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The Oort Conjecture on
lifting covers of curves

By Florian Pop

Abstract

We show that the conjecture of Oort on lifting covers of curves is true.

The main ingredients in the proof are a deformation argument in charac-

teristic p and (a special case of) a very recent result by Obus–Wewers. A

kind of boundedness result is given as well.

1. Introduction

The aim of this note is to present a proof of the (classical) Oort Conjecture,

which is a question about lifting Galois covers of curves from characteristic

p > 0 to characteristic zero. In one form or the other, this kind of question

might well be considered math folklore, and it was also well known that in

general the lifting is not possible. The problem was systematically addressed

and formulated by Oort [16] in the 1980’s, but see rather [17]. The general

context of the lifting question/problem is as follows: Let k be an algebraically

closed field of characteristic p > 0, and let W (k) be the ring of Witt vectors

over k. Let Y → X be a possibly ramified G-cover of complete smooth k-

curves, where G is a finite group. The lifting problem for the G-cover Y → X

is whether there exists a finite extension R of W (k) and a G-cover YR → XR of

complete smooth R-curves whose special fiber is the given G-cover Y → X. If

such a G-cover YR → XR exists, we say that the G-cover Y → X has a smooth

lifting, or that the lifting problem for the G-cover Y → X is solvable. The

lifting problem in general is not solvable, because over k there are curves of

genus g > 1 with huge automorphism groups (see, e.g., Roquette [19]), whereas

in characteristic zero, one has the Hurwitz bound 84(g − 1) for the order of

the automorphism group. The Oort conjecture on lifting curve covers asserts

roughly that the general obstruction to the solvability of the lifting problem

originates from the nature of G, and its simplest form is the following:
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Oort Conjecture. The lifting problem is solvable for all cyclic covers.

As we will see later, the above conjecture is equivalent to the following

more general statement, which is a generalization of Grothendieck’s lifting

theorem for tame covers:

(General) Oort Conjecture. The lifting problem is solvable for all

G-covers Y → X whose inertia groups are cyclic.

There is also the local Oort conjecture, which asserts that every finite cyclic

extension k[[t]] ↪→ k[[u]] has a smooth lifting; i.e., it is canonically the reduction

of a cyclic extension R[[T ]] ↪→ R[[U ]] for some finite extension R of W (k).

The local and global Oort conjectures are related as follows; see Fact 4.13,

where further equivalent forms of these conjectures are given: Let R be a finite

extension of W (k), and let XR be a complete smooth curve with special fiber

X. Then a given G-cover Y → X, y 7→ x, with cyclic inertia groups lifts to a

G-cover YR → XR of complete smooth R-curves if and only if (the maximal

p-power subextension of) the local extension k[[tx]] := “OX,x ↪→ “OY,y =: k[[ty]]

has smooth liftings over R for all y 7→ x, x ∈ X.

Notation. Let degp(D) be the different degree of the maximal p-power

subextension of k[[t]] ↪→ k[[u]], and let degp(Dx) be correspondingly defined

for k[[tx]] ↪→ k[[ty]] at each y 7→ x.

Theorem 1.1. The (General ) Oort Conjecture holds. Moreover, for ev-

ery positive integer δ, there exists an algebraic integer πδ ∈ Z such that for

every prime number p and every algebraically closed field k with char(k) = p,

in the above notation the following hold :

(1) Every cycle k[[t]] ↪→ k[[u]] with degp(D) ≤ δ has a smooth lifting over

R = W (k)[πδ].

(2) Let Y → X be a G-cover with cyclic inertia groups and degp(Dx) ≤ δ for all

x ∈ X . Then the G-cover Y → X has a smooth lifting over R = W (k)[πδ].

Historical note. The first evidence for the Oort Conjecture is the fact that

the conjecture holds for G-covers Y → X that have tame ramification only,

i.e., G-covers whose inertia groups are cyclic of the form Z/m with (p,m) = 1.

