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Dispersion for the wave equation
inside strictly convex domains I:

the Friedlander model case

By Oana Ivanovici, Gilles Lebeau, and Fabrice Planchon

Abstract

We consider a model case for a strictly convex domain Ω ⊂ Rd of dimen-

sion d ≥ 2 with smooth boundary ∂Ω 6= ∅, and we describe dispersion for

the wave equation with Dirichlet boundary conditions. More specifically,

we obtain the optimal fixed time decay rate for the smoothed out Green

function: a t1/4 loss occurs with respect to the boundary less case, due to

repeated occurrences of swallowtail type singularities in the wave front set.

1. Introduction

Let us consider solutions of the linear wave equation on a manifold (Ω, g),

with (possibly empty) boundary ∂Ω:

(1.1)


(∂2
t −∆g)u(t, x) = 0, x ∈ Ω,

u(0, x) = u0(x), ∂tu(0, x) = u1(x),

u(t, x) = 0, x ∈ ∂Ω,

where ∆g denotes the Laplace-Beltrami operator on Ω.

When dealing with the Cauchy problem for nonlinear wave equations, one

starts with perturbative techniques and faces the difficulty of controlling the

size of solutions to the linear equation in terms of the size of the initial data. Of

course, one has to quantify this notion of size by specifying a suitable (space-

time) norm. It turns out that, especially at low regularities, mixed norms of

type LptL
q
x are particularly useful. Moreover, the arguments leading to such

estimates turn out to be useful when considering spectral cluster estimates,

which are of independent interest (see [18]).
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On any smooth Riemannian manifold without boundary, the following set

of so-called Strichartz estimates holds for solutions of the wave equation (1.1)

(for T <∞),

(1.2) ‖u‖Lq(0,T )Lr(Ω) ≤ CT
Ä
||u0||Ḣβ(Ω) + ||u1||Ḣβ−1(Ω)

ä
,

where, if d denotes the dimension of the manifold, we have β=d(1
2−

1
r )−1

q (which

is consistent with scaling) and where the pair (q, r) is wave-admissible; i.e.,

(1.3) q ≥ 2,
2

q
+
d− 1

r
≤ d− 1

2
(q > 2 if d = 3 and q ≥ 4 if d = 2).

When equality holds in (1.3) we say that the pair (q,r) is sharp wave-admissible.

Here Ḣβ denotes the (homogeneous) L2 Sobolev space over Ω. Such inequali-

ties were long ago established for Minkowski space, where they hold globally in

time (T = +∞). Their local in time version may be generalized to any (Ω, g)

where g is smooth (thanks to the finite speed of propagation), while global in

time estimates require stronger geometric requirements of global nature on the

metric.

The canonical path leading to such Strichartz estimates is to obtain a

stronger, fixed time, dispersion estimate, which is then combined with energy

conservation, interpolation and TT ? arguments to obtain (1.2). Let us denote

by e±it
√
−∆Rd the half-wave propagators in flat space, and ψ ∈ C∞0 (]0,∞[).

The following dispersion inequality holds:

(1.4) ‖ψ(−h2∆Rd)e
±it
√
−∆Rd‖L1(Rd)→L∞(Rd) ≤ C(d)h−d min

{
1, (h/|t|)

d−1
2

}
.

Our aim in the present paper is to obtain these estimates inside domains.

In fact, [11] outlines a roadmap to prove such a dispersion estimate, on a

finite time interval, for solutions of (1.1) inside a strictly convex domain (Ω, g)

of dimension d ≥ 2. A complete description of the geometry of the (semi-

classical) wave front set is provided for the solution to (1.1) with initial data

(u0, u1) = (δa, 0), where a ∈ Ω is a point sufficiently close to the boundary

(depending on the scale h). This wave front set has caustics developing in

arbitrarily small times, and this induces a loss of 1/4 in (1.4) for the h/|t| factor.

In the present work, we aim at completing the roadmap by construct-

ing a suitable parametrix for such a solution and then proving dispersion for

the approximated solution. It should be noted that parametrices have been

available for the boundary value problem for a long time (see [13], [12], [5])

as a crucial tool to establish propagation of singularities for the wave equa-

tion on domains. However, while efficient at proving that singularities travel

along the (generalized) bi-characteristic flow, they do not seem strong enough

to obtain dispersion, at least in the presence of gliding rays. In the outside

of a strictly convex obstacle (no gliding rays), the Melrose-Taylor parametrix

was utilized in [17] to prove Strichartz estimates hold as in the Rd case. All
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other positive results ([3] and references therein) rely instead on reflecting the

metric across the boundary and considering a boundary less manifold with a

Lipschitz metric across an interface, and then using the machinery originally

developed for low regularity metrics [16], [20] and spectral cluster estimates

[18]. Such constructions do away with multiply reflected rays by suitable mi-

crolocalizations: one ends up working on a possibly very small time interval,

depending on the incidence of the wave packet under consideration, such that

all corresponding rays are only reflected once. Summing these intervals induces

(scale-invariant) losses, which get worse with dimension; while Strichartz es-

timates are obtained in a more direct way in [3], one can observe that the

corresponding dispersion estimate would have at most 1/t decay for d ≥ 4,

as the argument is blind to the full dispersion that should occur in tangential

directions. On the other hand, negative results were obtained in [7], [8], where

a special solution is constructed, propagating a cusp across multiple reflections

and providing a counterexample to the sharp Strichartz estimates (1.2) for

r > 4. This special solution is constructed via a microlocal parametrix that

utilizes the Melrose one, and our present construction generalizes this special

example while retaining most of its useful features.

Before stating our main result, we briefly introduce the Friedlander’s

model domain of the half-space Ωd = {(x, y)|x > 0, y ∈ Rd−1} with Laplace

operator given by
∆g = ∂2

x + (1 + x)∆y.

By rotational symmetry, we will eventually reduce to the two-dimensional

case Ω2.

Remark 1.1. For the metric g = dx2 + (1 +x)−1dy2, the Laplace-Beltrami

operator is 4g,0 = (1 + x)1/2∂x(1 + x)−1/2∂x + (1 + x)∆y, which is self-

adjoint with the volume form
√

detg dxdy = (1 + x)−1/2dxdy. The Fried-

lander’s model uses instead the Laplace operator associated to the Dirichlet

form
∫
|∇gu|2 dxdy =

∫
(|∂xu|2 + (1 + x)|∂yu|2)dxdy and is self-adjoint with

volume form dxdy. As a model, the Friedlander operator ∆g is better than

the Laplacian ∆g,0 since it allows explicit computations. Clearly, manifold

(Ωd, g) is a strictly convex domain: In fact, on the geodesic flow starting at

x = 0, y = y0, ξ
2
0 + η2

0 = 1, ξ0 ∈]0, 1[, one has x(s) = 2sξ0 − s2η2
0. Moreover,

(Ω2, g) may be seen as a simplified model for the disk D(0, 1) with polar co-

ordinates (r, θ), where r = 1 − x/2 and θ = y. Multiply reflected light rays

become periodic curves in the y variable, as illustrated in Figure 1.1.

Remark 1.2. We will always work with the Dirichlet boundary condition.

The Neumann boundary condition can be handled exactly in the same way,

providing the same results: one simply modifies the reflexion coefficient in our

parametrix construction and replaces zeros of the Airy function Ai by zeros of

its derivative Ai′.
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Disk

Model domain

Figure 1.1. Light rays in the Friedlander model.

We are now in a position to state our main result.

Theorem 1.3. Let d ≥ 2. There exists C > 0, T0 > 0 such that for

every a ∈]0, 1], h ∈ (0, 1] and t ∈ (0, T0], the solution ua to (1.1) with data

(u0, u1) = (δa, 0), where δa is the Dirac mass at point (a, 0, · · · , 0) ∈ Ωd,

satisfies

(1.5) |ψ(−h24g)ua(t, x)| ≤ Ch−d min
(
1, (h/t)

d−2
2

+ 1
4

)
.

The dispersion estimate (1.5) may be compared to (1.4): we notice a 1/4

loss in the h/t exponent, which we may informally relate to the presence of

caustics in arbitrarily small times if a is small. Such caustics occur because

optical rays are no longer diverging from each other in the normal direction,

where less dispersion occurs as compared to the Rd case. In fact, we will prove

a slightly better estimate than (1.5): the (h/t)1/4 factor may be replaced by

h1/4 + (h/t)1/3 for a ≤ h1/2 (Proposition 3.4) and by (h/t)1/2 + a1/8h1/4 for

a ≥ h4/7−ε (Theorem 2.1). In fact, we can track the caustics, and therefore

our estimate is optimal for a ≥ h4/7−ε.

Theorem 1.4. Let d ≥ 2 and ua be the solution to (1.1) with data

(u0, u1) = (δa, 0). Let h ∈ (0, 1] and a ≥ h4/7−ε. There exist a constant C > 0

and a finite sequence (tn)n, 1 ≤ n ≤ min(a−1/2, a1/2h−1/3) with tn ∼ 4n
√
a

such that

(1.6) h−d(h/tn)
d−2
2 n−1/4a

1
8h1/4∼a

1
4h−d(h/tn)

d−2
2

+ 1
4 . |ψ(−h24g)ua(tn, a)|.

As a byproduct, we get that even for t ∈]0, T0] with T0 small, the 1/4 loss

is unavoidable for a comparatively small to T0 and independent of h. We will

see soon that this optimal loss is due to swallowtail type singularities in the

wave front set of ua.

Remark 1.5. Note that when a = hγ , where we gain from the factor a1/8,

the loss in (1.6) is still greater than the usual dispersive estimate in the flat

case: this requires γ > 2/3 whereas we have γ > 4/7 − ε. Moreover, in this
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range, the loss is also greater than the loss that would occur if we had only

cusp singularities.

Remark 1.6. It follows from our proof that Theorems 1.3 and 1.4 hold

true if one replaces ψ(−h24g)ua(t, x) by ψ(hDt)e
±it
√
−4gδx=a,y=0 with ψ ∈

C∞0 (R∗).

As a consequence of (1.5) and classical arguments, we obtain the following

set of Strichartz estimates.

Theorem 1.7. Let u be a solution of (1.1) on the model domain Ωd,

d ≥ 2. Then there exists T such that

‖u‖Lq(0,T )Lr(Ω) ≤ CT
Ä
||u0||Ḣβ(Ω) + ||u1||Ḣβ−1(Ω)

ä
for (d, q, r) satisfying

1

q
≤
Å
d− 2

2
+

1

4

ãÅ
1

2
− 1

r

ã
,

and β is dictated by scaling.

In dimension d = 2 the known range of admissible indices for which sharp

Strichartz hold is in fact slightly larger; see [3]. However, in larger dimensions

d ≥ 3, Theorem 1.7 improves the range of indices for which sharp Strichartz

do hold, and it does so in a uniform way with respect to dimension, in contrast

to [3]. On the other hand, our results are, for now, restricted to a model case

of strictly convex domain, while [3] applies to any domain. One may use the

model case analysis to extend estimates to any smooth strictly convex domain,

as in the counterexample situation [8]. This issue will be addressed elsewhere.

Remark 1.8. One conjectures that the loss in Strichartz estimates in [7] are

optimal. This would heuristically match a 1/6 loss in the dispersion estimate.

We plan to address this issue in future work, by proving that the worst time-

space points (tn, a) may be suitably averaged over.

One may then make good use of such Strichartz estimates for the local

(and global) Cauchy theory of nonlinear wave equations. We provide one

simple example.

Theorem 1.9. The energy critical wave equation 2gu+ |u|
4
d−2u = 0 with

data (u0, u1) ∈ H1
0 (Ωd) × L2(Ωd) has unique global in time solutions for 3 ≤

d ≤ 6.

In the small data case, the result follows directly from the previously

obtained set of Strichartz estimates. Appendix A provides details on how to

combine these new estimates with arguments from [4] to obtain the large data

case.
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1.1. Light propagation, heuristics and degenerate oscillatory integrals. In

[11] the second author sketched the main steps of a proof of (1.5) and gave a

full description of the geometry of the wave front set. In this work, we provide

a complete construction of a suitable parametrix for the wave equation, which

we then utilize to obtain decay estimates by (degenerate) stationary phases.

Recall that, at time t > 0, one expects the wave propagating from the

source of light to be highly concentrated around the sphere of radius t. For a

variable coefficients metric, one can make good of this heuristic as long as two

different light rays emanating from the source do not cross: in other words,

as long as t is smaller than the injectivity radius. One may then construct

parametrices using oscillatory integrals, where the phase encodes the geometry

of the wave front.

In our situation, the geometry of the wave front becomes singular in arbi-

trarily small times, depending on the frequency of the source and its distance

to the boundary. In fact, a caustic appears right between the first and the

second reflexion of the wave front, as illustrated in Figures 1.3 and 1.4 (which

is a zoomed version at the relevant time scale). Therefore, we are to investi-

gate concentration phenomena (“caustics”) that may occur near the boundary.

Geometrically, caustics are defined as envelopes of light rays coming from our

source of light. Each ray is tangent to the caustic at a given point. If one

assigns a direction on the caustic, it induces a direction on each ray. Each

point outside the caustic (and in the sunny side of the caustic) lies on a ray

that has left the caustic and also lies on a ray approaching the caustic. Each

curve of constant phase has a cusp where it meets the caustic.

At the caustic point we expect light to be singularly intense. Analytically,

caustics can be characterized as points were usual bounds on oscillatory inte-

grals are no longer valid. Oscillatory integrals with caustics have enjoyed much

attention: their asymptotic behavior is known to be driven by the number and

the order of those of their critical points that are real. Let us consider an

oscillatory integral

(1.7) uh(z) =
1

(2πh)1/2

∫
ζ
e
i
h

Φ(z,ζ)g(z, ζ, h)dζ, z ∈ Rd, ζ ∈ R, h ∈ (0, 1].

We assume that Φ is smooth and that g(., h) is compactly supported in z and

in ζ. If there are no critical points of the map ζ → Φ(z, ζ), so that ∂ζΦ 6= 0

everywhere in an open neighborhood of the support of g(., h), then repeated

integration by parts (i.e., nonstationary phase) yields that |uh(z)| = O(hN )

for any N > 0.

If there are nondegenerate critical points, where ∂ζΦ = 0 but det(∂2
ζjζk

Φ)

6= 0, then the method of stationary phase applies and yields ‖uh(z)‖L∞ = O(1).

The corresponding canonical form is a Gaussian phase.
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Figure 1.2. The caustic for the swallowtail catastrophe.

If there are degenerate critical points, we define them to be caustics, as

‖uh(z)‖L∞ is no longer uniformly bounded. The order of a caustic κ is defined

as the infimum of κ′ such that ‖uh(z)‖L∞ = O(h−κ
′
).

The most simple degenerate phase beyond the Gaussian is ΦF (z, ζ) =
ζ3

3 +z1ζ+z2, which corresponds to a fold with order κ = 1
6 . A typical example

is the Airy function. The caustic is given by z1 = 0, and the illuminated side

is z1 < 0. The next canonical form is given by a phase function that is a

polynomial of degree 4, namely ΦC(z, ζ) = ζ4

4 + z1
ζ2

2 + z2ζ + z3 whose order

is κ = 1
4 ; its associated integral is called Pearcey’s function, and it produces a

cusp singularity on the caustic that is parametrized by z1 = −3s2, z2 = 2s3.

Finally, we conclude this brief overview with the swallowtail integral (which

is an oscillatory integral with four coalescing saddle points) whose canonical

form is given by a polynomial of degree 5, ΦS(z, ζ) = ζ5

5 +z1
ζ3

3 +z2
ζ2

2 +z3ζ+z4:

the caustic surface of the swallowtail is defined by the condition that two or

more real saddle points are equal: it is pictured on Figure 1.2. In the event that

two simple saddle points undergo confluence when z → z0, then the uniform

asymptotic behavior of (1.7) contains terms involving the Airy function and

its derivatives multiplied by powers of h−
1
2

+ 1
3 ; the caustic surface is smooth

(z1 < 0 on the figure). If three simple saddles coalesce as z → z0, then the

uniform asymptotic behavior of (1.7) can be described by terms containing the

Pearcey function and its first-order derivatives, each multiplied by a power of

h−
1
2

+ 1
4 ; the caustic surface has cusps (two of them in the z1 > 0 region on the

figure). The swallowtail enters the picture when four simple saddle points of

(1.7) undergo confluence as z → z0 (which is z0 = 0 on the figure). We refer to

[1] for a very nice presentation, both from the mathematical and the physical
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point of view, of degenerate oscillatory integrals and their relation to Thom’s

theory of catastrophes.

Such integrals will play a crucial role in the proof of Theorem 1.3. Between

two consecutive reflections of the wave propagating along the boundary, we

shall construct a parametrix of the form

u(z, h) =
1

h2

∫
R2
e
i
h

Φ(z,ζ,η)g(z, η, ζ, h) dζdη,

where the phase is essentially Φ(z, ζ, η) ≈ ηΦC(z, ζ), with z = (t, x, y), η/h is

the Fourier variable associated to the tangential variable y and ζ = ξ/η where

ξ/h is the Fourier variable associated to the normal variable x. Note that we

may restrict to η ∈ (1/2, 2), which corresponds precisely to waves propagating

along the boundary and explains the (η, ζ) parametrization for the oscillatory

integral. For a particular value zS of z = (t, x, y), this phase will have a saddle

point of order 4; it corresponds to ∂ηΦ = 0 = ΦC(zS , ζ) and ∂ζΦC = ∂2
ζΦC =

∂3
ζΦC = 0. The geometric picture is that of a swallowtail singularity, but the

decay loss is that of the Pearcey’s integral, i.e., h1/4. For z 6= zS , our oscillatory

integral will have only critical points of order at most 3, corresponding to

∂ηΦ = 0 = ΦC(zS , ζ) and ∂ζΦC = ∂2
ζΦC = 0: the picture is, at worst, that of

cusps and the loss is that of the Airy function, i.e., h1/6. Finally, we notice

that Figures 1.2 and 1.4 picture the same singularity formation: in Figure 1.2,

up to translations, z1 = t, z2 = −x and z3 = y; z1 < 0 corresponds to the

(smooth) refocusing wave front in the left part of Figure 1.4 while two cusps

form on the right part after the swallowtail singularity.

1.2. An outline of the proof. Let us mention the main ideas of the proof

of Theorem 1.3. First, we may reduce to the two-dimensional case, as the

tangential directions will produce the usual decay factor when we integrate

them out; see Section 4.

Let h ∈ (0, 1] be a small parameter (1/h will later be the spectral fre-

quency) and 0 < a � 1 the distance of the source to the boundary. We

assume a to be small as we are interested in highly reflected waves, which we

do not observe if the waves do not have time to reach the boundary.

From the spectral analysis that will be recalled in Section 3.1, we have

an explicit representation for the Green function associated to the half-wave

initial value problem with a Dirac at (a, b) as initial condition at time s:

G((x, y, t), (a, b, s)) =
∑
k≥1

∫
R
e±i(t−s)

√
λk(η)ei(y−b)ηek(x, η)ek(a, η) dη

where λk(η) = η2 + η4/3ωk, with −ωk a zero of the Airy function, and where

the ek(x, η) are explicit, real-valued functions that are defined in Section 3.1.



