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The Hodge theory of Soergel bimodules

By Ben Elias and Geordie Williamson

Abstract

We prove Soergel’s conjecture on the characters of indecomposable

Soergel bimodules. We deduce that Kazhdan-Lusztig polynomials have

positive coefficients for arbitrary Coxeter systems. Using results of Soergel

one may deduce an algebraic proof of the Kazhdan-Lusztig conjecture.
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1. Introduction

In 1979 Kazhdan and Lusztig introduced the Kazhdan-Lusztig basis of

the Hecke algebra of a Coxeter system [KL79]. The definition of the Kazhdan-

Lusztig basis is elementary, however it appears to enjoy remarkable positivity

properties. For example, it is conjectured in [KL79] that Kazhdan-Lusztig

polynomials (which express the Kazhdan-Lusztig basis in terms of the stan-

dard basis of the Hecke algebra) have positive coefficients. The same paper

also proposed the Kazhdan-Lusztig conjecture, a character formula for sim-

ple highest weight modules for a complex semi-simple Lie algebra in terms of

Kazhdan-Lusztig polynomials associated to its Weyl group.

In a sequel [KL80], Kazhdan and Lusztig established that their polyno-

mials give the Poincaré polynomials of the local intersection cohomology of

Schubert varieties (using Deligne’s theory of weights), thus establishing their

positivity conjectures for finite and affine Weyl groups. In 1981 Beilinson

and Bernstein [BB81] and Brylinski and Kashiwara [BK81] established a con-

nection between highest weight representation theory and perverse sheaves,

using D-modules and the Riemann-Hilbert correspondence, thus proving the

Kazhdan-Lusztig conjecture. Since their introduction Kazhdan-Lusztig poly-

nomials have become ubiquitous throughout highest weight representation the-

ory, giving character formulae for affine Lie algebras, quantum groups at a root

of unity, rational representations of algebraic groups, etc.

In 1990 Soergel [Soe90] gave an alternate proof of the Kazhdan-Lusztig

conjecture, using certain modules over the cohomology ring of the flag variety.1

In a subsequent paper [Soe92] Soergel introduced equivariant analogues of these

modules, which have come to be known as Soergel bimodules.

Soergel’s approach is remarkable in its simplicity. Using only the action of

the Weyl group on a Cartan subalgebra, Soergel associates to each simple re-

flection a graded bimodule over the regular functions on the Cartan subalgebra.

He then proves that the split Grothendieck group of the monoidal category gen-

erated by these bimodules (the category of Soergel bimodules) is isomorphic to

the Hecke algebra. Moreover, the Kazhdan-Lusztig conjectures (as well as sev-

eral positivity conjectures) are equivalent to the existence of certain bimodules

whose classes in the Grothendieck group coincide with the Kazhdan-Lusztig

basis. Despite its elementary appearance, this statement is difficult to verify.

1[Soe90, §1.1, Bermerkung 5]. This seems not to be as well known as it should be.
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For finite Weyl groups, Soergel deduces the existence of such bimodules by ap-

plying the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber

[BBD82] to identify the indecomposable Soergel bimodules with the equivariant

intersection cohomology of Schubert varieties. This approach was extended by

Härterich to the setting of Weyl groups of symmetrizable Kac-Moody groups

[Här99]. Except for his appeal to the decomposition theorem, Soergel’s ap-

proach is entirely algebraic. (The decomposition theorem relies on the base

field having characteristic 0, which will be an important assumption below.)

In [Soe92] and [Soe07] Soergel pointed out that the algebraic theory of

Soergel bimodules can be developed for an arbitrary Coxeter system. Start-

ing with an appropriate representation of the Coxeter group (the substitute

for the Weyl group’s action on a Cartan subalgebra) one defines the monoidal

category of Soergel bimodules by mimicking the Weyl group case. Surpris-

ingly, one again obtains a monoidal category whose split Grothendieck group

is canonically identified with the Hecke algebra. Soergel then conjectures the

existence (over a field of characteristic 0) of indecomposable bimodules whose

classes coincide with the Kazhdan-Lusztig basis of the Hecke algebra. At this

level of generality there is no known recourse to geometry. One does not have

a flag variety or Schubert varieties associated to arbitrary Coxeter groups, and

so one has no geometric setting in which to apply the decomposition theorem.

Soergel’s conjecture was established for dihedral groups by Soergel [Soe92] and

for “universal” Coxeter systems (where each product of simple reflections has

infinite order) by Fiebig [Fie08] and Libedinsky. However, in both these cases

there already existed closed formulas for the Kazhdan-Lusztig polynomials.

In this paper we prove Soergel’s conjecture for an arbitrary Coxeter sys-

tem. We thus obtain a proof of the positivity of Kazhdan-Lusztig polynomials

(as well as several other positivity conjectures). We also obtain an algebraic

proof of the Kazhdan-Lusztig conjecture, completing the program initiated by

Soergel. In some sense we have come full circle: the original paper of Kazhdan

and Lusztig was stated in the generality of an arbitrary Coxeter system; this

paper returns Kazhdan-Lusztig theory to this level of generality.

Our proof is inspired by two papers of de Cataldo and Migliorini ([dCM02]

and [dCM05]) which give Hodge-theoretic proofs of the decomposition theorem.

In essence, de Cataldo and Migliorini show that the decomposition theorem

for a proper map (from a smooth space) is implied by certain Hodge theoretic

properties of the cohomology groups of the source, under a Lefschetz operator

induced from the target. We discuss their approach in more detail below.

Thus they are able to transform a geometric question on the target into an

algebraic question on the source. They then use classical Hodge theory and

some ingenious arguments to complete the proof. For Weyl groups, Soergel

bimodules are the equivariant intersection cohomology of Schubert varieties,
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and as such they have a number of remarkable Hodge-theoretic properties

which seem not to have been made explicit before. In fact, these properties

hold for any Coxeter group; Soergel bimodules always behave as though they

were intersection cohomology spaces of projective varieties! In this paper,

we give an algebraic proof of these Hodge-theoretic properties for any Coxeter

group, and we adapt the proof that these Hodge-theoretic properties imply the

“decomposition theorem,” at least insofar as Soergel’s conjecture is concerned.

The following are some highlights of de Cataldo and Migliorini’s proof

from [dCM02]:

(1) “Local intersection forms” (which control the decomposition of the direct

image of the constant sheaf) can be embedded into “global intersection

forms” on the cohomology of smooth varieties.

(2) The Hodge-Riemann bilinear relations can be used to conclude that the

restriction of a form to a subspace (i.e., the image of a local intersection

form) stays definite.

(3) One should first prove the hard Lefschetz theorem and then deduce the

Hodge-Riemann bilinear relations via a limiting argument from a family

of known cases, using that the signature of a nondegenerate symmetric

real form cannot change in a family.

It is this outline that we adapt to our algebraic situation. However, the

translation of their results into the language of Soergel bimodules is by no

means automatic. The biggest obstacle is to find a replacement for the use of

hyperplane sections and the weak Lefschetz theorem. We believe that our use

of the Rouquier complex to overcome this difficulty is an important observation

and may have other applications.

There already exists a formidable collection of algebraic machinery, de-

veloped by Soergel [Soe92], [Soe08], Andersen-Jantzen-Soergel [AJS94] and

Fiebig [Fie06], [Fie11], which provides algebraic proofs of many deep results in

representation theory once Soergel’s conjecture is known. These include the

Kazhdan-Lusztig conjecture for affine Lie algebras (in noncritical level), the

Lusztig conjecture for quantum groups at a root of unity, and the Lusztig con-

jecture on modular characters of reductive algebraic groups in characteristic

p� 0.

There are many formal similarities between the theory we develop here

and the theory of intersection cohomology of nonrational polytopes, which was

developed to prove Stanley’s conjecture on the unimodularity of the general-

ized h-vector [BL03], [Kar04], [BKBF07]. In both cases one obtains spaces

which look like the intersection cohomology of a (in many cases nonexistent)

projective algebraic variety. Dyer [Dyea], [Dyeb] has proposed a conjectural

framework for understanding both of these theories in parallel. It would be
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interesting to know whether the techniques of this paper shed light on this

more general theory.

1.1. Results. Fix a Coxeter system (W,S). Let H denote the Hecke alge-

bra of (W,S), a Z[v±1]-algebra with standard basis {Hx}x∈W and Kazhdan-

Lusztig basis {Hx}x∈W as in Section 3.2. We fix a reflection faithful (in the

sense of [Soe07, Def. 1.5]) representation h of W over R and let R denote the

regular functions on h, graded with deg h∗ = 2. We denote by B the category

of Soergel bimodules; it is the full additive monoidal Karoubian subcategory

of graded R-bimodules generated by Bs := R ⊗Rs R(1) for all s ∈ S. Here,

Rs ⊂ R denotes the subalgebra of s-invariants and (1) denotes the grading

shift which places the element 1⊗ 1 in degree −1. For any x there exists up to

isomorphism a unique indecomposable Soergel bimodule Bx which occurs as a

direct summand of the Bott-Samelson bimodule BS(x) = Bs⊗RBt⊗R · · ·⊗RBu
for any reduced expression x = st · · ·u for x, but does not occur as a summand

of any Bott-Samelson bimodule for a shorter expression. The bimodules Bx for

x ∈ W give representatives for the isomorphism classes of all indecomposable

Soergel bimodules up to shifts. The split Grothendieck group [B] of the cate-

gory of Soergel bimodules is isomorphic to H. The character ch(B) ∈ H of a

Soergel bimodule B is a Z≥0[v±]-linear combination of standard basis elements

{Hx} given by counting ranks of subquotients in a certain canonical filtration;

it realizes the class of B under the isomorphism [B]
∼→ H.

Theorem 1.1 (Soergel’s conjecture). For all x∈W we have ch(Bx)=Hx.

Because ch(B) is manifestly positive we obtain

Corollary 1.2 (Kazhdan-Lusztig positivity conjecture).

(1) If we write Hx =
∑
y≤x hy,xHy , then hy,x ∈ Z≥0[v].

(2) If we write HxHy =
∑
µzx,yHz , then µzx,y ∈ Z≥0[v±1].

(See Remark 3.2 for the relation between our notation and that of [KL79].)

We prove that indecomposable Soergel bimodules have all of the algebraic

properties known for intersection cohomology. Given a Soergel bimodule B, we

denote byB := B⊗RR the quotient by the image of positive degree polynomials

acting on the right. We let (B)i denote the degree i component of B. The self-

duality of Soergel bimodules implies that dimR(Bx)−i = dimR(Bx)i for all i.

For the rest of the paper we fix a degree two element ρ ∈ h∗ which is strictly

positive on any simple coroot α∨s ∈ h (see Section 3.1).

Theorem 1.3 (Hard Lefschetz for Soergel bimodules). The action of ρ

on Bx by left multiplication induces an operator on Bx which satisfies the hard

Lefschetz theorem. That is, left multiplication by ρi induces an isomorphism

ρi : (Bx)−i
∼→ (Bx)i.
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We say that a graded R-valued form

〈−,−〉 : Bx ×Bx → R

is invariant if it is bilinear for the right action of R and if 〈rb, b′〉 = 〈b, rb′〉 for all

b, b′ ∈ B and r ∈ R. Theorem 1.1 and Soergel’s hom formula (see Theorem 3.6)

imply that the degree zero endomorphisms of Bx consist only of scalars, i.e.,

End(Bx) = R. Combining this with the self-duality of indecomposable Soergel

bimodules, we see that there exists an invariant form 〈−,−〉Bx on Bx which is

unique up to a scalar. We write 〈−,−〉Bx for the R-valued form on Bx induced

by 〈−,−〉Bx . We fix the sign on 〈−,−〉Bx by requiring that 〈c, ρ`(x)c〉Bx >

0, where c is any generator of B
−`(x)
x

∼= R. With this additional positivity

constraint, we call 〈−,−〉Bx the intersection form on Bx. It is well defined up

to a positive scalar.

Theorem 1.4 (Hodge-Riemann bilinear relations). For all i ≥ 0 the Lef-

schetz form on (Bx)−i defined by

(α, β)ρ−i := 〈α, ρiβ〉Bx
is (−1)(−`(x)+i)/2-definite when restricted to the primitive subspace

P−iρ = ker(ρi+1) ⊂ (Bx)−i.

Note that B−ix = 0 unless i and `(x) are congruent modulo 2. Throughout

this paper we adopt the convention that if m is odd, then a space is (−1)
m
2 -

definite if and only it is zero. The reader need not worry too much about the

sign in this and other Hodge-Riemann statements. Throughout the introduc-

tion the form on the lowest nonzero degree will be positive definite and the

signs on primitive subspaces will alternate from there upwards.

As an example of our results, consider the case whenW is finite. If w0 ∈W
denotes the longest element of W , then Bw0 = R ⊗RW R(`(w0)), where RW

denotes the subalgebra of W -invariants in R. Hence

Bw0 = (R⊗RW R)⊗R R(`(w0)) = R/((RW )+)(`(w0))

is the coinvariant ring, shifted so as to have Betti numbers symmetric about

zero. (Here ((RW )+) denotes the ideal of R generated by elements of RW of

positive degree.) The coinvariant ring is equipped with a canonical symmetric

form, and Theorems 1.3 and 1.4 yield that left multiplication by any ρ in the

interior of the dominant chamber of h∗ satisfies the hard Lefschetz theorem

and Hodge-Riemann bilinear relations.

If W is a Weyl group of a compact Lie group G, then the coinvariant

ring above is isomorphic to the real cohomology ring of the flag variety of G

and the hard Lefschetz theorem and Hodge-Riemann bilinear relations follow

from classical Hodge theory, because the flag variety is a projective algebraic
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variety. On the other hand, if W is not a Weyl group (e.g., a noncrystallo-

graphic dihedral group or a group of type H3 or H4), then there is no obvious

geometric reason why the hard Lefschetz theorem or Hodge-Riemann bilin-

ear relations should hold. The hard Lefschetz property for coinvariant rings

has been studied by a number of authors ([MNW11], [NW07], [McD11]) but

even for the coinvariant rings of H3 and H4 the fact that the Hodge-Riemann

bilinear relations hold seems to be new.

1.2. Outline of the proof.

1.2.1. Setup. Our proof is by induction on the Bruhat order, and the hard

Lefschetz property and Hodge-Riemann bilinear relations play an essential role

along the way. Throughout this paper we employ the following abbreviations

for any x ∈W :

S(x): Soergel’s conjecture for Bx; Theorem 1.1 holds for x.

hL(x): hard Lefschetz for Bx; Theorem 1.3 holds for x.

