harmonic analysis community (cf. [Sch98]).

Recently, there has been a lot of progress in incidence geometry coming

from the polynomial method. In [Dvi09], Dvir used the polynomial method to

prove the finite field Kakeya conjecture, which can be considered as a problem

in incidence geometry over finite fields. In [GK10], the polynomial method

was applied to incidence geometry problems in R3, solving the joints problem.

The method was simplified and generalized in [EKS11], [KSS10], and [Qui10].

Kaplan, Sharir, and Shustin [KSS10] and Quilodrán [Qui10] solved the joints

problem in higher dimensions. For context, we mention here the joints theorem

in n dimensions.

Theorem 1.3 ([KSS10], [Qui10]). Let n ≥ 3. Let L be a set of L lines in

Rn. A joint of L is a point that lies in n lines of L with linearly independent

directions. The number of joints of L is ≤ CnL
n

n−1 .

One of the remarkable things about the polynomial method is how short

the proofs are. The finite field Kakeya problem and the joints problem were

considered to be very difficult, and many ideas were tried in both cases. The

proof of the finite field Kakeya result ([Dvi09]) and the simplified proof of

the joints theorem ([KSS10] or [Qui10]) are each about one page long. This

simplicity gives the feeling that these are the “right” proofs for these theorems.

In [EKS11], Elekes, Kaplan, and Sharir used the polynomial method to

prove the case k = 3 of Theorem 1.2. (It is a special case of Theorem 9 of
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that paper.) It remains to prove Theorem 1.2 when k = 2 and when k is large.

This requires two new ideas. When k = 2, the key new idea is an application

of ruled surfaces. When k is large, the key new idea is an application of a

ham sandwich theorem from topology. Let us discuss these new ideas in more

detail.

First we explain the extra difficulty that occurs when k = 2, as opposed to

k = 3. The fundamental idea of the polynomial method is to find a polynomial

p of controlled degree whose zero-set Z contains the set of lines L. Then one

uses the geometry of Z to study L. A point where three lines of L intersect

is an unusual point of the surface Z: it is either a critical point of Z or else a

‘flat’ point of Z. One can use algebraic geometry to control the critical points

and flat points of Z in terms of the degree of p. But a point of Z where two

lines of L intersect does not have to be either critical or flat, and we do not

know of any special property of such a point.

Reguli play an important role in the case k = 2. If l1, l2, and l3 are

three pairwise-skew lines in R3, there is a one-parameter family of lines that

intersects all three lines. The union of the lines in the one-parameter family

is a surface called a regulus. A regulus is a degree 2 algebraic surface. An

example is the surface defined by the equation z = xy. A set of N2 lines in

a regulus can have ∼ N4 points of intersection. A regulus is an example of a

ruled surface. In this paper, a ruled surface means an algebraic surface that

contains a line through each point.

We apply the theory of ruled surfaces to prove our estimate in the case

k = 2. We first observe that if a surface Z of controlled degree contains too

many lines, then some component of the surface Z must be ruled. In this

way, we can reduce to the case of a set of lines contained in a ruled surface

of controlled degree. Ruled surfaces have some special structure, and we use

that structure to bound the intersections between the lines. A ruled surface

is called singly-ruled if a generic point in the surface lies in only one line in

the surface. It is well known that planes and reguli are not singly-ruled, but

every other irreducible ruled surface is. The reason is that if a surface is not

singly-ruled, it is easy to find three lines l1, l2, and l3 in the surface which meet

infinitely many lines not at one of the possibly three points of intersection of

l1, l2, and l3. This implies that the surface has a factor which is a plane, if any

two of l1, l2, and l3 are coplanar and a regulus if they are pairwise skew. A

point where two lines intersect inside of a singly-ruled surface must be critical

— except for points lying in the union of a controlled number of lines and a

finite set of additional exceptions. By using this type of result, the structure

of ruled surfaces helps us to prove our estimate.

Next we try to explain the extra difficulty that occurs for large k. An

indication of the difficulty is that for large k, Theorem 1.2 does not hold over
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finite fields. (When k = 2 or 3, it is an open question whether Theorem 1.2

holds over finite fields, but we suspect that it does.) The counterexample

occurs when one considers L to be all of the lines in F3. (Here, F denotes a

finite field.) This situation is reminiscent of the situation for the Szemerédi-

Trotter theorem.

The Szemerédi-Trotter incidence theorem ([ST83]) is the most fundamen-

tal and important result in extremal incidence geometry. It was partly inspired

by Erdős’s distances problem, and it has played a role in all the recent work

on the subject.

Theorem 1.4 (Szemerédi-Trotter). Let L be a set of L lines in R2. Then

the number of points that lie in at least k lines is ≤ C(L2k−3 + Lk−1).

The Szemerédi-Trotter theorem is also false over finite fields: the coun-

terexample occurs when one considers L to be all of the lines in F2. All of the

proofs of the theorem involve in some way the topology of R2. One approach,

which is important in our paper, is the cellular method introduced in the sem-

inal paper [CEG+90] by Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl.

The cellular method is a kind of divide-and-conquer argument. One carefully

picks some lines, which divide the plane into cells, and then one studies L

inside of each cell.

The cellular method has been very successful for problems in the plane, but

only partly successful in higher dimensions. For example, in [FS05], Feldman

and Sharir attacked the (three-dimensional) joints problem using the cellular

method (among other tools). They were able to prove that the number of

joints determined by L lines is . L1.62. (For contrast, the algebraic method

gives . L3/2.)

It seems to us that there are strong analogies between Theorem 1.2 and

the Szemerédi-Trotter theorem, and also between Theorem 1.2 and the joints

theorem. As in the Szemerédi-Trotter theorem, topology must play some role.

As in the joints theorem, it is natural for polynomials to play some role.

To prove Theorem 1.2 when k is large, we construct a cell decomposition

where the walls of the cells form an algebraic surface Z defined by a polyno-

mial p. The polynomial is found by a topological argument, using the general

ham sandwich theorem of Stone and Tukey [ST42]. At this point, our argu-

ment involves a dichotomy. Let S denote the points that lie in at least k lines

of L. In one extreme case, the points of S are evenly distributed among the

open cells of our decomposition. In this case, we prove our estimate by the cel-

lular method, similar to arguments from [CEG+90]. In another extreme case,

the points of S all lie in Z. In this case, the main contribution comes from

lines of L that lie in Z. In this case, we prove our estimate by the polynomial

method, studying the critical and flat points of Z as in [GK10] or [EKS11].
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In Section 2, we explain the plan laid out by Elekes and Sharir. In par-

ticular, we explain how Theorem 1.1 follows from Theorem 1.2. In Section 3,

we prove Theorem 1.2 in the case k = 2 using the ruled surfaces method.

We begin with the necessary background on ruled surfaces. In Section 4, we

prove Theorem 1.2 for k ≥ 3 using the polynomial cell method. We begin with

background on the polynomial ham sandwich theorem. In the appendix, we

show how our argument plays out when the set of points is a square grid. This

example shows that several of our estimates are sharp up to constant factors,

including Theorem 1.2.
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2. Elekes-Sharir framework

Elekes and Sharir [ES11] developed a completely new approach to the

distinct distances problem, connecting it to incidence geometry in three-di-

mensional space. In this section, we present (a small variation of) their work.

Let P ⊂ R2 be a set of N points. We let d(P ) denote the set of nonzero

distances among points of P :

d(P ) := {d(p, q)}p,q∈P,p6=q.

To obtain a lower bound on the size of d(P ), we will prove an upper bound on

a set of quadruples. We let Q(P ) be the set of quadruples, (p1, p2, p3, p4) ∈ P 4

satisfying

(2.1) d(p1, p2) = d(p3, p4) 6= 0.

We refer to the elements of Q(P ) as distance quadruples. If d(P ) is small, then

Q(P ) needs to be large. By applying the Cauchy-Schwarz inequality, we easily

obtain the following inequality.

Lemma 2.1. For any set P ⊂ R2 with N points, the following inequality

holds :

|d(P )| ≥ N4 − 2N3

|Q(P )|
.
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Proof. Consider the distances in d(P ), which we denote by d1, . . . , dm with

m = |d(P )|. There are N2 − N ordered pairs (pi, pj) ∈ P 2 with pi 6= pj . Let

ni be the number of these pairs at distance di. So
∑m
i=1 ni = N2 −N .

The cardinality |Q(P )| is equal to
∑m
i=1 n

2
i . But by Cauchy-Schwarz,

(N2 −N)2 =

(
m∑
i=1

ni

)2

≤
(

m∑
i=1

n2
i

)
m = |Q(P )||d(P )|.

Rearranging, we see that |d(P )| ≥ (N2 −N)2|Q(P )|−1. �

To prove Theorem 1.1, it suffices to prove the following upper bound on

|Q(P )|.

Proposition 2.2. For any set P ⊂ R2 of N points, the number of

quadruples in Q(P ) is bounded by |Q(P )| . N3 logN .

This proposition is sharp up to constant factors when P is a square grid

(see the appendix).

Elekes and Sharir study Q(P ) from a novel point of view related to the

symmetries of the plane. We let G denote the group of positively oriented rigid

motions of the plane. The first connection between Q(P ) and G comes from

the following simple proposition.

Proposition 2.3. Let (p1, p2, p3, p4) be a distance quadruple in Q(P ).

Then there is a unique g ∈ G so that g(p1) = p3 and g(p2) = p4.

Proof. All positively oriented rigid motions taking p1 to p3 can be obtained

from the translation from p1 to p3 by applying a rotation R about the point

p3. Since d(p3, p4) = d(p1, p2) > 0, there is a unique such rotation sending

p2 + p3 − p1 into p4. �

Using Proposition 2.3, we get a map E from Q(P ) to G, which associates

to each distance quadruple (p1, p2, p3, p4) ∈ Q(P ), the unique g ∈ G with

g(p1) = p3 and g(p2) = p4. The letter E here stands for Elekes, who introduced

this idea.

