
Annals of Mathematics 180 (2014), 523–571
http://dx.doi.org/10.4007/annals.2014.180.2.3

ACC for log canonical thresholds

By Christopher D. Hacon, James McKernan, and Chenyang Xu

To Vyacheslav Shokurov on the occasion of his sixtieth birthday

Abstract

We show that log canonical thresholds satisfy the ACC.
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1. Introduction

We work over an algebraically closed field of characteristic zero. ACC

stands for the ascending chain condition whilst DCC stands for the descending

chain condition.

Suppose that (X,∆) is a log canonical pair and M ≥ 0 is R-Cartier. The

log canonical threshold of M with respect to (X,∆) is

lct(X,∆;M) = sup{t ∈ R | (X,∆ + tM) is log canonical}.

Let T = Tn(I) denote the set of log canonical pairs (X,∆), where X is a

variety of dimension n and the coefficients of ∆ belong to a set I ⊂ [0, 1]. Set

LCTn(I, J) = {lct(X,∆;M) | (X,∆) ∈ Tn(I)},

where the coefficients of M belong to a subset J of the positive real numbers.

Theorem 1.1 (ACC for the log canonical threshold). Fix a positive in-

teger n, I ⊂ [0, 1] and a subset J of the positive real numbers.

If I and J satisfy the DCC, then LCTn(I, J) satisfies the ACC.

(1.1) was conjectured by Shokurov [33]; see also [22] and [24]. When the

dimension is three, [22] proves that 1 is not an accumulation point from below

and (1.1) follows from the results of [2]. More recently (1.1) was proved for

complete intersections, [10], and even when X belongs to a bounded family,

[11].

The log canonical threshold is an interesting invariant of the pair (X,∆)

and the divisor M which is a measure of the complexity of the singularities

of the triple (X,∆;M). It has made many appearances in many different

forms, especially in the case of hypersurfaces; see [24], [25] and [34]. The ACC

for the log canonical threshold plays a role in inductive approaches to higher

dimensional geometry. For example, after [6], we have the following application

of (1.1):

Corollary 1.2. Assume termination of flips for Q-factorial kawamata

log terminal pairs in dimension n− 1.

Let (X,∆) be a kawamata log terminal pair, where X is a Q-factorial

projective variety of dimension n. If KX + ∆ is numerically equivalent to a

divisor D ≥ 0, then any sequence of (KX + ∆)-flips terminates.

(1.1) is a consequence of the following theorem, which was conjectured by

Alexeev [2] and Kollár [22]:

Theorem 1.3. Fix a positive integer n and a set I ⊂ [0, 1] which satisfies

the DCC. Let D be the set of log canonical pairs (X,∆) such that the dimension

of X is n and the coefficients of ∆ belong to I .
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Then there are a constant δ > 0 and a positive integer m with the following

properties :

(1) the set

{vol(X,KX + ∆) | (X,∆) ∈ D}
also satisfies the DCC.

Further, if (X,∆) ∈ D and KX + ∆ is big, then

(2) vol(X,KX + ∆) ≥ δ, and

(3) φm(KX+∆) is birational.

Note that, by convention, φm(KX+∆) = φbm(KX+∆)c. (1.3) was proved for

surfaces in [2]. (1.3) is a generalisation of [15, 1.3], which deals with the case

that (X,∆) is the quotient of a smooth projective variety Y of general type by

its automorphism group.

One of the original motivations for (1.3) is to prove the boundedness of

the moduli functor for canonically polarised varieties; see [26]. We plan to

pursue this application of (1.3) in a forthcoming paper.

To state more results it is convenient to give a simple reformulation of

(1.1):

Theorem 1.4. Fix a positive integer n and a set I ⊂ [0, 1] which satisfies

the DCC.

Then there is a finite subset I0 ⊂ I with the following properties :

If (X,∆) is a log pair such that

(1) X is a variety of dimension n,

(2) (X,∆) is log canonical,

(3) the coefficients of ∆ belong to I , and

(4) there is a non kawamata log terminal centre Z ⊂ X which is contained

in every component of ∆,

then the coefficients of ∆ belong to I0.

(1.4) follows, cf. [33], [20, §18], almost immediately from the existence of

divisorial log terminal modifications and from

Theorem 1.5. Fix a positive integer n and a set I ⊂ [0, 1] which satisfies

the DCC.

Then there is a finite subset I0 ⊂ I with the following properties :

If (X,∆) is a log pair such that

(1) X is a projective variety of dimension n,

(2) (X,∆) is log canonical,

(3) the coefficients of ∆ belong to I , and

(4) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.
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We use finiteness of log canonical models to prove a boundedness result

for log pairs:

Theorem 1.6. Fix a positive integer n and two real numbers δ and ε > 0.

Let D be a set of log pairs (X,∆) such that

• X is a projective variety of dimension n,

• KX + ∆ is ample,

• the coefficients of ∆ are at least δ, and

• the total log discrepancy of (X,∆) is greater than ε.

If D is log birationally bounded, then D is a bounded family.

Log birationally bounded is defined in (3.5.1). We use (1.5) and (1.6) to

prove some boundedness results about Fano varieties.

Corollary 1.7. Fix a positive integer n, a real number ε > 0 and a set

I ⊂ [0, 1] which satisfies the DCC. Let D be the set of all log pairs (X,∆),

where

• X is a projective variety of dimension n,

• the coefficients of ∆ belong to I ,

• the total log discrepancy of (X,∆) is greater than ε,

• KX + ∆ is numerically trivial, and

• −KX is ample.

Then D forms a bounded family.

As a consequence we are able to prove a result on the boundedness of

Fano varieties which was conjectured by Batyrev (cf. [9]):

Corollary 1.8. Fix two positive integers n and r. Let D be the set

of all kawamata log terminal pairs (X,∆), where X is a projective variety of

dimension n and −r(KX + ∆) is an ample Cartier divisor. Then D forms a

bounded family.

Definition 1.9. Let (X,∆) be a log canonical pair, where X is projective

of dimension n and −(KX + ∆) is ample. The Fano index of (X,∆) is the

largest real number r such that we can write

−(KX + ∆) ∼R rH,

where H is a Cartier divisor.

Fix a set I ⊂ [0, 1] and a positive integer n. Let D be the set of log

canonical pairs (X,∆), where X is projective of dimension n, −(KX + ∆) is

ample and the coefficients of ∆ belong to I.

The set

R = Rn(I) = {r ∈ R | r is the Fano index of (X,∆) ∈ D}
is called the Fano spectrum of D.
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Corollary 1.10. Fix a set I ⊂ [0, 1] and a positive integer n. If I

satisfies the DCC, then the Fano spectrum satisfies the ACC.

Corollary 1.10 was proved in dimension 2 in [3] and for R ∩ [n − 2,∞)

in [1].

Now given any set which satisfies the ACC it is natural to try to identify

the accumulation points. (1.1) implies that LCTn(I) = LCTn(I,N) satisfies

the ACC. Kollár (cf. [24], [32], [27]) conjectured that the accumulation points

in dimension n are log canonical thresholds in dimension n− 1:

Theorem 1.11. If 1 is the only accumulation point of I ⊂ [0, 1] and

I = I+, then the accumulation points of LCTn(I) are LCTn−1(I) − {1}. In

particular, if I ⊂ Q, then the accumulation points of LCTn(I) are rational

numbers.

See Section 3.4 for the definition of I+. (1.11) was proved if X is smooth

in [27]. Note that in terms of inductive arguments it is quite useful to identify

the accumulation points, especially to know that they are rational.

Finally, recall

Conjecture 1.12 (Borisov-Alexeev-Borisov). Fix a positive integer n

and a positive real number ε > 0. Let D be the set of all projective varieties X

of dimension n such that there is a divisor ∆ where (X,∆) has log discrepancy

at least ε and −(KX + ∆) is ample. Then D forms a bounded family.

Note that (1.1), (1.4), (1.5), (1.2) and (1.11) are known to follow from

(1.12); cf. [32]. Instead we use birational boundedness of log pairs of general

type; cf. (1.3) to prove these results.

Acknowledgements. We would like to thank Valery Alexeev, János Kollár,

and Vyacheslav Shokurov, as well as the referee, for some helpful comments.

We would also like to thank Osamu Fujino, Kento Fujita and Hiromu Tanaka

for pointing out an error in a previous version of the paper.

2. Description of the proof

Theorem A (ACC for the log canonical threshold). Fix a positive integer

n and a set I ⊂ [0, 1] which satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following property :

If (X,∆) is a log pair such that

(1) X is a variety of dimension n,

(2) (X,∆) is log canonical,

(3) the coefficients of ∆ belong to I , and

(4) there is a non kawamata log terminal centre Z ⊂ X which is contained in

every component of ∆,

then the coefficients of ∆ belong to I0.
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Theorem B (Upper bounds for the volume). Let n ∈ N, and let I ⊂ [0, 1)

be a set which satisfies the DCC. Let D be the set of kawamata log terminal

pairs (X,∆), where X is projective of dimension n, KX + ∆ is numerically

trivial and the coefficients of ∆ belong to I .

Then the set

{vol(X,∆) | (X,∆) ∈ D}
is bounded from above.

Theorem C (Birational boundedness). Fix a positive integer n and a

set I ⊂ [0, 1] which satisfies the DCC. Let B be the set of log canonical pairs

(X,∆), where X is projective of dimension n, KX+∆ is big and the coefficients

of ∆ belong to I .

Then there is a positive integer m such that φm(KX+∆) is birational for

every (X,∆) ∈ B.

Theorem D (ACC for numerically trivial pairs). Fix a positive integer n

and a set I ⊂ [0, 1], which satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following property :

If (X,∆) is a log pair such that

(1) X is projective of dimension n,

(2) the coefficients of ∆ belong to I ,

(3) (X,∆) is log canonical, and

(4) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

The proof of Theorems A, B, C and D proceeds by induction:

• Theorem Dn−1 implies Theorem An; cf. (5.3).

• Theorems Dn−1 and An−1 imply Theorem Bn; cf. (6.2).

• Theorems Cn−1, An−1 and Bn imply Theorem Cn; cf. (7.4).

• Theorems Dn−1 and Cn imply Theorem Dn; cf. (8.1).

2.1. Sketch of the proof. The basic idea of the proof of (1.1) goes back

to Shokurov, and we start by explaining this. Consider the following simple

family of plane curve singularities,

C = (ya + xb = 0) ⊂ C2,

where a and b are two positive integers. A priori, to calculate the log discrep-

ancy c, one should take a log resolution of the pair (X = C2, C), write down

the log discrepancy of every exceptional divisor Ei with respect to the pair

(X, tC) as a function of t, and then find out the largest value c of t for which

all of these log discrepancies are nonnegative. However there is an easier way.

We know that when t = c there is at least one divisor of log discrepancy zero

(and every other divisor has nonnegative log discrepancy). Let π : Y −→ X
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extract just this divisor. To construct π we simply contract all other divisors

on the log resolution.

Almost by definition we can write

KY + E + cD = π∗(KX + cC),

where E is the exceptional divisor and D is the strict transform of C. Restrict

both sides of this equation to E. As the right-hand side is a pullback, we get

a numerically trivial divisor.

To compute the left-hand side we apply adjunction. E is a copy of P1.

One slightly delicate issue is that Y is singular along E, and the adjunction

formula has to take account of this. In fact Y −→ X is precisely the weighted

blow up of X = C2, with weights (a, b), in the given coordinates x, y. There

are two singular points p and q of Y along C, of index a and b, and D intersects

C transversally at another point r. If we apply adjunction, we get

(KY + E + cD)|E = KE +

Å
a− 1

a

ã
p+

Å
b− 1

b

ã
q + cr.

As (KY +E + cD)|E is numerically trivial, we have (KY +E + cD) ·E = 0 so

that
−2 +

a− 1

a
+
b− 1

b
+ c = 0,

and so
c =

1

a
+

1

b
.

Now let us consider the general case. As with the example above the first

step is to extract divisors of log discrepancy zero, π : Y −→ X. To construct

π we mimic the argument above; pick a log resolution for the pair (X,∆ +C),

and contract every divisor whose log discrepancy is not zero. The fact that we

can do this in all dimensions follows from the MMP (minimal model program),

see (3.3.1), and π is called a divisorially log terminal modification.

The next step is the same, restrict to the general fibre of some divisor of

log discrepancy zero; see (5.1). There are similar formulae for the coefficients of

the restricted divisor; see (4.1). In this way, we reduce the problem from a local

one in dimension n to a global problem in dimension n−1; see Section 5. This

explains how to go from Theorem Dn−1 to Theorem An; see the proof of (5.3).

The global problem involves log canonical pairs (X,∆), where X is pro-

jective and KX + ∆ is numerically trivial. One reason that the dimension one

case is easy is that there is only one possibility for X: X must be isomorphic to

P1. In higher dimensions it is not hard, running the MMP again, to reduce to

the case where X has Picard number one, so that at least X is a Fano variety

and ∆ is ample. In this case we perturb ∆ by increasing one of its coefficients

to get a kawamata log terminal pair (X,Λ) such that KX + Λ is ample. We

then exploit the fact that some fixed multiple m(KX + Λ) of KX + Λ gives

a birational map φm(KX+Λ). By definition this means that φbm(KX+Λ)c is a

birational map which, in particular, means that KX + Λbmc (see (3.1) for the
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definition of Λbmc) is big. This forces ∆ ≤ Λbmc, which implies that there are

lots of gaps. This explains how to go from Theorem Cn to Theorem Dn; see

the proof of (8.1).