Indeed, the lifting of such G-covers follows from the famous Grothendieck ’s spe-

cialization theorem for the tame fundamental group; see, e.g., SGA I. The first

result that involved typical wild ramification was Oort–Sekiguchi–Suwa [21],

which tackled the case of Z/p-covers. It was followed by a quite intensive re-

search; see the survey article Obus [13] as well as the bibliography list at the

end of this note. Garuti [5] and [9] contain a lot of foundational work and

beyond that show that every G-cover Y → X has possibly nonsmooth liftings

but with a well-understood geometry. This aspect of the problem was revisited
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by Saidi [20], where among other things a systematic discussion of the (equiv-

alent) forms of the Oort Conjecture is given. The paper Green–Matignon [7]

contains further foundational work and gives a positive answer to the Oort

Conjecture in the case of inertia groups of the form Z/mpe with (p,m) = 1

and e ≤ 2, relying on/using ideas from the Sekiguchi–Suwa theory [22], [23].

In Corry [4], a completely new (p-adic) approach to the local Oort Conjecture

was proposed. The paper Bertin–Mézard [1] addresses the deformation theory

for covers, whereas Chinburg–Guralnick–Harbater [2], [3] initiated the study of

the so-called Oort groups and showed that the class of Oort groups is quite re-

strictive. Last but not least, the very recent result by Obus–Wewers [15] solves

the Oort Conjecture in the case the inertia groups are of the form Z/mpe for

(p,m) = 1 and e ≤ 3, and a case critical for the method of this note, when

the upper ramification jumps are subject to some explicit restrictions; see the

explanations in Remark 4.17 for details.

About the proof. Concerning technical tools, we freely use a few of the

foundational results from the papers mentioned above. The main novel tools

for the proof are Key Lemma 3.2 and its global form Theorem 3.6, and second,

Key Lemma 4.15, which is actually a special case of the main result Obus–

Wewers [15]; see Section 4 for precise details and references. All these results

will be used as “black boxes” in the proof of the Oort Conjecture, given in

Section 4. Concerning the idea of the proof, there is little to say: The point is

to first deform a given G-cover Y → X to a cover Yo → Xo over o = k[[$]] in

such a way that the ramification of the deformed cover has no essential upper

jumps as defined/introduced at the beginning of Section 3, then apply the

local-global principles, etc. I should also mention that the first variant of the

proof (January, 2012) was shorter, but it relied on model theoretical tools and

did not give any kind of bounds for the degree of the extension W (k) ↪→ R.

Acknowledgements. If my recollection is correct, during an MFO Work-

shop in 2003 or so, someone asked what should be the “characteristic p Oort

Conjecture,” but it seems that nobody ever followed up (successfully) on that

idea. My special thanks go to the referee for the careful reading of my manu-

script and his several comments and suggestions.

2. Reviewing well-known facts

Throughout this section, k is an algebraically closed field with positive

characteristic char(k) = p > 0. All the other fields will be field extensions of k;

in particular, they will be fields of characteristic p.

2.A. Reviewing higher ramification for cyclic extensions. (See, e.g., Serre

[24, IV].) Let OE ⊂ E be a discrete valuation ring with valuation v. Let

F |E be a finite Galois extension with Galois group Gal(F |E) such that the
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prolongations w of v to F have separable residue field extensions κ(w)|κ(v).

If T ⊂ Z denote the inertia, respectively decomposition, groups of w|v, and

E ↪→ FZ ↪→ F T ↪→ F denote the corresponding decomposition, respectively

inertia, subfields of F |E, then one has that [F : E] = [FZ : E] f(w|v) e(w|v),

where f(w|v) = [κ(w) : κ(v)] = (Z : T ) and e(w|v) = (wF× : vE×) = (T : 1)

are the residue degree, respectively the ramification index, of w|v. Finally, we

suppose that wF× = Z.

Recall that the lower ramification groups of w|v are defined as follows:

For every  ≥ −1, we set G := {σ ∈ Gal(F |E) | w(z) ≥ 0 ⇒ w(σz − z) > }
and call it the th lower ramification group of F |E at w|v. Then G = 1 for 

sufficiently large, and G−1 = Z, G0 = T , and G1 is the wild ramification group

of w|v, i.e., the Sylow p-group of T , where p = char
Ä
κ(v)

ä
> 0.

