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On the boundedness of Bernoulli processes

By Witold Bednorz and Rafa l Lata la

Abstract

We present a positive solution to the so-called Bernoulli Conjecture con-

cerning the characterization of sample boundedness of Bernoulli processes.

We also discuss some applications and related open problems.

1. Introduction and notation

One of the fundamental issues of probability theory is the investigation

of suprema of stochastic processes. Besides various practical motivations it

is closely related to such important theoretical problems as boundedness and

continuity of sample paths of stochastic processes, convergence of orthogonal

series, random series and stochastic integrals, estimates of norms of random

vectors and random matrices, limit theorems for random vectors and empirical

processes, combinatorial matching theorems and many others.

In particular, in many situations one needs to find lower and upper bounds

for the quantity E supt∈T Xt, where (Xt)t∈T is a stochastic process. For a large

class of processes (including Gaussian and Bernoulli processes), finiteness of

this quantity is equivalent to the sample boundedness, i.e., to the condition

P(supt∈T Xt < ∞) = 1. To avoid measurability problems one may either

assume that T is countable or define E supt∈T Xt := supF E supt∈F Xt, where

the supremum is taken over all finite sets F ⊂ T . The modern approach to

this problem is based on chaining techniques, already present in the work of

A. N. Kolmogorov and successfully developed over the last forty years. (See

the monographs [22] and [25].)

The most important case of centered Gaussian processes (Gt)t∈T is well

understood. In this case the boundedness of the process is related to the geom-

etry of the metric space (T, d), where d(t, s) := (E(Gt −Gs)2)1/2. In the land-

mark paper [3], R. Dudley obtained an upper bound for g(T ) := E supt∈T Gt
in terms of entropy numbers. Dudley’s bound may be reversed for stationary
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processes [5], but not in general. In 1974 X. Fernique [5] showed that for any

probability measure µ on the metric space (T, d),

g(T ) ≤ L sup
t∈T

∫ ∞
0

log1/2

Ç
1

µ(B(t, x))

å
dx,

where L, here and in the sequel, denotes a universal constant and B(t, x)

is the ball in T centered at t with radius x. This can easily be shown to

improve Dudley’s estimate. In the seminal paper [14] M. Talagrand showed

that Fernique’s bound may be reversed; i.e., for any centered Gaussian process

Gt, there exists a probability measure µ (called a majorizing measure) on T

such that

sup
t∈T

∫ ∞
0

log1/2

Ç
1

µ(B(t, x))

å
dx ≤ Lg(T ).

In general, finding a majorizing measure in a concrete situation is a highly

nontrivial task. In [21], M. Talagrand proposed a more combinatorial approach

to this problem and showed that constructing a majorizing measure is equiv-

alent to finding a suitable sequence of admissible partitions of the set T . An

increasing sequence (An)n≥0 of partitions of the set T is called admissible if

A0 = {T} and |An| ≤ Nn := 22n . The Fernique-Talagrand estimate may then

be expressed as

(1)
1

L
γ2(T, d) ≤ g(T ) ≤ Lγ2(T, d),

where

γ2(T, d) := inf sup
t∈T

∞∑
n=0

2n/2∆(An(t))

and where the infimum runs over all admissible sequences of partitions. Here

An(t) is the unique set in An that contains t and ∆(A) denotes the diameter

of the set A.

Any separable Gaussian process has a canonical Karhunen-Loève type

representation (
∑∞
i=1 tigi)t∈T , where g1, g2, . . . are independent and identically

distributed standard normal Gaussian N (0, 1) random variables (r.v’s) and T

is a subset of `2. Another fundamental class of processes is obtained when in

such a sum one replaces the Gaussian r.v’s (gi) by independent random signs.

We detail this now.

Let I be a countable set and (εi)i∈I be a Bernoulli sequence, i.e., a sequence

of independent and identically distributed symmetric r.v’s taking values ±1.

For t ∈ `2(I), the series Xt :=
∑
i∈I tiεi converges almost surely, and for T ⊂

`2(I), we may define a Bernoulli process (Xt)t∈T and try to estimate b(T ) :=

E supt∈T Xt. There are two easy ways to bound b(T ). The first is a consequence

of the uniform bound |Xt| ≤ ‖t‖1 =
∑
i∈I |ti| so that b(T ) ≤ supt∈T ‖t‖1.

Another is based on the domination by the canonical Gaussian process Gt :=
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∑
i∈I tigi. Indeed, assuming independence of (gi) and (εi), Jensen’s inequality

implies

(2) g(T ) = E sup
t∈T

∑
i∈I

tigi = E sup
t∈T

∑
i∈I

tiεi|gi| ≥ E sup
t∈T

∑
i∈I

tiεiE|gi| =
 

2

π
b(T ).

Obviously, also if T ⊂ T1 + T2 = {t1 + t2 : tl ∈ Tl}, then b(T ) ≤ b(T1) + b(T2),

hence

b(T ) ≤ inf
{

sup
t∈T1
‖t‖1 +

…
π

2
g(T2) : T ⊂ T1 + T2

}
≤ inf

{
sup
t∈T1
‖t‖1 + Lγ2(T2) : T ⊂ T1 + T2

}
,

where γ2(T ) = γ2(T, d2) and d2 is the `2-distance. It was open for about

twenty-five years (under the name of Bernoulli conjecture) whether the above

estimate may be reversed. (See, e.g., Problem 12 in [12] or Chapter 4 in [22].)

Our main result, announced in [2], provides an affirmative answer.

Theorem 1.1. For any set T ⊂ `2(I) with b(T ) < ∞ we may find a

decomposition T ⊂ T1 + T2 with supt∈T1
∑
i∈I |ti| ≤ Lb(T ) and g(T2) ≤ Lb(T ).

Of course part of the difficulty is that the decomposition is neither unique

nor canonical. Let us briefly describe some crucial ideas behind the proof,

which uses a number of tools developed over the years by M. Talagrand. First

of all we must review the proof of the lower bound of (1) in the modern

approach as in, e.g., [22]. Every idea of this proof is used to its fullest in our

approach.

As was nicely explained in [16] two fundamental facts behind this proof

are Gaussian concentration and the Sudakov minoration principle. Gaussian

concentration asserts that the fluctuations of the supremum of a Gaussian

process are at worse like those of a single Gaussian r.v. with standard deviation

about the diameter of the space (T, d) (irrelevant of the average value of this

supremum). The Sudakov minoration says that the supremum of m Gaussian

r.v’s with distances at least a of each other is at least of the order a
√

logm.

These two principles can then be combined to obtain a “growth condition” as

follows. If the space (T, d) contains m pieces Hl, which are at mutual distances

at least a, and if each of these pieces is of diameter at most a small fraction of

a, then the expected value of the supremum of the process over the whole index

set T is larger by about a
√

logm than the minimum over l of the expected value

of supremum of the process on the set Hl. This brings the idea to measure the

“size” F (A) of a subsets A of T by the expected value of the supremum of the

process over A. One is then led to perform constructions in the abstract metric

space (T, d) using only the value of the “functional” F (A) over the subsets A of

T . (The concept of functionals and related “growth conditions” was introduced
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and developed by M. Talagrand [20], [22] to simplify proofs and give a unified

approach to various majorizing measure type results.) The basic ingredient to

the proof is then a “decomposition lemma,” which is a simple consequence of

the growth condition through a “greedy” construction. Roughly speaking this

decomposition lemma asserts that there exists a universal constant r with the

property that any subset A of T can be partitioned into at most m pieces such

that each piece either has the diameter at most ∆(A)/r, or else it satisfies

the condition that its every subset B of diameter at most ∆(A)/r2 satisfies

F (B) ≤ F (A) − c∆(A)
√

logm for some positive universal constant c. (The

reader observes that the condition on B is not that its diameter is at most

∆(A)/r but the much more stringent requirement that its diameter is at most

∆(A)/r2. It is exactly this point that makes the proof delicate.) In words,

every piece is either small, or it has the property that the value of the functional

on its very small sub-pieces is quite smaller than on the whole of A. The

admissible sequence of partitions we look for is then obtained by a recursive

use of the decomposition lemma. Each set A belonging to An is partitioned

in at most Nn = 22n sets to produce the partition An+1. It is not obvious,

but true, that the resulting sequence of partitions has the required properties.

(Proving this is the tricky part of the whole proof.)

When working with Bernoulli processes (and many others) the situation

is more complicated than in the Gaussian case, and one needs to use a family

of distances interpolating between the `2 and the `1 distances. Such distances

were introduced by M. Talagrand in [17], [19], [18] and will be of constant use.

An important concept in our proof is reducing the decomposition of the set

T to constructing a suitable admissible sequence of partitions. Theorem 3.1

below is a refinement of previous results of M. Talagrand in the same direction

[19], [18], [22]. In some sense this type of result amounts to organize chaining

in an efficient way. Indeed in [25], M. Talagrand used such a result to settle

the long standing problem of convergence of random Fourier series in a very

general case.

How, then, should one construct the required partitions?

M. Talagrand extended to Bernoulli processes both Gaussian concentra-

tion and the Sudakov minoration in [15] and [17] (see Theorems 2.5 and 2.7).

The Sudakov minoration result provides a lower bound on the expected value

of the supremum of variables Xtl when the various points tl are far from each

other in the `2 sense, but it requires a control in the supremum norm of the

elements tl. (The overall idea is simply that by the central limit theorem, a

sum
∑
i εitl,i looks more like a Gaussian r.v. if all the coefficients are small.)

In order to apply this minoration to increasingly larger families, one needs to

reduce the supremum norm. To do this M. Talagrand introduced in [17] the

fundamental idea of “chopping maps.” These replace the process of interest
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by a process where the control in the supremum norm is better, but which

is related to the original process through an equally crucial comparison theo-

rem (Theorem 2.2). This is essentially done by replacing each term tiεi by a

sum
∑
j ϕj(ti)εi,j for new independent Bernoulli r.v’s and certain functions ϕj ,

where we uniformly control sup |ϕj(ti)|, and where |ti| =
∑
j |ϕj(ti)|. In some

sense in this procedure we “add more Bernoulli r.v’s” to the process.

On the base of these tools M. Talagrand was able to prove in [18] a weaker

form of Bernoulli conjecture with `p-diameter bound on the set T1, p > 1

instead of `1-diameter. Although such a bound is not optimal, it was sufficient

to obtain deep results about Rademacher cotype constants of operators on

C(K) spaces.

The main difficulty in using chopping maps optimally is that there are

two `2-distances involved, the distance associated to the process before it is

chopped and the possibly much smaller distance associated to the process

after it is chopped. This makes it very difficult not to loose information during

the construction. For example, if we try to mimic the construction in the

Gaussian case, and if at a given stage of the construction, we have a set A

with the property that on every subset of very small diameter the process is

significantly smaller than on the whole of A, it is far from clear what this

implies after applying a chopping map since sets of small diameter for the

“smaller distance” need not be of small diameter for the larger distance. Maps

other than chopping maps were used in [10], where the Bernoulli conjecture

was verified for a very special class of subsets of `2. Proposition 2.10 is a

modification of the key new fact proved in that paper. It is the cornerstone of

our paper. While Talagrand’s chopping maps amount somehow to introduce

new Bernoulli r.v’s, a major new ingredient is that we find it convenient at

times to remove some of these variables (which can only decrease the size of

the process). In the situation of Proposition 2.10 we consider a subset J of I

and the process X ′t =
∑
i∈J tiεi; that is, we remove the Bernoulli r.v’s that are

not indexed by J . We then have two `2-distances on the index set: a small

one
»∑

i∈J(ti − si)2 and a large one
»∑

i∈I(ti − si)2. Roughly speaking, the

content of Proposition 2.10 is that if the index set has a small diameter with

respect to the smaller distance, we may decompose it into not too many sets

that either have a small diameter with respect to the larger original distance

or else have the property that the size of the process over the whole piece has

decreased significantly when one drops the Bernoulli r.v’s that are not indexed

by J . The quantitative version of the result of course involves the ubiquitous

term
√

logm, where m is the number of pieces permitted.