It is clear then that the main thing to prove is that if (X,∆) is a kawamata

log terminal pair, KX + ∆ is big and the coefficients of ∆ belong to a DCC

set, then some fixed multiple of KX + ∆ gives a birational map φm(KX+∆).

Following some ideas of Tsuji, we developed a fairly general method to prove

such a result in [15]; see (3.5.2) and (3.5.5). We use the technique of cutting

non kawamata log terminal centres as developed in [5]; see [24]. The main

issue is to find a boundary on the non kawamata log terminal centre so that

we can run an induction.

There are two key hypotheses to apply (3.5.5). One of them requires

that the volume of KX + ∆ restricted to appropriate non kawamata log ter-

minal centres is bounded from below. The other places a requirement on the

coefficients of ∆ which is stronger than the DCC.

The first condition follows by induction on the dimension and a strong

version of Kawamata’s subadjunction formula, (4.2), which we now explain. If

(X,Λ) is a log pair and V is a non kawamata log terminal centre such that

(X,Λ) is log canonical at the generic point of V , then one can write

(KX + Λ)|W = KW + Θb + J,

where W is the normalisation of V , Θb is the discriminant divisor and J is the

moduli part. Not much is known about the moduli part J beyond the fact

that it is pseudo-effective. On the other hand, Θb ≥ 0 behaves very well. If

(X,Λ) is log canonical at the generic point of a prime divisor B on W , then the

coefficient of B in Θb is at most one. In fact there is a simple way to compute

the coefficient of B involving the log canonical threshold. By assumption there

is a log canonical place, that is, a valuation with centre V of log discrepancy

zero. Then we can find a divisorially log terminal modification g : Y −→ X

such that the centre of this log canonical place is a divisor S on Y . Note that

there is a commutative diagram

S - Y

W

f

?
- X.

g

?

If we pull back KX + ∆ to Y and restrict to S, we get a divisor Φ′ on S. Let

λ = sup{t ∈ R | (S,Φ′ + tf∗B) is log canonical over a

neighbourhood of the generic point of B}

be the log canonical threshold. Then the coefficient of B in Θb is 1− λ.
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In practice we start with a divisor ∆ whose coefficients belong to I such

that (X,∆) is kawamata log terminal. We then find a divisor ∆0, whose

coefficients we have no control on, and V is a non kawamata log terminal

centre of (X,Λ = ∆ + ∆0). It follows that the coefficients of Φ′ do not behave

well and we have no control on the coefficients of Θb.

To circumvent this we simply mimic the same construction for (X,∆)

rather than (X,Λ). First we construct a divisor Φ on S whose coefficients of

Φ belong to D(I); see (4.1). Then we construct a divisor Θ whose coefficients

automatically belong to the set

{a | 1− a ∈ LCTn−1(D(I))} ∪ {1}.

It is clear from the construction that Θb ≥ Θ, so that if we bound the volume

of KW +Θ from below, we bound the volume of (KX +∆+∆0)|W from below.

On the other hand, as part of the induction we assume that Theorem An−1

holds. Hence LCTn−1(D(I)) satisfies the ACC and the coefficients of Θ belong

to a set which satisfies the DCC. The final step is to observe that if we choose

V to pass through a general point, then it belongs to a family which covers

X. If we assume that V is a general member of such a family then we can

pull back KX + ∆ to this family and restrict to V . It is straightforward to

check that the difference between KW +Θ and (KX +∆)|W on a log resolution

of the family is pseudo-effective (for example, if X and V are smooth, then

this follows from the fact that the first Chern class of the normal bundle is

pseudo-effective), so that if KX + ∆ is big, then so is KW + Θ. In this case we

know the volume is bounded from below by induction.

We now explain the condition on the coefficients. To apply (3.5.5) we

require that either I is a finite set or

I =

ß
r − 1

r

∣∣∣∣ r ∈ N
™
.

The first lemma, (7.2), simply assumes this condition on I, and we deduce the

result in this case.

The key is then to reduce to the case when I is finite. Given any positive

integer p and a log pair (X,∆), let ∆bpc denote the largest divisor less than ∆

such that p∆bpc is integral. Given I it suffices to find a fixed positive integer p

such that if we start with (X,∆) such that KX + ∆ is big and the coefficients

belong to I, then KX + ∆bpc is big since the coefficients of ∆bpc belong to the

finite set ß
i

p

∣∣∣∣ 1 ≤ i ≤ p™ .
Let

λ = inf{t ∈ R |KX + t∆ is big}
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be the pseudo-effective threshold. A simple computation, (7.4), shows that it

suffices to bound λ away from one. Running the MMP we reduce to the case

when X has Picard number one. Since KX + λ∆ is numerically trivial and

kawamata log terminal, Theorem B implies that the volume of ∆ is bounded

away from one. Passing to a log resolution we may assume that (X,D) has

simple normal crossings whereD is the sum of the components of ∆. AsKX+D

is big, then so is KX + r−1
r D for any positive integer r which is sufficiently

large. It follows that some fixed multiple of KX + r−1
r D gives a birational map,

and (3.5.2) implies that (X,D) belongs to log birationally bounded family. In

this case, it is easy to bound the pseudo-effective threshold λ away from one;

see (7.3). This explains how to go from Theorem Bn to Theorem Cn; cf. (7.4).

We now explain the last implication. Suppose that (X,∆) is kawamata

log terminal and KX + ∆ is numerically trivial. If the volume of ∆ is large,

then we may find a divisor Π numerically equivalent to a small multiple of

∆ with large multiplicity at a general point, so that (X,Π) is not kawamata

log terminal. In particular, we may find Φ arbitrarily close to ∆ such that

(X,Φ) is not kawamata log terminal. The key lemma is to show that this is

impossible, (6.1). By assumption we may extract a divisor S of log discrepancy

zero with respect to (X,Φ). After we run the MMP we get down a log pair

(Y, S + Γ) where Γ is the strict transform of ∆ and both KY + S + Γ and

−(KY + S + (1− ε)Γ) are ample. Here ε > 0 is arbitrarily close to zero. If we

restrict to S and apply adjunction, it is easy to see that this contradicts either

ACC for the log canonical threshold or ACC for numerically trivial pairs. This

explains how to go from Theorems Dn−1 and An−1 to Theorem Bn; cf. (6.2).

It is interesting to note that if (X,∆) is log canonical, then there is no

bound on the volume of ∆:

Example 2.1.1. Let X be the weighted projective surface P(p, q, r), where

p, q and r are three positive integers, and let ∆ be the sum of the three

coordinate lines. Then KX + ∆ ∼Q 0 and

vol(X,∆) =
(p+ q + r)2

pqr
.

But the set ®
(p+ q + r)2

pqr

∣∣∣∣ (p, q, r) ∈ N3

´
is dense in the positive real numbers; cf. [19, 22.5].

We now explain the proof of (1.11), which mirrors the proof of (1.1). We

are given a sequence of log pairs (X,∆) = (Xi,∆i), and we want to identify

the limit points of the log canonical thresholds. The first step is to show that

the set of log canonical thresholds is essentially the same as the set of pseudo-

effective thresholds. In Section 5 we show that every log canonical threshold
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in dimension n+ 1 is a numerically trivial threshold in dimension n. To show

the reverse inclusion, one takes the cone (Y,Γ) over a log canonical pair (X,∆)

where KX + ∆ is numerically trivial; (11.5).

In this way we are reduced to looking at log canonical pairs (X,∆) such

that KX + ∆ is numerically trivial. The basic idea is to generate a component

of coefficient one and apply adjunction. To this end, we need to deal with the

case where some coefficients of ∆ do not necessarily belong to I but instead

they are increasing towards one; (11.7).

Running the MMP we reduce to the case of Picard number one, Case A,

Step 1 and Case B, Steps 3 and 5. We may also assume that the non kawa-

mata log terminal locus is a divisor. In particular, −KX is ample, any two

components of ∆ intersect and we may assume that the number of components

of ∆ is constant; (11.6). If (X,∆) is not kawamata log terminal, then there is

a component of coefficient one and we are done; Case B, Step 2.

The argument now splits into two cases. Case A deals with the case that

the coefficients of ∆ are bounded away from one. In this case if the volume of

∆ is arbitrarily large, then we can create a component of coefficient one and we

reduce to the other case, Case B. Otherwise (1.6) implies that (X,∆) belongs

to a bounded family, which contradicts the fact that the coefficients of ∆ are

not constant.

So we may assume we are in Case B, namely that some of the coefficients

of the components of ∆ are approaching one. We decompose ∆ as A+B +C

where the coefficients of A are approaching one, the coefficients of B are fixed,

and we are trying to identify the limit of the coefficients of C. Using the fact

that the Picard number of X is one, we may increase the coefficients of A to one

and decrease the coefficients of C, without changing the limit of the coefficients

of C. At this point we apply adjunction and induction; Case B, Step 6.

3. Preliminaries

3.1. Notation and Conventions. If D =
∑
diDi is an R-divisor on a nor-

mal variety X, then the round down of D is bDc =
∑bdicDi, where bdc denotes

the largest integer which is at most d, the fractional part ofD is {D} = D−bDc,
and the round up of D is dDe = −b−Dc. If m is a positive integer, then let

Dbmc =
bmDc
m

.

Note that Dbmc is the largest divisor less than or equal to D such that mDbmc
is integral.

The sheaf OX(D) is defined by

OX(D)(U) = {f ∈ K(X) | (f)|U +D|U ≥ 0},
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so that OX(D) = OX(bDc). Similarly, we define |D| = |bDc|. If X is normal

and D is an R-divisor on X, the rational map φD associated to D is the rational

map determined by the restriction of bDc to the smooth locus of X.

We say that D is R-Cartier if it is a real linear combination of Cartier

divisors. If f : Y −→ X is a morphism, then D|Y denotes the pullback of D

to Y , f∗D. In general, D|Y is only well defined up to R-linear equivalence.

However, if f(Y ) is not contained in the support of D, then D|Y is a well-

defined R-Cartier divisor. An R-Cartier divisor D on a normal variety X is

nef if D ·C ≥ 0 for any curve C ⊂ X. We say that two R-divisors D1 and D2

are R-linearly equivalent, denoted D1 ∼R D2, if the difference is an R-linear

combination of principal divisors.

A log pair (X,∆) consists of a normal variety X and a R-Weil divisor

∆ ≥ 0 such that KX + ∆ is R-Cartier. The support of ∆ =
∑
i∈I diDi (where

di 6= 0) is the sum D =
∑
i∈I Di. If (X,∆) has simple normal crossings,

a stratum of (X,∆) is an irreducible component of the intersection ∩j∈JDj ,

where J is a nonempty subset of I. (In particular, a stratum of (X,∆) is always

a proper closed subset of X.) If we are given a morphism X −→ T , then we say

that (X,∆) has simple normal crossings over T if (X,∆) has simple normal

crossings and both X and every stratum of (X,D) is smooth over T . We say

that the birational morphism f : Y −→ X only blows up strata of (X,∆), if f

is the composition of birational morphisms fi : Xi+1 −→ Xi, 1 ≤ i ≤ k, with

X = X0, Y = Xk+1, and fi is the blow up of a stratum of (Xi,∆i), where ∆i

is the sum of the strict transform of ∆ and the exceptional locus.

A log resolution of the pair (X,∆) is a projective birational morphism

µ : Y −→ X such that the exceptional locus is the support of a µ-ample divisor

and (Y,G) has simple normal crossings, where G is the support of the strict

transform of ∆ and the exceptional divisors. If we write

KY + Γ +
∑

biEi = µ∗(KX + ∆),

where Γ is the strict transform of ∆, then bi is called the coefficient of Ei
with respect to (X,∆). The log discrepancy of Ei is a(Ei, X,∆) = 1 − bi.

The log discrepancy of (X,∆) is the infimum over all log resolutions of the

log discrepancy of any exceptional divisor. The total log discrepancy of (X,∆)

is the minimum of the log discrepancy of (X,∆) and 1 − a where a ranges

over the coefficients of the components of ∆. The pair (X,∆) is kawamata

log terminal (respectively log canonical ; purely log terminal ; divisorially log

terminal) if bi < 1 for all i and b∆c = 0 (respectively bi ≤ 1 for all i and for

all log resolutions; bi < 1 for all i and for all log resolutions; the coefficients of

∆ belong to [0, 1] and there exists a log resolution such that bi < 1 for all i).

A non kawamata log terminal centre is the centre of any valuation associ-

ated to a divisor Ei with bi ≥ 1. In this paper, we only consider valuations ν

of X whose centre on some birational model Y of X is a divisor.
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Now suppose that X is a normal variety and KX + ∆ is R-Cartier (so

that we drop the condition that ∆ ≥ 0 in the definition of a log pair). Pick a

projective birational morphism µ : Y −→ X so that the strict transform of ∆

and the exceptional locus has global normal crossings. If we write

KY + Ξ = µ∗(KX + ∆)

and all of the coefficients of Ξ are at most one, then we say that (X,∆) is sub

log canonical. Note that it might not be possible to find a log canonical pair

(X,∆′) such that ∆ ≤ ∆′, contrary to what might be suggested by the prefix

sub.

We now introduce some results, some of which are well known to experts

but which are included for the convenience of the reader.

3.2. The volume.

Definition 3.2.1. Let X be an irreducible projective variety of dimension

n, and let D be an R-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

We say that D is big if vol(X,D) > 0.

