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Stable logarithmic maps to
Deligne–Faltings pairs I

By Qile Chen

Abstract

We introduce a new compactification of the space of relative stable maps.

This approach uses logarithmic geoemetry in the sense of Kato-Fontaine-

Illusie without taking expansions of the target. The underlying structures

of the stable logarithmic maps are stable in the usual sense.
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1. Introduction

1.1. Background on relative Gromov-Witten theory. Gromov-Witten the-

ory relative to a smooth divisor was introduced during the past decade, for the

purpose of proving a degeneration formula, in the symplectic setting by A.M. Li

and Y. Ruan [LR01] and at about the same time by E.N. Ionel and T. Parker

[IP03]. On the algebraic side, this was worked out by Jun Li [Li01], [Li02].

This approach uses the idea of expanded degenerations, which was introduced

by Ziv Ran [Ran87]. A related idea of admissible covers was introduced even

earlier by Harris and Mumford [HM82].
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Recently, the idea of expanded degeneration was systematically studied

using orbifold techniques by D. Abramovich and B. Fantechi [AF11], and an

elegant proof of degeneration formula was given there.

On the other hand, the idea of admissible covers was revisited by Mochizuki

[Moc95] using logarithmic geometry. Following a similar idea, B. Kim defined

the logarithmic stable maps [Kim10], by putting certain log structures on Jun

Li’s predeformable maps. Then, using the work of M. Olsson [Ols03a], [Ols05],

he proved that the stack parametrizing such maps is a proper DM stack and

has an explicit perfect obstruction theory. A degeneration formula under Kim’s

setting is proved in [Che].

Another approach using logarithmic structures without expansions was

first proposed by Bernd Siebert in 2001 [Sie]. The goal here is also to obtain the

degeneration formula, but in a more general situation, such as simple normal

crossings divisors. However, the program was on hold for a while since Mark

Gross and Bernd Siebert were working on other projects in mirror symmetry.

Only recently they have taken up the unfinished project of Siebert jointly. In

particular, they succeeded in finding a definition of basic log maps, a crucial

ingredient for a good moduli theory of stable log maps to a fixed target with

Zariski log structures [GS13]. Their definition builds on insights from tropical

geometry, obtained by probing the stack of log maps using the standard log

point and is compatible with the minimality introduced in this paper.

A different approach using exploded manifolds to studying holomorphic

curves was recently introduced by Brett Parker in [Par12], [Par09a], and

[Par09b]. It also aimed at defining and computing relative and degenerated

Gromov-Witten theories in a general situation. The theory of exploded man-

ifolds uses a generalized version of tropical curves, and is closely related to

logarithmic geometries — the explosion functors, which is central to this the-

ory, can be phrased in terms of certain kind of base change in log geometry; see

[Par12, §5]. It was pointed out by Mark Gross that this approach is parallel

and possibly equivalent to the logarithmic approach.

1.2. The approach and main results of this paper. The goal of this paper is

to develop the relative Gromov-Witten theory along the logarithmic approach

proposed by Bernd Siebert. However, we use somewhat different methods. In-

stead of using tropical geometry and probing the stack using standard log point,

we associate to each log map a marked graph as in Section 3.3, which allows us

to define the right base log structure. We now describe our methods as follows.

The target we will consider in this paper is a projective variety X equipped

with a rank-one Deligne-Faltings log structureMX on X as in Definition 3.1.1,

which comes from a line bundle L onX, with a morphism of sheaves s : L→OX .

In particular, if L is the ideal sheaf of a smooth divisor D ⊂ X and s is the nat-

ural inclusion, then this will recover the relative case. See Section A.2 for more
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details on DF log structures. Denote by X log = (X,MX) the corresponding

log scheme. Instead of considering usual stable maps to the expansions of X,

we investigate the usual stable maps to X, with fixed log structure MX on

the target, and suitable log structures on the source curves.

In the subsequent paper [AC11], we will consider targetX with generalized

Deligne-Faltings log structure MX , namely where there exists a global map

P →MX from a toric monoid P , which locally lifts to a chart. In particular,

this covers many interesting cases, such as a variety with a simple normal

crossings divisor, or a simple normal crossings degeneration of a variety with

simple normal crossings singularities. It does not cover the case of a normal

crossings divisor that is not simple. We hope one can also cover this using the

descent argument along this approach.

A key point of this paper is the observation made in Section 3.2, which

describes the log map on the level of characteristic monoids. This leads us to

the notions of marked graphs 3.3.2 and minimality 3.5.1. Such a minimality

condition can be explained as the “minimal requirements” that a log map

needs to satisfy. Then our minimal stable log maps are defined to be usual

stable maps with the minimal log structures. Denote by KΓ(X log) the category

fibered over the category of schemes, which for any scheme T associates the

groupoid of minimal stable log maps over T with numerical data Γ. We refer

to Section 3.6 for the precise meaning of KΓ(X log). The main result of this

paper is the following:

Theorem 1.2.1. The fibered category KΓ(X log) is a proper Deligne-Mum-

ford stack. Furthermore, the natural map KΓ(X log)→ Kg,n(X,β) by removing

the log structures from minimal stable log maps is representable and finite.

Remark 1.2.2. In fact, the stack KΓ(X log) carries a universal minimal log

structure, which will be denoted by MKΓ(Xlog). Thus the pair

(KΓ(X log),MKΓ(Xlog))

can be viewed as a log stack in the sense of Olsson; see Section A.3. By

applying the standard technique in [BF97] and replacing the usual cotangent

complex by logarithmic cotangent complex [Ols05], one can produce a perfect

obstruction theory of KΓ(X log) relative to Mpre
g,n, the stack of log prestable

curves defined in Section B.3. We will discuss this perfect obstruction theory

and the corresponding virtual fundamental class in another paper.

Up to now, we only introduce KΓ(X log) as category fibered over Sch, the

category of schemes. Denote by LogSchfs the category of fine and saturated

log schemes as introduced in Section A.1. The following result exhibits another

important aspect of our construction:
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Theorem 1.2.3. The pair (KΓ(X log),MKΓ(Xlog)) defines a category fibered

over LogSchfs, which for any fs log scheme (S,MS) associates the category of

stable log maps over (S,MS).

The above categorical interpretation allows us to work systematically with

fs log schemes rather than usual schemes. This point of view will be a useful

tool in [AC11], where we reduce the case with generalized DF-log structure on

the target to the case of this paper.

1.3. Outline of the paper. In Section 2, we fix a morphism of fs log schemes

X log → Blog, define an auxiliary category LMg,n(X log/Blog) of all log maps

with target X, fibered over schemes, and show that it is an algebraic stack in

the sense of Artin. This stack is unbounded and serves mainly as a construction

technique. This will be achieved by verifying Artin’s criteria [Art74, 5.1]. Here

the deformation theory of our log maps will be given by the log cotangent

complex developed in [Ols05].

Section 3 is aimed at the construction of minimal log maps. In fact, for

each log map over a geometric point with fs log structure, we can associate a

marked graph; see Construction 3.4.1. These graphs will be used to describe

the minimality condition. Then we show that minimality is an open condition;

see Proposition 3.5.2. This implies the algebricity of the stack of minimal log

maps using the results of Section 2. In Section 3.7 we show that there are at

most finitely many minimal stable log maps over a fixed underlying stable map

with a fixed marked graph. The finiteness of automorphisms of minimal stable

log maps over a geometric point is proved in Proposition 3.8.1.

Section 4 is devoted to proving Theorem 1.2.3. This will follow naturally

from the universal property of minimal log maps in Proposition 4.1.1.

In Section 5, we will show that KΓ(X log) is of finite type by stratifying

the stack and bounding the stratum associated to each marked graph. Indeed,

we will prove the boundedness of KΓ(X log) relative to the stack of usual stable

maps. One issue here is the construction of all maps of log structures for a

given graph. We will turn this into constructing isomorphisms of corresponding

line bundles.

The weak valuative criterion of KΓ(X log) is proved in Section 6. In fact,

the universal property of minimality produces an extension of minimal stable

log map, once we can find any extension of stable log maps, not necessarily

minimal. For separateness, we first show that the marked graph is uniquely

determined by the generic fiber. Then we introduce a new map β̄ as in (6.4.3),

which helps us compare any two possible extensions; see Lemma 6.5.1. This

leads us to the uniqueness of the extension. In the end, we give a proof of The-

orem 1.2.1 and show that the stack of minimal stable log maps is representable

and finite over the stack of usual stable maps.
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Finally, we have two appendices collecting various results of logarithmic

geometry and logarithmic curves, as we need in this paper. The notion of log

pre-stable curve is introduced in Definition B.2.3.

1.4. Conventions. Throughout this paper, we will work over an alge-

braically closed field of characteristic 0, denoted by C.

The word locally always means étale locally, and neighborhood always

means étale neighborhood, unless otherwise specified.

Given a scheme or algebraic stack X, a point p ∈ X means a closed point

unless otherwise specified. We denote by p̄ an algebraic closure of p.

We usually use X log to denote a log scheme (X,MX) if no confusion could

arise. The map exp : MX → OX is reserved for the structure map of MX .

Given a section u ∈ OX , we sometimes use log u to denote the corresponding

section in MX if no confusion could arise.

The category of schemes, fine log schemes, and fs log schemes are denoted

by Sch, LogSch, and LogSchfs respectively. See Section A.1 for the precise

definitions.

The letter ξ (respectively ξlog) is reserved for log maps over a usual scheme

(respectively log scheme). Given a log map ξ = (C → S,MS , f) over S as in

Remark 3.1.5, we will denote by MC the corresponding log structure on C if

no confusion could arise.

1.5. Acknowledgements. I am very grateful to my advisor Dan Abramovich,

who has suggested several interesting problems to me, including the main prob-

lem of this paper. He has given me continuous support and encouragement,

and his suggestions have greatly influenced the shape of this paper. I am

grateful to Mark Gross, Bernd Siebert, and Martin Olsson who pointed out

several mistakes in the previous draft of this paper and also gave many nice

suggestions and comments. I would also like to thank Davesh Maulik, William

Gillam, and Jonathan Wise for their helpful conversations.

2. Algebricity of the stack of log maps

In this section, we prove that the stack LMg,n(X log/Blog) parametrizing

log maps as in Definition 2.1.5 is algebraic by checking Artin’s criteria [Art74,

5.1]. The result in this section is only used to prove that the stack of minimal

stable log maps Kg,n(X log, β), as in Definition 3.6.5, is algebraic. The reader

may wish to assume the result of Theorem 2.1.10, and skip to the next section.

2.1. Log maps over LogSch and over Sch.

Conventions 2.1.1. In this section, we fix a separated, finite type, and log

flat morphism of log schemes π : X log → Blog. See [Ols03a, Def. 4.1, Th. 4.6]

for the equivalent definitions of log flat morphisms. Denote by B and X the
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underlying schemes of Blog and X log respectively. Let MB and MX be the

log structure on Blog and X log respectively. Given any B-scheme S, denote by

(XS ,MXS/S
XS

)→ (S,MXS/S
S ) the pull-back of X log → Blog over S.

As an analogue of usual pre-stable maps, we introduce our log maps over

log schemes as follows.

Definition 2.1.2. A log map ξlog over a fine Blog-log scheme (S,MS) is a

commutative diagram of log schemes

(2.1.1) (C,MC)
f

//

&&

(XS ,MXS )

ww

(S,MS),

where

(1) the arrow (C,MC) → (S,MS) is given by the log curve (C → S,MC/S
S

→MS) as in Definition B.2.2;

(2) the arrow (XS ,MXS )→ (S,MS) is obtained from the following cartesian

diagram of log schemes:

(XS ,MX) //

��

X log

π
��

(S,MS) // Blog.

Given a log map of fine log schemes g : (T,MT ) → (S,MS), we define

the pull-back g∗ξlog to be the log map ξlog
T over (T,MT ) obtained by pulling

back (2.1.1) via the log map g.

The above definition gives a category of log maps fibered over LogSchBlog ,

the category of fine log schemes over Blog. This category allows pull-back via

arbitrary log maps, hence changes the base log structures. In another word,

it only parametrizes the “log maps,” without the information of log structures

on the base. This is the category of most interest to us.

However, algebraic stacks are built over the category of schemes, rather

than the category of log schemes. In order to have the algebraic structure,

we need to introduce another fibered category over SchB, the category of

B-schemes. This leads to the following definition:

Definition 2.1.3. A log map ξ over a B-scheme S consists of a fine log

scheme (S,MS) over Blog and a log map ξlog over (S,MS) as in Defini-

tion 2.1.2. Usually we denote it by

ξ = (C → S,XS → S,MXS/S
S →MS ,MC/S

S →MS , f),

where MXS/S
S is the pull-back of MB via the structure map S → B.
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Consider another B-scheme T and a B-scheme morphism T → S. Then we

have an induced strict arrow g : (T,MT ) → (S,MS), where MT := g∗(MS).

The pull-back ξT of ξ via T → S is given by the log scheme (T,MT ), and the

log map ξlog
T = g∗ξlog over (T,MT ). In the rest of this section, if no confusion

could arise, we will use (C → S,XS → S,MS , f) to denote the log map ξ

over S.

Since isomorphisms are central to the structure of stacks, we spell out the

resulting notion of an isomorphism of log maps over schemes.

Definition 2.1.4. Consider two log maps ξ1 = (C1 → S,XS → S,M1, f1)

and ξ2 = (C2 → S,XS → S,M2, f2) over a scheme S. An isomorphism ξ1 → ξ2

over S is given by a triple (ρ, θ, γ) fitting in the following commutative diagram

of log schemes:

(2.1.2) (C1,MC,1) //

((

ρ

��

(XS ,MX,1)

vv

γ

��

(S,M1)

θ

��

(C,MC,2) //

((

(XS ,MX,2)

vv

(S,M2),

where

(1) The pair (ρ, θ) is an arrow of log curves (C1 → S,M1) → (C2 → S,M2)

as in Definition B.3.1.

(2) The arrow θ is an isomorphism of log schemes over Blog fitting in the

following commutative diagram:

(S,M1)
θ

//

&&

(S,M2)

xx

Blog.

(3) The arrow γ is obtained from the following cartesian diagram of log schemes:

(XS ,MXS ,1)
γ
//

��

(XS ,MXS ,2)

��

(S,M1)
θ

// (S,M2).

Note that the underlying maps θ and γ are both identities of the corre-

sponding underlying schemes.

Denote by IsomS(ξ1, ξ2) the functor over S that for any S-scheme T → S

associates the set of isomorphisms of ξT,1 and ξT,2 over T , where ξT,1 and ξT,2
are the pull-back of ξ1 and ξ2 via T → S respectively. Denote by AutS(ξ) the

functor of automorphisms of ξ over S.
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Definition 2.1.5. Denote by LMg,n(X log/Blog) the fibered category over

SchB that for any S → B associates the groupoid of log maps ξ over S, with

the underlying pre-stable curves of genus g and n-markings. For simplicity of

notation, in this section we will use LM to denote LMg,n(X log/Blog).

Remark 2.1.6. By Definition 2.1.3, we only allow pull-backs of log maps

via strict log maps in LM, hence we do not change the log structures. Thus,

given a scheme S, the groupoid LM(S) contains all possible log structuresMS

on S with log maps over (S,MS). This is a huge stack as it parametrizes, in

particular, all possible log structures on the base. One would like to consider

a smaller stack parametrizing only log maps without the information of the

base log structures. It will be shown in Section 4 that if we work over fs log

schemes rather than the usual category of schemes for the base, then the stack

we want is Kpre
g,n(X log) as introduced in Section 3.

Denote by Mg,n the algebraic stack of genus g, n-marked pre-stable curves

with the canonical log structure as in Section B.1. Consider the new algebraic

stack
B = LogMg,n×Blog ,

where the fibered product is in the log sense, and Log• is the log stack intro-

duced in Section A.3. By Theorem A.3.2, the stack B is algebraic over B.

Remark 2.1.7. We give the moduli interpretation of B as follows. For any

B-scheme S, an object ζ ∈ B(S) is a diagram

(2.1.3) (C,MC)

''

(XS ,MXS )

vv

(S,M),

where the left arrow is a family of genus g, n-marked log curves given by the

induced map (S,MS)→Mg,n and the right arrow is given by the induced map

(S,MS) → Blog. Consider two objects ζ1 and ζ2 in B(S). An arrow ζ1 → ζ2

over the scheme S is a triple (ρ, θ, γ) given by the following diagram

(2.1.4) (C1,MC,1)

((

ρ

��

(XS ,MXS ,1)

vv

γ

��

(S,M1)

θ

��

(C,MC,2)

((

(XS ,MXS ,2)

vv

(S,M2),

where the square on the left is an isomorphism of log curves and the square on

the right satisfies the condition in Definition 2.1.4(2) and (3).
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Observation 2.1.8. Note that there is a natural morphism of fibered cat-

egories LM → B by removing the log map f as in Definition 2.1.3. Note

that any nontrivial isomorphism of a log map is a nontrivial isomorphism of

the corresponding log source and target. This implies that LM is a pre-sheaf

over B.

We denote by Kpre
g,n(X/B) the stack of usual pre-stable maps with the

source given by genus g, n-marked pre-stable curves, and family of targets

given by X → B. This is an algebraic stack over B. For simplicity of notation,

we will denote this stack by K.

Observation 2.1.9. Note that we have a natural arrow LM → K by re-

moving all log structures. Given a log map ξ, denote by ξ the corresponding

object in K.

Our main result of this section is the following:

Theorem 2.1.10. The fibered category LM is an algebraic stack.

Proof. The rest of this section is devote to the proof of this theorem. The

representability of the diagonal LM→ LM×LM is proved in Section 2.2. By

Observation 2.1.8, we have a natural map LM→ B to the algebraic stack B.

Thus, to produce a smooth cover for LM, it is enough to check Artin’s criteria

[Art74, 5.1] relative to B. This will be done from Section 2.3 to 2.7. �

2.2. Representability of the isomorphism functors of log maps.

Proposition 2.2.1. Consider two log maps ξ1 and ξ2 over a B-scheme S

as in Definition 2.1.4. The functor IsomS(ξ1, ξ2) is represented by an algebraic

space of finite type over S.