Our goal is to use the map E to help us estimate |Q(P )| by counting

appropriate rigid motions. It is important to note that the map E is not

necessarily injective. The number of quadruples in E−1(g) depends on the size

of P ∩ gP . We make this precise in the following lemma.

Lemma 2.4. Suppose that g ∈ G is a rigid motion and that |P ∩ gP | = k.

Then the number of quadruples in E−1(g) is 2
(k

2

)
.

Proof. Suppose that P ∩ gP is {q1, . . . , qk}. Let pi = g−1(qi). Since qi lies

in gP , each point pi lies in P . For any ordered pair (qi, qj) with qi 6= qj , the

set (pi, pj , qi, qj) is a distance quadruple. This assertion is easy to check. We
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have seen that pi, pj , qi, qj all lie in P . Since g preserves distances, d(pi, pj) =

d(qi, qj). Since qi 6= qj , the distance d(qi, qj) 6= 0.

Now we check that every distance quadruple in E−1(g) is of this form. Let

(p1, p2, p3, p4) be a distance quadruple in E−1(g). We know that g(p1) = p3

and g(p2) = p4. So p3, p4 lie in P ∩ gP . Say p3 = qi and p4 = qj . Now

p1 = g−1(p3) = pi and p2 = g−1(p4) = pj . �

Let G=k(P ) ⊂ G be the set of g ∈ G with |P ∩ gP | = k. Notice that

G=N (P ) is a subgroup of G. It is the group of orientation-preserving symme-

tries of the set P . For other k, G=k(P ) is not a group, but these sets can still

be regarded as sets of “partial symmetries” of P . Since P has N elements,

G=k(P ) is empty for k > N .

By Lemma 2.4, we can count |Q(P )| in terms of |G=k(P )|:

|Q(P )| =
N∑
k=2

2

Ç
k

2

å
|G=k(P )|.

Let Gk(P ) ⊂ G be the set of g ∈ G so that |P ∩ gP | ≥ k. We see that

|G=k(P )| = |Gk(P )| − |Gk+1(P )|. Plugging this into the last equation and

rearranging, we get the following:

(2.2) |Q(P )| =
N∑
k=2

2

Ç
k

2

å
(|Gk(P )| − |Gk+1(P )|) =

N∑
k=2

(2k − 2)|Gk(P )|.

We will bound the number of partial symmetries as follows.

Proposition 2.5. For any set P ⊂ R2 of N points, and any 2 ≤ k ≤ N ,

the size of Gk(P ) is bounded as follows :

|Gk(P )| . N3k−2.

When P is a square grid, this estimate is sharp up to constant factors for

all 2 ≤ k ≤ N/2 (see the appendix). Plugging this bound into equation (2.2),

we get |Q(P )| . N3 logN , proving Proposition 2.2. This in turn implies our

main theorem, Theorem 1.1. So it suffices to prove Proposition 2.5.

Next Elekes and Sharir related the sets Gk(P ) to an incidence problem

involving certain curves in G. For any points p, q ∈ R2, define the set Spq ⊂ G
given by

Spq = {g ∈ G : g(p) = q}.

Each Spq is a smooth one-dimensional curve in the three-dimensional Lie group

G. The sets Gk(P ) are closely related to the curves Spq.

Lemma 2.6. A rigid motion g lies in Gk(P ) if and only if it lies in at

least k of the curves {Spq}p,q∈P .
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Proof. First suppose that g lies in Gk(P ). By definition, |P ∩ gP | ≥ k.

Let q1, . . . , qk be distinct points in P ∩ gP . Let pi = g−1(qi). Since qi ∈ gP ,

we see that pi lies in P . Since g(pi) = qi, we can say that g lies in Spiqi for

i = 1, . . . , k. Since the qi are all distinct, these are k distinct curves.

On the other hand, suppose that g lies in the curves Sp1q1 , . . . , Spkqk ,

where we assume that the pairs (p1, q1), . . . , (pk, qk) are all distinct. We claim

that q1, . . . , qk are distinct points. To see this, suppose that qi = qj . Since

g is a bijection, we see that pi = g−1(qi) = g−1(qj) = pj , and this gives a

contradiction. But the points q1, . . . , qk all lie in P ∩ gP . �

Bounding Gk(P ) is a problem of incidence geometry about the curves

{Spq}p,q∈P in the group G. By making a careful change of coordinates, we

can reduce this problem to an incidence problem for lines in R3. (Our change

of coordinates is slightly nicer than the one in [ES11]. In the coordinates of

[ES11], the curves {Spq} become parabolas.)

Let G′ denote the open subset of the orientable rigid motion group G given

by rigid motions that are not translations. We can write G as a disjoint union

G′ ∪ Gtrans, where Gtrans denotes the translations. We then divide Gk(P ) =

G′k ∪ Gtrans
k . Translations are a very special class of rigid motions, and it is

fairly easy to bound |Gtrans
k (P )| . N3k−2. We carry out this minor step at the

end of this section. The main point is to bound |G′k(P )|. To do this, we pick

a nice set of coordinates ρ : G′ → R3.

Each element of G′ has a unique fixed point (x, y) and an angle θ of

rotation about the fixed point with 0 < θ < 2π. We define the map

ρ : G′ −→ R3

by

ρ(x, y, θ) =

Å
x, y, cot

θ

2

ã
.

Proposition 2.7. Let p = (px, py) and q = (qx, qy) be points in R2. Then

with ρ as above, the set ρ(Spq ∩G′) is a line in R3.

Proof. Noting that the fixed point of any transformation taking p to q

must lie on the perpindicular bisector of p and q, the reader will easily verify

that the set ρ(Spq ∩G′) can be parametrized as

�(2.3)

Å
px + qx

2
,
py + qy

2
, 0

ã
+ t

Å
qy − py

2
,
px − qx

2
, 1

ã
.

For any p, q ∈ R2, let Lpq denote the line ρ(Spq ∩ G′). The line Lpq is

parametrized by equation (2.3). Let L be the set of lines {Lpq}p,q∈P . By

examining the parametrization in equation (2.3), it is easy to check that these

are N2 distinct lines. If g lies in G′k(P ), then ρ(g) lies in at least k lines of L.

In the remainder of the paper, we will study the set of lines L and estimate

the number of points lying in k lines.
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We would like to prove that there are . N3k−2 points that lie in at least

k lines of L. Such an estimate does not hold for an arbitrary set of N2 lines.

For example, if all the lines of L lie in a plane, then one may expect ∼ N4

points that lie in at least two lines. This number of intersection points is far

too high. There is another important example, which occurs when all the lines

lie in a regulus. Recall that a regulus is a doubly-ruled surface, and each line

from one ruling intersects all the lines from the other ruling. If L contained

N2/2 lines in each of the rulings, then we would have ∼ N4 points that lie

in at least two lines. Because of this example, we have to show that not too

many lines of L lie in a plane or a regulus.

Proposition 2.8. No more than N lines of L lie in a single plane. No

more than O(N) lines of L lie in a single regulus.

Proof. For each p ∈ P , we consider the subset Lp ⊂ L given by

Lp = {Lpq}q∈P .

Notice that if q 6= q′, then for each p, Lpq and Lpq′ are disjoint. So the

lines of Lp are disjoint. From equation (2.3), it follows that the lines of Lp all

have different directions. So the lines of Lp are pairwise skew, and no two of

them lie in the same plane. Therefore, any plane contains at most N lines of L.

The situation for reguli is more complicated because all N lines of Lp may

lie in a single regulus. But we will prove that this can only occur for at most

two values of p. To formulate this argument, we define L′p := {Lpq}q∈R2 , so

that Lp ⊂ L′p.

Lemma 2.9. Suppose that a regulus R contains at least seven lines of L′p.

Then all the lines in one ruling of R lie in L′p.

Given this lemma, the rest of the proof of Proposition 2.8 is straightfor-

ward. If a regulus R contains at least seven lines of Lp, then all the lines in one

ruling of R lie in L′p. If p1 6= p2, then the two sets of lines L′p1 and L′p2 are dis-

joint. This follows from the explicit formula in equation (2.3). Since a regulus

has only two rulings, there are at most two values of p such that R contains ≥ 7

lines of Lp. These two values of p contribute ≤ 2N lines of L in the surface R.

The other N − 2 values of p contribute at most 6(N − 2) lines of L in the sur-

face R. Therefore, the surface R contains at most 2N+6(N−2) . N lines of L.

Proof of Lemma 2.9. We fix the value of p. We will check below that each

point of R3 lies in exactly one line of L′p. We will construct a nonvanishing

vector field V = (V1, V2, V3) on R3 tangent to the lines of L′p. Moreover, the

coefficients V1, V2 and V3 are all polynomials in (x, y, z) of degree ≤ 2. This

construction is slightly tedious but straightforward. We postpone it to the end

of the proof.
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The regulus R is defined by an irreducible polynomial f of degree 2. Now

suppose that a line Lpq lies in R. At each point x ∈ Lpq, the vector V (x) points

tangent to the line Lpq, and so the directional derivative of f in the direction

V (x) vanishes at the point x. In other words, the dot product V · ∇f vanishes

on the line Lpq. Since f has degree 2, the dot product V · ∇f is a polynomial

of degree at most 3.

Suppose that R contains seven lines of L′p. We know that f vanishes on

each line, and the previous paragraph shows that V ·∇f vanishes on each line.

By Bezout’s theorem (see Lemma 3.1), f and V ·∇f must have a common fac-

tor. Since f is irreducible, we must have that f divides V ·∇f . In other words,

V · ∇f vanishes on the surface R, and so V is tangent to R at every point of

R. If x denotes any point in R, and we let L be the line of L′p containing x,

then we see that this line lies in R. In this way, we get a ruling of R consisting

of lines from L′p.

It remains to define the vector field V . We begin by checking that each

point (x, y, z) lies in exactly one line of L′p. By equation (2.3), (x, y, z) lies in

Lpq if and only if the following equation holds for some t:Å
px + qx

2
,
py + qy

2
, 0

ã
+ t

Å
qy − py

2
,
px − qx

2
, 1

ã
= (x, y, z).