Let OF be the integral closure of OE in F . Then OF is a principal ideal

domain whose localizations at its maximal ideals q ⊂ OF are precisely the

valuation rings of the prolongations w|v of v to F . The first important fact

about the lower ramification groups (G) is Hilbert ’s different formula, which

gives the degree of the different Dv := DOF |OE of F |E at v in terms of the

orders of the lower ramification groups (see, e.g., Serre [24, IV]):

deg(Dv) = [F T : E ]
∞∑
=0

Ä
|G| − 1

ä
.

We denote by ρ the lower jumps for w|v, as being the numbers satisfying

Gρ 6= Gρ+1. In particular, setting −1 = −1 and 0 = 0, and denoting the

lower jumps for L|K by 0 ≤ 1 ≤ · · · ≤ r, one has that r = max {  | G 6= 1 }.
Now suppose that T = Z/peT is cyclic, where p = char

Ä
κ(v)

ä
. Then

G0 = G1 and every subgroup of T is a lower ramification group for F |E at

w|v; see Serre, [24, IV]. Hence all the nontrivial subgroups G1 ≥ · · · ≥ GeT of

T are higher ramification subgroups, and there are eT lower ramification jumps

1 ≤ · · · ≤ eT . Finally, the Hilbert’s different formula becomes

deg(Dv) = [F T : E ]

Ç
peT − 1 +

eT∑
ρ=1

(ρ − ρ−1)( |Gρ | − 1)

å
= [F T : E ]

Ç
peT − 1 +

eT∑
ρ=1

(ρ − ρ−1)(peT−(ρ−1) − 1)

å
.

We recall that the lower ramification subgroups behave functorially in the

base field, i.e., if E ⊆ E′ ⊂ F , for every  one has that G′ = G ∩ Gal(F |E′).
On the other hand, the lower ramification groups do not behave functorially

with respect to Galois sub-extensions. Therefore, one introduces the upper

ramification groups G
ı

for ı ≥ −1 of F |E at w|v, which behave functorially

under taking Galois sub-extensions; see Serre [24, IV].
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At least in the case that the inertia group T is cyclic T = Z/peT with

p = char
Ä
κ(v)

ä
as above, the formula that relates the lower ramification groups

G to the upper ramification groups G
ı

is explicit via Herbrand ’s formula; see,

e.g., Serre [24, IV, §3]. Namely, if ı0 := 0 and ı1 ≤ · · · ≤ ıeT are the upper

ramification jumps at w|v in F |E, then one has

ρ − ρ−1 = p ρ−1(ıρ − ıρ−1), ρ = 1, . . . , eT .

Thus in the case T = Z/peT with p = char
Ä
κ(v)

ä
as above, one gets

deg(Dv) = [F T : E ]

Ç
peT − 1 +

eT∑
ρ=1

(ıρ − ıρ−1)pρ−1(peT−(ρ−1) − 1)

å
= [F T : E ]

eT∑
ρ=1

(ıρ + 1)(pρ − pρ−1).

We conclude this subsection by recalling that in the above situation, i.e.,

if the residue field extension κ(w)|κ(v) is separable, the groups G and G
ı

do

not change under completion, and the ones for , ı ≥ 0 do not change under

unramified extensions.

2.B. Explicit formulas via Artin–Schreier–Witt Theory. Recall that the

Artin–Schreier–Witt theory gives a description of the cyclic p-power extensions

of a field E with char(E) = p > 0 via finite length Witt vectors as follows; see,

e.g., Lang [12], or Serre [24, IV]. Let T be an integrally closed domain over Fp,
and let We(T ) = {a := (a1, . . . , ae) | a1, . . . , ae ∈ T } be the Witt vectors of

length e over T . Then the Frobenius morphism Frob of T lifts to the Frobenius

morphism Frobe of We(T ), and one defines the Artin–Schreier–Witt operator

℘e := Frobe−−−Id of T . If T ↪→ T nr
is an ind-étale universal cover of T , one has

the Artin–Schreier–Witt exact sequence

0→We(Fp) = Z/pe−→We(T
nr

)
℘e−→We(T

nr
)→ 0

of sheaves on Et(T ). In particular, if Pic(T ) = 0, one gets a canonical isomor-

phism
We(T )/im(℘e)→ Hom

Ä
π1(T ),Z/pe

ä
,

which gives rise to a canonical bijection correspondence between the cyclic

subgroups 〈a〉 ⊂We(T )/im(℘e) and the integral étale cyclic extensions T ↪→ Ta
with Galois group a quotient of Z/pe by via

〈a〉 7→ Ta := T [x], where x = (x1, . . . , xe) and ℘e(x) = a.