Proof. Using the notation as in Definition 2.1.4, Remark 2.1.7, and Ob-

servation 2.1.9, we form the following commutative diagram:

(2.2.1) IsomS(ξ1, ξ2)

φ1

!!

φ2

++
φ3

((
I

��

// IsomS(ξ1, ξ2)

ψ2

��

IsomS(ζ1, ζ2)
ψ1
// IsomS(ζ1, ζ2),

where the square is cartesian and φ3 is given by the universal property of fiber

product. Here ζi is the corresponding log source and target of ξi given by the

natural map in Observation 2.1.8 and ξi is the underline map of ξi given by the



464 QILE CHEN

natural map in Observation 2.1.9. The object ζi can be obtained by removing

log structures on ζi, or given by the source and target of ξi.

Note that any isomorphism of ξ1 and ξ2 induces trivial isomorphism of

the underlying structure of the target XS → S. Thus, the sheaf IsomS(ζ1, ζ2)

is the sheaf of isomorphisms of the underlying curves. Since IsomS(ξ1, ξ2),

IsomS(ζ1, ζ2), and IsomS(ζ1, ζ2) are represented by algebraic spaces of finite

type over S, it is enough to show that φ3 is representable and of finite type.

Consider an S-scheme U and an arrow U → I given by a pair (τ, λ), where

τ ∈ IsomS(ζ1, ζ2)(U) and λ ∈ IsomS(ξ1, ξ2)(U),

such that their induced elements in IsomS(ζ1, ζ2)(U) coincide. Now we have

a cartesian diagram

I ′ //

��

IsomS(ξ1, ξ2)

��

U
(τ,λ)

// I.

Here I ′ is the sheaf over U that for any V → U , associated a unital set {∗}
if (τ, λ)V induces an isomorphism between ξ1,V and ξ2,V , and the empty set

otherwise. Next we will show that I ′ → U is a locally closed immersion of

finite type.

For simplicity, we assume U = S, and we let τ = (ρ, θ, γ) as in Re-

mark 2.1.7. We need to show that the commutativity of the following diagram

of log schemes is represented by a locally closed immersion of finite type:

(C1,MC1)
f1

//

ρ

��

(X,MX,1)

γ

��

(C2,MC2)
f2

// (X,MX,2).

Since the map τ already gives an isomorphism of the underlying structure, we

only need to consider the commutativity of

(2.2.2) MC1 f∗1MX,1

f[1
oo

ρ∗MC2

ρ[

OO

ρ∗ ◦ f∗2MX,2.
ρ∗◦f[2

oo

γ[

OO

Our statement follows from the following lemma. �

Lemma 2.2.2. The condition that (2.2.2) commutes is represented by a

quasi-compact locally closed immersion Z → S.
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Proof. The commutativity of (2.2.2) is equivalent to the equality

(2.2.3) ρ[ ◦ (ρ∗ ◦ f [2) = f [1 ◦ γ[.

By [Ols03a, 3.6], the condition that (2.2.3) holds on the level of characteristic

is represented by a quasi-compact open immersion j : C◦ → C1. Since the

question is local on S, we may further shrink S, and we assume that C1 is

a neighborhood of some fiber C1,s for some point s ∈ S. Since the family

C1 → S is proper, we may choose a finite set of étale maps {Ui → C1} that

covers the fiber C1,s, and each open set Vi = C◦ ×C1 Ui is connected. Note

that the projection π1 : C1 → S is flat, hence is open. Thus, we obtain an

open sub-set S◦ = ∩iπ1(Vi) ⊂ S. Replacing S by S◦, we may assume that the

equality (2.2.3) on the level of characteristic holds.

With this assumption on the characteristic, the proof in [Ols03a, 3.6] shows

that the (2.2.3) is represented by a closed subscheme T ⊂ C1 on the fiber. Note

that the statement is locally on S. Further shrinking S, we can assume that

the family C → S is projective. Now what we want is the maximal closed

subscheme Z ⊂ S parametrizing fibers C1 ×S Z ⊂ T as in [Abr94, Defs. 3, 4].

Then the lemma can be deduced from the “essential free” case of [SGA3, VIII,

Th. 6.5]. See [Abr94, Th. 6(3)] for the reduction argument. �

Next, we check the Artin’s criteria [Art74, 5.1].

2.3. LM is a stack in the étale topology. By [Art74, 1.1], or [LMB00,

Def. 3.1], we need to prove the following:

(1) the isomorphism functor is a sheaf in the étale topology,

(2) any étale descent datum for an object of LM is effective.

Since the isomorphism functor is shown to be representable, it is a sheaf in the

étale topology. For the second condition, let {Si → S}i be an étale covering

of S, and let ξi ∈ LM(Si) for each i. Assume that we have isomorphisms

φij : ξi|Si×SSj → ξj |Si×SSj for each pair (i, j) that satisfy the cocycle condition.

For any i, let ζi be the corresponding log curve and target as in Re-

mark 2.1.7 for ξi. Since such ζi is parametrized by the algebraic stack B, we

can glue them together to obtain ζ over S, whose restriction to each Si is ζi.

Then étale locally we have a log map from ζ given by ξi. Since log maps are

defined in terms of homomorphisms of étale sheaves, they can be glued from

étale local data. Therefore we can glue ξi to obtain the log map ξ with the

source curve given by ζ.

2.4. LM is limit preserving. Consider

R = lim
→
Ri,

where {Ri} is a filtering inductive system of neotherian rings. Set S = SpecR

and Si = SpecRi. By [Art74, §1], we need to show that the following map of
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groupoids is an equivalence of categories:

lim
←
LM(Si)→ LM(S).

Consider a log map ξ = (C → S,XS → S,MS , f) in LM(S). Since the

stack B is locally of finite type, we have the family ζ = (C → S,XS → S,MS)

coming from ζi = (Ci → Si, XSi → Si,MSi) over Si for some i. Also notice

that we have an induced map S → K given by the underlying map. Since K is

locally of finite type, the underlying map f comes from f
i′

over some Si′ . We

choose an index i0 such that i0 > i and i0 > i′.

It remains to consider the map of log structures f [ : f∗MX →MC . We

first introduce two stacks L∆ and LΛ as in [Ols05, §2].

Remark 2.4.1. Consider a scheme U over Z. Objects in L∆(U) are com-

mutative diagrams of log structures on U of the following form:

(2.4.1) M1

|| ""

M2
//M3.

Objects in LΛ are diagrams of log structures on U of the following form:

(2.4.2) M1

|| ""

M2 M3.

It was shown in [Ols05, 2.4] that those two stacks L∆ and LΛ are algebraic

stacks locally of finite type. Note that there is a natural morphism L∆ → LΛ

by dropping the bottom arrow in (2.4.1) to obtain (2.4.2).

Observation 2.4.2. Consider ζ = (πC : C → S,XS → S,MS), which is

the family of log sources and targets constructed above. There is a natural

diagram of log structures on C as follows:

(2.4.3) π∗CMS

yy $$

f∗MX MC .

This induces a natural map C → LΛ. Consider the fiber product L∆ ×LΛ C.

This gives an algebraic stack parametrizing the bottom arrows f [ that fits in

the above commutative diagram.

The map f [ is equivalent to a map C → L∆×LΛC. Note that the algebraic

stack L∆ ×LΛ C is locally of finite presentation. By [LMB00, Prop. 4.18(i)],
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we have the map f [ coming from some f [i1 over Si1 for some i1 > i0. This map

is compatible with all the log structures coming from base and target. Indeed,

consider the composition

pj : Cj → L∆ ×LΛ Cj → Cj .

Applying [LMB00, Prop. 4.18(i)] again, we see that the identity p=idC : C→C

comes from pj for some i2 > i1. Thus, the map fi2 also compatible with the

underlying map f . This proves the essential surjectivity.

The full faithfulness follows from [LMB00, Prop. 4.15(i)] and the fact that

the diagonal LM→ LM×B LM is representable and locally of finite type.

2.5. Deformations and obstructions. By [Art74, Def. 5.1], it remains to

find a smooth cover of LM. As in Observation 2.1.8, we have a representable

map of stack LM→ B. Since B is an algebraic stack, it would be enough to

produce a smooth cover for LMU := LM×BU , where U → B is an arbitrary

smooth map. This can be done by checking Artin’s criteria [Art74, 5.2] for

LMU relative to U . First we consider the deformations and obstructions.

Let A0 be a reduced neotherian ring over U , and let A′ → A → A0 be

an infinitesimal extension of A0, where A′ → A is surjective whose kernel I

is a finite A0−module and hence a square-zero ideal. Set S = SpecA and

S′ = SpecA′. Consider a log map ξA = (C → S,XS → S,MS , f) ∈ LMU .

Let ξ0 = (C0 → S0, XS0 → S0,MS0 , f0) be the restriction of ξA over A0.

Since we are over U , the log sources and targets (C → S,XS → S,MS) comes

from the structure morphism S → U . Note that we have another family of

log sources and targets (C ′ → S′, XS′ → S′,MS′), which are also from the

structure map S′ → U . To obtain a deformation of ξA over S′, it is equivalent

to producing a dotted arrow f ′ that fits in the following commutative diagram:

(2.5.1) (C,MC)
k

//

f

&&

!!

(C ′,MC′)

""

f ′

''

(XS ,MXS )

��

j
// (XS′ ,MXS′ )

��

(S,MS)
i

// (S′,MS′).

Note that the front and back squares in (2.5.1) are cartesian squares. Let Llog
XS/S

be the logarithmic cotangent complex of the log map (XS ,MXS ) → (S,MS)

as in [Ols05]. By [Ols05, 5.9], we have the following results:
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(1) there is a canonical class o ∈ Ext1(f∗Llog
XS/S

, I ⊗A0 OC0), whose vanishing

is necessary and sufficient for the existence of a morphism f ′ fitting in

the above diagram;

(2) if o = 0, then the set of such maps f ′ is a torsor under Ext0(f∗Llog
XS/S

,

I ⊗A0 OC0).

Since the family of targets X log → Blog is log flat, by [Ols05, 1.1(iv)] we have

Ext1(f∗Llog
XS/S

, I ⊗A0 OC0) ∼= Ext1(f∗0 Llog
XS0

/S0
, I ⊗A0 OC0).

Thus we define

DξA(I) = Ext0(f∗Llog
XS/S

, I⊗A0OC0) and Oξ0(I) = Ext1(f∗0 Llog
XS0

/S0
, I⊗A0OC0)

to be the modules of deformations and obstructions respectively. Note that

the log cotangent complex Llog
XS/S

is bounded above with coherent cohomolo-

gies. The conditions of deformation and obstruction modules in [Art74, 5.2(4)]

follows from the standard property of cohomology; see, e.g., [AV02, 5.3.4].

2.6. Schlessinger ’s conditions. By [Art74, 5.2(2)], we need to verify Sch-

lessinger’s conditions (S1) and (S2) as in [Art74, §2]. The condition (S2) follows

from the cohomological description of the module of deformation D. Next we

check the condition (S1′) [Art74, 2.3], which is a stronger version of (S1).

Indeed, consider an infinitesimal extension A′ → A→ A0 as in Section 2.5,

and consider a U -algebra homomorphism B → A such that the composition

B → A0 is surjective. Consider ξA ∈ LMU (A). For any surjection R → A,

denote by LMξA(R) the category of log maps over SpecR whose restriction

to SpecA is ξA. Then we need to show that

LMξA(A′ ×A B)→ LMξA(A′)× LMξA(B)

is an equivalence of categories.

First, consider the essential surjectivity. Consider objects ξA′ ∈ LMξA(A′)

and ξB ∈ LMξA(B). Set ξA′ = (ζA′ , fA′) and ξB = (ζB, fB), where ζA′ and ζB
are the corresponding log sources and targets as in Remark 2.1.7. Note that

the two families ζA′ and ζB correspond to maps SpecA′ → U and SpecB → U ,

which induce the same map SpecA→ U by restricting to SpecA. Then we can

glue them together to obtain a map SpecB×AA′ → U . This induces a family

ζB×AA′ over SpecB ×A A′, whose restrictions to SpecA′ and SpecB are ζA′

and ζB respectively. Since the stack K parametrizing the underlying maps is

algebraic, the same argument as above produces a gluing f
A′×AB

of f
A′

and f
B

.

It remains to produce a compatible morphism of log structures f [A′×AB.

Next we choose an affine open cover VB×AA′ =
⋃
i Vi of the log source curve in

ζB×AA′ ; its restrictions to A′ and B give the affine open covers VB and VA for
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curves of ζA′ and ζB respectively. Consider the stack

L∆ ×LΛ CA′

induced by ζA′ and the map f
A

as in Observation 2.4.2. Similarly, we have

stack

L∆ ×LΛ CB

induced by ζB and f
B

. They can be glued to give L∆ ×LΛ CA′×AB, which

corresponds to ζA′×AB. Consider the maps VA′ → L∆ ×LΛ CA′ and VB →
L∆ ×LΛ CB induced by fA′ and fB respectively. Note that these maps can be

glued together and descend to a map

CA′×AB → L
∆ ×LΛ CA′×AB.

This induce a map of log structures

f [A′×AB : f∗
A′×AB

MXA′×AB
→MCA′×AB

.

By construction, f [A′×AB is compatible with ζA′ ×AB and the underlying map

f
A′×AB

.

The full faithfulness follows from the representability of isomorphism func-

tor of log maps.

2.7. Compatibility with formal completions. Let Â be a complete local

ring, and let m be the maximal ideal of Â. Set An = Â/mn, S = Spec Â, and

Sn = SpecAn. Since we work over a fixed chart U → LM, it is enough to

consider a family of log maps {ξn = (Cn → Sn, XSn → Sn,MS , fn)}n such

that ξn ∈ LMU (Sn), and ξn|Sk = ξk for any n ≥ k. According to [Art74,

5.2(3)], we need to show that there exists an element ξ ∈ LMU (S) such that

ξ|Sn = ξn for any n.

Denote by ζn = (Cn → Sn, XSn → Sn,MSn) the family of log sources and

targets of ξn. For each n, there is a map Sn → U induced by ζn such that they

fit in the following commutative diagrams for any k ≤ n:

Sn //

��

U.

Sk

>>

Thus the above diagram induces a map S → U , whose restriction to Sn is the

map given by ζn as above. By pulling back the universal family over U , we

obtain a family of log sources and targets ζ = (C → S,XS → S,MS). Note

that ζ|Sn = ζn for any n.

Denote by ξ
n

the usual pre-stable map over Sn. Consider the family

of compatible underlying maps {ξ
n
}. By [Gro61, 5.4.1], there exists a unique

underlying map (up to a unique isomorphism) f : C → XS such that f |Sn = f
n
.
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Now to construct ξ, we need to construct a log map f : (C,MC) →
(XS ,MXS ), which is compatible with the underlying map f and fn for all n.

By definition of log maps, this is equivalent to constructing a map of log

structures f [ : f∗MXS → MC , which is compatible with f [n and the log

structure MS on the base. For simplicity, set M = f∗MXS .

Choose an affine étale cover of C such that over each affine chart V → C,

the log structures M|V , MC |V , and π∗1MS can be obtained by taking the log

structures associated to Γ(M, V )→ OV , Γ(MC , V )→ OV , and π∗1MS → OV
respectively. Since the charts of fine log structures always exist étale locally,

the above choice of cover exists. We first construct f [ on such chart V .

Set Vn = V ×S Sn. Then the canonical map Vn → Cn gives an affine

étale chart. Consider the compatible families of monoids {Γ(Mn, Vn)}n and

{Γ(MCn , Vn)}n. For simplicity, let N be one of the monoids Γ(M, V ),

Γ(MC , V ), or Γ(π∗1MS , V ), and let Nn be one of the corresponding reduc-

tions Γ(Mn, Vn), Γ(MCn , Vn), or Γ(π∗1MSn , Vn). Denote by qn : N → Nn
the restriction map and by pn : lim←−Nn → Nn the canonical map. Let pnk :

Nn → Nk be the restriction map for all k ≤ n. Assume that Vn = SpecRn
and R = lim←−Rn. Thus, we write V = SpecR.

Note that inverse limit exists in the category of monoids and their for-

mation commutes with the forgetful functor to the category of sets ([Ogu06,

Ch. I, 1.1]). Furthermore, the inverse limit of a family of integral monoids is

again integral ([Ogu06, Ch. I, 1.2]). Consider an element e ∈ N . This induces

a family of compatible elements {qn(e)}n ∈ lim←−Nn. In this way, we obtain a

canonical map of integral monoids:

p : N → lim←−Nn.
Lemma 2.7.1.

(1) Consider an element e ∈ Nn. Then pnk(e) ∈ R∗k for some k ≤ n if and

only if e ∈ R∗n. Furthermore, the map pnk induces a natural isomorphism

p̄nk : Nn/R∗n → Nk/R∗k.

(2) Consider an element e ∈ N . Then qn(e) ∈ R∗n for some n if and only

if e ∈ R∗. Furthermore, the map qn induces a natural isomorphism of

monoids q̄n : N/R∗ → Nn/R∗n.

(3) There is a natural inclusion R∗ ↪→ lim←−Nn that fits in the following com-

mutative diagram :

(2.7.1) R∗

~~ $$

N
p

// lim←−Nn,

where the left side arrow is the natural inclusion of units given by the

corresponding log structures.
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(4) The canonical projection pn : lim←−Nn → Nn induces an isomorphism of

monoids

p̄n : (lim←−Nn)/R∗ → Nn/R∗n.
(5) The canonical map p : N → lim←−Nn induces an isomorphism of monoids

p̄ : N/R∗ → (lim←−Nn)/R∗.

Proof. The first part of Statement (1) follows from the following commu-

tative diagram:

Nn
pnk

//

��

Nk

��

Rn // Rk,

where the two vertical maps are given by the structure morphism of the cor-

responding log structures. This immediately implies the existence of p̄nk. The

surjectivity of pnk for any k ≤ n implies that p̄nk is also surjective. To see the

injectivity, consider two elements a, b ∈ Nn such that pnk(a) = pnk(b) + log u

for some u ∈ R∗k. Without loss of generality, we can assume that a+ c′ = b+ c

in Nn. Thus pnk(c
′) = pnk(c) + log u, which implies pnk(c

′ − c) ∈ R∗k, hence

c′ − c ∈ R∗n. This proves the second part of Statement (1).