Given p and (x, y, z), we can solve uniquely for t and (qx, qy). First of all, we

see that t = z. Next we get a matrix equation of the following form:Ç
1 z

−z 1

åÇ
qx
qy

å
= a(x, y, z).

In this equation, a(x, y, z) is a vector whose entries are polynomials in x, y, z of

degree≤ 1. (The polynomials also depend on p, but since p is fixed, we suppress

the dependence.) Since the determinant of the matrix on the left-hand side is

1 + z2 > 0, we can solve this equation for qx and qy. The solution has the form

(2.4)

Ç
qx
qy

å
= (z2 + 1)−1b(x, y, z).

In this equation, b(x, y, z) is a vector whose entries are polynomials in x, y, z

of degree ≤ 2.

The vector field V (x, y, z) is (z2 + 1)(
qy−py

2 , px−qx2 , 1). Recall that p is

fixed, and qx and qy can be expressed in terms of (x, y, z) by the equation

above. By equation (2.3), this vector field is tangent to the line Lpq. After

multiplying out, the third entry of V is z2 + 1, so V is nonvanishing. Plugging

in equation (2.4) for qx and qy and multiplying out, we see that the entries of

V (x, y, z) are polynomials of degree ≤ 2. �

This concludes the proof of Proposition 2.8. �
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We have now connected the distinct distances problem to the incidence

geometry problem we mentioned in the introduction. We know that L consists

of N2 lines with . N lines in any plane or regulus. We now state our two

results on incidence geometry.

Theorem 2.10. Let L be any set of N2 lines in R3 for which no more

than N lie in a common plane and no more than O(N) lie in a common regulus.

Then the number of points of intersection of two lines in L is O(N3).

Theorem 2.11. Let L be any set of N2 lines in R3 for which no more

than N lie in a common plane, and let k be a number 3 ≤ k ≤ N . Let Sk be

the set of points where at least k lines meet. Then

|Sk| . N3k−2.

Elekes and Sharir essentially conjectured these two theorems (Conjecture 1

in [ES11]). (The difference is that they used different coordinates, so their con-

jectures are about certain types of parabolas.) In the case k = 3, Theorem 2.11

was proven in [EKS11].

Combining these theorems with the coordinates ρ and Proposition 2.8, we

get bounds for |G′k(P )|. Theorem 2.10 shows that |G′2(P )| . N3. Theorem 2.11

shows that |G′k(P )| . N3k−2 for 3 ≤ k ≤ N .

We now prove similar bounds for |Gtrans
k (P )|. These bounds are completely

elementary

Lemma 2.12. Let P be any set of N points in R2. The number of

quadruples in E−1(Gtrans) is ≤ N3. Moreover, |Gtrans
k (P )| . N3k−2 for all

2 ≤ k ≤ N .

Proof. Suppose that (p1, p2, p3, p4) is a distance quadruple in E−1(Gtrans).

By definition, there is a translation g so that g(p1) = p3 and g(p2) = p4.

Therefore, p3 − p1 = p4 − p2. This equation allows us to determine p4 from

p1, p2, p3. Hence there are ≤ N3 quadruples in E−1(Gtrans).

By Proposition 2.4 we see that

|E−1(Gtrans)| =
N∑
k=2

2

Ç
k

2

å
|Gtrans

=k (P )|.

Noting that |Gtrans
k (P )| = ∑

l≥k |Gtrans
=l (P )|, we see that

N3 ≥ |E−1(Gtrans)| ≥ 2

Ç
k

2

å
|Gtrans

k (P )|.

This inequality shows that |Gtrans
k (P )| . N3k−2 for all 2 ≤ k ≤ N . �

This substantially ends Section 2. To conclude, we give a summary and

make some comments.
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The new ingredients in this paper are Theorems 2.10 and 2.11, which

we prove in Sections 3 and 4. These theorems allow us to bound the partial

symmetries of P in G′: they imply that |G′k(P )| . N3k−2 for all 2≤k≤N . An

elementary argument in Lemma 2.12 shows the same estimates for |Gtrans
k (P )|.

Combining these, we see that |Gk(P )| . N3k−2 for 2 ≤ k ≤ N , proving

Proposition 2.5. Now the number of quadruples in Q(P ) is expressed in terms

of |Gk(P )| in equation (2.2). Plugging in our bound for |Gk(P )|, we get that

|Q(P )| . N3 logN , proving Proposition 2.2. Finally, the number of distinct

distances is related to |Q(P )| by Lemma 2.1. Plugging in our bound for |Q(P )|,
we see that |d(P )| & N(logN)−1, proving our main theorem.

The group G acts as a bridge connecting the original problem on distinct

distances to the incidence geometry of lines in R3. The distance set d(P ) is

related to the set of quadruplesQ(P ), which is related to the partial symmetries

Gk(P ), which correspond to k-fold intersections of the lines in L. The group

G is a natural symmetry group for the problem of distinct distances, but this

way of using the symmetry group is new and rather surprising.

Our estimates show that sets with few distinct distances must have many

partial symmetries. For example, if G3(P ) is empty, then our results show

that |Q(P )| . N3 and |d(P )| & N . Also, any set with |d(P )| . N(logN)−1/2

must have a partial symmetry with k ≥ exp(c log1/2N) for a universal constant

c > 0. Any set with |d(P )| . N(logN)−1 must have a partial symmetry with

k ≥ N c for a universal c > 0.

3. Flecnodes

Our goal in this section is to prove Theorem 2.10. We will do this by

purely algebraic methods following essentially the proof strategy of [GK10].

That is, we will show that an important subset of our lines lies in the zero-set

of a fairly low degree polynomial p. What requires a new idea is the next step.

We need a polynomial q derived from p with similar degree on which the lines

also vanish. With that information we will apply a variant of Bezout’s lemma.

Lemma 3.1. Let p(x, y, z) and q(x, y, z) be polynomials on R3 of degrees

m and n respectively. If there is a set of mn+ 1 distinct lines simultaneously

contained in the zero-set of p and the zero-set of q, then p and q have a common

factor.

Thus we will conclude that p and the derived polynomial q must have a

common factor, and we will arrive at some geometrical conclusion from this

based on the way that q was derived. In the paper [GK10], the derived poly-

nomials that we used were the gradient of p and the algebraic version of the

second fundamental form of the surface given by p = 0. These were good

choices because when three or more lines were incident at each point, we knew
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on geometric grounds that one or the other would vanish at each point, be-

cause the point would be either critical or flat. However, here we are faced

with points at which only two lines intersect, and so we must make a more

clever choice of the derived polynomial.

We begin with the definition of a flecnode. Given an algebraic surface in

R3 given by the equation p(x, y, z) = 0 where p is a polynomial of degree d at

least 3, a flecnode is a point (x, y, z) where a line agrees with the surface to

order three. To find all such points, we might solve the system of equations:

p(x, y, z) = 0; ∇vp(x, y, z) = 0; ∇2
vp(x, y, z) = 0; ∇3

vp(x, y, z) = 0.

These are four equations for six unknowns, (x, y, z) and the components for

the direction v. However, the last three equations are homogeneous in v and

may be viewed as three equations in five unknowns (and the whole system as

four equations in five unknowns.) We may reduce the last three equations to a

single equation in three unknowns (x, y, z). We write the reduced equation as

Fl(p)(x, y, z) = 0.

The polynomial Fl(p) is of degree 11d−24. It is called the flecnode polynomial

of p and vanishes at any flecnode of any level set of p. (See [Sal58, Art. 588,

pp. 277–78].)

The term flecnode was apparently first coined by Cayley. The polyno-

mial Fl(p) was discovered by the Rev. George Salmon, but its most important

property to us was communicated to him by Cayley.

Proposition 3.2. The surface p = 0 is ruled if and only if Fl(p) is

everywhere vanishing on it.

Proposition 3.2 was used in a famous paper of Segre [Seg43]. For a gen-

eralization to manifolds in higher dimensions, see [Lan99]. One direction of

Proposition 3.2 is obvious. If the surface is ruled, there is a line contained in

the surface at every point. If the line is contained in the surface, it certainly

agrees to order three.

We take a moment to briefly review the argument given in Salmon for

Proposition 3.2. It is written in language a little uncomfortable for the modern

reader and broken into two parts in Salmon’s book. First one observes that the

property that an algebraic surface is ruled (that is, has a line going through

every point) is equivalent to a differential equation satisfied by the polynomial

that defines the surface. This is done in [Sal58, Art. 437, pp. 19–20]. Basically,

we write down the parametric equation of the one-parameter family of lines

contained in the surface. We differentiate three times until we can eliminate

all parameters having to do with the direction of the line. We then obtain a

third-order differential equation satisfied by the surface and observe that given

a surface satisfying this equation, one can recover the one-parameter family

of lines. The remainder of the proof is in the footnote in [Sal58, p. 278]. It
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is merely the observation that this differential equation is the same as the

statement that everywhere a line vanishes to third order.

An algebraic surface (in R3) is ruled if it contains a line passing through

every point. The set of all lines contained in an algebraic surface (of some

degree d) is an algebraic set of lines. (This is because a line is contained in

the surface if and only if it is contained to order d + 1 at one of its points.

So a line is contained in the surface if and only if d+ 1 polynomial equations

in the parameters of the line are satisfied.) The set of lines contained in a

surface may have two-dimensional components, one-dimensional components

and zero-dimensional components. It is easy to see that an algebraic surface

in R3 contains a two-dimensional set of lines only if it has a plane as a factor.

(The way to see this is to find a regular point of the surface with an infinite

number of lines going through it. Then the surface must contain the tangent

plane to this point.) Thus an algebraic surface that is ruled and plane-free

will contain both a one-dimensional set of lines (the generators) and possibly

a zero-dimensional set of lines. A detailed classical treatment of ruled surfaces

is given in [Sal58, Chap. XIII, Part 3].

One important example of a ruled surface is a regulus. A regulus is actu-

ally doubly-ruled: every point in the regulus lies in two lines in the regulus. A

ruled surface is called singly-ruled if a generic point in the surface lies in only

one line in the surface. (Some points in a singly-ruled surface may lie in two

lines.) Except for reguli and planes, every irreducible ruled surface (in R3) is

singly-ruled. (See the explanation in Section 1.)