DISPERSION FOR THE WAVE EQUATION 331

We now record several remarks that will be of help later and relate to various

phase space localizations.

Remark 1.10. We may perform a spectral localization at λk(η) ∼ h−2,

which corresponds to inserting a smooth, compactly supported away from zero

ψ2(h
»
λk(η)); on the flow, this is nothing but ψ2(hDt) and this smooths out

the Green function. Then we are dealing with a semi-classical boundary value

problem with small parameter h. With the usual notation τ = h
i ∂t, η = h

i ∂y,

ξ = h
i ∂x, the characteristic set of our operator is given by

τ2 = ξ2 + (1 + x)η2.

The hyperbolic (resp. elliptic) subset of the cotangent bundle of the boundary

x = 0 is |τ | > |η|, (resp. |τ | < |η|), and the gliding subset is |τ | = |η|. From

τ2 = (hDt)
2 = h2λk(Dy), at the symbolic level on the micro-support of any

gallery mode associated to ωk (see Section 3.1 for a definition of gallery modes)

one gets

(1.8) η4/3h2/3ωk = ξ2 + xη2.

Remark 1.11. We may also localize with ψ1(hDy), with ψ1 ∈ C∞0 (]0,∞[),

which correspond to a Fourier localization along the tangential (i.e., y) direc-

tion. (Notice such a truncation is easily seen to commute with the equation,

hence the flow.) Since we are not interested with waves transverse to the

boundary, we may and will assume that on the support of ψ1(hη)ψ2(h
»
λk(η))

one has k ≤ εh−1 with ε small. This is compatible with (1.8) since ωk ' k2/3

and k ≤ εh−1 is equivalent to |ξ| . ε2/3. This fact will later have its importance

when a ≤ h1/2.

Remark 1.12. Irrespective of the position of a relative to h, the remaining

part of the Green function will be essentially transverse and see at most one

reflexion for t ∈ [0, T0], with T0 small (depending on the above choice of ε).

Hence, it can be dealt with as in [2] to get the free space decay and we will

ignore it in the upcoming analysis.

Remark 1.13. Finally, the symmetry of G (or its suitable spectral trun-

cations) with respect to x and a will be of great importance: it allows us to

restrict the computation of the L∞ norm to the region 0 ≤ x ≤ a.

Now, we consider initial data u0(x, y) = ψ2(h
√
−4g)ψ1(hDy)δx=a,y=0

where the ψj are those of Remark 1.11. We will use different arguments de-

pending on the respective position of a and h.

The first case is a � h4/7: there, we follow ideas of [7] and write a

parametrix for the wave equation as a superposition of localized waves for

which we can compute the wave front set and hence the singularities that

appear at different times and locations. The construction of [7] has to be
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Figure 1.3. Propagation of the wavefront.

significantly altered to allow for the range h4/7 � a ≤ h1/2, with a phase that

is less explicit but prevents amplifying factors at each reflexion that induced

the a > h1/2 restriction in [7].

The second case corresponds to data for which the distance a to the bound-

ary is such that 0 < a . h1/2: we write the contribution of our data that is

localized in a h1/4 cone of tangential directions as the L2(Ω) orthogonal sum

of whispering gallery modes and prove that after a time t the correspond-

ing wave remains frequency localized in the same cone of directions of size

h1/4, at least up to smooth remainders. While not quite as strong as a mi-

crolocal propagation of singularities result, this allows for the use of Sobolev

embedding theorem to recover the “dispersion” by using the size of the Fourier

support. The contribution of data corresponding to directions with angles with

the boundary greater than h1/4 may be dealt with separately, using a crude

parametrix construction, as they involve only cusp-type singularities.

Notice that there is an overlap between the two regions: in fact the

parametrix construction obviously provides better bounds in the overlap re-

gion, both in size (we gain an a1/8 factor in the worst case) and position (the

swallowtail occurs exactly once in between two consecutive reflexions). Had

we reproduced the parametrix construction from [7], we would have an epsilon

loss in the dispersion estimate because of the a ∼ h1/2 region. We thought it

was of independent interest to quantify how “far” below h1/2 the construction

could be pushed while retaining the most interesting features of [7].

Remark 1.14. Figure 1.3 illustrates the propagation of (part of) the wave-

front set of the Dirac data; the second picture is a zoomed version of the first

one and shows in detail the formation of the swallowtail singularity for the

part of the wave front moving along directions which are initially tangent to

the boundary.

Finally, Theorem 1.3 is obtained for a ≥ h4/7−ε in Theorem 2.1 and for

a ≤ h1/2 in Proposition 3.4. Theorem 1.4 is obtained in Section 2, as a remark

at the end of the proof of Proposition 2.15.
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Figure 1.4. The formation of a swallowtail singularity just after

the first reflection (zoomed image).

2. Parametrix for a� h4/7

This section is devoted to the construction, modulo O(h∞), of the Green

function in the case a ≥ h4/7−ε. The Green function is represented in Propo-

sition 2.5 as a superposition of O(a−1/2) reflected waves. We give a precise

analysis of the Lagrangian in the phase space associated to each reflected wave.

This geometric analysis allows us to track the degeneracy of the phases when

we apply phase stationary arguments. Our main dispersive estimate will be

Theorem 2.1.

Let us set ~ = h/η and P = (−i~∂x)2 + 1 + x − (−i~∂t)2. For a ≥ 0, we

denote by Λa ⊂ T ∗R the Lagrangian

Λa =
¶

(t′, τ ′) ∃θ ∈ R s.t. t′ = −2θ
√

1 + a+ θ2, τ ′ =
√

1 + a+ θ2
©
.

The set Λa may be parametrized by t′. Let ψa(t
′) be the unique function such

that ψa(0) = 0 and Λa = {(t′, ψ′a(t′)}. Let us set ρ = 1 + a and θ =
√
ρz, then

(t′)2 = 4ρ2(z2 + z4), from which we get

2z2 + 1 =
»

1 + (t′)2/ρ2 =⇒ ψ′2a = ρ(1 + z2) =
ρ

2

(
1 +
»

1 + (t′)2/ρ2
)

and as ψ′a = τ ′ > 0,

ψ′a =
√
ρ
Ä
1 + t′2/(8ρ2) +O(t′4)

ä
;

finally, by integration, as ψa(0) = 0,

ψa(t
′) =
√
ρ

Ç
t′ +

t′3

24ρ2
+O(t′5)

å
.

2.1. A singular integral representation for the data. We start by a suitable

decomposition of the smoothed Dirac as an inverse Fourier transform of a

superposition of Airy functions.
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Lemma 2.1. Let χ1 ∈ C∞0 ((−θ0, θ0)) with small θ0. There exists a symbol

σ0(t′, ~) of degree 0 with an asymptotic expansion in ~, i.e.,

∀N, k, ∃CN s.t. sup
t′

∣∣∣∂kt′Äσ0(t′, ~)−
∑

0≤j≤N
σ0,j(t

′)~j
ä∣∣∣ ≤ CN~N+1,

that is supported in a neighborhood of t′ = 0 and with the following properties.

Let

ũ0(t, x, h, ~) =
1

2π~

∫
e
i
~ (ζ(t−t′)+s(x+1−ζ2)+ s3

3
)e

i
~ψa(t′)σ0(t′, ~)

dt′dsdζ

(2πh)2
.

Then ũ0 is such that, for x > −1,

(1) The wave front set of ũ0 is included in τ > 0. In fact,

WFh(ũ0) ⊂
¶
τ ∈ [

√
1 + a, τ0]

©
,

where τ0 is related only to the size of the support of σ0 in t′. Moreover,

Pũ0 = 0.

(2) The initial data ũ0(0, x, h, ~) is a smoothed out Dirac; that is,

ũ0(0, x, h, ~) =
1

(2πh)2

∫
e
i
~ (x−a)θχ1(θ) dθ +OC∞(h∞).

Proof. Consider the time Fourier transform of ũ0,

ˆ̃u0(τ/~, x, h, ~) =

∫
e−itτ/~ũ0(t, x, h, ~) dt

= ~
1
3

∫
Ai
(
~−

2
3 (x+ 1− τ2)

)
e
i
~ (ψa(t′)−τt′)σ0(t′, ~)

dt′

(2πh)2
.

Therefore, ˆ̃u0 is an average (with compact support in t′) of solutions to the

equation Å~
i
∂x

ã2

f + (1 + x− τ2)f = 0.

From ∂t′(ψa(t
′)− τt′) = 0, we get τ = ψ′a(t

′), and therefore there exists θ such

that τ =
√

1 + a+ θ2, which proves the claim on WFh(ũ0).

We proceed with the second part of the statement, regarding the initial

data,

ũ0(0, x, h, ~) =
1

(2πh)22π~

∫
e
i
~ (s(x+1−ζ2)+s3/3−t′ζ+ψa(t′))σ0 dt

′dsdζ.

Let φ(t′, x, s, ζ) = s(x+ 1− ζ2) + s3/3− t′ζ, and denote by Cφ the set

Cφ = {(t′, x, s, ζ) s.t. ∂sφ = ∂ζφ = 0}.
The equations defining Cφ read x + 1 + s2 = ζ2 and 2sζ + t′ = 0. From the

first equation, we get ζ 6= 0 on Cφ (recall x > −1). Now,

Hesss,ζφ =

Ç
2s −2ζ

−2ζ −2s

å
,

and det(Hesss,ζφ) 6= 0 on Cφ. Therefore Cφ is a smooth manifold.
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Denote by π1 the projection from Cφ to T ∗Rx; that is,

π1((t′, x, s, ζ) ∈ Cφ) = (x, ∂xφ) = (x, s).

and by π2 the projection from Cφ to T ∗Rt′ , that is

π2((t′, x, s, ζ) ∈ Cφ) = (t′,−∂t′φ) = (t′, ζ).

For τ ′ 6= 0, we have

π−1
2 (t′, τ ′) = (t′, x = −1 + τ ′2 − t′2/(4ζ2), s = −t′/2ζ, ζ = τ ′).

Therefore Cφ induces a canonical transformation from T ∗Rt′ \{τ ′ = 0} to T ∗Rx
defined by

χ(t′, τ ′) = (x = −1 + τ ′2 − t′2/4τ ′2, ξ = −t′/2τ ′).

Notice that

χ(Λa) = (x = a, ξ = θ) = T ∗x=a,

and χ is a symplectic isomorphism from a neighborhood of (t′, τ ′) = (0,
√

1 + a)

onto a neighborhood of (x, ξ) = (a, 0).

The remaining part of the argument is standard: denote by G(t′, x) =

φ(t′, x, sc, ζc) where (sc, ζc > 0) is the unique solution of 1 + x + s2
c = ζ2

c and

t′ + 2scζc = 0, then G(0, a) = 0, as sc(0, a) = 0 and ζc(0, a) =
√

1 + a. By

stationary phase in (s, ζ) we get

ũ0(0, x, h, ~) =
1

(2πh)2

∫
e
i
~ (G(t′,x)+ψa(t′))A0(t′, x, ~)σ0(t′, ~) dt′,

where A0(t′, x, ~) is an elliptic symbol of order 0. From ∂t′G(t′, a) +ψ′a(t
′) = 0

and G(0, a) = 0, we get G(t′, a) = −ψa(t′), and therefore

G(t′, x) + ψa(t
′) = (x− a)Ha(t

′, x) with ∂t′Ha(0, a) 6= 0.

By change of variables Θ = Ha(t
′, x) and using that for all F there exists G

such that∫
e
i
~ (x−a)ΘF (Θ, x, ~) dΘ =

∫
e
i
~ (x−a)ΘG(Θ, ~) dΘ +O(~∞),

we obtain the desired conclusion, since by the above canonical transformation

the map σ0(t′, ~) 7→ G(Θ, ~) is elliptic of degree 0. �

Set g0(t′, ~) = e
i
~ψa(t′)σ0(t′, ~). We proceed with

Lemma 2.2. Let c > 0, ε > 0. Then, with ρ = 1 + a,

sup
τ≤√ρ−c~2/3−ε

|ĝ0(τ/~, ~)| ∈ O(~∞).
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Proof. Notice that ĝ0(τ/~) behaves like an Airy function from the geom-

etry of Λa so the estimate on ĝ0 is really the classical estimate on Ai. We

provide a direct argument: for τ <
√
ρ,

ĝ0(τ/~, ~) =

∫
e
i
~ (ψa(t)−tτ)σ0(t, ~) dt,

and we may integrate by parts using L = (ψ′a(t)− τ)−1 ~
i ∂t; recall that ψ′a(t) =√

ρ(1 + t2/8ρ2 +O(t4)). Notice that

(tL)N (σ0) = ~N
N∑
j=0

αj,N (t)

(ψ′a(t)− τ)2N−j ,

where αj,N (t) = tbN−2jc+βj,N (t) (by induction, as ψ′′a(t) =O(t) and bN−2jc+
+ 1 ≥ bN − 2j + 1c+ as well as bbN − 2(j − 1)c+ − 1c+ ≥ bN − 2j + 1c+). As

such, it remains to check that for t ∈ [−1,+1] and α ∈]0, 1]

~N
tbN−2jc+

(α+ t2)2N−j ≤ CN,j
~N

α3N/2
,

which is trivial if j ≥ N/2 and follows from setting t =
√
αs if j < N/2. �

Remark 2.3. One may also prove that there exists τ0 > 0 (related to the

support of σ0) such that

sup
τ≥τ0
|ĝ0(τ/~, ~)| ∈ O(~∞).

2.2. Digression on Airy functions. We recall a few well-known facts about

Airy functions. Let z > 0. The C∞ function Ai may be defined as

Ai(−z) =
1

2π

∫
R
ei(s

3/3−sz) ds

and is easily seen to satisfy the Airy equation Ai′′(z) − zAi(z) = 0, which we

denote by (A).

Remark 2.4. Notice that the defining integral is only an oscillatory inte-

gral; it may be seen as the inverse Fourier transform of a tempered distribution

and subsequently proved to be C∞. Alternatively, one may proceed as in [6,

7.6.16]: let η > 0, ξ = s + iη, and define Ai(z) = (2π)−1
∫

Im ξ=η e
i(ξ3/3+ξz) dξ,

which is absolutely convergent. One then proves the definition to be indepen-

dent of η, and for η → 0, we recover the previous definition.

Let ω be a cubic root of unity: ω3 = 1. Obviously, z 7→ Ai(ωz) is a

solution to (A). Any two of these three solutions yield a basis of solutions

to (A), and the linear relation between them is
∑
ω3=1 ωAi(ωz) = 0; see [6,

7.6.18]. If we set ω = e2iπ/3, then Ai(z) = −ωAi(ωz) − ω̄Ai(ω̄z), which we

rewrite as

Ai(−z) = e−iπ/3Ai(e−iπ/3z) + eiπ/3Ai(eiπ/3z) = A+(z) +A−(z),
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where we define A±(z) = ∓ωAi(∓ωz). (Our definition differs slightly from the

usual one which does not include the front factor ∓ω.) Notice that A−(z) =

Ā+(z̄). We also have asymptotic expansions (e.g., [14]):

A−(z) =
1

2
√
πz

1
4

eiπ/4e−
2
3
iz

3
2 exp Υ(z3/2) =

1

z
1
4

eiπ/4e−
2
3
iz

3
2 Ψ−(z),

with exp Υ(z3/2) ∼ (1 +
∑
l≥1 clz

− 3l
2 ) ∼ 2

√
πΨ−(z) as z → +∞ and the cor-

responding expansion for A+, where we define Ψ+(z) = Ψ̄−(z̄). Moreover, we

have

A−(z)

A+(z)
= ie−

4
3
iz3/2eiB(z

3
2 ), with iB = Υ− Ῡ.

Notice that for u ∈ R+, B(u) ∈ R and B(u) ∼∑j≥1 bju
−j for u→ +∞.

2.3. The parametrix construction. Let F (ζ, ~) be a function with compact

support in ζ ∈ [1 + ch
2
3
−ε, ζ0]. Define

u(t, x, ~) =
1

2π~

∫
e
i
~ (ζt+s(x+1−ζ2)+s3/3)F (ζ, ~) dsdζ.

One easily checks that Pu = 0 and the trace on x = 0 is

u(t, 0, ~) = ~−
2
3

∫
e
i
~ tζ(A+ +A−)(~−2/3(ζ2 − 1))F (ζ, ~) dζ.

Define f by F (ζ, ~) =
∫

exp(−it′ζ/~)f(t′, ~)dt′; then

u(t, 0, ~) = J+(f) + J−(f),

where J± are Fourier integral operators corresponding to canonical transfor-

mations j± on T ∗Rt ∩ {τ ≥ 1},

j±(t′, τ ′) =
Ä
t = t′ ∓ 2τ

√
τ2 − 1, τ = τ ′

ä
.

We now set up some notation:

• let χ0(η) ∈ C∞0 ((1/2, 5/2)) be a cut-off function such that χ0 = 1 on

[1, 2];

• recall χ1 ∈ C∞0 ((−θ0, θ0)) with small θ0;

• let a ∈ [h
2
3
−ε, a0], with a0 small;

• let β > 0 be such that
√

1 + a−
√

1 + aβ ≥ ca for all a ∈ [0, a0];

• let χ2(u) ∈ C∞ with χ2(u) = 0 for u ≤ β/2 and χ2(u) = 1 for u ≥ β;

• let χ3(ζ) ∈ C∞ with χ3(ζ) = 1 for 3/4 ≤ ζ ≤ ζ0 and χ3(ζ) = 0 for

ζ ≥ ζ1 or ζ ≤ 1/2 (with ζ1 > ζ0, ζ0−1 > 0 and small and ζ1−1 small).



338 OANA IVANOVICI, GILLES LEBEAU, and FABRICE PLANCHON

Define

vN (t, x, y, h) =
1

(2πh)2

∫
ei
η
h
yuN (t, x, h/η)ηχ0(η) dη,

uN (t, x, ~) =
(−i)N

2π~

∫
e
i
~ (tζ+s(x+1−ζ2)+s3/3− 4

3
N(ζ2−1)

3
2 +~NB((ζ2−1)

3
2 /~))

× χ2((ζ2 − 1)/a)χ3(ζ)ĝ0(ζ/~, ~) dsdζ,

v(t, x, y, h) =
∑

0≤N≤C0/
√
a

vN (t, x, y, h),

and let P = ∂2
t − (∂2

x + (1 + x)∂2
y).

Proposition 2.5. There exists C0 such that the following hold true:

(1) v is a solution to Pv = 0 for x > −1;

(2) its trace on the boundary, v(t ∈ [0, 1], x = 0), is OC∞(h∞);

(3) at time t = 0, we have

v(0, x, y, h)− (2πh)−2
∫
e
i
h

(ηy+(x−a)ξ)χ0(η)χ1(ξ/η) dηdξ = OC∞(h∞).