Statement (2) can be proved similarly as the first one.

To prove (3), consider e ∈ lim←−Nn, which can be represented by a family of

compatible elements {en ∈ Nn}n. Assume that en′ ∈ R∗n′ for some n′. Then the

first statement implies that en ∈ R∗n for all n. Thus we have a unique element

e ∈ R∗ ⊂ R such that e|Vn = en. This induces a canonical map R∗ ↪→ lim←−Nn.

Now the commutativity of (2.7.1) can be checked directly.

In fact the above argument proves that pn(e) ∈ R∗n for some e ∈ lim←−Nn
if and only if e ∈ R∗. Thus we obtain a canonical map p̄n : (lim←−Nn)/R∗ →
Nn/R∗n. Note that we have the following commutative diagram:

(2.7.2) N
p

��

qn

))
lim←−Nn

pn
// Nn.

The surjectivity of qn implies that p̄n is also surjective. The injectivity of p̄n
can be proved similarly as for the first statement. This proves (4).

Finally, note that (2.7.2) induces a commutative diagram

(2.7.3) N/R∗

p̄

��

q̄n

**

(lim←−Nn)/R∗
p̄n

// Nn/R∗n.
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Since both q̄n and p̄n are isomorphisms of monoids, we conclude that p̄ is also

an isomorphism. This proves (5). �

Proposition 2.7.2. The map of monoids p : N → lim←−Nn is an isomor-

phism.

Proof. By Lemma 2.7.1(3) and (5), we have a commutative diagram

N
p

//

��

lim←−Nn

��

N/R∗
p̄

// lim←−Nn/R
∗.

Pick two sections e, e′ ∈ N such that p(e) = p(e′). Denote by ē and ē′ the

corresponding images in N/R∗. It follows from Lemma 2.7.1(5) that ē = ē′.

Thus, we have e = e′+log u for some u ∈ R∗. But the assumption p(e) = p(e′)

implies that p(u) = 1 ∈ lim←−Nn. By Lemma 2.7.1(3), we have u = 1. This

proves that p is also injective.

To prove the surjectivity, consider an element a ∈ lim←−Nn. Since p̄ is an

isomorphism, denote by ā the image of a in N/R∗. Let a′ be a lifting of ā

in N . Then there exists an element u ∈ R∗ such that a = p(a′) + log u. Thus

p(a′ + log u) = a. �

Pick an element {en ∈ Γ(Mn, Vn)}n ∈ lim←−Γ(Mn, Vn). We obtain a com-

patible family {fn(en)}n ∈ lim←−Γ(MCn , Vn). Thus the compatible morphism of

log structures {fn} induces a natural map of monoids

lim←−Γ(Mn, Vn)→ lim←−Γ(MCn , Vn).

By Proposition 2.7.2, we have a natural map of monoids

Γ(f [, V ) : Γ(M, V )→ Γ(MC , V ).

Next we show that Γ(f [, V ) induces a map of log structures f [V :M|V →
MC |V . Since the two log structures M|V and MC |V can be obtained from

Γ(M, V ) and Γ(MC , V ) respectively, it is enough to show that the following

diagram is commutative:

Γ(M, V )
Γ(f[,V )

//

exp1
$$

Γ(MC , V )

exp2
zz

R,

where exp1 and exp2 are the structure morphism of the corresponding log

structures. To see this, consider any section s ∈ Γ(M, V ). Since exp1(s)|Sn =

exp1 ◦Γ(f [, V )(s)|Sn for any n, we have exp1(s) = exp1 ◦Γ(f [, V )(s). This

proves the commutativity.
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We claim that f [V is compatible with the log structure on the base. This

is equivalent to showing the commutativity of the following diagram of log

structures on V :

(2.7.4) π∗1MS |V
π[2

zz

π[1

%%

M|V
f[V

//MC |V ,

where π1 : C → S and π2 : XS → S are the projections. Note that π∗1MS |V
can be obtained by taking the log structure associated to Γ(π∗1MS , V )→ OV .

Hence to verify the commutativity of (2.7.4), it is enough to show that the

following diagram is commutative:

Γ(π∗1MS , V )
π[2

ww

π[1

''

Γ(M, V )
f[V

// Γ(MC , V ).

This follows from the definition of f [V , and we have the following commutative

diagram for each n:

π∗1,nMSn

yy %%

f∗Mn
f[n

//MCn .

Thus we obtain the desired map f [V over each affine chart V .

Finally, notice that the construction of f [V is functorial. Hence, we are

able to obtain a global map f [ by gluing f [V on each affine chart. This finishes

the proof of compatibility with formal completions.

3. Minimal logarithmic maps to rank-one Deligne-Faltings log pairs

3.1. Basic definitions and notation.

Definition 3.1.1. We call the log scheme X log = (X,MX) a rank-one

Deligne-Faltings pair if

(1) X is a projective variety over C;

(2) MX is a DF log structure on X as in Definition A.2.1, with a global

presentation N→MX .

Remark 3.1.2. The results in Section 3 and 4 still hold if we assume X to

be only separated of finite type over C. However, the projectivity is essential

for the properness of the stack KΓ(X) as in Definition 3.6.5.
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Conventions 3.1.3. In the rest of this paper, we fix a Deligne-Faltings

pair (X,MX) as our target of log maps, with a global presentation N→MX .

Denote by (L, s) the pair consisting of a line bundle L and a morphism of

sheaves s : L → OX corresponding to MX . Let D be the vanishing locus

of the section s ∈ H0(L∨). Denote by δ the standard generator of N. For

convenience, locally we identify δ with its image in MX .

Remark 3.1.4. Note that if s = 0, then D = X. If s is not a zero section,

then D is a divisor in X. Thus, we have L = OX(−D), with the natural

inclusion s : OX(−D) ↪→ OX . The section δ locally lifts to a section in OX ,

whose vanishing locus gives the divisor D.

Remark 3.1.5. The target X log should be viewed as a log scheme over

a point with trivial log structures. Thus, we can simplify the notation in

Section 2.1 as follows. A log map over a usual scheme S is given by the triple

(C → S,MS , f), where (C → S,MS) is a log curve in Definition B.2.2 and

f : (C,MC)→ (X,MX) is a log map.

Consider two log maps ξ = (C → S,MS , f) and ξ′ = (C ′ → S,M′S , f ′)
over a scheme S. An arrow ξ → ξ′ over S is a pair (ρ, θ) as in Definition B.3.1

such that the following diagram commutes:

(X,MX)

(C,MC)

f
22

ρ
//

��

(C ′,MC′)
f ′

<<

��

(S,MS)
θ
// (S,M′S),

where the square is a cartesian square of log schemes. This is compatible with

Definitions 2.1.3 and 2.1.4.

3.2. Log maps on the level of characteristics. Consider a log map ξ = (π :

C → S,MS , f) as in Remark 3.1.5, where S = Spec k is a geometric point and

(C → S,MS) is a log pre-stable curve. Pick a point p ∈ C that sits in an

irreducible component Z. We have a map of characteristic monoids:

(3.2.1) f̄ [ : f∗(MX)p →MC,p.

First consider the case p is a smooth nonmarked point. By the description

in Definition B.2.1, we have f̄ [(δ) = e ∈MS at p. By [Ols03a, 3.5(i),(iii)], the

equality f̄ [(δ) = e lifts to an étale neighborhood of p.

Definition 3.2.1. We call e the degeneracy of Z. Note that if p /∈ D for

some p ∈ Z, then the image e vanishes in MS . A component Z is called

degenerate if its degeneracy is not zero. This is equivalent to saying that Z

maps to D via f .
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Next, we consider the case where p is a marked point. Locally at p, we

have MC
∼= π∗MS ⊕O∗C N , where N is the canonical log structure associated

to the marked point p. Then on the level of characteristic, we have

(3.2.2) f̄ [(δ) = e+ cp · σp,

where e ∈MS , the element σp is the generator of N p, and cp is a nonnegative

integer.

Observation 3.2.2. When we generalize (3.2.2) to nearby smooth points,

any lifting of σp in the structure sheaf becomes invertible. Thus, the element

e is the degeneracy of the component Z containing p.

Definition 3.2.3. We call cp the contact order of f at p.

Lemma 3.2.4. Consider a log map ξ = (C ′ → S′,MS′ , g) over a scheme

S′ and a marking Σi on C ′. There is an open subset in S′ such that the contact

order along the fixed marking Σi is constant.

Proof. Consider the relative characteristic MC′/S′ . This is a locally con-

stant sheaf along Σi, with stalks given by N. Thus along Σi there is a map of

locally constant sheaves g∗MX →MC′/S′ , which locally at p ∈ Σi is given by

N → N by 1 7→ c, for some positive integer c. Note that the correspondence

1 7→ c can be generalize to the nearby points of p. Therefore it forms an open

condition on the base. �

Remark 3.2.5. When D is a divisor, the contact order of a marked point

Σ in a nondegenerate component can be identified with the local intersection

multiplicity (C ·D)Σ.

Finally, let us consider the case where p is a node joining two irreducible

components Z and Z ′. Let ep be the element in MS smoothing the node p.

Denote by log xp and log yp the elements inMC given by the local coordinates

of the two components Z and Z ′ at p respectively as in Section B.4. Then

locally at p we have the equation in MC :

(3.2.3) ep = log xp + log yp.

Thus, without loss of generality we can assume that

(3.2.4) f̄ [(δ) = e+ cp · log xp,

where cp is a positive integer.

Definition 3.2.6. The integer cp is called the contact order of f at the

node p. If cp 6= 0, then p is called a distinguished node. A point p ∈ C is called

a distinguished point if it is a marked point or node with nontrivial contact

order. Otherwise, it is called nondistinguished point.
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Lemma 3.2.7. Using the notation as above, the degeneracy of Z is e and

the degeneracy of Z ′ is e + cp · ep.

Proof. When we generalize (3.2.4) to a smooth point in Z ′, the section y

becomes invertible. Then the statement for Z ′ follows from the definition of

degeneracy of a component. For Z, the proof is similar. �

Lemma 3.2.7 gives a way to put a partial order on the set of irreducible

components as follows.

Definition 3.2.8. Using the notation as above, we call Z the lower com-

ponent of p and Z ′ the upper component of p.

Lemma 3.2.9. Consider a log map ξ = (C ′ → S′,MS′ , g) and a connected

singularity p ⊂ C ′. There is an open subset in S′, such that over each fiber we

have that either the node p is smoothed out, or its contact order remains the

same.

Proof. The proof is similar to the one for Lemma 3.2.4. �

3.3. Marked graph. We next introduce the marked graph that will be used

later to describe the combinatorial data associated to log maps.

Definition 3.3.1. A weighted graph G is a connected graph with the fol-

lowing data:

(1) a subset Vn(G) ⊂ V (G) of the set of vertices of G, which is called the

set of nondegenerate vertices;

(2) for each edge l ∈ E(G), we associate a nonnegative integer weight cl
called the contact order of l.

Note that the set Vn(G) can be empty. If the contact order of an edge

l is zero, then l is called the nondistinguished edge; otherwise it is called a

distinguished edge. Two vertices are called adjacent if they are connected by

an edge. Denote by G the underlying graph of G, obtained by removing all

weights.

Definition 3.3.2. Consider a weighted graph G as in the above definition.

An orientation on G is an orientation on the underlying graph G, except

that we allow some edges to be nonoriented, i.e., an edge with two directions.

Consider an edge l from v1 to v2 under the orientation. Then v1 is called

the initial vertex of l, and v2 is called the end vertex of l. We denote this by

v1 ≤ v2. If l is orientated, then we write v1 < v2.

An orientation on G is called compatible if

(1) an edge l ∈ E(G) is nonoriented if and only if cl = 0;

(2) if v ∈ Vn(G), then for any other adjacent vertex v′ of v we have v ≤ v′.
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Note that if v, v′ ∈ Vn(G), then any edges between them is nonoriented. The

graph G is called a marked graph if it is a weighted graph with a compatible

orientation.

A path is a nonrepeated sequence of edges (l1, l2, · · · , lm) such that the

end vertex of lj is the initial vertex of lj+1. Such a path is called a cycle if the

initial vertex of l1 is the end vertex of lm. A cycle is called strict if it contains

at least one oriented edges. A vertex v ∈ V (G) is called minimal (respectively

maximal) if it is not the end (respectively initial) vertex of any oriented edge.

Thus by condition (2) above, any vertex v ∈ Vn(G) is minimal.

Construction 3.3.3. Consider a marked graph G as in Definition 3.3.2.

For each edge l ∈ E(G) (respectively each vertex v ∈ V (G)), we introduce a

variable el (respectively ev), which is called the element associated to l (respec-

tively v). For any v ∈ Vn(G), we set

(3.3.1) hv : ev = 0.

Consider an edge l ∈ E(G) with initial vertex v1 and end vertex v2. We

associate an equation

(3.3.2) hl : ev2 = ev1 + cl · el.

Consider the monoid

(3.3.3)

M(G) =
〈
ev, el

∣∣∣∣ v ∈ V(G), l ∈ E(G)
〉¬¨

hl, hv
∣∣∣ l ∈ E(G), v ∈ Vn(G)

∂
.

Denote by T (G) the torsion part of M(G)gp. Then we have the following

composition:

M(G)→M(G)gp →M(G)gp/T (G).

Denote by N(G) the image of M(G) in M(G)gp/T (G) and by M(G) the

saturation of N(G) in M(G)gp/T (G).

Definition 3.3.4. The monoid M(G) constructed above is called the as-

sociated monoid of the marked graph G.

Note that N(G) is the image of M(G) in M(G). By the definition of

M(G) and Proposition A.1.1, we have the following:

Lemma 3.3.5. By viewing N(G) andM(G) as sub-monoids ofM(G)gp =

M(G)gp/T (G), we have that for any a ∈ M(G), there exist b ∈ N(G) and a

positive integer m such that b = m · a.

Definition 3.3.6. The marked graph G is called admissible if M(G) is a

sharp monoid, and the image of el in M(G) is nontrivial for all l ∈ E(G).
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For example, consider a loop l attached to some vertex v. If cl 6= 0, then

(3.3.2) would imply that el = 0. In general, we have the following result:

Corollary 3.3.7. If G is admissible, then there is no strict cycle in G.

Proof. If there is a strict cycle (l1, · · · , lk), then we have
∑k
i=1 clieli = 0.

The strictness implies that at least one of the cli is nonzero. Thus, the monoid

M(G) fails to be sharp, which contradicts the admissibility assumption. �

Note that when G is admissible, the monoid M(G) generates a strongly

convex rational cone C(M(G)) in the vector space M(G)gp ⊗ Q (see [Ful93,

p. 4]).

Lemma 3.3.8. Consider an irreducible element e ∈ M(G), where G is

admissible. Assume that e lies on an extremal ray of C(M(G)). Then at least

one of the following holds :

(1) there is a positive integer n and a minimal vertex v such that n · e = ev ,

(2) there is a positive integer n and an edge l such that n · e = el.

Proof. Let n be the minimal positive integer such that n · e ∈ N(G).

Assume that n · e = b+ c with b, c ∈ N(G). Note that e generates an extremal

ray of the strongly convex rational cone C(M(G)). Thus we have positive

numbers n1 and n2 such that b = n1 · e and c = n2 · e. The minimality of

n implies that either b = 0, or c = 0. Since b and c in N(G) are elements

associated to edges or vertices, the element n · e must satisfy one of the two

possibilities above. �

3.4. Marked graphs associated to log maps. Consider a log map ξ = (C →
S,MS , f) over a geometric point S such that the log structure MS is fs.

Construction 3.4.1. We construct a weighted graph Gξ of ξ with an ori-

entation as in Definition 3.3.2:

(1) The underlying graph Gξ is given by the dual graph of the curve C.

(2) The subset Vn(G) consists of the vertices corresponding to nondegenerate

components.

(3) For each edge l ∈ E(Gξ), we associate a nonnegative integers cl, where cl
is the contact order of the node l as in Definition 3.2.6.

(4) Let l ∈ E(Gξ) be a node joining two irreducible components v1, v2 ∈
V (Gξ). Then we define an orientation by putting v1 ≤ v2 if v1 is the lower

component and v2 is the upper component of l as in Definition 3.2.8.

Consider a node l ∈ E(Gξ). Denote by e′l the element inMS smoothing l

and by el the element associated to l in M(Gξ). Then consider an irreducible

component v ∈ V (Gξ). Denote by e′v the degeneracy of v in ξ and by ev ∈
M(Gξ) the element associated to v. We define a correspondence

(3.4.1) el 7→ e′l and ev 7→ e′v.
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Proposition 3.4.2. Assuming that MS is fs, the correspondence (3.4.1)

induces a canonical morphism of monoids :

φ :M(Gξ)→MS .

Proof. Note that (3.4.1) induces a map M(Gξ) → MS . By Proposi-

tion A.1.1, this induces a unique map φ′ : M(Gξ)
Sat →MS . Since the monoid

MS is sharp, if e ∈ M(Gξ)
Sat is torsion, then φ′(e) = 0. Thus, there is a

unique map φ :M(Gξ)→MS induced by φ′. �

Corollary 3.4.3. The graph Gξ is an admissible marked graph.

Proof. The compatibility of the orientation follows from Lemma 3.2.7. Let

us consider the admissibility. First note that el is nontrivial for any l ∈ E(G),

since its image inMS is the element smoothing the node l, which is nontrivial.

For any element a ∈ M(Gξ), if a is invertible, then by Lemma 3.3.5, there

exists some positive integer m such that m ·a =
∑
i diei, where ei are elements

associated to some edges or vertices and di are nonnegative integers. Since the

monoid MS is sharp, we have φ(a) =
∑
i diφ(ei) = 0 in MS . If di 6= 0, then

φ(ei) = 0, which implies that ei is the element associated to a nondegenerate

component. Thus we have ei = 0 in M(Gξ). This implies that a = 0 in

M(Gξ), which proves the statement. �

Definition 3.4.4. We call Gξ the marked graph of ξ.

3.5. Minimal logarithmic maps. We still consider a log map ξ = (C → S,

MS , f) over a geometric point S with fs log structure MS .