An immediate corollary of the proposition is

Corollary 3.3. Let p = 0 be a degree d hypersurface in R3. Suppose

that the surface contains more than 11d2−24d lines. Then p has a ruled factor.

Proof. By Lemma 3.1, since both p and Fl(p) vanish on the same set of

more than 11d2 − 24d lines, they must have a common factor q. Since q is a

factor of p and Fl(p) vanishes on the surface q = 0, it must be that at every

regular point of the surface q = 0, there is a line that meets the surface to

order three. Thus Fl(q) = 0, which implies by Proposition 3.2 that q is ruled.

�

Now we would like to consider ruled surfaces of degree less than N . Thus

our surfaces are the sets

p(x, y, z) = 0

for a polynomial p (which we may choose square free) of degree less than N .

We may uniquely factorize the polynomial into irreducibles:

p = p1p2 · · · pm.
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We say that p is plane-free and regulus-free if none of the zero-sets of the

factors is a plane or a regulus. Thus if p is plane-free and regulus-free, the

zero-set of each of the factors is an irreducible algebraic singly-ruled surface.

We now state the main geometrical lemma for proving Theorem 2.10.

Lemma 3.4. Let p be a polynomial of degree less than N so that p = 0

is ruled and so that p is plane-free and regulus-free. Let L1 be a set of lines

contained in the surface p = 0 with |L1| . N2. Let Q1 be the set of points of

intersection of lines in L1. Then

|Q1| . N3.

Before we begin in earnest the proof of Lemma 3.4, we will nail down a

few delicate points of the geometry of irreducible singly-ruled surfaces.

We let p(x, y, z) be an irreducible polynomial so that p(x, y, z) = 0 is a

ruled surface that is not a plane or a regulus. In other words, the surface

S = {(x, y, z) : p(x, y, z) = 0} is irreducible and singly-ruled. We say that a

point (x0, y0, z0) ∈ S is an exceptional point of the surface if it lies on infinitely

many lines contained in the surface. We say that a line l contained in S

is an exceptional line of the surface if there are infinitely many lines in S

that intersect l at nonexceptional points. We prove a structural lemma about

exceptional points and exceptional lines of irreducible singly-ruled surfaces.

Lemma 3.5. Let p(x, y, z) be an irreducible polynomial. Let S = {(x, y, z) :

p(x, y, z) = 0} be an irreducible ruled surface which is neither a plane nor a

regulus.

(1) Let (x0, y0, z0) be an exceptional point of S. Then every other point (x, y, z)

of S is on a line l which is contained in S and which contains the point

(x0, y0, z0).

(2) Let l be an exceptional line of S. Then there is an algebraic curve C so

that every point of S not lying on C is contained in a line contained in S

and intersecting l.

We proceed to give an elementary proof of Lemma 3.5. (We have been

advised by a helpful referee that the second part of the lemma is true without

the exceptional curve C, but perhaps the proof is a little less elementary.)

Proof. To prove the first part, we observe that by a change of coordinates

we can move (x0, y0, z0) to the origin. We let Q be the set of points q different

from the origin so that the line from q to the origin is contained in S. We

observe that Q is the intersection of an algebraic set with the complement of

the origin. That is, there is a finite set of polynomials E so that a point q

different from the origin lies in Q if and only if each polynomial in E vanishes

at q. This is because if d is the degree of p, to test whether q ∈ Q, we need
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only check that the line containing q and the origin is tangent to S to degree

d+ 1 at q. Now by assumption, the zero-set of each polynomial in E contains

the union of infinitely many lines contained in S. Thus by Lemma 3.1 and by

the irreducibility of p, it must be that each polynomial in E has p as a factor.

Therefore, Q is all of S except the origin. We have proved the first part.

Now to prove the second part, we observe that by a change of coordinates,

we may choose l to be the coordinate line y = 0; z = 0. We let Q be the set of

points q not on l so that there is a line from q to a nonexceptional point of l

that is contained in S. We will prove that Q contains all the points (x, y, z) ∈ S
where ∂p

∂x(x, y, z) 6= 0.

Consider a point (x, y, z) on S for which ∂p
∂x(x, y, z) 6= 0. In particular,

the point (x, y, z) is a regular point of S. Since ∂p
∂x(x, y, z) 6= 0, there is a

unique point (x′, 0, 0) of l that lies in the tangent plane to S at the point

(x, y, z). In fact, we can solve for x′ as a rational function of (x, y, z) with

only the polynomial ∂p
∂x in the denominator. Thus we can find a set E of

rational functions having only powers of ∂p
∂x in their denominators, so that for

any (x, y, z) at which ∂p
∂x does not vanish, we have that (x, y, z) ∈ Q if and only

if every function in E vanishes on (x, y, z).

In order for the previous paragraph to be useful to us, we need to know

that ∂p
∂x does not vanish identically on S. Suppose that it did. Since ∂p

∂x is of

lower degree than p and p is irreducible, it must be that ∂p
∂x vanishes identically

as a polynomial so that p depends only on y and z. In this case, since S contains

l and it contains a line l′ intersecting l, it must contain all translates of l′ in

the x-direction. Thus it contains a plane, which is a contradiction.

Thus, we let C be the algebraic curve where both p and ∂p
∂x vanish. Away

from C, there is a finite set of polynomials F (which we obtain from E by

multiplying by a large enough power of ∂p∂x) so that a point (x, y, z) of S outside

of C is in Q if and only if each polynomial in F vanishes at (x, y, z). Since we

know that p is irreducible and Q contains an infinite number of lines, it must

be that each polynomial in F has p as a factor. Thus every point of S that is

outside of C lies in Q, which was to be shown. �

Now that we have established our structural result, Lemma 3.5, we may

use it to obtain a corollary giving quantitative bounds on the number of ex-

ceptional points and lines.

Corollary 3.6. Let p(x, y, z) be an irreducible polynomial. Let

S = {(x, y, z) : p(x, y, z) = 0}

be an irreducible surface that is neither a plane nor a regulus. Then S has at

most one exceptional point and at most two exceptional lines.
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We now prove Corollary 3.6

Proof. Let (x0, y0, z0) and (x1, y1, z1) be distinct exceptional points of S.

Since S is singly-ruled, the generic point of S is contained in only a single line

l contained in S. Thus by Lemma 3.5, if the point is different from (x0, y0, z0)

and (x1, y1, z1), this line l must contain both (x0, y0, z0) and (x1, y1, z1) . But

there is only one such line, and that is a contradiction.

Now let l1, l2, l3 be exceptional lines of S. There are curves C1, C2, and

C3 so that the generic point in the complement of C1, C2, and C3 lies on only

one line contained in S and this line must intersect each of l1, l2, and l3. Thus

there are infinitely many lines contained in S that intersect each of l1, l2, and

l3. (Moreover, since the lines are exceptional, there must be an infinite set of

lines that intersect the three away from the possible three points of intersection

of any two of l1, l2, and l3.) If any two of the three lines are coplanar, this

means there is an infinite set of lines contained in S that lie in one plane. This

contradicts the irreducibility and nonplanarity of S. If contrariwise, the three

lines l1, l2, and l3 are pairwise skew, then the set of all lines that intersect all

three are one ruling of a regulus. In this case, S contains infinitely many lines of

a regulus, which contradicts the fact that S is irreducible and not a regulus. �

For context, we remark that an irreducible singly-ruled surface with an

exceptional point is often referred to as a cone and the exceptional point is

referred to as the cone point. Irreducible ruled surfaces with two exceptional

lines do exist: one way of constructing a ruled surface with two exceptional

lines is to choose a curve in the two-dimensional set of lines that intersect a

pair of skew lines. At last, we may begin the proof of Lemma 3.4.

Proof. We say that a point (x, y, z) is exceptional for the surface p = 0 if it

is exceptional for pj = 0 where pj is one of the irreducible factors of p. We say

that a line l is exceptional for the surface p = 0 if it is exceptional for pj = 0

where pj is one of the irreducible factors of p. Thus, in light of Corollary 3.6,

there are no more than N exceptional points and 2N exceptional lines for

p = 0. Thus there are . N3 intersections between exceptional lines and lines

of L1. Thus to prove the lemma, we need only consider intersections between

nonexceptional lines of L1 at nonexceptional points.

We recall that the set of lines in Z(p) can be divided into generators and

nongenerators. The set of lines in Z(P ) forms an algebraic variety of dimension

one in the affine Grassmannian of all lines in R3. This algebraic variety may

have several irreducible components, and the components may have dimension

zero or one. The lines in the components of dimension one are called generators.

There are only finitely many nongenerators.

We note that any line contained in a ruled surface that is not a generator

must be an exceptional line since each point of the line will have a generator
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going through it. (The definition of a ruled surface is that every point lies in

a line in the surface. Since there are only finitely many nongenerators, almost

every point must lie in a generator. But in fact every point lies in a generator

by a limiting argument. Let q be a point in the ruled surface, and let qi be a

sequence of points that converge to q with qi lying in a generator li. By taking

a subsequence, we can arrange that the directions of the li converge, and so

the lines li converge to a limit line l that contains q and lies in the surface.

This line is a limit of generators, and so it is a generator.)

Let l be a nonexceptional line in the ruled surface. In particular, l is a

generator. We claim that there are at most N − 1 nonexceptional points in l

where l intersects another nonexceptional line in the ruled surface. This claim

implies that there are at most (N − 1)N2 nonexceptional points where two

nonexceptional lines intersect, proving the bound we want.

To prove the claim, we repeat an argument found in [Sal58, Art 485,

pp. 88–89]. Choose a plane π through the generator l. The plane intersects

the surface in a curve of degree N . One component is the generator itself.

The other component is an algebraic curve c of degree N − 1. There are

at most N − 1 points of intersection between l and c. Suppose that l′ is

another nonexceptional line and that l′ intersects l at a nonexceptional point

q. It suffices to prove that q lies in the curve c. If l′ lies in π, then l′ ⊂
c and q ∈ c. So we can assume that l′ is transverse to π. Since l′ is a

generator, it lies in a continuous one-parameter family of other generators.