Remark 2.6. Here and thereafter, f(z, h) ∈ OC∞(h∞) for z ∈ Γ if, uni-

formly in a ∈ [h
2
3
−ε, 1],

∀α,N, ∃Cα,N s.t. sup
z∈Γ
|∂αz f(z, h)| ≤ Cα,NhN .

Proof. Obviously v is defined by a finite sum and each vN is a solution to

PvN = 0. We postpone the rest of the proof to Section 2.5. �

Remark 2.7. We may also define v by a sum from −C0/
√
a to C0/

√
a

and replace t ∈ [0, 1] by t ∈ [−1, 1]. The equation enjoys time symmetry, and

therefore the two points of view are equivalent.

We start by studying uN ; from there, we may obtain information on vN
by integration over η. This, however, is a nontrivial matter, as ~ = h/η and

integration over η has an effect on exp(iNB((ζ2 − 1)
3
2 /~)).

Let

φa,N,~(t, x, t′, s, ζ) = (t− t′)ζ + s(x+ 1− ζ2) + s3/3

− 4

3
N(ζ2 − 1)

3
2 + ~NB((ζ2 − 1)

3
2 /~) + ψa(t

′)

so that

uN (t, x, ~) =
(−i)N

2π~

∫
e
i
~φa,N,~χ2((ζ2 − 1)/a)χ3(ζ)σ0(t′, ~) dt′dsdζ.

Notice that

• t′ takes values in a compact set close to t′ = 0;

• ζ takes values in a compact set close to ζ = 1;
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• the s integral is oscillatory, and as the symbol is independent of s, this

yields an Airy function (something we will use only to check the trace

condition in Proposition 2.5).

Let us set

Ca,N,~ = {(t, x, t′, s, ζ) s.t. ∂t′φa,N,~ = ∂sφa,N,~ = ∂ζφa,N,~ = 0}.
We therefore get a system of three equations defining Ca,N,~,

ζ = ψ′a(t
′),

x = ζ2 − 1− s2,

t = t′ + 2sζ + 4Nζ(ζ2 − 1)1/2
Å

1− 3

4
B′((ζ2 − 1)

3
2 /~)

ã
.

Notice that on the support of the symbol in the definition of uN , we have

ζ ∈ [
»

1 + aβ/2, ζ1], with ζ1 ∼ 1. We can thus further localize the symbol

with χ4(s) ∈ C∞0 , χ4 = 1 for s ∈ [−ζ1, ζ1], as for |s| > |ζ|, we will have

x = ζ2 − 1− s2 < −1 and as such the contribution of 1− χ4 will be OC∞(h∞)

(by integration by parts in s) in the x ≥ −1 region.

Remark 2.8. In fact, one may localize closer to s = 0: if χ4(s) = 1 on

[−
»
ζ2

1−1,
»
ζ2

1−1], the same argument provides a remainder term for x≥−ε0.

Hence, localizing s close to 0 implies ζ1 close to 1, and therefore θ0 smaller and

smaller, and the same for a0.

We may parametrize Ca,N,~ by (s, θ) when they are close to the origin:

x = a+ θ2 − s2,

t = 2
√

1 + a+ θ2

Å
s− θ + 2N

√
a+ θ2

Å
1− 3

4
B′
(
(a+ θ2)

3
2 /~

)ãã
,

t′ = −2θ
√

1 + a+ θ2,

s = s,

ζ =
√

1 + a+ θ2.

Notice that (s, θ) → (s, t′ = −2θ
√

1 + a+ θ2) is a local diffeomorphism in a

neighborhood of (0, 0), which ensures that Ca,N,~ is a smooth 2D manifold.

Let us denote by Λa,N,~ the image of Ca,N,~ by the map

(t, x, t′, s, ζ)→ (x, t, ξ = ∂xφa,N,~, τ = ∂tφa,N,~);

then Λa,N,~ is a Lagrangian submanifold that is parametrized by (s, θ):

x = a+ θ2 − s2,

t = 2
√

1 + a+ θ2

Å
s− θ + 2N

√
a+ θ2

Å
1− 3

4
B′
(
(a+ θ2)

3
2 /~

)ãã
,

ξ = s,

τ =
√

1 + a+ θ2.
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Lemma 2.9. The Lagrangian submanifold Λa,N,~ is smooth, and its para-

metrization by (s, θ) is one-to-one.

Proof. One has first to verify that at each point (s, θ), the differential of the

map (s, θ) 7→ (x, t, ξ, τ) is injective. But this is obvious since (∂ξ∂s ,
∂ξ
∂θ ) = (1, 0),

∂τ
∂θ = θτ−1/2, and if θ = 0, then ∂t

∂θ (s, 0) = −2
√

1 + a. The map is clearly

one-to-one as t(s, θ) 6= t(s,−θ) for θ 6= 0. �

We digress for a while and explain how to add the y variable. In the

definition of vN (t, x, y, h), we have a phase function

Ψa,N,h(t, x, y, t′, s, ζ, η) = ηy + ηφa,N,h/η(t, x, t
′, s, ζ),

from which we get ∂yΨa,N,h = η, and

∂ηΨa,N,h = y + ψa(t
′) + ζ(t− t′) + s(x+ 1− ζ2)

+ s3/3 +N(ζ2 − 1)3/2
(
−4/3 +B′

Ä
(ζ2 − 1)

3
2 η/h

ä)
,

and the full Lagrangian Λa,N,h ⊂ T ∗R3 is the set of points (x, y, t, ξ, η, τ) such

that there exist (s, θ, η) solution to

x =a+ θ2 − s2,

y =− ψa(−2θ(1 + a+ θ2)
1
2 )− 2s(1 + a+ θ2) +

2

3
s3

−N(a+ θ2)
1
2 (3 + 2a+ 2θ2)

Å
4

3
−B′

(
(ζ2 − 1)

3
2 η/h

)ã
,

t =2
√

1 + a+ θ2(s− θ + 2N(a+ θ2)
1
2

Å
1− 3

4
B′
(
(ζ2 − 1)

3
2 η/h

)ã
,

ξ =ηs,

η =η,

τ =η
√

1 + a+ θ2.

Remark 2.10. Notice that for N = 0, having t = 0 in Λa,0,h is equivalent

to having s = θ. This implies x = a and then y = 0 is a consequence of

(2.1) ψa
(
−2θ(1 + a+ θ2)

1
2

)
= −2θ(1 + a+ θ2) +

2

3
θ3.

Observe that (2.1) holds true since ψ′a(t
′) = (1+a+θ2)

1
2 for t′ = −2θ(1+a+θ2)

1
2

and ψa(0) = 0. Therefore we can explicitly compute ψa(t
′), as θ = −t′(1 + a+

((1 + a)2 + t′2)
1
2 )−

1
2 /
√

2.

2.4. A suitable change of coordinates. We now perform a rescaling of our

coordinates that provides some useful reductions.

Set

t =
√
aT, x = aX, y = −t

√
1 + a+ a

3
2Y,
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and define γN (T,X, Y, h), wN (T,X, ~) as

vN (t, x, y, h) = γN
Ä
t/
√
a, x/a, y + ta−3/2

√
1 + a, h

ä
,

uN (t, x, ~) = a−
1
2 e

i
~ t
√

1+awN
Ä
t/
√
a, x/a, ~

ä
.

We define

ψ̃a(T
′) = a−

3
2

Ä
ψa
Ä√

aT ′
ä
−
√
a
√

1 + aT ′
ä
.

Notice that ψ̃a is C∞ in (T ′, a), with support in
√
a|T ′| . 1 and

(2.2) ψ̃a(T
′) =

T ′3

24ρ
3
2

Ä
1 +O(aT ′2)

ä
(recall ρ = 1 + a).

Set

ζ2 − 1 = az, s =
√
aσ, t′ =

√
aT ′

and

(2.3) ζ −√ρ = aγa(z) = a
z − 1√

1 + a+
√

1 + az

so that

(t− t′)ζ + ψa(t
′) = t

√
ρ+ a

3
2 ((T − T ′)γa(z) + ψ̃a(T

′)).

Therefore

φa,N,~ = t
√
ρ+ a

3
2ϕa,N,λ,

with

ϕa,N,λ(T,X, T ′, σ, z) = γa(z)(T − T ′) + ψ̃a(T
′) + σ(X − z) + σ3/3(2.4)

+N

Å
−4

3
z

3
2 +

1

λ
B
Ä
λz

3
2

äã
,

where λ = a
3
2 /~ will be our large parameter. One may remark that ϕa,N,λ is

C∞ in a, and

ϕ0,N,λ =
z − 1

2
(T − T ′) +

T ′3

24
+ σ(X − z) +

1

3
σ3 +N

Å
−4

3
z

3
2 +

1

λ
B
Ä
λz

3
2

äã
,

and we have z ≥ β/2 > 0 on the support of the symbols in our integrals.

We have now

γN (T,X, Y, h) =

√
a

(2πh)2

∫
ei
a3/2
h

ηY wN (T,X, ~)ηχ0(η)dη

and

wN (T,X, ~)

=
(−i)Nλ

2π

∫
eiλϕa,N,λχ2(z)

χ3(
√

1 + az)

2
√

1 + az
χ4(
√
aσ)σ0(

√
aT ′, ~) dT ′dσdz,



342 OANA IVANOVICI, GILLES LEBEAU, and FABRICE PLANCHON

where we used dt′dsdζ = a2

2
√

1+az
dT ′dσdz and a2/(2π~) =

√
aλ/(2π). Finally,

we set θ =
√
aµ and λ̃ = λ/η = a

3
2 /h. By our change of variables, the

differential operator P becomes

P = a−2Qa with Qa = −∂2
X − (X − 1)∂2

Y + 2
√

1 + a∂T∂Y + a∂2
T ,

and

Qa(e
iλY f(T,X)) = eiλY λ2Qaf

with

Qa =

Å
1

iλ
∂X

ã2

+ (X − 1)− 2
√
ρ

1

iλ
∂T − a

Å
1

iλ
∂T

ã2

.

Our initial data at T = 0 is now
√
a

(2πh)2

∫
ei
a3/2

h
(ηY+(X−1)Ξ)χ0(η)χ1(

√
aΞ/η) dηdΞ,

and it is concentrated at Y = 0, X = 1. The new operator Qa has symbol

σ(Qa) = Ξ2 +X − 1− 2
√
ρτ − aτ2,

and the positive root in τ of σ(Qa) at X = 1 is

τ =
Ξ2

√
ρ+

√
ρ+ aΞ2

.

Notice that, as τ is preserved by the flow, the bouncing angles at X = 0 are

such that Ξ2
bounce = 1 + 2

√
ρτ + aτ2 = 1 + Ξ2

0 ≥ 1; we are now facing only

transverse reflexions, however we aim at studying the flow for very large times.

Remark 2.11. Assuming the worst terms are |ξ| .
√
a, this translates

into |Ξ| . 1, which implies τ bounded, and for small a, Qa degenerates to a

Schrödinger operator.

From ∂T ′ =
√
a∂t′ , ∂s =

√
a∂σ and ∂z = a

2 (1 + az)−
1
2∂ζ , we have

∂T ′ϕa,N,λ = ψ̃′a(T
′) +

1− z
√
ρ+
√

1 + az
,

∂σϕa,N,λ = X − z + σ2,

∂zϕa,N,λ =
1

2
√

1 + az

Å
T − T ′ − 2σ

√
1 + az

−4N
√
z
√

1 + az

Å
1− 3

4
B′
Ä
λz

3
2

äãã
.

The Lagrangian of ψ̃a is parametrized by

T ′ = −2µ
»

1 + a+ aµ2, ψ̃′a(T
′) =

µ2

√
ρ+

√
1 + a+ aµ2

.



DISPERSION FOR THE WAVE EQUATION 343

As 1 + az = ζ2, and ζ = (1 + a+ θ2)1/2 on Ca,N,~, we have

1 + µ2 = z on Ca,N,~.

In our new set of coordinates, the projection of Λa,N,h onto R3 is, with z =

1 + µ2,

X = 1 + µ2 − σ2,(2.5)

Y = 2µ2(µ− σ)H1(a, µ) +
2

3
(σ3 − µ3) + 4N

Å
1− 3

4
B′
Ä
λz

3
2

äã
H2(a, µ),

T = 2
»
ρ+ aµ2

Å
σ − µ+ 2N

»
1 + µ2

Å
1− 3

4
B′
Ä
λz

3
2

äãã
,

where H1 and H2 are defined as

H1(a, µ) =

√
ρ+ aµ2

√
ρ+

√
ρ+ aµ2

,(2.6)

H2(a, µ) =
»

1 + µ2
2
3 + 5a

9 + µ2(−1
3 + a

9 )− 4
9aµ

4

√
ρ
√
ρ+ aµ2 + 1 + 2

3a(1 + µ2)
.

Remark 2.12. Notice that the parameters are µ, σ and η through the λ

factor in the X,Y, T parametrization of Λa,N,h.

2.5. Proof of Proposition 2.5. We already dealt with the first item. We

now address the remaining two, which deal respectively with the boundary

condition and the initial data.

2.5.1. Proof of (2) in Proposition 2.5: the boundary condition. Set

FN (ζ, ~) = (−i)Ne
i
~ (− 4

3
N(ζ2−1)

3
2 +~NB((ζ2−1)

3
2 /~))χ2

Ç
ζ2 − 1

a

å
χ3(ζ)ĝ0(ζ/~, ~),

and recall

v|x=0 = (2πh)−2
∫
eiηy/hηχ0(η)~−2/3eitζ/~

×
∑

0≤N≤C0/
√
a

(A+ +A−)(~−2/3(ζ2 − 1))FN dζdη;

recall as well that we constructed FN so that

FN = (−1)N
Ç
A−
A+

åN
F0,

which allows us to cancel all middle terms in the sum to get

v|x=0 = (2πh)−2
∫
eiηy/hηχ0(η)~−2/3eitζ/~(A+(· · · )F0 +A−(· · · )FNmax) dζdη.
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Let us define

I0(t, ~) =

∫
ei(t−t

′) ζ~A+(~−2/3(ζ2 − 1))e
i
~ψa(t′)χ2χ3σ0 dt

′dζ

INmax(t, ~) =

∫
ei(t−t

′) ζ~A−(~−2/3(ζ2 − 1))e
i
~ (− 4

3
N(ζ2−1)

3
2 +~NB((ζ2−1)

3
2 /~))

e
i
~ψa(t′)χ2χ3σ0 dt

′dζ .

Hence, it is enough to prove that

• I0 ∈ OC∞(h∞) for t ≥ 0, uniformly in a;

• INmax ∈ OC∞(h∞) for t ≤ 1, uniformly in a,Nmax.

Start with I0. Using our change of scales, I0(t, ~) = J0(a−
1
2 t, λ) and

J0 = ~
1
6a

3
2a−

1
4

∫
eiλ(γa(z)(T−T ′)+ψ̃a(T ′)+ 2

3
z3/2)χ2(z)χ3(

√
1 + az)

m0(λz3/2)

z1/4
σ0(
√
aT ′, ~)

dT ′dz

2
√

1 + az
,

where m0 is a symbol of order 0. As we have ∂t = a−1/2∂T , λ = a
3
2 /~ ≥ ηh−

3
2
ε,

and a ≥ h
2
3
−ε, we are left to prove the following:

J0(T, λ) ∈ OC∞(λ−∞) for T ≥ 0, uniformly in a.

We already computed the derivatives of the phase of J0. Recall that T ′ and µ

are related by T ′ = −2µ
√

1 + a+ aµ2 and aµ2 is bounded:

∂T ′(phase of J0) =
µ2 + 1− z√

1 + az +
√

1 + a+ aµ2
,

∂z(phase of J0) =
T − T ′ + 2

√
z
√

1 + az

2
√

1 + az
,

where for the first derivative one uses ∂T ′ =
√
a∂t′ and the identity

γa(z)(T−T ′)+ψ̃a(T
′)+

2

3
z

3
2 =a−

3
2

Å
(t− t′)ζ+

2

3
(ζ2 − 1)

3
2 + ψa(t

′)− t
√

1 + a

ã
.

The first derivative vanishes if z = 1 + µ2, and the second one vanishes if

T = −2
»

1 + a+ aµ2
(
µ+
»

1 + µ2
)
< 0.

As such, the phase has no critical points for T ≥ 0. One has to be careful as

the domain of integration of the (T ′, z) variables is very large with small a, as

it is like (−c/
√
a, c/
√
a)× (1/2, ξ1/a).

We turn to the details. For z ≤ z0, z is bounded. For large |T ′|, we get

|∂T ′(phase)| ≈ µ2 ≈ T ′2; therefore by integration by parts in T ′ we get decay.

If |T ′| is bounded, there is no critical points in (z, T ′).
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We are left with z ≥ z0, where z0 is large. We first perform the integration

in T ′. There will be two critical points in T ′, given by µ± = ±
√
z − 1. Denote

by Ja,±(z) the critical values of the phase −γa(z)T ′ + ψ̃a(T
′). We have

Ja,±(z) = (−γa(z)T ′ + ψ̃a(T
′))|T ′=−2(±)

√
z−1
√

1+az

and
d

dz
Ja,±(z) = ±2

√
z − 1

√
1 + azγ′a(z) = ±

√
z − 1.

We are left with the z integral,∫ +∞

z0

eiλ(γa(z)T+ 2
3
z
3
2 +Ja,±(z))ga(z, λ) dz,

where ga is a symbol of order −1/4, uniformly in a: |∂lz(z
1
4 ga(z, λ))| ≤ Clz

−l

with Cl independent of a, z ≥ z0, and ga is supported in [z0, c/a] with small

c. (Notice we used that the m0 and χ3 terms in J0 are symbols or order 0,

uniformly in a.) We have

∂z(γa(z)T +
2

3
z

3
2 + Ja,±(z)) =

√
z ±
√
z − 1 + Tγ′a(z),

and for the + case, we may integrate by parts in z without difficulties. For the

− case, set

J = ∂z

Å
γa(z)T +

2

3
z

3
2 + Ja,−(z)

ã
=
√
z −
√
z − 1 +

T

2
√

1 + az
.

For T ≥ 0, z ∈ C with |Im z| ≤ δ|Re z| and z0 ≤ Re z ≤ c/a, we have

|J | ≥ ReJ ≥ C√
z
,

with a constant C that does not depend on a or T ≥ 0. Hence by the Cauchy

formula, |∂lzJ −1| ≤ Clz
1
2
−l and J −1 is a symbol or order 1/2, uniformly in

a, T ≥ 0. We may then conclude by integration by parts in z with the operator

g 7→ λ−1∂z(J −1g). (If g is a symbol of order m, then ∂z(J −1g) is a symbol of

order m− 1
2 .)