Fact 2.1. In the above context, let T := E be a field with char(E) = p.

(1) For a = (a1, . . . , ae) an arbitrary Witt vector of length e over E, and

Ea|E as above, one has: [Ea : E] = pn if and only if a1 6∈ im(℘1); further, if

a1 ∈ im(℘1), then [Ea : E] = pm with m nonnegative and minimal such that

(a1, . . . , ae−m) ∈ im(℘e−m).



290 FLORIAN POP

Precisely, if 0 ≤ m < n and (a1, . . . , ae−m) = ℘e−m(c1, . . . , ce−m), then

choosing b = (b1, . . . , bm) such that

(0, . . . , 0, b1, . . . , bm) = (a1, . . . , ae)−−−℘e(c1, . . . , ce−m, 0, . . . , 0),

one has that Ea|E is actually the cyclic extension Eb|E of degree pm of E.

(2) Let v be a valuation of E with valuation ringO, residue fieldO → κ(v),

and value groups v(E). And for a ∈ E, let v(a) be its valuation, and if a ∈ O,

let a ∈ κ(v) be the residue of a. Given a = (a1, . . . , ae), and some m ≤ e,

set am := (a1, . . . , am). Then the behavior of v in the cyclic field extension

E ↪→ Ea satisfies the following:

(a) Suppose that v(a1), . . . , v(am) ≥ 0. Then v is not ramified in E ↪→ Eam ,

and v is totally split in E ↪→ Eam if and only if (a1, . . . , am) ∈ ℘m
Ä
κ(v)

ä
.

(b) Let m be minimal such that v(am) < 0 and v(am) is not divisible by p in

vE×. Then the (wild) inertia field of v is strictly contained in Eam .

We next have a closer look at the relationship between higher ramifica-

tion and Artin–Schreier–Witt theory. Let E, v be a discrete valued field with

char(E) = p > 0. Let F |E be a finite Galois extension and w|v a prolonga-

tion of v to F with inertia/decomposition groups T ≤ Z. Suppose that the

residue field extension κ(w)|κ(v) is separable, or equivalently, |T | = e(w|v),

where e(w|v) is the ramification index.

Then the classical Hilbert ramification theory works for w|v; i.e., the

lower/upper ramification groups and indices and the Hilbert different formula

are as above. Further, they are invariant under completions; i.e., if “F |“E is

the completion of F |E at w|v, then the lower/upper ramification groups and

indices of w|v in F |E and “F |“E are the same.

Since char(E) = p > 0, the completion “E of E is a Laurent power series

field “E = λ((t)), where λ is any maximal subfield of “E on which v is trivial,

and t is any uniformizing parameter of v, hence κ(v) ∼= λ (noncanonically).

Further, the same is true correspondingly for F ; i.e., “F = λF ((z)), etc. On

the other hand, after fixing an identification “E = λ((t)), let λ′|λ be the finite

separable extension of λ that is isomorphic to κ(w)|κ(v) under the field iso-

morphism κ(v) ∼= λ. Then using Hensel’s Lemma, it follows that λ′ can be

embedded in “F , and finally “F |“E becomes isomorphic to λ′((z)) |λ((t)), where

t, z are uniformizing parameters of v, respectively w, and λ′|λ is isomorphic

to κ(w)|κ(v).

We thus conclude that the lower/upper ramification groups G and G
ı

of

w|v are the same as the ones of λ′((z)) |λ((t)), and the ones for , ı ≥ 0 are the

same as the ones of λ((z)) |λ((t)).