For more background, see [31].

Lemma 3.2.2. Let X be a projective variety, and let (X,∆) be a log pair.

If D is an R-divisor and vol(X,D) > nn, then for every point x ∈ X , we may

find Π ∼R D such that (X,∆ + Π) is not kawamata log terminal at x ∈ X .

Proof. Arguing as in the proof of [24, 6.7.1] we may assume that x ∈ X
is a general point so that, in particular, x is a smooth point of X. As the

volume is a continuous function of D we may assume that D is a Q-divisor,

[30, 2.2.44]. The result then follows as in the proof of [24, 6.1]. �

Lemma 3.2.3. Let X be a quasi-projective Q-factorial variety, and let

(X,∆) be a kawamata log terminal pair. If (X,∆ + D) is not log canonical,

where D ≥ 0 is big, then we may find 0 ≤ D′ ∼R tD for some 0 < t < 1 such

that (X,∆ +D′) has exactly one log canonical place.

Proof. As (X,∆ + D) is not log canonical we may find δ > 0 such that

(X,∆ + (1 − δ)D) is not log canonical. As D is big we may find divisors

A ≥ 0 and B ≥ 0 such that D ∼R A + B and A is ample. Replacing D by

(1− δ)D+ δA+ δB we may assume that there is an ample divisor A ≥ 0 such

that D ≥ A.

Let

π : Y −→ X
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be a log resolution. We may write

KY + Γ +
∑

aiEi = π∗(KX + ∆ + tD),

where Γ is the strict transform of ∆ and ai are linear functions of t. By

assumption ai < 1 when t = 0 and there is an index i such that ai > 1 when

t = 1. It follows that we may find t ∈ (0, 1) such that ai ≤ 1 for all indices

with equality for at least one index i. Possibly using A to tie-break, see [24],

we may assume that there is at most one index i such that ai = 1. �

3.3. Divisorially log terminal modifications. If (X,∆) is not kawamata log

terminal, then we may find a modification which is divisorially log terminal,

so that the non kawamata log terminal locus is a divisor.

Proposition 3.3.1. Let (X,∆) be a log pair where X is a variety and the

coefficients of ∆ belong to [0, 1]. Then there is a projective birational morphism

π : Y −→ X such that

(1) Y is Q-factorial ;

(2) π only extracts divisors of log discrepancy at most zero;

(3) if E =
∑
Ei is the sum of the π-exceptional divisors and Γ is the strict

transform of ∆, then (Y,Γ + E) is divisorially log terminal and

KY + E + Γ = π∗(KX + ∆) +
∑

a(Ei,X,B)<0

a(Ei, X,B)Ei;

(4) further, if (X,∆) is log canonical and S is a component of ∆, then there

is a nef divisor of the form −T−F , where T is the strict transform of S

and F ≥ 0 is a sum of exceptional divisor whose centres are contained

in S.

Any birational morphism π : Y −→ X satisfying (1)–(3) is called a divisorially

log terminal modification.

Proof. The proof of (1)–(3) is due to the first author and can be found in

[13], [28, 3.1] and also [4].

Now suppose that (X,∆) is log canonical and S is a component of ∆. In

this case

KY + E + Γ = π∗(KX + ∆).

Pick ε > 0 so that Γ − εT ≥ 0. Note that (Y,E + Γ − εT ) is divisorially

log terminal, as Y is Q-factorial and (Y,E + Γ) is divisorially log terminal.

By Theorem 1.1 of [7] or by Theorem 1.6 of [16], we may replace Y by a log

terminal model of (Y,E + Γ − εT ) over X, gaining the fact that −T is nef

over X, at the expense of temporarily losing the property that (Y,Γ + E) is

divisorially log terminal, whilst preserving the condition that KY + E + Γ is

log canonical and numerically trivial over X. If g : W −→ Y is a divisorially
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log terminal modification of (Y,Γ + E) and we replace Y by W , then g∗(−T )

is a nef divisor over X of the correct form. �

3.4. DCC sets. We say that a set I of real numbers satisfies the descending

chain condition or DCC if it does not contain any infinite strictly decreasing

sequence. For example,

I =

ß
r − 1

r

∣∣∣∣ r ∈ N
™

satisfies the DCC. Let I ⊂ [0, 1]. We define

I+ := {0} ∪

j ∈ [0, 1]

∣∣∣∣ j =
l∑

p=1

ip, for some i1, i2, . . . , il ∈ I


and

D(I) :=

ß
a ≤ 1

∣∣∣∣ a =
m− 1 + f

m
,m ∈ N, f ∈ I+

™
.

As usual, I denotes the closure of I. Note that the set D(I) appears when

we apply adjunction, (4.1).

Proposition 3.4.1. Let I ⊂ [0, 1].

(1) D(D(I)) = D(I) ∪ {1}.
(2) I satisfies the DCC if and only if I satisfies the DCC.

(3) I satisfies the DCC if and only if D(I) satisfies the DCC.

Proof. Straightforward; see, for example, [32, 4.4]. �

3.5. Bounded pairs. We recall some results and definitions from [15], stated

in a convenient form.

Definition 3.5.1. We say that a set X of varieties is birationally bounded if

there is a projective morphism Z −→ T , where T is of finite type, such that for

every X ∈ X, there is a closed point t ∈ T and a birational map f : Zt 99K X.

We say that a set D of log pairs is log birationally bounded (respectively

bounded) if there is a log pair (Z,B), where the coefficients of B are all one, and

a projective morphism Z −→ T , where T is of finite type, such that for every

(X,∆) ∈ D, there is a closed point t ∈ T and a birational map f : Zt 99K X
(respectively isomorphism of varieties) such that the support of Bt is not the

whole of Zt and yet Bt contains the support of the strict transform of ∆ and

any f -exceptional divisor (respectively f(Bt) = ∆).

Theorem 3.5.2. Fix a positive integer n and a set I ⊂ [0, 1] ∩ Q which

satisfies the DCC. Let B0 be a set of log canonical pairs (X,∆), where X is

projective of dimension n, KX + ∆ is big and the coefficients of ∆ belong to I .
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Suppose that there is a constant M such that for every (X,∆) ∈ B0 there

is a positive integer k such that φk(KX+∆) is birational and

vol(X, k(KX + ∆)) ≤M.

Then the set

{vol(X,KX + ∆) | (X,∆) ∈ B0}
satisfies the DCC.

Proof. Follows from (2.3.4), (3.1) and (1.9) of [15]. �

Recall

Definition 3.5.3. Let X be a normal projective variety, and let D be a big

Q-Cartier Q-divisor on X. If x and y are two general points of X then, possibly

switching x and y, we may find 0 ≤ ∆ ∼Q (1− ε)D for some 0 < ε < 1, where

(X,∆) is not kawamata log terminal at y, (X,∆) is log canonical at x and

{x} is a non kawamata log terminal centre. Then we say that D is potentially

birational.

Note that this is a slight variation on the definition which appears in [15],

where general is replaced by very general.

Theorem 3.5.4. Let (X,∆) be a kawamata log terminal pair, where X

is projective of dimension n, and let H be an ample Q-divisor. Suppose there

are a constant γ ≥ 1 and a family of subvarieties V −→ B with the following

property.

If x and y are two general points of X then, possibly switching x and y, we

can find b ∈ B and 0 ≤ ∆b ∼Q (1−δ)H , for some δ > 0, such that (X,∆+∆b)

is not kawamata log terminal at y and there is a unique non kawamata log

terminal place of (X,∆ + ∆b) whose centre Vb contains x. Further there is

a divisor D on W , the normalisation of Vb, such that φD is birational and

γH|W −D is pseudo-effective.

Then mH is potentially birational, where m = 2p2γ + 1 and p = dimVb.

Proof. Let x and y be two general points of X. Possibly switching x and y,

we will prove by descending induction on k that there is a Q-divisor ∆0 ≥ 0

such that

([)k ∆0 ∼Q λH for some λ < 2(p−k)pγ+1, where (X,∆+∆0) is log canon-

ical at x, not kawamata log terminal at y and there is a non kawamata

log terminal centre Z ⊂ Vb of dimension at most k containing x.

Suppose k = p. (X,∆+∆b) is not kawamata log terminal but log canonical

at x since there is a unique non kawamata log terminal place whose centre

contains x. Thus ∆0 = ∆b ∼Q λH, where λ = 1− δ < 1 satisfies ([)k, and so

this is the start of the induction.
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Now suppose that we may find a Q-divisor ∆0 satisfying ([)k. We may

assume that Z is the minimal non kawamata log terminal centre containing x

and that Z has dimension k. Let Y ⊂W be the inverse image of Z. As x is a

general point of X, it is also a general point of W , Y and Z. In particular, the

restriction of γH|W − D to Y is pseudo-effective, Y −→ Z is birational, and

as φD is birational and x is general, the restriction of φD to Y is birational.

Thus

vol(Y, γH|Y ) ≥ vol(Y,D|Y ) ≥ 1,

where the last inequality is proved, for example, in [14, 2.2]. Note that

vol(Z, γH|Z) = vol(Y, γH|Y ),

as H is nef; see, for example, [23, VI.2.15]. Thus

vol(Z, 2pγH|V ) > vol(Z, 2kγH|V ) ≥ 2kk,

so that by [15, 2.3.5], we may find ∆1 ∼Q µH, where µ < 2pγ and constants

0 < ai ≤ 1 such that (X,∆+a0∆0 +a1∆1) is log canonical at x, not kawamata

log terminal at y and there is a non kawamata log terminal centre Z ′ containing

x, whose dimension is less than k. As

a0∆0 + a1∆1 ∼Q (a0λ+ a1µ)H

and

λ′ = a0λ+ a1µ < 2(p− k)pγ + 1 + 2pγ = 2(p− (k − 1))pγ + 1,

a0∆0 + a1∆1 satisfies ([)k−1. This completes the induction and the proof. �

Theorem 3.5.5. Fix a positive integer n. Let B0 be a set of kawamata

log terminal pairs (X,∆), where X is projective of dimension n and KX + ∆

is ample.

Suppose that there are positive integers p, k and l such that for every

(X,∆) ∈ B0, we have

(1) There is a family of subvarieties V −→ B such that if x and y are two

general points of X then, possibly switching x and y, we can find b ∈ B
and 0 ≤ ∆b ∼Q (1 − δ)H , for some δ > 0, such that (X,∆ + ∆b) is

not kawamata log terminal at y and there is a unique non kawamata log

terminal place of (X,∆ + ∆b) whose centre Vb contains x, where H =

k(KX + ∆). Further, there is a divisor D on W , the normalisation of Vb,

such that φD is birational and lH|W −D is pseudo-effective.

(2) Either p∆ is integral or the coefficients of ∆ belong toß
r − 1

r

∣∣∣∣ r ∈ N
™
.

Then there is a positive integer m such that φmk(KX+∆) is birational for every

(X,∆) ∈ B0.
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Proof. Let m0 = 2(n − 1)2l + 1. (3.5.4) implies that m0H is potentially

birational. But then [15, 2.3.4.1] implies that φKX+dm0jHe is birational for all

positive integers j.

If p∆ is integral, then

KX + dm0kp(KX + ∆)e = b(m0kp+ 1)(KX + ∆)c,

and if the coefficients of ∆ belong toß
r − 1

r

∣∣∣∣ r ∈ N
™
,

then
KX + dm0kp(KX + ∆)e = b(m0kp+ 1)(KX + ∆)c.

Let m = (m0 + 1)p. �

4. Adjunction

We will need the following basic result about adjunction. (See, for exam-

ple, Section 6 in [20].)

Lemma 4.1. Let (X,∆ = S′ + B) be a log canonical pair, where S′ has

coefficient one in ∆. If S is the normalisation of S′, then there is a divisor

Θ = DiffS(B) on S such that

(KX + ∆)|S = KS + Θ.

(1) If (X,∆) is purely log terminal, then (S,Θ) is kawamata log terminal.

(2) If (X,∆) is divisorially log terminal, then (S,Θ) is divisorially log terminal.

(3) If B=
∑
biBi, then the coefficients of Θ belong to the set D({b1, b2, . . . , bm}).

In particular, if (X,∆) is divisorially log terminal and the coefficients of B

belong to the set I , then the coefficients of Θ belong to the set D(I).

Theorem 4.2. Let I be a subset of [0, 1] which contains 1. Let X be a

projective variety of dimension n, and let V be an irreducible closed subvari-

ety, with normalisation W . Suppose we are given a log pair (X,∆) and an

R-Cartier divisor ∆′ ≥ 0, with the following properties :

(1) the coefficients of ∆ belong to I ;

(2) (X,∆) is kawamata log terminal ; and

(3) there is a unique non kawamata log terminal place ν for (X,∆ + ∆′), with

centre V .

Then there is a divisor Θ on W whose coefficients belong to

{a | 1− a ∈ LCTn−1(D(I))} ∪ {1}
such that the difference

(KX + ∆ + ∆′)|W − (KW + Θ)

is pseudo-effective.
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Now suppose that V is the general member of a covering family of subva-

rieties of X . Let ψ : U −→ W be a log resolution of W , and let Ψ be the sum

of the strict transform of Θ and the exceptional divisors. Then

KU + Ψ ≥ (KX + ∆)|U .