Consider a small open set of generators around l′. These generators intersect

the plane π. So each of them intersects either l or c. Since q is nonexceptional,

only finitely many of them intersect q. Since there are only finitely many

exceptional points, we can arrange that each generator in our small open set

intersects π in a nonexceptional point. Since l is nonexceptional, only finitely

many of our generators can intersect l. Therefore, almost all of our generators

must intersect c. This is only possible if q lies in c. �

Now we are ready to begin the proof of Theorem 2.10. We assume we have

a set L of at most N2 lines for which no more than N lie in a plane and no

more than N lie in a regulus. We suppose, by way of contradiction, that for Q,

a positive real number sufficiently large, there are QN3 points of intersection

of lines of L, and we assume that this is an optimal example, so that for no

M < N do we have a set of M2 lines so that no more than M lie in a plane

and no more than M lie in a regulus is it the case that there are more than

QM3 intersections. (N need not be an integer.)

We now apply a degree reduction argument similar to the one in [GK10].

We let L′ be the subset of L consisting of lines that intersect other lines of

L in at least QN
10 different points. The lines not in L′ participate in at most
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QN3

10 points of intersection. Thus there are at least 9QN3

10 points of intersection

between lines of L′. We define a number α with 0<α≤1 so that L′ has αN2

lines.

Now we select a random subset L′′ of the lines of L′ choosing lines in-

dependently with probability 100
Q . With positive probability, there will be no

more than 200αN2

Q lines in L′′ and each line of L′ will intersect lines of L′′ in

at least N different points. Now pick R
√
αN√
Q

points on each line of L′′. (R is

a constant that is sufficiently large but universal.) Call the set of all of the

points S. There are O
Ä
Rα

3
2N3

Q
3
2

ä
points in S, so we may find a polynomial p

of degree O
Ä
R

1
3 α

1
2N

Q
1
2

ä
that vanishes on every point of S. With R sufficiently

large, p must vanish identically on every line of L′′. Since each line of L′ meets

L′′ at N different points, it must be that p vanishes identically on each line

of L′. Thus ends the degree reduction argument, and we will now study the

relatively low degree polynomial p.

We may factor p = p1p2, where p1 is the product of the ruled irreducible

factors of p and p2 is the product of unruled irreducible factors of p. Each of

p1 and p2 is of degree O
Ä
α

1
2N

Q
1
2

ä
. (We have suppressed the R dependence since

R is universal.) We break up the set of lines of L′ into the disjoint subsets L1

consisting of those lines in the zero-set of p1 and L2 consisting of all the other

lines in L′.

There are no more than O(N3) points of intersection between lines of L1

and L2 since each line of L2 contains no more than O
Ä
α

1
2N

Q
1
2

ä
points where p1 is

zero. Thus we are left with two (not mutually exclusive) cases which cover all

possibilities. There are either 3QN3

10 points of intersection between lines of L1

or there are 3QN3

10 points of intersection between lines of L2. We will handle

these separately.

Suppose there are 3QN3

10 intersections between lines of L1. We factor p1 =

p3p4, where p3 is plane-free and regulus-free and p4 is a product of planes

and reguli. We break L1 into disjoint sets L3 and L4, with L3 consisting of

lines in the zero-set of p3 and L4 consisting of all other lines of L1. As before

there O(N3) points of intersection between lines of L3 and L4 since lines of

L4 are not in the zero-set of p3. Moreover, there are at most O(N3) points

of intersection between lines of L4 because they lie in at most N planes and

reguli each containing at most N lines. (We just see that each line has at most

O(N) intersections with planes and reguli it is not contained in and there are

at most O(N2) points of intersection between lines internal to each plane and

regulus.) However, there cannot be more than O(N3) points of intersection
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between lines of L3 by applying the key Lemma 3.4. (Here we used that p3 is

plane-free and regulus-free.)

Thus we must be in the second case, where many of the points of inter-

section are between lines of L2, all of which lie in the zero-set of p2 which is

totally unruled. Recall that p2 is of degree O
Ä
α

1
2N

Q
1
2

ä
. Thus by Corollary 3.3, its

zero-set contains no more than O
Ä
αN2

Q

ä
lines. We would like to now invoke the

fact that the example we started with was optimal and reach a contradiction.

But we cannot quite do that. Our set L2 has βN2 lines with β = O
Ä
α
Q

ä
, and

we only know that there are no more than N lines in any plane or regulus,

whereas we need to know that there are no more than
√
βN lines. If this is

the case, we are done. If not, we construct a subset L5 as follows. If there is a

plane or regulus containing more than
√
βN lines of L2, we put those lines in

L5 and remove them from L2. We repeat as needed, labelling the remaining

lines L6. Since we removed O(N) planes and reguli, there are O(N3) points of

intersection between lines of L5. Since no lines of L6 belong to any plane or

regulus of L5, there are fewer than O(N3) points of intersection between lines

of L5 and L6. Now we apply optimality of our original example to rule out

more than O
Ä
N3

Q
1
2

ä
points of intersection between lines of L6. Thus we have

reached a contradiction.

4. Cell decompositions

In this section, we construct a new type of cell decomposition of Rn, where

the walls of the cells are the zero-set of a polynomial. We use this type of cell

decomposition to prove an incidence theorem for lines in R3 when not too

many lines lie in a plane. The cell decomposition is described in the following

theorem.

Theorem 4.1. If S is a set of S points in Rn and J ≥ 1 is an integer,

then there is a polynomial surface Z of degree d . 2J/n with the following

property. The complement Rn \ Z is the union of 2J open cells Oi, and each

cell contains ≤ 2−JS points of S.

Remark. Some or all of the points of S may lie inside the surface Z. Recall

that Z is not part of any of the open sets Oi. So there are two extreme cases

in Theorem 4.1. In one extreme, all the points of S lie in the open cells Oi,

and there are exactly 2−JS points in each cell. In the other extreme, all the

points of S lie in the surface Z. When the points all lie in Z, the theorem does

not give any information about where in Z they lie.

The proof of Theorem 4.1 is based on the polynomial ham sandwich the-

orem of Stone and Tukey [ST42]. For context, we first recall the original ham

sandwich theorem.
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Theorem 4.2 (Ham sandwich theorem). If U1, . . . , Un ⊂ Rn are finite

volume open sets, then there is a hyperplane that bisects each set Ui.

The ham sandwich theorem was proven in the case n = 3 by Banach

in the late 30’s, using the Borsuk-Ulam theorem. In 1942, Stone and Tukey

generalized Banach’s proof to all dimensions. They also observed that the

same argument applies to many other situations. In particular, they proved

the following polynomial version of the ham sandwich theorem.

We say that an algebraic hypersurface p(x1, . . . , xn) = 0 bisects a finite

volume open set U if

Vol(U ∩ {p < 0}) = Vol(U ∩ {p > 0}) = (1/2)Vol(U).

Theorem 4.3 (Stone-Tukey, [ST42]). For any degree d ≥ 1, the following

holds. Let U1, . . . , UM be any finite volume open sets in Rn, with M=
(n+d
n

)
−1.

Then there is a real algebraic hypersurface of degree at most d that bisects

each Ui.

(For a recent exposition of the proof, see [Gut10].)

We now adapt Theorem 4.3 to finite sets of points. Instead of open sets

Ui, we will have finite sets Si. We say that a polynomial p bisects a finite set

S if at most half the points in S are in {p > 0} and at most half the points in

S are in {p < 0}. Note that p may vanish on some or all of the points of S.

Corollary 4.4. Let S1, . . . , SM be finite sets of points in Rn with M =(n+d
n

)
− 1. Then there is a real algebraic hypersurface of degree at most d that

bisects each Si.

Proof. For each δ > 0, define Ui,δ to be the union of δ-balls centered at

the points of Si. By the polynomial ham sandwich theorem, Theorem 4.3, we

can find a nonzero polynomial pδ of degree ≤ d that bisects each set Ui,δ.

We want to take a limit of the polynomials pδ as δ → 0. To help make

this work, we pick a norm ‖‖ on the space of polynomials of degree ≤ d. Any

norm will do — to be definite, let ‖p‖ denote the maximal absolute value of the

coefficients of p. By scaling pδ, we can assume that ‖pδ‖ = 1 for all δ. Now we

can find a sequence δm → 0 so that pδm converges in the space of degree ≤ d

polynomials. We let p be the limit polynomial and observe that ‖p‖ = 1. In

particular, p is not 0. Since the coefficients of pδm converge to the coefficients

of p, it is easy to check that pδ converges to p uniformly on compact sets.

We claim that p bisects each set Si. We prove the claim by contradiction.

Suppose instead that p > 0 on more than half of the points of Si. (The case

p < 0 is similar.) Let S+
i ⊂ Si denote the set of points of Si where p > 0. By

choosing ε sufficiently small, we can assume that p > ε on the ε-ball around

each point of S+
i . Also, we can choose ε small enough that the ε-balls around
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the points of Si are disjoint. Since pδm converges to p uniformly on compact

sets, we can find m large enough that pδm > 0 on the ε-ball around each point

of S+
i . By making m large, we can also arrange that δm < ε. Therefore,

pδm > 0 on the δm-ball around each point of S+
i . But then pδm > 0 on more

than half of Ui,δm . This contradiction proves that p bisects Si. �

Using this finite polynomial ham sandwich theorem, we can quickly prove

Theorem 4.1.

Proof of Theorem 4.1. We do the construction in J steps. In the first step,

we pick a linear polynomial p1 that bisects S. We let S+ and S− be the sets

where p1 is positive and negative, respectively. In the second step, we find a

polynomial p2 that bisects S+ and S−. And so on. At each new step, we use

Corollary 4.4 to bisect the sets from the previous step.

We now describe the inductive procedure a little more precisely. At the

end of step j, we have defined j polynomials p1, . . . , pj . We define 2j subsets

of S by looking at the points where the polynomials p1, . . . , pj have specified

signs. Then we use Corollary 4.4 to bisect each of these 2j sets. It follows by

induction that each subset contains ≤ 2−jS points.