The remaining integral INmax may be dealt with in a similar way. In fact,

the situation is easier: on Λa,N,~∩{x = 0} we have s = ±
√
a+ θ2, and therefore

t = 2
√

1 + a+ θ2

Å
±
√
a+ θ2 − θ + 2Nmax

√
a+ θ2

Å
1− 3

4
B′
ãã
≥ 3C0.

2.5.2. Proof of (3) in Proposition 2.5: the initial data. Taking into ac-

count Lemmas 2.1 and 2.2, we are left to prove that VN (0, x, y, h) ∈ OC∞(h∞)

uniformly in 1 ≤ N ≤ C0/
√
a for x ≥ 0. Recall x =

√
aX. From (2.5), we

have

T = 0⇐⇒ σ = µ− 2N
»

1 + µ2α, with α = 1− 3

4
B′
Ä
λz

3
2

ä
= 1 +O

Å
1

λ2z3

ã
,
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from which we get

X = 1 + µ2 − σ2 = 1− 4N
»

(1 + µ2)α(N
»

(1 + µ2)α− µ)

and, as N ≥ 1 and µ2(α2 − 1) = µ2O((λz
3
2 )2) = O((z − 1)/(λ2z3)) ∈ O(λ−2),

4N
»

1 + µ2
(
N
»

1 + µ2α− µ
)
≥ 2

Å
1−O

Å
1

λ2

ãã
.

For λ ≥ λ0, λ0 large, we get, uniformly in N , X ≤ −1/2 on the projection of

Λa,N,h, which is what we need, wN (0, X, ~) ∈ OC∞(h∞) for X ≥ 0, uniformly

in N . We turn to the details. As before, we will proceed by integration by

parts. We have

wN (0, X, ~) =
λ

2π

∫
eiλψg dT ′dσdz,

where g is a symbol in σ, T ′, z and

ψ = −γa(z)T ′ + ψ̃a(T
′) + σ(X − z) + σ3/3 +N

Ñ
−4

3
z

3
2 +

B
Ä
λz

3
2

ä
λ

é
.

For z ≤ z0, we may localize σ to a compact region as ∂σψ = X−z+σ2 ≥ σ2−z0,

and large |T ′| will not be a problem. Then for T ′, σ, z in a compact set, we get

decay from the geometrical observation on the Lagrangian.

For z ≥ z0, we may again eliminate T ′ and obtain two contributions,∫
eiλψ±g± dσdz,

where

ψ± = ±2

3
(z − 1)

3
2 + σ(X − z) +

σ3

3
+N

Ñ
−4

3
z

3
2 +

B
Ä
λz

3
2

ä
λ

é
.

By integration in σ, the case z < X − 1 provides decay, while for z ≥ X + 1,

we again have two contributions ±2/3(z − X)
3
2 . The associated phases in z

are

±2

3
(z − 1)

3
2 ± 2

3
(z −X)

3
2 +N

Ñ
−4

3
z

3
2 +

B
Ä
λz

3
2

ä
λ

é
,

for which we readily observe that they are nonstationary: not only do deriva-

tives never vanish, but they increase in value with N . (For N = 1 and the two

plus signs, we deal with large values of z as we have done just above for the

boundary condition.)

We are left with the contributions of X − 1 ≤ z ≤ X + 1, for which again

we may reduce to compact σ as ∂σψ± = σ2 +X − z, and we conclude by the

geometric observation on the Lagrangian.
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2.6. Decay for the parametrix. This section is devoted to the proof of the

following result.

Theorem 2.1. Let α < 4/7. There exists C such that for all h ∈]0, h0],

all a ∈ [hα, a0], all X ∈ [0, 1], all T ∈]0, a−1/2] and all Y ∈ R, the following

holds true:

(2.7)

∣∣∣∣ ∑
0≤N≤C0/

√
a

γN (T,X, Y, h)

∣∣∣∣ ≤ C(2πh)−2

(Å
h

a1/2T

ã1/2

+ a1/8h1/4

)
.

Remark 2.13. Note that, in the given range of parameters a, h, the above

theorem immediately implies our main result, Theorem 1.3, after undoing the

rescaling from Section 2.4.

We first observe that γ0(T,X, Y, h) = v0(t, x, y, h), where v0 is a solution of

Pv0 = 0 in x > −1 with WFhv0 ⊂ {τ > 0}. By Proposition 2.5 (and its proof),

the associated data at time t = 0 is a smoothed out Dirac at x = a, y = 0.

Thus v0 satisfies the classical dispersive estimate for the wave equation in two

space dimensions, and since t = a1/2T , this implies

|γ0(T,X, Y, h)| ≤ C(2πh)−2
Å

h

a1/2T

ã1/2

.

Thus we may assume in the proof of (2.7) that the summation is taken over

1 ≤ N ≤ C0a
−1/2. Recall

(2.8) γN (T,X, Y, h) =

√
a

(2πh)2

∫
ei
a3/2

h
ηY wN (T,X, ~)ηχ0(η)dη,

where the wN are defined by

wN (T,X, ~) =
(−i)Nλ

2π

(2.9)

×
∫
eiλϕa,N,λχ2(z)

χ3(
√

1 + az)

2
√

1 + az
χ4(
√
aσ)σ0(

√
aT ′, ~) dT ′dσdz.

We split each wN in two pieces, wN = wN,1 +wN,2; wN,2 is defined by introduc-

ing an extra cutoff χ5(z) ∈ C∞0 (]0, z0[) in the integral (2.9), with z0 > 1, close

to 1, and χ5(z) = 1 on [β/2, (1 + z0)/2]. Then wN,1 is defined by introducing

the cutoff 1 − χ5(z) in the integral (2.9). We denote by γN = γN,1 + γN,2
the corresponding splitting using formula (2.8). The following propositions

obviously imply Theorem 2.1.

Proposition 2.14. There exists C such that for all h ∈]0, h0], all a ∈
[hα, a0], all X ∈ [0, 1], all T ∈]0, a−1/2] and all Y ∈ R, the following holds

true: ∣∣∣∣ ∑
2≤N≤C0/

√
a

γN,1(T,X, Y, h)

∣∣∣∣ ≤ C(2πh)−2h1/3.
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Proposition 2.15. There exists C such that for all h ∈]0, h0], all a ∈
[hα, a0], all X ∈ [0, 1], all T ∈]0, a−1/2] and all Y ∈ R, the following holds

true:

(2.10)

∣∣∣∣ ∑
2≤N≤C0/

√
a

γN,2(T,X, Y, h)

∣∣∣∣ ≤ C(2πh)−2a1/8h1/4.

Proposition 2.16. There exists C such that for all h ∈]0, h0], all a ∈
[hα, a0], all X ∈ [0, 1], all T ∈]0, a−1/2] and all Y ∈R, the following holds true:

|γ1(T,X, Y, h)| ≤ C(2πh)−2

(Å
h

a1/2T

ã1/2

+ a1/8h1/4

)
.

The remaining part of this section is devoted to the proof of these three

propositions. We also include a separate section that contains useful geomet-

ric estimates and a section where we recall useful known estimates on phase

integrals.

Remark 2.17. The hypothesis a ∈ [hα, a0] with α < 4/7 in Theorem 2.1

will be used to see that only a few γN overlap with each others. We will address

estimate (2.7) in the full range a ∈ [h2/3−ε, a0] in a forthcoming paper.

2.6.1. Geometric estimates. In this section we denote by f(a, aµ2) various

analytic functions defined for a and aµ2 small, with f(a, b) ∈ R for (a, b) ∈ R2.

Recall that the projection of Λa,N,h onto R3 is given by

X = 1 + µ2 − σ2,(2.11)

Y = 2µ2(µ− σ)H1 +
2

3
(σ3 − µ3) + 4N

Å
1− 3

4
B′
(
λz

3
2

)ã
H2,

T = 2
»
ρ+ aµ2

Å
σ − µ+ 2N

»
1 + µ2

Å
1− 3

4
B′
Ä
λz

3
2

äãã
,

with z = 1 + µ2 and H1, H2 of the form (see (2.6))

H1 = f0(a, aµ2), f0(0, 0) = 1/2,(2.12)

H2(1 + µ2)−1/2 = f1(a, aµ2) + µ2f2(a, aµ2), f1(0, 0) = 1/3, f2(0, 0) = −1/6.

Let us rewrite the system of equation (2.11) in the following form:

X = 1 + µ2 − σ2,

(2.13)

Y = 2µ2(µ−σ)H1+
2

3
(σ3−µ3)+2H2(1 + µ2)−1/2

Ç
T

2
√
ρ+ aµ2

− σ + µ

å
,

and

(2.14) 2N

Å
1− 3

4
B′
Ä
λz

3
2

äã
= (1 + µ2)−1/2

Ç
T

2
√
ρ+ aµ2

− σ + µ

å
.
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Then (2.13) and (2.14) is obviously equivalent to (2.11). For a given a and a

given point (X,Y, T ) ∈ R3, (2.13) is a system of two equations for the unknown

(µ, σ), and we will use the fact that (2.14) gives an equation for N . Recall that

we are looking at solutions of (2.13) in the range

a ∈ [hα, a0], α < 4/7, a|µ|2 ≤ ε0, 0 < T ≤ a−1/2, X ∈ [0, 1],

with a0, ε0 small. Let us denote R = 2(1− 3Y/T ).

Lemma 2.18. Let T ≥ T0 > 0, X ∈ [−2, 2], Y ∈ R. There exists

µj(X,Y, T, a) ∈ C, j = 1, 2, 3, 4 such that

{µ ∈ C, a|µ|2 ≤ ε0, ∃σ ∈ C, (µ, σ) is a solution of (2.13)} ⊂ {µ1, µ2, µ3, µ4}.

Moreover, there exists a function f∗(a, aµ
2) with f∗(0, 0) = 1, and constants

C0, C1, C2 > 0, R0,M0 > 0 such that the following hold true:

(a) If |R| ≥ R0, two of the µjf∗(a, aµ
2
j ) are in the complex disk D(

√
R,A), the

two others in the complex disk D(−
√
R,A) with A = C0

Ä
1/T + a(1+|R|)√

|R|

ä
.

Moreover, one has
»
|R| ≥ 2A.

(b) If |R| ≤ R0 and |R|T ≥M0, two of the µjf∗(a, aµ
2
j ) are in the complex disk

D(
√
R,A), the two others in the complex disk D(−

√
R,A) with A = C1

T
√
|R|

.

Moreover, one has
»
|R| ≥ 2A.

(c) If |R| ≤ R0 and |R|T ≤M0, one has |µj | ≤ C2T
−1/2 for all j.

Proof. We first get rid of σ. The second equation in (2.13) is of the form

Y = B0 + σB1 + σ3B2, thus by the first equation, we get

Y −B0 = σ(B1 +B2(1 + µ2 −X)),

and then the first line of (2.13) gives an equation for µ,

(2.15) (Y −B0)2 = (1 + µ2 −X)(B1 +B2(1 + µ2 −X))2,

where

B0 = 2µ3H1 − 2µ3/3 + 2H2(1 + µ2)−1/2

Ç
T

2
√
ρ+ aµ2

+ µ

å
,

B1 = −2µ2H1 − 2H2(1 + µ2)−1/2,

B2 = 2/3.

By (2.6) and (2.12) one gets, through explicit computation, the identity

∀w, f0(0, w) + f2(0, w) = 1/3.

This implies (we use aµ2+k = (aµ2)µk) that

B0 = −µ2T/6f3 + 2/3µf4 + T/3f5,

B1 +B2(1 + µ2 −X) = −2X/3 + f6,
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with fl(0, 0) = 1 for l = 3, 4, 5 and f6(0, 0) = 0. Let D = −2X/3 + f6. We

may then rewrite (2.15) as

(2.16) P+P− = 36(1−X)
D2

T 2
,

with

P± = (f∗µ)2 − 2(f∗µ)

T
(2f4 ∓ 3D)/f∗ −R′, R′ = R+ f7, f7(0, 0) = 0

and f∗ =
√
f3, f∗(0, 0) = 1.

By classical arguments on perturbations of polynomial equations, (2.16)

implies that for a and a|µ|2 small, the µ equation (2.15) admits at most fourt

complex solutions (at most since we have the constraint a|µ|2 small). Set

µ∗ = µf∗(a, aµ
2). Then µ 7→ µ∗ is a holomorphic change of coordinates and

|∂µ
∗

∂µ −1| ≤ Cte(a0 + ε0). With the notation g± = (2f4∓3D)/f∗, the two roots

µ∗±,ε of Pε satisfy the equation (recall that gε and R′ are functions of (a, aµ2))

(2.17) µ∗±,ε = gε/T ±
»
R′ + (gε/T )2, ε = ±.

Assume first |R| ≥ R0 with R0 large. Then by (2.17) and f7(0, 0) = 0, there

exists C0 such that

(2.18)

µ∗+,ε∈D(
√
R,A0/2), µ∗−,ε∈D(−

√
R,A0/2), A0 =C0

Ñ
1/T +

a(1 + |R|)»
|R|

é
.

For
»
|R| ≥ 2A0, the two disks D± = D(±

√
R,A0) do not overlap and

dist(D+, D−) ≥
»
|R|. Thus there exists C3 such that

|P+P−(µ)| ≥ C3|R|A2
0 ≥ C3C

2
0 |R|/T 2, ∀µ∗ ∈ C \ (D+ ∪D−).

This contradicts (2.16) for |R| ≥ R0 large enough and proves (a).

For |R| ≤ R0, and |R|T ≥ M0, with M0 large, (2.18) remains true. Thus

we get

µ∗+,ε∈D(
√
R,A1/2), µ∗−,ε∈D(−

√
R,A1/2), A1 =C0

Ñ
1/T +

a(1 +R0)»
|R|

é
.

Set A2 = C

T
√
|R|

. Since |R| ≤ R0 and T ≤ a−1/2, for C large enough one

has A2 ≥ 2A1. The two disks D± = D(±
√
R,A2) do not overlap, and

dist(D+, D−) ≥
»
|R| for M0 ≥ 2C. Thus one has

|P+P−(µ)| ≥ C4A
2
2|R| = C4C

2/T 2, ∀µ∗ ∈ C \ (D+ ∪D−),

and this contradicts (2.16) for C large enough, and proves (b) for M0 large

enough. Finally, for |R| ≤ R0, and |R|T ≤ M0, one has clearly by (2.17) and



DISPERSION FOR THE WAVE EQUATION 351

T ≤ a−1/2, |µ±,±| ≤ C5T
−1/2, and thus for c ≥ 2C5

∀µ ∈ C such that |µ| ≥ cT−1/2, |P+P−(µ)| ≥ C6c
4/T 2,

This contradicts (2.16) for c large enough. The proof of Lemma 2.18 is com-

plete. �

Let us now study the equation (2.14), which provides N . Since B′(u) ∈
O(u−2), z ≥ β/2 > 0, N ≤ C0a

−1/2, and a ≥ h4/7, one has

|NB′(λz
3
2 )| ∈ O(Nλ−2) = O(Nh2/a3) ∈ O(a−7/2h2) ∈ O(1).

Let 〈µ〉 = (1 + µ2)1/2. From σ2 − µ2 = 1−X, we get that for X in [−2, 2], we

have |σ − µ|/〈µ〉 ∈ O(1). Therefore (2.14) implies

(2.19) 2N = TΦa(µ) +O(1), Φa(µ) =
1

2〈µ〉
√
ρ+ aµ2

.

Let U = {µ ∈ C, |µ| ≤ 0.5 or |Im(µ)| ≤ |Re(µ)|/
√

3}. Then Φa(µ) is bounded

on U and

(2.20) |Φa(µ)− Φa(µ
′)| ≤ C|µ2 − µ′2|

sup(〈|µ|〉, 〈|µ′|〉)

Ç
a+

1

〈|µ|〉〈|µ′|〉

å
, ∀µ, µ′ ∈ U.

Observe that for b∈R, and |b|≥2r, the complex disk D(b, r) is contained in U .

For a given point (X,Y, T ) ∈ [−2, 2] × R × [0, C0a
−1/2], let us denote by

N (X,Y, T ) the set of integers N ≥ 1 such that (2.11) admits at least one real

solution (µ, σ, λ) with a|µ|2 ≤ ε0 and λ ≥ λ0. We denote by NC(X,Y, T ) the

set of complex N such that (2.11) admits at least one complex solution (µ, σ)

with µ ∈ U and a|µ|2 ≤ ε0 and λ ≥ λ0. Observe that N (X,Y, T ) depends on a.

For E ⊂ N, |E|, will denote the cardinal of E. Observe that (2.19) implies for

an absolute constant N0

(2.21) N (X,Y, T ) ⊂ [1, T/2 +N0].

Lemma 2.19. There exists a constant C0 such that the following hold true:

(a) For all (X,Y, T ) ∈ [0, 1] × R × [0, a−1/2], one has |N (X,Y, T )| ≤ C0, and

NC(X,Y, T ) is a subset of the union of four disks of radius C0.

(b) For all (X,Y, T ) ∈ [0, 1]× R× [0, a−1/2], the subset of N,

N1(X,Y, T ) =
⋃

|Y ′−Y |+|T ′−T |≤1,|X′−X|≤1

N (X ′, Y ′, T ′),

satisfies

|N1(X,Y, T )| ≤ C0.

Proof. We start with (a), which is a consequence of (2.19), since by Lemma

2.18, for a given (X,Y, T ≥ T0), there are at most four possible values of µ.

(For T ≤ T0 we use (2.21).)
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We proceed with (b). By (2.21), we may assume T ≥ T1 with T1 large.

Recall R = 2(1 − 3Y/T ). Let (X ′, Y ′, T ′) such that |Y ′ − Y | + |T ′ − T | ≤
1, X ′ ∈ [0, 1]. Set R′ = 2(1 − 3Y ′/T ′). One has |R − R′| ≤ C(1 + |R|)/T .

Let us first assume |R| ≥ 2R0, with R0 as in Lemma 2.18. Since T is large,

one has |R′| ≥ R0 and |R′| ' |R|. Let N ′ ∈ N(X ′, Y ′, T ′) and µ′ such that

(2.11) holds true. By Lemma 2.18(a), one may assume µ′∗ ∈ D(
√
R
′
, A′). Take

µ∗ ∈ D(
√
R,A) associated to (X,Y, T ). Since µ′ is real, one has R′ ≥ R0, hence

R ≥ 2R0, and therefore µ ∈ U . Let N ∈ NC(X,Y, T ) associated to µ. From

a1/2 ≤ 1/T one gets

|µ− µ′| ≤ C|µ∗ − µ′∗| ≤ C
(
A+A′ +

∣∣∣√R−√R′∣∣∣) ≤ C(1 + |R|)
T
»
|R|

.

By (2.19) and (2.20), this implies since a|R| ' a|µ′2| ≤ ε0,

(2.22) 2|N −N ′| ≤ |T ′ − T |Φa(µ
′) + T |Φa(µ

′)− Φa(µ)|+O(1)

≤ C(a+ 1/|R|)(1 + |R|)»
|R|

+O(1) ∈ O(1).