Proof. Since there is a unique non kawamata log terminal place with centre

V , it follows that (X,∆+∆′) is log canonical but not kawamata log terminal at

the generic point of V ; see (2.31) of [29]. Let g : Y −→ X be a divisorially log

terminal modification of (X,∆+∆′), (3.3.1), so that the centre of ν is a divisor

S on Y and this is the only exceptional divisor with centre V . As (X,∆ + ∆′)

is divisorially log terminal, S is normal and so there is a commutative diagram

S - Y

W

f

?
- X.

g

?

We may write

KY + S + Γ = g∗(KX + ∆) +E and KY + S + Γ + Γ′ = g∗(KX + ∆ + ∆′),

where Γ is the sum of the strict transform of ∆ and the exceptional divisors,

apart from S. In particular, the coefficients of Γ belong to I. As (X,∆) is

kawamata log terminal, E ≥ 0. As g is a divisorially log terminal modification

of (X,∆+∆′), Γ′ ≥ 0 and (Y, S+Γ) is divisorially log terminal. We may write

(KY + S + Γ)|S = KS + Φ and (KY + S + Γ + Γ′)|S = KS + Φ′.

Note that the coefficients of Φ belong to D(I). Let B be a prime divisor on

W . Let

µ = sup{t ∈ R | (S,Φ + tf∗B) is log canonical over a

neighbourhood of the generic point of B}

be the log canonical threshold over a neighbourhood of the generic point of B.

We define Θ by

multB(Θ) = 1− µ.

It is clear that the coefficients of Θ belong to

{a | 1− a ∈ LCTn−1(D(I))} ∪ {1}.

Let

λ = sup{t ∈ R | (S,Φ′ + tf∗B) is log canonical over a

neighbourhood of the generic point of B}
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be the log canonical threshold over a neighbourhood of the generic point of B.

We define a divisor Θb on W by

multB(Θb) = 1− λ.

As Γ′ ≥ 0, we have Φ ≤ Φ′, so that λ ≤ µ. But then

Θ ≤ Θb.

Note that Θb is precisely the divisor defined in Kawamata’s subadjunction

formula; see Theorems 1 and 2 of [18] and also (8.5.1) and (8.6.1) of [25]. It

follows that the difference

(KX + ∆ + ∆′)|W − (KW + Θb)

is pseudo-effective, so that the difference

(KX + ∆ + ∆′)|W − (KW + Θ)

is certainly pseudo-effective.

Now suppose that V is the general member of a covering family of subva-

rieties of X; that is, suppose we are given a closed subvariety R0 of the Hilbert

scheme H such that if π : Z0 −→ R0 is the normalisation of the restriction

of the universal family and h0 : Z0 −→ X is the natural morphism, then h0

is dominant. We are going to show that there is an open subset U0 ⊂ R0

such that if V is the fibre over a point of U0 and U is a log resolution of the

normalisation W , then

KU + Ψ ≥ (KX + ∆)|U ;

that is, we will show that the inequality holds if V is a general point of R0.

We first relate the definition of Θ, which uses the log canonical threshold

on S, to a log canonical threshold on X. Let B be a prime divisor on W , and

let A be its image on V . Pick any Q-divisor H ≥ 0 on X which is Q-Cartier in

a neighbourhood of the generic point of A and which does not contain V such

that

multB(H|W ) = 1.

We have

KY + S + Γ + tg∗H = g∗(KX + ∆ + tH) + E,

and so

(KY + S + Γ + tg∗H)|S = KS + Φ + tf∗B

over a neighbourhood of the generic point of B. Now if (X,∆ + tH) is not log

canonical in a neighbourhood of the generic point of A, then KY +S+Γ+tg∗H

is not log canonical over a neighbourhood of the generic point of B. Inversion

of adjunction on Y , cf. [17], implies that KY + S + Γ + tg∗H is log canonical
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over a neighbourhood of the generic point of B if and only if KS + Φ + tf∗B is

log canonical over a neighbourhood of the generic point of B. It follows that if

µ = sup{t ∈ R | (S,Φ + tf∗B) is log canonical over a

neighbourhood of the generic point of B},

the log canonical threshold of f∗B over a neighbourhood of the generic point

of B, and

ξ = sup{t ∈ R | (X,∆ + tH) is log canonical at the generic point of A},

the log canonical threshold of H at the generic point of A, then µ ≤ ξ.
Let k be the dimension of the general fibre of h0. Pick a very ample

divisor G, and let P1, P2, . . . , Pk be general lines in the linear system |G|; that

is, pick general pencils P1, P2, . . . , Pk. Given general elements Hi ∈ Pi of each

pencil, let R = R0 ∩ H1 ∩ H2 ∩ · · · ∩ Hk ⊂ R0. If Z −→ R is the restriction

of the normalisation of the universal family, then Z is normal and the natural

morphism h : Z −→ X is generically finite. We will prove that the inequality

KU + Ψ ≥ (KX + ∆)|U

holds for V general in R. By a standard argument it then follows that the

inequality

KU + Ψ ≥ (KX + ∆)|U
holds for V general in R0.

We may write

KZ + Ξ = h∗(KX + ∆).

Possibly blowing up, we may assume that (Z,Ξ) has simple normal crossings

over a dense open subset R1 of R. Let U be the fibre of π corresponding to

W . As V is a general member of R0, we may assume that r = π(U) ∈ R1

and so (U,Ξ|U ) has simple normal crossings. As the coefficients of Ξ|U are at

most one, it follows that (U,Ξ|U ) is sub log canonical. Therefore it is enough

to check that

KU + Ψ ≥ (KX + ∆)|U = KU + Ξ|U
on the given model and, in fact, we just have to check that Ψ ≥ Ξ|U .

Let C be a prime divisor on U . If multC Ξ|U ≤ 0, there is nothing to prove

as Ψ ≥ 0. If C is an exceptional divisor of U −→ V , then multC Ψ = 1 and

there is again nothing to prove as multC Ξ|U ≤ 1.

Otherwise pick a prime component G of Ξ such that multC(G|U ) = 1.

If h(G) is a divisor, then let H = h(G)/e where e is the ramification index

at G. Note that the pullback of H to W is Q-Cartier in a neighbourhood of

the generic point of B = ψ(C). Otherwise, pick a Q-Cartier divisor H ≥ 0,
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which does not contain V , such that multG(h∗H) = 1. Either way, as r ∈ R is

general, it follows that multC(h∗H|U ) = 1. But then

multB(H|W ) = multC(h∗H|U ) = 1.

We may write

KZ + Ξ + ξh∗H = h∗(KX + ∆ + ξH).

As (X,∆ + ξH) is log canonical in a neighbourhood of the generic point of B,

KZ + Ξ + ξh∗H is sub log canonical in a neighbourhood of the generic point

of C. Note that in a neighbourhood of the generic point of C,

(KZ + Ξ + ξh∗H)|U = KU + Ξ|U + ξC + J,

where J ≥ 0. As r is a general point of R, (U,Ξ|U +ξC+J) is sub log canonical

in a neighbourhood of the generic point of C. It follows that

multC Ξ|U + ξ ≤ 1,

so that

multC Ψ = multB Θ = 1− µ ≥ 1− ξ ≥ multC Ξ|U .
Thus Ψ ≥ Ξ|U . �

5. Global to local

Lemma 5.1. Fix a positive integer n and a set 1 ∈ I ⊂ [0, 1]. Suppose

(X,∆) is a log canonical pair where X is a variety of dimension n + 1, the

coefficients of ∆ belong to I and there is a non kawamata log terminal centre

V ⊂ X . Suppose that c ∈ I is the coefficient of some component M of ∆ which

contains V .

Then we may find a log canonical pair (S,Θ) where S is a projective

variety of dimension at most n, the coefficients of Θ belong to D(I), KS + Θ

is numerically trivial and some component of Θ has coefficient

m− 1 + f + kc

m
,

where m, k ∈ N and f ∈ D(I).

Proof. Possibly passing to an open subset of X and replacing V by a

maximal (with respect to inclusion) non kawamata log terminal centre, we

may assume that X is quasi-projective. If V is a divisor, then M = V is a

component of ∆ with coefficient one so that c = 1. As 1 ∈ I, we may take

(S,Θ) = (P1, p+ q), where p and q are two points of P1.

Otherwise, let π : Y −→ X be a divisorially log terminal modification of

(X,∆). Then Y is Q-factorial and we may write

KY + E + Γ = π∗(KX + ∆),
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where Γ is the strict transform of ∆, E is the sum of the exceptional divisors

and the pair (Y,E + Γ) is divisorially log terminal. By (4) of (3.3.1) we may

choose π so that there is a nef divisor of the form −N − F , where N is the

strict transform of M and F ≥ 0 is a sum of exceptional divisors whose centres

are contained in M .

By assumption π is not an isomorphism over the generic point of V . It

follows that N must intersect an exceptional divisor S of π whose centre is V .

We may write

(KY + E + Γ)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal, the coefficients of Θ

belong to D(I) and some component of Θ has a coefficient of the form

m− 1 + f + kc

m
,

where m, k ∈ N and f ∈ D(I). Note that N ∩ S dominates V . If v ∈ V is

a general point, then (Sv,Θv) is divisorially log terminal, Sv is projective of

dimension at most n, the coefficients of Θv belong to D(I), some component

of Θv has a coefficient of the form

m− 1 + f + kc

m
,

and KSv + Θv is numerically trivial. �

Lemma 5.2. Let I ⊂ [0, 1] be a set which satisfies the DCC. If J0 ⊂ [0, 1]

is a finite set, then

I0 =

ß
c ∈ I

∣∣∣∣ m− 1 + f + kc

m
∈ J0, for some k, m ∈ N and f ∈ D(I)

™
is a finite set.

Proof. We may assume that c 6= 0. Suppose that

l =
m− 1 + f + kc

m
∈ J0.

Then kc ≤ 1. As I satisfies the DCC, we may find δ > 0 such that c > δ. It

follows that k < 1/δ so that k can take on only finitely many values. As J0 is

finite, we may find ε > 0 such that if l < 1, then l < 1 − ε. But then m < 1
ε .

If l = 1, then f + kc = 1, in which case we may take m = 1. Either way, we

may assume that m takes on only finitely many values.

Fix k, m and l. Then

c =
(ml −m+ 1)− f

k
.

The left-hand side belongs to I, a set which satisfies the DCC. The right-hand

side belongs to a set which satisfies the ACC. But the only set which satisfies

both the DCC and the ACC is a finite set. �
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Lemma 5.3. Theorem Dn−1 implies Theorem An.

Proof. As I satisfies the DCC, so does J = D(I). As we are assuming

Theorem Dn−1, there is a finite set J0 ⊂ J such that if (S,Θ) is a log canonical

pair where S is projective of dimension at most n − 1, the coefficients of Θ

belong to J and KS +Θ is numerically trivial, then the coefficients of Θ belong

to J0. Let

I0 =

ß
c ∈ I

∣∣∣∣ m− 1 + f + kc

m
∈ J0 for some k and m ∈ N and f ∈ I+

™
.

As J0 is a finite set, (5.2) implies that I0 is also a finite set.

Suppose that (X,∆) is a log canonical pair where X is a quasi-projective

variety of dimension n, the coefficients of ∆ belong to I, and there is a non

kawamata log terminal centre Z ⊂ X which is contained in every component

of ∆. (5.1) implies that the coefficients of ∆ belong to I0. �

6. Upper bounds on the volume

Lemma 6.1. Using the notation of Theorem Bn, Theorems Dn−1 and

An−1 imply that there is a constant ε > 0 with the following property :

If (X,∆) ∈ D, where X has dimension n, ∆ is big and KX + Φ is numer-

ically trivial, where

Φ ≥ (1− δ)∆
for some δ < ε, then (X,Φ) is kawamata log terminal.

Proof. Theorems Dn−1 and An−1 imply that we may find ε > 0 with the

following property: if S is a projective variety of dimension n− 1, (S,Θ) and

(S,Θ′) are two log pairs, the coefficients of Θ belong to D(I), and

(1− ε)Θ ≤ Θ′ ≤ Θ,

then (S,Θ) is log canonical if (S,Θ′) is log canonical, and moreover Θ = Θ′ if,

in addition, KS + Θ′ is numerically trivial.

Suppose that (X,Φ) is not kawamata log terminal, where

Φ ≥ (1− δ)∆

for some δ < ε and KX + Φ is numerically trivial. As δ < ε and Φ is big

we may assume that KX + Φ is not log canonical. Pick λ ∈ (0, 1] such that

(X, (1−λ)∆+λΦ) is log canonical but not kawamata log terminal. As Φ is big,

δ < ε and (X,∆) is kawamata log terminal, (3.2.3) implies that, perturbing Φ,

we may assume (X, (1 − λ)∆ + λΦ) has only one non kawamata log terminal

place.

Replacing Φ by (1 − λ)∆ + λΦ we may assume that (X,Φ) is purely

log terminal and the non kawamata log terminal locus is irreducible. Let
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φ : Y −→ X be a divisorially log terminal modification of (X,Φ). We may

write

KY + Ψ = φ∗(KX + Φ) and KY + Γ + aS = φ∗(KX + ∆),

where S = bΨc is a prime divisor, Γ is the strict transform of ∆ and a < 1, as

(X,∆) is kawamata log terminal.

As KY + Ψ is numerically trivial, KY + Ψ− S is not pseudo-effective. By

[8, 1.3.3], we may run f : Y 99KW the (KY +Ψ−S)-MMP until we end with a

Mori fibre space π : W −→ Z. As KY + Ψ is numerically trivial, every step of

this MMP is S-positive, so that the strict transform T of S dominates Z. Let

F be the general fibre of π. Replacing Y , Γ and Ψ by F and the restriction of

π∗Γ and π∗Ψ to F , we may assume that S, Ψ and Γ are Q-linearly equivalent

to multiples of the same ample divisor.