Definition 3.5.1. The log map ξ over S is called minimal if the induced

canonical map φ in Proposition 3.4.2 is an isomorphism of monoids. A family

of log maps ξT over a scheme T is called minimal if each geometric fiber is

minimal.

Proposition 3.5.2 (Openness of minimal log maps). Let ξ = (C → S,

MS , f) be a family of log maps over a scheme S, and assume that ξs̄ is minimal

for some point s ∈ S. Then there exists an étale neighborhood of s with all

geometric fibers minimal.

Proof. Shrinking S, we may assume that S is connected, and we have a

chart β :MS,s̄ →MS by Proposition A.1.3. We next show that for any t̄ ∈ S,

the fiber ξt̄ is minimal.

We have

Kt̄ = {a ∈MS,s̄ | β(a) is invertible at t̄}.
Note that Kt̄ is a submonoid of MS,s̄. Consider the following composition

MS,s̄ →M
gp
S,s̄ →M

gp
S,s̄/K

gp
t̄ .
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By [Ols03a, 3.5], we have Mgp
S,s̄/K

gp
t̄
∼=Mgp

S,t̄. The above composition induces

a map q :MS,s̄ →MS,t̄, which is exactly the specialization map as in [Ols03a,

3.5(iii)]. We construct a new graph from the marked graph Gξs̄ as follows:

(1) for an edge l ∈ E(Gξ,s̄), if q(el) = 0, then we contract l and identify

the two end vertices of l and the corresponding associated elements;

(2) for a vertex v ∈ V (Gξ,s̄), if q(ev) = 0, then we put ev = 0 in G′.

Other vertices and edges in Gξs̄ and their associated elements and contact

orders remain the same. We denote by G′ the resulting graph.

First note that the underlying graph G′ is the dual graph of Ct̄ since

an edge l ∈ E(Gξ,s̄) gets contracted if and only if the corresponding node is

smoothed out over t̄. Furthermore, the orientation on Gξs̄ induces a natural

orientation on G′. Since all contact orders remain the same, the graph G′ is in

fact the marked graph Gξt̄ of ξt̄.

The construction of G′ gives a map of monoids:

(3.5.1) M(Gξs̄)→M(Gξt̄)→MGξt̄
.

By the same argument in Proposition 3.4.2, we obtain a canonical map of

monoids:

(3.5.2) q′ :MS,s̄
∼=M(Gξs̄)→M(Gξt̄),

which gives the following commutative diagram

(3.5.3) MS,s̄

q′

zz

q

##

M(Gξt̄)
//MS,t̄,

where the bottom map is the canonical map as in Proposition 3.4.2. Consider

the induced commutative diagram:

(3.5.4) Mgp
S,s̄

(q′)gp

zz

qgp

""

M(Gξt̄)
gp //Mgp

S,t̄.

Note that both qgp and (q′)gp are surjective maps. By the construction of q,

the group Kgp
t̄ is the kernel of qgp. On the other hand, the construction of G′

and the fact that G′ = Gξt̄ implies that Kgp
t̄ is also the kernel of (q′)gp. Since

the monoids in (3.5.3) are fine and saturated, the map M(Gξt̄)→MS,t̄ is an

isomorphism. This proves the statement. �

Definition 3.5.3. Denote by Kpre
g,n(X log) the stack parametrizing minimal

log maps to X log, with the fixed genus g, and n-markings.
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Corollary 3.5.4. Kpre
g,n(X log) is an open substack of t LMg,n(X log) and

hence is an algebraic stack.

Proof. This follows from Theorem 2.1.10 and Proposition 3.5.2. �

3.6. Stable log maps.

Definition 3.6.1. A log map ξ = (C → S,MS , f) over a geometric point

S is called stable if its underlying map is stable in the usual sense, and MS is

fs. A family of log maps ξT over a scheme T is called stable if its geometric

fibers are stable. A stable log map is called minimal stable if it satisfies the

minimality condition as in Definition 3.5.1.

Similarly, we can work over log schemes rather than the usual schemes.

Then we have the following:

Definition 3.6.2. A log map ξlog over an fs log scheme (S,MS) as in

Definition 2.1.2 is called stable if its underlying map is stable in the usual

sense.

Conventions 3.6.3. In this paper, we fix the discrete data Γ = (β, g, n, c),

where

(1) β ∈ H2(X,Z) is a curve class in X;

(2) n and g are two nonnegative integers;

(3) c = (ci)
n
i=1 is a set of nonnegative integers such that

(3.6.1)
n∑
i=1

ci = c1(L∨) ∩ β,

where c1(L∨) is the first Chern class of the line bundle L∨ as in Conven-

tions 3.1.3.

Definition 3.6.4. A minimal stable log map ξ = (C → S,MS , f) over a

geometric point S is called a Γ-minimal stable log if

(1) the source curve (C → S,MS) is a log pre-stable curve of genus g with n

marked points;

(2) f∗[C] = β;

(3) for any i ∈ {1, 2, · · · , n}, the contact order along section Σi is given by ci.

A log map ξ′ over an arbitrary scheme T is called Γ-minimal stable log if its

geometric fibers are all Γ-minimal stable log. The arrows between stable log

maps are the same as the arrow of log maps in Definition 2.1.4.

Definition 3.6.5. Denote by Kg,n(X log, β) the stack parametrizing mini-

mal stable log maps with genus g, n marked points, and curve class β. Let

KΓ(X log) be the stack parametrizing Γ-minimal stable log maps. These are

substacks of LMg,n(X log) as in Theorem 2.1.10.
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Theorem 3.6.6.The stack Kg,n(X log,β) is an open substack of Kpre
g,n(X log),

hence it is algebraic.

Proof. Note that the stability condition is a condition on the underlying

map that is well known to be open. �

Remark 3.6.7. Denote by Λ the set of discrete data Γ as in Conven-

tion 3.6.3 with fixed g, n, and β. Note that Λ is a finite set. By Lemma 3.2.4,

we have the disjoint union of open and closed substacks

Kg,n(X log, β) =
∐
Γ∈Λ

KΓ(X log).

3.7. A quasi-finiteness result. We fix a minimal stable log map ξ1 = (π :

C → S, M1, f1) over a geometric point S. Denote by G the marked graph of

ξ1. Choose a chart β :M(G)→MS . Let N1 ⊂MS be the sub-log structure

generated by β(N(G)). Since different choices of β only differ by invertible

elements, the log structure N1 does not depend on the choice of β.

Consider the fine log scheme (S,N1) with the sub-log structure N1 ⊂M1

induced by N(G). Since the map of characteristics MC/S
S → M(G) fac-

tors through N(G), the structure map MC/S
S → MS factors through N1.

This induces a log curve (C → S,N1). Denote by NC,1 the log structure of

(C → S,N1) on C and by MC,1 the log structure of ξ1 on C. Then NC,1 is

a sub-log structure of MC,1. Again by considering the map of characteristics,

we see that the log map f [1 : f∗1MX →MC,1 factors through NC,1. Then we

obtain a log map g1 : (C,NC,1) → X log. Denote by ξ′1 = (C → S,N1, g1) the

log map over S.

Definition 3.7.1. The log map ξ′1 is called the coarse log map of ξ1.

Remark 3.7.2. The log structures of coarse log maps are in general not

saturated. The above construction yields a natural arrow ξ1 → ξ′1.

Corollary 3.7.3. The pair (ξ1, ξ1 → ξ′1) is unique up to a unique iso-

morphism

Proof. This follows from the uniqueness of the log structure N1. �

The following result reveals the importance of the notion of coarse log

maps:

Lemma 3.7.4. Consider another minimal stable log map ξ2 = (C → S,

M2, f2) whose underlying structure and marked graph are identical to those of

ξ1. Then there exists (up to a unique isomorphism) a unique isomorphism of

coarse log maps ξ′2
∼= ξ′1.
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Proof. The above statement means that the coarse log maps are up to a

unique isomorphism, uniquely determined by their underlying structures and

the combinatorial structures. In fact, the sections in the log structures of

the two coarse log maps associated to edges are canonically identified by the

canonical log structures of the curves. On the other hand, roughly speaking,

the sections of the two log structures associated to vertices can be identified

first using the combinatorial structures, which determines the characteristics,

and then the underlying structure, which determines the “continuous part” of

the log structure. We now make this construction precise.

Let ξ′2 = (C → S,N2, g2) be the coarse log map of ξ2. Denote by NC,i
the log structures on C corresponding to ξ′i for i = 1, 2. Consider the solid

diagram of log structures on C:

(3.7.1) NC,1

ψN

��

f∗MX

g[1

77

g[2 ''

MC/S
C

φ1

gg

φ2
ww

NC,2,

where NC,i is the associated log structure on C with respect to Ni. We will

first construct the dashed arrow ψN , which makes (3.7.1) commutative.

Since the underlying structures of ξ1 and ξ2 are identical, it would be

enough to construct ψN : π∗N1 → π∗N2. We fix a chart βi : N(G) → Ni.
Consider a section e ∈ π∗Ni for i = 1, 2. We want to define the image ψN (e).

For this, it is enough to assume that e = π∗(β1(ē)) for some element ē ∈ N(G)

associated to a vertex or an edge.

We first assume that ē is an element associated to an edge l ∈ E(G). Then

there exists a section el ∈ M
C/S
S such that φ1(el) = e. Thus, to make (3.7.1)

commutative, one has to define

(3.7.2) ψN (e) = φ2(el).

We then consider the case that ē is an element associated to a vertex

v ∈ V (G). We can assume that v is degenerate, otherwise ē is trivial in N(G).

We may restrict (3.7.1) to a small neighborhood of a nondistinguished point as

in Definition 3.2.6 on the component corresponding to v. Denote by δ ∈ f∗MX

a local generator. Since on the level of characteristic we have φ̄1(δ) = ē inNC,1,

we may assume f [1(δ) = e. Thus, one has to define

(3.7.3) ψN (e) = g[2(δ).
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It is clear that (3.7.2) and (3.7.3) make (3.7.1) commutative. Now we need

to show that the map ψN is well defined. The only issue here is to check the

left triangle of (3.7.1) at a distinguished node.

We may assume that p is a distinguished node joining two components Z1

and Z2 with contact order c. We need to check that the map ψN defined at

the generic points of the two components can be extended to p. Let xj be the

local coordinate of Zj at p. Denote by log xj the corresponding section in both

NC,1 and NC,2. Then we automatically have

ψN (log xi) = log xi.

Without loss of generality, assume that the orientation of the node is given by

Z1 > Z2. Then locally at p, we have

(3.7.4) f [1(δ) = eZ2 + c · log x2

and

(3.7.5) f [2(δ) = ψN (eZ2) + c · log x2,

where ψN (eZ2) is defined by (3.7.3) at some smooth nonmarked point of Z2.

On the other hand, we have a section el ∈M
C/S
S such that

el = log x1 + log x2.

We identify el with the corresponding sections in NS,i and NC,i via φi. Now

combining this with (3.7.4) and (3.7.5), and generalizing to a smooth non-

marked point of Z1, we get

f [1(δ) + c · log x1 = eZ2 + c · el
and

f [2(δ) + c · log x1 = ψN (eZ2) + c · el.
Hence

ψN (eZ2 + c · el) = ψN (eZ2) + c · el.
This proves that the definitions of ψN on the two components meeting at p are

compatible. Therefore the map ψN is well defined. In particular, the above

construction gives a canonical isomorphism π∗N1
∼= π∗N2.

Note that π : C → S forms a flat cover. Since log structures can be

glued under fppf topology [Ols03a], the map ψN descends to a well-defined

isomorphism of log structures N1 → N2 that induces an isomorphism ξ′1
∼= ξ′2.

The uniqueness follows from that of ψN in the above construction. �

Proposition 3.7.5. There are at most finitely many minimal stable log

maps over a geometric point with fixed underlying map and marked graph.

Proof. Fixing a discrete data Γ, the number of possible choices of contact

orders along marked points is finite. It is enough to show that the number of
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Γ-minimal stable log maps with fixed underlying structure and marked graph

is at most finite.

Consider a Γ-minimal stable log map ξ = (C → S,MS , f) over a geometric

point S with the fixed underlying structure ξ and marked graph G. Denote by

ξ′ = (C → S,NS , g) the coarse log map of ξ over S. Then we have the natural

arrow ξ → ξ′.

On the other hand, consider the saturation map S : (SS ,M) = (S,NS)Sat

→ (S,NS). Denote by ξS the stable log map over SS obtained by pulling back

ξ′ via S. It is easy to check that ξS is minimal. By [Ogu06, Ch. II,2.4.5], we

have a canonical map h′ : (S,MS) → (SS ,M) such that h = S ◦ h′. This

induces an arrow of minimal stable log maps ξ → ξS . By comparing the

characteristic, it is easy to see that h′ is a strict closed immersion.

Since the underlying map of S is finite, the statement follows from Lemma

3.7.4. �

3.8. Finiteness of automorphisms. Let ξ = (C → S,MS , f) be a minimal

stable log map over a geometric point S. We fix a chart MS →MS , and we

identify the elements ev and el for v ∈ V (Gξ) and l ∈ E(Gξ) with their images

in MS .

Proposition 3.8.1. Using the notation as above, the set AutS(ξ)(S) is

finite.

Proof. Note that the set of underlying automorphisms of f is finite. Fixing

a underlying automorphism (ρ, idS), it is enough to show that there are finitely

many automorphisms of ξ whose underlying structure are given by (ρ, idS). For

simplicity, we assume that ρ = idC , and other cases can be proved similarly.

Let (ρ, θ) be an automorphism with the underlying structure given by

(idC , idS). First we consider a node l ∈ E(Gξ). Denote by x and y the local

coordinates of l. We can choose x and y so that el = log x + log y. Note that

we have

(3.8.1) ρ[(el) = ρ[(log x) + ρ[(log y) = log ρ∗(x) + log ρ∗(y) = log x+ log y.

Since ρ = idC , the element el is fixed by ρ for any l. The same argument shows

that the log structure from the marked points is also fixed by ρ.

Now consider a minimal vertex v ∈ V (Gξ). Locally on the component

of v, we have

f [(δ) = ev + log h,

where h is a locally invertible section. Note that we have

(3.8.2) ρ[(ev + log h) = ρ[(ev) + log ρ∗(h) = ρ[(ev) + log h.

Since ρ fixes the section f [(δ), the map ρ[ also fixes the element ev. Thus, the

automorphism (ρ, θ) acts trivially on all elements associated to vertices and
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edges of Gξ. By Lemmas 3.3.5 and 3.3.8, the number of choices of (ρ, θ) is

finite. �

Denote by ξ′ = (C → S,NS , g) the coarse log map of ξ. Then any auto-

morphism (ρ, θ) ∈ AutS(ξ)(S) induces a unique automorphism of ξ′. Indeed,

the above proofs of Proposition 3.8.1 and Lemma 3.7.4 imply the following:

Corollary 3.8.2. Consider an automorphism (ρ, θ) ∈ AutS(ξ)(S). The

induced map of sub-log structures θ[ : NS → NS is uniquely determined by the

underlying automorphism (ρ, idS) and the automorphism of the marked graph.

In particular, the automorphism of ξ′ induced by (ρ, θ) is uniquely determined

by the underlying automorphism (ρ, idS).

Denote by ξ the usual stable maps obtained by removing log structures

on ξ. We can strengthen the result of Proposition 3.8.1 as follows.

Lemma 3.8.3. The map of groups AutS(ξ)(S)→ AutS(ξ)(S) is injective.

Proof. Consider an element (ρ, idS) ∈ AutS(ξ)(S). It is enough to show

that there is at most one element (ρ, θ) ∈ AutS(ξ)(S) that is the pre-image of

(ρ, idS). Consider the following diagram:

(3.8.3) NS

��

� � //MS

θ[

��

NS �
�

//MS ,

where the left vertical arrow can be constructed similarly by (3.8.1) and (3.8.2),

which is uniquely determined by the underlying map (ρ, idS) and the auto-

morphism of the marked graph. Corollary 3.8.2 implies that any (ρ, θ) over

(ρ, idS) induces a unique map NS → NS as in (3.8.3). Hence to find (ρ, θ),

it is equivalent to find the dashed arrow θ[, which makes the above diagram

(3.8.3) commutative. By the adjointness of saturation and inclusion functors

of log structures as in [Ogu06, Ch. II,2.4.5], we have the following commutative

diagram:

(3.8.4) (S,MS) �
� i

//

θ′

&&

(S,NS)Sat //

∃!∼=
��

// (S,NS)

��

(S,NS)Sat // (S,NS),

where (S,NS)Sat is the saturation of (S,NS).

Denote by ξ′ the coarse log curve of ξ over S. Then by taking the satu-

ration, we obtain a minimal stable log map (ξ′)S over (S,NS)Sat . Note that

the left triangle of (3.8.4) induces a commutative diagram of minimal stable
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log maps

(3.8.5) ξ //

  

(ξ′)S

��

(ξ′)S .

This gives a unique θ[ as in (3.8.3) and hence a unique isomorphism of ξ. �

Proposition 3.8.4. The natural map KΓ(X log) → Kg,n(X,β) is repre-

sentable by removing log structures from minimal stable log maps.

Proof. This follows from Lemma 3.8.3 and [LMB00, 8.1.1]. �

4. The stack of minimal log maps as category fibered over LogSchfs

By the construction in last section, the stacks Kpre
g,n(X log), Kg,n(X log, β),

and KΓ(X log) as open substacks of LMg,n(X log) are fibered categories over

Sch, parametrizing minimal log maps over usual schemes with various numer-

ical conditions. In this section, we give a different categorical explanation as

categories fibered over LogSchfs.

4.1. The universal property of minimal log maps. In this subsection, we

fix a log map ξ = (C → S,MS , f : (C,MC) → (X,MX)) such that the log

structure MS is fs.

Proposition 4.1.1. There exist a minimal log map over S

ξmin = (C → S,Mmin
S , fmin : (C,Mmin

C )→ (X,MX))

and a map of fs log schemes Φ : (S,MS)→ (S,Mmin
S ) that fit in the following

commutative diagram

(4.1.1) (X,MX)

(C,MC)

f
22

ΦC

//

��

(C,Mmin
C )

fmin

<<

��

(S,MS)
Φ
// (S,Mmin

S ),

where the square is a cartesian square of log schemes. Furthermore, the datum

(Φ, ξmin) is unique up to a unique isomorphism.