HR(x): the Hodge-Riemann bilinear relations for Bx; S(x) holds and
Theorem 1.4 holds for x.

The abbreviation hL(< x) means that hL(y) holds for all y < x. Similar

interpretations hold for abbreviations like S(≤x), etc.

In the statement of HR(x) it is necessary to assume S(x) to ensure the

uniqueness (up to positive scalar) of the intersection form on Bx. However, we

need not assume S(x) in order to ask whether a given form on Bx (not necessar-

ily the intersection form) induces a form on Bx satisfying the Hodge-Riemann

bilinear relations. Now Bx appears as a summand of the Bott-Samelson bi-

module BS(x) for any reduced expression x for x. Bott-Samelson bimodules

are equipped with an explicit symmetric nondegenerate intersection form de-

fined using the ring structure and a trace on BS(x) (just as the intersection

form on the cohomology of a smooth projective variety is given by evaluating

the fundamental class on a product). The following stronger version of HR(x)

is more useful in induction steps, as it can be posed without assuming S(x):

HR(x):

for any embedding Bx ⊂ BS(x) the Hodge-Riemann bilinear rela-

tions hold; the conclusions of Theorem 1.4 hold for the restriction

of the intersection form on BS(x) to Bx.

(Here and elsewhere an “embedding” of Soergel bimodules means an “em-

bedding as a direct summand.”) Together, S(x) and HR(x) imply that the

restriction of the intersection form on BS(x) to Bx agrees with the intersec-

tion form on Bx up to a positive scalar for any choice of embedding. (See

Lemma 3.11 for the proof.) In other words,

(1.1)
If S(x) holds, then HR(x) and HR(x) are equivalent for any

reduced expression x of x.
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We now give the structure of the proof. In Sections 1.2.2, 1.2.3 and 1.2.4 we

introduce and explain the implications between statements needed to perform

the induction. In Section 1.2.5 we give a summary of the induction.

We make the following assumption:

(1.2)
In Sections 1.2.2, 1.2.3 and 1.2.4 we fix x ∈ W and s ∈ S
with xs > x and assume that S(<xs) holds.

1.2.2. Soergel ’s conjecture and the local intersection form. By Soergel’s

hom formula (see Theorem 3.6), S(< xs) is equivalent to assuming End(By)

= R for all y < xs. Consider the form given by composition

(−,−)x,sy : Hom(By, BxBs)×Hom(BxBs, By)→ End(By) = R.

Soergel’s hom formula gives an expression for the dimension of these hom

spaces in terms of an inner product on the Hecke algebra. Applying this

formula one sees that S(xs) is equivalent to the nondegeneracy of this form

for all y < xs (see [Soe07, Lemma 7.1(2)]). Now By and BxBs are naturally

equipped with symmetric invariant bilinear forms (see Section 4) so there is a

canonical identification (“take adjoints”)

Hom(By, BxBs) = Hom(BxBs, By).

Hence we can view (−,−)x,sy as a form on the real vector space Hom(By, BxBs).

We call this form the local intersection form. We consider “Soergel’s conjecture

with signs”:

S±(y, x, s): the form (−,−)x,sy is (−1)(`(x)+1−`(y))/2-definite.

This is a priori stronger than Soergel’s conjecture. By the above discussion,

(1.3) S(<xs) and S±(<xs, x, s) imply S(xs).

1.2.3. From the local to the global intersection form. To prove S±(y, x, s),

we must digress and discuss hard Lefschetz and the Hodge-Riemann bilinear

relations for BxBs. The connection is explained by (1.4) below. Recall that

we have fixed a degree two element ρ ∈ R such that ρ(α∨s ) > 0 for all simple

coroots α∨s . Consider the “hard Lefschetz” condition

hL(x, s): ρi : (BxBs)
−i → (BxBs)

i is an isomorphism.

Because Bxs is a direct summand of BxBs, hL(x, s) implies hL(xs). They are

equivalent if we know hL(<xs), since every other indecomposable summand of

BxBs is of the form By for y < xs (a consequence of our standing assumption

S(<xs)).

If we fix a reduced expression x for x and an embedding Bx ⊂ BS(x),

then Bx inherits an invariant form from BS(x) as discussed above. Similarly,

BxBs is a summand of BS(xs) and inherits an invariant form, which we denote
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〈−,−〉BxBs . We formulate the Hodge-Riemann bilinear relations for BxBs as

follows:

HR(x, s):

for any embedding Bx ⊂ BS(x) the Lefschetz form (α, β)−iρ :=

〈α, ρiβ〉BxBs is (−1)(`(x)+1−i)/2-definite on the primitive subspace

P−iρ := ker(ρi+1) ⊂ (BxBs)
−i.

Once again, using that BxBs ∼= Bxs ⊕
⊕
B
⊕my
y for some my ∈ Z≥0 one

may deduce easily that HR(x, s) implies HR(xs) (see Lemma 2.2). However,

HR(x, s) is stronger than assuming HR(xs) and HR(y) for all y < xs with

my 6= 0, because it fixes the sign of the restricted form. Indeed, HR(x, s) is

equivalent to the statement that the restriction of 〈−,−〉BxBs to any summand

By ofBxBs is (−1)(`(xs)−`(y))/2 times a positive multiple of the intersection form

on By. For later use, we employ the following abbreviation:

HR(x, s): HR(x, s) holds for all reduced expressions x of x.

Recall that the space Hom(By, BxBs) is equipped with the local inter-

section form (−,−)x,sy and that (BxBs)
−`(y) is equipped with the Lefschetz

form (−,−)
−`(y)
ρ . The motivation for introducing the condition HR(x, s) is the

following (see Theorem 4.1): for any ρ as above there exists an embedding

ι : Hom(By, BxBs) ↪→ P−`(y)
ρ ⊂ (BxBs)

−`(y).

Moreover, this embedding is an isometry up to a positive scalar.

Because the restriction of a definite form to a subspace is definite, we

obtain

(1.4) S(<xs) and HR(x, s) imply S±(<xs, x, s).

Combining (1.4) and (1.3) and the above discussion, we arrive at the core

statement of our induction:

(1.5) S(<xs) and HR(x, s) imply S(≤xs) and HR(xs).

It remains to show that S(≤ x) and HR(≤ x) implies HR(x, s). This reduces

Soergel’s conjecture to a statement about the modules BxBs and their inter-

section forms.

1.2.4. Deforming the Lefschetz operator. The reader might have noticed

that hL seems to have disappeared from the picture. Indeed, HR is stronger

than hL, and one might ask why we wish to treat hL separately. The reason

is that it seems extremely difficult to attack HR(x, s) directly. As we noted

earlier, de Cataldo and Migliorini’s method of proving HR consists in proving

hL first for a family of operators, and using a limiting argument to deduce HR.

We adapt their limiting argument as follows. For any real number ζ ≥ 0,

consider the Lefschetz operator

Lζ := (ρ · −)idBs + idBx(ζρ · −),
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which we view as an endomorphism of BxBs. Here (ρ · −) (resp. (ζρ · −))

denotes the operator of left multiplication on Bx (resp. Bs) by ρ (resp. ζρ) and

juxtaposition denotes tensor product of operators. Now consider the following

“ζ-deformations” of the above statements:

hL(x, s)ζ : Liζ : (BxBs)
−i → (BxBs)

i is an isomorphism.

HR(x, s)ζ :

for any embedding Bx ⊂ BS(x) the Lefschetz form

(α, β)ρ−i := 〈α,Liζβ〉BxBs is (−1)(`(x)+1−i)/2-definite on

the primitive subspace P−iLζ := ker(Liζ) ⊂ (BxBs)
−i.

HR(x, s)ζ : HR(x, s)ζ holds, for all reduced expressions x of x.

Note that L0 is simply left multiplication by ρ, and hence hL(x, s)0 =

hL(x, s), HR(x, s)0 = HR(x, s) and HR(x, s)0 = HR(x, s). The signature of

a family of nondegenerate symmetric real forms cannot change. Therefore, if

hL(x, s)ζ holds for all ζ ≥ 0 and HR(x, s)ζ holds for any single nonnegative

value of ζ, then HR(x, s)0 also holds. (This is the essence of de Cataldo and

Migliorini’s limiting argument.)

The first hint that this deformation is promising is Theorem 5.1:

(1.6) HR(z) implies HR(z, s)ζ for ζ � 0

(which holds regardless of whether zs > z or zs < z). Therefore, we have

(1.7) HR(x) and hL(x, s)ζ for all ζ ≥ 0, implies HR(x, s)ζ for all ζ ≥ 0.

In particular, the fact that hL(z, s)ζ and HR(z, s)ζ hold for all ζ ≥ 0 and all

z < x with sz > z is something we may inductively assume when trying to

prove the same facts for x.

We have reduced our problem to establishing hL(x, s)ζ for ζ ≥ 0. In

de Cataldo and Migliorini’s approach this is established using the weak Lef-

schetz theorem and the Hodge-Riemann bilinear relations in smaller dimension.

In our setting the weak Lefschetz theorem is missing, and a key point is the

use of Rouquier complexes as a replacement. (See the first few paragraphs of

Section 6 for more details.) The usual proof of hL for a vector space V is to

find a map V → W of degree 1, injective on V −i for i > 0 and commuting

with the Lefschetz operator, where HR is known to hold for W . The Rouquier

complex yields a map of degree 1 from BxBs, injective on negative degrees

and commuting with L, to a direct sum of Bx and terms of the form BzBs
for summands Bz of BS(x) with z < x. This target space does not satisfy the

Hodge-Riemann bilinear relations, but nevertheless we are able to prove the

hard Lefschetz theorem.
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When ζ = 0, we have an argument which shows

(1.8)
S(≤x), hL(<xs), HR(x) and HR(z, t) for all z < x with zt > z

together imply hL(x, s).

This is Theorem 6.21. One feature of the proof is that, whenever zs < z, the

decomposition BzBs ∼= Bz(1)⊕Bz(−1) commutes with the Lefschetz operator

L0. This decomposition allows one to bypass the fact that HR(z, s) fails if

zs < z.

When ζ > 0, the decomposition BzBs ∼= Bz(1) ⊕ Bz(−1) for zs < z

does not commute with Lζ . However, proving hL(z, s)ζ for ζ > 0 and zs < z

using hL(z) is a straightforward computation (Theorem 6.19). Our inductive

hypotheses and the limiting argument above now yield HR(z, s)ζ for all z < x.

A similar argument to the previous case shows

(1.9)
For ζ > 0, S(≤x), HR(≤x), HR(<x, s)ζ

and HR(z, t) for all z < x with zt > z imply hL(x, s)ζ .

This is Theorem 6.20.

1.2.5. Structure of the proof. Let us summarize the overall inductive proof.

Let X ⊂ W be an ideal in the Bruhat order (i.e., z ≤ x ∈ X ⇒ z ∈ X) and

assume

(1) HR(z, t)ζ for all ζ ≥ 0, z < zt ∈ X and t ∈ S;

(2) HR(z, t)ζ for all ζ > 0, zt < z ∈ X and t ∈ S.

We have already explained why (1) implies S(X), hL(X) and HR(X).

Now choose a minimal element x′ in the complement of X, and choose

s ∈ S and x ∈ X with x′ = xs. As we just discussed, (1.8) and (1.9) imply

that hL(x, s)ζ holds for all ζ ≥ 0. Using HR(x) and (1.6) we deduce HR(x, s)ζ
for all ζ ≥ 0. Therefore, (1) holds with X replaced by X∪{x′}, and thus S(x′),

hL(x′), and HR(x′) all hold.

As above, the straightforward calculations of Theorem 6.19 show that

hL(x′, t)ζ holds for ζ > 0 when t ∈ S satisfies x′t < x′. Again by HR(x′) and

(1.6) we have HR(x′, t)ζ for all ζ > 0 in this case. Thus (2) holds for X ∪ {x′}
as well.

By inspection, (1) and (2) hold for the set X = {w ∈ W | `(w) ≤ 2}.
Hence by induction we obtain (1) and (2) for X = W . We have already

explained why this implies all of the theorems in Section 1.1.

1.3. Note to the reader. In order to keep this paper short and have it cite

only available sources, we have written it in the language of [Soe07]. However,

[Soe07] is not an easy paper, and we make heavy use of its results. We did not

discover the results of this paper in this language, but rather in the diagram-

matic language of [EWa] and [EWb]. These papers also provide alternative

proofs of the requisite results from [Soe07].
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2. Lefschetz linear algebra

Let H=
⊕

i∈ZH
i be a graded finite-dimensional real vector space equipped

with a nondegenerate symmetric bilinear form

〈−,−〉H : H ⊗R H → R

which is graded in the sense that 〈H i, Hj〉 = 0 unless i = −j.
Let L : H• → H•+2 denote an operator of degree 2. We may also write

L ∈ Hom(H,H(2)), where (2) indicates a grading shift. We say that L is a

Lefschetz operator if 〈Lh, h′〉 = 〈h, Lh′〉 for all h, h′ ∈ H. We assume from now

on that L is a Lefschetz operator. We say that L satisfies the hard Lefschetz

theorem if Li : H−i → H i is an isomorphism for all i ∈ Z≥0. For i ≥ 0 set

P−iL := kerLi+1 ⊂ H−i.
We call P−iL the primitive subspace of H−i (with respect to L). If L satisfies

the hard Lefschetz theorem, then we have a decomposition

H =
⊕
i≥0

0≤j≤i

LjP−iL .

This is the primitive decomposition of H.

For each i ≥ 0 we define the Lefschetz form on H−i via

(h, h′)−iL := 〈h, Lih′〉.
All Lefschetz forms are nondegenerate if and only if L satisfies the hard Lef-

schetz theorem, because 〈−,−〉 is nondegenerate by assumption. Because L

is a Lefschetz operator, we have (h, h′)−iL = (Lh,Lh′)−i+2
L for all i ≥ 2 and

h, h′ ∈ H−i. If L satisfies the hard Lefschetz theorem, then the primitive

decomposition is orthogonal with respect to the Lefschetz forms.

We say that H is odd (resp. even) if Heven = 0 (resp. Hodd = 0). Recall

that a bilinear form (−,−) on a real vector space is said to be +1 definite (resp.