We next have a closer look at the case where F |E is a Z/pe-extension.

Then F = Eq, where q = (q1, . . . , qe) ∈ We(E) is some Witt vector of length
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e over E, and T = Z/peT for some 0 ≤ eT ≤ e. (Formally correct it would be

pe−eTZ/peZ.) We will do the following:

• First, find sufficient conditions on q that imply κ(w)|κ(v) is separable.

• Second, relate the upper ramification jumps to some (almost uniquely de-

termined) Witt vectors over λ[t−1] called equivalent (quasi) standard forms

of q.

Definition/Remark 2.2. Let λ be a fixed field of characteristic p > 0.

(1) We say that a Witt vector p = (p1, . . . , pe) ∈ We

Ä
[λ[t−1]

ä
is in standard

form if each pi =
∑
ij aijt

−j ∈ λ[t−1] satisfies: p |j implies aij = 0 for all

1 ≤ i ≤ e and all j.

(2) Given q ∈We

Ä
λ((t))

ä
, an equivalent quasi standard form of q is any Witt

vector of the form p+++a with p ∈ We

Ä
λ[t−1]

ä
in standard form and a ∈

We(λ) such that q and p+++a are equivalent modulo im(℘e).

(3) We notice that the equivalent quasi standard form of q ∈ We

Ä
λ((t))

ä
is

unique modulo ℘e
Ä
We(λ)

ä
in the following sense: Let p+++a and p′+++a′ be

equivalent quasi standard forms of q. Then p = p′ and a−−−a′ ∈ ℘e
Ä
We(λ)

ä
.

Using the remarks above and the estimate for deg(Dv) at the end of Sec-

tion 2.A, following Garuti [6, Th. 1.1] and Thomas [25, Prop. 4.2] (see also

Obus–Priess [14] for assertions concerning the upper jumps ı1 ≤ · · · ≤ ıeT ),

one has the following:

Fact 2.3. For q = (q1, . . . , qe) ∈We(E), let F := Eq be the corresponding

p-power cyclic extension and w|v be a prolongation of v to F . Let “E = λ((t))

and “F = λF ((z)), with λF = λ′ if the residue field extension κ(w)|κ(v) is

separable, be as above. Then one has

(1) Set δ1 :=max{−v(q1),0}, and define inductively δi :=max{pδi−1,−v(qi)}
for 1 < i ≤ e. Let δ0 = bδe/(p − 1)c, and let λ0 := Frobδ0(λ) be the image of

λ under the δ0 power of the Frobenius morphism. If q is defined over λ0((t)),

the following hold:

(a) The residue field extension κ(w)|κ(v) of F |E is separable, and the Hilbert

higher ramification theory works for F |E as indicated in Section 2.A.

(b) There exists a quasi standard equivalent form p+++a ∈We

Ä
λ[t−1]

ä
of q, and

moreover, the entries pi ∈ λ[t−1] of p = (p1, . . . , pe) satisfy the following:

◦ If δi = 0, then pi = 0.

◦ Let δi > 0. If p | δi, then deg
Ä
pi(t

−1)
ä
< δi (possibly, pi = 0). And

if p 6 | δi, then deg
Ä
pi(t

−1)
ä

= δi = −v(qi) and qi and pi have equal

leading terms.

(2) Suppose that κ(w)|κ(v) is separable and q has a quasi standard form

p+++a ∈We

Ä
λ[t−1]

ä
over λ((t)). Setting p =: (p1, . . . , pe), we define rT = e+1 if
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pi = 0 for all 1 ≤ i ≤ e and rT := min{i | pi(t−1) 6= 0} otherwise. Then setting

eT := e − rT + 1 and letting Fr
T
−1|E be the unique subextension of F |E of

degree prT−1, one has

(a) w|v is unramified in E ↪→ Fr
T
−1 and “Fr

T
−1 = λ′((t)) inside “F = λ′((z)).

(b) w|v is totally wildly ramified in Fr
T
−1 ↪→ F and has upper ramification

jumps

ıα = max
¶
pıα−1,deg

Ä
pα+r

T
−1

ä©
, α = 1, . . . , eT (where ı0 = 0).