Even after this principle has been clarified, it is still a very nontrivial

technical problem to define an appropriate family of “functionals” to measure

the “size” of the pieces of our partition. These functionals at time “add”
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new Bernoulli r.v’s and at time “remove” some. Of course the difficulty is to

find an exact balance between these two operations to ensure that no essential

information is lost. Our functionals, defined in Section 4, depend on four

parameters J, u, k, j. The parameter j ∈ Z indicates “how much chopping we

have performed.” The other three parameters keep track of which Bernoulli

r.v’s we still use in the functional. A new feature of this construction is that

our functionals depend not only on which stage of the construction we are at,

but also on which piece we are trying to partition. At each step we use a

“decomposition lemma,” which we give in Corollary 5.3, somewhat similar in

spirit to that of the Gaussian case. Another new feature is that this lemma

is not obtained only through a growth condition. To prove it, we also apply

in an essential way Proposition 2.10, mentioned above. In contrast with the

Gaussian case, the decomposition lemma now produces three distinct types

of pieces. Two of the types of pieces behave as in the Gaussian case. The

new type of piece has the property that its size (as measured by the proper

functional) has decreased compared to the set we partitioned after ignoring a

suitable subset of the Bernoulli r.v’s.

Our proof also uses in an essential way the technique of “counters” intro-

duced by M. Talagrand to keep suitably track of the “past” of the construction;

cf. [22, Chap. 5].

Theorem 1.1 yields another striking characterization of boundedness for

Bernoulli processes. For a random variable X and p > 0, we set ‖X‖p :=

(E|X|p)1/p.

Corollary 1.2. Suppose (Xt)t∈T is a Bernoulli process with b(T )<∞.

Then there exist t1, t2, . . . ∈ `2 such that T − T ⊂ conv{tn : n ≥ 1} and

‖Xtn‖log(n+2) ≤ Lb(T ) for all n ≥ 1.

The converse statement easily follows from the union bound and Cheby-

shev’s inequality. Indeed, suppose that T − T ⊂ conv{tn : n ≥ 1} and

‖Xtn‖log(n+2) ≤M . Then for u ≥ 1,

P
Ç

sup
s∈T−T

Xs ≥ uM
å
≤ P

Ç
sup
n≥1

Xtn ≥ uM
å
≤
∑
n≥1

P(Xtn ≥ u‖Xtn‖log(n+2))

≤
∑
n≥1

u− log(n+2),

and integration by parts easily yields E sups∈T−T Xt ≤ LM . Moreover, for any

t0 ∈ T ,

b(T ) = E sup
t∈T

(Xt −Xt0) = E sup
t∈T

(Xt−t0) ≤ E sup
s∈T−T

Xs ≤ LM.
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One of the motivations to state the Bernoulli Conjecture was a question of

X. Fernique about vector-valued random Fourier series (which we solve in The-

orem 8.1). Another interesting application of Theorem 1.1 is a Levy-Ottaviani

type maximal inequality for VC-classes (Theorem 8.2).

To put Theorem 1.1 in a proper perspective, we will briefly explain that

it is just the first step towards a much more ambitious program outlined in

Talagrand’s book [25]. One way to describe (1) in words is that “chaining

explains the size of Gaussian processes.” The best chaining bound one can

obtain for the supremum of a Gaussian process is of the correct order. Now,

the bound
∑
i tiεi ≤

∑
i |ti| on a Bernoulli process is of a different nature, in

the sense that it makes no use of cancellation between the various terms. In

some sense, Theorem 1.1 can be reformulated as “chaining explains the part

of boundedness which is due to cancellation.” That is, chaining explains the

boundedness of the part T2 of the process, while the boundedness of the T1 part

owes nothing to cancellation. It is argued in [25] that the phenomenon that

“chaining explains the part of boundedness due to cancellation” could be true

in many more situations (empirical processes, infinitely divisible processes).

Here we just briefly discuss the case of empirical processes.

Let (Xi)i≤N be independent and identically distributed r.v’s with values

in a measurable space (S,S), and let F be a class of measurable functions on

S. It is a fundamental problem, strictly related to the investigation of uniform

laws of large numbers, uniform central limit theorems and various applications

in asymptotic statistics (cf. [4], [26]) to relate the quantity

(3) E sup
f∈F

∑
i≤N

(f(Xi)− Ef(Xi))

with the geometry of the class F . A first situation is when one already controls

E sup
f∈F

∑
i≤N
|f(Xi)|,

a situation where there is no cancellation. A second situation is when one can

bound the quantity (3) using chaining. Since one then has to use Bernstein’s

inequality (36), this requires not only a control of the size of F with respect

to the `2 norm but also with respect to the `∞ norm. M. Talagrand then

conjectures that the general situation is a mixture of these two cases. The

precise technical statement is given in Conjecture 9.2.

A discretized version of this problem concerning the“selector processes”

based on the independent and identically distributed sequence (δi)i∈I will also

be discussed in Section 9.

In a somewhat different direction, we would like to mention a very beauti-

ful generalization of the Bernoulli Conjecture formulated by S. Kwapień (pri-

vate communication).
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Problem 1.3. Let (F, ‖ ‖) be a normed space and (ui) be a sequence of

vectors in F such that the series
∑
i≥1 uiεi converges almost surely. Does there

exist a universal constant L and a decomposition ui = vi + wi such that

sup
ηi=±1

∥∥∥∥∑
i≥1

viηi

∥∥∥∥ ≤ LE∥∥∥∥∑
i≥1

uiεi

∥∥∥∥ and E
∥∥∥∥∑
i≥1

wigi

∥∥∥∥ ≤ LE∥∥∥∥∑
i≥1

uiεi

∥∥∥∥?
Theorem 1.1 shows that the answer is positive for F = `∞; in general,

however, we may only assume that F is a subspace of `∞. The difficulty here is

that our proof gives very little additional information about the decomposition

given by Theorem 1.1; in particular, there is no reason for sets T1 and T2 to

be contained in the linear space spanned by the index set T .

The paper is organized as follows. In Section 2 we gather general results

about Bernoulli processes. The main new ingredient there is Proposition 2.10.

In Section 3 we show how to reduce finding a required decomposition of the

index set to constructing a suitable admissible sequence of partitions. In Sec-

tion 4, on the base of chopping maps we define functionals, and in Section 5

we show that they satisfy a Talagrand-type decomposition condition stated

in Corollary 5.3. In Section 6 we inductively construct a required admissible

sequence of partitions and conclude proofs of the main results stated in Sec-

tion 7. In Section 8 we present two applications of our main result, and in

Section 9 we discuss the situation of “selector processes” in more details.

Acknowledgments. We would like to thank professors Stanis law Kwapień

and Michel Talagrand for constant encouragement to work on the problem.

Upon seeing our original proof, Michel Talagrand was able to simplify a number

of technical details, and we are grateful to him for allowing us to freely use

some of his arguments as well as for multiple comments that improved the

presentation of the paper.

Notation. By (εi)i, (εi,j)i,j and (εi,j,k)i,j,k we denote independent Bernoulli

sequences. We use the letter L to denote positive universal constants that may

change from line to line and Li for positive universal constants that are the

same at each occurrence.

By ∆`2(I)(T ) (or ∆2(T ) if the set I is clear from the context) we denote

the diameter with respect to the `2-distance of the set T ⊂ `2(I).

2. Estimates for Bernoulli processes

In the first part of this section we gather several well-known estimates for

suprema of Bernoulli processes and discuss some of their consequences that

play a crucial role in the proof of the main result.

We start with the following simple bound on the diameter of the index

set.
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Lemma 2.1. For any T ⊂ `2(I), we have ∆2(T ) ≤ 4b(T ).

Proof. Let Xt :=
∑
i tiεi for t ∈ T . Take any t, s ∈ T ; then

b(T ) ≥ Emax{Xt, Xs} = Emax{Xt −Xs, 0} =
1

2
E|Xt −Xs| ≥

1

4
‖t− s‖2. �

Obviously, by Jensen’s inequality we have

(4) E sup
t∈T

∑
i∈J

tiεi ≤ E sup
t∈T

∑
i∈I

tiεi for J ⊂ I.

Much deeper is the following Talagrand’s comparison theorem for Bernoulli

processes. (Cf. Theorem 2.1 in [17] or the proof of Theorem 4.12 in [12].)

Theorem 2.2. Suppose that ϕi : R → R, i ∈ I are contractions (i.e.,

|ϕi(x)−ϕi(y)| ≤ |x− y|) and ϕi(0) = 0 for all i ∈ I . Then for any T ⊂ `2(I),

E sup
t∈T

∑
i∈I

ϕi(ti)εi ≤ E sup
t∈T

∑
i∈I

tiεi.

Remark 2.3. Since

E sup
t∈T

∑
i∈I

ϕi(ti)εi = E sup
t∈T

∑
i∈I

(ϕi(ti)− ϕi(0))εi,

we may replace the assumption that ϕi(0) = 0 with (ϕi(0)) ∈ `2(I) (which for

contractions is equivalent to (ϕi(ti)) ∈ `2(I) for some/all t ∈ `2(I)).

A typical application of Theorem 2.2 is the following.

Corollary 2.4. Suppose that (fi,j) and (gi) are functions on R such that

for all i ∈ I , x, y ∈ R,∑
j∈J
|fi,j(x)− fi,j(y)| ≤ |gi(x)− gi(y)|.

Let T be a set such that (gi(ti)) ∈ `2(I) and (fi,j(ti)) ∈ `2(I × J) for all t ∈ T .

Then

E sup
t∈T

∑
i∈I,j∈J

fi,j(ti)εi,j ≤ E sup
t∈T

∑
i∈I

gi(ti)εi.

Proof. Without loss of generality we may assume that the sequences (εi,j)

and (εi) are independent. It is enough to observe that

E sup
t∈T

∑
i∈I,j∈J

fi,j(ti)εi,j = E sup
t∈T

∑
i∈I

(∑
j∈J

fi,j(ti)εi,j
)
εi

and that for any values of εi,j ∈ {±1} and x, y ∈ R,∣∣∣∣∑
j∈J

fi,j(x)εi,j −
∑
j∈J

fi,j(y)εi,j

∣∣∣∣ ≤ |gi(x)− gi(y)|.

The assertion follows by conditionally applying Theorem 2.2. �
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Next we state the concentration property of Bernoulli processes (cf. [15]

or [11, Cor. 4.10]).

Theorem 2.5. Let (at)t∈T be a sequence of real numbers indexed by a set

T ⊂ `2(I), and let S := supt∈T (at +
∑
i∈I tiεi) be such that |S| < ∞ almost

surely. Then

P(|S −Med(S)| ≥ u) ≤ 4 exp

Ç
− u2

16σ2

å
for u > 0,

where σ := supt∈T ‖t‖2. In particular, E|S| <∞, |ES −Med(S)| ≤ Lσ and

P(|S − E(S)| ≥ u) ≤ 2 exp

Ç
− u2

L1σ2

å
for u > 0.

Theorem 2.5 easily implies the following fact [10, Cor. 1].