In particular, KY + Γ + S is ample. As Ψ ≥ (1− ε)Γ + S, it follows that

KY +(1−η)Γ+S is numerically trivial, for some 0 < η < ε, andKY +(1−ε)Γ+S

is log canonical. We may write

(KY + (1− ε)Γ + S)|S = KS + Θ1,

(KY + (1− η)Γ + S)|S = KS + Θ2, and

(KY + Γ + S)|S = KS + Θ,

where the coefficients of Θ belong to D(I). Note that

(1− ε)Θ ≤ Θ1 ≤ Θ2 ≤ Θ,

where by (4.1) the first inequality follows from the inequality

t

Å
m− 1 + f

m

ã
≤ m− 1 + tf

m
for any t ≤ 1.

As (S,Θ1) is log canonical, it follows that (S,Θ) is log canonical. In particular,

(S,Θ2) is also log canonical. As KS + Θ2 is numerically trivial, Θ = Θ2, a

contradiction. �

Lemma 6.2. Theorems Dn−1 and An−1 imply Theorem Bn.

Proof. Let ε > 0 be the constant given by (6.1). If (X,∆) ∈ D, ∆ is

big, Π ∼R η∆ and (X,Π + (1− η)∆) is not kawamata log terminal, then (6.1)

implies that η ≥ ε. But then (3.2.2) implies that

vol(X,∆) ≤
Å
n

ε

ãn
. �

7. Birational boundedness

Lemma 7.1. Let (X,∆) be a log pair, where X is a projective variety of

dimension n, and let D be a big R-divisor.
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If vol(X,D) > (2n)n, then there is a family V −→ B of subvarieties of X

such that if x and y are two general points of X , then we may find b ∈ B and

0 ≤ ∆b ∼R D such that (X,∆ + ∆b) is not kawamata log terminal at y and

there is a unique non kawamata log terminal place of (X,∆+∆b) whose centre

Vb contains x. Further, if B1, B2, . . . , Bk are the irreducible components of B

and Vi −→ Bi is the corresponding family, then the natural map Vi −→ X is

dominant.

Proof. Let K be the algebraic closure of the function field of X. There is

a fibre square
XK

- X

SpecK
?

- Spec k.
?

Let ξ be the closed point of XK corresponding to the generic point of X,

and let ∆K and DK be the pullbacks of ∆ and D to XK . (3.2.2) implies that

we may find 0 ≤ Dξ ∼R DK/2 such that (XK ,∆K +Dξ) is not log canonical at

ξ. By standard arguments, we may spread out Dξ to a family of divisors Dt,

t ∈ T , where there is dominant morphism g : T −→ X such that (X,∆ + Dt)

is not log canonical at x = g(t) and where Dt ∼R D/2.

Let y be a general point of X. Pick s such that (X,∆ + Ds) is not log

canonical at y = g(s), where Ds ∼R D/2. Let

β = βs,t = sup{λ ∈ R | (X,∆ + λ(Dt +Ds)) is log canonical at x}

be the log canonical threshold. Thus (X,∆ + β(Ds +Dt)) is log canonical but

not kawamata log terminal at x. Possibly switching s and t, we may assume

that (X,∆ + β(Ds + Dt)) is not kawamata log terminal at y. Perturbing,

by (3.2.3) we may assume that there is a unique non kawamata log terminal

place of (X,∆ + β(Dt +Ds)) whose centre V(s,t) contains x. (As y is general,

we will not lose the property that (X,∆ + β(Dt + Ds)) is not kawamata log

terminal at y.) Decomposing B = T × T into finitely many locally closed

subsets, we may assume that the log canonical threshold is constant on each

irreducible component of B and, moreover, that Vs,t forms a family V −→ B.

Possibly discarding components of B, we may assume that every component

of V dominates X. Then the image of B in X ×X contains an open subset of

the form U × U . �

Lemma 7.2. Assume Theorems Cn−1 and An−1. Fix a positive integer p.

Let B1 be the set of kawamata log terminal pairs (X,∆), where X is projective

of dimension n, KX + ∆ is big and either p∆ is integral or the coefficients of

∆ belong to ß
r − 1

r

∣∣∣∣ r ∈ N
™
.
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Then there is a positive integer m such that φm(KX+∆) is birational for every

(X,∆) ∈ B1.

Proof. Passing to a log canonical model of (X,∆), we may assume that

KX + ∆ is ample. Pick a positive integer k such that vol(X, k(KX + ∆)) >

(2n)n. We will apply (3.5.5) to k(KX + ∆). (2) holds by hypothesis.

Let

J = {1− a | a ∈ LCTn−1(D(I))} ∪ {1}.
Theorem An−1 implies that J satisfies the DCC.

Theorem Cn−1 implies that there is a positive integer l such that if (U,Ψ)

is a log canonical pair, where U is projective of dimension at most n − 1, the

coefficients of Ψ belong to J and KU + Ψ is big, then φl(KU+Ψ) is birational.

Apply (7.1) to k(KX + ∆) to get a family V −→ B. Let b ∈ B be a

general point. Let ν : W −→ Vb be the normalisation of Vb, and let 0 ≤ ∆b ∼R
k(KX+∆) be the divisor given by (7.1), so that Vb is the unique non kawamata

log terminal place of (X,∆ + ∆b) containing x. (4.2)n implies that we may

find Θ on W such that

(KX + ∆ + ∆b)|W − (KW + Θ)

is pseudo-effective, where the coefficients of Θ belong to J .

Let ψ : U −→ W be a log resolution of (W,Θ), and let Ψ be the sum of

the strict transform of Θ and the exceptional divisors. (4.2)n implies that

(KU + Ψ) ≥ (KX + ∆)|U ,

so that KU + Ψ is big. As the coefficients of Θ belong to J , it follows that the

coefficients of Ψ belong to J . But then φl(KU+Ψ) is birational. It is easy to see

(1) of (3.5.5) holds.

As the hypotheses of (3.5.5) hold, there is a positive integer m0 such that

φm0k(KX+∆) is birational. If vol(X,KX + ∆) ≥ 1, then

vol(X, 2(n+ 1)(KX + ∆)) > (2n)n

and φ2m0(n+1)(KX+∆) is birational.

Otherwise, if vol(X,KX + ∆) < 1, then we may find k such that

(2n)n < vol(X, k(KX + ∆)) ≤ (4n)n.

It follows that

vol(X,m0k(KX + ∆)) ≤ (4m0n)n.

(3.5.2) implies that there is a constant 0 < δ < 1 such that if (X,∆) ∈ B, then

vol(X,KX + ∆) > δ.

In this case,

vol(X,α(KX + ∆)) > (2n)n,
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where

α =
2n

δ
,

and we may take m = max(m0pαq, 2m0(n+ 1)). �

Lemma 7.3. Using the notation of Theorem Cn, assume Theorems Cn−1,

An−1, and Bn. Then there is a constant β < 1 such that if (X,∆) ∈ B, then

the pseudo-effective threshold

λ = inf{t ∈ R |KX + t∆ is big}
is at most β.

Proof. We may assume that 1 ∈ I. Suppose that (X,∆) ∈ B. Let

π : W −→ X be a log resolution of (X,∆). We may write

KW + Ξ = π∗(KX + ∆) + F,

where Ξ is the strict transform of ∆ plus the sum of the exceptional divisors

and F ≥ 0 is exceptional as (X,∆) is log canonical. Let

µ = inf{t ∈ R |KW + tΞ is big}
be the pseudo-effective threshold. As π∗(KW + µΞ) = KX + µ∆ is pseudo-

effective, it follows that λ ≤ µ, and so it suffices to bound µ away from one.

Replacing (X,∆) by (W,Ξ) we may assume that (X,∆) has simple normal

crossings.

We may assume that λ > 1/2, so that KX is not pseudo-effective. As

KX + ∆ is big, we may find 0 ≤ D ∼R (KX + ∆). If ε > 0, then

(1 + ε)(KX + λ∆) ∼R KX + µ∆ + εD,

where µ = (1 + ε)λ − ε < λ. It follows that if ε is sufficiently small, then

KX+µ∆+εD is kawamata log terminal. By [8, 1.4.2], we may run f : X 99K Y
the (KX +λ∆)-MMP with scaling until KY + Γ is kawamata log terminal and

nef, where Γ = f∗(λ∆). Now we may run the (KY +µf∗∆)-MMP with scaling

of f∗D until we get to a Mori fibre space π : Y −→ Z; all steps of this MMP

are (KY + Γ)-trivial, as all steps of this MMP are (KY +µf∗∆ + εf∗D)-trivial,

so that (Y,Γ) remains kawamata log terminal and nef. Replacing (X,∆) by

a log resolution, we may assume that f is a morphism. Replacing X by the

general fibre of the composition of f and π, we may assume that Z is a point,

so that KY + Γ is numerically trivial.

Suppose that we have a sequence of such log pairs (Xl,∆l) ∈ B. We may

assume that the pseudo-effective threshold is an increasing sequence,

λ1 < λ2 < λ3 < · · · ,

and it suffices to bound this sequence away from one. Let

J = {λli | i ∈ I, l ∈ N}.

Then J satisfies the DCC, as λl is an increasing sequence.
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Theorem Bn implies that there is a constant C such that vol(Y,Γ) < C for

any Γ whose coefficients belong to J . Let α be the smallest nonzero element of

J , and let G = Gl be the sum of the components of Γ = Γl. Let Y = Yl. Then

vol(Y,KY +G) = vol(Y,G− Γ)

≤ vol(Y,G)

≤ vol(Y,
1

α
Γ)

≤ C

αn
.

Let D be the sum of the components of ∆. Certainly KX +D is big. We

may write

KX +D = f∗(KY +G) + F,

where F is supported on the exceptional locus. It follows that

vol(X,KX +D) ≤ vol(Y,KY +G) ≤ C

αn
.

Given (Xl, Dl) we may pick r ∈ N such that

KXl
+ Θl = KXl

+
r − 1

r
Dl

is big. As the coefficients of Θl belong toß
r − 1

r

∣∣∣∣ r ∈ N
™
,

(7.2) implies that

{(Xl,Θl) | l ∈ N}
is log birationally bounded. But then

{(Xl,∆l) | l ∈ N}

is log birationally bounded. In particular, [15, 1.9] implies that there is a

constant δ > 0 such that

vol(Xl,KXl
+ ∆l) ≥ δ

for every l ∈ N. In this case

δ ≤ vol(X,KX+∆) ≤ vol

Å
Y,KY +

1

λ
Γ

ã
=

Å
1

λ
− 1

ãn
vol(Y,Γ) ≤

Å
1

λ
− 1

ãn
C,

so that we may take

β =
1

1 +
Ä
δ
C

ä1/n . �

Lemma 7.4. Theorems Cn−1, An−1 and Bn imply Theorem Cn.
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Proof. Replacing I by

I ∪
ß
r − 1

r

∣∣∣∣ r ∈ N
™
∪ {1},

we may assume that 1 is both an accumulation point of I and an element of I.

Let α be the smallest nonzero element of I. By (7.3) there is a constant β < 1

such that if (X,∆) ∈ B, then the pseudo-effective threshold

λ = inf{t ∈ R |KX + t∆ is big}

is at most β.

Pick (X,∆) ∈ B. Let π : Y −→ X be a log resolution of (X,∆). Then we

may write

KY + Γ = π∗(KX + ∆) + E,

where Γ is the strict transform of ∆ plus the sum of the exceptional divisors.

Replacing (X,∆) by (Y,Γ) we may assume that (X,∆) is log smooth. If

S = b∆c, then we may pick r ∈ N such that

KX + ∆′ = KX +
r − 1

r
S + {∆}

is big. Replacing (X,∆) by (X,∆′), we may assume that (X,∆) is kawamata

log terminal.

Pick p such that

p >
2

α(1− β)
.

If a is the coefficient of a component of ∆, then

bpac
p

> a− 1

p

> a− α(1− β)

2

≥ a− a(1− β)

2

=
a(1 + β)

2
.

It follows that
β + 1

2
∆ ≤ ∆bpc ≤ ∆,

so that KX + ∆bpc is big. Since the coefficients of ∆bpc belong to

I0 =

ß
i

p

∣∣∣∣ 1 ≤ i ≤ p− 1

™
,

(7.2) implies that there is a positive integer m such that φm(KX+∆bpc) is bira-

tional. But then φm(KX+∆) is birational as well. �
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8. Numerically trivial log pairs

Lemma 8.1. Theorems Dn−1 and Cn imply Theorem Dn.

Proof. We may assume that 1 ∈ I and n > 1. As we are assuming

Theorem Dn−1, there is a finite set J0 ⊂ J = D(I) with the following property.

If (S,Θ) is a log pair such that S is projective of dimension n−1, the coefficients

of Θ belong to J , (S,Θ) is log canonical, and KS + Θ is numerically trivial,

then the coefficients of Θ belong to J0. Let I1 be the largest subset of I such

that D(I1) ⊂ J0. (5.2) implies that I1 is finite.

Theorem Cn implies that there is a constantm with the following property:

if (Y,Γ) is log canonical, Y is a projective variety of dimension n, KY + Γ is

big and the coefficients of Γ belong to I, then φm(KY +Γ) is birational.