−1 definite) if (v, v) is strictly positive (resp. negative) for all nonzero vectors v.
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Let H and L be as above, and assume that L satisfies the hard Lefschetz

theorem. Assume that H is either even or odd, and set j = 0 if H is even,

and j = 1 if H is odd. We say that H and L satisfy the Hodge-Riemann

bilinear relations if there exists ε ∈ {±1} such that the restriction of (−,−)−iL
to each primitive component P−iL ⊂ H−i is ε(−1)(−i+j)/2 definite for all i ≤ 0.

We fix the ambiguity of global sign as follows. If H and L satisfy the Hodge-

Riemann bilinear relations, we say that the Hodge-Riemann bilinear relations

are satisfied with the standard sign if the Lefschetz form is positive definite on

the lowest nonzero degree of H (which is necessarily primitive).

In order to avoid having to always specify if a vector space is even or odd

we will adopt the following convention: the statement that a form on a space P

is (−1)m/2 definite has the above meaning if m is even and means that P = 0

if m is odd.

If H and L satisfy the Hodge-Riemann bilinear relations then, in particu-

lar, each Lefschetz form (−,−)−iL is nondegenerate. Moreover, its signature is

easily determined from the graded rank of H. (Use the fact that the primitive

decomposition is orthogonal.) In fact, the Hodge-Riemann bilinear relations

are equivalent to a statement about the signatures of all Lefschetz forms.

In the sequel, we will need to consider families of Lefschetz operators

(keeping H and the form 〈−,−〉 fixed). It will be important to be able to

decide whether any or all members of the family are Hodge-Riemann. The

following elementary lemma will provide an invaluable tool:

Lemma 2.1. Let a < b in R, and let φ : [a, b] → Hom(H,H(2)) be a

continuous map (in the standard Euclidean topologies) such that φ(t) is a Lef-

schetz operator satisfying the hard Lefschetz theorem for all t ∈ [a, b]. If there

exists t0 ∈ [a, b] such that φ(t0) satisfies the Hodge-Riemann bilinear relations,

then all φ(t) for t ∈ [a, b] satisfy the Hodge-Riemann bilinear relations.

Proof. This follows from the fact that the signature of a continuous family

of nondegenerate symmetric bilinear forms is constant. �

In general it is difficult to decide whether the restriction of a nondegenerate

bilinear form to a subspace stays nondegenerate. However, it is obvious that

the restriction of a definite form is nondegenerate. This basic fact plays a

crucial role in this paper. The following lemma extends this observation to

certain L-stable subspaces of H.

Lemma 2.2. Assume that H and L satisfy the Hodge-Riemann bilinear

relations. Let V ⊂ H denote an L-stable graded subspace such that dimV i =

dimV −i. Then V and L satisfy the Hodge-Riemann bilinear relations (with

respect to the restriction of 〈−,−〉 to V ).
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Proof (Sketch : the reader should provide a proof ). By symmetry of Betti

numbers and hard Lefschetz, V admits a primitive decomposition, and the

result follows. �

The following lemma will serve as a substitute for the weak Lefschetz

theorem:

Lemma 2.3. Suppose we have a map of graded R[L]-modules (degL = 2)

φ : V →W (1)

such that

(1) φ is injective in degrees ≤ −1;

(2) V and W are equipped with graded bilinear forms 〈−,−〉V and 〈−,−〉W
such that 〈φ(α), φ(β)〉W = 〈α,Lβ〉V for all α, β ∈ V ;

(3) W satisfies the Hodge-Riemann bilinear relations.

Then Li : V −i → V i is injective for i ≥ 0.

Proof. For i = 0 the statement is vacuous. Choose 0 6= α ∈ V −i with

i ≥ 1, and consider 0 6= φ(α) ∈W−i+1. If 0 6= Liφ(α) = φ(Liα), then Liα 6= 0.

Alternatively, if Liφ(α) = 0, then φ(α) is primitive. Hence

(φ(α), φ(α))−i+1
L = 〈φ(α), Li−1φ(α)〉W = 〈α,Liα〉V

is either strictly negative or positive by the Hodge-Riemann bilinear relations.

In any case, Liα 6= 0. Hence Li : V −i → V i is injective as claimed. �

When dim(V −i) = dim(V i) for all i, this lemma implies the hard Lefschetz

theorem for V .

Remark 2.4. Suppose we are in the situation of the above lemma; that −`
is the lowest degree of W and that −(` + 1) is the lowest degree of V . The

above proof indicates that (−,−)
−(`+1)
L is ± definite on V −(`+1), with the same

sign as on W−`. In particular, if V also satisfies the Hodge-Riemann bilinear

relations, then V has the standard sign if and only if W has the standard sign.

Finally, we will need the following lemma in Section 6.6. Let H, 〈−,−〉
and L be as in the first two paragraphs of this section, except that we no longer

assume that 〈−,−〉 is nondegenerate. Suppose that there exists d ∈ Z such

that Li : H−d−i → H−d+i is an isomorphism for all i ≥ 0 (so L satisfies the

hard Lefschetz theorem if and only if d = 0).

Lemma 2.5. If d > 0, then the Lefschetz form (h, h′)−iL := 〈h, Lih〉 on

H−i for i ≥ 0 is zero.

Proof. For i ≥ 0 consider the “shifted primitive spaces”

Q−d−iL := kerLi+1 ⊂ H−d−i,
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and set Q−d−iL := 0 if i < 0. Then our assumptions on L guarantee that we

have a “shifted primitive decomposition”

Hm =
⊕
j≥0

LjQm−2j
L .

Fix a degree m ≤ 0, and fix x ∈ Qm−2j
L and y ∈ Qm−2k

L for some j ≥ k ≥ 0,

so that Ljx and Lky are in degree m. Then

(Ljx, Lky)mL = 〈x, Lj+k−my〉 = 0.

This follows because y ∈ kerL2k−d−m+1 and 2k−d−m+1 ≤ j+k−m, thanks

to the assumption d > 0. �

3. The Hecke algebra and Soergel bimodules

3.1. Coxeter systems. Fix a Coxeter system (W,S), and for simple reflec-

tions s, t ∈ S denote by mst ∈ {2, 3, . . . ,∞} the order of st. We denote the

length function on W by ` and the Bruhat order by ≤.

An expression is a word z = s1s2 · · · sm in S. An expression will always

be denoted by an underlined roman letter. Omitting the underline will denote

the product in the Coxeter group. An expression z = s1s2 · · · sm is reduced if

m = `(z).

Let us fix a finite-dimensional real vector space h together with linearly

independent subsets {αs}s∈S ⊂ h∗ and {α∨s }s∈S ⊂ h such that

αs(α
∨
t ) = −2 cos(π/mst) for all s, t ∈ S.

In addition, we assume that h is of minimal dimension with these properties.

The group W acts on h by s ·v = v−αs(v)α∨s . This action is reflection faithful

in the sense of [Soe07, Def. 1.5] (see [Soe07, Prop. 2.1]).

Remark 3.1. We have assumed that the representation h is reflection faith-

ful so that the theory of [Soe07] is available. It was shown by Libedinsky

[Lib08] that Soergel’s conjecture for h is equivalent to Soergel’s conjecture for

the geometric representation. We discuss the choice of representation in detail

in [EWb], where we give alternative proofs of the results of [Soe07] which are

valid when h is any “realization” of W .

Let R be the coordinate ring of h, graded so that its linear terms h∗ have

degree 2. We denote by R+ the ideal of elements of positive degree. Clearly

W acts on R. For s ∈ S we write Rs for the subring of invariants under s.

Because the vectors {α∨s }s∈S are linearly independent, the intersection of

the open half spaces ⋂
s∈S
{v ∈ h∗ | v(α∨s ) > 0} ⊂ h∗
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is nonempty. We fix once and for all an element ρ ∈ h∗ in this intersection.

That is, we fix ρ such that ρ(α∨s ) > 0 for all s ∈ S. The following positivity

property of the representation h plays an important role below (see [Bou81,

V.4.3] or [Hum90, Lemma 5.13] and the proof of [Soe07, Prop. 2.1]):

(3.1) (wρ)(α∨s ) > 0⇔ sw > w.

3.2. The Hecke algebra. References for this section are [KL79] and [Soe97].

Recall that the Hecke algebra H is the algebra with free Z[v±1]-basis given by

symbols {Hx | x ∈W} with multiplication determined by

HxHs :=

Hxs if xs > x,

(v−1 − v)Hx +Hxs if xs < x.

Given p ∈ Z[v±1] we write p(v) := p(v−1). We can extend this to an involution

of H by setting Hx = H−1
x−1 . Denote the Kazhdan-Lusztig basis of H by

{Hx | x ∈W}. It is characterised by the two conditions

(i) Hx = Hx,

(ii) Hx ∈ Hx +
∑
y<x vZ[v]Hy

for all x ∈W . For example, if s ∈ S, then Hs = Hs + vHid.

Remark 3.2. In the notation of [KL79] we have v = q−1/2, Hx = v`(x)Tx
and Hx = C ′x. If we write Hx =

∑
hy,xHy, then v`(x)−`(y)Py,x(v−2) = hy,x.

Consider the Z[v, v−1]-linear trace ε : H → Z[v±1] given by ε(Hw) = δid,w.

Define a bilinear form

(−,−) : H×H → Z[v±1]

(h, h′) 7→ ε(a(h)h′),

where a is the anti-involution of H determined by a(v) = v and a(Hx) = Hx−1 .

One checks easily that

(i) (ph, qh′) = pq(h, h′) for all p, q ∈ Z[v±1] and h, h′ ∈ H;

(ii) (hHs, h
′) = (h, h′Hs), (Hsh, h

′) = (h,Hsh
′) for all h, h′ ∈ H and s ∈ S.

A straightforward induction shows (Hx, Hy) = δxy, which we could have used

as the definition of (−,−).

An important property of this pairing (used repeatedly below) is that

(Hx, Hy) ∈ vZ[v] when x 6= y, and (Hx, Hx) ∈ 1 + vZ[v].

Remark 3.3. This is not the form used in [EWb], which is more natural

when one only considers Soergel bimodules. In this paper we also consider ∆-

and ∇-filtered bimodules, for which the above form is more convenient.
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3.3. Bimodules. We work in the abelian category of finitely generated

graded R-bimodules. All morphisms preserve the grading (i.e., are homo-

geneous of degree 0). Given a graded R-bimodule B =
⊕

i∈ZB
i, we denote

by B(1) the shifted bimodule: B(1)i = Bi+1. We write Hom(−,−) for degree

zero morphisms between bimodules (the morphisms in our category). For any

two bimodules M and N set

Hom•(M,N) =
⊕
i∈Z

Hom(M,N(i)).

Given a polynomial p =
∑
i∈Z aiv

i ∈ Z≥0[v±1], we let B⊕p denote the bimodule

⊕i∈ZB(i)⊕ai . Given bimodules B and B′, we write B′ ⊂⊕ B to mean that B′

is a direct summand of B. Throughout, “embedding” means “embedding as a

direct summand.”

The category of R-bimodules is a monoidal category under tensor product.

Given R-bimodules B and B′, we denote their tensor product by juxtaposition:

BB′ := B ⊗R B′.
Throughout this paper, we have arbitrarily chosen the right action to be

special for many constructions. For instance, for a bimodule B we will often

consider B = B ⊗R R; here R = R/R+ is the R-module where all positive

degree polynomials vanish.

We define the dual of an R-bimodule B by DB := Hom•−R(B,R). Here,

Hom•−R(−,−) denotes homomorphisms of all degrees between right R-modules.

We make DB into an R-bimodule via (r1fr2)(b) = f(r1br2) (where f ∈ DB,

r1, r2 ∈ R and b ∈ B). Suppose that B is finitely generated and graded free as a

right R-module, so that B ∼= R⊕p as a right R-module (for some p ∈ Z≥0[v±1]).

Then DB ∼= R⊕p. In particular, if B ∼= DB, then B ∼= B
∗

as graded R-vector

spaces and dim(B)−i = dim(B)+i.

We say that an R-valued form 〈−,−〉B on a graded R-bimodule B is

graded if deg〈b, b′〉B = deg b+ deg b′ for homogeneous b, b′. A form 〈−,−〉B is

invariant if it is graded and 〈rb, b′〉 = 〈b, rb′〉 and 〈br, b′〉 = 〈b, b′r〉 = 〈b, b′〉r for

all b, b′ ∈ B and r ∈ R. (Note the left/right asymmetry.) The space of invariant

forms is isomorphic to the space of R-bimodule maps B → DB. We say that

an invariant form 〈−,−〉B on a bimodule B is nondegenerate if it induces an

isomorphism B → DB. This is stronger than assuming nondegeneracy in the

usual sense (〈b, b′〉 = 0 for all b′ ∈ B implies b = 0). An invariant form 〈−,−〉B
on B induces a form 〈−,−〉B on B by defining 〈f, g〉B to be the image of 〈f, g〉B
in R = R/R+.

Suppose that B is free of finite rank as a right R-module (as will be the

case for all bimodules considered below). Then an invariant form 〈−,−〉B is

nondegenerate if and only if 〈−,−〉B gives a graded (in the sense of Section 2)
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nondegenerate form on the graded vector space B, as follows from the graded

Nakayama lemma.

3.4. Bott-Samelson bimodules. For any simple reflection s ∈ S set Bs :=

R ⊗Rs R(1). It is an R-bimodule with respect to left and right multiplication

by R. Consider the elements

cid := 1⊗ 1 ∈ Bs, cs :=
1

2
(αs ⊗ 1 + 1⊗ αs) ∈ Bs

of degrees −1 and 1 respectively. Then {cid, cs} gives a basis for Bs as a right

(or left) R-module, and one has the relations

r · cs = cs · r,(3.2)

r · cid = cid · sr + ∂s(r) · cs(3.3)

for all r ∈ R. Here, ∂s is the Demazure operator, given by

∂s(r) =
r − sr
αs

∈ R.

For any expression x = st · · ·u we denote by BS(x) the corresponding

Bott-Samelson bimodule:

BS(x) := BsBt · · ·Bu = Bs ⊗R Bt ⊗R · · · ⊗R Bu.

Given elements bs ∈ Bs, bt ∈ Bt, . . . , bu ∈ Bu we denote the corresponding

tensor simply by juxtaposition bsbt · · · bu := bs ⊗ bt ⊗ · · · ⊗ bu. For any subex-

pression ε of x (that is, ε = εsεt · · · εu with εv ∈ {id, v} for all v ∈ S) we can

consider the element

cε := cεscεt · · · cεu ∈ BS(x).