Proof. Note that the statement is local on S. Then the proposition follows

from Lemmas 4.1.2, 4.1.3, 4.1.4, and 4.1.5. �
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By Construction 3.4.1, for each geometric point t̄ ∈ S, we can associate

a marked graph Gξt̄ to the fiber ξt̄. It was shown in Lemma 3.4.3 that Gξt̄ is

admissible. By Proposition 3.4.2, we have a canonical morphism of monoids

(4.1.2) φt̄ :M(Gξt̄)→MS,t̄.

Lemma 4.1.2. Assume that we have a log pre-stable curve (C → S,Mmin
S )

and a morphism Φ : (S,MS)→ (S,Mmin
S ) such that

(1) for each point s ∈ S, we have a fixed isomorphism Mmin
S,s̄
∼=M(Gξs̄);

(2) the induced map Φ̄[
s̄ :M(Gξs̄)

∼=Mmin
S,s̄ →MS,s̄ on the level of character-

istic is identical to the canonical map φs̄ as (4.1.2);

(3) the log pre-stable curve (C → S,MS) is the pull-back of (C → S,Mmin
S )

via Φ.

Then we have a unique log map fmin : (C,Mmin
C ) → (X,MX) that fits in

diagram 4.1.1. Note that (C → S,Mmin
S , fmin) forms a minimal log map over

the scheme S.

Proof. Since all the underlying maps are fixed, it is enough to construct

a map of log structures f [min : f∗(MX) → Mmin
C that fits in the following

commutative diagram:

f∗(MX)
f[

$$

f[min

yy

Mmin
C

Φ[C
//MC .

Consider an arbitrary closed point p ∈ C that lies in an irreducible component

corresponding to the vertex v ∈ V (Gξs̄). Then locally at p, we have

(4.1.3) f [(δ) = ev,0 + log h,

where ev,0 ∈MS near s̄ and h is a nonzero regular section locally near p. Note

that there are two possible cases: if p is a smooth nonmarked point, then h

is a locally invertible section; if p is a special point with contact order c, then

h = u · σc, where u is a locally invertible section and σ is a local coordinate

function vanishing at p. Note that the underlying map ΦC is an identity. Thus,

to define f [min(δ) locally at p, it is enough to find a lifting ẽv ∈ Mmin
S of ev,0

such that the image of ẽv in Mmin
S is the element associated to the vertex v.

We first consider the uniqueness. Assume that we have two liftings ẽv and

ẽ′v such that their images in Mmin
S are given by the element associated to v.

Then, we have ẽv = log u + ẽ′v for some locally invertible function u. This

implies that

Φ[
C(ẽv) = Φ[

C(log u) + Φ[
C(ẽ′v).
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Since ẽv and ẽ′v are two liftings of ev,0, we have Φ[
C(log u) = 1. Note that the

underlying map ΦC = idC . It follows that u = 1. This shows that the lifting

is unique.

Now we consider the existence of the lifting. Denote by ēv,0 the image

of ev,0 in the characteristic MS,s̄. By (2) the map of monoids Φ̄[
s̄ is identical

to φs̄. Then we have a unique element ēv ∈ M
min
S,s̄ that corresponds to the

element associated to v in the graph G, and Φ̄[
s̄(ēv) = ēv,0. Thus, locally we

can lift ēv to an element ẽv ∈Mmin
S such that Φ[

s̄(ẽv) = ev. Then we define

(4.1.4) f [min(δ) = ẽv + log h.

The uniqueness of the lifting shows that the construction in (4.1.4) can

be glued globally to obtain a unique map f [min. We can check locally that

the map of monoids f [min is compatible with the structure morphisms of the

corresponding log structures. This finishes the proof of the statement. �

In fact, in the above proof we constructed a log map fmin that is minimal

at s̄, hence minimal in a neighborhood of s̄, by the openness of minimality.

We next construct a unique log prestable curve (C → S,Mmin
S ) satisfying the

three conditions in the above lemma. Note that the question is local on S.

Pick a point s̄ ∈ S. Shrinking S, we can assume that there is a global chart

β :MS,s̄ →MS . We have the canonical map φs̄ :M(Gξs̄)→MS,s̄. Consider

the pre-log structure given by the following composition:

M(Gξs̄)
φs̄−→MS,s̄

β−→MS
exp−→ OS .

Denote by Mmin
S the log structure associated to the above pre-log structure.

Thus, the construction above gives a global chart βmin :M(Gξs̄)→Mmin
S and

a natural map Φ[ :Mmin
S →MS .

Note that the construction ofMmin
S depends on the choice of the chart β.

Assume that we have another log structureMmin
1 and a map Φ[

1 :Mmin
1 →MS

over S that comes from another chart β1 :MS,s̄ →MS . Then we have

Lemma 4.1.3. There is a unique isomorphism of log structures Mmin
1 →

Mmin
S fitting in the following commutative diagram :

Mmin
1

//

Φ[1 ##

Mmin
S

Φ[{{

MS .

Proof. Consider an irreducible element a ∈M(G). Then the construction

of Mmin
1 and Mmin

S implies that

Φ[
1 ◦ β1(a) + log u = Φ[ ◦ βmin(a),
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where u is a unique invertible section. We define

β1(a) 7→ βmin(a) + log u−1.

This induces a unique map Mmin
1 →Mmin

S that satisfies the condition of the

lemma. �

Lemma 4.1.4. There exists a unique dashed arrow that fits in the following

commutative diagram :

(4.1.5) Mmin
S

Φ[
//MS

MC/S
S ,

φmin

cc

φ

<<

where φ is the structure arrow defining the log pre-stable curve (C → S,MS),

see Definition B.2.2.

Proof. Further shrinking S, we can choose a global chart Nm → MC/S
S .

Let e be a generator of Nm that corresponds to an edge l ∈ V (Gξs̄). For

convenience, we will identify e with its image in MC/S
S . Consider φ(e) ∈ MS

and its image φ̄(e) ∈MS . Now on the level of characteristic, there is a unique

element ē′ ∈Mmin
S , which corresponds to the element associated to l, such that

Φ̄[(ē′) = φ̄(e). A similar argument as in the proof of Lemma 4.1.2 shows that

there is a unique section e′ ∈Mmin
S such that Φ[(e′) = φ(e). Then we can define

φmin(e) = e′ for every generator e. This gives the map φmin :Mmin
S →MS .

Note that our construction depends on a fixed chart Nm →MC/S
S . How-

ever, a similar argument as in the proof of Lemma 4.1.3 shows that a different

choice of the global chart will induces the same map φmin. This finishes the

proof. �

Note that the arrow φmin induces a log pre-stable curve (C → S,Mmin
S ).

Denote by Mmin
C the corresponding log structure on C associated to the log

curve. By Lemma 3.2.9, we can further shrink S and assume that the contact

order of the nodes on each geometric fiber is given by the weights of the edges

of Gξs̄ . Now we have

Lemma 4.1.5. The log pre-stable curve (C → S,Mmin
S ) and the log map

(S,MS)min → (S,MS) induced by Φ[ satisfy conditions (1), (2), and (3) in

Lemma 4.1.2.

Proof. Note that (3) follows from the commutativity of (4.1.5) and Def-

inition B.2.2. For (1) and (2), we can repeat the argument in Lemma 4.1.2.

Indeed, the same construction there yields a log map (C,Mmin
C )→ (X,MX),

which is minimal at s̄. Now the openness of minimality implies that all points

in a neighborhood of s̄ are minimal. Therefore, properties (1) and (2) in

Lemma 4.1.2 follow. �
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4.2. Proof of Theorem 1.2.3. By the definition of log stack in Section A.3,

the stack KΓ(X log) carries a natural log structureMKΓ(Xlog) as follows. For any

g : S → KΓ(X log), the log structure g∗MKΓ(Xlog) is exactly the log structure

on S given by the minimal log map ξ over S induced by g. Now we have a

universal diagram of log stacks

(CΓ,MCΓ
) //

��

X log

(KΓ(X log),MKΓ(Xlog)),

where the pair (CΓ,MCΓ
) is the universal curve over KΓ(X log) with univer-

sal log structures MCΓ
. This diagram gives a stable log map ξKΓ(Xlog) over

(KΓ(X log),MKΓ(Xlog)).

Now consider a stable log map ξlog over (S,MS). The tuple (ξlog, S,MS)

then gives a stable log map over S. The universal property of minimal log

map implies that there is a unique minimal log map ξmin = (ξlog
min, S,Mmin

S )

over S, and a map of log schemes g : (S,MS) → (S,Mmin
S ), such that ξlog =

g∗ξlog
min as in Definition 2.1.2. This induces a unique log map f : (S,MS) →

(KΓ(X log),MKΓ(Xlog)) such that ξlog = f∗ξKΓ(Xlog).

Theorem 1.2.3 follows.

Remark 4.2.1. Using the same argument as above, we can shows that

the two stacks Kg,n(X log, β) and Kpre
g,n(X log) with their universal minimal log

structures can be viewed as categories fibered over LogSchfs, parametrizing

log maps over fs log schemes with corresponding numerical conditions.

Remark 4.2.2. If the log structure MX on the target X is trivial, the

stack Kg,n(X log, β) is isomorphic to the stack Kg,n(X,β) of usual stable maps

with the minimal log structure coming from the canonical log structure of its

universal curve.

5. The boundedness theorem for minimal stable log maps

5.1. Statement of the boundedness theorem. In this section, we fix the

target X log = (X,MX) as in Convention 3.1.3. The main result of this section

is the following:

Theorem 5.1.1. There exist a scheme T of finite type and a map g : T →
KΓ(X log) that exhausts all geometric point of KΓ(X log). Namely, for any point

ξ ∈ KΓ(X log)(C), there exists a lifting SpecC → T such that its composition

with g gives ξ.
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Proof. The proof of this theorem will occupy the whole section. Indeed,

we will prove that the map KΓ(X log) → Kg,n(X,β), obtained by removing

all log structures, is of finite type. In Section 5.3, we will bound the choices

of marked graph by stratifying Kg,n(X,β). In Section 5.4, we will construct

a family of minimal stable log maps that exhausts all possible minimal log

structures with fixed underlying map and marked graph. This will be achieved

by considering isomorphisms of corresponding line bundles. The result from

Section 5.2 will be used in the above argument. �

5.2. Isomorphisms of line bundles induced by stable log maps. Consider a

stable log map (not necessarily minimal) ξ = (C → S,MS , f) over a scheme

S. In this subsection, we put the following assumption:

(5.2.1) The characteristic MS is a constant sheaf of monoids on S.

Lemma 5.2.1. With the assumptions as above, the marked graphs of all

geometric fibers of ξ are isomorphic.

Proof. Note that the elements smoothing the distinguished nodes are in

MS . Then the statement follows from assumption (5.2.1). �

Given the stable log map ξ over S as above, let us consider the following

commutative diagram:

f∗(MX)

p1

��

f[
//MC

p2

��

N // f∗(MX)
f̄[

//MC .

The composition of the bottom arrow N → MC locally lifts to a chart of a

sub-log structure of MC . Denote by M the resulting sub-log structure. Note

that this is also a DF-log structure. The map f [ induces an isomorphism of

log structures f∗(MX) → M. By the argument in Section A.2, this gives

an isomorphism of the corresponding line bundles and sections. Next, we will

describe this isomorphism on each irreducible component of C.

Pick a point s̄ ∈ S. Shrinking S, we may choose a lifting of global chart

β : MS,s̄ → MS . Consider the induced map β̂ : MS → MC . Denote by”MC =Mgp
C /(MS)gp the quotient given by the map β̂. Consider the following

commutative diagram:

(5.2.2) 0 // (MS)gp β̂gp

//Mgp
C

// ”MC ,

f∗(MX)

OO

f̂[

::

where the map f̂ [ is given by the composition f∗(MX)→MC → ”MC .
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Remark 5.2.2. Note that the morphism f̂ [ depends on the choice of a

lifting β :MS,s̄ →MS . This will be important when we discuss the valuative

criterion.

Conventions 5.2.3. Consider the irreducible component Cv of C corre-

sponding to a vertex v ∈ Gξ. Note that Cv is connected. Denote by {pl}l∈Λlow
v

the set of splitting nodes, joining v with v′ for some v′ ≤ v. Let {pl}l∈Λup
v

be

the set consisting of the following special points in Cv:

(1) the set of splitting nodes, joining v with v′′ for some v ≤ v′′;
(2) the marked points with nontrivial contact orders.

Denote by cl the contact order at pl for l ∈ Λlow
v ∪ Λup

v . Consider the line

bundle

Lv =
∏

l∈Λlow
v

OCv(cl · pl)⊗
∏
l∈Λup

v

OCv(−cl · pl).

Note that the line bundle Lv only depends on the graph Gξ.

Proposition 5.2.4. Assume that the element associated to a vertex v ∈
Gξ is not zero. Then the map f̂ [ induces a natural isomorphism of line bundles

f̂ [v : f∗(L)v → Lv.

Proof. We first construct f̂ [v locally. There are three cases.

Case 1. Consider a closed point p of pl for l ∈ Λup
v . Locally at p we have

f [(δ) = ev + cl log σl,

where σl is the local coordinate of p in Cv defining the marking pl and ev is

contained in the image of β̂. Thus, we have f̂ [(δ) = cl log σl. Then locally near

p, we define

(5.2.3) f̂ [v(δ) = σcll .

Note that σcll is the local section of Lv at p.

Case 2. Consider a closed point p of the splitting node pl for l ∈ Λlow
v .

Assume that pl joins vertices v′ and v such that v′ ≤ v. Locally at p, we have

(5.2.4) f [(δ) = ev′ + cl log σ′l,

where ev′ is in the image of β̂. By a nice choice of coordinates, we have

(5.2.5) cl · el = cl log σl + cl log σ′l in MC ,

where σ′l is the local coordinate of pl in C ′v and el is the element smoothing

node, contained in the image of β̂. Then we have

1 = cl log σl + cl log σ′l in M̂C .
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This induces

f̂ [(δ) = cl log σl = 1− cl log σl.

Then locally at the node p we define

(5.2.6) f̂ [v(δ) =

Å
1

σl

ãcl
.

Note that this is a local generator of Lv at p.

Case 3. Locally at a point p that is not contained in one of the pl for

l ∈ Λup
v ∪ Λlow

v , we have

f [(δ) = ev + log h,

where h is an invertible function at p and ev is contained in the image of β̂.

Then the map f̂ [(δ) = log h induces

(5.2.7) f̂ [v(δλ) = h.

Note that the local construction of f̂ [v is uniquely determined by f̂ [, which

is a map of sheaves of monoids. Thus these local definitions can be glued to

obtain a global map. We also notice that δ lifts to a the local generator of L.

Therefore we construct an isomorphism of line bundles f̂ [v as required. �

Remark 5.2.5. The local calculation shows that the isomorphism f̂ [v in

Proposition 5.2.4 depends on the choice of the chart β.

5.3. Finiteness of the discrete data.

Proposition 5.3.1. The following set is finite:

{G | G is the marked graph of some ξ ∈ KΓ(X log)(C)}.

Proof. Step 1: Bounding the choices of underlying dual graph. Denote by

Kg,n(X,β) the Kontsevich moduli space of stable maps, with n-marked points,

genus g, and curve class β in X. Note that we have a morphism

KΓ(X log)→ Kg,n(X,β),

by removing all log structures. Let U → Kg,n(X,β) be an affine étale chart.

Consider the following cartesian diagram without log structures:

KU //

��

KΓ(X log)

��

U // Kg,n(X,β).

Since the stack Kg,n(X,β) is of finite type, it is enough to prove that the set

of dual graphs corresponding to the geometric point of KU is finite. Denote by

CU → U the universal curve and by f
U

: CU → X the universal map over U .
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Since U is of finite type, it is covered by finitely many strata, where the

family of curves over each stratum have a fixed dual graph. We put the reduced

scheme structure on each stratum. Let S be the stratum corresponding to a

graph G. Denote by f : C → X the universal map over S.

Step 2: Bounding the choices of distinguished nodes and orientations.

Since G is a finite graph, the number of choices of distinguished nodes is finite.

We first fix a choice of distinguished nodes on G. So we fix an orientation on

G such that

(1) if Cv does not degenerate to D, then v ∈ Vn(G);

(2) the nonoriented edges are in one-to-one correspondence to the nondistin-

guished nodes;

(3) no cycles contain distinguished edges.

Step 3: Bounding the choices of contact orders. Since we fixed the ori-

entation and distinguished edges on G, we can use the notation {pl}l∈Λlow
v

and {pl}l∈Λup
v

for the two sets of distinguished points on the subcurve Cv as in

Conventions 5.2.3. Denote by cl the possible contact order at the distinguished

point pl. Since the dual graph of the underlying curve is fixed, the multi-degree

of f∗(L) on Cv is fixed for any v ∈ V (G). By Proposition 5.2.4, we have

(5.3.1) deg f∗(L)|Cv =
∑

l∈Λlow
v

cl −
∑
l′∈Λup

v

cl′ .

First, consider a maximal vertex v ∈ V (G). Then the set {pl}l∈Λup
v

is given by

the discrete data Γ. Since the contact orders are all positive, the choices of cl
for l ∈ Λlow

v is finite by (5.3.1).

Consider an arbitrary vertex v′ ∈ V (G). We assume that for any adjacent

vertex v of v′ such that v′ ≤ v, the number of choices of the contact orders

along the splitting nodes joining v′ and v is finite. Then by taking into account

all contact orders from adjacent vertices and those from marked points of C, a

similar argument shows that the possible choices of contact order cl for l ∈ Λlow
v′

are also finite in number. Since G is a finite graph, this proves that the choice

of contact orders on G is finite.

This finishes the proof of the proposition. �

5.4. Proof of Theorem 5.1.1. Consider the family of usual stable maps

f : C → X over S as in Step 1 of the above proof. Fix a possible marked

graph G0 with G0 = G the dual graph of C. We use the notation as in Step 3

of the above proof, and we assume that (5.3.1) holds for any v ∈ V (G0). Since

the stack Kg,n(X,β) is of finite type, to prove Theorem 5.1.1, it is enough to

prove the following:

Proposition 5.4.1. Using the notation and assumptions as above, there

exist a scheme T of finite type over S and a family of minimal stable log maps
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ξ over T that satisfy the following conditions : for any minimal stable log map

ξ′ over s̄, with marked graph given by G0, and underlying map ξ′ given by the

pull-back of f via s̄→ S, there exists a lifting s̄→ T such that ξ′ is isomorphic

to the pull-back ξs̄.