For every 1 ≤ l ≤ m, let

Al = [(l − 1)/m, l/m)

and Am+1 = {1} so that

[0, 1] =
m+1⋃
l=1

Al.

Let I2 be the union of the largest elements of Al ∩ I. (If Al ∩ I does not have

a largest element, either because it is empty or because it has infinitely many

elements, then we ignore the elements of Al ∩ I.) Then I2 has at most m+ 1

elements, so that I2 is certainly finite. Let I0 be the union of I1 and I2.

Suppose that (X,∆) satisfies (1)–(4) of Theorem Dn. Let π : Y −→ X be

a divisorially log terminal modification, so that Y is Q-factorial. As (X,∆) is

log canonical, if we write

KY + Γ = π∗(KX + ∆),

then Γ is the strict transform of ∆ plus the exceptional divisors, so that (Y,Γ) is

numerically trivial and divisorially log terminal. Replacing (X,∆) by (Y,Γ), we

may assume that X is Q-factorial. Further, (X,∆) is kawamata log terminal

if and only if b∆c = 0. Suppose that B is a prime component of ∆ with

coefficient i. It suffices to prove that i ∈ I0. We may assume that i 6= 1.

Suppose that B intersects a component of b∆c. If S is the normalisation of

this component, then by adjunction we may write

(KX + ∆)|S = KS + Θ,

where the coefficients of Θ belong to J = D(I) by (4.1). As S is projective of

dimension n− 1, (S,Θ) is log canonical, and KS + Θ is numerically trivial, the

coefficients of Θ belong to J0. But then i ∈ I1.

As KX + ∆ is numerically trivial, KX + ∆ − iB is not pseudo-effective.

By [8, 1.3.3] we may run f : X 99K Y the (KX + ∆− iB)-MMP until we reach
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a Mori fibre space. As KX + ∆ is numerically trivial, it follows that every

step of this MMP is B-positive. If at some step of this MMP we contract

a component S of b∆c, then this component intersects B and i ∈ I1 by the

argument above. Otherwise, it follows that (Y, f∗∆) is kawamata log terminal

if and only if bf∗∆c = 0. Further, B is not contracted and so replacing (X,∆)

by (Y, f∗∆), we may assume that X is a Mori fibre space π : X −→ Z, where

B dominates Z.

If Z is not a point, then replacing X by the general fibre of π we are done

by induction. So we may assume that X has Picard number one. If b∆c 6= 0,

then any component S of b∆c intersects B and so i ∈ I1. Otherwise b∆c = 0

and we may assume that (X,∆) is kawamata log terminal.

Suppose that j ∈ I and j > i. Let π : Y −→ X be a log resolution

of (X,∆). Let Γ0 be the strict transform of ∆, let E by the sum of the

exceptional divisors, and let C be the strict transform of B. Set

Γ = Γ0 + E + (j − i)C.

Then (Y,Γ) is log canonical and the coefficients of Γ belong to I. We may

write

KY + Γ0 + E = π∗(KX + ∆) + F,

where F ≥ 0 contains the full exceptional locus. Pick ε > 0 such that F ≥ εE.

Note that (j − i)C + εE > δπ∗B for any δ > 0 sufficiently small, so that

KY + Γ = (KY + Γ0 + (1− ε)E) + (j − i)C + εE

is big. Hence φm(KY +Γ) is birational, so that KY + Γbmc is big. But then

KX + Λbmc is big, where

Λ = π∗Γ = ∆ + (j − i)B.

It follows that if i ∈ Al, then j ≥ l/m, so that i is the largest element of the

interval Al which also belongs to I. Hence i ∈ I2. �

9. Proofs of theorems

Proof of (1.5) and (1.4). This is Theorem A and Theorem D. �

Proof of (1.1). Suppose that c1, c2, . . . ∈ LCTn(I, J), where ci ≤ ci+1.

It suffices to show that ci = ci+1 for i sufficiently large. By assumption we

may find log canonical pairs (Xi,∆i) and R-Cartier divisors Mi, where Xi is

a variety of dimension n, the coefficients of ∆i belong to I, the coefficients of

Mi belong to J and ci is the log canonical threshold

ci = sup{t ∈ R | (Xi,∆i + ciMi) is log canonical}.

Let Θi = ∆i + ciMi and

K = I ∪ {cij | i ∈ N, j ∈ J}.
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Then (Xi,Θi) is log canonical, Xi is a variety of dimension n, the coefficients of

Θi belong to K and there is a non kawamata log terminal centre V contained

in the support of Mi. Possibly throwing away components of Θi which do not

contain V and passing to an open subset which contains the generic point of

V , we may assume that every component of Θi contains V .

As K satisfies the DCC, (1.5) implies that the coefficients of Θi belong to

a finite subset K0 of K. It follows that ci = ci+1 for i sufficiently large. �

Proof of (1.3). (3) is Theorem C. Fix a constant V > 0, and let

DV = {(X,∆) ∈ D | 0 < vol(X,KX + ∆) ≤ V }.

(3) implies that φm(KX+∆) is birational. (3.5.2) implies that the set

{vol(X,KX + ∆) | (X,∆) ∈ DV }

satisfies the DCC, which implies that (1) and (2) of (1.3) hold in dimension n.

�

Lemma 9.1. Let Z −→ T be a projective morphism to a variety, and

suppose that (Z,Φ) has simple normal crossings over T . Suppose that the re-

striction of any irreducible component of Φ to any fibre is irreducible. Suppose

that (Z,Φ) is kawamata log terminal and there is a closed point 0 ∈ T such

that KZ0 + Φ0 is big. Let 0 ≤ Θ ≤ Φ be any divisor with the same support

as Φ.

Then we may find finitely many birational contractions fi : Z 99K Xi over

T such that if f : Zt 99K Y is the log canonical model of (Zt,Ψ) for some t ∈ T
and Θt ≤ Ψ ≤ Φt, then f = fit for some index i.

Proof. [15, 1.7] implies that KZ + Φ is big over T . Pick

0 ≤ D ∼R,T (KZ + Φ).

Let

B =
ε

1− ε
D.

If we pick ε > 0 sufficiently small, then KZ +B + Φ is kawamata log terminal

and we may find a divisor 0 ≤ Θ′ ≤ Θ with

KZ + Θ = ε(KZ + Φ) + (1− ε)(KZ + Θ′).

If Θ ≤ Ξ ≤ Φ, then

KZ + Ξ ∼R,T (1− ε)(KZ +B + Ξ′),

where Θ′ ≤ Ξ′ ≤ Ξ. It is proved in [8, 1.1.5] that there are finitely many

f1, f2, . . . , fk birational contractions fi :Z 99K Xi over T such that if g :Z 99K X
is the log canonical model of KZ + Ξ over T , then g = fi for some index

1 ≤ i ≤ k.
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It suffices to show that if Ξ|Zt = Ψ and g is the log canonical model of

KZ + Ξ, then f = gt. For this we may assume that T is affine. In this case the

(relative) log canonical model is given by taking Proj

Xi = Proj(Z,R(Z, k(KZ + Ξ)))

of the (truncation of the) canonical ring

R(Z, k(KZ + Ξ)) =
⊕
m∈N

H0(Z,OZ(mk(KZ + Ξ))).

On the other hand, [15, 1.7] implies that if k is sufficiently divisible, then

R(Z, k(KZ + Ξ)) −→ R(Zt, k(KZt + Ψ))

is surjective and so f = gt �

Proof of (1.6). By definition there is a log pair (Z,B) and a projective

morphism Z −→ T , where T is of finite type with the following property. If

(X,∆) ∈ D, then there is a closed point t ∈ T and a birational map f : X 99K
Zt such that the support of Bt is a divisor on Zt which contains the support

of the strict transform of ∆ and any f−1-exceptional divisor.

We may assume that T is reduced. Decomposing T into a finite union of

locally closed subsets and throwing away some components, we may assume

that every fibre Zt is a variety and that B does not contain Zt; blowing up and

decomposing T into a finite union of locally closed subsets, we may assume

that (Z,B) has simple normal crossings; passing to an open subset of T , we

may assume that the fibres of Z −→ T are log pairs, so that (Z,B) has simple

normal crossings over T ; passing to a finite cover of T , we may assume that

every stratum of (Z,B) has irreducible fibres over T ; decomposing T into a

finite union of locally closed subsets, we may assume that T is smooth; finally

passing to a connected component of T , we may assume that T is integral.

Let a = 1 − ε < 1. By assumption δ ≤ a ≤ 1. Let Φ = aB and Θ = δB,

so that Φ, Θ and B have the same support but the coefficients of Φ are all a,

the coefficients of Θ are all δ and the coefficients of B are all one. As (Z,Φ) is

kawamata log terminal, it follows that there are only finitely many valuations

of log discrepancy at most one with respect to (Z,Φ). As (Z,Φ) has simple

normal crossings, there is a sequence of blow ups Y −→ Z of strata which

extracts every divisor of log discrepancy at most one. Note that as (Z,Φ) has

simple normal crossings over T , it follows that if t ∈ T is a closed point, then

every valuation of log discrepancy at most one with respect to (Zt,Φt) has

centre a divisor on Yt.

Suppose that (X,∆) ∈ D. Then there is a closed point t ∈ T and a

birational map f : X 99K Zt such that the support of Bt contains the support

of the strict transform of ∆t and any f−1-exceptional divisor. Let p : W −→ X

and q : W −→ Zt resolve f . Let S be the sum of the p-exceptional divisors,
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and let Ξ be the sum of the strict transform of ∆ and aS, so that S and Ξ are

divisors on W . We may write

KW + Ξ = p∗(KX + ∆) + E,

where E is a sum of p-exceptional divisors and E ≥ 0 as the log discrepancy

of (X,∆) is greater than ε.

Let Ψ = q∗Ξ. We may write

p∗(KX + ∆) + E + F = q∗(KZt + Ψ),

where F is q-exceptional. As p∗(KX + ∆) is nef, it is q-nef so that E + F ≥ 0

by negativity of contraction. If ν is any valuation whose centre is a divisor on

X, then

a(Zt,Φt, ν) ≤ a(Zt,Ψ, ν) as Φt ≥ Ψ,

≤ a(X,∆, ν) as E + F ≥ 0,

≤ 1 as the centre of ν is a divisor on X.

Therefore the induced birational map Yt 99K X is a birational contraction.

Thus replacing Z by Y and B by its strict transform union the exceptional

divisor, we may assume that g = f−1 : Zt 99K X is a birational contraction. In

this case F is p-exceptional and so g is the log canonical model of (Zt,Θt).

Since there are only finitely integral divisors 0 ≤ B′ ≤ B, replacing B we

may assume that Ψ has the same support as Bt. KZt + Φt is big as KZt + Ψ

is big and Φt ≥ Ψ. Finally Θt ≤ Ψ ≤ Φt, and so we are done by (9.1). �

10. Proofs of corollaries

Proof of (1.2). This follows from (1.1) and the main result of [6]. �

Proof of (1.7). (1.5) implies that there is a finite subset I0 ⊂ I such that

the coefficients of ∆ belong to I0. Thus there is a positive integer r such that

r∆ is integral.

On the other hand, Theorem B implies that there is a constant C such

that vol(X,∆) < C. Let D be the sum of the components of ∆. Then KX +D

is big and

vol(X,KX +D) = vol(X,D −∆)

≤ vol(X,D)

≤ vol(X, r∆)

≤ Crn.

Let π : Y −→ X be a log resolution of (X,∆). Let G be the sum of the

strict transform of the components of ∆ and the exceptional divisors. Then

(Y,G) has simple normal crossings. Pick η > 0 such that (X, (1 + η)∆) is
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kawamata log terminal and the log discrepancy is greater than ε. Then KX +

(1 + η)∆ is ample and we may write

KY + Γ = π∗(KX + (1 + η)∆),

where Γ ≤ G. As KY + Γ is big, it follows that KY + G is big. (1.3) implies

that there is a positive integer m such that φm(KY +G) is birational for every

(X,∆) ∈ D. But then D is log birationally bounded by [15, 2.4.2.3–4]. Now

apply (1.6). �

Proof of (1.8). Let D = −r(KX+∆). Then D is an ample Cartier divisor

and D− (KX + ∆) is ample. By Kollár’s effective base point free theorem (cf.

[21]), there is a fixed positive integer m such that the linear system |mD| is

base point free. Pick a general divisor H ∈ |mD|. Then (X,Λ = ∆ + 1
mrH) is

kawamata log terminal and

KX + Λ ∼Q 0.

Note the coefficients of Λ belong to the finite set

I =

ß
i

r

∣∣∣∣ 1 ≤ i ≤ r − 1

™
∪
ß

1

mr

™
.

There are two ways to proceed. On the one hand, we may apply (1.7).

Here is a more direct approach. Theorem B implies that

vol(X,Λ)

is bounded from above. But then

vol(X,mD) ≤ (mr)n vol(X,Λ)

is bounded from above. �

Proof of (1.10). Suppose that r1 ≤ r2 ≤ · · · is a nondecreasing sequence

in R. For each i, we may find (X,∆) = (Xi,∆i) ∈ D and a Cartier divisor H

such that −(KX + ∆) ∼R rH. By the cone theorem we may find a curve C

such that −(KX + ∆) ·C ≤ 2n; cf. Theorem 18.2 of [13]. In particular, r ≤ 2n

as H · C ≥ 1. By Fujino’s extension, [12], of Kollár’s effective base point free

theorem, [21], to the case of log canonical pairs, there is a fixed positive integer

m such that the linear system |mH| is base point free. Possibly replacing m

by a multiple we may assume that m > 2n. Pick a general divisor D ∈ |mH|.
Then (X,Λ = ∆ + r

mD) is log canonical and

KX + Λ ∼R 0.