Proposition 2.6. Let (Y k
t )t∈T , 1 ≤ k ≤ m be independent and identi-

cally distributed Bernoulli processes, and let σ := supt∈T ‖Y 1
t ‖2. Then for any

process (Zt)t∈T independent of (Y k
t : t ∈ T, k ≤ m), we have

E max
1≤k≤m

sup
t∈T

(Zt + Y k
t ) ≤ E sup

t∈T
(Zt + Y 1

t ) + L2σ
√

logm.

Another important property of Bernoulli processes is a Sudakov-type mi-

noration formulated and proved by M. Talagrand (cf. [17] or [22, Th. 4.2.4]).

Theorem 2.7. Suppose that vectors t1, . . . , tm ∈ `2(I) and numbers a, b> 0

satisfy

(5) ∀l 6=l′ , ‖tl − tl′‖2 ≥ a and ∀l, ‖tl‖∞ ≤ b.

Then

E sup
l≤m

∑
i∈I

tl,iεi ≥
1

L3
min

®
a
√

logm,
a2

b

´
.

The next proposition, also due to M. Talagrand, combines concentration

and minoration properties for Bernoulli processes [22, Proposition 4.2.2]. It

exactly parallels the Gaussian case.

Proposition 2.8. Consider vectors t1, . . . , tm ∈ `2(I) and numbers a, b> 0

such that (5) holds. Then for any σ > 0 and any sets Hl ⊂ B`2(I)(tl, σ),

b

Ç ⋃
l≤m

Hl

å
≥ 1

L4
min

®
a
√

logm,
a2

b

´
− L5σ

√
logm+ min

l≤m
b(Hl).

Proposition 2.8 together with a simple greedy algorithm yields the fol-

lowing decomposition result for Bernoulli processes. This again parallels the

Gaussian case.
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Corollary 2.9. Suppose that ‖t‖∞ ≤ b for all t ∈ T and b
√

logm ≤ σ.

Then there exist sets C1, . . . , Cm−1 ⊂ T such that ∆`2(I)(Ci) ≤ L6σ and for

each nonempty set D ⊂ T \⋃k≤m−1Ck with ∆`2(I)(D) ≤ σ,

b(D) ≤ b(T )− σ
√

logm.

Proof. Let L6 = max{2, 2L4(L5 + 2)} and a = 1
2L6σ. Then

min

®
a
√

logm,
a2

b

´
= a

√
logm ≥ L4(L5 + 2)σ

√
logm.

If T ⊂ ⋃
i≤m−1B(ti, a) for some t1, . . . , tm−1 ∈ T , there is nothing to prove;

otherwise we choose inductively vectors t1, t2, . . . , tm−1. To this end we set

T1 := T and Tk := T \⋃l<k B(tl, a) for k > 1 and choose tk ∈ Tk in such a way

that

b(Tk ∩B(tk, σ)) ≥ sup
t∈Tk

b(Tk ∩B(t, σ))− σ
√

logm.

Let Ck := T ∩ B(tk, a) for k ≤ m − 1. Then obviously, ∆`2(I)(Ck) ≤ L6σ.

Take any D ⊂ Tm = T \⋃k<mCk with ∆`2(I)(D) ≤ σ, and choose any tm ∈ D
so that D ⊂ B(tm, σ) ∩ Tm. By construction the condition (5) holds. Let

Hl := B(tl, σ) ∩ Tl for l < m, and let Hm := D. Then by the choice of tl it

follows that

min
1≤l≤m

b(Hl) ≥ b(D)− σ
√

logm.

So by Proposition 2.8,

b(T ) ≥ b
( ⋃
l≤m

Hl

)
≥ 1

L4
min

{
a
√

logm,
a2

b

}
+ b(D)− (L5 + 1)σ

√
logm

≥ b(D) + σ
√

logm. �

The last result of this section is a modification of Proposition 1 from [10]

and contains the crucial idea of “removing” some of Bernoulli r.v’s. Before we

state it, let us introduce a bit of notation. For ∅ 6= J ⊂ I, t ∈ `2(I), T ⊂ `2(I),

we define tJ := (ti)i∈J ∈ `2(J),

bJ(T ) := E sup
t∈T

∑
i∈J

εiti,

dJ(t, s) := ‖tJ − sJ‖2, t, s ∈ `2(I)

and

BJ(t, a) := {s ∈ `2(I) : dJ(s, t) ≤ a}, a ≥ 0.

Proposition 2.10. Consider a positive integer m, numbers b, c, σ > 0

and λ ≥ 1 that satisfy b
√

logm ≤ λσ and T ⊂ `2(I) such that

(6) ∀t,s∈T , dJ(t, s) ≤ c, ‖t− s‖∞ ≤ b.
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Then there exist t1, . . . , tm ∈ T such that either T ⊂ ⋃l≤mBI(tl, σ) or

(7) bJ

Ç
T \

⋃
l≤m

BI(tl, σ)

å
≤ bI(T )−

Å
1

4λL3
σ − L7c

ã√
logm.

Proposition 2.10 and Corollary 2.9 present two ways to decompose the

index set of a Bernoulli process. Combination of both statements will yield the

main decomposition result, Corollary 5.3. Observe that in Proposition 2.10 we

use two distances dJ and dI . What is fundamental here is that we assume that

the diameter of the set T is small only with respect to the smaller distance

dJ and we show that it may be covered by a certain number of balls with

respect to the larger distance dI and a remaining set with a small value of bJ .

The proof is based on concentration and minorization properties of Bernoulli

processes, but they are combined in a different way from in Proposition 2.8.

Proof. If T ⊂ ⋃
l≤mBI(tl, σ) for some t1, . . . , tm ∈ T or m = 1, there is

nothing to prove, so we will assume that this is not the case. We may also

choose the universal constant L7 in such a way that L3L7 ≥ 1, so it is enough

to consider the case σ ≥ 2c (since otherwise 1
4λL3

σ − L7c < 0).

Since bJ(T ) = bJ(T − t) for any t ∈ `2(I), we may and will assume that

0 ∈ T so that

‖tJ‖2 ≤ c, ‖t‖∞ ≤ b ≤
λσ√
logm

for t ∈ T.

We need to show that

(8) α < bI(T )−
Å

1

4λL3
σ − L7c

ã√
logm,

where

α := inf
t1,...,tm∈T

bJ

Ç
T \

⋃
l≤m

BI(tl, σ)

å
.

Let ε
(k)
i , i ∈ J, k = 1, . . . ,m be independent Bernoulli r.v’s, independent

of (εi)i∈I . Let

Y
(k)
t :=

∑
i∈J

tiε
(k)
i , Zt :=

∑
i∈I\J

tiεi.

Then for any k,

bI(T ) = E sup
t∈T

(Zt + Y
(k)
t ),

and therefore Proposition 2.6 yields

(9) E max
1≤k≤m

sup
t∈T

(Zt + Y
(k)
t ) ≤ bI(T ) + L2c

√
logm.
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We set T1 = T and define a random point t1 ∈ T1 that depends only on

(ε
(1)
i )i∈J such that

Y
(1)
t1 > sup

t∈T1
Y

(1)
t − c

√
logm.

We continue this construction and inductively define random points tk ∈ T ,

k≤m that depend only on (ε
(l)
i )l≤k,i∈J. If t1, . . . , tk−1 are already defined, we set

Tk := T \
⋃

l≤k−1

BI(tl, σ),

and we choose a random point tk ∈ Tk such that

Y
(k)
tk

> sup
t∈Tk

Y
(k)
t − c

√
logm.

The process (Y
(k)
t ) is independent of the set Tk and for k ≤ m,

Y
(k)
tk

+ c
√

logm > sup
t∈Tk

Y
(k)
t and E sup

t∈Tk
Y

(k)
t ≥ α.

We have

E max
1≤k≤m

sup
t∈T

(Zt + Y
(k)
t ) ≥ E

Ç
max

1≤k≤m
Ztk + min

1≤k≤m
Y

(k)
tk

å
(10)

≥ E max
1≤k≤m

Ztk + α− c
√

logm+ E min
1≤k≤m

Ç
sup
t∈Tk

Y
(k)
t − α

å
≥ E max

1≤k≤m
Ztk + α− c

√
logm+ E min

1≤k≤m

Ç
sup
t∈Tk

Y
(k)
t − E sup

t∈Tk
Y

(k)
t

å
.

Observe that for 1 ≤ l < k ≤ m,

dI\J(tk, tl) ≥ dI(tk, tl)− dJ(tk, tl) ≥ σ − c ≥
1

2
σ,

and hence Theorem 2.7 with a = σ/2 (and using independence of Zt and of

the random points (tk)) implies

(11) E max
1≤k≤m

Ztk ≥
1

4λL3
σ
√

logm.

Since (Y
(k)
t ) is independent of the set Tk, Theorem 2.5 gives that for u > 0,

P
Ç

sup
t∈Tk

Y
(k)
t − E sup

t∈Tk
Y

(k)
t ≤ −u

å
≤ 2 exp

Ç
− u2

L1c2

å
so that

P
Ç

min
k≤m

Ç
sup
t∈Tk

Y
(k)
t − E sup

t∈Tk
Y

(k)
t

å
≤ −u

å
≤ min

®
1, 2m exp

Ç
− u2

L1c2

å´
,

and integration by parts yields

(12) Emin
k≤m

Ç
sup
t∈Tk

Y
(k)
t − E sup

t∈Tk
Y

(k)
t

å
≥ −Lc

√
logm.

Estimates (9)–(12) imply (8) and complete the proof. �
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3. Partitions

One of the main difficulties of the proof of Theorem 1.1 is that there is no

canonical way to decompose the index set of Bernoulli processes. M. Talagrand

connected finding this decomposition with constructing a suitable sequence of

partitions (cf. Theorem 2.6.3 in [22]). Theorem 3.1 and its proof are based

on Talagrand’ ideas. The main new ingredient here is the introduction of

the sets In(A) — they will enable us to “remove” some of Bernoulli r.v’s

from the process during the inductive partition construction and efficiently

use Proposition 2.10.

We recall that an increasing sequence (An)n≥0 of partitions of T is called

admissible if A0 = {T} and |An| ≤ Nn := 22n . For such partitions and t ∈ T ,

by An(t) we denote the unique set in An that contains t. To each set A ∈ An
we will associate a point πn(A) and an integer jn(A). To simplify the notation

we set jn(t) := jn(An(t)) and πn(t) := πn(An(t)). The main new feature in

the next theorem is the introduction of the sets In(A).

Theorem 3.1. Suppose that M > 0, r ≥ 2, (An)n≥0 is an admissible

sequence of partitions of T ⊂ `2(I), and for each A ∈ An, there exists an

integer jn(A) and a point πn(A) ∈ T satisfying the following assumptions :

(i) ‖t− s‖2 ≤
√
Mr−j0(T ) for t, s ∈ T ;

(ii) if n ≥ 1, An 3 A ⊂ A′ ∈ An−1, then either

(a) jn(A) = jn−1(A′) and πn(A) = πn−1(A′), or

(b) jn(A) > jn−1(A′), πn(A) ∈ A′ and for all t ∈ A,∑
i∈In(A)

min{(ti − πn(A)i)
2, r−2jn(A)} ≤M2nr−2jn(A),

where for any t ∈ A,

In(A) = In(t) :=
¶
i ∈ I : |πk+1(t)i − πk(t)i|
≤ r−jk(t) for 0 ≤ k ≤ n− 1

©
.