Finally, we let p be the product p1 · · · pJ , and we let Z denote the zero-set

of p.

First we estimate the degree of p. By Corollary 4.4, the degree of pj is

. 2j/n. Hence the degree of p is d .
∑J
j=1 2j/n . 2J/n.

Now we define the 2J open sets Oi as the sets where the polynomials

p1, . . . , pJ have specified signs. For example, one of the sets Oi is defined by

the inequalities p1(x) > 0, p2(x) < 0, p3(x) > 0, . . . , pJ(x) > 0. The sets Oi are

open and disjoint. Their union is exactly the complement of Z. As we saw

above, the number of points in S ∩Oi is at most 2−JS. �

Using this type of cell decomposition, we will prove an estimate for inci-

dences of lines when not too many lines lie in a plane.

Theorem 4.5. Let k ≥ 3. Let L be a set of L lines in R3 with at most

B lines in any plane. Let S be the set of points in R3 intersecting at least k

lines of L. Then the following inequality holds :

|S| ≤ C[L3/2k−2 + LBk−3 + Lk−1].

Theorem 4.5 implies Theorem 2.11 by setting L = N2 and B = N .

This theorem is sharp up to constant factors in a number of cases. These

examples help to give a sense of the right-hand side.

Example 1. Choose L/k points. Let L consist of k lines through each

point. The set L has a k-fold incidence at each of the L/k points. (We can

also arrange that no three lines lie in a plane.)
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Example 2. Choose L/B planes. Put B lines in each of the planes. The B

lines in each plane can be arranged to create B2k−3 k-fold incidences. (See the

examples in [ST83].) This set of lines has a total of LBk−3 k-fold incidences.

Example 3. Let G0 denote the integer lattice {(a, b, 0)} with 1 ≤ a, b ≤
L1/4. Let G1 denote the integer lattice {(a, b, 1)} with 1 ≤ a, b ≤ L1/4. Let L

denote all the lines from a point of G0 to a point of G1. The horizontal planes

z = 0 and z = 1 do not contain any lines of L. Any other plane contains at

most L1/4 points of each Gi, and so at most L1/2 lines of L. We will prove

in the appendix that there are ∼ L3/2k−2 points that lie in ≥ k lines of L for

each k in the range 2 ≤ k ≤ L1/2/400.

For context, we should compare Theorem 4.5 to the Szemerédi-Trotter

theorem, which holds in all dimensions as we now recall.

Theorem 4.6. If L is a set of L lines in Rn, and S denotes the set of

points lying in at least k lines of L, then

|S| . L2k−3 + Lk−1.

The higher-dimensional case follows easily from the two-dimensional case

by taking a generic projection from Rn to R2. The set of lines L will project

to L distinct lines in R2, and the points of S project to distinct points in R2.

Theorem 4.5 is a refinement of Theorem 4.6. When B = L, Theorem 4.5

is Theorem 4.6. Theorem 4.5 tells us how much we can improve the Szemerédi-

Trotter theorem if we know in addition that not too many lines lie in a plane.

We will use Theorem 4.6 in our proof. Recently, in [KMS12], Kaplan,

Matous̆ek, and Sharir gave a new proof of the Szemerédi-Trotter theorem using

polynomial cell decompositions.

Now we turn to the proof of Theorem 4.5. An important special case is the

uniform case where each point has ∼ k lines through it and each line contains

about the same number of points. We will first prove the theorem under some

uniformity hypotheses.

Proposition 4.7. Let k ≥ 3. Let L be a set of L lines in R3 with at

most B lines in any plane. Let S be a set of S points in R3 so that each point

intersects between k and 2k lines of L.

Also, we assume that there are ≥ 1
100L lines in L that each contain ≥

1
100SkL

−1 points of S. Then S ≤ C[L3/2k−2 + LBk−3 + Lk−1].

The second paragraph of Proposition 4.7 is a uniformity assumption about

the lines. Note that there are ∼ Sk total incidences between lines of L and

points of S. Therefore, an average line of L contains ∼ SkL−1 points of S. We

assume here that there are many lines that are about average. Proposition 4.7

is the main part of the proof of Theorem 4.5. The general case reduces to this

special case by easy inductive arguments.
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Proof. We begin by outlining our strategy. We suppose that

(4.1) S ≥ AL3/2k−2 + Lk−1.

In this equation, A represents a large constant that we will choose below.

Assuming 4.1, we need to show that many lines of L lie in a plane. In particular,

we will find a plane that contains & SL−1k3 lines of L. This means that

B & SL−1k3, and hence S . BLk−3, and we will be done.

Let us outline how we find the plane. First we prove that a definite fraction

of the lines of L lie in an algebraic surface Z of degree . L2S−1k−3. Second we

prove that this variety Z contains some plannes and that a definite fraction of

the lines of L lie in the planes. Since there are at most d planes, one plane must

contain & L/d lines. Because d . L2S−1k−3, this plane contains & SL−1k3

lines, which is what we wanted to prove.

Our bound for the degree d is sharp up to a constant factor because of

Example 2 above. In this example, the lines L lie in ∼ L2S−1k−3 planes.

Since the planes can be taken in general position, the lines L do not lie in an

algebraic surface of lower degree.

(Our bound for the degree d is the new ingredient in this section. We

will find the algebraic surface Z by using the polynomial cell decomposition

of Theorem 4.1. We initially tried to find Z by using the purely algebraic

degree reduction argument from [GK10], as in Section 3. With this method,

we proved that a definite fraction of the lines of Z lie in an algebraic surface of

degree L2S−1k−2. But this degree is too large to make our argument work.)

Now we begin the detailed proof of Proposition 4.7. First we prove that

almost all points of S lie in a surface Z with controlled degree. This lemma is

the most important step in the proof of Theorem 4.5.

Lemma 4.8. If the constant A in inequality 4.1 is sufficiently large, then

there is an algebraic surface Z of degree . L2S−1k−3 that contains at least

(1− 10−8)S points of S.

Proof. We let θ denote a large constant that we will choose later, and we

let d be the greatest integer less than θL2S−1k−3. This d will be the degree of

our surface Z. First we check that d ≥ 1. By the Szemerédi-Trotter theorem,

S . L2k−3 +Lk−1. But by inequality (4.1), S ≥ Lk−1. Therefore, S . L2k−3.

Hence we can choose θ so that d ≥ 1.

Now we apply Theorem 4.1 to construct a degree d surface Z such that

R3 \ Z is a union of ∼ d3 open cells Oi, each containing . Sd−3 points of S.

Let us suppose that Z contains < (1 − 10−8)S points of S. So the open

cells Oi all together contain ≥ 10−8S points of S. Since each cell contains

. Sd−3 points of S, there must be & d3 cells that each contain & Sd−3 points

of S. We call these full cells.
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We now prove an upper bound for S using the cellular method from

[CEG+90].

We let L(Oi) denote the subset of lines of L that intersect Oi. We let

Lcell be the minimum of |L(Oi)| among all the full cells Oi. We apply the

Szemerédi-Trotter inequality to the full cell with the fewest lines. Since this

full cell still contains & Sd−3 points, we get the following inequality:

Sd−3 . L2
cellk

−3 + Lcellk
−1.

Next we estimate Lcell in terms of the degree of Z. A line either lies in Z

or else it intersects Z at most d times. Every time a line moves from one open

cell Oi to another, it needs to pass through Z. So each line of L intersects at

most d+ 1 cells Oi. So there are ≤ L(d+ 1) pairs (l, Oi) where l ∈ L(Oi). But

there are ∼ d3 full cells Oi. Hence Lcell . Ld−2. Plugging in this estimate for

Lcell, we get the following inequality:

Sd−3 . L2d−4k−3 + Ld−2k−1.

Recalling that d ∼ θL2S−1k−3 and rearranging, we get the following in-

equality:

S ≤ C(θ−1S + θL3S−1k−4).

Note that the constant C does not depend on θ. (We could work it out explic-

itly using an explicit constant in Theorem 4.1 and in the Szemerédi-Trotter

theorem.) At this point, we choose θ sufficiently large so that Cθ−1 < 1/2.

We can then move the term Cθ−1S to the left-hand side and rearrange to get

the inequality

S . θ1/2L3/2k−2.

If the constant A is sufficiently large, this inequality contradicts (4.1). We

conclude that there are less than 10−8S points of S outside of Z.

Finally, the degree of Z is d ≤ θL2S−1k−3. The constant θ is a particular

number that we chose above. In particular, θ does not depend on A. And so

d . L2S−1k−3 as desired. �

We let SZ denote the points of S that lie in Z. By Lemma 4.8, |S\SZ | ≤
10−8S. Our next goal is to prove that many lines of L lie in the surface Z.

This result depends on a quick calculation about the degree d. Recall that an

average line of L contains SkL−1 points of S. We prove that the degree d is

much smaller than SkL−1.

Lemma 4.9. If the constant A is sufficiently large, then

d < 10−8SkL−1.

Proof. Inequality (4.1) can be rewritten as

1 ≤ A−1SL−3/2k2.
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Squaring this, we see that

d ≤ dA−2S2L−3k4 . A−2SkL−1.

Now choosing A sufficiently large finishes the proof. �

As an immediate corollary, we get the following lemma.

Lemma 4.10. If l is a line of L that contains at least 10−8SkL−1 points

of SZ , then l is contained in Z .

Proof. The line l contains at least 10−8SkL−1 points of Z. Since d >

10−8SkL−1, the line l must lie in the surface Z. �

Let LZ denote the set of lines in L that are contained in Z.

Lemma 4.11. The set LZ contains at least (1/200)L lines.

Proof. We assumed that there are ≥ (1/100)L lines of L that each contain

≥ (1/100)SkL−1 points of S. Let L0 ⊂ L be the set of these lines. We claim

that most of these lines lie in LZ . Suppose that a line l lies in L0 \LZ . It must

contain at least (1/100)SkL−1 points of S. But by Lemma 4.10, it contains

< 10−8SkL−1 points of SZ . Therefore, it must contain at least (1/200)SkL−1

points of S \SZ . This gives us the following inequality:

(1/200)SkL−1|L0 \ LZ | ≤ I(S \SZ ,L0 \ LZ).