Then the coefficients of Λi = Λ belong to the set

I ∪
ß
ri
m

∣∣∣∣ i ∈ N
™
,
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which satisfies the DCC. (1.4) implies that the coefficients of Λ belong to a

finite subset. But then ri = ri+1 is eventually constant, and so R satisfies the

ACC. �

11. Accumulation points

Definition 11.1. Given I ⊂ [0, 1] and c ∈ [0, 1], let

Dc(I) =

ß
a ≤ 1

∣∣∣∣ a =
m− 1 + f + kc

m
, k,m ∈ N, f ∈ I+

™
⊂ D(I ∪ {c}).

Let Nn(I, c) be the set of log canonical pairs (X,∆) such that X is a projective

variety of dimension n, KX + ∆ is numerically trivial and we may write ∆ =

B+C, where the coefficients of B belong to D(I) and the coefficients of C 6= 0

belong to Dc(I).

Let

Nn(I) = {c ∈ [0, 1] |Nn(I, c) is nonempty}.

Lemma 11.2. Let n ∈ N and I ⊂ [0, 1].

(1) LCTn(I) ⊂ LCTn+1(I).

(2) Nn(I) ⊂ Nn+1(I).

(3) If f ∈ I+ and k ∈ N, then

c =
1− f
k
∈ Nn(I).

Proof. Let E be an elliptic curve. If (X,∆ =
∑
di∆i) is a log pair, then

(Y,Γ) is a log pair, where Y = X ×E and Γ =
∑
di(∆i×E). By construction

Γ has the same coefficients as ∆.

Note that (X,∆) is log canonical if and only if (Y,Γ) is log canonical. This

gives (1). Further, if c ∈ [0, 1] and (X,∆) ∈ Nn(I, c), then (Y,Γ) ∈ Nn+1(I, c).

This is (2).

Using (2), it suffices to prove (3) when n = 1. Let X = P1 and ∆ = B+C,

where B = fp + fq, C = 2kcr, and p, q and r are three points of P1. Then

(X,∆) ∈ N1(I, c) (take m = 1) so that c ∈ N1(I). This is (3). �

For technical reasons, it is convenient to introduce a smaller set than

Nn(I, c).

Definition 11.3. Given I ⊂ [0, 1] and c ∈ [0, 1], let Kn(I, c) ⊂ Nn(I, c)

be the subset consisting of kawamata log terminal pairs (X,∆), where X is

Q-factorial of Picard number one.

Let

Kn(I) = {c ∈ [0, 1] |Km(I, c) is nonempty, for some m ≤ n}.
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Lemma 11.4. If n ∈ N and I ⊂ [0, 1], then

Nn(I ∪ {1}) = Kn(I).

In particular, Nn(I ∪ {1}) = Nn(I).

Proof. By (2) of (11.2), it suffices to show that

Nn(I ∪ {1}) ⊂ Kn(I).

Suppose that c ∈ Nn(I ∪ {1}). Then we may find (X,∆) ∈ Nn(I ∪ {1}, c). By

assumption we may write ∆ = A+B+C, where the coefficients of A are one,

the coefficients of B belong to D(I) and the coefficients of C 6= 0 belong to

Dc(I).

Let π : X ′ −→ X be a divisorially log terminal modification of (X,∆). If

we write

KX′ + ∆′ = π∗(KX + ∆),

then X ′ is projective of dimension n, X ′ is Q-factorial, (X ′,∆′) is divisorially

log terminal and KX′ + ∆′ is numerically trivial. Let B′ and C ′ be the strict

transforms of B and C, and let A′ = ∆′ − B′ − C ′. Then the coefficients of

A′ are one, the coefficients of B′ belong to D(I) and the coefficients of C ′ 6= 0

belong to Dc(I). Thus (X ′,∆′) ∈ Nn(I ∪{1}, c). Replacing (X,∆) by (X ′,∆′)

we may assume that X is Q-factorial and (X,A+B) is divisorially log terminal.

Note that (X,∆) is kawamata log terminal if and only if A = 0.

Suppose that A and C intersect. Let S be an irreducible component of A

which intersects C. Then we may write

(KX + ∆)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal and, moreover, we may

write Θ = A′ + B′ + C ′, where the coefficients of A′ are one, the coefficients

of B′ belong to D(I) and the coefficients of C ′ 6= 0 belong to Dc(I). Thus

(S,Θ) ∈ Nn−1(I ∪ {1}, c). Hence c ∈ Nn−1(I ∪ {1}), and so c ∈ Kn−1(I) ⊂
Kn(I), by induction on n.

Let f : X 99K X ′ be a step of the (KX + A + B)-MMP. As KX + ∆ is

numerically trivial, f is automatically C-positive. Suppose that f is birational.

Let A′ = f∗A, B′ = f∗B and C ′ = f∗C, so that ∆′ = f∗∆ = A′ + B′ + C ′.

C ′ 6= 0 as f is C-positive. X ′ is a projective variety of dimension n, (X ′,∆′)

is log canonical, KX′ + ∆′ is numerically trivial, the coefficients of A′ are all

one, the coefficients of B′ belong to D(I) and the coefficients of C ′ 6= 0 belong

to Dc(I). Thus (X ′,∆′) ∈ Nn(I ∪ {1}, c). Further, X ′ is Q-factorial and

(X ′, A′ + B′) is divisorially log terminal. If a component of A is contracted,

then A and C intersect and we are done. Otherwise (X ′,∆′) is kawamata log

terminal if and only if A′ = 0.
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If we run the (KX+A+B)-MMP with scaling of an ample divisor, then we

end with a Mori fibre space. Therefore, replacing (X,∆) by (X ′,∆′) finitely

many times, we may assume that f : X 99K Z = X ′ is a Mori fibre space

and C dominates Z. If dimZ > 0, then let z ∈ Z be a general point. Then

(Xz,∆z) ∈ Nn−k(I ∪ {1}, c), where k = dimZ, and we are done by induction

on the dimension.

So we may assume that Z is a point in which case X has Picard number

one. If A 6= 0, then A and C intersect and we are done. If A = 0, then (X,∆)

is kawamata log terminal and so (X,∆) ∈ Kn(I, c). But then c ∈ Kn(I). �

Proposition 11.5. If I ⊂ [0, 1], I = I+ and n ∈ N, then LCTn+1(I) =

Nn(I).

Proof. We first show that LCTn+1(I) ⊂ Nn(I). Pick 0 6= c ∈ LCTn+1(I).

By definition we may find a log canonical pair (X,∆ + cM) where X has

dimension n+ 1, the coefficients of ∆ belong to I, M is an integral Q-Cartier

divisor and there is a non kawamata log terminal centre V contained in the

support of M . Possibly passing to an open subset of X and replacing V by

a maximal non kawamata log terminal centre, we may assume that V is the

only non kawamata log terminal centre of (X,∆ + cM). In particular, (X,∆)

is kawamata log terminal.

If V is a component of M , then V has coefficient one in ∆ + cM and

c = 1−f
k ∈ Nn(I) by (3) of (11.2). Otherwise let f : Y −→ X be a divisorially

log terminal modification of (X,∆ + cM). Then Y is Q-factorial and we may

write

KY + T + ∆′ + cM ′ = f∗(KX + ∆ + cM),

where ∆′ and M ′ are the strict transforms of ∆ and M , T is the sum of the

exceptional divisors and the pair (Y, T + ∆′+ cM ′) is divisorially log terminal.

By (4) of (3.3.1) we may choose f so that T contains the inverse image of V .

Let S be an irreducible component of T which intersects M ′. Then we may

write

(KY + T + ∆′ + cM ′)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal and, moreover, we may

write Θ = A + B + C, where the coefficients of A are one, the coefficients of

B belong to D(I) and the coefficients of C 6= 0 belong to Dc(I). As S is a

non kawamata log terminal centre, the centre of S on X is V so that there is a

morphism S −→ V . If v ∈ V is a general point, then (Sv,Θv) ∈ Nk(I ∪ {1}, c)
for some k ≤ n. Thus c ∈ Nk(I ∪ {1}) ⊂ Nn(I).

We now show that LCTn+1(I) ⊃ Nn(I). Pick 0 6= c ∈ Nn(I). Then we

may find a pair (X,∆) ∈ Km(I, c), some m ≤ n. If m < n then we are done by

induction on the dimension. Otherwise X has dimension n. As −KX is ample,
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we may pick d such that −dKX is very ample and embed X into projective

space by the linear system | − dKX |.
Let Y be the cone over X, and let Γj be the cone over ∆j . Then Y is a

quasi-projective variety of dimension n + 1. Y is Q-factorial as X has Picard

number one. (Y,Γ =
∑
diΓi) is log canonical but not kawamata log terminal

at the vertex p of the cone. By assumption we may write

di =
mi − 1 + fi + kic

mi
,

for each i, where mi is a positive integer, ki is a nonnegative integer (ki = 0 if

Γi is a component of Bi and ki > 0 if Γi is a component of Ci) and fi ∈ I+.

Since we are working locally around p, the vertex of Y , we may find a cover

of π : Ỹ −→ Y which ramifies over Γi to index mi for every i and is otherwise

unramified at the generic point of any divisor. We may write

KỸ + Γ̃ = π∗(KY + Γ),

where the coefficients of Γ̃ belong to the set

{fi + kic | i}.

Ỹ is a Q-factorial quasi-projective variety of dimension n+ 1, and (Ỹ , Γ̃) is log

canonical but not kawamata log terminal over any point q lying over p. Let

Θ =
∑

fiΓi and Mi =
∑

kiΓi.

Then the coefficients of Θ belong to I+ = I, Mi is an integral Q-Cartier divisor

and

c = sup{t ∈ R | (X,Θ + tM) is log canonical}
is the log canonical threshold. But then c ∈ LCTn+1(I). �

Lemma 11.6. Let (X,∆) be a log canonical pair, where X is Q-factorial

of dimension n and Picard number one and KX + ∆ is numerically trivial. If

the coefficients of ∆ are at least δ, then ∆ has at most n+1
δ components.

Proof. [20, 18.24] implies that the sum of the coefficients of ∆ is at most

n+ 1. �

Proposition 11.7. Fix a positive integer n and a set I ⊂ [0, 1] whose

only accumulation point is one such that I = I+.

Let c1, c2, . . . ∈ [0, 1] be a strictly decreasing sequence with limit c 6= 0

with the following property. There is a sequence of log canonical pairs (Xi,∆i)

such that Xi is a projective variety of dimension n, KXi + ∆i is numerically

trivial and we may write ∆i = Ai + Bi + Ci, where the coefficients of Ai are

approaching one, the coefficients of Bi belong to D(I) and the coefficients of

Ci 6= 0 belong to Dci(I).

Then c ∈ Nn−1(I).
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Proof. We may assume that Ai and Bi+Ci have no common components.

ReplacingBi byBi−bBic andAi byAi+bBic we may assume that b∆ic = bAic.
As the coefficients of Ai + Bi belong to a set which satisfies the DCC, (1.5)

implies that not all of the coefficients of Ci are increasing. In particular, at

least one coefficient of Ci is bounded away from one.

Let ai be the total log discrepancy of (Xi,∆i).

Case A: lim ai > 0.

In this case, we assume that ai is bounded away from zero.

Case A, Step 1: We reduce to the case Xi is Q-factorial and the Picard

number of Xi is one.

As we are assuming that ai is bounded away from zero, Ai = 0 and so

(Xi,∆i) ∈ Nn(I, ci), so that ci ∈ Nn(I) = Kn(I), by (11.4). Thus we may

assume that (Xi,∆i) ∈ Km(I, ci) for some m ≤ n. If m < n, then we are done

by induction. Otherwise we may assume that Xi is Q-factorial and the Picard

number of Xi is one.

Possibly passing to a subsequence, (11.6) implies that we may assume that

the number of components of Bi and Ci is fixed. As the only accumulation

point of D(I) is one and the coefficients of Bi are bounded away from one,

possibly passing to a subsequence we may assume that the coefficients of Bi
are fixed and that the coefficients of Ci have the form

r − 1

r
+
f

r
+
kci
r
,

where k, r and f depend on the component but not on i.

Given t ∈ [0, 1], let Ci(t) be the divisor with the same components as Ci
but now with coefficients

r − 1

r
+
f

r
+
kt

r
,

so that Ci = Ci(ci). Let

hi = sup{t | (Xi, Bi + Ci(t)) is log canonical}

be the log canonical threshold. Set h = limhi.

Case A, Step 2: We reduce to the case h > c.

Suppose that h ≤ c. As ci ≤ hi, it follows that h = c. Now

hi ∈ LCTn(D(I)) = Nn−1(I),

so that we are done by induction in this case.

Case A, Step 3: We reduce to the case vol(Xi, Ci) is unbounded.

