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Corrigendum to:
Operator monotone functions and

Löwner functions of several variables

By Jim Agler, John E. McCarthy, and N. J. Young

Abstract

We fix a gap in the proof of Theorem 7.24 in Ann. of Math. 176 (2012),

1783–1826.

There is a gap in the proof of Theorem 7.24 in [1], though the statement

of the theorem is correct.

In the proof of necessity, we argue that Λ is in G by contradiction. If it

were not, invoking the Hahn-Banach separation theorem would yield a real

skew-symmetric matrix K and a constant δ ≥ 0 such that tr(ΓK) ≥ −δ for

all Γ in G, and tr(ΛK) < −δ. In the proof we assumed that δ = 0, but this

assumption is unjustified.

Instead, we argue as follows. Define ∆ by

∆r
ij = (xrj − xri )Kji, i 6= j,

and with the diagonal entries ∆r
ii chosen so that each ∆r ≥ 0 and so that

(0.1) µr :=
n∑

i=1

fr,i∆
r
ii

is minimal over all choices of ∆r
11, . . . ,∆

r
nn such that ∆ ≥ 0. (A minimal

choice exists, since all the fr,i are strictly positive by assumption.) Then ∆ is

in SAMd
n, and

[∆s, Sr]ij = (xsj − xsi )Kji(x
r
j − xri ) = [∆r, Ss]ij .
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As f is locally Mn monotone, we must have then that D∆f(S) ≥ 0 by

Lemma 7.3. As

−δ > tr(ΛK) =
∑

1≤i,j≤n
[D∆f(S)]ij −

d∑
r=1

n∑
i=1

∆r
iifr,i,

we get that

(0.2)
d∑

r=1

µr − δ >
∑

1≤i,j≤n
[D∆f(S)]ij ≥ 0.

By Duffin’s strong duality theorem [2], the minimum µr in (0.1) satisfies

(0.3) − µr = min
∑
i 6=j

∆ijA
r(i, j),

where Ar range over the set of real positive matrices such that the diagonal

entries of Ar are fr1, . . . , frn for each r.

For each such A = (A1, . . . , Ad), let Γ be the corresponding element of G:

Γii = 0 and

Γij =
d∑

r=1

(xrj − xri )Ar(i, j) for i 6= j.

We have

−δ ≤ tr ΓK

=
∑
i 6=j

d∑
r=1

(xrj − xri )Ar(i, j)Kji

=
d∑

r=1

∑
i 6=j

∆r
ijA

r(i, j).

Hence, by equation (0.3), −δ ≤∑d
r=1(−µr), so

∑d
r=1 µ

r ≤ δ. This contradicts

(0.2), so it follows that Λ ∈ G, and necessity is proved.
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