Then there exist sets T1, T2 such that T ⊂ T1 + T2 and

(13)

sup
t1∈T1

‖t1‖1 ≤ LM sup
t∈T

∞∑
n=0

2nr−jn(t) and γ2(T2) ≤ L
√
M sup

t∈T

∞∑
n=0

2nr−jn(t).

Remark. Note that if t, s ∈ A ∈ An, then for 0 ≤ k ≤ n, Ak(t) = Ak(s)

and as a consequence jk(t) = jk(s), πk(t) = πk(s) and In(t) = In(s). Therefore

the definition of In(A) does not depend on the choice of t ∈ A.

Proof. Obviously, we may assume that supt∈T
∑
n≥0 2nr−jn(t) <∞ which,

in particular, implies that limn→∞ jn(t) =∞. Define

m(t, i) := inf
¶
n ≥ 0: |πn+1(t)i − πn(t)i| > r−jn(t)

©
, t ∈ T, i ∈ I

so that In(t) = {i : m(t, i) ≥ n} for n ≥ 0.
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Observe that

(14) |πn+1(t)i − πn(t)i| ≤ r−jn(t)I{jn+1(t)>jn(t)} for 0 ≤ n < m(t, i).

Since jn(t) is nondecreasing sequence of integers, for i such that m(t, i) = ∞
the limit π∞(t)i := limn→∞ πn(t)i exists. Therefore we may define π(t) by the

formula

π(t)i := πm(t,i)(t)i, t ∈ T, i ∈ I.
We set

T1 := {t− π(t) : t ∈ T} and T2 := {π(t) : t ∈ T}
so that obviously, T ⊂ T1 + T2.

To estimate ‖t− π(t)‖1 we define

τ(t, i) := inf

ß
n ≥ 0: |πn(t)i − ti| >

1

2
r−jn(t)

™
, t ∈ T, i ∈ I

and

Jn(t) := {i ∈ I : τ(t, i) = n}.
Observe that τ(t, i) ≤ m(t, i) + 1 and if τ(t, i) =∞, then π(t)i = π∞(t)i = ti.

Therefore we have

‖t− π(t)‖1 =
∞∑
n=0

∑
i∈Jn(t)

|ti − πm(t,i)(t)i|.

From (14) we get

|π0(t)i − πm(t,i)(t)i| ≤
m(t,i)−1∑
n=0

|πn+1(t)i − πn(t)i| ≤
∞∑

j=j0(t)

r−j ≤ 2r−j0(t)

and, moreover, for i ∈ J0(t), it holds that |ti − π0(t)i| ≥ 1
2r
−j0(t). Thus∑

i∈J0(t)

|ti − πm(t,i)(t)i| ≤ 5
∑

i∈J0(t)

|ti − π0(t)i| ≤ 10rj0(t)
∑
i∈I
|ti − π0(t)i|2

≤ 10Mr−j0(t),

where the last estimate follows by assumption (i).

If i ∈ Jn(t), n ≥ 1, then m(t, i) ≥ n− 1 and

|ti − πm(t,i)(t)i| ≤ |ti − πn−1(t)i|+
m(t,i)−1∑
k=n−1

|πk+1(t)i − πk(t)i|

≤ 1

2
r−jn−1(t) +

∞∑
k=n−1

r−jk(t)I{jk+1(t)>jk(t)}

≤ 1

2
r−jn−1(t) +

∞∑
l=jn−1(t)

r−l ≤ 3r−jn−1(t).
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Hence

‖t− π(t)‖1 ≤ 10Mr−j0(t) + 3
∞∑
n=1

r−jn−1(t)|Jn(t)|.

To estimate |Jn(t)| for n ≥ 1, we may assume that jn(t) > jn−1(t), since

otherwise assumption (ii)(a) yields πn(t) = πn−1(t) and |Jn(t)| = 0. For i ∈
Jn(t), we have either i ∈ In(t) or m(t, i) = n − 1. Since for any i ∈ Jn(t),

|πn(t)i − ti| > 1
2r
−jn(t), by assumption (ii)(b) we get

1

4
r−2jn(t)|Jn(t) ∩ In(t)| ≤

∑
i∈In(t)

min
¶
|ti − πn(t)i|2, r−2jn(t)

©
≤M2nr−2jn(t).

If m(t, i) = n− 1, then |πn(t)i − πn−1(t)i| > r−jn−1(t). Let

n′ := inf{k ≤ n− 1: jk(t) = jn−1(t)}.

Then, since πn(t) ∈ An−1(t) ⊂ An′(t), jn−1(t) = jn′(t) > jn′−1(t) and πn−1(t)

= πn′(t), assumption (ii)(b) used this time for n′ yields

r−2jn−1(t)|{i : m(t, i) = n− 1}| ≤
∑

i∈In′ (t)
min{|πn(t)i − πn−1(t)i|2, r−2jn−1(t)}

≤M2n−1r−2jn−1(t).

Thus

|Jn(t)| ≤ |Jn(t) ∩ In(t)|+ |{i : m(t, i) = n− 1}| ≤ 9M2n−1

and

‖t− π(t)‖1 ≤ 10Mr−j0(t) + 27M
∞∑
n=1

2n−1r−jn−1(t) ≤ 37M sup
t∈T

∞∑
n=0

2nr−jn(t).

To bound γ2(T2) we will construct sets Un ⊂ `2(I) such that |U0| = 1,

|Un| ≤ Nn for n ≥ 1 and use [22, Th. 1.3.5] to get

(15) γ2(T2) ≤ L sup
t∈T

∞∑
n=0

2n/2dist(π(t), Un).

To this end we define

Un := {πm(t,i)∧n(t) : t ∈ T},

where πm(t,i)∧n(t) = (πm(t,i)∧n(t)i)i∈I . Observe that for s ∈ An(t), πk(s) =

πk(t) for k ≤ n and {i : m(t, i) ≥ n} = {i : m(s, i) ≥ n} so that m(t, i) ∧ n =

m(s, i) ∧ n. Hence |Un| ≤ |An| ≤ Nn for n ≥ 1 and U0 = {π0(T )}.
To estimate dist(π(t), Un), first notice that

dist(π(t), Un) ≤ ‖π(t)− πm(t,i)∧n(t)‖2 ≤
∞∑
l=n

‖(πl+1(t)− πl(t))1{m(t,i)≥l+1}‖2.
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The condition m(t, i) ≥ l + 1 implies |πl+1(t)i − πl(t)i| ≤ r−jl(t). If jl+1(t) =

jl(t), then πl+1(t) = πl(t); otherwise πl+1(t) ∈ Al(t) and by assumption (ii)(b),

‖(πl+1(t)− πl(t))1{m(t,i)≥l+1}‖22 ≤
∑

i∈Il+1(t)

min{|πl+1(t)i − πl(t)i|2, r−2jl(t)}

≤M2lr−2jl(t).

Therefore

dist(π(t), Un) ≤
∞∑
l=n

√
M2l/2r−jl(t)

and
∞∑
n=0

2n/2dist(π(t), Un) ≤
√
M
∞∑
l=0

2l/2r−jl(t)
l∑

n=0

2n/2 ≤ L
√
M
∞∑
l=0

2lr−jl(t).

Hence the estimate for γ2(T2) follows by (15). �

4. Chopping maps

In this section on the base of the so-called chopping maps we define func-

tionals that will play a key role in the proof of Theorem 1.1. Chopping maps

were introduced by M. Talagrand in [17]; he used them to prove a weak form

of the Bernoulli Conjecture ([18] and [22, Chap. 4]).

For u < v, we define the nonincreasing function ϕu,v by the formula

ϕu,v(x) := min{v,max{x, u}} −min{v,max{0, u}}.

In other words ϕu,v is the unique continuous function, which is constant on

half lines (−∞, u] and [v,∞), has slope 1 on the interval [u, v] and takes value

0 at 0. Observe that |ϕu,v(x)| ≤ v−u, |ϕu,v(x)−ϕu,v(y)| ≤ min{|x−y|, v−u}
and

(16) ϕu0,uk(x) =
k∑
l=1

ϕul−1,ul(x) for u0 < u1 < · · · < uk.

Functions ϕui,ui+1 are called chopping maps by M. Talagrand since the interval

[u0, uk] is “chopped” into smaller intervals [ui, ui+1] laying side to side, ϕui,ui+1

changes only on intervals [ui, ui+1] and property (16) holds.

Lemma 4.1. For any u0 < u1 < · · · < uk and x, y ∈ R, we have

(17)
k∑
l=1

|ϕul−1,ul(x)− ϕul−1,ul(y)| = |ϕu0,uk(x)− ϕu0,uk(y)| ≤ |x− y|.

In particular,

(18)
k∑
l=1

|ϕul−1,ul(x)| ≤ |x| and
k∑
l=1

ϕul−1,ul(x)2 ≤ x2.



1184 WITOLD BEDNORZ and RAFA L LATA LA

Proof. Without loss of generality we may assume that x > y. Then

ϕu,v(x) ≥ ϕu,v(y) for any u, v and (17) follows by (16). The “in particular”

part easily follows taking y = 0. �

Let Gi = {ui,0 < ui,1 < · · · < ui,ki}, i ∈ I be finite subsets of R and

G = (Gi)i∈I . For t ∈ `2(I), we define “chopped” Bernoulli processes

Xt(Gi, i) :=
ki∑
l=1

ϕui,l−1,ui,l(ti)εi,l

and

Xt(G) :=
∑
i∈I

Xt(Gi, i) =
∑
i∈I

ki∑
l=1

ϕui,l−1,ui,l(ti)εi,l.

Note that for t ∈ `2(I), by (18) we get

∑
i∈I

ki∑
l=1

|ϕui,l−1,ui,l(ti)|
2 ≤

∑
i∈I

t2i <∞

andXt(G) is well defined. We also consider the canonical distance dG associated

to the process Xt(G) given by

dG(s, t)2 := E|Xt(G)−Xs(G)|2 =
∑
i∈I

ki∑
l=1

|ϕui,l−1,ui,l(ti)− ϕui,l−1,ui,l(si)|
2.

Proposition 4.2.

(i) For any family of finite sets G = (Gi)i∈I and T ⊂ `2(I), we have

E sup
t∈T

Xt(G) ≤ b(T ) = E sup
t∈T

∑
i∈I

tiεi.

(ii) If G = (Gi)i∈I and G′ = (G′i)i∈I are two families of finite subsets of R
such that for all i ∈ I ,

(19) Gi ⊂ G′i, max
i
Gi = max

i
G′i and min

i
Gi = min

i
G′i,

then for any T ⊂ `2(I),

E sup
t∈T

Xt(G′) ≤ E sup
t∈T

Xt(G).

Proof. Part (i) follows easily by Corollary 2.4 and (17).

To show part (ii) let Gi = {ui,0 < ui,1 < · · · < ui,ki} and [ui,l−1, ui,l]∩G′i =

{si,l,0 < si,l,1 < · · · < si,l,ki,l}. Then

E sup
t∈T

Xt(G′) = E sup
t∈T

∑
i∈I

ki∑
l=1

ki,l∑
j=1

ϕsi,l,j−1,si,l,j (ti)εi,l,j ,

and the assertion follows by Corollary 2.4 and (17). �
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Inequality (17) yields

(20) dG(s, t) ≤ ‖s− t‖2 for s, t ∈ `2(I).

The next proposition shows how to compare dG with dG′ .

Proposition 4.3. Let G = (Gi)i∈I and G′ = (G′i)i∈I be two families of

finite subsets of R such that Gi ⊂ G′i and Gi = {ui,0 < ui,1 < · · · < ui,ki} for

all i ∈ I .