Let us now assume |R| ≤ 2R0 and T |R| ≥ M0 + 8. From |RT − R′T ′| =

|2(T − T ′) − 6(Y − Y ′)| ≤ 8, we get |R′|T ′ ≥ M0. We may thus apply

Lemma 2.18(b). Let N ′ ∈ N(X ′, Y ′, T ′) and µ′ ∈ R such that (2.11) holds

true. Since µ′ is real, one has R′ > 0, thus R′T ′ > M0, and this implies R > 0

(take M0 large). Moreover one has |R − R′| ≤ C(1 + |R|)/T , |R′| ≤ 3R0, and

also |R′| ' |R|. By the same argument as above, we now get |µ−µ′| ≤ C(1+R0)

T
√
R

,

and since |µ| + |µ′| ≤ C
»
|R|, one gets |µ2 − µ′2| ≤ C(1 + R0)/T . Thus by

(2.19) and (2.20),

(2.23) 2|N −N ′| ≤ CT (a+O(1))(1 +R0)/T ∈ O(1).

Finally, for |R| ≤ 2R0 and T |R| ≤ M0 + 8, one has T ′|R′| ≤ M0 + 16. Thus

by part (c) of Lemma 2.18, one has |µ′j | ≤ CT 1/2, |µj | ≤ CT−1/2, and thus

in that case we get |µ2 − µ′2| ≤ C/T ; thus (2.23) holds also true in that case.

Since N ∈ NC(X,Y, T ), (2.22), (2.23), and part (a) of our lemma imply (b).

The proof of our lemma is complete. �

2.6.2. Phase integrals. We first recall the following lemma, for which we

refer to [19].

Lemma 2.20. Let K ⊂ R be a compact set, and let a(ξ, λ) be a classical

symbol of degree 0 in λ ≥ 1 with a(ξ, λ) = 0 for ξ /∈ K . Let k ≥ 2, c0 > 0 and

Φ(ξ) a phase function such that∑
2≤j≤k

|Φ(j)(ξ)| ≥ c0, ∀ξ ∈ K.
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Then, there exists C such that∣∣∣∣ ∫ eiλΦ(ξ)a(ξ, λ)

∣∣∣∣ ≤ Cλ−1/k, ∀λ ≥ 1.

Moreover, the constant C depends only on c0 and on an upper bound of a finite

number of derivatives of Φ(2), a in a neighborhood of K .

The next lemma will be of importance to us. As such, we have included

its proof for the sake of the reader while not claiming any novelty.

Let H(ξ) be a smooth function defined in a neighborhood of (0, 0) in R2

such that H(0) = 0 and ∇H(0) = 0. We assume that the Hessian H ′′ satisfies

rank(H ′′(0)) = 1 and ∇ det(H ′′)(0) 6= 0. Then the equation det(H ′′)(ξ) = 0

defines a smooth curve C near 0 ∈ R2 with 0 ∈ C. Let s → ξ(s) be a smooth

parametrization of C, with ξ(0) = 0, and define the curve X(s) in R2 by

X(s) = H ′(ξ(s)).

Lemma 2.21. Let K = {ξ ∈ R2, |ξ| ≤ r}, and let a(ξ, λ) be a classical

symbol of degree 0 in λ ≥ 1 with a(ξ, λ) = 0 for ξ /∈ K . For x ∈ R2 close to 0,

set

I(x, λ) =

∫
eiλ(x.ξ−H(ξ))a(ξ, λ)dξ.

Then for r > 0 small enough, the following hold true:

(a) If X ′(0) 6= 0, there exists C such that for all x close to 0,

|I(x, λ)| ≤ Cλ−5/6.

(b) If X ′(0) = 0 and X ′′(0) 6= 0, there exists C such that for all x close to 0,

|I(x, λ)| ≤ Cλ−3/4.

Moreover, if a is elliptic at ξ = 0, there exists C ′ such that

|I(0, λ)| ≥ C ′λ−3/4.

Proof. By a linear change of coordinates in ξ, we may assume H(ξ) =

ξ2
1/2 + O(ξ3). Set Φ(x, ξ) = x.ξ − H(ξ). Then Φ′ξ1(x, ξ) = x1 − H ′ξ1(ξ).

Therefore, there exists a unique nondegenerate critical point ξc1(x1, ξ2) in the

variable ξ1, and the critical value Ψ(x, ξ2) satisfies

G(x, ξ2) = Ψ′ξ2(x, ξ2) = x2 −H ′ξ2(ξc1(x1, ξ2), ξ2).

By stationary phase in ξ1, one has

I(x, λ) = λ−1/2
∫
eiλΨ(x,ξ2)b(x, ξ2, λ)dξ2.

By Lemma 2.20, it remains to prove

(a′) If X ′(0) 6= 0, there exists c0 > 0 such that for all (x, ξ2) close to (0, 0),

|∂2
ξ2
G| ≥ c0.
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(b′) If X ′(0) = 0 and X ′′(0) 6= 0, there exists c0 > 0 such that for all (x, ξ2)

close to (0, 0), |∂3
ξ2
G| ≥ c0, and in the case a elliptic the lower bound at

x = 0.

Let us prove (a′). Since G(x, ξ2) is smooth and r small, it is sufficient to

prove ∂2
ξ2
G(0, 0) 6= 0. The Taylor expansion of H at order 3 reads as follows:

H(ξ) = ξ2
1/2 + aξ3

1 + bξ2
1ξ2 + cξ1ξ

2
2 + dξ3

2 +O(ξ4).

Thus one has ξc1(0, ξ2) = −cξ2
2 + O(ξ3

2) and we get −G(0, ξ2) = 3dξ2
2 + O(ξ3

2).

Thus ∂2
ξ2
G(0, 0) 6= 0 is equivalent to d 6= 0.

On the other hand, one has detH ′′(ξ) = 2cξ1 + 6dξ2 + O(ξ2), and since

by hypothesis ∇ det(H ′′)(0) 6= 0, one has (c, d) 6= (0, 0). Moreover, one has

X(s) = H ′(ξ(s)) =
Ä
ξ1(s) +O(s2), O(s2)

ä
and therefore X ′(0) 6= 0 is equivalent to ξ′1(0) 6= 0. This in turn is equivalent

to the fact that ξ1 is a parameter on C, which is equivalent to d 6= 0.

Let us now prove (b′). Since X ′(0) = 0, we get d = 0 and therefore c 6= 0.

Now, ξ2 is a parameter on C, and we have ξ1 ∈ O(ξ2
2) on C. We will use a

Taylor expansion of H at order 4, but since ξc1(0, ξ2) is quadratic in ξ2 and

ξ1(s) quadratic in s, we will just need the ξ4
2 term; i.e.,

H(ξ) = ξ2
1/2 + aξ3

1 + bξ2
1ξ2 + cξ1ξ

2
2 + eξ4

2 + · · ·+O(ξ5).

Then we get detH ′′(ξ) = 2cξ1 + 4(3e − c2)ξ2
2 + O(ξ3). Therefore ξ1 =

2(c − 3e/c)ξ2
2 + O(ξ3

2) is an equation for C, and we get that X ′′(0) 6= 0 is

equivalent to X ′′1 (0) 6= 0. This in turn is is equivalent to c2 6= 2e. On the other

hand, we easily get −G(0, ξ2) = (4e − 2c2)ξ3
2 + O(ξ4

2). Finally, for α 6= 0 and

b(ξ2, λ) a symbol of degree 0 elliptic at ξ2 = 0, and supported in |ξ2| ≤ r with

r small enough, one clearly has∣∣∣∣∫ eiλ(αξ42+O(ξ52))b(ξ2, λ)dξ2

∣∣∣∣ ≥ C ′λ−1/4,

which completes the proof. �

2.6.3. Proof of Proposition 2.14. Recall

(2.24) wN,1(T,X, ~) =
(−i)Nλ

2π

∫
eiλϕa,N,λχ2(z)

χ3(
√

1 + az)

2
√

1 + az
χ4(
√
aσ)

σ0(
√
aT ′, ~)(1− χ5)(z) dT ′dσdz,

where the phase ϕa,N,λ is defined by (see (2.4))

ϕa,N,λ(T,X, T ′, σ, z) = γa(z)(T − T ′) + ψ̃a(T
′) + σ(X − z) + σ3/3

+N

Å
−4

3
z

3
2 +

1

λ
B
(
λz

3
2

)ã
.
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For εj = ±, define

ΦN,ε1,ε2(T,X, z; a, λ) = γa(z)T +
2

3
ε1(z − 1)3/2 +

2

3
ε2(z −X)3/2

−N
Å

4

3
z

3
2 − 1

λ
B
(
λz

3
2

)ã
.

Lemma 2.22. The following identity holds true:

(2.25) wN,1(T,X, ~) =
∑
ε1,ε2

∫
eiλΦN,ε1,ε2Θε1,ε2(z; a, λ)dz +RN,a(T,X, ~),

where Θεj (z; a, λ) are smooth functions of z with support in

[(1 + z0)/2, (ζ2
1 − 1)/a].

(Remark that ζ1 > 1 is an upper bound for the support of χ3.) Moreover,

|zl∂lzΘεj | ≤ Clz−1/2 with Cl independent of a, λ.

The remainder RN,a(T,X, ~) is OC∞(~∞) for X ∈ [0, 1], T ∈ [0, a−1/2], uni-

formly in a,N .

Proof. The proof is a simple application of stationary phase in (T ′, σ) in

the integral (2.24). Recall z ≥ (1+z0)/2 > 1 ≥ X on the support of (1−χ5)(z)

and z ≤ (ζ2
1 − 1)/a on the support of χ3(

√
1 + az). The σ integral is equal to

J1 =

∫
eiλ(σ3/3−σ(z−X))χ4(

√
aσ)dσ

= (z −X)1/2
∫
eiλ(z−X)3/2(s3/3−s)χ4(

√
a(z −X)1/2s)ds.

One has
√
a(z − X)1/2 ≤

»
ζ2

1 − 1. Thus, by stationary phase near the two

critical points s = ±1 and integration by part in s elsewhere, we get

J1 = λ−1/2(z −X)−1/4(e2/3iλ(z−X)3/2b+(2.26)

+ e−2/3iλ(z−X)3/2b−) +O(λ−∞(z −X)−∞),

where b±(
√
a(z − X)1/2, λ(z − X)3/2) are symbols of degree 0 in the (large)

parameter λ(z −X)3/2. Next, the T ′ integral is equal to

J2 =

∫
eiλ(−γa(z)T ′+ψ̃a(T ′))σ0(

√
aT ′, ~)dT ′.

Recall that

T ′ = −2µ
»

1 + a+ aµ2, ∂T ′(−γa(z)T ′+ ψ̃a(T
′)) =

µ2 + 1− z√
1 + az +

√
1 + a+ aµ2

.

Thus we get two distinct critical points T ′± = ∓2
√
z − 1

√
1 + az. The associ-

ated critical values are −γa(z)T ′± + ψ̃a(T
′
±) = ±2/3(z − 1)3/2. As before for

the σ integral, we perform the change of variable T ′ = s
√
z − 1 in order to

have the two critical points s± = ∓
√

1 + az uniformly at finite distance in z.
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One has
√
a(z − 1)1/2 ≤

»
ζ2

1 − 1, and using (2.2) and (2.3) we get, again by

stationary phase near the two critical points s± and integration by part in s

elsewhere,

(2.27)

J2 =λ−1/2(z− 1)−1/4(e2/3iλ(z−1)3/2c+ + e−2/3iλ(z−1)3/2c−) +O(λ−∞(z− 1)−∞),

where c±(
√
a(z − 1)1/2, λ(z − 1)3/2) are symbols of degree 0 in the large pa-

rameter λ(z − 1)3/2. By (2.26) and (2.27), one gets that formula (2.25) holds

true with symbols

(2.28) Θε1,ε2(z; a, λ) =
(−i)Nχ2(z)(1− χ5)(z)χ3(

√
1 + az)cε1bε2

4π
√

1 + az(z − 1)1/4(z −X)1/4
,

which completes the proof of Lemma 2.22. �

Let

γN,1,ε1,ε2(T,X, Y, h) =

√
a

(2πh)2

∫
ei
a3/2

h
ηY wN,1,ε1,ε2(T,X, ~)ηχ0(η)dη,

wN,1,ε1,ε2(T,X, ~) =

∫
eiλΦN,ε1,ε2Θε1,ε2(z; a, λ)dz.

In order to prove Proposition 2.14, we are reduced to proving the following

inequality:

(2.29)

∣∣∣∣∣ ∑
2≤N≤C0/

√
a

γN,1,ε1,ε2(T,X, Y, h)

∣∣∣∣∣ ≤ C(2πh)−2h1/3,

with a constant C independent of h ∈]0, h0], a ∈ [hα, a0], X ∈ [0, 1], T ∈
[0, a−1/2].

For convenience, we take Z = z3/2 as a new variable of integration so that

(2.30) wN,1,ε1,ε2(T,X, ~) =

∫
eiλΦN,ε1,ε2 Θ̃ε1,ε2(Z; a, λ)dZ;

Θ̃ε1,ε2(Z; a, λ) are now smooth functions of Z with support in

[((1 + z0)/2)3/2, ((ζ2
1 − 1)/a)3/2].

Since dz = 2Z−1/3dZ/3, we get |Z l∂lZΘ̃| ≤ ClZ
−2/3 with Cl independent of

a, λ. One has

(2.31)

∂ZΦN,ε1,ε2 =
2

3

Å
Ha,ε1,ε2(T,X;Z)− 2N

Å
1− 3

4
B′(λZ)

ãã
,

Ha,ε1,ε2 = Z−1/3
Å
T

2

(
1+aZ2/3

)−1/2
+ε1

(
Z2/3 − 1

)1/2
+ε2

(
Z2/3−X

)1/2
ã
,

∂ZHa,ε1,ε2 =
1

3
Z−4/3

Ç
−T

2

(
1 + aZ2/3

)−3/2(
1 + 2aZ2/3

)
+ ε1

(
Z2/3 − 1

)−1/2
+ ε2X

(
Z2/3 −X

)−1/2
å
.



DISPERSION FOR THE WAVE EQUATION 357

We will first prove that (2.29) holds true in the case (ε1, ε2) = (+,+). From

(2.31), we get that the equation ∂ZHa,+,+(Z) = 0 admits a unique solution

Zq = Z+
q (T,X, a) > 1 such that

lim
T→∞

Z+
q (T,X, a) =1 uniformly in X, a,(2.32)

0 >
9

2
Z5/3
q ∂2

ZHa,+,+(Zq) =− aT

2

(
1 + aZ2/3

q

)−5/2
Å

1

2
− aZ2/3

q

ã
− 1

2

(
Z2/3
q − 1

)−3/2
− 1

2
X
(
Z2/3
q −X

)−3/2
.

Therefore, the function Ha,+,+(Z) is strictly increasing on [1, Zq[, and strictly

decreasing on ]Zq,∞[. Observe that

(2.33) Ha,+,+(1) =
T

2
(1 + a)−1/2 + (1−X)1/2, lim

Z→∞
Ha,+,+(Z) = 2.

For all k, one has

sup
Z≥1
|∂kZ(NB′(λZ)| ≤ CkNλ−2Z−(k+2) ≤ C ′k~2a−7/2 ≤ C ′′khν ,(2.34)

ν = 2− 7α/2 > 0.

Let T0 � 1. We first prove that (2.29) holds true for T ∈ [0, T0]. Since

Ha,+,+(Z) ≤ C(1 +T ), for N ≥ N(T0) = C(1 +T0), one gets |∂ZΦN,+,+(Z)| ≥
c0N with c0 > 0, and |∂kZ∂ZΦN,+,+(Z)| ≤ ckNZ

−k for k ≥ 1. Therefore, by

integration by parts in Z in (2.30) with the operator

L(Θ) = λ−1∂Z((∂ZΦN,+,+)−1Θ),

one gets an extra factor (λNZ)−1 at each iteration. Thus, we get wN,1,+,+ ∈
O(N−∞λ−∞), and this implies

sup
T≤T0,X∈[0,1],Y ∈R

∣∣∣ ∑
N(T0)≤N≤C0/

√
a

γN,1,ε1,ε2(T,X, Y, h)
∣∣∣ ∈ O(h∞).

Next, for T ∈ [0, T0] and 2 ≤ N ≤ N(T0), one may estimate the sum in

(2.29) by the sup of each term. But in that case, we know by (2.31), (2.32),

and (2.34) that there exists at most a critical point of order 2 near Z = Zq for

ΦN,+,+, and

|∂ZΦN,+,+|+ |∂2
ZΦN,+,+|+ |∂3

ZΦN,+,+| ≥ c > 0.

Moreover, by the second item of (2.33), and N ≥ 2, one has a positive lower

bound for |∂ZΦN,+,+(Z)| for large values of Z; thus, large values of Z yield

O(λ−∞) contributions to wN,1,+,+, and eventually the worst contribution to

wN,1,+,+ will be the critical point of order 2 near Z = Zq. This provides

|wN,1,+,+(T,X, ~)| ≤ Cλ−1/3 with C independent of T ∈ [0, T0], X ∈ [0, 1].
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Since a1/2λ−1/3 = ~1/3 = (h/η)1/3, we get

sup
T≤T0,X∈[0,1],Y ∈R

∣∣∣ ∑
2≤N≤N(T0)

γN,1,ε1,ε2(T,X, Y, h)
∣∣∣ ≤ C(T0)(2πh)−2h1/3.

Next we prove that that (2.29) holds true for T ∈ [T0, a
−1/2]. As before,

we may assume N ≤ C1T , with C1 large, the contribution of the sum C1T ≤
N ≤ C0/

√
a being negligible. Recall that we have Z ≥ Z0 = ((1+z0)/2)3/2 > 1

on the support of Θ̃+,+ in formula (2.30). By the first item of (2.32), one may

choose T0 large enough so that Z+
q (T,X, a) ≤ (1 + Z0)/2 < Z0 for all T ≥ T0.

By the last item of (2.31), increasing T0 if necessary, and using (2.34), we may

assume with a constant c > 0 that

|∂2
ZΦN,+,+(Z)| ≥ cTZ−4/3, ∀Z ≥ Z0, ∀T ≥ T0, ∀N ≤ C0a

−1/2.

Therefore, on the support of Θ̃+,+, the phase ΦN,+,+ admits at most one

critical point Zc = Zc(T,X,N, λ, a) and this critical point is nondegenerate.

Since N ≥ 2, from the first two items of (2.31) we get Z
1/3
c ≤ T , and this

implies Z
1/3
c ' T/N . If T/N is bounded, Zc is bounded. Since ∂ZΦ ≤ −c < 0

for large Z, by stationary phase we get

|wN,1,+,+(T,X, ~)| ≤ Cλ−1/2T−1/2 with C independent ofN.

If T/N is large, then we perform the change of variable Z = s(T/N)3 in (2.30);

the unique critical point sc remains in a fixed compact interval of ]0,∞[, one

has ∂sΦ ≤ −c(T/N)3 < 0 for s large, and also

∂ks Θ̃+,+(s(T/N)3, a, λ) ≤ Ck(N/T )2s−2/3−k.

Thus, by stationary phase,

(2.35) ∀T ∈ [T0, a
−1/2], sup

2≤N≤C1T
sup

X∈[0,1]
|wN,1,+,+(T,X, ~)| ≤ Cλ−1/2T−1/2.