Proof. By shrinking S, we can assume that S is affine, and the canonical

log structure MC/S
S on S coming from the family C → S has a global chart

Nn → MC/S
S,s̄ for some geometric point s̄ ∈ S. Consider the pre-log structure

M(G0)→ OS , given by e 7→ 0 for any nontrivial element e ∈M(G0). Denote

by MS the new log structure associated to the pre-log structure. Note that

there is a map Nn →M(G0) given by the corresponding nodes. This induces

a map MC/S
S →MS , hence a log pre-stable curve ζ = (C → S,MS) over S.

Note that any minimal log map ξ′ over s̄ ∈ S as in the statement has the

source log curve isomorphic to ζs̄.

Denote byMC the log structure on C corresponding to the log pre-stable

curve ζ. Note that over C we have another log structure f∗(MX). Since the

dual graph G0 is fixed, we have a morphism of sheaves of monoids on C,

f̄ [ : f∗(MX)→MC ,

which is locally described as in Section 3.2. To define a log map f : (C,MC)→
X log, it is enough to define a map of log structures f [ : f∗(MX)→MC fitting

in the following commutative diagram:

(5.4.1) OC

f∗(MX)

p1

��

11

f[
//MC

p2

��

CC

N // f∗(MX)
f̄[

//MC ,

where the two vertical arrows are the canonical projection and the arrow N→
f∗(MX) is the pull-back of the global presentation. Note that the arrow

f̄ [ is injective. Denote by δX and δC the image of δ in f∗(MX) and MC

respectively. The inverse images p−1
1 (δX) and p−1

2 (δC) form two O∗C-torsors.

Denote by IsomC(p−1
1 (δX), p−1

2 (δC)) the presheaf of isomorphisms of the two

torsors over C. To find a dashed arrow as in (5.4.1) is equivalent to have

a global section of IsomC(p−1
1 (δX), p−1

2 (δC)). Note that the torsor p−1
1 (δX)

corresponds to the line bundle f∗L. Denote by LC the corresponding line

bundle of p−1
2 (δC). Then we have

IsomC(p−1
1 (δX), p−1

2 (δC)) ∼= IsomC(f∗L,LC)

∼= IsomC(f∗L⊗ L−1
C ,OC).
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Denote by I the above presheaf. It is well known that line bundles are para-

metrized by the algebraic stack BGm. Thus, I is represented by a Gm-torsor

that is a separated algebraic space of finite type. Let π : C → S be the

projection. By [Ols06, Th. 1.5], there is an algebraic space π∗I locally of finite

type over S that for any Y → S associates the groupoid of isomorphisms

(f∗L ⊗ L−1
C )Y → OCY . We have the following lemma for the boundedness

of π∗I: �

Lemma 5.4.2. The algebraic space π∗I is of finite type over S.

Proof. By our assumption on G0, the two line bundles LC and f∗L have

the same degree when restricted to each irreducible component over s̄ ∈ S.

Since S is affine, by [FP97, Prop. 1], there is a unique closed subscheme T ⊂ S
that represents the condition that the line bundle f∗L ⊗ L−1

CT
is trivial. The

same proof shows that over that locus, the line bundle is pulled back from the

base. Its sheaf of trivializations is again represented by a Gm-torsor U → π∗I

that is of finite type. �

By pulling back via π∗I → S, we have a family of log pre-stable curves

ζπ∗I = (CI → π∗I,Mπ∗I), a usual stable map f
π∗I

: CI → X, and a morphism

of sheaves of monoids f [π∗I : f∗
π∗I
MX →MCI , whereMCI is the log structure

on CI given by the log curve ζπ∗I .

Lemma 5.4.3. The set of points t ∈ π∗I , whose fiber f [π∗I,t̄ gives a mor-

phism of log structures, forms a closed subset of π∗I .

Proof. The condition that f [π∗I is a morphism of log structures is equivalent

to having the following commutative diagram:

(5.4.2) f∗
π∗I
MX

f[π∗I
//

expX
$$

MCI

expC
||

OCI ,

where the two arrows expX and expC are the structure maps of the correspond-

ing log structures f∗
π∗I
MX and MCI . Locally on CI , we choose a generator

δ ∈ f∗
π∗I
MX ; then the commutativity of the diagram is equivalent to the

following equality of sections of OCI :

expX(δ) = expC ◦f [π∗I(δ),

which is a closed condition. Let V ⊂ CI be the closed sub-scheme representing

the commutativity of (5.4.2) over CI , and let V c be the complement of V in

CI . Denote by W the image of V c in π∗I via the projection CI → π∗I. Since

the family of curves is flat, the image W is open in π∗I. Thus, the complement

W c of W is closed in π∗I. This proves the lemma. �
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We take T = W c as in the above proof with the reduced scheme struc-

ture. Then T is a closed subspace of π∗I. By pulling back families from π∗I,

we obtain a family of minimal stable log maps ξ over T . According to our con-

struction, this family ξ over T satisfies the lifting property in Proposition 5.4.1.

Theorem 5.1.1 follows from the above arguments.

6. The weak valuative criterion for minimal stable log maps

6.1. Statement of the weak valuative criterion. Let R be a discrete valu-

ation ring, and let K be the fraction field of R. Denote by π the uniformizer

of R, and write S = SpecR. Let s and η be the closed and generic point of

S respectively. If R′ is another discrete valuation ring, we will write π′ for its

uniformizer. Denote by s′ and η′ the closed and generic point of S′ = SpecR′

respectively.

Theorem 6.1.1. With the notation above, consider a minimal stable log

map ξη over η. Possibly after a base change given by an injection R ↪→ R′ of

DVR, which induces a finite extension of fraction fields, we have an extension

of minimal stable log maps given by the following cartesian diagram :

ξη′ //

��

ξS′

��

η′ // S′,

where ξη′ is the pull-back of ξη via η′ → η and ξS′ is a minimal stable log map

over S′. Furthermore, the extension ξS′ is unique up to a unique isomorphism

and its formation commutes with further injections of discrete valuation rings.

Proof. We first assume that ξη is a minimal log map over η that is not

necessarily stable. Possibly after base change, we fix an extension of the un-

derlying pre-stable map f : C → S such that its restriction to the generic fiber

is given by the pull-back of ξ
η
. Denote by ξ the extended underlying map.

Here for simplicity, we still use S to denote the new base. The existence of

compatible minimal log structures on ξ will be proved in Section 6.3. This

will be achieved by constructing an extension of certain simplified log maps

and using the universal property of minimal log maps. The uniqueness of the

extended minimal log structure on ξ will be proved in Section 6.5.

In case of stable maps, the extended underlying map ξ is unique up to a

unique isomorphism. Hence the theorem will be proved by the above argument.

�

Remark 6.1.2. By Observation 2.1.9, there is a map

Kpre
g,n(X log, β)→ Kpre

g,n(X,β),
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where Kpre
g,n(X,β) is the stack of usual pre-stable maps and Kpre

g,n(X log, β) is as

in Definition 3.5.3. Then our proof implies that this map of stacks satisfies the

weak valuative criterion.

6.2. Local analysis of the extended underlying map. Let ξη = (Cη → η,

Mη, fη). We first consider the case where ξη is a log map (not necessarily

minimal and stable). We still use f : C → X to denote the extended underlying

map over S. Possibly after a base change, we fix a chart βη : Mη → Mη.

Denote by Gη the marked graph of ξη. If a node of C is smoothed out over η,

then we call it a special node; otherwise we call it a generic node.

Consider a point p ∈ Cs̄, and choose an étale neighborhood U of p. Write

Uη := U ×S η. Shrinking U , we have

(6.2.1) f [η(δ) = βη(ev) + log up over Uη,

where ev ∈Mη is the degeneracy of some vertex v ∈ Gη and up ∈ OUη is some

nonzero section. Note that for any section e ∈Mη, we have the corresponding

section α ◦ βη(ev) = 0 ∈ OCη . Since we require up ∈ OUη to be a nonzero

section, with the choice of a chart βη, such section up can be unique determined

by the formation of log structures on curves; see Definition B.2.1(2).

Assume that p is not a generic node. Shrinking U further, we can assume

that U is connected and does not contain a generic node. We also assume

that U does not contain points on other components that do not contain p.

Note that in this case U is normal and up extends to a rational function on U .

Denote by νπ the valuation of the divisor given by the uniformizer π. Let

np = νπ(up); then we have the following result:

Lemma 6.2.1. With the above assumption, the point p satisfies one of the

following possibilities :

(1) if p is a smooth nonmarked point, then there is a neighborhood of p that

contains only nondistinguished points over η, and we have up = πnp ·hp,
where hp ∈ O∗U ;

(2) if p is a marked point with contact order c over η, then up = πnp ·xc ·hp,
where hp ∈ O∗U , and the section containing p is given by the vanishing

of x ∈ OU ;

(3) if p is a special node, then up = πnp · xc · hp, where hp ∈ O∗U , the

section x ∈ OU is a local coordinate of one component at p, and c is a

nonnegative integer.

Note that if in (3) we have c = 0, then this is compatible with the case described

in (1).

Proof. Since np = νπ(up), and up is well defined over the generic fiber, we

have up = πnp · h′p for some h′p ∈ OU . Since p is a smooth nonmarked point,
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there is a neighborhood of p that contains only smooth nonmarked points

over η. It follows that h′p ∈ O∗Uη . Note that νp(h
′
p|Cs̄) = 0 by restricting to

the central fiber, where νp is the valuation map given by the divisor p of the

central fiber Cs̄. Thus h′p ∈ O∗U . This proves (1).

For (2), we have νx(h′p) = c, where νx is the valuation map given by the

divisor corresponding to the vanishing of x. Then we have h′p = xc · hp such

that the restriction hp|Uη is invertible. The same argument as for (1) shows

that hp ∈ O∗U .

Consider the case where p is a special node. Let x and y be local coordi-

nates of the two components meeting at p. Choosing the coordinates appropri-

ately, we may assume that x · y = πn for some positive integer n. Without loss

of generality, we can assume that νy(h
′
p) = 0 and νx(h′p) = c for some nonneg-

ative integer c. Here νx (respectively νy) is the valuation map corresponding

to the divisor defined by the ideal generated by x (respectively y). Thus, as in

(2), we have h′p = xc · hp for some hp ∈ O∗U . This proves (3). �

Observation 6.2.2. For a smooth point p, the integer np and the rational

section up in (6.2.1) depend on the choice of the chart βη. We call the integer np
the special degeneracy of p with respect to the chart βη. Let Z be the irreducible

component of the fiber containing p. Then it is not hard to see that generic

points on Z also have np as the special degeneracy under βη. Thus, we call np
the special degeneracy of Z under βη.

Remark 6.2.3. Consider a node p joining two irreducible components Z1

and Z2 over s̄. First we assume that p is a special node. Let x and y be

local coordinates on Z1 and Z2 at p respectively such that x · y = πn. By

Lemma 6.2.1(3), we can assume that up = πnp · xc · hp. Thus, we can check

that the special degeneracy of Z1 is np and the special degeneracy of Z2 is

np + c · n. In this case, we write Z1 ≤ Z2. Note that if c = 0, we have both

Z1 ≤ Z2 and Z2 ≤ Z1.

Consider the case where p is a generic node. We take the normalization of

C along all the generic node. Then we obtain a set of usual pre-stable curves

{Cv}v∈V (Gη) over S. If Z1 ⊂ Cv1 and Z2 ⊂ Cv2 , and v1 ≤ v2, then we define

Z1 ≤ Z2. We thus define an orientation on the dual graph G of the curve Cs̄.

The following result, which gives a way of comparing sections in the base

log structure, is crucial in the proof of the uniqueness of the extension:

Lemma 6.2.4. Using the notation as above, consider another chart β′η :

Mη →Mη and a generic point p ∈ Cs̄ lies in the component corresponding to

v ∈ V (Gη). The two special degeneracies of p given by βη and β′η are the same

if and only if β′η(ev) = log u+ βη(ev) for some u ∈ R∗.
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Proof. The “if” part is obvious. Consider the other direction. As in

(6.2.1), locally at a nonmarked point p we have

f [η(δ) = β′η(ev) + log u′p = βη(ev) + log up.

Then the assumption implies that u · u′p = up for some u ∈ R∗. Thus, we have

β′η(ev) = βη(ev) + log u,

which proves the statement. �

Lemma 6.2.5. With the notation as above, the integer c as in (2) and

(3) of Lemma 6.2.1 does not depend on the choice of chart βη . Therefore the

orientation on G defined in Remark 6.2.3 does not depend on the choice of the

chart βη .

Proof. Consider another chart βη :Mη →Mη and

f [(δ) = β′η(ev) + log u′p

for some u′p ∈ O∗Uη . Then we have

β′η(ev) = βη(ev) + log a

for some element a ∈ K. Comparing with (6.2.1), we have

up = a · u′p.

Since c is given by the valuation νx, this implies the statement of the lemma.

�

We take the normalization of C along all generic nodes. For each v ∈
V (Gη), denote by Cv the corresponding connected component. Now we con-

sider the case where p is a generic node. Let l ∈ E(G) be the edge corre-

sponding to the generic node p, and assume that l connects two vertices v1

and v2. Denote by pη the corresponding node over the generic point. Again

we have the section up over Uη as in (6.2.1). By shrinking U , we can choose

two regular sections x and y on Uη, which correspond to the coordinates of the

two components meeting at pη in Cη. Choosing the coordinates appropriately,

we may assume

(6.2.2) βη(el) = log x+ log y in Uη.

Without loss of generality, we can assume that up = xc, where c is the contact

order at pη. Then up vanishes along the component with coordinate y.

By taking the normalization of U along the generic node given by l, we

obtain two sub-schemes U1 and U2 of U . By shrinking U , we can assume that

Ui ⊂ Cvi for i = 1, 2. We still use x and y to denote restriction of x and y

to U1 and U2 respectively, and pi the pre-image of p in Ui for i = 1, 2. Then

x and y can be viewed as a rational function on U1 and U2 respectively. Let



502 QILE CHEN

Σ1 and Σ2 be the two sections in U1 and U2 respectively, coming from the

splitting node l. Let σi be the regular functions on Ui, whose vanishing gives

the section Σi for i = 1, 2.

Lemma 6.2.6. With the notation as above, locally at pi, we have

(1) x = πn1 · σ1 · h1, where n1 = νπ(x) and h1 ∈ O∗U1
;

(2) y = πn2 · σ2 · h2, where n2 = νπ(y) and h2 ∈ O∗U2
.

Proof. The proof of this is similar to that for Lemma 6.2.1. �

Remark 6.2.7. Note that σ1 and σ2 are the local coordinates of the two

components joining at p. Choosing those coordinates appropriately, we may

assume that h1 = h2 = 1 in Lemma 6.2.6. Thus, we have up = πc·n1 · σc1.

6.3. Existence of the extension. Now we consider the minimal log map ξη
and the extended underlying map ξ. Denote by C(Mη) the convex rational

polyhedral cone of Mη in Mgp
η ⊗Z Q. Since Mη is sharp, the cone C(Mη) is

strongly convex.

Lemma 6.3.1. There is a lattice point ṽ ∈ Mgp
η such that (u, ṽ) > 0 for

any nonzero element u ∈ C(Mη), where (·, ·) is the standard pairing in the

Euclidean space Mgp
η ⊗Z Q.

Proof. This follows from [Ful93, §1.2(iv)]. �

We fix a lattice point ṽ satisfying the condition in the above lemma. The

set

{(u, ṽ) | u ∈ C(Mη)} ⊂ Q

forms a monoid, whose saturation is the rank-one free monoid N. Thus, we

have a map of saturated monoids lṽ : Mη → N. Consider the log structure

M′η associated to the pre-log structure N → K, e 7→ 0 over η. We fix two

charts βη : Mη → Mη and β′η : M′η ∼= N → M′η. Then we have a morphism

of log structures Mη →M′η given by

βη(e) 7→ β′η ◦ lṽ(e).

Denote by ξ′η = (C → S,M′η, f ′η) the log map obtained by pulling back ξη via

the map (η,Mη)→ (η,M′η). By Proposition 4.1.1, it is enough to construct a

log map (not necessarily minimal) ξ′ such that its generic fiber is given by ξ′η
as above.

Lemma 6.3.2. Using the notation as above, there exists a chart β′η :

M′η → M′η such that no components of C over s̄ have negative special de-

generacy under β′η as in Observation 6.2.2.
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Proof. We fix an arbitrary chart β′η as above. Consider an irreducible

component Z over the closed point s̄. Let p ∈ Z be a smooth nondistinguished

point p ∈ Z. Consider the nearby points of p over η. By Lemma 6.2.1, we have

(6.3.1) (f ′η)
[(δ) = β′η(e) + log πn · u,

where u is a locally invertible section near p and e ∈M′η. If n ≥ 0, then there

is nothing to prove. Consider the case n < 0. Since the number of irreducible

components over s̄ is finite, we can assume that n is minimal among the special

degeneracy of all irreducible components of the closed fiber under β′η. Consider

the new chart given by

(6.3.2) β′′η :M′η →Mη, e 7→ β′η(e)− n · log π.

It is not hard to check that (6.3.1) becomes

(f ′η)
[(δ) = β′′η (e) + log u.

Since n is minimal, by applying (6.3.1) and (6.3.2) to other components, it fol-

lows that no irreducible component of C over s̄ has negative special degeneracy

under β′′η . �

We fix a chart β′η :M′η→Mη, which satisfies the condition in Lemma 6.3.2.

Consider the log structure M′S associated to the following pre-log structure

on S:

N2 → R, eη 7→ 0, and es 7→ π,

where eη and es form the basis of N2. Now we identify M′S,η with M′η, and

the element eη corresponds to the chart β′η :M′η →Mη.