(i) If maxiGi = maxiG
′
i and miniGi = miniG

′
i, then dG′ ≤ dG .

(ii) If |G′i ∩ (ui,l−1, ui,l]| ≤ q for all i ∈ I , 1 ≤ l ≤ ki, then dG ≤
√
qdG′ .

Proof. Part (i) follows by (17) and the inequality
∑
l |al|2 ≤ (

∑
l |al|)2. To

show (ii) we also use (17) and the bound (
∑k
l=1 |al|)2 ≤ k∑k

l=1 |al|2. �

We are now ready to define functionals and related distances. Let r ≥ 4

be an integer to be chosen later. For x ∈ R and k ∈ Z, we set

G(x, k) := {pr−k : p ∈ Z} ∩ [x− 4r−k, x+ 4r−k).

In other words if pk(x) = drkxe ∈ Z, i.e., (pk(x)− 1)r−k < x ≤ pk(x)r−k, then

G(x, k) = {pr−k : pk(x)− 4 ≤ p ≤ pk(x) + 3}.
For an integer j ≥ k, we set

G(x, k, j) := {pr−j : (pk(x)− 4)r−k ≤ pr−j ≤ (pk(x) + 3)r−k}

= {pr−j : wk,j(x) ≤ p ≤ vk,j},

where wk,j(x) := (pk(x) − 4)rj−k and vk,j(x) := (pk(x) + 3)rj−k. Then

G(x, k, k) = G(x, k) and

j′ ≥ j ≥ k ⇒ G(x, k, j) ⊂ G(x, k, j′), minG(x, k, j) = minG(x, k, j′)(21)

and maxG(x, k, j) = maxG(x, k, j′).

For u∈`2(I), integers j≥k and J⊂I, we define the process Xt(J, u, k, j) by

Xt(J, u, k, j) := Xt((G(ui, k, j))i∈J) =
∑
i∈J

vk,j(ui)∑
p=wk,j(ui)+1

ϕ(p−1)r−j ,pr−j (ti)εi,p.

For T ⊂ `2(I), we set

F (T, J, u, k, j) := E sup
t∈T

Xt(J, u, k, j).

Increasing the parameter j corresponds to “adding” new Bernoulli r.v’s,

while increasing the parameter k results in “removing” some of Bernoulli r.v’s

from the process Xt(J, u, k, j).

Let us denote by d(J, u, k, j) the canonical distance associated to the pro-

cess (Xt(J, u, k, j)), i.e.,

d(J, u, k, j)(t, s) :=
(
E(Xt(J, u, k, j)−Xs(J, u, k, j))

2
)1/2

,
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and let ∆(T, J, u, k, j) denote the diameter of the set T ⊂ `2(I) with respect

to d(J, u, k, j).

Proposition 4.2(i) and (20) easily yield the following.

Proposition 4.4. For any J ⊂ I , u ∈ `2(I), integers j ≥ k and T ⊂
`2(I), we have

F (T, J, u, k, j) ≤ b(T )

and

∆(T, J, u, k, j) ≤ ∆`2(I)(T ).

We also have the following comparison of distinct functionals and related

distances.

Proposition 4.5. If J ′ ⊂ J ⊂ I , integers j ≥ k and j′ ≥ k′ satisfy j′ ≥ j
and k′ ≥ k, then for any u ∈ `2(I) and T ⊂ `2(I), we have

F (T, J ′, u, k′, j′) ≤ F (T, J, u, k, j)

and

∆(T, J ′, u, k′, j′) ≤ ∆(T, J, u, k, j).

Proof. The monotonicity of F (T, J, u, k, j) with respect to the set J and

the variable k easily follows by the definition of Xt(J, u, k, j) and (4). The

monotonicity with respect to j is a consequence of Proposition 4.2(ii) and (21).

Monotonicity of distances d(T, J, u, k, j) with respect to J and k is quite

obvious and, with respect to j, follows by Proposition 4.3(i). �

We conclude this section with a lemma that gives a lower bound for the

constructed distances.

Lemma 4.6. For s, t, u ∈ `2(I), J ⊂ I and j ≥ k,

d(J, u, k, j)(t, s)2 ≥ 1

2

∑
i∈J

min{|si − ti|2, r−2j}I{|si−ui|≤2r−k}.

Proof. It is easy to reduce to the case when |si − ui| ≤ 2r−k and |si − ti|
≤ r−j for all i ∈ J . Then for any i ∈ J , minG(ui, k, j) ≤ si, ti ≤ maxG(ui, k, j)

and for at most two integers p, ϕ(p−1)r−j ,pr−j (ti) 6= ϕ(p−1)r−j ,pr−j (si). The

estimate follows by (16) since (a+ b)2 ≤ 2a2 + 2b2. �

5. Decomposition lemmas

In this section we derive several decomposition results for our functionals

F (T, J, u, k, j). The first two propositions are based on results of Section 2.

We combine them to get Corollary 5.3, on which we will base our inductive

construction of suitable partitions.

The first proposition immediately follows from Corollary 2.9.
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Proposition 5.1. Let T ⊂ `2(I), u ∈ `2(I), J ⊂ I and j ≥ k. If

r−j
√

logm ≤ σ, then there exist sets C1, . . . , Cm−1 ⊂ T such that

∆(Cl, J, u, k, j) ≤ L6σ 1 ≤ l ≤ m− 1,

and for any ∅ 6= D ⊂ T \⋃l<mCl with ∆(D,J, u, k, j) ≤ σ, it holds that

F (D,J, u, k, j) ≤ F (T, J, u, k, j)− σ
√

logm.

The next result is a consequence of Proposition 2.10.

Proposition 5.2. Let u, u′ ∈ `2(I), J ⊂ I , j ≥ k and J ′ ⊂ J be such that

|ui−u′i|≤2r−k for all i ∈ J ′. Let T be a subset of `2(I) with ∆(T, J, u, k, j+2)

≤ c. If r−j−1
√

logm ≤ σ and L8c ≤ σ, then there exist sets A1, . . . , Am ⊂ T

such that

∆(Al, J, u, k, j + 1) ≤ σ for 1 ≤ l ≤ m

and either T ⊂ ⋃l≤mAl or

(22) F
(
T \

m⋃
l=1

Al, J
′, u′, j + 2, j + 2

)
≤ F (T, J, u, k, j + 1)− 1

L9
σ
√

logm.

Proof. Let G = (Gi)i∈J , G′ = (G′i)i∈J , where

Gi = G(ui, k, j + 1), i ∈ J

and

G′i =

Gi for i ∈ J \ J ′,
Gi ∪G(u′i, j + 2, j + 2) for i ∈ J ′.

Since r ≥ 4 and j ≥ k, we have

G(u′i, j + 2, j + 2) ⊂ [u′i − 4r−j−2, u′i + 4r−j−2) ⊂ (u′i − r−k, u′i + r−k).

Moreover, |ui − u′i| ≤ 2r−k for i ∈ J ′, and therefore the sets Gi and G′i satisfy

condition (19) and Proposition 4.2(ii) yields

E sup
t∈T

Xt(G′) ≤ E sup
t∈T

Xt(G) = F (T, J, u, k, j + 1).

Since |G(u′i, j + 2, j + 2)| = 8, Proposition 4.3(ii) with q = 9 yields dG ≤ 3dG′ .

For i ∈ J ′, we have |ui − u′i| ≤ 2r−k so that

|pr−j−2 − u′i| ≤ 4r−j−2 ⇒ |pr−j−2 − ui| ≤ 2r−k + 4r−j−2 ≤ 3r−k

and therefore G(u′i, j + 2, j + 2) ⊂ G(ui, k, j + 2). Thus

∆(T, J ′, u′, j + 2, j + 2) ≤ ∆(T, J, u, k, j + 2) ≤ c.



1188 WITOLD BEDNORZ and RAFA L LATA LA

We apply Proposition 2.10 with b = r−j−1, λ = 6 and σ∗, I∗, J∗, T ∗ instead

of σ, I, J and T , where σ∗ := σ/6,

I∗ := {(i, x) : i ∈ J, x ∈ G′i \ {minGi}},
J∗ := {(i, x) : i ∈ J ′, x ∈ G(u′i, j + 2, j + 2) \ {minG(u′i, j + 2, j + 2)}}

and for A ⊂ T ,

A∗ := {(ϕx−,x(ti))(i,x) : t ∈ A, (i, x) ∈ I∗},

where for (i, x) ∈ I∗, x− denotes the largest element of G′i smaller than x.

Observe that with the notation of Proposition 2.10, for A ⊂ T we have

bI∗(A
∗) = E sup

t∈A
Xt(G′) and bJ∗(A

∗) = F (A, J ′, u′, j + 2, j + 2).

It is not hard to check that all the assumptions of the proposition are satisfied.

Hence there exist sets A1, . . . , Am ⊂ T such that A∗l ⊂ BI∗(t
∗
l , σ
∗) for some

t∗l ∈ T ∗ and

F

Ç
T \

m⋃
l=1

Al, J
′, u′, j + 2,j + 2

å
≤ E sup

t∈T
Xt(G′)−

Ç
1

144L3
σ − L7c

å√
logm

≤ F (T, J, u, k, j + 1)−
Ç

1

144L3
σ − L7c

å√
logm.

Hence condition (22) holds if we take L8 = 288L3L7 and L9 = 288L3. We

conclude by observing that the conditionA∗l ⊂ BI∗(t∗l , σ∗) implies that for s, t ∈
Al, we have dG(s, t) ≤ 3dG′(s, t) ≤ 6σ∗ = σ, and hence ∆(Al, J, u, k, j+1) ≤ σ,

1 ≤ l ≤ m. �

We finish this section with a crucial corollary, which states that our func-

tionals satisfy a Talagrand-type decomposition condition. Talagrand’s con-

structions of admissible partitions for various classes of stochastic processes

were based on conditions of similar nature, which roughly state that each set

may be partitioned into a number of pieces with either a small diameter or a

small value of a suitable functional on subsets of small diameter.

In our case each set may be decomposed into pieces of three types. Pieces

of type (C3) have small diameters, and pieces of type (C1) have small value of a

functional on subsets with sufficiently small diameters; in both cases we do not

change values of parameters k, J and u. Pieces satisfying conditions (C2) are of

different type — they have both small diameters and small value of functionals;

however we increase the parameter k and allow changes in parameters u and J .

Corollary 5.3. There exists a positive integer r0 with the following

property. Consider T ⊂ `2(I), J ⊂ I , u ∈ `2(I), u′ ∈ T , c ≥ 0 and inte-

gers j ≥ k, n ≥ 1, r ≥ r0, and set

J ′ := {i ∈ J : |ui − u′i| ≤ 2r−k}.
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Then we can find p ≤ Nn and a partition (Al)l≤p of T such that each set Al
satisfies one of the following properties :

for any D ⊂ Al with ∆(D,J, u, k, j + 2) ≤ 1

L10
2n/2r−j−1,(C1)

F (D,J, u, k, j + 2) ≤ F (T, J, u, k, j + 2)− 1

L11
2nr−j−1

or

∆(Al, J
′, u′, j + 2, j + 2) ≤ ∆(Al, J, u, k, j + 2) ≤ 2n/2r−j−1,(C2a)

F (Al, J
′, u′, j + 2, j + 2) ≤ F (T, J, u, k, j + 1)− 1

L12
2nr−j−1(C2b)

≤ F (T, J, u, k, j)− 1

L12
2nr−j−1

or

∆(Al, J, u, k, j + 1) ≤ 2n/2r−j−1.(C3)

Proof. Let m :=
√
Nn so that

√
logm = 2(n−1)/2

√
log 2. Without loss of

generality we may also assume L8 ≥ 1 (where L8 is the absolute constant given

by Proposition 5.2).