One may check that the set {cε} gives a basis for BS(x) as a right (or left)

R-module, as ε runs over all subexpressions of x.

In the following, the element ctop := csct · · · cu ∈ BS(x) will play an im-

portant role. Given b ∈ BS(x) we define Tr(b) ∈ R to be the coefficient of ctop

when b is expressed in the basis {cε} of BS(x) as a right R-module.

Clearly, BS(x) ∼= (R⊗Rs R⊗Rt · · · ⊗Ru R)(d), where d is the length of the

expression x. It follows that BS(x)(−d) is a commutative ring, with term-wise

multiplication. For example, (f⊗g)·(f ′⊗g′) = ff ′⊗gg′ gives the multiplication

on Bs(−1) = R⊗Rs R. Let us observe the following multiplication rules in Bs:

cid · cid = cid,(3.4)

cid · cs = cs,(3.5)

cs · cs = csαs.(3.6)

We define an invariant symmetric form 〈−,−〉BS(x) on BS(x) via

〈b, b′〉 := Tr(b · b′).
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We call 〈−,−〉BS(x) the intersection form on BS(x). It induces a symmetric

R-valued form 〈−,−〉
BS(x)

on BS(x). If we write TrR for the composition of Tr

with the quotient map R→ R = R/R+, then we have

〈b, b′〉
BS(x)

= TrR(b · b′).

for all b, b′ ∈ BS(x). Because R ⊗Rs R ⊗Rt · · · ⊗Ru R is a commutative ring,

multiplication by any degree 2 element z of this ring gives a Lefschetz operator

on BS(x). In other words, 〈zα, β〉 = 〈α, zβ〉 for any α, β ∈ BS(x).

For s ∈ S let µ : Bs → R(1) : f ⊗ g 7→ fg denote the multiplication map.

For 1 ≤ i ≤ m set x̂
i

= s1 · · ·“si · · · sm (“si denotes omission). Consider the

canonical maps

Bri : BS(x)→ BS(x)(2) : b1 · · · bi · · · bm 7→ b1 · · · (bi · csi) · · · bm,
φi: BS(x)→ BS(x̂

i
)(1) : b1 · · · bi · · · bm 7→ b1 · · ·µ(bi) · · · bm,

χi: BS(x̂
i
)→ BS(x)(1) : b1 · · · bi−1bi+1 · · · bm 7→ b1 · · · bi−1csibi+1 · · · bm.

By (3.2) we have Bri = χi ◦ φi.

Lemma 3.4. As endomorphisms of BS(x) we have

ρ · (−) =
m∑
i=1

(si−1 · · · s1ρ)(α∨si)χi ◦ φi + (−) · x−1ρ.

Here ρ · (−) denotes left multiplication by ρ and (−) · x−1ρ denotes right mul-

tiplication by x−1ρ.

Proof. This is an immediate consequence of (3.3). �

3.5. Soergel bimodules. By definition, a Soergel bimodule is an object in

the additive Karoubian subcategory B of graded R-bimodules generated by

Bott-Samelson bimodules and their shifts. In other words, indecomposable

Soergel bimodules are the indecomposable R-bimodule summands of Bott-

Samelson bimodules (up to shift).

It is a theorem of Soergel [Soe07] that, given any reduced expression x

for x ∈ W , there is a unique (up to isomorphism) indecomposable summand

Bx of BS(x) which does not occur as a direct summand of BS(y) for any

expression y of length less than `(x). Moreover, Bx does not depend (up to

isomorphism) on the choice of reduced expression x. The bimodules Bx for

x ∈ W give representatives for the isomorphism classes of indecomposable

Soergel bimodules, up to shift.

Denote by [B] the split Grothendieck group of B. That is, [B] is the

abelian group generated by symbols [B] for all objects B ∈ B subject to the

relations [B] = [B′] + [B′′] whenever B ∼= B′ ⊕ B′′ in B. We make [B] into a

Z[v±1]-module via p[M ] := [M⊕p] for p ∈ Z≥0[v±1] and M ∈ B. Because B is
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monoidal, [B] is a Z[v±1]-algebra. The above results imply that [B] is free as a

Z[v±1]-module, with basis {[Bx] | x ∈W}. In fact one has [Soe07, Th. 1.10]

Theorem 3.5 (Soergel’s categorification theorem). There is an isomor-

phism of Z[v±1]-algebras

H ∼→ [B]

fixed by Hs 7→ [Bs].

We now describe Soergel’s construction of an inverse to the isomorphism

H ∼→ [B]. To do this it is natural to consider certain filtrations “by support”

(see [Soe07, §§3 and 5]). For x ∈ W consider the linear subspace (or “twisted

graph”)

Gr(x) = {(xv, v) | v ∈ h} ⊆ h× h,

which we view as a subvariety in h × h. For any subset A of W consider the

corresponding union

Gr(A) =
⋃
x∈A

Gr(x) ⊆ h× h.

Let us identify R ⊗R R with the regular functions on h× h. Any R-bimodule

can be viewed as an R ⊗R R-module (because R is commutative) and hence

as a quasi-coherent sheaf on h × h. For example, one may check that the

bimodule Rx corresponding to the structure sheaf on Gr(x) has the following

simple description: Rx ∼= R as a left module, and the right action is twisted

by x: m · r = m(xr) for m ∈ Rx and r ∈ R.

Given any subset A ⊆W and R-bimodule M we define

ΓAM := {m ∈M | suppm ⊆ Gr(A)}

to be the subbimodule consisting of elements whose support is contained in

Gr(A). Given x ∈ W we will abuse notation and write ≤ x for the set

{y ∈ W | y ≤ x} and similarly for < x, ≥ x and > x. With this notation, we

obtain functors Γ≤x, Γ<x, Γ≥x and Γ>x. For example, Γ≤x = Γ{y∈W | y≤x}.

For any x ∈ W define ∆x := Rx(−`(x)) and ∇x := Rx(`(x)). Given a

finitely generated R-bimodule M we say that M has a ∆-filtration (resp. has

a ∇-filtration) if M is supported on GrA for some finite subset A ⊂ W and,

for all x ∈W , we have isomorphisms

Γ≥xM/Γ>xM ∼= ∆⊕h
∆
x (M)

x (resp. Γ≤xM/Γ<xM ∼= ∇⊕h
∇
x (M)

x )

for some polynomials h∆
x (M) (resp. h∇x (M)) in Z≥0[v±1]. IfM has a ∆-filtration

(resp. ∇-filtration), we define its ∆-character (resp. ∇-character) in the Hecke

algebra via

ch∆M :=
∑
x∈W

h∆
x (M)Hx (resp. ch∇M :=

∑
x∈W

h∇x (M)Hx).

Note that ch∆M(1) = v ch∆M whilst ch∇M(1) = v−1 ch∇M .
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By [Soe07, Props. 5.7 and 5.9], Soergel bimodules have both ∆- and

∇-filtrations, and by [Soe07, Bemerkung 6.16] we have

ch∆B = ch∇B

for any Soergel bimodule. For any Soergel bimodule B we set

ch(B) := ch∆(B).

By [Soe07, Th. 5.3], ch : [B]→ H gives an inverse of the isomorphism H ∼→ [B]

of Soergel’s categorification theorem.

Finally, Soergel has given a beautiful formula for the graded rank of homo-

morphism spaces between Soergel bimodules in terms of ∆ and ∇-characters.

Given a finite-dimensional graded R-vector space V =
⊕
V i we define

dimV =
∑

(dimV i)v−i ∈ Z≥0[v±1].

Our notation is chosen so that dim(V ⊕p) = p dimV for p ∈ Z≥0[v±1]. Given a

free finitely generated graded right R-module M we set

rkM := dim(M ⊗R R).

Theorem 3.6 (Soergel’s hom formula). Suppose that B has a ∆-filtration

and B′ ∈ B or that B ∈ B and B′ has a ∇-filtration. Then Hom•(B,B′) is a

graded free right R-module of rank

rk Hom•(B,B′) = (ch∆B, ch∇B′).

If Soergel’s conjecture holds for Bx and By, then chBx = Hx and chBy =

Hy. Soergel’s hom formula then implies that Hom•(Bx, By) is concentrated in

degrees ≥ 0, and dim Hom(Bx, By) = δxy.

3.6. Invariant forms on Soergel bimodules. Let B denote a self-dual So-

ergel bimodule. Equipping B with an invariant nondegenerate bilinear form

〈−,−〉B is the same as giving an isomorphism B
∼→ DB. It is known (see

[Soe07, Satz 6.14]) that each indecomposable Soergel bimodule is self-dual and

hence admits a nondegenerate invariant form. Moreover, if Soergel’s conjec-

ture holds for Bx, then End(Bx) = R (as follows immediately from Soergel’s

hom formula). This implies the following, which plays an important role in

this paper:

Lemma 3.7. Suppose that Soergel ’s conjecture holds for Bx. Then Bx ad-

mits an invariant form which is unique up to a scalar. Moreover, any nonzero

invariant form is nondegenerate.

Proof. Giving an invariant form on Bx is the same thing as giving a graded

R-bimodule morphism Bx → DBx. By the remarks preceding the lemma, the

space of such maps is one dimensional and contains an isomorphism. Hence



1110 BEN ELIAS and GEORDIE WILLIAMSON

Bx admits an invariant form 〈−,−〉Bx , and all others are scalar multiples of

〈−,−〉Bx . The lemma now follows. �

We now explain how Soergel bimodules may be inductively equipped with

invariant forms. Fix a Soergel bimodule B and consider the two maps α, β :

B → BBs = B ⊗R Bs given by

α(b) := bcid and β(b) := bcs.

Note that β is a morphism of bimodules, whilst α is only a morphism of left

modules: by (3.3) one has

(3.7) α(br) = α(b)(sr) + β(b)∂s(r)

for b ∈ B and r ∈ R.

Suppose that B is equipped with an invariant form 〈−,−〉B. Then there

is a unique invariant form 〈−,−〉BBs on BBs, which we call the induced form,

satisfying

〈α(b), α(b′)〉BBs = ∂s(〈b, b′〉B),(3.8)

〈α(b), β(b′)〉BBs = 〈b, b′〉B and 〈β(b), α(b′)〉BBs = 〈b, b′〉B,(3.9)

〈β(b), β(b′)〉BBs = 〈b, b′〉Bαs(3.10)

for all b, b′ ∈ B. Indeed, if e1, . . . , em denotes a basis for B as a right R-module,

then α(e1), . . . , α(em), β(e1), . . . , β(em) is a basis for BBs and the above for-

mulas fix 〈−,−〉BBs on this basis. It is straightforward to check that 〈−,−〉BBs
satisfies (3.8), (3.9) and (3.10) for all b, b′ ∈ B and that 〈rb, b′〉BBs = 〈b, rb′〉
for all b, b′ ∈ B and r ∈ R. Clearly 〈−,−〉BBs is symmetric if 〈−,−〉 is.

Suppose that B is a summand of a Bott-Samelson bimodule BS(x). Then

B is equipped with an invariant symmetric form 〈−,−〉B, obtained by restric-

tion from the intersection form on BS(x). There are now two ways to equip

BBs with an invariant form: either via the induced form as above, or by view-

ing BBs as a summand of BS(x)Bs = BS(xs) and considering the restriction

of the intersection form. It is an easy exercise to see that these two forms

agree, which motivates the above formulas. If we apply this for B = BS(x), we

conclude that the intersection form on BS(x) can also be obtained by starting

with the canonical multiplication form on R and iterating the construction of

the induced form.

Lemma 3.8. Suppose that B is an R-bimodule which is equipped with an

invariant form 〈−,−〉B . Assume that B is free as a right R-module and that

〈−,−〉B is nondegenerate. Then 〈−,−〉BBs is nondegenerate.

Proof. Because 〈−,−〉B is nondegenerate andB is free as a rightR-module,

we can fix a basis e1, . . . , em and dual basis e∗1, . . . , e
∗
m forB as a rightR-module.
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Then

α(e1), . . . , α(em), β(e1), . . . , β(em)

and

β(e∗1), . . . , β(e∗m), α(e∗1), . . . , α(e∗m)

are bases for BBs as a right R-module. Now (3.8), (3.9) and (3.10) show that

the matrix of 〈−,−〉BBs in this pair of bases has the formÇ
Im αsIm
0 Im

å
,

where Im denotes the m×m identity matrix. The zero matrix in the lower left

arises because ∂s(1) = 0. Hence 〈−,−〉BBs is nondegenerate as claimed. �

Corollary 3.9. The intersection form on a Bott-Samelson bimodule is

nondegenerate.

The following positivity calculation is not entirely necessary for the proofs

below. However, it does give a simple explanation of why the global sign in

the Hodge-Riemann bilinear relations is correct.

Lemma 3.10. The Lefschetz form (−,−)
−`(x)
ρ on BS(x)

−`(x)∼=R is positive-

definite when x is a reduced expression.

Proof. Let cbot := cidcid · · · cid, which spans BS(x)−`(x). We claim that

ρ`(x)cbot = Nctop ∈ BS(x) for some N > 0, which will imply the result. We

induct on `(x). The result is clear when `(x) = 0.

By Lemma 3.4 we have

ρ · cbot =
∑
i

(si−1 · · · s1ρ)(α∨si)χi(cbot) + cbot · (x−1ρ)

inside BS(x). Note that (si−1 · · · s1ρ)(α∨si) is positive for all i, by our positivity

assumption on ρ and the fact that x is a reduced expression. The final term

clearly vanishes in BS(x), so it remains to see what happens when ρ`(x)−1 is

applied to every other term.

Suppose that x̂
i

is a reduced expression. Then by induction, ρ`(x)−1cbot =

Nictop ∈ BS(x̂
i
) for some Ni > 0. Clearly χi(ctop) = ctop, so ρ`(x)−1χi(cbot) =

Nictop ∈ BS(x).

Suppose that x̂
i

is not a reduced expression. In this case,

BS(x̂
i
) ∼=

⊕
B⊕pzz

with all z appearing on the right-hand side satisfying `(z) < `(x) − 1 and

pz ∈ Z≥0[v±1]. For degree reasons, ρ`(x)−1 vanishes on Bz for any such z and

therefore vanishes identically on BS(x̂
i
). Therefore, ρ`(x)−1χi(cbot) = 0 for

such i.
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Therefore, ρ`(x)cbot =
Ä∑

i(si−1 · · · s1ρ)(α∨si)Ni

ä
ctop ∈ BS(x), with∑

i

(si−1 · · · s1ρ)(α∨si)Ni > 0. �

The following simple observation was promised in the introduction:

Lemma 3.11. If S(x) holds, then HR(x) and HR(x) are equivalent for

any reduced expression x.