Lemma 6.3.3. With the notation as above, there is a morphism of log

structures MC/S
S →M′S , whose restriction to the generic point η is identical

to the morphism of log structures MCη/η
η →M′η given by ξ′η .

Proof. Possibly after a base change, we can choose a global chart βC/S :

MC/S
S,s̄ →M

C/S
S . Denote by G the dual graph of Cs̄ and by {el}l∈E(G) the set

of generators of MC/S
S,s̄ such that βC/S(el) is an element in MC/S

S smoothing

the node corresponding to l in the closed fiber. Assume that l is smoothed out

over η; then exp ◦βC/S(el) = πn · h, where n is an positive integer and h is an

invertible element in R. Thus, we define

el 7→ n · es + log h.

If the node corresponding to l persists over η, then we have

el 7→ nη · eη + log πns + log h over η,
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where nη and ns are two integers and h is an invertible element in R. Note

that nη is positive, and we may assume that ns is also positive by choosing a

sufficiently large n in (6.3.2). Thus, we define

el 7→ nη · eη + ns · es + log h.

This induces a map MC/S
S → M′S , whose restriction to the generic point

coincides with MCη/η
η →M′η. �

Note that the mapMC/S
S →M′S in the above lemma gives a log pre-stable

curves (C → S,M′S), whose restriction to η is given by the log-prestable curve

(Cη → η,M′η) of ξ′η.

Proposition 6.3.4. There is a log map ξ′ over (S,M′S) with the log curve

(C → S,M′S) and underlying map ξ, whose restriction to η is identical to ξ′η .

Proof. It is enough to define the morphism of log structures f [ : f∗MX →
M′C , where M′C is the log structure on C corresponding to the log curve

(C → S,M′S). Pick a point p ∈ C over s̄ and an étale neighborhood U of p.

By shrinking U as in (6.2.1), we can assume that over the generic point, we

have

f [η(δ) = n · eη + log up in Uη,

where up ∈ OUη .

We first assume that p is not a generic node. By Lemma 6.2.1, further

shrinking U if necessary, the section up extend to U of the following form:

up = πn1 · h′,

where n1 = νπ(up) and h′ ∈ OU . Note that Lemma 6.3.2 implies that the

integer n1 is nonnegative. Thus, the only possible way to define f [ near p is

given by

f [(δ) = n · eη + n1 · es + log h′.

Next we consider the case p is a generic node. With the notation in

Remark 6.2.7, we have

up = πc·n1 · σc1.

Thus, we define

f [(δ) = n · eη + c1 · n1 · es + c · log σ1.

Note that our local construction is obtained by specializing the section up
to the closed fiber. Since the underlying structure is fixed, such specialization

is unique. Thus, the above construction can be glued together to obtain a

global map f [ as we want. �
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6.4. Specializing the dual graph. Consider the dual graph G of the under-

lying curve Cs̄ of the fixed extension ξ. For each edge l ∈ E(G), if l corresponds

to a special node, then we can associate to l a nonnegative integer c given by

Lemma 6.2.1(3); if l corresponds to a generic node, then we associate to l

the contact order given by ξη. Denote by Vn(G) the set of nondegenerate

components of Cs̄. Note that Remark 6.2.3 gives an orientation on G that

is compatible with the contact orders defined on each edge and the subset

Vn(G) ⊂ V (G). Thus, we obtain a marked graph. We use G to denote this

graph with the discrete data.

Proposition 6.4.1. Consider any minimal log map ξ over S with the

fixed underlying map ξ that is an extension of ξη . Then the marked graph Gξs̄
is identical to the graph G with the orientation and contact orders as above.

Proof. First note that the underlying graph of Gξs̄ and G are both given

by the dual graph G of the underlying curve, and their sets of nondegenerate

vertices are the same. It is enough to check that the two graphs have the same

contact orders and orientations. We denote the underlying graph to be G.

Consider an edge l ∈ E(G). If l corresponds to a generic node, then by

Lemma 3.2.9, the orientation and contact order of l is uniquely determined by

the generic fiber ξη. Hence the two graphs Gξs̄ and G have the same orientation

and contact orders along l.

Next, consider the case where l corresponds to a special node p. Assume

that the contact order of ξ at p is c. Note that the log structure is compatible

with the underlying structure. Hence the two graphs have the same weight c

in Lemma 6.2.1(3) associated to l that only depends on fη. By Lemma 6.2.5,

the orientation of l in Gξs̄ is given by the one described in Remark 6.2.3. This

implies that the two graphs Gξs̄ and G have the same orientation and contact

order along l.

This finishes the proof of the statement. �

Corollary 6.4.2. The graph G is admissible.

Proof. This follows from the existence of the extension of ξη and the above

proposition. �

Consider a minimal log map ξ = (C → S,MS , f), which is an extension of

ξη over S with underlying map ξ. Consider the natural map qgen :M(G)gp ∼=
Mgp

S,s̄ → M
gp
η . This is a surjection. Denote by Ksp the kernel of qgen. Then

we have the following exact sequence:

(6.4.1) 0 −→ Ksp −→M(G)gp qgen

−→Mgp
η −→ 0.

Note that all groups involved in the exact sequence (6.4.1) are free abelian

groups. We fix a noncanonical decomposition that is compatible with (6.4.1):

(6.4.2) M(G)gp = Ksp ⊕M
gp
η .
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Denote by qsp :M(G)gp → Ksp the natural projection. Then for any element

e ∈M(G)gp, we write e = qgen(e) + qsp(e).

Possibly after a base change, we fix a global chart β :M(G)∼=MS,s̄→MS .

Thus, we have a map of groups βgp : Mgp
S,s̄ → M

gp
S . By [Ols03a, 3.5(i)], the

group Ksp is generated by elements in M(G), whose images in R is not zero.

Consider the composition

(6.4.3) β̄ := νπ ◦ exp ◦βgp : Ksp → Z,

where νπ is the valuation of of the fraction field K.

Lemma 6.4.3. The map β̄ only depends on the base S and the fixed un-

derlying extension ξ.

Proof. Note that all other irreducible elements inM(G) can be expressed

as some nonnegative rational linear combinations of the irreducible elements

lying on some extremal rays of C(M(G)). It is enough to consider an irre-

ducible element e ∈ M(G) that lies on an extremal ray of the cone C(M(G))

inM(G)⊗ZQ such that its image in R is nonzero. Without loss of generality,

we can assume that a = πn. By Lemma 3.3.8, there is a minimal positive

integer n′ such that n′ ·e is the element associated to some vertex or some spe-

cial node l in G. In the first case, the the minimal vertex is specialized from

a nondegenerate component over η. Hence, Lemma 6.2.1(1) implies that the

degeneracy n · n′ is uniquely determined by the generic fiber and the base S.

If n′ · e is the element associated to a special node, then this is also determined

by the generic fiber and the base S. This proves the statement. �

Consider the map β′η given by the composition

Mη −→M
gp
η −→M

gp
S,s̄

βgp

−→Mgp
S ,

where the middle arrow is the natural inclusion given by (6.4.2). Note that for

any e ∈ Mη, the element β′η(e) generalize to a unique element in Mη. Thus

we obtain a chart for Mη.

Definition 6.4.4. A chart β′η :Mη →Mη is called specializable if it comes

from a global chart β :MS,s̄ →MS as above.

Remark 6.4.5. The specializable chart can be viewed as a restriction of

the chart β : M(G) →MS to the generic point. However, it depends on the

choice of the noncanonical splitting (6.4.2).

For any element e ∈MS,s̄, consider the decomposition given by (6.4.2):

e = qsp(e) + qgen(e) = esp + egen.
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By the construction of β′η, we have

(6.4.4) β(e)η = βgp(esp)η + β′η(e
gen) in Mη.

Note that exp ◦βgp(esp) ∈ K, hence it is an invertible element in Mη.

Lemma 6.4.6. For any v ∈ V (G), the special degeneracy of v with respect

to β′η as in Observation 6.2.2 only depends on β̄ and qsp.

Proof. It follows from (6.4.4) that the special degeneracy of v with respect

to β′η is given by β̄◦qsp(ev), where ev ∈M(G) is the element associated to v. �

6.5. Uniqueness of the extension. Assume that we have two minimal ex-

tensions ξ1 = (C → S,M1, f1) and ξ2 = (C → S,M2, f2) of ξη, with the same

underlying ξ. After a base change, we can assume that we have two global

charts

(6.5.1) β1 :M(G)→M1 and β2 :M(G)→M2

for ξ1 and ξ2 respectively.

Lemma 6.5.1. For any e ∈M(G), we have a unique element u ∈ R∗ such

that

β1(e)η = log u+ β2(e)η in Mη.

Thus, we have a canonical isomorphism of log structures M1
∼=M2.

Proof. We only need to consider the irreducible elements of M(G). Let e

be an irreducible element of M(G). By Proposition 6.4.1, we have

β1(e)η = β2(e)η in Mη.

Hence we have a unique element u ∈ K such that

β1(e)η = u · β2(e)η in Mη,

where K is the fraction field of R. It remains to prove that u is an invertible

element in R.

First assume that e lies on an extremal ray of C(M(G)). By Lemma 3.3.8,

we have a minimal positive integer n such that n·e ∈ N(G) is either the element

associated to some edge, or the element associated to some minimal vertex.

Consider the case where n · e is the element associated to some edge l.

We identify the element el ∈M
C/S
S smoothing l with its image inM1 orM2.

Then we have

n · β1(e) + log u1 = el in M1 and n · β2(e) + log u2 = el in M2,

where u1, u2 ∈ R∗. By restricting to the generic point η, we have

el,η = n · β1(e)η + log u1 = n · β2(e)η + log u2 in Mη.

This implies that un = u2/u1, hence u ∈ R∗.
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Next, we consider the case where n · e is the element associated to some

minimal vertex v′ ∈ V (G), and we assume that v′ is specialized from v ∈
V (Gη). Set esp = qsp(e) and egen = qgen(e). Let βi,η be the specializable chart

as in Definition 6.4.4 induced by βi for i = 1, 2. By (6.4.4), we may assume

that

n · β1(e)η = n1 · log π + n · β′1,η(egen)

and

n · β2(e)η = n2 · log π + n · β′2,η(egen).

Note that the special degeneracy of v′ with respect to β′i,η is given by ni for

i = 1, 2. By Lemmas 6.4.3 and 6.4.6, the special degeneracy of v′ does not

depend on the choice of βi. Thus we have n1 = n2. By Lemma 6.2.4, we

obtain a unique element u ∈ R∗ such that

β′2,η(e
gen) = log u+ β′1,η(e

gen).

Finally assume that e does not lie on any extremal ray. Then for some

sufficiently divisible positive integer n, we have

n · e =
∑
i

niei,

where ni is a positive integer and ei is an irreducible element lying on some

extremal ray for each i. Then the above argument implies that there exists a

unique ui ∈ R∗ such that β1(ei)η = β2(ei)η + log ui for each i. Thus, we have

n · β1(e)η = n · β2(e)η + log h,

where h =
∏
i u

n·ni
i ∈ R∗. This implies that un = h, hence u ∈ R∗. �

Proposition 6.5.2. Possibly after a base change, the isomorphism ξ1,η
∼=

ξ2,η can be extended uniquely to an isomorphism of ξ1 and ξ2.

Proof. For simplicity, we assume that ξ1,η = ξ2,η = ξη. We fix two global

chart β1 and β2 as in (6.5.1). Denote by βi,η : Mη → Mη the specializable

chart induced by βi for i = 1, 2. By Lemma 6.5.1, we can identify M1 and

M2. Thus, the two chart β1,η and β2,η are identical.

We first show that the following diagram of log structures commutes:

MC/S
S

ψ1

||

ψ2

##

M1 M2,

where ψi is the structure map defining the corresponding log curve of ξi. Since

we put the standard log structure along nondistinguished nodes, we only need
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to consider a special distinguished node p over the closed point. Let ep ∈MS

be a section smoothing p. Then we have

ψ1(ep) = ψ2(ep) + log u,

where u is a unit in R. Since ξ1,η = ξ2,η = ξη, by restricting the above equation

to the generic point η, we obtain u = 1. This proves the commutativity. Thus,

we can identify the two log curves of ξ1 and ξ2.

It remains to show that the two morphisms of log structures f [ξi for i = 1, 2

are identical. Pick a point p ∈ C over s̄. Then we need to prove that locally

at p we have

(6.5.2) f [ξ1(δ) = f [ξ2(δ).

Since the two log maps ξ1 and ξ2 are minimal, locally at p we have

f̄ [ξ1(δ) = f̄ [ξ2(δ) in MS .

Thus, locally at p, there exists an invertible function u such that

f [ξ1(δ) = f [ξ2(δ) + log u.

Since ξ1,η = ξ2,η, by restricting to the generic fiber, we obtain u = 1. This

proves (6.5.2) at p. Therefore, the statement of the proposition holds. �

6.6. Proof of Theorem 1.2.1 and finiteness. Now we can give the proof of

the main Theorem 1.2.1.

Proof. The boundedness is proved in Section 5, and the weak valuative

criterion is proved in Section 6. Since the stack has finite diagonal, it was shown

in [EHKV01, Th. 2.7] that KΓ(X log) admits a finite surjective morphism from

a scheme. With this property and the weak valuative criterion, by [LMB00,

Prop. 7.12] the stack is proper. The Deligne-Mumford property follows from

Proposition 3.8.1.

The representability and finiteness of the map KΓ(X log) → Kg,n(X,β)

follow from Propositions 3.8.4 and 3.7.5. �

Denote by KΓ(X log) and Kg,n(X,β) the coarse moduli spaces of KΓ(X log)

and Kg,n(X,β) respectively. It follows from [KM97, 1.3 Cor.] that KΓ(X log)

exists and is proper. By the universal property of coarse moduli spaces, we

have a natural map

(6.6.1) KΓ(X log)→ Kg,n(X,β).

Again, since this arrow is quasi-finite, we have

Corollary 6.6.1. The natural map (6.6.1) is finite.
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Appendix A. Prerequisites on logarithmic geometry

A.1. Basic definitions and properties. Following [Kat89] and [Ogu06], we

recall some basic terminology from logarithmic geometry.

Monoids. A monoid is a commutative semi-group with a unit. We usually

use “ + ” and “0” to denote the binary operation and the unit of a monoid. A

morphism between two monoids is required to preserve the unit.

Let P be a monoid. We can associate a group

P gp := {(a, b)|(a, b) ∼ (c, d) if ∃s ∈ P such that s+ a+ d = s+ b+ c}.

We have the following terminology:

(1) P is called integral if the natural map P → P gp is injective.

(2) P is called saturated if it is integral and satisfies that for any p ∈ P gp, if

n · p ∈ P for some positive integer n, then p ∈ P .

(3) P is coherent if it is finitely generated.

(4) P is fine if it is integral and coherent.

(5) P is fs if it is fine and saturated.

(6) P is sharp if there are no other units except 0. A nonzero element p in

a sharp monoid P is called irreducible if p = a + b implies either a = 0

or b = 0. Denote by Irr(P ) the set of irreducible elements in a sharp

monoid P .

(7) A fine monoid P is called free if P ∼= Nn for some positive integer n.

(8) A monoid P is called torsion free if the associated group P gp is torsion

free.

(9) The monoid P is called toric if P is fine, saturated, and sharp. Note that

in this case P is automatically torsion free.

(10) A morphism h : Q → P of two integral monoids is called integral if for

any a1, a2 ∈ Q, and b1, b2 ∈ P that satisfy h(a1)b1 = h(a2)b2, there exist

a2, a4 ∈ Q and b ∈ P such that b1 = h(a3)b and a1a3 = a2a4.

Denote by Monint and Monsat the categories of integral and saturated

monoids respectively. Then there is a natural inclusion

ι : Monsat → Monint.

On the other hand, given an integral monoid M , the elements a ∈ Mgp, such

that m · a ∈ M for some positive integer m, form a saturated submonoid

M sat ⊂Mgp. This induces another functor

Sat : Monint → Monsat.

Proposition A.1.1. [Ogu06, Ch. I, 1.2.3(3)] The functor Sat is left ad-

joint to the functor ι.
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Logarithmic structures. Let X be a scheme. A pre-log structure on X is a

pair (M, exp), which consists of a sheaf of monoidsM on the étale site Xét of

X and a morphism of sheaves of monoids exp :M→OX , called the structure

morphism of M. Here we view OX as a sheaf of monoid under multiplication.

A pre-log structure M on X is called a log structure if exp−1(O∗X) ∼= O∗X
via exp. We sometimes omit the morphism exp, and we only useM to denote

the log structure if no confusion could arise. We call the pair (X,M) a log

scheme.

Given two log structuresM and N on X, a morphism of the log structures

h :M→ N is a morphism of sheaves of monoids that is compatible with the

structure morphisms of M and N .

Given a pre-log structure M on X, we can associate a log structure Ma

given by

Ma :=M⊕exp−1(O∗X) O∗X .
Consider a morphism of schemes f : X → Y and a log structureMY on Y . We

can define the pull-back log structure f∗(MY ) to be the log structure associated

to the pre-log structure

f−1(MY )→ f−1(OY )→ OX .

Consider two log schemes (X,MX) and (Y,MY ). A morphism of log

schemes (X,MX)→ (Y,MY ) is a pair (f, f [), where f : X → Y is a morphism

of the underlying schemes and f [ : f∗(MY ) → MX is a morphism of log

structures on X. The morphism (f, f [) is called strict if f [ is an isomorphism

of log structures. It is called vertical ifMX/f
∗(MY ) is a sheaf of groups under

the induced monoidal operation. A standard example of log structures is the

following:

Example A.1.2. LetD be a normal crossing divisor on a smooth schemeX.

Then

MX = {g ∈ OX | g is invertible outside D}
with the natural injection MX → OX forms a log structure on X.

A.1.1. Charts of log structures. Let (X,M) be a log scheme, and let P

be a monoid. Denote by PX the constant sheaf of monoid P on X. A chart

of M is a morphism PX → M such that the associated log structure of the

composition PX →M → OX is M. The log structure M is called a fine log

structure on X if P is fine. If the monoid P is fs, then M is called a fs log

structure. We denote by LogSch the category of fine log schemes and LogSchfs

the category of fs log schemes.