Here we write I to abbreviate the number of incidences between a set of points

and a set of lines.

On the other hand, each point of S lies in at most 2k lines of L, giving

us an upper bound on incidences:

I(S \SZ ,L0 \ LZ) ≤ 2k|S \SZ | ≤ 2 · 10−8Sk.

Comparing these two inequalities, we see that |L0 \ LZ | ≤ 4 · 10−6L, which

implies that |LZ | ≥ (1/200)L. �

We have now carried out the first step of our outline: we found a surface

Z of degree . L2S−1k−3 that contains a definite fraction of the lines from L.

We now turn to the second step of our outline. We will prove that Z

contains some planes and that these planes contain many lines of L. This step

is closely based on the techniques in [GK10] and [EKS11]. The paper [EKS11]

contains a clear introduction to the techniques. In particular, Section 2 of

[EKS11] proves all of the fundamental lemmas from algebraic geometry that

we need.

Each point of SZ lies in at least k lines of L. But such a point does not

necessarily lie in any lines of LZ . Therefore, we make the following definition.

We define S′Z to be the set of points in SZ that lie in at least three lines

of LZ .
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This subset is important because each point of S′Z is a special point of the

surface Z: either a critical point or a flat point. Let us recall the definitions

of critical points and flat points.

The surface Z is the vanishing set of a polynomial p. The polynomial p

can be factored into irreducible polynomials p = p1p2 · · · . We assume that each

irreducible factor of p appears only once. Now a point x ∈ Z is called critical if

the gradient ∇p vanishes at x. If x ∈ Z is not critical, we say that x is regular.

In a small neighborhood of a regular point x ∈ Z, Z is a smooth submanifold.

We say that a regular point x ∈ Z is flat if the second fundamental form of Z

vanishes at x.

Lemma 4.12. Each point of S′Z is either a critical point or a flat point

of Z .

Proof. Let x ∈ S′Z . By definition, x lies in three lines that all lie in Z.

If x is a critical point of Z, we are done. If x is a regular point of Z, then all

three lines must lie in the tangent space of Z at x. In particular, the three lines

are coplanar. Let v1, v2, v3 be nonzero tangent vectors of the three lines at x.

The second fundamental form of Z vanishes in each of these three directions.

Since the second fundamental form is a symmetric bilinear form on the two-

dimensional tangent space, it must vanish. Therefore, x is a flat point of Z. �

(See also [EKS11, Props. 4, 6] for a more detailed proof.) Lemma 4.12

shows that the points of S′Z are important. Next we show that almost every

point of S lies in S′Z .

Lemma 4.13. The set S \S′Z contains at most 10−7S points.

Proof. Lemma 4.8 tells us that |S \SZ | < 10−8S. Suppose x is a point

in SZ \S′Z . The point x lies in at least k lines from L, but it lies in at most

two lines from LZ . So x lies in ≥ k − 2 lines of L \ LZ :

(k − 2)|SZ \S′Z | ≤ I(SZ \S′Z ,L \ LZ).

On the other hand, we showed in Lemma 4.10 that each line of L\LZ contains

≤ 10−8SkL−1 points of SZ . Therefore,

I(SZ \S′Z ,L \ LZ) ≤ I(SZ ,L \ LZ) ≤ (10−8SkL−1)L.

Combining these inequalities and recalling that k ≥ 3, we see that

|SZ \S′Z | ≤ 10−8 k

k − 2
S ≤ 3 · 10−8S. �

We let Scrit ⊂ S′Z denote the critical points in S′Z and we let Sflat ⊂ S′Z
denote the flat points of S′Z . We call a line l ⊂ Z a critical line of Z if every

point of l is a critical point of Z. We call a line l ⊂ Z a flat line if it is not a

critical line and every regular point in l is flat.
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Our next goal is to show that Z contains many flat lines, which is a step

to showing that Z contains a plane. In order to do this, we show that the flat

points of Z are defined by the vanishing of certain polynomials.

Lemma 4.14. Let x be a regular point of Z . Then x is flat if and only if

the following three polynomial vectors vanish at x:

∇ej×∇p∇p×∇p, j = 1, 2, 3.

Here, ej are the coordinate vectors of R3, and × denotes the cross product

of vectors. Each vector above has three components, so we have a total of nine

polynomials. Each polynomial has degree ≤ 3d. For more explanation, see

Section 3 of [GK10] or Section 2 of [EKS11]. In [EKS11], they use a more

efficient set of polynomials: only three polynomials.

To find critical or flat lines, we use the following simple lemmas.

Lemma 4.15. Suppose that a line l contains more than d critical points

of Z . Then l is a critical line of Z .

Proof. At each critical point of Z, the polynomial p and all the components

of ∇p vanish. Since p has degree d, we conclude that p vanishes on every point

of l. Since ∇p has degree d− 1, we conclude that ∇p vanishes on every point

of l. Hence l is a critical line of Z. �

Lemma 4.16. Suppose that a line l contains more than 3d flat points of Z .

Then l is a flat line of Z .

Proof. Let x1, . . . , x3d+1 be flat points of Z contained in l. By Lemma 4.14,

each polynomial ∇ej×∇p∇p × ∇p vanishes at xi. Since the degree of these

polynomials is ≤ 3d, we conclude that each of these polynomials vanishes on l.

Similarly, p vanishes on l. Therefore, the line l lies in Z and every regular point

in l is a flat point. But by definition, xi are regular points of Z. Therefore, l

is not a critical line, and it must be a flat line. �

Using these lemmas, we will prove that a definite fraction of the lines of

L are either critical or flat. We define L′Z to be the set of lines of LZ that

contain at least (1/200)SkL−1 points of S′Z .

Lemma 4.17. Each line in L′Z is either critical or flat.

Proof. Since every point of S′Z is either critical or flat, each line in L′Z
contains either (1/400)SkL−1 critical points or (1/400)SkL−1 flat points. But

by Lemma 4.9, d ≤ 10−8SkL−1. So by Lemmas 4.15 and 4.16, each line of L′Z
is either critical or flat. �

Now we show that L′Z contains a definite fraction of the lines of L.
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Lemma 4.18. The number of lines in L′Z is ≥ (1/200)L.

Proof. Recall that we assumed in the statement of Proposition 4.7 that

there are at least (1/100)L lines of L that each contain ≥ (1/100)SkL−1 points

of S. We denote these lines by L0 ⊂ L.

Suppose a line l lies in L0 \ L′Z . Then l contains at least (1/100)SkL−1

points of S. But it contains less than (1/200)SkL−1 points of S′Z . Therefore,

it contains at least (1/200)SkL−1 points of S \ S′Z . So we get the following

inequality:
(1/200)SkL−1|L0 \ L′Z | ≤ I(S \S′Z ,L0 \ L′Z).

But since each point of S lies in at most 2k lines of L,

I(S \S′Z ,L0 \ L′Z) ≤ I(S \S′Z ,L) ≤ 2k|S \S′Z |.
Lemma 4.13 says that |S \S′Z | ≤ 10−7S. Assembling all our inequalities,

we see that
(1/200)SkL−1|L0 \ L′Z | ≤ 2k · 10−7S.

Simplifying this expression, we see that

|L0 \ L′Z | ≤ 4 · 10−5L.

So almost all the lines of L0 lie in L′Z . In particular, L′Z contains ≥ (1/200)L

lines. �

Next we bound the number of critical lines in Z.

Lemma 4.19. A surface Z of degree d contains ≤ d2 critical lines.

This lemma follows from Bezout’s theorem applied to p and ∇p. See

Proposition 3 in [EKS11].

If the constant A from inequality (4.1) is sufficiently large, then d2 will be

much less than L. We record this calculation in the next lemma.

Lemma 4.20. If A is sufficiently large, then d ≤ 10−4L1/2.

Proof. Inequality (4.1) implies that 1 ≤ A−1SL−3/2k2. Therefore,

d ≤ dA−1SL−3/2k2 . A−1L1/2k−1.

Choosing A sufficiently large finishes the proof. �

In particular, we see that Z contains at most d2 < 10−8L critical lines.

Since L′Z contains at least (1/200)L lines, we see that most of these lines must

be flat. In particular, L′Z contains at least (1/300)L flat lines of Z.

We are trying to prove that Z contains some planes. Let Zpl denote the

union of all planes contained in Z. We let Z̃ denote the rest of Z so that

Z = Zpl ∪ Z̃. In terms of polynomials, Z is the vanishing set of p. The

polynomial p factors into irreducibles: p = p1p2 · · · . Some of these factors

have degree 1, and some factors have degree more than 1. Each factor of

degree 1 defines a plane, and Zpl is the union of these planes. The product of

the remaining factors is a polynomial p̃, and Z̃ is the zero-set of p̃. A line that
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lies in both Zpl and Z̃ is actually a critical line of Z. So a flat line of Z lies

either in Zpl or in Z̃, but not both. A flat line of Z that lies in Z̃ is a flat line

of Z̃. The number of flat lines in a surface of degree ≤ d is bounded by the

following lemma from [EKS11].

Lemma 4.21 ([EKS11, Prop. 8]). If Z is an algebraic surface of degree

≤ d with no planar component, then Z contains ≤ 3d2 flat lines.

We have seen that L contains at least (1/300)L flat lines of Z. But Z̃

contains only 3 · 10−8L flat lines. The rest of the flat lines lie in Zpl. In

particular, L contains at least (1/400)L lines in Zpl.

Finally, we observe that the number of planes in Zpl is ≤ d . L2S−1k−3.

So one of these planes must contain & Sk3L−1 lines of L. In other words,

B & Sk3L−1.

At several points in the argument, we needed A to be sufficiently large.

We now choose A large enough for those steps. We conclude that either S ≤
AL2k−3/2+Lk−1 or else S . LBk−3. This finishes the proof of Proposition 4.7.

�

Proposition 4.7 is the heart of the proof of Theorem 4.5. We are going to

reduce the general case to Proposition 4.7. First we remove the assumption

that many lines have roughly the average number of points.