Proof. Obviously Bi
x = 0 for i < −`(x). By considering the ∇-character

of Bx it is easy to see that B
−`(x)
x is one dimensional. Hence any embedding

Bx ↪→ BS(x) induces an isomorphism B
−`(x)
x

∼→ BS(x)−`(x) = R(cbot).

Given S(x), Lemma 3.7 implies that the restriction of the intersection form

on BS(x) to Bx must be a scalar multiple of the intersection form on Bx. The

Lefschetz form on BS(x)
−`(x)

is positive definite, and hence this scalar must

be positive. Now HR(x) and HR(x) are equivalent. �

4. The embedding theorem

In this section we fix x ∈ W and s ∈ S with xs > x, and we assume S(y)

and HR(y) for all y < xs. By HR(y), if we choose an embedding By ⊂⊕ BS(y),

then the restriction of the intersection form on BS(y) to By yields a non-

degenerate invariant form 〈−,−〉By on By which satisfies the Hodge-Riemann

bilinear relations. Let us also fix a generator cbot of the one-dimensional vector

space B
−`(y)
y . Then HR(y) implies

(4.1) 〈ρ`(y) · cbot, cbot〉By = N

for some 0 < N ∈ R.

Similarly, we fix an embedding Bx⊂⊕ BS(x) which induces a nondegenerate

form 〈−,−〉Bx on Bx. As discussed in Section 3.6, this induces a nondegenerate

invariant symmetric form 〈−,−〉BxBs on BxBs, compatible with the induced

embedding BxBs ⊂⊕ BS(x)Bs = BS(xs).

Having fixed these forms on By and BxBs we obtain a canonical identifi-

cation

Hom(By, BxBs)
∼→ Hom(BxBs, By)

sending f ∈ Hom(By, BxBs) to its adjoint f∗. That is, f∗ is uniquely de-

termined by the identity 〈f(b), b′〉BxBs = 〈b, f∗(b′)〉By for all b ∈ By and

b′ ∈ BxBs.
On Hom(By, BxBs) we can consider the local intersection form

(f, g)x,sy := g∗ ◦ f ∈ End(By) = R.
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Theorem 4.1 (Embedding theorem). The map

ι : Hom(By, BxBs)→ (BxBs)
−`(y) : f 7→ f(cbot)

is injective, with image contained in the primitive subspace

P−`(y)
ρ ⊂ (BxBs)

−`(y).

Moreover, ι is an isometry with respect to the Lefschetz form up to a factor of

N : for all f, g ∈ Hom(By, BxBs) we have

(4.2) N(f, g)x,sy = (ι(f), ι(g))−`(y)
ρ .

Remark 4.2. The above constructions depend on the choices (R>0-torsors)

of invariant forms on By and Bx and the choice (an R×-torsor) of cbot ∈ B
−`(y)
y .

The reader can confirm that both sides of (4.2) are affected equally by any

rescaling, and the coefficient of isometry N is positive for any choice.

Proof. Consider the exact sequence of modules with ∆-flag

∆y = Γ≥yBy ↪→ By � B/Γ≥yBy.

We know that ch∆ ∆y = Hy, chBy = Hy, and that ch∆(By/Γ≥yBy) = Hy−Hy

because this is part of the ∆-flag on By. Therefore, the characters add up, and

we can use Soergel’s hom formula (Theorem 3.6) to conclude that we have an

exact sequence

Hom•(By/Γ≥yBy, BxBs) ↪→ Hom•(By, BxBs) � Hom•(∆y, BxBs).

Now Hy −Hy ∈
⊕
vZ≥0[v]Hz and ch(BxBs) = HxHs ∈

⊕Z≥0[v]Hz. Hence

Hom≤0(By/Γ≥yBy, BxBs) = 0 and we have an isomorphism

Hom(By, BxBs)
∼→ Hom(∆y, BxBs) = Γy(BxBs)(`(y)).

Using Soergel’s hom formula again we see that Hom•(By, BxBs) is concentrated

in degrees ≥ 0 and hence Γy(BxBs) is concentrated in degrees ≥ `(y). Now

BxBs is free as a right R-module and it is known that Γy(BxBs) is a direct

summand of BxBs as a right R-module. (See the proof of Proposition 6.4 in

[Soe07].) It follows that if m ∈ BxBs and mr ∈ Γy(BxBs) for some r ∈ R,

then m ∈ Γy(BxBs). Hence the induced map

Γy(BxBs)
`(y) → (BxBs)

`(y)

is injective.

Let c be the image of a generator of ∆y under ∆y ↪→ ΓyBy ⊂ By. It

projects to a generator c of the one-dimensional space (By)
`(y) ∼= R. The

isomorphisms of the previous paragraph imply that

ι′ : Hom(By, BxBs)→ BxBs
`(y)

: f 7→ f(c)
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is injective. In addition, hL(y) implies that ρ`(y) · cbot also has nonzero image

in (By)
`(y) and therefore is equal to c up to a nonzero scalar. Hence

ι : Hom(By, BxBs)→ BxBs
−`(y)

: f 7→ f(cbot)

is injective too. Finally, ρ`(y)+1 annihilates By and hence the image of ι is

contained in the primitive subspace P
−`(y)
ρ ⊂ (BxBs)

−`(y). The first part of

the theorem now follows.

Fix f, g ∈ Hom(By, BxBs). We have

N(f, g)x,sy = 〈g∗(f(cbot)), ρ
`(y) · cbot〉By

= 〈f(cbot), ρ
`(y) · g(cbot)〉BxBs

= (ι(f), ι(g))−`(y)
ρ .

(The first equality follows from (4.1), the second by adjointness, and the third

by definition.) (4.2) now follows. �

Because the restriction of a definite form to a subspace stays nondegener-

ate, we have

Corollary 4.3. HR(x, s) and S(y) for all y < xs implies S(xs).

5. Hodge-Riemann bilinear relations

In this section we prove (1.6) from the introduction. We actually prove a

more general version. Let us fix a (not necessarily reduced) expression x and a

summand B⊂⊕ BS(x). On B we have an invariant form induced from the inter-

section form on BS(x) and a Lefschetz operator induced by left multiplication

by ρ. Using the terminology of Section 2, for all i ≥ 0 we get a Lefschetz form

on (B)−i given by

(p, q)−iρ = TrR(ρi(pq)).

For all ζ ≥ 0 we consider the Lefschetz operator

Lζ := (ρ · −) + idB(ζρ · −)

on BBs. Here (ρ · −) denotes the operator of left multiplication by ρ and

idB(ζρ ·−) denotes the tensor product of the identity on B and the operator of

left multiplication by ζρ on Bs. In this section (−,−)−iρ will always refer to the

Lefschetz form on B, while (−,−)−iLζ will refer to the Lefschetz form on BBs.

Thus, (−,−)−iL0
is the Lefschetz form on BBs induced by left multiplication

by ρ. We abusively write TrR for the real valued trace on both BS(x) and

BS(xs).

Theorem 5.1. Suppose that B satisfies hard Lefschetz and the Hodge-

Riemann bilinear relations with the standard sign. Then for ζ � 0, the in-

duced action of Lζ on BBs satisfies the hard Lefschetz theorem and the Hodge-

Riemann bilinear relations with the standard sign.
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The following lemma reduces this theorem to a statement relating the

signatures of the forms on B and BBs:

Lemma 5.2. Let V and W be two finite-dimensional graded vector spaces,

equipped with graded nondegenerate symmetric forms and Lefschetz operators

satisfying the hard Lefschetz theorem. Assume that W is even or odd and

that dimV = (v + v−1) dimW , so that V is odd or even. Suppose that W

satisfies the Hodge-Riemann bilinear relations with the standard sign. Then

V satisfies the Hodge-Riemann bilinear relations with the standard sign if and

only if for all i ≥ 0 the signature of the Lefschetz form on the primitive subspace

P−i+1 ⊂ W−i+1 is equal to the signature of the Lefschetz form on all of V −i.

(By convention, P 1 = 0.)

Proof. Let ` ≥ 0 be such that W−` is the lowest nonzero degree of W .

For j ∈ Z write vj := dimV j and wj := dimW j for the Betti numbers of V

and W . For j ≥ 0 write p−j := v−j − v−j−2 for the dimension of the primitive

subspace P−j ⊂ V −j . Because dimV = (v + v−1) dimW , the lowest nonzero

degree of V is −`− 1 and we have v−j = w−j+1 + w−j−1. Hence, for all j ≥ 0

we have

p−j = w−j+1 − w−j−3.

Now V satisfies the Hodge-Riemann bilinear relations with the standard sign

if and only if for all j ≥ −1 the signature of the Lefschetz form on V −j−1 is

equal to

(−1)(j+1−(`+1))/2(p−j−1 − p−j−3 + p−j−5 − p−j−7 + · · · )

= (−1)(j−`)/2((w−j − w−j−4)− (w−j−2 − w−j−6) + (w−j−4 − w−j−8)− · · · )

= (−1)(j−`)/2(w−j − w−j−2).

The last term is the signature of the Lefschetz form on the primitive subspace

P−j ⊂W−j by the Hodge-Riemann bilinear relations. The lemma now follows.

�

Clearly, the lemma will apply to W = B and V = BBs, so long as

V satisfies hard Lefschetz. The proof below establishes a statement about

signatures. The essential argument is to show that, as ζ → ∞, the form on

BBs tends to the “product” of the forms on B and on Bs.

Proof of Theorem 5.1. Recall from Section 3.6 the maps α and β from B

to BBs, and the formulae (3.8), (3.9) and (3.10) which control the invariant

form on BBs. As a reminder, for x ∈ B−i+1 and y ∈ B−i−1 we have

α(x) := xcid and β(y) := ycs

in (BBs)
−i.
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We are interested in the R-valued form on BBs. It is immediate from

(3.10) that two elements in the image of β are orthogonal with respect to

〈−,−〉BBs , because the positive degree polynomial αs appears on the right.

For similar reasons, Lζ = L0 when applied to an element in the image of β,

because left and right multiplication by ζρ agree on cs ∈ Bs. Therefore,

(5.1) (β(y), β(y′))−iLζ = 0

and
(α(x), β(y))−iLζ = (α(x), β(y))−iL0

= TrR(ρi(xy)cs)

= (x, ρy)−i+1
ρ .

(5.2)

This second equation relates the form on (BBs)
−i to the form on (B)−i+1. The

only “difficult” pairings are of the form (α(x), α(x′))−iLζ . We will have more to

say about these below.

Now fix i≥0, and choose elements e1, . . . , en∈B−i−1 which project to an

orthogonal basis of (B)−i−1. Choose elements p1, . . . , pm∈B−i+1 which project

to an orthogonal basis of the primitive subspace P−i+1
ρ ⊂ (B)−i+1. Then

ρe1, . . . , ρen, p1, . . . , pm

project to an orthogonal basis for (B)−i+1. It follows that

α(ρe1), . . . , α(ρen), β(e1) . . . , β(en), α(p1), . . . , α(pm)

project to a basis of (BBs)
−i.

With this choice of basis, equations (5.1) and (5.2) imply that the Gram

matrix of the form (−,−)−iLζ has the form

M−iζ :=

Ö
∗ J ∗
J 0 0
∗ 0 Qζ

è
,

where J is a nondegenerate diagonal matrix. We have not yet computed Qζ
or the ∗’s. The determinant of M−iζ only depends on the entries of J and Qζ .

Hence M−iζ is nondegenerate if and only if Qζ is, in which case we can find a

path in the space of real nondegenerate symmetric matrices to the matrix

M :=

Ö
0 J 0
J 0 0
0 0 Qζ

è
and we can conclude that the signature of M−iζ is equal to that of Qζ .

2

2More formally, let Symdet6=0
n denote the space of real nondegenerate symmetric matrices,

with its Euclidean topology. We can find a path t : [0, 1]→ Symdet6=0
n such that t(1) = M−iζ

and t(0) = M . Using that the signature is constant on connected components of Symdet6=0
n

we conclude that the signatures of M and M−iζ coincide. Finally, the signatures of M and

Qζ are easily seen to agree.
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We claim that, for ζ � 0, Qζ is nondegenerate and has signature equal to

the signature of (−,−)−i+1
ρ on P−i+1

ρ ⊂ B−i+1
. If this is true, then Lζ satisfies

hard Lefschetz, and Lemma 5.2 will conclude the proof.

Firstly, if i = 0, then m = 0 and the result follows. Hence we may assume

i > 0. Let p, q ∈ B−i+1. We have

(α(p), α(q))−iLζ = TrR(Liζ((pq)cid)) = TrR

Ñ
i∑

j=0

Ç
i

j

å
ρi−j(pq)(ζρ)jcid

é
.

By (3.3) we have for j ≥ 1

ρi−j(pq)(ζρ)jcid = ρi−j(pq)cs · ∂s((ζρ)j) + ρi−j(pq)cid · s(ζρ)j .

Applying TrR we obtain (again for j ≥ 1)

TrR(ρi−j(pq)(ζρ)jcid) =

ζρ(α∨s ) TrR(ρi−1(pq)) if j = 1,

0 otherwise.

Hence

(α(p), α(q))−iLζ = TrR(ρi(pq)cid) + ζiρ(α∨s )(p, q)−i+1
ρ .

Note that the first term is independent of ζ. It follows that

lim
ζ→∞

1

ζ
Qζ = iρ(α∨s ) ·Q,

where Q is the matrix ((pi, pj)
−i+1
ρ )1≤i,j≤n. Now, B satisfies the Hodge-

Riemann bilinear relations, and hence Q is definite. It follows that Qζ is

too, for ζ � 0, and has the same signature as Q (i, ζ and ρ(α∨s ) are all strictly

positive). The theorem now follows. �

The upshot of Theorem 5.1 is the following corollary:

Corollary 5.3. If HR(x) holds, then hL(x, s)ζ for all ζ ≥ 0 implies

HR(x, s)ζ for all ζ ≥ 0.

Proof. By Theorem 5.1 we have HR(x, s)ζ for some ζ � 0. By Lemma 2.1

we have HR(x, s)ζ for all ζ ≥ 0. �

All that remains is to prove hard Lefschetz for the family Lζ of Lefschetz

operators. This task occupies the rest of the paper.