By Lemma 2.19, we know that for any given M = (X,Y, T ), there are at most

C0 values of N such that the projection of Λa,N,h intersects the ball of radius

1 centered at M ; therefore, we will prove that the previous arguments imply

(2.36) sup
T∈[T0,a−1/2],X∈[0,1],Y ∈R

∣∣∣∣∣ ∑
2≤N≤C0/

√
a

γN,1,+,+(T,X, Y, h)

∣∣∣∣∣
≤ C(T0)(2πh)−2(a−1/4h1/2),

and since a−1/4h1/2 ≤ h1/3, we will get that (2.29) holds true. Let us now

explain more precisely how one can estimate the sum in (2.36) by the supremum

over N .
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Let GN (T,X, λ, a) = ΦN,+,+(T,X,Zc(T,X,N, λ, a); a, λ). The stationary

phase at the critical point Zc = Zc(T,X,N, λ, a) in (2.30) gives

wN,1,+,+(T,X, ~) = λ−1/2T−1/2eiλGN (T,X,λ,a)ψN (T,X; a, λ).

By (2.26), (2.27), (2.28), we know that the ψN (T,X; a, λ) are symbols of degree

0 in λ, and ∂kλψN ≤ Ckλ
−k with Ck independent of 2 ≤ N ≤ C1T . With

λ̃ = a3/2/h = λ/η, this gives

(2.37) γN,1,+,+(T,X, Y, h) =
T−1/2h1/2a−1/4

(2πh)2

×
∫
eiλ̃ η(Y+GN (T,X,λ̃η,a))ψN (T,X; a, λ̃η)η1/2χ0(η)dη.

This is an integral with large parameter λ̃ and phase

LN (T,X, Y, η, λ̃) = η(Y +GN (T,X, λ̃η)).

By construction, the equation

∂ηLN = Y +GN (T,X, λ, a) + λ∂λGN (T,X, λ, a) = 0

implies that (X,Y, T ) belongs to the projection of Λa,N,h on R3. Let T ∈
[T0, a

−1/2], X ∈ [0, 1] and Y ∈ R be given. For N /∈ N1(X,Y, T ), one therefore

has ∂ηLN (T ′, X ′, Y ′, η, λ̃) 6= 0 for all λ and all X ′ ∈ [0, 1], |Y ′−Y |+|T ′−T | ≤ 1.

This implies, since ∂ηLN is linear in Y , |∂ηLN (T,X, Y, η, λ̃)| ≥ 1. Moreover,

one has, with Ck independent of N,T,X, η, λ, a,

(2.38) |∂kη (∂ηLN )| ≤ Ck.

To prove (2.38), we just use that ∂λZc satisfies

∂λZc∂
2
ZΦN,+,+(Zc) = −∂λ∂ZΦN,+,+(Zc) = NZcB

′′(λZc).

Thus from (2.31) and (2.34), for all k ≥ 1 we get (η∂η)
kZc = (λ∂λ)kZc ∈ O(hν).

Then (2.38) follows from

λ∂λGN (T,X, λ) = λ(∂λΦN,+,+)(T,X,Zc; a, λ) =
N

λ
(−B(λZc) + λZcB

′(λZc)).

Therefore, by integration by parts in η in (2.37), we get

(2.39) sup
T∈[T0,a−1/2],X∈[0,1],Y ∈R

∣∣∣ ∑
N /∈N1(X,Y,T )

γN,1,+,+(T,X, Y, h)
∣∣∣ ∈ O(h∞).

Finally, by Lemma 2.19, one has |N1(X,Y, T )| ≤ C0, and therefore, we get

from (2.39) and (2.35) that (2.36) holds true.

Next, we show that (2.29) holds true for (ε1, ε2) = (−,+). In that

case, from the last item of (2.31) and X ∈ [0, 1], one gets ∂ZHa,−,+ < 0 for

T > 0. Therefore the function Ha,−,+(Z) decreases on [1,∞[, from Ha,−,+(1) =
T (1+a)−1/2

2 + (1−X)1/2 to Ha,−,+(∞) = 0. The equation ∂ZΦN,−,+ = 0 admits
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a unique solution Zc, and this critical point is nondegenerate. We can thus

argue as we have done before for the (+,+) case.

Finally, one sees that the case (ε1, ε2) = (+,−) is similar to the (+,+)

case, and the case (ε1, ε2) = (−,−) is similar to the (−,+) case. We leave the

details to the reader.

The proof of Proposition 2.14 is complete.

2.6.4. Proof of Proposition 2.15. Recall that

wN,2(T,X, ~) =
(−i)Nλ

2π

∫
eiλϕa,N,λχ2(z)

χ3((1 + az)
1
2 )

2(1 + az)
1
2

(2.40)

× χ4(a
1
2σ)σ0(a

1
2T ′, ~)χ5(z) dT ′dσdz

as well as ∂T ′ϕa,N,λ = µ2+1−z√
1+az+

√
1+a+aµ2

and ∂σϕa,N,λ = X − z + σ2.

Let K = {T ′ = 0, σ ∈ [−1, 1], z = 1}. Let ω be a small neighborhood of K

and χ6(T ′, σ, z) ∈ C∞0 (ω) equal to 1 near K. Since for z in the support of the

integral (2.40) one has z ∈ [β/2, z0] with z0 > 1 close to 1, decreasing z0 > 1

if necessary, by integration by parts in T ′, σ we get

(2.41)

wN,2(T,X, ~) =
(−i)Nλ

2π

∫
eiλϕa,N,λχ(T ′, σ, z; a, ~) dT ′dσdz +O(λ−∞),

χ(T ′, σ, z; a, ~) = χ2(z)
χ3(
√

1 + az)

2
√

1 + az
χ4(
√
aσ)σ0(

√
aT ′, ~)χ5(z)χ6(T ′, σ, z),

with O(λ−∞) uniform in T,X,N, a. Moreover, χ(T ′, σ, z; a, ~) is a classical

symbol of degree 0 in ~, with support (T ′, σ, z) ∈ ω, and a is just a harmless

parameter in χ.

We first perform the integration with respect to z in (2.41). Recall

ϕa,N,λ(T,X, T ′, σ, z) =γa(z)(T − T ′) + ψ̃a(T
′) + σ(X − z) + σ3/3

+N

Å
−4

3
z

3
2 +

1

λ
B
(
λz

3
2

)ã
,

∂zϕa,N,λ(T,X, T ′, σ, z) =
T − T ′

2(1 + az)1/2
− σ − 2Nz1/2

Å
1− 3

4
B′
(
λz3/2

)ã
.

Thus, ϕa,N,λ admits a unique critical point zc(T, T
′, σ, a, λ), and we are just

interested in values of the parameters such that zc is close to 1. With u =

(T−T
′

2 − σ)/2N , this means u close to 1. Since σ is close to [−1, 1] and N ≥ 1,

we may thus assume T̃ = T/(4N) close to [1/2, 3/2], say T̃ ∈ [1/4, 2]. We

denote by g(T̃ , T ′, σ; a,N, λ) various functions that are classical symbols of

degree 0 in λ and with parameters a,N ; in particular, with w = (T̃ , T ′, σ),
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for all α, there exists Cα independent of a,N, λ such that |∂αwg| ≤ Cα for all

T̃ ∈ [1/4, 2] and all (T ′, σ) close to (0, 0).

We denote by fk(a, T̃ , T
′/N, σ/N) functions that are homogeneous of de-

gree k in (T ′/N, σ/N). The notation Oj means any function of the form

f =
∑
k≥j fk. We will use the following functions:

F0 =
2T̃ 2

1 +
»

1 + 4aT̃ 2
,(2.42)

G−1
0 =F

1/2
0 (1 + aF0)1/2

Å
1

F0
+

a

1 + aF0

ã
,

H0 =
1− F0√

1 + a+
√

1 + aF0
,

F1 =− G0

N

(
T ′/2 + σ(1 + aF0)1/2

)
.

Lemma 2.23.

(a) One has

zc = F0 + F1 +O2 + g0/λ
2.

(b) The critical value Ψa,N,λ(T̃ ,X, T ′, σ) = ϕa,N,λ(T,X, T ′, σ, zc) is equal to

Ψa,N,λ = (X − F0)σ + σ3/3 +H0T
′ + ψ̃a(T

′)(2.43)

+
G0

2N(1 + aF0)1/2

(
σ(1 + aF0)1/2 + T ′/2

)2

− 1

12N2
(T ′/2 + σ)3 + aNO3 + g1/λ

2

+N

Å
4T̃ γa(F0)− 4

3
F

3/2
0 + g2(T̃ , a,N, λ)/λ2

ã
.

Proof. (a) The equation for zc when λ =∞ is

z1/2(1 + az)1/2 = T̃ − 1

2N

(
T ′/2 + σ(1 + az)1/2

)
.

The solution of this equation is clearly of the form z =
∑
fk(a, T̃ , T

′/N, σ/N)

with f0 = F0 solution of F0(1+aF0) = T̃ 2, and we get F1 by a Taylor expansion

at order 1. Then (a) is a consequence of the implicit function theorem applied

to

z1/2(1 + az)1/2
Å

1− 3

4
B′
(
λz3/2

)ã
= T̃ − 1

2N

(
T ′/2 + σ(1 + az)1/2

)
.

To prove part (b), one may of course insert the formula for zc into the definition

of ϕa,N,λ. Another way is to use

∂σ(Ψa,N,λ − σX − σ3/3− ψ̃a) =− zc,

∂T ′(Ψa,N,λ − σX − σ3/3− ψ̃a) =− γa(zc).
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Using part (a), this system is easily seen to be integrable and yields formula

(2.43) up to an integration constant that is easy to compute when T ′ = σ = 0.

Moreover, when a = 0 and λ =∞, one has z
1/2
c = T̃ − 1

2N (T ′/2+σ); therefore,

one can easily compute the value of the critical value when a = 0, λ =∞, and

this provides the first two terms on the second line of (2.43). The proof of our

lemma is complete. �

From aT ∈ O(a1/2) and Nλ−2 ∈ O(hν), we get ∂2
zϕa,N,λ = −Nz−1/2 +

O(a1/2 + hν) for any z close to 1. Decreasing a0 and h0 if necessary, we get by

stationary phase,

(2.44)

∫
eiλϕa,N,λχ(T ′, σ, z; a, ~) dT ′dσdz

=
2π√
λN

∫
eiλΨa,N,λ .χ̃(T̃ , T ′, σ; 1/N, a, ~) dT ′dσ.

Here, χ̃ is a classical symbol of degree 0 in ~, with harmless parameters a, 1/N .

Let us define γ̃N,2(T,X, Y, h) by the following formula, where λ̃=a3/2/h=λ/η:

(2.45) γ̃N,2(T,X, Y, h) =

∫
eiλ̃η(Y+Ψa,N,ηλ̃)χ̃η3/2χ0(η)dT ′dσdη.

By (2.41) and (2.44), Proposition 2.15 is clearly a consequence of the following

estimate:

(2.46)
∑

T/(4N)∈[1/4,2]

1√
N
|γ̃N,2(T,X, Y, h)| ≤ Cλ̃−3/4,

with C independent of X ∈ [0, 1], T ∈]0, a−1/2], Y ∈ R, a ∈ [hα, a0] and

λ̃ ∈ [λ̃0,∞[ with a0 small and λ̃0 large.

Lemma 2.24. For all k, there exist Ck independent of X ∈ [0, 1], T ∈
]0, a−1/2], Y ∈ R, a ∈ [hα, a0] and λ̃ ∈ [λ̃0,∞[ such that∑

N /∈N1(X,Y,T )
T/(4N)∈[1/4,2]

1√
N
|γ̃N,2(T,X, Y, h)| ≤ Ckλ̃−k.

Proof. Recall that T ′ = −2µ
√

1 + a+ aµ2. Let us define the functions

(see (2.11))

X = 1 + µ2 − σ2,

Y = 2µ2(µ− σ)H1 +
2

3
(σ3 − µ3) + 4N

Ç
1− 3

4
B′
(
ηλ̃
(
1 + µ2

) 3
2
)å

H2,

T = 2
»
ρ+ aµ2

Ç
σ − µ+ 2N

»
1 + µ2

Ç
1− 3

4
B′
(
ηλ̃
(
1 + µ2

) 3
2
)åå

.
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There exists a universal constant C0, with Φ = η(Y + φa,N,ηλ̃), such that

(2.47) |X −X|+ |Y − Y|+ |T − T | ≤ C0(|Φ′η|+ |Φ′T ′ |+ |Φ′σ|+ |Φ′z|).

The left-hand side of (2.47) does not depend of z. Since G = η(Y + φa,N,ηλ̃) is

a critical value of Φ with respect to z, we get

|X −X|+ |Y − Y|+ |T − T | ≤ C0(|G′η|+ |G′T ′ |+ |G′σ|).

Consider any given (X,Y, T ). Then for N /∈ N1(X,Y, T ), we have |x − X| +
|y−Y|+ |t−T | 6= 0 for all values of µ, σ, η, λ̃, all |x−X| ≤ 1, all |y− Y | ≤ 1,

and all |t− T | ≤ 1. This implies |X −X|+ |Y −Y|+ |T − T | ≥ 1. Therefore,

for all values of µ, σ, η, λ̃, and N /∈ N1(X,Y, T ), we get

|G′η|+ |G′T ′ |+ |G′σ| ≥ 1/C0.

From (2.43), using η∂η = λ∂λ, N/λ2 ∈ O(hν) and the fact that any function

of type NO3 is in O(N−2), we get that all the derivatives of G with respect

to η, T ′, σ are uniformly bounded. By integration by part in (2.45) we thus

get |γ̃N,2| ≤ Ckλ̃
−k for all k, with Ck independent of X ∈ [0, 1], T ∈]0, a−1/2],

Y ∈ R, and N /∈ N1(X,Y, T ). The proof of Lemma 2.24 is complete. �

From Lemma 2.24, and since |N1(X,Y, T )| is uniformly bounded by Lemma

2.19, we get that (2.46) will be a consequence of

(2.48) ∀N with T/(4N) ∈ [1/4, 2],
1√
N

∣∣∣ ∫ eiλΨa,N,λχ̃dT ′dσ| ≤ Cλ−3/4.

Hereafter we denote by C any constant that is independent ofN ≥ 1, X ∈ [0, 1],

T ∈]0, a−1/2], a ∈ [hα, a0] and λ ∈ [λ0,∞[ with a0 small and λ0 large.

Observe that we can now replace the phase Ψa,N,λ by the phase

ψa,N,λ = (X − F0)σ + σ3/3 +H0T
′ + ψ̃a(T

′)

+
G0

2N(1 + aF0)1/2
(σ(1 + aF0)1/2 + T ′/2)2 − 1

12N2
(T ′/2 + σ)3 + aNO3

since by (2.43), the difference Ψa,N,λ − (ψa,N,λ + g1/λ
2) does not depend on

T ′, σ, and eig1/λ is a classical symbol of order 0 in λ. We set χ = eig1/λχ̃ and

recall ~ = a3/2/λ. Then χ(T ′, σ; T̃ , a,N ;λ) is a classical symbol of degree 0

in λ ≥ λ0, compactly supported in (T ′, σ) close to {0} × [−1, 1]. Moreover,

for all α, there exists Cα independent of a,N and T̃ ∈ [1/4, 2] such that

sup(T ′,σ,λ) |∂α(T ′,σ)χ| ≤ Cα.

Lemma 2.25. There exists C such that for all N ≥ λ1/3,

(2.49)
1√
N

∣∣∣∣∫ eiλψa,N,λχdT ′dσ

∣∣∣∣ ≤ Cλ−5/6.
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Proof. It is sufficient to prove that, for all N ≥ λ1/3,

(2.50)

∣∣∣∣∫ eiλψa,N,λχdT ′dσ

∣∣∣∣ ≤ Cλ−2/3.

Set X − F0 = −Aλ−2/3, H0 = −Bλ−2/3, and perform a change of variable in

(2.50): T ′ = λ−1/3x, σ = λ−1/3y. We are reduced to proving

(2.51)

∣∣∣∣∫ eiGχ(λ−1/3x, λ−1/3y, . . . )dxdy

∣∣∣∣ ≤ C,
with a phase G of the following form:

G = −Ay + y3/3−Bx+ λψ̃a(λ
−1/3x)(2.52)

+
G0λ

1/3

2N(1 + aF0)1/2
(y(1 + aF0)1/2 + x/2)2

+N−2(x, y)3f(a, T̃ , λ−1/3x/N, λ−1/3y/N).

Then (2.51) is an oscillatory integral over a domain of integration of size λ1/3.

Parameters F0, G0, λ
1/3/N are bounded, and the main point is to prove that

the constant C is uniform in (A,B) = (r cos θ, r sin θ) with r ≤ c0λ
2/3. Recall

λψ̃a(λ
−1/3x) = x3

24(1+a)3/2
(1 +O(ax2λ−2/3)). One has

∂xG =−B + λ2/3ψ̃′a(λ
−1/3x) +O((x, y)) +O(1),

∂yG =−A+ y2 +O((x, y)) +O(1).

Moreover, since χ is compactly supported in (T ′, σ), one has, with Cα inde-

pendent of T̃ , a,N, λ,

sup
(x,y)
|∂α(x,y)χ(λ−1/3x, λ−1/3y, . . . )| ≤ Cα(1 + |x|+ |y|)−|α|.

Therefore, for any r0, the oscillatory integral (2.51) is clearly bounded for

0 ≤ r ≤ r0. (Integrate by part for large (x, y).)

For r ∈ [r0, c0λ
2/3], we rescale variables (x, y) = r1/2(x′, y′), and we set

G = r3/2G′ and χ′(x′, y′, . . . ) = χ(r1/2λ−1/3x′, r1/2λ−1/3y′, . . . ). Observe that

since r1/2λ−1/3 is bounded, we still have decay estimates

sup
(x′,y′)

|∂α(x′,y′)χ
′| ≤ Cα(1 + |x′|+ |y′|)−|α|.

We have to prove

(2.53) r

∣∣∣∣∫ eir
3/2G′χ′dx′dy′

∣∣∣∣ ≤ C.
First, the critical points of G′ satisfy

(2.54)

∂x′G
′ =− cos θ + r−1λ2/3ψ̃′a(r

1/2λ−1/3x′) + r−1/2O((x′, y′)) + r−1O(1),

∂yG =− sin θ + y′2 + r−1/2O((x′, y′)) + r−1O(1).
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Let F (u) denote a smooth function near u = 0. We then have

r−1λ2/3ψ̃′a(r
1/2λ−1/3x′) =

x′2

8(1 + a)3/2

Ä
1 + arλ−2/3x′2F (a1/2r1/2λ−1/3x′)

ä
.

By (2.54), the contribution of large (x′, y′) to (2.53) is O(r−∞), and we may

localize the integral on a compact set in (x′, y′). For | sin θ| ≥ 0.1 and r0 large,

we have two distinct nondegenerate critical points y′± = ±| sin θ|1/2 +O(r−1/2)

in y′ with critical values G′±(x′, . . . ), and thus by stationary phase we get

r

∫
eir

3/2G′χ′dx′dy′ = r1/4

Ç∫
eir

3/2G′+χ′+dx
′ +

∫
eir

3/2G′−χ′−dx
′
å
.