We first apply Proposition 5.1 with j + 2 and σ = 1
L6L8

2n/2r−j−1. Ob-

serve that r−j−2
√

logm ≤ r−j−22(n−1)/2 ≤ σ if r0 ≥ L6L8. This way we

obtain the decomposition T =
⋃
l≤m−1Cl ∪ A1, where ∆(Cl, J, u, k, j + 2) ≤

c := 1
L8

2n/2r−j−1 and A1 satisfies condition (C1) with L10 := L6L8, L11 :=

(2/ log(2))1/2L6L8.

Now for l ≤ m− 1, we apply Proposition 5.2 with T = Cl, σ = 2n/2r−j−1,

and we decompose Cl into at most m + 1 sets that satisfy either (C2b) with

L12 := (2/ log(2))1/2L9 or (C3). Since G(u′i, j + 2, j + 2) ⊂ G(ui, k, j + 2) for

i ∈ J ′ and L8 ≥ 1, we get ∆(Cl, J
′, u′, j + 2, j + 2) ≤ ∆(Cl, J, u, k, j + 2) ≤ c ≤

2n/2r−j−1 and (C2a) follows.

This way we decompose the set T into at most 1 + (m− 1)(m+ 1) = Nn

sets Al satisfying one of the conditions (C1)–(C3). �

6. Partition construction

To prove Theorem 1.1 with the use of Theorem 3.1 we need to construct a

suitable admissible sequence of partitions (An)n≥0 of the index set T . In this

section we present such a construction.

We use the following notation. For A ∈ An, n ≥ 1, by A′ we will denote

the unique set in An−1 such that A ⊂ A′. For t ∈ T and n ≥ 0, An(t) is

the unique element of An that contains t. Moreover, if to each set A ∈ An is

assigned a certain quantity (which may be a point, a number or a set) αn(A),

then to shorten the notation we write αn(t) for αn(An(t)).



1190 WITOLD BEDNORZ and RAFA L LATA LA

The following simple lemma will be very useful. It was proven in [25]; we

rewrite its proof for the sake of completeness.

Lemma 6.1 ([25, Lemma 2.6.3]). Let α > 1 and (an)n≥0 be a sequence of

positive numbers such that supn an <∞. Define

V := {m ≥ 0: an < amα
|n−m| for all n ≥ 0, n 6= m}.

Then ∑
n≥0

an ≤
2α

α− 1

∑
m∈V

am.

Proof. We define a partial order on N by n ≺ m if and only if am ≥
anα

|n−m|. Then V is just the set of maximal elements of ≺; i.e., if m ∈ V ,

m ≺ m′, then m′ = m. Moreover, since an is bounded, there cannot exist an

infinite sequence of integers increasing with respect to ≺. Therefore for each

n ∈ N, there exists m ∈ V such that n ≺ m. Thus∑
n≥0

an ≤
∑
m∈V

am
∑
n≥0

α−|n−m| ≤ 2α

α− 1

∑
m∈V

am. �

We are now ready to describe the partition construction. It is based on the

iterative application of Corollary 5.3. Unfortunately we will need to control

several parameters. The integers kn ≤ jn, the points un ∈ T and the sets

Jn ⊂ I are related to the functionals studied in the previous sections. The

parameter pn = 0 means that we will use Corollary 5.3 to decompose the set,

and pn > 0 means that we will wait 2κ− pn steps before doing it.

Let us first summarize the main dependencies between these quantities.

The first condition gives initial values of parameters

(P1) p0(T ) = 0, j0(T ) = k0(T ) = j0, J0(T ) = I.

The next requirement is a mild regularity condition (in all conditions below

we assume that A ∈ An for some n ≥ 1)

(P2) jn−1(A′) ≤ jn(A) ≤ jn−1(A′) + 2, kn−1(A′) ≤ kn(A).

Observe that we do not bound the difference kn(A) − kn−1(A′) from above.

Now we state a crucial estimate for the diameter of the set A:

(P3) pn(A) = 0 ⇒ ∆(A, Jn(A), un(A), kn(A), jn(A)) ≤ 2n/2r−jn(A)

and its version for a positive value of the counter pn(A):

(P4)

pn(A) > 0 ⇒ ∆(A, Jn(A), un(A), kn(A), jn(A)) ≤ 2(n−pn(A))/2r−jn(A)+1.

We require that “parameters k, J, u do not change unless pn(A) = 1”

(P5) pn(A) 6=1 ⇒ un(A)=un−1(A′), kn(A)=kn−1(A′), Jn(A)=Jn−1(A′).
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The next condition describes how parameters change if pn(A) = 1:

pn(A) = 1⇒ un(A) ∈ A′, jn(A) = jn−1(A′) + 2 and(P6)

Jn(A) = {i ∈ Jn−1(A′) : |un(A)i − un−1(A′)i| ≤ 2r−kn−1(A′)}.

For pn−1(A′) 6= 0, parameter jn does not change

(P7) pn−1(A′) 6= 0 ⇒ jn(A) = jn−1(A′).

The last two conditions describe the behavior of the counter pn:

(P8) pn(A) > 0 ⇒ pn(A) = pn−1(A′) + 1

and

(P9) pn(A) = 0⇒ pn−1(A′) ∈ {0, 2κ− 1}, jn(A) ≤ jn−1(A′) + 1.

Proposition 6.2. Suppose that r = 2κ, where κ is a sufficiently large

positive integer and T ⊂ `2(I) satisfies ∆2(T ) ≤ r−j0 . Then there exist an

admissible sequence of partitions (An)n≥0 of T , points un(A) ∈ T , sets Jn(A) ⊂
I and integers kn(A) ≤ jn(A), 0 ≤ pn(A) ≤ 2κ − 1, A ∈ An that satisfy

conditions (P1)–(P9). Moreover, for all t ∈ T ,

(23)
∞∑
n=0

2nr−jn(t) ≤ K(r)(r−j0(T ) + b(T )),

where K(r) is a constant that depends only on r.

Proof. Define Fn(A) := F (A, Jn(A), un(A), kn(A), jn(A)). We will addi-

tionally require the following two conditions, which will help us to prove (23):

first

(P10) pn(A) = 1 ⇒ Fn(A) ≤ Fn−1(A′)− 1

L12
2n−1r−jn(A)+1

and second, if n ≥ 2, pn(A) = pn−1(A′) = 0 and jn(A) = jn−1(A′), then for

any D ⊂ A with ∆(D,Jn(A), un(A), kn(A), jn(A) + 2) ≤ 1
L10

2(n−1)/2r−jn(A)−1,

we have

F (D,Jn(A), un(A), kn(A), jn(A) + 2)(P11)

≤ F (A′, Jn(A), un(A), kn(A), jn(A) + 2)− 1

L11
2n−1r−jn(A)−1

≤ F (A′, Jn−1(A′), un−1(A′), kn−1(A′), jn−1(A′))− 1

L11
2n−1r−jn(A)−1.

We assume that κ is large enough so that r ≥ max{r0, 4L
2
10}, where r0 is

given by Corollary 5.3.

We start the construction with A0 = A1 = {T}, k1(T ) = j1(T ) = k0(T ) =

j0(T ) = j0, p1(T ) = p0(T ) = 0, J1(T ) = J0(T ) = I and u1(T ) = u0(T ) = t0,
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where t0 is a point in T . Since

∆(T, Jn(A), un(A), kn(A), jn(A)) ≤ ∆2(T ) ≤ r−j0 ,

conditions (P1)–(P11) are satisfied for n ≤ 1.

Assume now thatAn, n ≥ 1 is already constructed, and fix the set B ∈ An.

We will split this set into at most Nn sets in An+1; this way |An+1| ≤ Nn|An| ≤
N2
n = Nn+1, as required.

If 1 ≤ pn(B) ≤ 2κ−2, we do not split B. That is, we decide that B ∈ An+1

and we set pn+1(B) := pn(B) + 1, kn+1(B) := kn(B), jn+1(B) := jn(B),

Jn+1(B) := Jn(B) and un+1(B) := un(B). It is easy to see that all required

conditions holds for B and n+ 1.

If pn(B) = 2κ−1, we do not split B either, but this time we set pn+1(B) :=

0, kn+1(B) := kn(B), jn+1(B) := jn(B), Jn+1(B) := Jn(B) and un+1(B) :=

un(B). The condition (P3) for A = B and n+ 1 follows by (P4) for A = B.

Finally assume that pn(B) = 0. Then we will split B using Corollary 5.3

with T = B, u = un(B), u′ any point in B, J = Jn(B), k = kn(B) and

j = jn(B). We obtain a partition B =
⋃
l≤mAl, m ≤ Nn, and each of the sets

Al satisfies one of the conditions (C1)–(C3). Let A = Al be one of these sets.

If A satisfies (C1), we set pn+1(A) := 0, jn+1(A) := jn(B), kn+1(A) :=

kn(B), Jn+1(A) := Jn(B) and un+1(A) := un(B). The first inequality in (P11)

for A and n+ 1 follows now by (C1) and the second one by Proposition 4.5.

If A satisfies (C2a)–(C2b), we define pn+1(A) := 1, jn+1(A) := kn+1(A) =

jn(B) + 2, un+1(A) := u′ and

Jn+1(A) := J ′ =
¶
i ∈ Jn(B) : |un(B)i − u′i| ≤ 2r−kn(B)

©
.

Property (P4) for A and n+ 1 follows by (C2a) and property (P10) by (C2b).

Finally if A satisfies (C3), we define pn+1(A) := 0, jn+1(A) = jn(B) + 1,

kn+1(A) = kn(B), Jn+1(A) := Jn(B) and un+1(A) = un(B). Condition (P3)

for A and n+ 1 now follows by (C3).

This way we constructed an admissible partition that satisfies (P1)–(P11).

To finish the proof we need to show (23).

Observe that Fn(A) ≤ Fn−1(A′): for pn(A) = 1, this obviously follows

from (P10), while for pn(A) 6= 1, we have un−1(A′) = un(A), Jn−1(A′) =

Jn(A), jn−1(A′) ≤ jn(A) and kn−1(A′) = kn(A) and we may use Proposi-

tion 4.5.

Fix t ∈ T , and define an = an(t) := 2nr−jn(t). If pn(t) = 0 and n ≥ 2, then

either jn−1(t) < jn(t) and an−1 > an or jn−1(t) = jn(t), pn−1(t) = 0, which by

(P11) gives an ≤ 2L11rFn−1(t) ≤ 2L11rb(T ) or pn−1(t) = 2κ− 1, which yields

pn−2κ(t) = 0, jn−2κ(t) = jn(t) − 2 and an−2κ = an. If pn(t) > 0, then taking

n′ := inf{m ≥ n : pm(t) = 0} we get jn′(t) = jn(t), pn′(t) = 0 and an < an′ .
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This shows that

sup
n
an ≤ max{a0, a1, 2L11rb(T )} ≤ K(r)(r−j0 + b(T )) <∞.

Let

V0 := {n ≥ 0: am < 2|m−n|an for all m ≥ 0, m 6= n}.

If n ∈ V0, then an+1 = 2n+1r−jn+1(t) < 2an = 2n+1r−jn(t) so that

V0 ⊂ V1 := {n ≥ 0: jn(t) < jn+1(t)}.

By Lemma 6.1 with α = 2 we have∑
n≥0

an ≤ 4
∑
n∈V0

an ≤ 4
∑
n∈V1

an.