Proposition 4.22. Let k ≥ 3. Let L be a set of L lines in R3 with ≤ B
lines in any plane. Let S be a set of S points so that each point meets between

k and 2k lines of L.

Then S ≤ C[L3/2k−2 + LBk−3 + Lk−1].

Proof. Let L1 be the subset of lines in L that contain ≥ (1/100)SkL−1

points of S. If |L1| ≥ (1/100)L, then we have all the hypotheses of Proposi-

tion 4.7, and we may conclude

S ≤ C0[L3/2k−2 + LBk−3 + Lk−1].

We are going to prove that S obeys this same estimate, with the same

constant, regardless of the size of L1. The proof will go by induction on the

number of lines.

From now on we assume that |L1| ≤ (1/100)L. The lines in L1 contribute

most of the incidences. In particular, we have the following inequality:

I(S,L \ L1) ≤ (1/100)SkL−1 · L = (1/100)Sk.

We define S′ ⊂ S to be the set of points with ≥ (9/10)k incidences with

lines of L1. If x is in S \S′, then x lies in at least k lines of L, but less than

(9/10)k lines of L1. So x lies in at least (1/10)k lines of L \ L1. Therefore,

(1/10)k|S \S′| ≤ I(S \S′,L \ L1) ≤ I(S,L \ L1) ≤ (1/100)Sk.

Rearranging, we see that |S \S′| ≤ (1/10)S, and so |S′| ≥ (9/10)S.
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A point of S′ has at least (9/10)k incidences with L1 and at most 2k

incidences with L1. This is a slightly larger range than we have considered

before. In order to do induction, we need to reduce the range. We observe

S′ = S′+∪S′−, where S′+ consists of points with ≥ k incidences to L1 and S′−
consists of points with ≤ k incidences with L1. We define S1 to be the larger

of S′+ and S′−. It has ≥ (9/20)S points in it.

If we picked S1 = S′+, then we define k1 = k. If we picked S1 = S′−,

then we define k1 to be the smallest integer ≥ (9/10)k. Each point in S1 has

at least k1 and at most 2k1 incidences with lines of L1. Also, k1 is an integer

≥ (9/10)k ≥ 27/10, so k1 ≥ 3.

The set of lines L1 and the set of points S1 obey all the hypotheses of

Theorem 4.22 (using k1 in place of k and using the same B). There are fewer

lines in L1 than in L. Doing induction on the number of lines, we may assume

that our result holds for these sets. If we denote |L1| = L1 and |S1| = S1, we

get

S1 ≤ C0[L
3/2
1 k−2

1 +BL1k
−3
1 + L1k

−1
1 ].

Now S ≤ (20/9)S1. Also, L1 ≤ (1/100)L. And k1 ≥ (9/10)k. Therefore,

S ≤ (20/9)S1 ≤ [(20/9)(1/100)(10/9)3]C0[L3/2k−2 + LBk−3 + Lk−1].

The bracketed product of fractions is < 1, and so S obeys the desired bound.

�

Finally, we can prove Theorem 4.5.

Proof of Theorem 4.5. Let k ≥ 3. Suppose that L is a set of L lines with

≤ B in any plane. Suppose that S is a set of points, each intersecting at least

k lines of L.

We subdivide the points S = ∪∞j=0Sj , where Sj consists of the points

incident to at least 2jk lines and at most 2j+1k lines. We define kj to be 2jk.

Then Theorem 4.22 applies to (L,Sj , kj , B), and we conclude that

|Sj | ≤ C0[L3/2k−2
j + LBk−3

j + Lk−1
j ]

≤ 2−jC0[L3/2k−2 + LBk−3 + Lk−1].

Now S ≤∑j |Sj | ≤ 2C0[L3/2k−2 + LBk−3 + Lk−1]. �

Appendix A. The example of a square grid

In this section, we return to Erdős’s example of a square grid of points.

When P is a square grid of N points, we show that |Q(P )| & N3 logN and

|Gk(P )| & N3k−2 for all 2 ≤ k ≤ N/2000. So the estimates in Propositions 2.2

and 2.5 are sharp up to constant factors. We also study the set of lines L

associated to a square grid P . This set of lines shows that many of our incidence

estimates are sharp up to constant factors.
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Let S ≥ 1 be an integer. Let P be the grid of points (x, y) where x and

y are integers with norm ≤ 2S. Note that the number of points in |P | is

N = (4S + 1)2. Let L be the set of lines in R3 associated to the set P , as in

Section 2.

Lemma A.1. If a, b, c, and d are positive integers with norm ≤ S, then

the line from (a, b, 0) to (c, d, 1) is contained in L.

Proof. Using the parametrization in (2.3), we see that the line from (a, b, 0)

to (c, d, 1) is the line Lpq, where p and q are defined by the following equations:

(1/2)(px + qx) = a, (1/2)(py + qy) = b,

(1/2)(qy − py) = c− a, (1/2)(px − qx) = d− b.

Solving these equations, we get p = (a+d−b, b−c+a) and q = (a−d+b, b+c−a).

Since a, b, c, and d are positive integers of norm ≤ S, it follows that px, py, qx,

and qy are integers of norm ≤ 2S, and so p and q lie in P . �

Let L0 ⊂ L be the set of lines from (a, b, 0) to (c, d, 1) where a, b, c, and d

are positive integers with norm ≤ S. In the proposition below, we study the

incidences of L0. Note that |L0| = S4.

Proposition A.2. Let Sk be the set of points in R3 that lie in at least

k lines of L0. For any k in the range 2 ≤ k ≤ (1/400)S2, |Sk| & S6k−2.

Proof. Consider a point x in R3 contained in the slab 0 < x3 < 1. We

define a map Fx : R2 → R2 by saying that Fx(a, b) = (c, d) if the line from

(a, b, 0) through x hits (c, d, 1). We define G to be the integral grid in the plane

given by {(a, b)} with 1 ≤ a, b ≤ S. The number of lines from L0 that pass

through x is exactly the cardinality of Fx(G)∩G. Now any intersection of two

lines from L0 will have rational coordinates, so we can assume the coordinates

of x are rational. Let us say that the x3 coordinate of x is p/q, written in

lowest terms.

By a similar triangles argument, Fx(G) is a square grid with spacing q−p
p .

Since p and q are in lowest terms, the intersection Fx(G)∩G will be a rectan-

gular grid with spacing q−p. The edges of this rectangle will have length < S.

So the number of points in Fx(G) ∩ G is at most S2(q − p)−2. On the other

hand, the edges of this rectangle have length < S q−pp . Therefore, the number

of points of Fx(G) ∩ G is at most S2p−2. Combining these estimates, we see

that |Fx(G) ∩G| ≤ 4S2q−2.

Let us say that the middle half of G, written Gmiddle ⊂ G, is the inte-

gral grid {(a, b)} with (1/4)S ≤ a, b ≤ (3/4)S. If Fx maps a vertex from

Gmiddle into G, then the number of intersections between Fx(G) and G is fairly

close to this upper bound. Using the arguments from the last paragraph, it is
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straightforward to show that |Fx(G)∩G| ≥ (1/100)S2q−2 whenever Fx(Gmiddle)

intersects G.

Let us define X(p, q) to be the set of x = (x1, x2, p/q) so that Fx(Gmiddle)

∩ G is nonempty. The set X(p, q) lies in Sk whenever k ≤ (1/100)S2q−2.

Equivalently, X(p, q) lies in Sk whenever q ≤ (1/10)Sk−1/2.

For any pair of points (a1, b1) ∈ Gmiddle and (a2, b2) ∈ G, there is a unique

x ∈ X(p, q) so that Fx(a1, b1) = (a2, b2). There are ∼ S4 such pairs of points.

Each element of X(p, q) corresponds to at least (1/100)S2q−2 pairs of points

and at most 4S2q−2 pairs of points. Therefore, |X(p, q)| ∼ S2q2.

Now we fix k ≤ (1/400)S2. We pick q in the range (1/20)Sk−1/2 ≤ q ≤
(1/10)Sk−1/2. Because k is not too big, this range of q contains some integers.

For each p coprime to q, X(p, q) ⊂ Sk. The sets X(p, q) are clearly disjoint,

and so

|Sk| &
(1/10)Sk−1/2∑
q=(1/20)Sk−1/2

∑
0<p<q,gcd(p,q)=1

|X(p, q)| &
(1/10)Sk−1/2∑
q=(1/20)Sk−1/2

φ(q)S2q2.

The sums of the Euler totient function φ(n) are well studied. Theorem

3.7 in [Apo76] gives the asymptotic
∑x
q=1 φ(q) = 3

π2x
2 +O(x log x). Therefore,∑2x

q=x φ(q) ∼ x2. Therefore,

|Sk| &
Ä
Sk−1/2

ä2
S2q2 ∼ S6k−2. �

Recall that |Gk(P )| is at least |G′k(P )|, which is the number of points

lying in at least k lines of L. So we see that |Gk(P )| & S6k−2 ∼ N3k−2 for all

2 ≤ k ≤ (1/400)S2 ≤ N/2000. Equation (2.2) gives

|Q(P )| ∼
N∑
k=2

k|Gk(P )| &
N/2000∑
k=2

N3k−1 & N3 logN.

Now we consider how sharp our incidence theorems are. The set of lines

L0 ⊂ L has . N ∼ S2 lines in any plane or doubly ruled surface by Propo-

sition 2.8. This example shows that Theorems 2.10 and 2.11 are sharp up to

constant factors.

Next we consider Theorem 4.5. The lines L0 correspond to Example 3 in

Section 4. The three examples show that Theorem 4.5 is sharp up to constant

factors as long as B & L1/2. The example L0 has B ∼ L1/2. For much smaller

values of B, we do not know what happens. For example, suppose that L is

a set of L lines in R3 with at most 100 lines in any plane. How many points

can be incident to three lines of L? Or suppose that L is a set of L lines in R3

with at most 100 lines in any plane or doubly ruled surface. How many points

can be incident to two lines of L?
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