6. Hard Lefschetz for Soergel bimodules

In this section we establish the hard Lefschetz theorem for Soergel bi-

modules using Rouquier complexes. Although the basic idea is simple, the

details are somewhat complicated. Before giving the details we give a brief

motivational sketch.

Let us first recall a key fact from Hodge theory: the weak Lefschetz

theorem together with the Hodge-Riemann bilinear relations in dimension
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n − 1 imply the hard Lefschetz theorem in dimension n. Let X denote a

smooth projective variety, and let XH denote a general hyperplane section and

r : XH ↪→ X the inclusion. A key point in the proof is the observation that

one can factor the Lefschetz operator as the composition of the restriction map

r∗ : H∗(X)→ H∗(XH) and its dual r∗ : H∗(XH)→ H∗+2(X). The weak Lef-

schetz theorem implies that r∗ is injective in degrees ≤ dimCX − 1, and one

can then use Lemma 2.3 to deduce the hard Lefschetz theorem for H∗(X) from

the Hodge-Riemann bilinear relations for H∗(XH).

The weak Lefschetz theorem actually gives a situation stronger than that

of Lemma 2.3 because r∗ (resp. r∗) is an isomorphism in degrees ≤ dimCX−2

(resp. ≥ dimCX), which can be used to deduce the Hodge-Riemann bilinear

relations for H∗(X) in all degrees except dimCX. This aspect of the proof is

not replicated in this paper.

A major initial hurdle in the setting of Soergel bimodules is the apparent

absence of the weak Lefschetz theorem. Indeed, even if geometric tools are

available, taking a general hyperplane section in a Bott-Samelson resolution

or flag variety leaves the world of varieties whose cohomology admits a simple

combinatorial description.

The first key observation is that for any expression x, left multiplication by

ρ on BS(x) (our substitute for a Lefschetz operator) still admits a factorization

(see Section 6.7)

BS(x)
φ−→

⊕
BS(xî)(1)

χ−→ BS(x)(2).

However, the modules appearing above will generally not satisfy hard Lef-

schetz, because one has no control over the shifts of indecomposable Soergel

bimodules that may occur.

The second key observation is that φ (and χ) are (up to some positive

scalars) differentials on Rouquier complexes. One can then use homological

algebra to replace BS(x)
φ−→ ⊕

BS(xî)(1) → · · · by a minimal subcomplex

without affecting exactness properties. It is this subcomplex that serves as

a replacement for the weak Lefschetz theorem and allows us to deduce hard

Lefschetz.

6.1. Complexes and their minimal complexes. Let Cb(B) denote the cate-

gory of bounded complexes of Soergel bimodules (all differentials are required

to be of degree zero), and let Kb(B) denote its homotopy category. Because

we already use right indices to indicate the degree in the grading, we use

left indices to indicate the cohomological degree. In other words, an object

F ∈ Cb(B) looks like

· · · → iF
d−→ i+1F → · · · ,

with iF ∈ B and d a morphism in B. We regard B as a full subcategory of

Cb(B) and Kb(B) consisting of complexes concentrated in degree 0. As with
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bimodules we write F ′⊂⊕ F to mean that F ′ is a direct summand (as complexes)

of the complex F .

Let rad(B) ⊂ B denote the radical of B (see, e.g., [Kra, §1.8]). It is an

ideal of the category B, and we write rad(B)(B,B′) ⊂ Hom(B,B′) for the

corresponding subspace for any B,B′ ∈ B. On may show [Kra, Prop. 1.8.1]

that rad(B)(B,B) ⊂ End(B) coincides with the Jacobson radical J End(B) ⊂
End(B) for any B ∈ B. Because the endomorphism ring of B is a finite

dimensional R-algebra (remember that morphisms in B are assumed to be of

degree zero), EndB/J EndB is a semi-simple R-algebra. We conclude that

Bss := B/ rad(B) is semi-simple.

Given any indecomposable Soergel bimodule Bx, EndBx/J EndBx = R.

(For general reasons EndBx/J EndBx is a division algebra over R. However,

one always has a surjection EndBx � R (see the proof of [Soe07, Satz 6.14]),

and hence EndBx/J EndBx = R.) We conclude that the images of Bx(i) for

x ∈ W and i ∈ Z in Bss give a complete set of pairwise nonisomorphic simple

objects, all of whose endomorphism rings are isomorphic to R. We denote by

q : B → Bss the quotient functor. One may check that f : B → B′ is an

isomorphism if and only if q(f) is.

Now consider a complex F ∈ Cb(B). We say that F is minimal if all

differentials on q(F ) ∈ Cb(Bss) are zero. This is equivalent to requiring that

q(F ) contain no contractible direct summands, which by the isomorphism lift-

ing statement, is equivalent to requiring that F itself has no contractible direct

summands.3

Given any complex F ∈ Cb(B) there exists a direct summand Fmin ⊂⊕
F such that Fmin is minimal and such that the inclusion Fmin → F is an

isomorphism in Kb(B). We call such a summand a minimal subcomplex. Any

two minimal subcomplexes are isomorphic as complexes. (If f : F → G is a

homotopy isomorphism between minimal complexes, then q(f) is a homotopy

isomorphism between complexes with trivial differential. It follows that q(f),

and hence f , is an isomorphism of complexes.)

6.2. The perverse filtration on bimodules. A Soergel bimodule B is per-

verse if ch(B) =
∑
axHx with ax ∈ Z≥0. A Soergel bimodule B is p-split if

each indecomposable summand of B is isomorphic to B′(m) for some m ∈ Z

3If F ∈ Cb(B) is a complex, and a differential d : iF = M ⊕B → i+1F = M ′⊕B′ has the

form Å
α β

γ iso

ã
.

for some isomorphism iso : B → B′, then one can choose new decompositions iF = M⊕B and
i+1F = M ′⊕B′ such that d is a diagonal matrix, with entries α′ : M →M ′ and iso : B → B′.

Hence F is homotopic to a complex F ′ with the contractible summand B
∼→ B′ removed.
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and perverse Soergel bimodule B′. Any summand of a perverse (resp. p-split)

Soergel bimodule is perverse (resp. p-split). (Use that ch(Bx) = ch(Bx) for

any x ∈ W and that the character of any Soergel bimodule is positive in the

standard basis.)

If B1 and B2 are perverse, then Soergel’s hom formula (Theorem 3.6)

implies that

(6.1) Hom(B1, B2(−i)) = 0 for i > 0.

Let B be a p-split Soergel bimodule, and choose a decomposition

(6.2) B
∼→

⊕
B
⊕mx,i
x (i)

of B as a direct sum of indecomposable bimodules. Because B is assumed

p-split, we know that if mx,i 6= 0, then Bx is perverse. We define the perverse

filtration to be the filtration

τ≤jB :=
⊕
i≥−j

B
⊕mx,i
x (i).

(The more geometrically-minded reader might prefer pτ≤j .) Using (6.1) one can

show that this filtration does not depend on the choice of decomposition (6.2)

and is preserved (possibly nonstrictly) by all maps between Soergel bimodules.

Of course this filtration always splits; however, the splitting is not canonical

in general.

We set τ<j := τ≤j−1 and define

τ≥jB := B/τ<jB

and

Hj(B) := τ≤j(B)/τ<j(B)(j).

One can check τ≤j(−), τ≥j(−) and Hj(−) define endofunctors on the full sub-

category of p-split Soergel bimodules.

6.3. The perverse filtration on complexes. Let pKb(B)≥0 denote the full

subcategory of Kb(B) with objects those complexes which are isomorphic to

complexes F such that

(1) each term of F is p-split,

(2) τ<−i
iF = 0 for all i ∈ Z.

Similarly, we define pKb(B)≤0 to be the full subcategory of complexes which

are isomorphic to complexes F such that

(1) each term of F is p-split,

(2) iF = τ≤−i
iF for all i ∈ Z.

Alternatively, F belongs to pKb(B)≤0 (resp. pKb(B)≥0) if and only if its mini-

mal complex satisfies the conditions above.
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In other words, if a minimal complex is in pKb(B)≥0, then an indecom-

posable summand in cohomological degree 0 has the form Bx(k) for k ≤ 0, an

indecomposable summand in cohomological degree 1 has the form Bx(k) for

k ≤ 1, etc.

Lemma 6.1. Let F ′ → F → F ′′
[1]→ be a distinguished triangle in Kb(B).

If F ′, F ′′ ∈ pKb(B)≥0, then F ∈ pKb(B)≥0. Similarly, if F ′, F ′′ ∈ pKb(B)≤0,

then F ∈ pKb(B)≤0.

Proof. We prove the first statement; the second statement follows by an

identical argument. We may assume that iF ′ and iF ′′ are p-split and that

τ<−i
iF ′ = τ<−i

iF ′′ = 0 for all i ∈ Z. Turning the triangle we see that F

is isomorphic to the cone over a map F ′′[−1] → F ′. This cone has ith term
iF ′′ ⊕ iF . The result follows because τ<−i(

iF ′′ ⊕ iF ′) = 0 for all i ∈ Z. �

Remark 6.2. Once one has proven Soergel’s conjecture one may show that

(pKb(B)≤0, pKb(B)≥0) gives a nondegenerate t-structure on Kb(B). Its heart

can be thought of as a category of mixed equivariant perverse sheaves on the

(possibly nonexistent) flag variety associated to (W,S).

6.4. Rouquier complexes. The monoidal structure on B induces a monoidal

structure on Kb(B) (total complex of tensor product of complexes) which we

denote by juxtaposition. Given a distinguished triangle F ′ → F → F ′′
[1]→ and

G ∈ Kb(B), the triangle

F ′G→ FG→ F ′′G
[1]→

is also distinguished.

For s ∈ S consider the complex

Fs := 0→ Bs → R(1)→ 0,

where Bs occurs in cohomological degree 0 and the only nonzero differential is

given by the multiplication map f ⊗ g 7→ fg. It is known and easily checked

that Fs is invertible in Kb(B); hence tensoring on the left or right by Fs gives

an equivalence of Kb(B).

Fix x ∈ W and a reduced expression x = s1s2 · · · sm. As an object in

the homotopy category Kb(B), the object Fs1 · · ·Fsm depends only on x up

to canonical isomorphism (see [Rou06a]). In this paper, a Rouquier complex

is any choice Fx ⊂⊕ Fs1 · · ·Fsm of minimal subcomplex, which again does not

depend on the choice of reduced expression.

Remark 6.3. Braid group actions on categories appearing in highest weight

representation theory have been around for decades (see, e.g., [Car86], [Ric94]).

One obtains the above complexes by translating these actions into Soergel
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bimodules. The term “Rouquier complex” seems to have been introduced by

Khovanov. We feel it is justified in our setting because it was Rouquier who

first emphasised that concrete algebraic properties of these complexes should

have applications for arbitrary Coxeter systems [Rou06b, 4.2.1]. This is a key

idea in the present article.

A straightforward induction shows that Fx is homotopic to R(−`(x)) when

viewed as a complex of right R-modules. This implies the following lemma:

Lemma 6.4. We have

H i(Fx) =

R(−`(x)) if i = 0,

0 otherwise.

For the rest of this section and the next we examine the perverse filtration

on Rouquier complexes.

Lemma 6.5. Let x ∈W , s ∈ S, and assume S(x). Regard Bx ∈ Kb(B) as

a complex concentrated in degree 0.

(1) If xs < x, then BxFs ∼= Bx(−1) in Kb(B).

(2) If xs > x, then BxFs ∈ pKb(B)≥0.

Proof. (1) Under our assumptions, BxBs ∼= Bx(1)⊕Bx(−1). Hence BxFs
has the form

0→ Bx(1)⊕Bx(−1)→ Bx(1)→ 0.

NowBx is indecomposable and tensoring with Fs gives an equivalence ofKb(B).

Hence the above complex is also indecomposable. It follows that the map

Bx(1) → Bx(1) induced by the differential is nonzero and is an isomorphism

because End(Bx) = R. It follows that the subcomplex Bx(1) → Bx(1) is

contractible, yielding the result.

(2) If Soergel’s conjecture holds forBx, then ch(BxBs)=HxHs∈
⊕Z≥0Hz

and BxBs is perverse. The result is now immediate from the definitions. �

Lemma 6.6. Suppose that F ∈ pKb(B)≥0 and that Soergel ’s conjecture

holds for all indecomposable summands of all iF . Then FFs ∈ pKb(B)≥0.

Proof. We can assume that F is a minimal complex. Consider the stupid

filtration of F :

w≥kF := · · · → 0→ kF → k+1F → · · · .
Then for all k we have distinguished triangles

w≥k+1F → w≥kF → kF [−k]
[1]→ .

By Lemma 6.1, if (w≥k+1F )Fs and kF [−k]Fs are in pKb(B)≥0, then so is

(w≥kF )Fs. By Lemma 6.5, kF [−k]Fs ∈ pKb(B)≥0. The result now follows by

induction. �

Corollary 6.7. Assume S(y) for all y < x. Then Fx ∈ pKb(B)≥0.
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Proof. Choose a reduced expression x for x, ending in some s ∈ S. Let y =

xs < x. By an inductive application of the previous lemma, Fy ∈ pKb(B)≥0.

Then Fx ∼= FyFs, and Fy satisfies the conditions of the previous lemma, so

Fx ∈ pKb(B)≥0. �

In particular, in the setting of the above corollary, we know Soergel’s

conjecture for every summand of every iFx except possibly Bx itself, which

occurs only in degree zero.

6.5. Rouquier complexes are linear. In the present section we establish

that Rouquier complexes are “linear” under the assumption of Soergel’s con-

jecture. We will need the following result of Libedinsky and the second author:

Proposition 6.8 (Rouquier complexes are ∆-split). Fix x ∈ W , and let

Fx denote a Rouquier complex. Then for any y ∈W we have an isomorphism

in the homotopy category of graded R-bimodules

Γ≥y/>yFx =

∆x if x = y,

0 otherwise.

Proof. This is [LW, Prop. 3.7]. �

The precise statement of “linearity” is the following:

Theorem 6.9 (Rouquier complexes are linear). Assume S(y) for all y≤x.

Then

(1) 0Fx = Bx;

(2) for i ≥ 1, iFx =
⊕
Bz(i)

⊕mz,i for z < x and mz,i ∈ Z≥0.

In particular, Fx ∈ pKb(B)≤0 ∩ pKb(B)≥0.

Remark 6.10 (Positivity of inverse Kazhdan-Lusztig polynomials). One

can show that

Hx = ch(Fx) :=
∑

(−1)i ch(iFx).