Let M = M/O∗X be the quotient sheaf. We call it the characteristic of

the log structure M. It is useful to notice that f∗(M) = f−1(M) for any

morphism of schemes f : Y → X. A fine log structure M is called locally free
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if for any x̄ ∈ X, we haveMx̄
∼= Nn for some positive integer n. LetMgp,tor

x̄ be

the torsion part ofMgp
x̄ . The following result is very useful for creating charts:

Proposition A.1.3. [Ols03a, 2.1] Using the notation as above, there exist

an fppf neighborhood f : X ′ → X of x and a chart β : P → f∗(M) such

that for some geometric point x̄′ → X ′ lying over x, the natural map P →
f−1Mx̄′ is bijective. If Mgp,tor

x̄ ⊗k(x) = 0, then such a chart exists in an étale

neighborhood of x.

Remark A.1.4. If M is an fs log structure on X, then the above proposi-

tion implies that there exists a sectionMx̄ →Mx̄ that can be lifted to a chart

étale locally near x.

Consider a morphism f : (X,MX) → (Y,MY ) of fine log schemes. A

chart of f is a triple (PX →MX , QY →MY , Q→ P ), where PX →MX and

QY →MY are charts ofMX andMY respectively, and Q→ P is a morphism

of monoids such that the following diagram is commutative:

QX //

��

PX

��

f∗(MY ) //MX .

Note that the charts of morphism of fine log schemes exist étale locally.

Consider a morphism of log schemes f : (X,MX) → (Y,MY ). With the

help of charts, we can describe the log smoothness properties of f due to K.

Kato [Kat89, Th. 3.5]. The log map f is called log smooth if étale locally, there

is a chart (PX →MX , QY →MY , Q→ P ) of f such that

(1) Ker(Qgp → P gp) and the torsion part of Coker(Qgp → P gp) are finite

groups;

(2) the induced map X → Y ×Spec(Z[Q]) SpecZ[P ] is smooth in the usual sense.

The map f is called integral if for every p ∈ X, the induced map Mf(p̄)

→ Mp̄ is integral. In general, the underlying structure map of a log smooth

morphism need not be flat. However, it is shown in [Kat89, 4.5] that the

underlying map of a log smooth and integral morphism is flat.

A.2. Deligne-Faltings log structures.

Definition A.2.1. Consider a scheme X. A locally free log structure MX

on X is called a Deligne-Faltings (DF) log structure if there is a morphism of

locally constant sheaves of monoids β : Nk →MX that locally lifts to a chart.

We call the map β a global presentation of MX .

Remark A.2.2. Consider a DF log structure MX with a global presen-

tation Nk → MX . Denote by {δi}ki=1 the standard generators of Nk. Then
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locally we have a lifting β̃ : Nk → MX . Note that the section β(δi) with its

inverse image under the canonical map π :MX →MX is a O∗X -torsor, which

corresponds to a line bundle Li. The composition

π−1
Ä
β(δi)

ä
⊂MX → OX

gives a morphism of line bundles si : Li → OX . In fact, it was shown in [Kat89,

Complement 1] that a locally free DF log structure as above is equivalent to

the data consisting of a k-tuple of line bundles (Li)
k
i=1 and morphisms of line

bundles si : Li → OX for each i.

Note that si ∈ H0(L∨i ). Denote by Di ⊂ X the vanishing locus of si. Note

that Di consists of the points where the image of δi in MX is nontrivial. If si
is not a zero section, then Di is a Cartier divisor in X. If si is a zero section,

then Di = X. Consider the sub-log structure Mg
X ⊂ MX that is given by

the set of zero sections and the corresponding line bundles. We call Mg
X the

generic part of MX . Note that if Di = ∅, then the sub-log structure generated

by δi is trivial.

Example A.2.3. Consider a smooth Cartier divisor D ⊂ X and the log

structure MX associated to D defined in Example A.1.2. Then MX forms a

DF log structure on X that corresponds to the line bundle OX(−D) and the

natural inclusion OX(−D) ↪→ OX .

A.3. Olsson’s Log Stacks. We follow [Ols03a] to introduce the algebraic

stack parametrizing log structures. Let us fix a base scheme S and consider

an algebraic stack X in the sense of [Art74], which means that

(1) the diagonal X → X ×S X is representable and of finite type,

(2) there exists a surjective smooth morphism X → X from a scheme.

Now we can define a fine log structure MX on X by repeating the definition

of log structure on schemes in A.1, but using a lisse-étale site instead of the

étale site. We refer to [Ols03a, §5] for details of log structure on Artin stacks.

For any S-scheme T and an arrow g : T → X , we obtain a fine log struc-

ture g∗(MX ) on the lisse-étale site Tlis-ét of T . It is shown in [Ols03a, 5.3]

that such g∗(MX ) is isomorphic to a unique fine log structure on the étale site

Tét of T . By abuse of notation, we denote by g∗(MX ) the corresponding log

structure on T . Thus, we define a functor from X to LogSchS by pulling back

the log structureMX . The stack X associated with this functor is called a log

stack in [Kat00]. A fine log scheme (X,MX) can be naturally viewed as a log

algebraic stack.

Consider the fibered category Log(X ,MX ) over X . Its objects are pairs

(g : X → X , g∗(MX )→MX),
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where g is a map from scheme X to X and g∗(MX )→MX is a morphism of

fine log structures on X. An arrowÄ
g : X → X , g∗(MX )→MX

ä
−→

Ä
h : Y → X , h∗(MX )→MY

ä
is a strict morphism of log schemes (X,MX)→ (Y,MY ), such that

(1) the underlying map X → Y is a morphism over X ;

(2) the following diagram of log schemes commutes:

(X,MX) //

��

(Y,MY )

��Ä
X, g∗(MX )

ä
//
Ä
Y, h∗(MX )

ä
.

Remark A.3.1. In fact, the stack Log(X ,MX ) parametrizes log structures

over (X ,MX ). An object
Ä
g : X → X , g∗(MX ) → MX

ä
as above can be

viewed as a morphism of log stacks (X,MX)→ (X ,MX ).

Theorem A.3.2. [Ols03a, 5.9] The fibered category Log(X ,MX ) is an al-

gebraic stack locally of finite presentation over X .

Appendix B. Logarithmic curves and their stacks

In this section, we introduce the notion of log pre-stable curves. We will

prove that the stack Mpre
g,n parametrizing log pre-stable curves of genus g and

n marked points is an open substack of some Olsson’s log stack as above, and

hence is algebraic in the sense of [Art74, 5.1]. We refer to [Kat00], [Moc95],

and [Ols07] for more details of log structures on curves.

B.1. The canonical log structure on pre-stable curves. Consider the stack

Mg,n parametrizing genus g pre-stable curves with n marked points, and let

Cg,n be the universal family over Mg,n. Denote by {Σi : Mg,n → Cg,n}ni=1 the

n sections. The boundary Msing
g,n ⊂ Mg,n that parametrizes singular curves is

a divisor with normal crossings on Mg,n. Hence the boundary divisor induces

a canonical log structure MMg,n on Mg,n, which is defined using the smooth

topology as in [Ols03a].

Note that each section Σi corresponds to a smooth divisor on Cg,n. By

Example A.1.2, we have a log structure MΣi associated to this section Σi.

The pre-image of Msing
g,n also gives a normal crossing divisor in Cg,n, hence a

log structure M]
Cg,n

on Cg,n. Consider the log structure

MCg,n :=M]
Cg,n
⊕O∗

Cg,n

∑
i

MΣi .
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We call it the canonical log structure on Cg,n. There is a natural log smooth,

integral, vertical map

(B.1.1) (Cg,n,M]
Cg,n

)→ (Mg,n,MMg,n),

whose underlying map is given by the family Cg,n →Mg,n. By adding the log

structure from the marked points, we have an induced log smooth, integral

map

(B.1.2) (Cg,n,MCg,n)→ (Mg,n,MMg,n).

Given any family C → S of usual pre-stable curves of genus g, with n

marked points, we have the following cartesian diagram:

C //

π

��

Cg,n

��

S // Mg,n.

Denote byM]C/S
C ,MC/S

C andMΣi
C the log structures on C, obtained by pulling

back M]
Cg,n

, MCg,n and MΣi respectively. Let MC/S
S be the log structure on

S obtained by pulling back MMg,n . Note that MΣi
C is the log structure given

by the section Σi. Now we have two canonical log maps obtained by pulling

back (B.1.1) and (B.1.2) respectively:

(B.1.3) (C,M]C/S
C )→ (S,MC/S

S )

and

(B.1.4) (C,MC/S
C )→ (S,MC/S

S ).

Lemma B.1.1. For any pair of fine log structures (M′C ,MS) over the

family of prestable curves C → S, such that the log map (C,M′C)→ (S,MS)

is log smooth, proper, integral and vertical, we have a unique pair of maps

M]C/S
C →M′C and MC/S

S →MS fitting in the following cartesian diagram of

fine log schemes :

(C,M′C)

��

// (C,M]C/S
C )

��

(S,MS) // (S,MC/S
S ).

Proof. See [Ols07], and [Ols03b, 2.7] for a proof. �

B.2. Log curves. With the description above, we are able to introduce the

log structure on curves that we are interested in.

Definition B.2.1. A map of fine log schemes (C,MC) → (S,MS) with

sections {Σi}ni=1 is called a genus g log curve with n-markings if
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(1) the family C → S with {Σi} is the usual prestable curve of genus g and

n-markings;

(2) the log structure MC is of the form MC =M′C ⊕O∗C (
∑
jM

Σj
C );

(3) the log map (C,MC) → (S,MS) comes from a log smooth, integral ver-

tical map (C,M′C) → (S,MS) plus the log structure MΣi given by the

markings.

By Lemma B.1.1, we have an equivalent definition of log curves using the

canonical log structure.

Definition B.2.2. A genus g, log curve with n-marked points over a scheme

S is given by the following data (C → S, {Σ}ni=1,M
C/S
S →MS), where

(1) (C → S, {Σ}ni=1) is a usual family of pre-stable curves of genus g with

n-markings;

(2) MC/S
S →MS is a morphism of fine log structures.

If no confusion could arise, we will use (C → S,MS) for the log curves in

the definition for short, and we denote byMC the log structure on the curves

in the above Definition B.2.1.

Definition B.2.3. A log curve (C → S,MS) is called log pre-stable if the

log structure MS is fine and saturated.

Remark B.2.4. By [Ols03a, 5.26], the condition that the base log structure

MS is fine and saturated is an open condition on S.

B.3. The stack of log curves.

Definition B.3.1. Consider two log curves (C→S,MS) and (C ′→S,M′S)

over S. Denote by MC and MC′ the log structure on C and C ′ associated to

the two log curves respectively. An isomorphism between the above two log

curves is a pair (ρ, θ) such that

(1) θ : (S,MS) → (S,M′S) and ρ : (C,MC) → (C ′,MC′) are isomorphisms

of log schemes;

(2) the underlying map θ : S → S is the identity, and ρ : C → C ′ is an

isomorphism of usual prestable curves over S;

(3) the pair (ρ, θ) fit in the following commutative diagram:

(C,MC)
ρ
//

��

(C ′,MC′)

��

(S,MS)
θ
// (S,M′S).

Denote by Mlog
g,n the fibered category over C parametrizing log curves with

the arrow defined above. In fact, we have

Mlog
g,n
∼= Log(Mg,n,MMg,n ).
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Thus, the fibered category Mlog
g,n forms an algebraic stack in the sense of [Art74].

Denote by Mpre
g,n the substack of Mlog

g,n parametrizing log prestable curves. Then

by Remark B.2.4, we have the following:

Corollary B.3.2. The fibered category Mpre
g,n is an open substack in

Mlog
g,n, hence it is algebraic.

B.4. The canonical log structure at nodes. Note that the log structure

MMg,n is locally free. Consider a usual prestable curve C → S. Then the

canonical log structure MC/S
S is also locally free. For any closed point s ∈ S,

we have

MC/S
S,s̄
∼= Nm,

where m is a nonnegative integer.

Shrinking S if necessary, by Proposition A.1.3 we can choose a global chart

MC/S
S,s̄
∼= Nm →MC/S

S . Denote by {ei}mi=1 the standard generators of Nm.

Consider a node point p ∈ Cs̄ in the fiber. Then there is an étale neigh-

borhood U of p that contains no other nodes and marked points. We have a

special element ej ∈ {ei}mi=1, with the following chart:

Nm−1 ⊕ N2 //MC/S
C |U

Nm−1 ⊕ N //

(id,∆)

OO

π∗(MC/S
S )|U .

π[

OO

Here on the bottom, the monoids Nm−1 and N are generated by {ei}i 6=j and ej
respectively, and on the top we assume that a and b are the standard generators

of the monoid N2. The map (id,∆) is given by the identity on Nn−1 and the

diagonal map ∆ : ej 7→ a+ b.

Conventions B.4.1. Consider a log curve (C → S,MS). For convenience,

we identify ej with its image in MS and call it the element in MS smoothing

the node p, or simply the element smoothing p.

For each node pi over s, we fix an element ei ∈ M
C/S
S,s̄ smoothing it. Let

Irr(MC/S
S,s̄ ) be the set of irreducible elements in the monoid MC/S

S,s̄ . In fact we

have {ei}mi=1 = Irr(MC/S
S,s̄ ) and a natural map

sCs̄ : {nodes in Cs̄} → Irr
(
MC/S

S,s̄

)
given by pi 7→ (the element ei smoothing pi). It was shown in [Kat00] that this

map is a one-to-one correspondence. This means that all nodes in the fiber are

smoothed independently.
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Remark B.4.2. The bijection sCs̄ implies that the canonical log structures

(MC/S
S ,MC/S

C ) is special in the sense of [Ols03b, 2.6].

We give a local description of the relation between canonical log structure

and the underlying structure at the nodes as in [Kat00, §3]. Let A be a local

neotherian henselian ring, and let s be an element in the maximal ideal mA of

A. Let R be the henselization of A[x, y]/(xy− s) at the ideal generated by x, y

and mA. We still use x, y to denote the corresponding elements in R.

Lemma B.4.3. [Kat00, 2.1] Given x′, y′ ∈ R such that x′y′ ∈ A and

(x′, y′,mA) = (x, y,mA) (equality of ideals in R), then there exist units ux, uy ∈
R∗ with uxuu ∈ A such that x′ = uxx and y′ = uyy (or y′ = uxx and x′ = uyy).

Consider the local family SpecR → SpecA. The canonical log structure

(MR,MA) is given by the following commutative diagram of pre-log struc-

tures:

N2
(e1,e2)7→(x,y)

// R

N e 7→s
//

∆

OO

A,

OO

where e1, e2 (resp. e) are the standard generators of N2 (resp. N), and ∆ : e 7→
e1 +e2 is the diagonal map. For convenience, we sometimes use log x, log y and

log s denote the image of e1, e2 and e in the corresponding log structures.
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Bois Marie 1962/64 (SGA 3) (M. Demazure and A. Grothendieck,

eds.), Lecture Notes in Math. 152, Springer-Verlag, New York, 1962/1964.

MR 0274459. Zbl 0209.24201.

http://www.ams.org/mathscinet-getitem?mr=1882667
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0678.16012
http://projecteuclid.org/euclid.jdg/1090348132
http://www.ams.org/mathscinet-getitem?mr=1938113
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1063.14069
http://projecteuclid.org/euclid.jdg/1090351102
http://projecteuclid.org/euclid.jdg/1090351102
http://www.ams.org/mathscinet-getitem?mr=1355945
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0866.14013
http://dx.doi.org/10.2977/prims/1195164048
http://math.berkeley.edu/~ogus/preprints/log_book/logbook.pdf
http://math.berkeley.edu/~ogus/preprints/log_book/logbook.pdf
http://www.ams.org/mathscinet-getitem?mr=2032986
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1069.14022
http://dx.doi.org/10.1016/j.ansens.2002.11.001
http://dx.doi.org/10.1016/j.ansens.2002.11.001
http://www.ams.org/mathscinet-getitem?mr=1993863
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1069.14015
http://dx.doi.org/10.2748/tmj/1113247481
http://dx.doi.org/10.2748/tmj/1113247481
http://www.ams.org/mathscinet-getitem?mr=2195148
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1095.14016
http://dx.doi.org/10.1007/s00208-005-0707-6
http://dx.doi.org/10.1007/s00208-005-0707-6
http://www.ams.org/mathscinet-getitem?mr=2239345
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1114.14002
http://dx.doi.org/10.1215/S0012-7094-06-13414-2
http://dx.doi.org/10.1215/S0012-7094-06-13414-2
http://www.ams.org/mathscinet-getitem?mr=2309994
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1138.14017
http://dx.doi.org/10.1112/S0010437X06002442
http://dx.doi.org/10.1112/S0010437X06002442
http://www.arxiv.org/abs/0911.2241
http://www.arxiv.org/abs/0902.0087
http://www.ams.org/mathscinet-getitem?mr=2900440
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1276.53092
http://dx.doi.org/10.1016/j.aim.2012.02.005
http://dx.doi.org/10.1016/j.aim.2012.02.005
http://www.ams.org/mathscinet-getitem?mr=0888887
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0629.14020
http://dx.doi.org/10.1090/S0273-0979-1987-15534-0
http://dx.doi.org/10.1090/S0273-0979-1987-15534-0
http://www.ams.org/mathscinet-getitem?mr=0274459
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0209.24201


DELIGNE–FALTINGS PAIRS I 521

[Sie] B. Siebert, Gromov-Witten invariants in relative and singular cases, Lec-

ture given in the workshop on Algebraic Aspects of Mirror Symmetry,

Universität Kaiserslautern, Germany, Jun. 26 2001.

(Received: January 9, 2011)

(Revised: October 23, 2012)

Columbia University, New York, NY

E-mail : q chen@math.columbia.edu

mailto:q_chen@math.columbia.edu

	1. Introduction
	2. Algebricity of the stack of log maps
	3. Minimal logarithmic maps to rank-one Deligne-Faltings log pairs
	4. The stack of minimal log maps as category fibered over LogSchfs
	5. The boundedness theorem for minimal stable log maps
	6. The weak valuative criterion for minimal stable log maps
	Appendix A. Prerequisites on logarithmic geometry
	Appendix B. Logarithmic curves and their stacks
	References