Let us enumerate the elements of V1 as 1 ≤ n0 < n1 < n2 < · · · and set

V2 := {nq : anm < 2|m−q|anq for all m ≥ 0, m 6= q}.

Applied once again, Lemma 6.1 implies∑
n≥0

an ≤ 4
∑
n∈V1

an ≤ 16
∑
n∈V2

an.

Fix n = nq ∈ V2. If jn−1(t) < jn(t), then n− 1 = nq−1 and (since r ≥ 4)

anq−1 = an−1 ≥
r

2
an ≥ 2an,

which contradicts the definition of V2. Hence jn−1(t) = jn(t) < jn+1(t). We

have the following four possibilities:

1. jn+1(t) = jn(t) + 2. Then pn+1(t) = 1 and by (P10) applied with

A = An+1(t),

an = r2nr−jn+1(t)+1 ≤ L12r(Fn(t)− Fn+1(t)).

2. jn+1(t) = jn(t) + 1 and jnq+1+1(t) = jnq+1(t) + 2. Then pnq+1+1(t) = 1,

jnq+1+1(t) = jn(t) + 3 and by (P10) applied with A = Anq+1+1(t),

an ≤
1

4
r3anq+1+1 ≤

1

2
L12r

2(Fnq+1(t)− Fnq+1+1(t)).

3. pn−1(t) = 2κ− 1. Then pn−2κ+1(t) = 1, jn−2κ(t) < jn−2κ+1(t) = jn(t),

so n− 2κ = nq−1, and by (P10) applied with A = Anq−1+1(t),

an = 22κ−1anq−1+1 ≤ 22κL12r
−1(Fnq−1(t)− Fnq−1+1(t))

= L12r(Fnq−1(t)− Fnq−1+1(t)).

4. pn−1(t) = 0, jn+1(t) = jn(t) + 1 and jnq+1+1(t) = jnq+1(t) + 1. Then

pnq+1+1(t) = 0; moreover, by the definition of V2,

2nq+1r−jn(t)−1 = anq+1 < 2anq = 2n+1r−jn(t),
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which yields nq+1 − n ≤ κ. In particular, this implies pm(t) = 0 for all n ≤
m ≤ nq+1 + 1. Hence knq+1+1(t) = kn(t), jnq+1+1(t) = jn(t) + 2, unq+1+1(t) =

un(t) and Jnq+1+1(t) = Jn(t). Therefore (P3) used for n = nq+1 + 1 and

A = Anq+1+1(t) implies

∆(Anq+1+1(t), Jn(t), un(t), kn(t), jn(t) + 2) ≤ 2(nq+1+1)/2r−jn(t)−2

≤ 1

L10
2(n−1)/2r−jn(t)−1,

where the last estimate follows since nq+1 − n ≤ κ and r = 2κ ≥ (2L10)2.

Then either q = 0 or n ≥ 2, and then we may apply (P11) to D = Anq+1+1,

A = An(t) and get

an ≤ 2L11r(Fn−1(t)− Fnq+1+1(t)).

This shows that for n = nq ∈ V2, either q = 0 or

an ≤ K(r)(Fnq−1(t)− Fnq+2(t)).

By monotonicity of the map l 7→ Fnl
(t), this gives (with a value of K(r) which

may change at each occurrence)∑
n≥0

an ≤ 16
∑
n∈V2

an ≤ 16an0 +K(r)F0(T ) ≤ K(r)(r−j0 + b(T )). �

7. Proofs of the main results

We are now ready to present proofs of the main Theorem 1.1 and Corol-

lary 1.2. By Theorem 3.1, in order to decompose the index set T it is enough

to find a suitable admissible sequence of partitions. To construct such a se-

quence, in Section 4 we defined a family of functionals and showed with the

help of results gathered in Section 2 that they satisfy the Talagrand-type de-

composition condition presented in Corollary 5.3. Then iterative application

of the latest result enabled us to inductively construct a sequence of partitions.

To conclude we need to verify that our sequence satisfies conditions from The-

orem 3.1. In particular, we need to construct (on the base of points un(A))

points πn(A) and show that sets In(A) defined in Theorem 3.1 are related to

sets Jn(A) from Proposition 6.2.

Proof of Theorem 1.1. By homogeneity we may assume that b(T ) = 1
4 ;

then ∆2(T ) ≤ 1 by Lemma 2.1. We apply Proposition 6.2 with j0 = 0 and get

an admissible sequence of partitions (An)n≥0, numbers pn(A), kn(A), jn(A) and

points un(A). First we inductively define points πn(A). We set π0(T ) = u0(T )

and for A ∈ An, n ≥ 1, we define πn(A) = πn−1(A′) if jn(A) = jn−1(A′),

πn(A) = un(A) if pn(A) = 1 and choose for πn(A) an arbitrary point in A if

pn(A) = 0 and jn(A) > jn−1(A′).

As in Theorem 3.1 we set

In(t) :=
¶
i ∈ I : |πq+1(t)i − πq(t)i| ≤ r−jq(t) for 0 ≤ q ≤ n− 1

©
.
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First we show that

(24) |πn+1(t)i − un(t)i| ≤ 2r−kn(t) for i ∈ In+1(t).

To this aim we define J ′ = {0} ∪ {n ≥ 1: pn(t) = 1}. Then πn(t) = un(t) for

n ∈ J ′. Fix n, and let n′ be the largest element of J ′ such that n′ ≤ n. Then

by (P5), un(t) = un′(t) = πn′(t) and kn(t) = kn′(t). Therefore for i ∈ In+1(t),

|πn+1(t)i − un(t)i| = |πn+1(t)i − πn′(t)i| ≤
n∑

q=n′
|πq+1(t)i − πq(t)i|

≤
∑

j≥jn′ (t)
r−j ≤ 2r−jn′ (t) ≤ 2r−kn′ (t) = 2r−kn(t).

Now we inductively show that In(t) ⊂ Jn(t). For n = 0, both sets equals I.

If pn+1(t) 6= 1, then In+1(t) ⊂ In(t) ⊂ Jn(t) = Jn+1(t), and if pn+1(t) = 1, then

πn+1(t) = un+1(t), so by (24), |un+1(t)i − un(t)i| ≤ 2r−kn(t) for i ∈ In+1(t).

Hence by (P6) and the induction assumption In+1(t) ⊂ Jn+1(t).

Finally assume that A ∈ An, jn(A) > jn−1(A′) and t ∈ A. Then

pn−1(A′) = 0, t, πn(A) ∈ A′, In(A) ⊂ Jn(A) ⊂ Jn−1(A′) and |πn(A)i −
un−1(A′)i| ≤ 2r−kn−1(A′) for i ∈ In(A). Hence Lemma 4.6 (applied with

J = In(A), u = un−1(A′), s = πn(A), j = jn−1(A′) and k = kn−1(A′)),

(P3) and (P2) yield∑
i∈In(A)

min{(ti − πn(A)i)
2, r−2jn(A)}

≤
∑

i∈In(A)

min{(ti − πn(A)i)
2, r−2jn−1(A′)}

≤ 2∆(A′, Jn−1(A′), un−1(A′), kn−1(A′), jn−1(A′))2

≤ 2nr−2jn−1(A′) ≤ r42nr−2jn(A).

Therefore all the assumptions of Theorem 3.1 are satisfied with M = r4,

and Theorem 1.1 follows by (13) and (23) (since r−j0 = 1 = 4b(T )). �

Proof of Corollary 1.2. By Theorem 1.1 we know that T ⊂ T1 + T2 with

supt∈T1 ‖t‖1 ≤ Lb(T ) and g(T2) ≤ Lb(T ). Then

T − T ⊂ (T1 − T1) + (T2 − T2) ⊂ conv{2(T1 − T1), 2(T2 − T2)}.

Obviously, T1 − T1 ⊂ Lconv{ei : i ∈ I}, where (ei)i∈I is the canonical basis

of `2(I). The majorizing measure theorem for Gaussian processes implies (cf.

[22, Th. 2.1.8]) that we can find vectors (sn)n≥1 in `2 such that T2 − T2 ⊂
conv{sn : n ≥ 1} and

»
log(n+ 1)‖sn‖2 ≤ Lg(T2) ≤ Lb(T ). To finish the

proof it is enough to notice that ‖Xei‖p = ‖εi‖p = 1 for any p > 0 and that by

Khinthine’s inequality, ‖Xt‖p ≤ L
√
p‖t‖2 for p ≥ 1. �
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8. Selected applications

The Bernoulli Conjecture was motivated by the following question of

X. Fernique concerning random Fourier series. Let G be a compact Abelian

group and (F, ‖ ‖) be a complex Banach space. Consider (finitely many) vec-

tors vi ∈ F and characters χi on G. X. Fernique [6] showed that

E sup
h∈G

∥∥∥∥∑
i

vigiχi(h)

∥∥∥∥ ≤ L
(
E
∥∥∥∥∑

i

vigi

∥∥∥∥+ sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∣∑
i

x∗(vi)giχi(h)

∣∣∣∣
)

and asked whether similar bound holds if one replaces Gaussian r.v’s by random

signs. Theorem 1.1 yields an affirmative answer.

Theorem 8.1. For any compact Abelian group G, any finite collection of

vectors vi in a complex Banach space (F, ‖ ‖) and characters χi on G, we have

E sup
h∈G

∥∥∥∥∑
i

viεiχi(h)

∥∥∥∥ ≤ L
(
E
∥∥∥∥∑

i

viεi

∥∥∥∥+ sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∣∑
i

x∗(vi)εiχi(h)

∣∣∣∣
)
.

Remark. Since χi(e) = 1, where e is the neutral element of G we have

max

®
E
∥∥∥∥∑

i

viεi

∥∥∥∥, sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∣∑
i

x∗(vi)εiχi(h)

∣∣∣∣
´
≤ E sup

h∈G

∥∥∥∥∑
i

viεiχi(h)

∥∥∥∥.
Therefore Theorem 8.1 gives a two-sided bound on E suph∈G ‖

∑
i viεiχi(h)‖.

Proof of Theorem 8.1. We need to show that for any bounded set T ⊂ Cn,

n <∞,

(25)

E sup
h∈G,t∈T

∣∣∣∣ n∑
i=1

tiεiχi(h)

∣∣∣∣ ≤ L
(
E sup
t∈T

∣∣∣∣ n∑
i=1

tiεi

∣∣∣∣+ sup
t∈T

E sup
h∈G

∣∣∣∣ n∑
i=1

tiεiχi(h)

∣∣∣∣
)
.

Let M := E supt∈T |
∑n
i=1 tiεi|. Theorem 1.1 implies that we can find a decom-

position T ⊂ T1 + T2, with supt1∈T1 ‖t
1‖1 ≤ LM and

(26) E sup
t2∈T2

∣∣∣∣ n∑
i=1

t2i gi

∣∣∣∣ ≤ LM.