Therefore, defining gz,x by Hx =
∑
gz,xHz, we have gx,x = 1 and gz,x =∑

(−1)imz,iv
i for z ≤ x. Hence one can determine all multiplicities mz,i using

only Kazhdan-Lusztig combinatorics. Furthermore, a straightforward induc-

tive argument gives that mz,i = 0 if i and `(x) − `(z) have different parity.

Hence (−1)`(x)−`(z)gz,x has positive coefficients for all z ≤ x.

The theorem will be deduced from the following:

Lemma 6.11. Assume S(≤x). If iFx contains a summand isomorphic to

Bz(j) with z < x, then i−1Fx contains a summand isomorphic to Bz′(j
′) with

z′ > z and j′ < j.
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In the proof we use the following facts, which are immediate from the def-

inition of the ∆-character: if S(y) holds, then Γ≥z/>z(By) is zero unless y≥z;
it is ∆z when y = z; and it is ⊕∆z(k)⊕mk for y > z with all k strictly positive.

Proof. Choose a summand Bz(j) ⊂⊕ iFx, and consider its image in i+1Fx
under the differential. By (6.1) this image must project trivially to any sum-

mand of the form By(k) for k < j. If S(z) and S(y) hold, then Soergel’s

hom formula (Theorem 3.6) implies that any nonzero map Bz(j) → By(j) is

an isomorphism (and so z = y). Such an isomorphism cannot appear as the

projection of the differential in a minimal complex because it would yield a

contractible summand. Therefore, Bz(j) maps to τ<−j
i+1Fx, the sum of terms

By(k) for k > j. Similarly, if some summand By(k) of i−1Fx is sent nontrivially

to Bz(j) by the differential and then projection, we must have k < j.

Now apply Γ≥z/>z to Fx. The result is split by Proposition 6.8 and has a

summand in Γ≥z/>z
iFx isomorphic to ∆z(j) coming from our chosen summand

Bz(j). This summand cannot survive in the cohomology of the complex, and

thus it must map isomorphically to some ∆z(j) in Γ≥z/>z(
i+1Fx) or be mapped

to isomorphically from some ∆z(j) in Γ≥z/>z(
i−1Fx). The former is impossible,

because this summand maps to Γ≥z/>zτ<−j(
i+1Fx) which can only contain

∆z(k) for k > j. Thus some summand By(k) of i−1Fx contributes ∆z(j) to

Γ≥z/>z (in particular, y ≥ z), and this maps to Bz(j). As mentioned above we

must have k < j, which means that y > z. This proves the lemma. �

Proof of Theorem 6.9. Lemma 6.11 implies that the only summands of
0Fx are of the form Bx, because −1Fx = 0. In fact, 0Fx ∼= Bx, as can be seen by

applying Γ≥x/>x. Induction using Lemma 6.11 then implies that τ>−i
iFx = 0.

The theorem now follows because F ∈ pKb(B)≤0 by Lemma 6.7. �

6.6. Rouquier complexes are Hodge-Riemann. We will use the following

proposition repeatedly in what follows:

Proposition 6.12. Fix ζ ≥ 0, s ∈ S and a Soergel bimodule B =⊕
z∈W B⊕mzz (for mz ∈ Z≥0) such that if mz 6= 0, then S(z) and HR(z, s)ζ

hold. If ζ = 0, we assume, in addition, that mz = 0 if zs < z.

Assume that B is even or odd and that B is equipped with an invariant

nondegenerate form 〈−,−〉B such that B satisfies the Hodge-Riemann bilinear

relations with the standard sign (with respect to left multiplication by ρ and

〈−,−〉B).

Then BBs satisfies the Hodge-Riemann bilinear relations with the standard

sign (with respect to Lζ and the induced form 〈−,−〉BBs).
Proof. We claim that we can choose our isomorphism B ∼=

⊕
B⊕mzz such

that each indecomposable summand is orthogonal under 〈−,−〉B. Because

Soergel’s conjecture holds for each summand, the decomposition into isotypic
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components must be orthogonal, as Hom(Bz,DBy) = 0 for y 6= z. Apply-

ing Soergel’s conjecture again, we know that End(B⊕mzz ) is a matrix algebra,

and choosing a decomposition of B⊕mzz is the same as choosing a basis for

(B⊕mzz )−`(z). It is not difficult to check that if one chooses an orthogonal basis

of (B⊕mzz )−`(z) with respect to the (definite) Lefschetz form, then one obtains

an orthogonal decomposition of B⊕mzz .

Hence we may assume that the decomposition B =
⊕
B⊕mzz is orthogonal

with respect to 〈−,−〉. It follows that the induced form is orthogonal with

respect to the decomposition BBs =
⊕

(BzBs)
⊕mz . By the Hodge-Riemann

bilinear relations for B, the Lefschetz form on the primitive subspace in de-

gree m + 2i is (−1)i-definite, where m denotes the minimal nonzero degree

in B. Hence the restriction of 〈−,−〉B to any summand isomorphic to Bz is

(−1)(`(z)−m)/2 times a positive multiple of the intersection form on Bz. It fol-

lows from HR(z, s)ζ that the Lefschetz form on the primitive subspace of each

summand BzBs ⊂ BBs is (−1)i-definite in degree −m − 1 + 2i. Hence the

same is true of BBs (being the orthogonal direct sum of such spaces). Hence

BBs satisfies the Hodge-Riemann bilinear relations with the standard sign as

claimed. �

For the rest of this section, fix x ∈W and assume S(≤x). By Theorem 6.9

we know that jFx is concentrated in perverse degree −j. By definition, Fx is

a direct summand of Fs1 · · ·Fsm for any choice of reduced expression x =

s1 · · · sm. Hence jFx is a direct summand of j(Fs1 · · ·Fsm). In other words, for

all j ≥ 0,

(6.3) jFx ⊂⊕
⊕

x′∈π(x,j)

BS(x′)(j),

where π(x, j) denotes the set of all subexpressions of x obtained by omitting j

simple reflections. Shifting, we deduce that jFx(−j) is a summand of
⊕

BS(x′).

Fix a tuple λ = (λx′)x′∈π(x,j) of strictly positive real numbers. We use

these scalars to rescale the direct sum of the intersection form on
⊕

BS(x′): if

b = (bx′) and b′ = (bx′) are elements of
⊕

BS(x′), we set

〈b, b′〉λ :=
∑

x′∈π(x,j)

λx′〈bx′ , b′x′〉BS(x′).

We say that Fx satisfies the Hodge-Riemann bilinear relations if for all

reduced expressions x = s1 . . . sm one can choose an embedding

Fx ⊂⊕ Fs1 · · ·Fsm
such that, for all tuples of strictly positive real numbers λ = (λx′), each jFx(−j)
satisfies the Hodge-Riemann bilinear relations with respect to the form induced

by 〈−,−〉λ and the Lefschetz operator given by left multiplication by ρ, and

with global sign determined as follows. The Lefschetz form should be positive

definite on primitive subspaces in degrees congruent to −m + j modulo 4.
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(One can show that this is equivalent to satisfying the Hodge-Riemann bilinear

relations with the standard sign. We will not need this.)

Proposition 6.13. Assume S(≤x). Also assume that HR(y, s) holds for

all y < x and s ∈ S with ys > y. Then Fx satisfies the Hodge-Riemann bilinear

relations.

Proof. We prove the proposition by induction over the Bruhat order, with

the case x = id being obvious. Fix a reduced expression x = s1s2 · · · sm for

x as above and let y = s1 · · · sm−1 and s = sm so that x = ys. By induction

we may assume that Fy satisfies the Hodge-Riemann bilinear relations. Hence

we may choose an embedding Fy ⊂⊕ Fs1 · · ·Fsm−1 such that for all j and any

choice of scalars (µy′)y′∈π(y,j) the form on jFy(−j) induced by the pullback of

the form 〈−,−〉µ under the embedding

jFy(−j)⊂⊕
⊕

y′∈π(y,j)

BS(y′)

satisfies the Hodge-Riemann bilinear relations. Now Fx is a summand of FyFs
and hence we have natural embeddings

jFx(−j)⊂⊕ jFyBs(−j)⊕ j−1Fy(−j + 1)

⊂⊕
⊕

y′∈π(y,j)

BS(y′)Bs ⊕
⊕

y′′∈π(y,j−1)

BS(y′′) =
⊕

x′∈π(x,j)

BS(x′).

We claim that jFx(−j) satisfies the Hodge-Riemann bilinear relations with

respect to this embedding for any tuple λ = (λx′)x′∈π(x,j) of strictly positive real

numbers (or equivalently any pair (µ′y′)y′∈π(y,j) and (µ′′y′)y′′∈π(y,j−1) of tuples

of strictly positive real numbers).

Soergel’s conjecture holds for all indecomposable summands of Fy, and

hence we have a canonical decomposition

jFy(−j) =
⊕
z∈W

Vz ⊗R Bz

for some (degree zero) multiplicity spaces Vz. Set

B↑ :=
⊕
z∈W
zs>z

Vz ⊗R Bz and B↓ :=
⊕
z∈W
zs<z

Vz ⊗R Bz

so that

(6.4) jFy(−j) = B↑ ⊕B↓.

This decomposition is orthogonal with respect to the induced forms because

Hom(B↑,DB↓) = Hom(B↓,DB↑) = 0. Character calculations yield that B↑Bs
is perverse and that B↓Bs ∼= B↓(−1) ⊕ B↓(1). (See also the proof of Theo-

rem 6.19.)
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Now, as we have already remarked above, Fx is a summand of FyFs and

so jFx is a summand of jFyBs ⊕ j−1Fy(1). We rewrite this using (6.4):

jFx(−j)⊂⊕ B↓Bs ⊕B↑Bs ⊕ j−1Fy(−j + 1).

This decomposition is orthogonal with respect to the induced forms, and the

inclusion of jFx(−j) is an isometry.

The decomposition B↓Bs ∼= B↓(−1)⊕B↓(1) is not orthogonal with respect

to the induced form. In fact, the induced form is nondegenerate and hence

induces a nondegenerate pairing of B↓(−1) and B↓(1). Nonetheless, we claim

that in the decomposition

B↓Bs ∼= B↓(1)⊕B↓(−1)

the restriction of the Lefschetz form to B↓(1) is zero. Indeed, our assumptions

imply that left multiplication by ρ satisfies the hard Lefschetz theorem on B↓,

and the fact that the Lefschetz form is zero follows from Lemma 2.5.

Because jFx(−j) lives in perverse degree 0 by Theorem 6.9, Hom vanishing

(6.1) implies that the projection jFx(−j) → B↓Bs will land entirely within

B↓(1), and therefore the image of jFx(−j) in B↓Bs will not contribute to the

Lefschetz form.

Hence the projection to the second two factors above gives a map

ι : jFx(−j)→ B↑Bs ⊕ j−1Fy(−j + 1)

which is an isometry for the Lefschetz forms. We claim that ι is injective.

Recall the functor q : B → Bss from Section 6.1. Any map jFx(−j) → B↓(1)

cannot be an isomorphism because it is a map between objects in perverse

degrees 0 and −1 respectively, and hence vanishes after applying q. On the

other hand, if we apply q to the original inclusion jFx ↪→ j(FyFs), then we

obtain an injection, because this map is the inclusion of a direct summand.

We conclude that if we apply q to ι′ : jFx(−j)→ B↑Bs ⊕ j−1Fy(−j + 1), then

we obtain a split inclusion. Hence ι′ is a split inclusion and the claim follows.

By assumption the induced intersection form on j−1Fy(−j + 1) satisfies

the Hodge-Riemann bilinear relations and is positive definite on primitive sub-

spaces in degrees congruent to −(m− 1) + j − 1 = −m+ j modulo 4. By the

same inductive assumption, B↑ satisfies the Hodge-Riemann bilinear relations

with global sign given as follows. The Lefschetz form is > 0 on primitives

in degrees congruent to −(m − 1) + j modulo 4. By Proposition 6.12 (essen-

tially applying HR(z, s) to each summand) it follows that B↑Bs satisfies the

Hodge-Riemann bilinear relations, with the Lefschetz forms > 0 on primitive

subspaces in degrees congruent to −(m+ 1) + j − 1 = −m+ j modulo 4.

We conclude that the codomain of ι satisfies the Hodge-Riemann bilinear

relations. Hence the same is true for jFx(−j), being a ρ-stable summand with

symmetric Betti numbers (Lemma 2.2). �



1128 BEN ELIAS and GEORDIE WILLIAMSON

6.7. Factoring the Lefschetz operator. Fix an expression x = s1s2 · · · sm.

Recall the morphisms Bri, φi and χi introduced in Section 3.4. Let us denote

by Tr and 〈−,−〉 the trace map and intersection form on BS(x). To avoid

confusion, we denote the trace map and intersection form on BS(x̂
i
) by Tri

and 〈−,−〉i.
Lemma 6.14. For b, b′ ∈ BS(x) we have 〈b,Bri b

′〉 = 〈φib, φib′〉i.
Proof. We may assume b = b1b2 · · · bm and b′ = b′1b

′
2 · · · b′m with bi, b

′
i ∈

Bsi . We calculate

〈b,Bri b
′〉 = Tr((b1b

′
1) · · · (bib′ics) · · · (bmb′m))

= Tr((b1b
′
1) · · ·µ(bi)µ(b′i)cs · · · (bmb′m))

= Tr(χi((b1b
′
1) · · ·µ(bi)µ(b′i) · · · (bmb′m)))

= Tri((b1b
′
1) · · ·µ(bi)µ(b′i) · · · (bmb′m))

= 〈φi(b), φi(b′)〉i.

The second to last equality follows from the identity Tr(χi(γ)) = Tri(γ) valid

for all γ ∈ BS(x̂
i
). �

Let us rescale the forms on each BS(x̂
i
) by defining

〈−,−〉′i := (si−1 · · · s1ρ)(α∨si)〈−,−〉i.
Let 〈−,−〉′ denote the direct sum of the forms 〈−,−〉′i on

⊕
BS(x̂

i
).

If we set φ :=
∑
φi, then for b, b′ ∈ BS(x) we have

〈φ(b), φ(b′)〉′ =
∑

1≤i≤m
(si−1 · · · s1ρ)(α∨si)〈φi(b), φi(b

′)〉i

=
∑

1≤i≤m
(si−1 · · · s1ρ)(α∨si)〈b,Bri(b

′)〉i

= 〈b, ρb′〉 − 〈b, b′〉 · w−1ρ

by Lemmas 3.4 and 6.14 respectively. We conclude:

Lemma 6.15. Consider the induced map

BS(x)
φ−→

⊕
BS(x̂

i
)(1).