Moreover, one has

∂x′G
′
±(x′, . . . ) = ∂x′G

′(x′, y′±, . . . )

= − cos θ + r−1λ2/3ψ̃′a(r
1/2λ−1/3x′) +O(r−1/2),

and this implies |∂3
x′G
′
±| ≥ c0 > 0. Thus, we get∣∣∣∣∫ eir
3/2G′±χ′±dx

′
∣∣∣∣ ≤ C(r3/2)−1/3 = Cr−1/2.

Therefore, (2.53) holds true, and in fact, we have the following better estimate

in the range r ≥ 1:

r

∣∣∣∣∫ eir
3/2G′χ′dx′dy′

∣∣∣∣ ≤ Cr−1/4.

If sin θ is close to 0, then we first perform the stationary phase in x′, and we

use the same arguments. This completes the proof of Lemma 2.25. �

Therefore, we can now assume that λ
N3 = Λ ≥ 1, and we take Λ as our new

large parameter. We set X − F0 = −pN−2, H0 = −qN−2/2, and we change

variables in (2.48): T ′ = −2x/N, σ = −y/N . We will prove

(2.55)

∣∣∣∣∫ eiΛGaχ(x/N, y/N, . . . )dxdy

∣∣∣∣ ≤ CΛ−3/4

with a phase Ga that takes the following form:

Ga = py − y3/3 + qx+N3ψ̃a(−2x/N) +
G0

2(1 + aF0)1/2

Ä
y(1 + aF0)1/2 + x

ä2
+

1

12N2
(x+ y)3 + aN−2(x, y)3f

Å
a, T̃ ,

x

N2
,
y

N2

ã
.

Observe that, for large N , (2.55) implies a better estimate that (2.46); more

precisely, (2.55) is equivalent to

(2.56)
1√
N

∣∣∣∣∫ eiλΨa,N,λχ̃dT ′dσ

∣∣∣∣ ≤ CN−1/4λ−3/4.

The above estimate is of course compatible with (2.49) for N ' λ−1/3.
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Recall (see (2.2)) that ψ̃a(T
′) = T ′3

24(1+a)3/2
(1 + O(aT ′2)). From (2.52) we

get

(2.57)

∂xGa = q − x2 +
G0

(1 + aF0)1/2
(y(1 + aF0)1/2 + x)+

1

4N2
(x+ y)2+aO((x, y)2),

∂yGa = p− y2 +G0(y(1 + aF0)1/2 + x) +
1

4N2
(x+ y)2 + aO((x, y)2),

and

∂2
x,xGa =− 2x+

G0

(1 + aF0)1/2
+

1

2N2
(x+ y) + aO((x, y)),

∂2
x,yGa =G0 +

1

2N2
(x+ y) + aO((x, y)),

∂2
y,yGa =− 2y +G0(1 + aF0)1/2 +

1

2N2
(x+ y) + aO((x, y)).

Thus we get the value of the hessian HN (x, y; T̃ , a)

HN (x, y; T̃ , a) = det

Ç
∂2
x,xGa ∂2

x,yGa
∂2
y,xGa ∂2

y,yGa

å
= −2G0(x+ y) + 4xy − 1

N2
(x+ y)2 + aO((x, y)).

Lemma 2.26. There exist r0 and C such that for all (p, q) with |(p, q)|≥r0,

(2.58)

∣∣∣∣∫ eiΛGaχ(x/N, y/N, . . . )dxdy

∣∣∣∣ ≤ CΛ−5/6.

Proof. Set (q, p)=(r cos θ, r sin θ) with r≥r0 large. Let χ∈C∞0 (|(x, y)|<c)
with small c and χ = 1 near 0. Then by (2.57) we get for all k by integration

by part in (x, y),∣∣∣∣∫ eiΛGaχ(r−1/2(x, y))χ(x/N, y/N, . . . )dxdy

∣∣∣∣ ≤ Ckr−kΛ−k.
For the remaining term, we perform the change of variable (x, y) = r1/2(x′, y′)

and we set G′a = r−3/2Ga. It remains to prove

(2.59)

∣∣∣∣r ∫ eir
3/2ΛG′a(1−χ)(x′, y′)χ(r1/2x′/N, r1/2y′/N, . . . )dx′dy′

∣∣∣∣ ≤ CΛ−5/6.

Observe that since (1−χ)(x′, y′) = 0 near 0, (1−χ)(x′, y′) = 1 for |(x′, y′)| ≥ c,
and since χ(u, v, . . . ) is compactly supported in (u, v), we still have

sup
(x′,y′)

|∂α(x′,y′)(1− χ)(x′, y′)χ(r1/2x′/N, r1/2y′/N, . . . )| ≤ Cα(1 + |x′|+ |y′|)−|α|.
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The phase G′a is of the form

G′a = sin θy′ − y′3

3
+ cos θx′ − x′3

3
+

1

12N2
(x′ + y′)3

+ r−1/2O((x′, y′)2) + aO((x′, y′)3),

where O((x′, y′)k) means any function of the form

x′jy′lf(r1/2x′/N, r1/2y′/N, a,N),

with f smooth uniformly in a,N and j + l = k. Thus for small a and large r0,

we may localize the integral (2.59) to a compact set in (x′, y′). (Integrate by

part.) The hessian of G′a is equal to 4x′y′− 1
N2 (x′+ y′)2 +O(r−1/2 + a). Thus

for N ≥ 2, a small and r0 large, the set on which the hessian vanishes defines

a smooth curve Γ outside (x′, y′) = (0, 0), which is close to the union of the

two lines c(x′ + y′)± (x′ − y′) = 0, c2 = N2−1
N2 ∈ [3/4, 1]. Moreover, one has

∂x′G′a = cos θ − x′2 +
1

4N2
(x′ + y′)2 +O(r−1/2 + a),

∂y′G′a = sin θ − y′2 +
1

4N2
(x′ + y′)2 +O(r−1/2 + a).

The contribution of points (x′, y′) outside Γ to the left-hand side of (2.59) is

estimated by O(r−1/2Λ−1) by the usual stationary phase theorem. To estimate

the contribution of points (x′, y′) close to Γ, we use Lemma 2.21. For any value

of θ, one gets easily that the hypothesis of part (a) of Lemma 2.21 holds true,

and this yields the estimate∣∣∣∣∫ eir
3/2ΛG′a(1− χ)(x′, y′)χ(r1/2x′/N, r1/2y′/N, . . . )dx′dy′

∣∣∣∣ ≤ C(r3/2Λ)−5/6

= r−5/4Λ−5/6,

which provides the bound Cr−1/4Λ−5/6 on the right-hand side of (2.59). The

proof of Lemma 2.26 is complete. �

We can now assume |(p, q)| ≤ r0. There exists c > 0 independent of N ≥ 2

such that

(2.60) ∀(x, y) ∈ R2,

∣∣∣∣x2 − 1

4N2
(x+ y)2

∣∣∣∣+ ∣∣∣∣y2 − 1

4N2
(x+ y)2

∣∣∣∣ ≥ c(x2 + y2).

Thus by integration by part, (2.57) yields that large values of (x, y) give a con-

tribution O(Λ−∞) to the integral (2.55). We can then replace χ(x/N, y/N, . . . )

by a symbol χ(x, y, . . . ) compactly supported in the ball B = |(x, y)| ≤ R with

R large. We are left to prove

(2.61)

∣∣∣∣∫ eiΛGaχdxdy

∣∣∣∣ ≤ CΛ−3/4.
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Uniformly in N ≥ 1 and T̃ near [1/2, 3/2] and (x, y) near B, we have

Ga =G0 +O(a),

G0 =qx− x3/3 + py − y3/3 +
T̃

2
(x+ y)2 +

1

12N2
(x+ y)3.

Note that the hessian of Ga is Ha = −2T̃ (x + y) + 4xy − 1
N2 (x + y)2 + O(a).

Therefore the set Za = {(x, y);Ha(x, y) = 0} is, for small a, a smooth curve in

B that is close to the parabola −2T̃ (x+ y)− (x− y)2 = 0 for N = 1 and close

to the hyperbola −2T̃ (x+ y) + 4xy − 1
N2 (x+ y)2 = 0 for N ≥ 2. Moreover,

∂xGa =q −X (x, y, a); X (x, y, a) = x2 − T̃ (x+ y)− 1

4N2
(x+ y)2 +O(a),

∂yGa =p− Y(x, y, a); Y(x, y, a) = y2 − T̃ (x+ y)− 1

4N2
(x+ y)2 +O(a).

It remains to use Lemma 2.21 near any point (q, p), |(p, q)| ≤ r0. If (q, p)

is not in the image of Za by the map (X ,Y), then near (q, p), the estimate

(2.61) holds true with a factor CΛ−1 on the right-hand side by the usual

stationary phase theorem. If (q, p) is in the image of Za by the map (X ,Y),

but (q, p) 6= (0, 0), then one easily verifies that part (a) of Lemma 2.21 applies,

and this gives near (q, p) the estimate (2.61) with a factor CΛ−5/6 on the right-

hand side. Finally, near (q, p) = (0, 0), one has (x, y) near (0, 0), and one easily

verifies that part (b) of Lemma 2.21 applies, and therefore (2.61) holds true.

This concludes the proof of Proposition 2.15. 2

Remark 2.27. Since the symbol χ of degree 0 is elliptic at (x, y) = (0, 0),

the estimate (2.61) is optimal. To see this point, it is sufficient to apply part

(b) of Lemma 2.21 at (p, q) = (0, 0). Observe that by (2.42), (p, q) = (0, 0) is

equivalent to X = F0 = 1 and T = 4N
√

1 + a, i.e., equivalent to x = a, t =

4N
»
a(1 + a), which are precisely the times where a swallowtail occurs in the

wave front set of the Green function. This, and (2.56), proves Theorem 1.4.

2.6.5. Proof of Proposition 2.16. In order to prove Proposition 2.16, we

use as before the splitting γ1 = γ1,1 + γ1,2. First, we prove

(2.62) |γ1,1(T,X, Y, h)| ≤ C(2πh)−2

(Å
h

a1/2T

ã1/2

+ h1/3

)
.

Going through the proof of Proposition 2.14, we notice only one difference

between the case N = 1 and N ≥ 2: namely for T ∈]0, T0], when we estimate∫
eiλΦ1,+,+Θ+,+(z; aλ)dz, we may have a critical point associated to a very large

value of z. Let χ(z) ∈ C∞0 (]z1,∞[) with z1 large, and set

(2.63) J =

∫
eiλΦ1,+,+Θ+,+(z; aλ)χ(z)dz.
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We will prove

a1/2|J | ≤ Ca1/2λ−1/2T−1/2,

which clearly gives the first term on the right of the inequality (2.62). One has

∂zΦ1,+,+ =
T

2
(1 + az)−1/2 − z−1/2

2
(1 +X) +O(z−3/2),(2.64)

∂2
zΦ1,+,+ =

−Ta
4

(1 + az)−3/2 +
z−3/2

4
(1 +X) +O(z−5/2).

Therefore, to get a large critical point zc, T must be small. (Recall that

T ≤ T0 means t ≤ a1/2T0.) One then has z
−1/2
c ' T , and from (2.64) we

get ∂2
zΦ1,+,+(zc) ' T 3. Recall that Θ+,+(z, a, λ) is a classical symbol in z of

degree −1/2, thus T−1s1/2Θ+,+(T−2s, a, λ) is a symbol of degree 0 in s≥s0>0,

uniformly in T ∈]0, T0]. Therefore, if we perform the change of variable z =

T−2s in (2.63), we get |J | ≤ Cλ−1/2T−1/2 by stationary phase.

It remains to prove that the inequality (2.10) holds true for γ1,2. The only

place where N ≥ 2 gets used in the proof of Proposition 2.15 is Lemma 2.26

and inequality (2.60). But for N = 1, since χ(x, y, . . . ) is compactly supported

in (x, y), we do not need the inequality (2.60). Moreover, we get from (2.57)

that the phase Ga has no critical points on the support of χ for |(p, q)| ≥ r0 if

r0 is large, and this implies for |(p, q)| ≥ r0,∣∣∣∣∫ eiΛGaχ(x, y, . . . )dxdy

∣∣∣∣ ∈ O(Λ−∞).

In fact, Lemma 2.26 is telling us that the constant C in the right of (2.58) is

uniform for large N . The proof of Proposition 2.16 is now complete. 2

3. Parametrix for 0 < a ≤ h1/2

We will write the initial data with the help of gallery modes, which we first

describe in connection with the spectral analysis of our Laplace operator. We

describe the corresponding solutions of the wave operator. We then estimate

their L∞(Ω) norm for tangent initial directions by using Sobolev embedding,

taking advantage of the size of the Fourier support. We deal with the nontan-

gent initial directions by constructing a crude parametrix, relying partly on

gallery modes and the asymptotics of the Airy function.

3.1. Whispering gallery modes. Let Ω = {(x, y) ∈ R2|x > 0, y ∈ R} de-

note the half-space R2
+ with the Laplacian given by ∆D = ∂2

x + (1 + x)∂2
y

with Dirichlet boundary condition on ∂Ω. Taking the Fourier transform in the

y-variable gives

−∆D,η = −∂2
x + (1 + x)η2.

For η 6= 0, −∆D,η is a self-adjoint, positive operator on L2(R+) with compact

resolvent. Indeed, the potential V (x, η) = (1 + x)η2 is bounded from below,
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it is continuous and limx→∞ V (x, η) = ∞. Thus one can consider the form

associated to −∂2
x + V (x, η),

Q(u) =

∫
x>0
|∂xv|2 + V (x, η)|v|2dx,

D(Q) = H1
0 (R+) ∩ {v ∈ L2(R+), (1 + x)1/2v ∈ L2(R+))},

which is clearly symmetric, closed and bounded from below by a positive con-

stant c. If c� 1 is chosen such that −∆D,η+c is invertible, then (−∆D,η+c)−1

sends L2(R+) in D(Q) and we deduce that (−∆D,η+c)−1 is also a (self-adjoint)

compact operator. The last assertion follows from the compact inclusion

D(Q) = {v|∂xv, (1 + x)1/2v ∈ L2(R+), v(0) = 0} ↪→ L2(R+).

We deduce that there exists a base of eigenfunctions vk of −∆D,η associated

to a sequence of eigenvalues λk(η) → ∞. From −∆D,ηv = λv we obtain

∂2
xv = (η2 − λ+ xη2)v, v(0, η) = 0, and after a suitable change of variables we

find that an orthonormal basis of L2([0,∞[) is given by eigenfunctions

(3.1) ek(x, η) = fk
η1/3

k1/6
Ai
(
η

2
3x− ωk

)
,

where (−ωk)k denote the zeros of Airy’s function in decreasing order and where

fk are constants so that ‖ek(., η)‖L2([0,∞[) = 1 for every k ≥ 1, and all fk’s

remain in a fixed compact subset of ]0,∞[. The corresponding eigenvalues are

λk(η) = η2 + ωkη
4
3 .

Remark 3.1. Let δx=a denote the Dirac distribution on R+, a > 0. Then

it reads as follows:

δx=a =
∑
k≥1

ek(x, η)ek(a, η).

We define the gallery modes as follows.

Definition 3.2. For x > 0, let Ek(Ω) be the closure in L2(Ω) of{ 1

2π

∫
eiyηek(x, η)ψk(η)dη, ψ̂k ∈ S(R)

}
,

where S(R) is the Schwartz space of rapidly decreasing functions,

S(R) =
{
f ∈ C∞(R), ‖zαDβf‖L∞(R) <∞ ∀α, β ∈ N

}
.

For fixed k, a function in Ek(Ω) is called a whispering gallery mode.

We have the following result (see [7]).

Theorem 3.3. We have the orthogonal decomposition (L2(Ω),∆D) =⊕
⊥Ek(Ω), where Ek(Ω) denotes the space of gallery modes associated to the

k-th zero of the Airy function Ai and where ∆D = ∂2
x+(1+x)∂2

y with Dirichlet

boundary condition on ∂Ω.



DISPERSION FOR THE WAVE EQUATION 371

Proof. Indeed, from [7, §2.2] one can easily see that (Ek(Ω))k are closed,

orthogonal and that ∪kEk(Ω) is a total family (i.e., that the vector space

spanned by ∪kEk(Ω) is dense in L2(Ω)). �

Let ψj ∈ C∞0 (]0,∞[) as in Remark 1.11. Using Remark 3.1, for h ∈ (0, 1],

we write the initial data, localized at frequency 1
h , as follows:

(3.2) ψ2(h
»
−∆g)ψ1(hDy)δx=a,y=0

=
∑
1≤k

1

2πh

∫
e
i
h
yηψ2(η

»
1 + ωk(h/η)2/3)ψ1(η)ek(a, η/h)ek(x, η/h)dη.

Observe that in the sum over k, by Remark 1.11 we may assume k ≤ εh−1

with ε small. From (3.2) we get

ua,h(t, x, y) =e−it
√
−∆gψ2(h

»
−∆g)ψ1(hDy)δx=a,y=0

(3.3)

=
∑
1≤k

1

2πh

∫
e
i
h

(yη−tη
√

1+ωk(h/η)2/3)ψ2(η
»

1 + ωk(h/η)2/3)ψ1(η)

ek(a, η/h)ek(x, η/h)dη .

Our goal is to prove the following proposition.

Proposition 3.4. There exists C such that for every h ∈]0, 1], every

0 < a ≤ h1/2 and every t ∈ [−1, 1], the following holds true:

(3.4) ‖1x≤aua,h(t, x, y)‖L∞ ≤ Ch−2 min

(
1, h1/4 +

Ç
h

|t|

å1/3
)
.

This proposition will be proved in the next two sections. Proposition 3.4

clearly implies Theorem 1.3 for a ≤ h1/2. By time symmetry, we may re-

strict ourselves to positive times t ∈ [0, 1]. Notice that the proof for the wave

propagator exp(+it
√
−∆g) is exactly the same because the sign plays no role

whatsoever.

3.2. Tangential initial directions. In this section, we make use of the

Sobolev embedding properties related to the orthogonal basis (ek).

Lemma 3.5. There exists C0 such that for L ≥ 1, the following holds true:

sup
b∈R

Ç ∑
1≤k≤L

k−1/3Ai2(b− ωk)
å
≤ C0L

1/3.

Proof. From |Ai(x)| ≤ C(1 + |x|)−1/4, we get

J(b) =
∑

1≤k≤L
k−1/3Ai2(b− ωk) .

∑
1≤k≤L

k−1/3 1

1 + |b− ωk|1/2
.
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From ωk ' k2/3, we get easily with C independent of L and D large enough,

sup
b≤0

J(b) ≤ CL1/3, sup
b≥DL2/3

J(b) ≤ CL1/3.