Obviously

E sup
h∈G,t∈T

∣∣∣∣ n∑
i=1

tiεiχi(h)

∣∣∣∣(27)

≤ E sup
h∈G,t1∈T1

∣∣∣∣ n∑
i=1

t1i εiχi(h)

∣∣∣∣+ E sup
h∈G,t2∈T2

∣∣∣∣ n∑
i=1

t2i εiχi(h)

∣∣∣∣.
Since |∑n

i=1 t
1
i εiχi(h)| ≤∑n

i=1 |t1i ||χi(h)| = ‖t1‖1, we get

(28) E sup
h∈G,t1∈T1

∣∣∣∣ n∑
i=1

t1i εiχi(h)

∣∣∣∣ ≤ sup
t∈T 1

‖t1‖1 ≤ LM.
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Estimate (2) and Fernique’s theorem imply

E sup
h∈G,t2∈T2

∣∣∣∣ n∑
i=1

t2i εiχi(h)

∣∣∣∣ ≤ …π2E sup
h∈G,t2∈T2

∣∣∣∣ n∑
i=1

t2i giχi(h)

∣∣∣∣(29)

≤ L
(
E sup
t2∈T2

∣∣∣∣ n∑
i=1

t2i gi

∣∣∣∣+ sup
t2∈T2

E sup
h∈G

∣∣∣∣ n∑
i=1

t2i giχi(h)

∣∣∣∣
)
.

The Marcus-Pisier estimate [13] yields for any t2 ∈ T2,

(30) E sup
h∈G

∣∣∣∣ n∑
i=1

t2i giχi(h)

∣∣∣∣ ≤ LE sup
h∈G

∣∣∣∣ n∑
i=1

t2i εiχi(h)

∣∣∣∣.
Since we may assume that T2 ⊂ T − T1, we get

sup
t2∈T2

E sup
h∈G

∣∣∣∣ n∑
i=1

t2i εiχi(h)

∣∣∣∣(31)

≤ sup
t∈T

E sup
h∈G

∣∣∣∣ n∑
i=1

tiεiχi(h)

∣∣∣∣+ sup
t1∈T1

E sup
h∈G

∣∣∣∣ n∑
i=1

t1i εiχi(h)

∣∣∣∣
≤ sup

t∈T
E sup
h∈G

∣∣∣∣ n∑
i=1

tiεiχi(h)

∣∣∣∣+ LM.

Estimate (25) follows by (26)–(31). �

Another consequence of Theorem 1.1 is a Levy-Ottaviani type maximal

inequality for VC-classes. (See [9] for details.) Recall that a class C of subsets of

I is called a Vapnik-Chervonenkis class (or in short a VC-class) of order at most

d if for any set A ⊂ I of cardinality d+ 1, we have |{C ∩A : C ∈ C}| < 2d+1.

Theorem 8.2. Let (Xi)i∈I be independent random variables in a separa-

ble Banach space (F, ‖ ‖) such that |{i : Xi 6= 0}| < ∞ almost surely, and C
be a countable VC-class of subsets of I of order d. Then

P
(

sup
C∈C

∥∥∥∥∑
i∈C

Xi

∥∥∥∥ ≥ u
)
≤ K(d) sup

C∈C∪{I}
P
(∥∥∥∥∑

i∈C
Xi

∥∥∥∥ ≥ u

K(d)

)
for u > 0,

where K(d) is a constant that depends only on d. Moreover, if the variables

Xi are symmetric, then

P
(

sup
C∈C

∥∥∥∥∑
i∈C

Xi

∥∥∥∥ ≥ u
)
≤ K(d)P

(∥∥∥∥∑
i∈I

Xi

∥∥∥∥ ≥ u

K(d)

)
for u > 0.

Remark. Analysis of the proof shows that K(d) ≤ L
√
d.

It is easy to see (taking F = R, Xi = εiv for i ∈ I0 and Xi = 0 otherwise,

where I0 is a finite subset of I and v is any nonzero vector in F ) that being a

VC-class is a necessary assumption even in the scalar case.
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Maximal inequalities of this type may be used to derive Itô-Nisio type

theorems reducing almost sure statements to statements in probability and

as a consequence obtain various limit type theorems for VC-classes. As an

example of application we present a uniform Strong Law of Large Numbers.

Corollary 8.3. Let (Xi)i≥1 be independent symmetric r.v ’s with values

in a separable Banach space (F, ‖ ‖) such that 1
an

∑n
i=1Xi → 0 almost surely.

Then for any VC-class C of subsets of N, we have

lim
n→∞

1

an
max
C∈C

∥∥∥∥ ∑
i∈C∩{1,...,n}

Xi

∥∥∥∥ = 0 almost surely.

Proof. Let n0 be a fixed positive integer. Then for any A ⊂ N,

max
n≥n0

1

an

∥∥∥∥ ∑
i∈A∩{1,...,n}

Xi

∥∥∥∥ =

∥∥∥∥∑
i∈A

Yi

∥∥∥∥ ,
where Yi are random variables in `∞(F ) given by Yi(n) = 0 for n < n0 or i > n

and Yi(n) = 1
an
Xi for i ≤ n ≥ n0. Applying Theorem 8.2 to random variables

Yi we get for any u > 0,

P

Ñ
max
n≥n0

1

an
max
C∈C

∥∥∥∥ ∑
i∈C∩{1,...,n}

Xi

∥∥∥∥ ≥ u
é
≤ KP

(
max
n≥n0

1

an

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥ ≥ u

K

)
,

where K is a constant that depends only on C and the assertion easily follows.

�

Sketch of the proof of Theorem 8.2. It is rather a standard exercise (cf.

[9]) to reduce to the case when I is finite and Xi = viεi for some vectors

vi ∈ F . Using concentration properties of Bernoulli processes it is enough to

show that for any bounded symmetric set T ⊂ RI and any VC-class of order d,

(32) E sup
C∈C

sup
t∈T

∣∣∣∣∑
i∈C

tiεi

∣∣∣∣ ≤ K(d)E sup
t∈T

∣∣∣∣∑
i∈I

tiεi

∣∣∣∣ = K(d)b(T ).

Let T ⊂ T1 + T2 be a decomposition given by Theorem 1.1. We may also

assume that T1 and T2 are symmetric. Obviously, |∑i∈C t
1
i εi

∣∣∣∣ ≤ ∑i∈C |t1i | ≤

‖t1‖1, hence

(33) E sup
C∈C

sup
t1∈T1

∣∣∣∣∑
i∈C

t1i εi

∣∣∣∣ ≤ sup
t1∈T1

‖t1‖1 ≤ Lb(T ).

Inequality (2) gives

(34) E sup
C∈C

sup
t2∈T2

∣∣∣∣∑
i∈C

t2i εi

∣∣∣∣ ≤ …π2E sup
C∈C

sup
t2∈T2

∣∣∣∣∑
i∈C

t2i gi

∣∣∣∣.
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The result of Krawczyk [7] and the choice of T2 yield

(35) E sup
C∈C

sup
t2∈T2

∣∣∣∣∑
i∈C

t2i gi

∣∣∣∣ ≤ K(d)g(T2) ≤ K(d)b(T ).

Estimates (33)–(35) imply (32). �

Remark. Alternatively one may prove (32) using Corollary 1.2 and the

fact that maximal inequalities hold for F = R.

9. Further questions

It is natural to ask for bounds on suprema for another classes of stochas-

tic processes. The majorizing measure upper bound works in quite general

situations; cf. [1]. Two-sided estimates are known, however, only in very few

cases. For “canonical processes” of the form Xt =
∑
i≥1 tiXi, where Xi are

independent centered r.v’s, results in the spirit of Corollary 1.2 were obtained

for certain symmetric variables with log-concave tails [19], [8].

A basic important class of canonical processes worth investigation is a

class of “selector processes” of the form

Xt =
∑
i≥1

ti(δi − δ), t ∈ `2,

where (δi)i≥1 are independent random variables such that P(δi = 1) = δ =

1− P(δi = 0). We may bound the quantity

δ(T ) := E sup
t∈T

∣∣∣∣∑
i≥1

ti(δi − δ)
∣∣∣∣, T ⊂ `2

in two ways.

The first bound for δ(T ) follows by a pointwise estimate. Namely, let

(δ′i)i≥1 be an independent copy of (δi)i≥1; then by Jensen’s inequality,

δ(T ) ≤ E sup
t∈T

∣∣∣∣∑
i≥1

ti(δi − δ′i)
∣∣∣∣ ≤ 2E sup

t∈T

∣∣∣∣∑
i≥1

tiδi

∣∣∣∣ ≤ 2E sup
t∈T

∑
i≥1

|ti|δi.

The second estimate is based on chaining. To introduce it we define for

α > 0 and a metric space (T, d),

γα(T, d) := inf sup
t∈T

∞∑
n=0

2n/α∆(An(t)),

where as in the definition of γ2, the infimum runs over all admissible sequences

of partitions (An)n≥0 of the set T . Bernstein’s inequality implies that for

Xt =
∑
i≥1 ti(δi − δ) and δ ∈ (0, 1/2], we have

P(|Xt −Xs| ≥ u) ≤ 2 exp

Ç
−min

{ u2

Lδd2(s, t)2
,

u

Ld∞(s, t)

}å
for s, t ∈ `2,
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where dp(t, s) := ‖t−s‖p denotes the `p-distance. This together with a chaining

argument [22, Th. 1.2.7] yields

δ(T ) ≤ L(
√
δγ2(T, d2) + γ1(T, d∞)).

The next conjecture, formulated by M. Talagrand [24], states that there

are no other ways to bound δ(T ) as the combination of the above two estimates

and the fact that δ(T1 + T2) ≤ δ(T1) + δ(T2).

Conjecture 9.1. Let 0 < δ ≤ 1/2, δi be independent random variables

such that P(δi = 1) = δ = 1− P(δi = 0) and δ(T ) := E supt∈T |
∑
i≥1 ti(δi − δ)|

for T ⊂ `2. Then for any set T with δ(T ) <∞, one may find a decomposition

T ⊂ T1 + T2 such that

E sup
t∈T1

∑
i≥1

|ti|δi ≤ Lδ(T ),
√
δγ2(T2, d2) ≤ Lδ(T ) and γ1(T2, d∞) ≤ Lδ(T ).

It may be shown that for δ = 1/2, the above conjecture follows from

Theorem 1.1.

Since any mean zero random variable is a mixture of mean zero two-points

random variables, selector processes are strictly related to empirical processes

Zf :=
1√
N

∑
i≤N

(f(Xi)− Ef(Xi)), f ∈ F ,

where (Xi)i≤N are independent and identically distributed random variables

and F is a class of measurable functions. Let

SN (F) := E sup
f∈F
|Zf | =

1√
N

E sup
f∈F

∣∣∣∣ ∑
i≤N

(f(Xi)− Ef(Xi))

∣∣∣∣.
As for selector processes, there are two distinct ways to bound SN (F). The

first one is to use the trivial pointwise bound |∑i≤N f(Xi)| ≤
∑
i≤N |f(Xi)|.

The second is based on chaining and Bernstein’s inequality

(36)

P

Ñ∣∣∣∣ ∑
i≤N

(f(Xi)− Ef(Xi))

∣∣∣∣ ≥ t
é
≤ 2 exp

Ç
−min

{ t2

4N‖f‖22
,

t

4‖f‖∞

}å
,

where ‖f‖p denotes the Lp-norm of f(Xi). Similar chaining arguments as in

the case of selector processes give

SN (F) ≤ L
Ç
γ2(F2, d2) +

1√
N
γ1(F2, d∞)

å
,

where dp(f, g) := ‖f − g‖p.
The following conjecture asserts that there are no other ways to bound

suprema of empirical processes.
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Conjecture 9.2. Suppose that F is a countable class of measurable func-

tions. Then one can find a decomposition F ⊂ F1 + F2 such that

E sup
f1∈F1

∑
i≤N
|f1(Xi)| ≤

√
NSN (F),

γ2(F2, d2) ≤ LSN (F) and γ1(F2, d∞) ≤ L
√
NSN (F).

Related conjectures with a much more detailed discussion may be found

in [23] and [22, Chap. 12].
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