For all b, b′ ∈ BS(x) we have

〈b, ρb′〉 = 〈φb, φb′〉′ ∈ R.

Remark 6.16. Lemma 6.15 will be a key tool in our proof of the hard

Lefschetz theorem for Soergel bimodules. It serves as a partial replacement for

the weak Lefschetz theorem.

Remark 6.17. When we apply the above lemma, x will be a reduced ex-

pression. Because ρ is assumed dominant regular, it follows that all the scaling
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factors (si−1 · · · s1ρ)(α∨si) are positive, by (3.1). Hence, although we rescale the

forms on each Bott-Samelson bimodule, this does not affect the signs appearing

in the Hodge-Riemann bilinear relations.

6.8. Proof of hard Lefschetz. Fix x ∈ W and s ∈ S. Let x denote a

reduced expression for x. Recall the operator Lζ on BxBs from Section 5. The

goal of this section is to prove three incarnations of the hard Lefschetz theorem

for the induced action of Lζ on BxBs under certain inductive assumptions. The

three cases are

(1) ζ > 0 and xs < x (Theorem 6.19),

(2) ζ > 0 and xs > x (Theorem 6.20),

(3) ζ = 0 and xs > x (Theorem 6.21).

(It will also be clear in the proof of (1) that hard Lefschetz fails in the missing

case ζ = 0 and xs < x.)

Remark 6.18. We warn the reader that the proof in case (1) is compara-

tively straightforward and has little in common with the proofs of cases (2) and

(3). On the other hand, the proofs of cases (2) and (3) (which use positivity

considerations in a crucial way) are similar, with (3) being more involved. The

reader is encouraged to view the proof in case (2) as a warm-up for (3).

Theorem 6.19 (Hard Lefschetz for ζ > 0, xs < x). Suppose ζ > 0 and

xs < x. If hL(x) holds, then so does hL(x, s)ζ .

Proof. The basic idea is as follows. Because xs < x, we have BxBs ∼=
Bx(1) ⊕ Bx(−1). We will fix such an isomorphism and see that the operator

Lζ on BxBs = Bx(1)⊕Bx(−1) has the form

(6.5) Lζ =

Ç
ρ · (−) 0

ζρ(α∨s ) ρ · (−)

å
,

where ρ · (−) is the Lefschetz operator on Bx given by left multiplication by ρ,

and ζρ(α∨s ) denotes a scalar multiple of the identity, viewed as a degree two

map Bx(1)→ Bx(−1). Because ρ · (−) satisfies the hard Lefschetz theorem on

Bx, we can complete the ρ-action to an action of sl2(R) = Rf ⊕Rh⊕Re such

that e = ρ · (−) and hb = kb for all b ∈ (Bx)k. In this case, after rescaling

(under the assumption that ζ 6= 0), the above matrix describes the action of e

on the tensor product of Bx with the standard two-dimensional representation

of sl2(R). Hence e = Lζ satisfies the hard Lefschetz theorem as claimed.

It remains to show that Lζ has the form given in (6.5). By assumption

xs < x and hence, by [Wil11, Th. 1.4], we can find an (R,Rs)-bimodule Bx
such that Bx ⊗Rs R ∼= Bx. We conclude that any choice of isomorphism
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R ∼= Rs ⊕Rs(−2) of graded Rs-modules yields an isomorphism

(6.6) BxBs ∼= Bx ⊗Rs R⊗Rs R(1) ∼= Bx(1)⊕Bx(−1).

Now we fix such an isomorphism. Consider the maps ι1, ι2 : Rs → R, where ι1
is the inclusion and ι2(r) = 1

2αsι1(r). Let π1, π2 : R→ Rs be given by

π1(r) =
1

2
(r + sr) and π2(r) = ∂s(r).

Then πa ◦ ιb = δab for a, b ∈ {1, 2}, and so these maps give the inclusions

and projections in an Rs-bimodule isomorphism R ∼= Rs ⊕Rs(−2). Tensoring

these isomorphisms with the identity on both sides yields the inclusion and

projection maps fixing an isomorphism as in (6.6).

With respect to this fixed isomorphism, a straightforward calculation

yields that Lζ is given by the matrixÇ
ρ · (−) + ζ(−) · π1(ρ) 1

2ζ(−) · π1(αρ)

ζρ(α∨s )(−) ρ · (−) + 1
2ζ(−) · ∂s(αρ)

å
.

Passing to BxBs the operator of right multiplication by a polynomial of positive

degree becomes zero, and the above matrix reduces to (6.5). This completes

the proof. �

Theorem 6.20 (Hard Lefschetz for ζ > 0, xs > x). Suppose ζ > 0 and

xs > x. Assume the following :

(1) S(≤x) holds ;

(2) HR(z, t) holds for all (z, t) ∈W × S such that z < x and zt > t;

(3) HR(<x, s)ζ holds ;

(4) HR(x) holds.

Then hL(x, s)ζ holds.

Proof. Write x = s1s2 · · · sm, and set

γi := (si−1 · · · s1ρ)(α∨si) for 1 ≤ i ≤ m and γm+1 := (x−1ρ)(α∨s ) + ζρ(α∨s ).

The scalars γ1, . . . , γm are all positive because x is reduced, and γm+1 is positive

because xs > x; see (3.1). As in Section 6.7 we use the tuple γ≤m = (γi)
m
i=1

(resp. γ = (γi)
m+1
i=1 ) to define a rescaled intersection forms 〈−,−〉γ≤m (resp.

〈−,−〉γ) on
⊕

BS(xî) (resp.
⊕

BS((xs)̂
i
)). By a slight variant of Section 6.7

we have the relation

(6.7) 〈b, Lζb′〉BS(xs)
= 〈φ(b), φ(b′)〉γR for all b, b′ ∈ BS(xs),

where φ is the first differential in the complex Fs1 · · ·FsmFs and 〈−,−〉γR de-

notes the form on
⊕

BS((xs)̂
i
) induced by 〈−,−〉γ .

Now fix a minimal complex Fx ⊂⊕ Fs1Fs2 · · ·Fsm . Because we assume

S(≤ x), Theorem 6.9 allows us to conclude that 0Fx = Bx and that kFx is
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concentrated in perverse degree −k. Because we assume S(≤x) and HR(z, t)

for all z < x with zt > z, we may apply Proposition 6.13 to find an embedding

Fx ⊂⊕ Fs1 · · ·Fsm so that 1Fx(−1) ⊂⊕ ⊕
BS(x̂

i
) satisfies the Hodge-Riemann

bilinear relations with respect to the form induced by 〈−,−〉γ≤m .

The first two terms of FxFs have the form

BxBs
φ−→ 1FxBs ⊕Bx(1).

We use this decomposition to write φ = (d1, d2) for maps d1 : BxBs →
1FxBs(−1) and d2 : BxBs → Bx(1). It is straightforward to verify that d1

commutes with Lζ and that for d2 we have

d2(Lζb) = ρ · d2(b) + d2(b) · ζρ

for all b ∈ BxBs. Hence, if we denote by L the operator on 1FxBs ⊕ Bx(1)

given by Lζ on the first summand and ρ · (−) on the second, then we have

(6.8) φ(Lζb) = Lφ(b) for all b ∈ BxBs,

where φ denotes the induced map φ : BxBs → 1FxBs ⊕Bx(1). Moreover,

(1) φ is injective in degrees ≤ `(x) (by Lemma 6.4).

(2) 〈b, Lζb′〉BxBs = 〈φ(b), φ(b′)〉γR for all b, b′ ∈ BxBs (by (6.7)).

(3) 1FxBs(−1) ⊕ Bx satisfies the Hodge-Riemann bilinear relations with re-

spect to the Lefschetz operator L and the form 〈−,−〉γR. (The decomposi-

tion 1FxBs(−1)⊕Bx is orthogonal. For Bx the Hodge-Riemann bilinear

relations hold by assumption. For 1FxBs(−1) the Hodge-Riemann re-

lations hold by Proposition 6.12 and our assumption HR(y, s)ζ for all

y < x.)

Now we can apply Lemma 2.3 to conclude that Lkζ : (BxBs)
−k → (BxBs)

k

is injective for all k ≥ 0. Finally, BxBs is self-dual as a graded vector space

and hence has symmetric Betti numbers. Hence Lζ satisfies the hard Lefschetz

theorem on BxBs as claimed. �

Theorem 6.21 (Hard Lefschetz for ζ = 0, xs > x). Assume that

(1) S(≤x) holds ;

(2) HR(y, t) holds for all (y, t) ∈W × S such that y < x and yt > y;

(3) HR(x) holds ;

(4) hL(z) holds for all z < xs.

Then hL(x, s) holds.

Proof. Write x = s1s2 · · · sm for x, and set

γi := (si−1 · · · s1ρ)(α∨si) for 1 ≤ i ≤ m and γm+1 := (x−1ρ)(α∨s ).

By (3.1), γ1, . . . , γm+1 are positive. As in Section 6.7 we use the tuple γ≤m =

(γi)
m
i=1 (resp. γ = (γi)

m+1
i=1 ) to define a rescaled intersection forms 〈−,−〉γ≤m
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(resp. 〈−,−〉γ) on
⊕

BS(xî) (resp.
⊕

BS((xs)̂
i
)). By Section 6.7 we have the

relation

(6.9) 〈b, ρ · b′〉
BS(xs)

= 〈φ(b), φ(b′)〉γR for all b, b′ ∈ BS(xs),

where φ is the first differential in the complex Fs1 · · ·FsmFs and 〈−,−〉γR de-

notes the form on
⊕

BS((xs)̂
i
) induced by 〈−,−〉γ .

We now choose a minimal subcomplex Fx⊂⊕ Fs1Fs2 · · ·Fsm . We know that
0Fx = Bx, that kFx is concentrated in perverse degree −k by Theorem 6.9,

and that we can choose our embedding such that kFx(−k)⊂⊕ ⊕
BS(x) satisfies

the Hodge-Riemann bilinear relations by Proposition 6.13. As in the proof of

Proposition 6.13 let us decompose
1Fx(−1) = B↑ ⊕B↓

so that B↑Bs is perverse and H0(B↓Bs) = 0. This decomposition is orthogonal

with respect to 〈−,−〉γ≤m because

Hom(B↑,DB↓) = Hom(B↓,DB↑) = 0.

The first two terms of FxFs have the form

BxBs → Bx(1)⊕B↑Bs(1)⊕B↓Bs(1).

We claim that this decomposition of 1(FxFs) is orthogonal with respect to

〈−,−〉γ . Indeed, under the inclusion of 1(FxFs)⊂⊕ ⊕
BS((xs)̂

i
) we haveBx(1)⊂⊕

BS(x) and B↑Bs(1) ⊕ B↓Bs(1) ⊂⊕ ⊕
BS(xîs). Hence Bx(1) is orthogonal to

B↑Bs(1) ⊕ B↓Bs(1). The form on B↑Bs(1) ⊕ B↓Bs(1) = (B↑ ⊕ B↓)Bs co-

incides with the induced form from 〈−,−〉γ≤m on B↑ ⊕ B↓ (see §3.6). The

claimed orthogonality for the decomposition of 1(FxFs) now follows from the

orthogonality of B↑ and B↓ under 〈−,−〉γ≤m .

We also know that FxFs ∈ pKb(B)≥0 by Corollary 6.7, and hence the re-

striction of the second differential to τ≤−2(1(FxFs)) = τ≤−2(B↓Bs(1)) is a split

injection. Canceling this contractible direct summand we obtain a summand

of FxFs such that the inclusion is a homotopy equivalence. Observing that

τ≥−1(B↓Bs(1)) = τ≥0(B↓Bs(1)) ∼= B↓ we see that the first two terms of this

summand have the form

BxBs
d−→ Bx(1)⊕B↑Bs(1)⊕B↓.

We use this decomposition to write d = (d1, d2, d3) for maps d1 : BxBs →
Bx(1), d2 : BxBs → B↑Bs(1) and d3 : BxBs → B↓. Consider the induced map

BxBs
d−→ Bx(1)⊕B↑Bs(1)⊕B↓

with components d1, d2 and d3. By Lemma 6.4, d is injective in degrees ≤ `(x).

Now fix 0 6= b ∈ (BxBs)
−k for some k ≥ 0. Because BxBs has symmetric

Betti numbers, to prove the theorem it is enough to show that ρk · b 6= 0.

Because d(b) 6= 0, the theorem follows from the following two claims:
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Claim 1. If d3(b) 6= 0, then ρk(b) 6= 0.

Each indecomposable summand of B↓ is of the form Bz with z < xs

and zs < z. For such z, left multiplication by ρ on Bz satisfies the hard

Lefschetz theorem by assumption. Hence left multiplication by ρ satisfies the

hard Lefschetz theorem on B↓. Now d3 commutes with left multiplication by ρ.

Hence 0 6= ρk(d3(b)) = d3(ρk(b)) and the claim follows.

Claim 2. If d3(b) = 0, then ρk(b) 6= 0.

Consider V := Ker(d3) ⊂ BxBs and W = Bx ⊕ B↑Bs. By restricting

〈−,−〉BxBs to V and 〈−,−〉γR to W , we obtain graded forms on these spaces.

The operator given by left multiplication by ρ is a Lefschetz operator on both

spaces. Write φV for the restriction of d to V , viewed as a map V → W (1).

Then

(1) φV (ρb) = ρ(φV (b)) for all b ∈ V .

(2) φV is injective in degrees ≤ −1 (or even ≤ `(x)).

(3) 〈b, Lζb′〉V = 〈φV (b), φV (b′)〉W for all b, b′ ∈ V (by (6.7)).

(4) W satisfies the Hodge-Riemann bilinear relations. (For Bx this holds by

assumption. For B↑Bs this holds because every indecomposable sum-

mand of B↑ is of the form Bz with zs > z. Hence the Hodge-Riemann

bilinear relations hold for B↑Bs by our assumption (2) in the statement

of the theorem, combined with Proposition 6.12 and the fact that B↑

satisfies the Hodge-Riemann bilinear relations.)

We now apply Lemma 2.3 to conclude that ρk : V −k → V k is injective. �
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[BB81] A. Bĕılinson and J. Bernstein, Localisation de g-modules, C. R. Acad.

Sci. Paris Sér. I Math. 292 (1981), 15–18. MR 0610137. Zbl 0476.14019.
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