Thus we may assume b = L2/3b′ with b′ ∈ [0, D]. Since ωk = k2/3g(k) with g

being an elliptic symbol of degree 0, we are left to prove that

I(x) = L−1/3
∑

1≤k≤L
(k/L)−1/3 1

1 + L1/3|x− (k/L)2/3|1/2

satisfies supx∈R I(x) ≤ C0L
1/3. Since we can split [0, 1] into a finite union of

intervals on which the function t−1/3

1+L1/3|x−t2/3|1/2 is monotone, and since each

term in the sum is bounded by 1, we get

I(x) . C + L2/3
∫ 1

0

t−1/3

1 + L1/3|x− t2/3|1/2
dt ≤ Cte+ L1/3

∫ 1

0

3

2|x− s|1/2
ds,

and the proof of Lemma 3.5 is complete. �

Let ua,h,<L be the function defined by (3.3) with the sum restricted to

k ≤ L. From (3.1), Lemma 3.5, and Cauchy-Schwarz inequality, one gets

‖ua,h,<L(t, x, y)‖L∞ ≤ C1h
−2h1/3L1/3.

Taking L = C/h, we get that Proposition 3.4 holds true for |t| ≤ h. With

L = h−1/4 or L = 1/|t|, one sees also that (3.4) holds true for ua,h,<L. Thus

we are reduced to proving that (3.4) holds true for ua,h,>L, which is defined

by the sum over k ≥ L with L ≥ Dmax(h−1/4, 1/|t|) with a large constant D,

and where |t| > h.

3.3. Nontangential initial directions. In this section, by va,h(t, x, y) we

denote the function defined for h ≤ t ≤ 1 by (3.3) with the sum restricted to

L ≤ k ≤ ε/h, L ≥ Dmax(h−1/4, 1/t), D > 0 large and ε > 0 small. For each

value of k, we set

(3.5) λ = tωkh
−1/3, µ =

ah−1/3

tω
1/2
k

.

From ωk ' k2/3, k ≥ 1/t, and t ≥ h, one has, for some c > 0, λ ≥ c; thus we

will take λ as our large parameter. However, the parameter µ just satisfies

0 ≤ µ . h1/6

t
min(t1/3, h1/12)

and thus may be small or arbitrary large. Observe that for D large enough,

for k ≥ Dh−1/4 and 0 ≤ x ≤ a ≤ h1/2, one has

ωk − xh−2/3η2/3 ≥ ωk/2
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for all η in the support of ψ1. Therefore we can use the asymptotic expansion

of the Airy function from Section 2.2, with ω = eiπ/4,

Ai(ζ) =
∑
±
ω±1e∓

2
3
i(−ζ)3/2(−ζ)−1/4Ψ±(−ζ),

which is valid for −ζ > 1, with −ζ = ωk − η2/3h−2/3x ≥ ωk/2 ≥ ω1
2 > 1 since

ω1 ≈ 2.33. Thus from (3.3) we get

(3.6) va,h =
∑

L≤k≤ε/h
wk, wk =

1

2πh

∑
±,±

∫
eiλΦ±,±

k σ±,±k dη.

The phases Φ±,±k and the symbols σ±,±k of wk read as follows, with the notation

z = h2/3ωkη
−2/3 ≥ 2a:

hλΦ±,±k (t, x, y, η, a) = η

Å
y − t

√
1 + z ∓ 2

3
(z − x)3/2 ∓ 2

3
(z − a)3/2

ã
,

(3.7) σ±,±k (x, η, a, h) = h−1/3ηψ1(η)ψ2(η
√

1 + z)
f2
k

k1/3
ω±ω±

× (z − x)−1/4(z − a)−1/4Ψ±(η2/3h−2/3(z − x))Ψ±(η2/3h−2/3(z − a)).

One has 3η∂η = −2z∂z, and for 0 ≤ x ≤ a ≤ 2z,

|(z∂z)j((z − x)−1/4)| ≤ Cjz−1/4 ≤ C ′j(hk)−1/6;

moreover, Ψ± are classical symbols of degree 0 at infinity and

|η2/3h−2/3(z − x)| ≥ ωk/2 ≥ Ch−1/6

since k ≥ L ≥ Dh−1/4. Therefore we get from (3.7) that for all j, there exists

Cj independent of h, k, a, x, η such that

(3.8)

∣∣∣∣∂jησ±,±k (x, η, a, h)

∣∣∣∣ ≤ Cj(hk)−2/3.

Proposition 3.6. For ε small, there exists C independent of a ∈ (0, h1/2],

t ∈ [h, 1], x ∈ [0, a], y ∈ R and k ∈ [L, ε/h] such that the following holds true:

(3.9)

∣∣∣∣ ∫ eiλΦ±,±
k σ±,±k dη

∣∣∣∣ ≤ C(hk)−2/3λ−1/3.

Observe that from (3.6) and the definition (3.5) of λ, (3.9) implies

‖1x≤ava,h(t, x, y)‖L∞ ≤ Ch−1
∑
k≤ε/h

(hk)−2/3t−1/3h1/9k−2/9

= Ch−2
Å
h

t

ã1/3

h1/9

Ñ ∑
k≤ε/h

k−8/9

é
≤ C ′h−2

Å
h

t

ã1/3

,

and therefore Proposition 3.4 holds true for va,h.
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Proof. Since from (3.8) the (hk)2/3σ±,±k are classical symbols of degree 0

compactly supported in η, we intend to apply the stationary phase to an inte-

gral of the form

J =

∫
eiλΦ±,±

k gdη,

with g a classical symbol of degree 0 compactly supported in η. We have to

prove uniformly with respect to the parameters the inequality

|J | ≤ Cλ−1/3.

Differentiating the phase with respect to η yields

hλ∂ηφ
±,±
k = y − t

1 + 2
3z√

1 + z
± 2

3
x(z − x)1/2 ± 2

3
a(z − a)1/2,

where the two ± signs are independent from each other. (Thus, we have four

cases to consider.) Let δ = x
a ∈ [0, 1], α = a

h2/3ωk
and s = η−2/3 ∈ [s0, s1].

Since D is large, one has α ∈ [0, c0] with c0 such that η−2/3 = s ≥ s0 ≥ 2c0 on

the support of ψ1(η). Let X = y−t
tωkh2/3

, and define the function g(z) by

1 + 2
3z√

1 + z
= 1 + zg(z), g(z) =

1

6
+

z

24
+O(z2).

Then the derivative of the phase is equal to

∂ηφ
±,±
k = X − sg(h2/3ωks) +

2

3
µθ±,±, θ±,± = ±δ(s− δα)1/2 ± (s− α)1/2.

We now study critical points. We take s = η−2/3 as variable, and we get

(3.10)

∂s∂ηφ
±,±
k = −(g(z) + zg′(z)) +

µ

3

(
± δ(s− δα)−1/2 ± (s− α)−1/2

)
,

∂2
s∂ηφ

±,±
k = −h2/3ωk(2g

′(z) + zg′′(z))− µ

6

(
± δ(s− δα)−3/2 ± (s− α)−3/2

)
.

Lemma 3.7. For ε small enough, there exists c > 0 independent of k ≤
ε/h such that

|∂s∂ηφ±,±k |+ |∂2
s∂ηφ

±,±
k | ≥ c.

Proof. One has (s − α)−1/2 ≥ δ(s − δα)−1/2; for ε small, z = h2/3ωks is

small and thus g(z) + zg′(z) is close to 1
6 . Thus we get

|∂s∂ηφ±,−k | ≥ 1/10.

The derivative ∂s∂ηφ
±,+
k may vanish but in case |∂s∂ηφ±,+k | ≤ 1/100, the first

line of (3.10) implies
µ

3
(s− α)−1/2 ≥ 0.05.
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The second line of (3.10) then gives a positive lower bound on |∂2
s∂ηφ

+,+
k |. It

remains to study φ−,+k . For any function f , one has

(3.11) f(s− α)− δf(s− δα) = (1− δ)f(s− δα)−
∫ α(1−δ)

0
f ′(s− δα− t)dt.

Taking f(t) = t−1/2, we thus find that

|∂s∂ηφ−,+k | ≤ 1/100 =⇒ µ(1− δ) ≥ c > 0.

If one applies (3.11) with f(t) = t−3/2, we then find that for ε small, the second

line of 3.10 implies |∂2
s∂ηφ

−,+
k | ≥ c/2. The proof of Lemma 3.7 is complete.

�

From Lemma 3.7 and 2.20, we get that Proposition 3.6 holds true in the

case where the parameter µ is bounded, since in that case all the derivatives of

order ≥ 2 of the phase φ±,±k are bounded. It remains to study the case where

µ is large.

In cases (+,+) or (−,−), and µ large, we can take as large parameter

Λ = λµ. Since (s − α)−1/2 + δ(s − δα)−1/2 ≥ c > 0, we get in that case that

(3.9) holds true with a better factor (hk)−2/3Λ−1/2 on the right-hand side.

It remains to study the cases (+,−) and (−,+) for µ large. But in these

cases, we can use (3.11). Therefore, if µ(1− δ) is bounded, all the derivatives

of order ≥ 2 of the phase φ±,∓k are bounded, and therefore from Lemmas 3.7

and 2.20, we get that Proposition 3.6 holds true.

Finally, in the cases (+,−) and (−,+) and µ(1− δ) large, we can take as

large parameter Λ′ = λµ(1− δ), and since by (3.11) one has

|(s− α)−1/2 − δ(s− δα)−1/2| ≥ c(1− δ),

with c > 0, we get in that case that (3.9) holds true with a better factor

(hk)−2/3Λ′−1/2 on the right-hand side.

The proof of Proposition 3.6 is now complete. �

This concludes the proof of Proposition 3.4.

4. Dimension d ≥ 3

Let d ≥ 3 and Ωd = {(x, y) ∈ R+ × Rd−1} with Laplace operator ∆d =

∂2
x + (1 + x)4y. The normal variable is still denoted x > 0, and the boundary

is still defined by the condition x = 0. Proofs of Theorems 1.3 and 1.4 follow

exactly along the same line as in the 2d case for both a . h1/2 and a� h4/7.
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4.1. Parametrix for a � h4/7. In higher dimensions the parametrix con-

struction is identical to the one in the two-dimensional case. We set ~ = h/|η|,
and we define v(t, x, y, h) with y ∈ Rd−1 by

v(t, x, y, h) =
∑

0≤N≤C0/
√
a

vN (t, x, y, h),

vN (t, x, y, h) =
1

(2πh)d

∫
ei
η
h
yuN (t, x, h/|η|)|η|χ0(|η|) dη,

with the same uN (t, x, h/|η|) as before. We take polar coordinates in η ∈ Rd−1,

η = |η|ω. We thus get

(4.1) vN (t, x, y, h) =
1

(2πh)d

∫ (∫
ei
|η|
h

(y.ω)dω)uN (t, x, h/|η|
)
|η|dχ0(|η|) d|η|.

In the above formula, apart from the harmless factor |η|d instead of |η|, we

have a superposition with respect to ω ∈ Sd−2 of functions of the same type

as before, which are evaluated at z = y.ω. We shall use the following lemma.

Lemma 4.1. Let ψj ∈ C∞0 (]0,∞[). There exists c0 > 0 such that for every

a ∈]0, 1] and every t ∈ [h, 1],

(4.2)

hd|ψ1(h
√
−∆d)ψ2(h|Dy|)e±it

√
−∆dδx=a,y=0|L∞(x≤a,|y|≤c0t) ∈ O

ÅÅ
h

t

ã∞ã
.

Proof. We may and will assume a ≤ 2t. In fact, for t ≤ a/2, by finite speed

of propagation, the singular support of e±it
√
−∆dδx=a,y=0 has not reached the

boundary x = 0, and then (4.2) is a simple consequence of propagation of

singularities in the interior. (See the argument below.) Let T ∈ [h, 1] be

given; perform the change of variable t = Ts, x = TX, y = TY , and set

fT (s,X, Y ) = f(Ts, TX, TY ). Then one has

(∆df)T = T−2PT fT , PT = ∂2
X + (1 + TX)4Y .

Set ~ = h/T ≤ 1. For any ψ, one has the identity (ψ(hDt,x,y)f)T =

ψ(~Ds,X,Y )fT , and therefore (4.2) is equivalent to the estimate at time s = 1:

|ψ1(~
√
PT )ψ2(~|DY |)e±i

√
−PT δX=a/T,y=0|L∞(X≤a/T,|Y |≤c0) ∈ O(~∞).

Observe that b = a/T ≤ 2 is bounded. Since ψ2(~|DY |) commutes with the

flow e±i
√
−PT , using the Melrose-Sjöstrand theorem on propagation of singu-

larities at the boundary [12], we just need to verify the following: There exists

c0 > 0 such that for any T ∈ [0, 1] and any optical ray s→ ρ(s) associated to

the symbol ξ2 +(1+TX)η2 starting at t = 0 from ρ(0) = (X = b, Y = 0; ξ0, η0)

with ξ2
0 +(1+Tb)η2

0 = 1 and |η0| ≥ c1 > 0, one has |Y (ρ(1))| ≥ 4c0. But on the

generalized bicharacteristic flow, one has ∂sη = 0 and ∂sY = 2η(1 + TX(s))

and therefore Y (s) = η0(g(s)) with g(s) ≥ 2s, and the result is obvious. Ob-

serve that the cutoff by ψ2(h|Dy|) is essential to get the lower bound on |η0|.
The proof of Lemma 4.1 is complete. �
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In order to prove our dispersive estimates, we may assume h ≤ t ≤ 1,

and therefore by Lemma 4.1, we may also assume |y| ≥ c0t ≥ c0h. Classical

stationary phase in ω ∈ Sd−2 gives

(4.3)∫
ei
|η|
h

(y.ω)dω =

Ç
h

|η||y|

å d−2
2
Ç
e
i|η||y|
h σ+

Ç
h

|η||y|

å
+ e

−i|η||y|
h σ−

Ç
h

|η||y|

åå
,

where σ± are classical symbols of degree 0 in the small parameter h
|η||y| . Insert-

ing (4.3) in (4.1), and since for |y| ≥ c0t and |η| ∈ [1
8 , 8] one has

Ä
h
|η||y|

ä d−2
2 ≤

C(h/t)
d−2
2 , we easily see that the proof of Theorems 1.3 and 1.4 follows exactly

like in the 2d case.

4.2. Case a . h1/2. Indeed, the dispersive estimates follow once we notice

that Definition 3.2 and Theorem 3.3 extend to the d-dimensional domain Ωd.

It is enough to define for x > 0, Ek(Ωd) to be the closure in L2(Ωd) of{ 1

(2π)d−1

∫
ei<y,η>Ai(|η|

2
3x− ωk)ϕ̂(η)dη, ϕ ∈ S(Rd−1)

}
,

where S(Rd−1) is the Schwartz space of rapidly decreasing functions,

S(Rd−1) =
{
f ∈ C∞(Rd−1)|‖zαDβf‖L∞(Rd−1) <∞ ∀α, β ∈ Nd−1

}
.

Theorem 4.2. We have the orthogonal decomposition (L2(Ωd),∆d) =⊕
⊥Ek(Ωd), where Ek(Ωd) denotes the space of gallery modes associated to the

k-th zero of the Airy function Ai and where ∆d = ∂2
x+(1+x)4y with Dirichlet

boundary condition on ∂Ωd.

Therefore, by Lemma 4.1 and (4.3), the proof of our main theorems follows

exactly like in the 2d case.

Appendix A. The energy critical nonlinear wave equation

We consider the equation

2gu+ |u|
4
d−2u = 0,

with data (u0, u1) ∈ H1
0 (Ωd) × L2(Ωd), with 3 ≤ d ≤ 6. When the domain is

Rd, there is a long line of seminal works regarding this model, which may be

one of the simplest model of a critical wave equation. To our knowledge, the

first work to address the energy setting (as opposed to C∞) is [15], where low

dimensions are dealt with, using only the oldest Strichartz estimates. (Time

and space exponents are equal.) Higher dimensions (d ≥ 7) have their own set

of difficulties, mostly related to the low power nonlinearity (1 + 4/(d− 2) < 2)

and the subsequent failure of its derivative with respect to u to be Lipschitz.
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All these technical annoyances may be solved one way or another, but they are

out of the scope of the present paper.

Hence we contend ourselves with the low dimensions. There are essentially

two things to be checked:

• We have a “good” local Cauchy theory, providing energy class solutions.

• This local Cauchy theory may be tweaked so as to insert (a small power of)

the potential energy of the solution in the nonlinear estimates, so that we

can then perform the nonconcentration argument from [4] and extend our

solutions globally in time. Remark that the potential energy is ‖u‖2d/(d−2)

L
2d/(d−2)
x

,

which corresponds to the critical nature of the equation, as by Sobolev

embedding, H1
0 ↪→ L2d/(d−2).

We refer to [9], [10] for details on how to deal with fractional derivatives,

Besov spaces on domains and product-type estimates. (Alternatively, one may

proceed with interpolation as in [4].)

Remark A.1. Note that in proving Theorem 1.7 from Theorem 1.3, one

needs, for p > 2, an embedding Ḃ0,2
p ⊂ Lp on domains, which may be proved

directly or follows from a Mikhlin-Hörmander multiplier theorem from Alex-

opoulos. (See [9] and references therein.)

Having these tools at hand, we may proceed exactly as in Rd, provided

we have the right set of exponents.

• Case d = 3: Theorem 1.7 allows for the Strichartz triplet (q = 4, r = 12,

β = 1) and one may proceed like in the R3 case. This was already observed

in [3] and allows for a streamlined argument when compared to [4].

• Case d = 4: Theorem 1.7 allows for the Strichartz triplet (q = 11/5,

r = 22/3, β = 1). As by Sobolev embedding we have H1
0 ↪→ L4

x, we may

write

|u|2u ≤ |u|4/5|u|11/5 ∈ L∞t L5
x × L1

tL
5/3
x ⊂ L1

tL
2
x,

and we may proceed as in R4.

• Case d = 5: Theorem 1.7 allows for the Strichartz triplet (q = 2, r = 5,

β = 1). As by Sobolev embedding we have H1
0 ↪→ L

10/3
x , we may write

|u|4/3u ≤ |u|2|u|1/3 ∈ L1
tL

5/2
x × L∞t L10

x ⊂ L1
tL

2
x,

and we may proceed as in R5.

• Case d = 6: Theorem 1.7 allows for the Strichartz triplet (q = 2, r = 18/5,

β = 1). By Sobolev embedding Ḃ
1/3,2
18/5 ↪→ L4

x, we get u ∈ L2
tL

4
x which

provides a local Cauchy theory but without the potential energy factor.

However we may estimate

|u|u ∈ L2
tL

4
x × L∞t Ḃ

2/3,2
36/17 ⊂ L

2
t Ḃ

2/3,2
18/13,
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which is the dual endpoint Strichartz space. As we may estimate the Ḃ
2/3,2
36/17

norm of u in term of H1
0 and L3

x norms, we now have a good local Cauchy

theory, suitable to globalization in time.
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CNRS and Université Nice Sophia-Antipolis, Nice, France

E-mail : oana.ivanovici@unice.fr
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