Suppose not, suppose that vol(Xi, Ci) is bounded from above. Let

di =
ci + hi

2
and d =

c+ h

2
.
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Then the coefficients of (Xi, Bi + Ci(d)) are fixed. The log discrepancy of

(Xi, Bi +Ci(di)) is at least ai/2 so that the log discrepancy of (Xi, Bi +Ci(d))

is bounded away from zero. As h > c, possibly passing to a tail of the sequence,

we may assume that d > ci so that KXi +Bi + Ci(d) is ample. Note that

vol(Xi,KXi +Bi + Ci(d)) = vol(Xi, Ci(d)− Ci)

is bounded from above by assumption. (1.3) implies that there is a positive

integer m such that φm(KXi
+Bi+Ci(d)) is birational. But then {(Xi,∆i) | i ∈ N}

is log birationally bounded by [15, 2.4.2.4]. (1.6) implies that (Xi,∆i) belongs

to a bounded family. Thus we may find an ample Cartier divisor Hi such that

the intersection numbers Ti ·Hn−1
i and −KXi ·H

n−1
i are bounded, where Ti is

any component of ∆i. Possibly passing to a subsequence, we may assume that

these intersection numbers are constant. But then

(KXi + ∆i) ·Hn−1
i = 0, Ai ·Hn−1

i = 0 and Bi ·Hn−1
i

are independent of i, whilst Ci ·Hn−1
i is not constant, a contradiction.

Case A, Step 4: We finish Case A.

As vol(Xi, Ci) is unbounded, (3.2.2) implies that we may find εi > 0 and

divisors 0 ≤ C ′i ∼R εiCi such that (Xi,∆i + C ′i) is not log canonical. Passing

to a subsequence, and using (3.2.3), we may find gi < ci and a divisor

0 ≤ Θi ∼R Ci − Ci(gi) with lim gi = c

such that (Xi,Φi = Bi +Ci(gi) + Θi) has a unique non kawamata log terminal

place. If φ : Yi −→ Xi is a divisorially log terminal modification, then φ extracts

a unique prime divisor Si of log discrepancy zero with respect to (Xi,Φi). We

may write

KYi + Ψi = φ∗(KXi + Φi) and KYi +B′i + C ′i + siSi = φ∗(KXi + ∆i),

where Si = bΨic, B′i and C ′i are the strict transform of Bi and Ci, and si < 1,

as (Xi,∆i) is kawamata log terminal.

As KYi + Ψi is numerically trivial, KYi + Ψi − Si is not pseudo-effective.

By [8, 1.3.3], we may run f : Yi 99KWi the (KYi + Ψi−Si)-MMP until we end

with a Mori fibre space πi : Wi −→ Zi. As KYi +Ψi is numerically trivial, every

step of this MMP is Si-positive, so that the strict transform Ti of Si dominates

Zi. Let Fi be the general fibre of πi. Replacing Yi, B
′
i, C

′
i and Ψi by Fi and the

restriction of f∗B
′
i, f∗C

′
i and f∗Ψi to Fi, we may assume that Si, Ψi, B

′
i and

C ′i are multiples of the same ample divisor. In particular, KYi + B′i + C ′i + Si
is ample.

We let C ′i(t) denote the strict transform of Ci(t). We may write

(KYi + Si +B′i + C ′i(t))|Si = KSi +B′′i + C ′′i (t),
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where the coefficients of B′′i belong to D(I) and the coefficients of C ′′i (t) 6= 0

belong to Dt(I). We let C ′′i = C ′′i (ci).

There are two cases. Suppose that (Si, B
′′
i +C ′′i ) is not log canonical. Let

ki = sup{t | (Si, B′′i + C ′′i (t)) is log canonical}

be the log canonical threshold. Then ki ∈ LCTn−1(D(I)) = Nn−2(I). Then

k = lim ki ∈ Nn−2(I) ⊂ Nn−1(I) by induction on n. As (Si, B
′′
i + C ′′i (gi)) is

kawamata log terminal, ki ∈ (gi, ci). Thus

c = lim ci = lim ki = k ∈ Nn−1(I).

Otherwise we may suppose that (Si, B
′′
i + C ′′i ) is log canonical. Let

li = sup{t | (Si, B′′i + C ′′i (t)) is pseudo-effective}

be the pseudo-effective threshold. Then li ∈ Nn−1(I) and l = lim li ∈ Nn−1(I)

by induction on n. On the other hand, li ∈ (gi, ci). Thus

c = lim ci = lim li = l ∈ Nn−1(I).

Case B: lim ai = 0.

In this case, we assume that ai approaches 0.

Case B, Step 1: We reduce to the case Ai 6= 0, Xi is Q-factorial and

(Xi,∆i) is kawamata log terminal if and only if bAic = 0.

Possibly passing to a subsequence we may assume that ai ≥ ai+1 and

ai ≤ 1. If (Xi,∆i) is not divisorially log terminal or Ai 6= 0 but Xi is not

Q-factorial, then let πi : X
′
i −→ Xi be a divisorially log terminal modification.

If Ai = 0, then let πi : X
′
i −→ Xi extract a divisor of log discrepancy ai, where

X ′i is Q-factorial. Either way, we may write

KX′
i

+ ∆′i = π∗i (KXi + ∆i),

where ∆′i is a sum of the strict transform of ∆i and a divisor which is ex-

ceptional. Let B′i and C ′i be the strict transforms of Bi and Ci, and let

A′i = ∆′i−B′i−C ′i 6= 0. Then X ′i is a Q-factorial projective variety of dimension

n, (X ′i,∆
′
i) is a divisorially log terminal pair, KX′

i
+ ∆′i is numerically trivial,

the coefficients of A′i 6= 0 are approaching one, the coefficients of B′i belong to

D(I) and the coefficients of C ′i 6= 0 belong to Dci(I). Replacing (Xi,∆i) by

(X ′i,∆
′
i), we may assume that Ai 6= 0 and Xi is Q-factorial. Moreover (Xi,∆i)

is kawamata log terminal if and only if bAic = 0.

Case B, Step 2: We are done if the support of Ci and bAic intersect.

Suppose that a component of Ci intersects the normalisation of a compo-

nent Si of bAic. Then we may write

(KXi + ∆i)|Si = KSi + Θi
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by adjunction. Si is projective of dimension n − 1, (Si,Θi) is log canonical,

KSi + Θi is numerically trivial, and we may write Θi = A′i + B′i + C ′i, where

the coefficients of A′i approach one, the coefficients of B′i belong to D(I) and

the coefficients of C ′i 6= 0 belong to Dci(I). In this case, the limit c belongs to

Nn−2(I) ⊂ Nn−1(I) by induction.

Case B, Step 3: We are done if fi : Xi −→ Zi is a Mori fibre space, Ai
dominates Zi and dimZi > 0.

Let Fi be the general fibre of fi. We may write

(KXi + ∆i)|Fi = KFi + Θi

by adjunction. Fi is projective of dimension at most n − 1, (Fi,Θi) is log

canonical, KFi +Θi is numerically trivial, and we may write Θi = A′i+B′i+C ′i,

where the coefficients of A′i approach one, the coefficients of B′i belong to D(I)

and the coefficients of C ′i belong to Dci(I).

There are two cases. Suppose that C ′i = 0. Then (1.5) implies that the

coefficients of A′i are fixed, so that bA′ic = A′i. But then bAic 6= 0 dominates

Zi. On the other hand, as C ′i = 0, Ci does not intersect Fi; that is, Ci does not

dominate Zi. But then Ci must contain a fibre so that Ai and Ci intersect and

we are done by Case B, Step 2. Otherwise C ′i 6= 0. In this case ci ∈ Nn−1(I)

so that

c = lim ci ∈ Nn−2(I) ⊂ Nn−1(I)

by induction.

Case B, Step 4: We reduce to the case (Xi,∆i) is kawamata log terminal.

Suppose not, suppose that (Xi,∆i) is not kawamata log terminal. By

Case B, Step 1, this implies that Si = bAic is not the zero divisor. Let

Θi = ∆i − Si. We run the (KXi + Θi)-MMP with scaling of some ample

divisor. Let fi : Xi 99K X ′i be a step of the (KXi + Θi)-MMP. As KXi + ∆i is

numerically trivial, fi is automatically Si-positive. Let A′i = fi∗Ai, B
′
i = fi∗Bi

and C ′i = fi∗Ci. First suppose that fi is birational. If C ′i = 0, then (1.5)

implies that the coefficients of A′i are all one. As fi contracts Ci, it does not

contract a component of Ai and so it follows that the coefficients of Ai are all

one; that is, Si = Ai. As fi contracts Ci and fi is Si-positive, Ci intersects Si
and we are done by Case B, Step 2. Therefore we may assume that C ′i 6= 0,

and we may replace (Xi,∆i) by (X ′i,∆
′
i). As the MMP must terminate with a

Mori fibre space, replacing (Xi,∆i) with (X ′i,∆
′
i) finitely many times, we may

assume that fi : Xi −→ Zi = X ′i is a Mori fibre space and Si dominates Zi. By

Case B, Step 3, we may assume that Zi is a point. But then the support of Si
and Ci intersect and we are done by Case B, Step 2.

Case B, Step 5: We reduce to the case Xi has Picard number one.
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We run the (KXi + Bi + Ci)-MMP with scaling of some ample divisor.

Let fi : Xi 99K X ′i be a step of the (KXi + Bi + Ci)-MMP. As KXi + ∆i is

numerically trivial, fi is automatically Ai-positive. Let A′i = fi∗Ai, B
′
i = fi∗Bi

and C ′i = fi∗Ci. First suppose that fi is birational. Suppose C ′i = 0. As

fi contracts only one divisor and Ai and Ci are nonzero by assumption, it

follows that A′i 6= 0. (1.5) implies that the coefficients of A′i are all one, which

contradicts the fact that (Xi,∆i) is kawamata log terminal. Therefore we

may assume that C ′i 6= 0 and we may replace (Xi,∆i) by (X ′i,∆
′
i). As the

MMP must terminate with a Mori fibre space, replacing (Xi,∆i) with (X ′i,∆
′
i)

finitely many times, we may assume that fi : Xi −→ Zi = X ′i is a Mori fibre

space and Ai dominates Zi.

By Case B, Step 3 we may assume that Zi is a point, so that Xi has Picard

number one.

Case B, Step 6: We finish case B and the proof.

Possibly passing to a subsequence, (11.6) implies that we may assume that

the number of components of Bi and Ci is fixed. As the only accumulation

point of D(I) is one and the coefficients of Bi are bounded away from one,

possibly passing to a subsequence we may assume that the coefficients of Bi
are fixed and that the coefficients of Ci have the form

r − 1

r
+
f

r
+
kci
r
,

where k, r and f depend on the component but not on i.

Given t ∈ [0, 1], let Ci(t) be the divisor with the same components as Ci
but now with coefficients

r − 1

r
+
f

r
+
kt

r
,

so that Ci = Ci(ci).

Let Ti be the sum of the components of Ai, so that Ti has the same

components as Ai but now every component has coefficient one. Then Ai ≤ Ti
and Ci(c) ≤ Ci. Note that (Xi, Ai + Bi + Ci(c)) is kawamata log terminal as

(Xi, Ai +Bi + Ci) is kawamata log terminal. Let

si = sup{s ∈ [0, 1] | (Xi, Ai +Bi + Ci(c) + s(Ti −Ai)) is log canonical}

be the log canonical threshold. Then

Ai +Bi + Ci(c) ≤ Ai +Bi + Ci(c) + si(Ti −Ai) ≤ Ti +Bi + Ci(c).

As the coefficients of Ai + Bi + Ci(c) belong to a set which satisfies the DCC

and the coefficients of Ti−Ai approach zero, the coefficients of Ai+Bi+Ci(c)+

si(Ti−Ai) belong to a set which satisfies the DCC. Therefore, possibly passing

to a tail of the sequence, (1.4) implies that si = 1, so that (Xi, Ti+Bi+Ci(c))

is log canonical.
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Suppose that (Xi, Ti +Bi + Ci) is not log canonical. Let

di = sup{t ∈ [c, ci) | (Xi, Ti +Bi + Ci(t)) is log canonical}

be the log canonical threshold. Then di ∈ LCTn(D(I)) = Nn−1(I) and c =

lim di, and so we are done by induction on the dimension.

Thus we may assume that (Xi, Ti +Bi + Ci) is log canonical. Let

ei = sup{t ∈ R |KXi + Ti +Bi + Ci(t)) is pseudo-effective}

be the pseudo-effective threshold. Suppose that ei < c. Let

fi = sup{t ∈ R |KXi + tTi +Bi + Ci(c)) is pseudo-effective}

be the pseudo-effective threshold. As ei < c, fi < 1 and lim fi = 1, so that the

coefficients of fiTi +Bi +Ci(c) belong to a set which satisfies the DCC, which

contradicts (1.5). Thus ei ≥ c. On the other hand, ei < ci as KXi +Ti+Bi+Ci
is strictly bigger than KXi + Ai + Bi + Ci, which is numerically trivial. Thus

lim ei = c. Possibly passing to a subsequence we may assume that either ei >

ei+1 for all i or ei = c. In the former case we might as well replace Ci = Ci(ci)

by Ci(ei). In this case some component of Ci intersects a component Si of Ti
and we are done by Case B, Step 2. In the latter case we restrict to a component

Si of Ti and apply adjunction to conclude that c = ei ∈ Nn−1(I). �

Proof of (1.11). By (11.5) it suffices to prove that the accumulation points

of Nn(I) belong to Nn−1(I). Suppose that c1, c2, . . . ∈ [0, 1] is a strictly

decreasing sequence of real numbers such that N(I, ci) is nonempty. Pick

(Xi,∆i) ∈ N(I, ci). By assumption we may write ∆i = Bi + Ci where the co-

efficients of Bi belong to D(I) and the coefficients of Ci 6= 0 belong to Dci(I),

and so (11.7) implies that the limit c belongs to Nn−1(I). �
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