(c) The degree of the different at w|v in E ↪→ F is given by

deg(Dv) = prT−1
eT∑
α=1

(ıα + 1)(pα − pα−1).

2.C. Local criterion for good reduction. Let k be an algebraically closed

field of characteristic p > 0, and let o be a complete discrete valuation ring with

quotient field κ̂ = Quot(o) and residue field k. Let A = o[[T ]] be the power

series ring in the variable T over o; hence A is a two-dimensional complete

regular ring with maximal ideal (π, T ) and residue field A → A/(π, T ) = k.

Further, R := A[π−1] = A ⊗o κ̂ is the ring of power series in T over κ̂ hav-

ing vκ̂-bounded below coefficients and satisfying: R is a Dedekind ring with

Spec(R) = Spec(A)\V (π) in bijection with the points of the open rigid disc

X of radius 1 over the complete valued field κ̂. Finally, A := A/(π) = k[[t]] is

the power series ring in the variable t := T
Ä
mod (π)

ä
, thus a complete discrete

valuation ring.

Let K := Quot(A) = Quot(R) and K := Quot(A) = k((t)) be the fraction

fields of A, respectively A. Let K ↪→ L be a finite separable field extension,

and let B ⊂ S be the integral closures of A ⊂ R in the field extension K ↪→ L.

Since K ↪→ L is finite separable, it follows that B is a finite A-module, and S
is a finite R-module, in particular, a Dedekind ring; see e.g., Serre [24, I] for

this finiteness assertion.

Next let r1, . . . , rr be the prime ideals of B above (π), say with residue

fields κ(ri) |κ(π). Then each ri has height one, and the localizations Bri are

precisely the valuation rings of L above the discrete valuation ring A(π) of K.

And since B is a finite A-module, thus B(π) is a finite A(π) module as well, the

fundamental equality holds (see e.g., Serre [24, I]):

[L : K] =
r∑
i=1

e(ri|π) · f(ri|π),

where e(ri|π) and f(ri|π) = [κ(ri) : κ(π)] is the ramification index, respectively

the residual degree at ri |π. Hence if vπ is the discrete valuation of K with

valuation ring A(π), one has K = Quot
Ä
A/(π)

ä
= κ(π) = κ(vπ), and the

following are equivalent:
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(i) There exists a prolongation vL of vπ to L such that [L : K] = [L : K],

where L := κ(vL).

(ii) The ideal r := πB is a prime ideal of B, or equivalently, π is a prime element

of B.

If the above equivalent conditions (i) and (ii) hold, then Br is the valuation

ring of vL , and one has κ(r) = Quot
Ä
B/(π)

ä
= κ(vL) = L. Further, vL is the

unique prolongation of vπ to L, and r = πB is the unique prime ideal of B
above the ideal πA of A. Finally, we say that vπ is totally inert in K ↪→ L if

κ(vL)|κ(vπ) is separable and conditions (i) and (ii) hold.

One has the following criterion for good reduction, which is a special

case of the theory developed in Kato [11, §5]; see Green–Matignon [7, §3,

especially 3.4] for details.

Fact 2.4. In the above notation, suppose that vπ it totally inert in K ↪→ L.

Let A ↪→ B be the integral closure of A = k[[t]] = A/(π) in the field extension

K ↪→ L. Let deg(DS|R) and deg(DB|A) be the different degrees of the exten-

sions of Dedekind rings R ↪→ S, respectively A ↪→ B. Then one always has

deg(DS|R) ≥ deg(DB|A), and the following are equivalent:

(i) deg(DS|R) = deg(DB|A).

(ii) B = o[[Z]] for some Z ∈ B and B = B/(π) = k[[z]], where z = Z
Ä
mod (π)

ä
.

3. The characteristic p Oort Conjecture

In this section, k is a fixed algebraically closed field with char(k) = p > 0.

Remark/Definition 3.1. (1) In the context and notation from Section 2.A,

suppose that char(E) = p > 0, and the finite Galois extension F |E together

with the discrete valuations w|v satisfy conditions (i) and (ii) from that sec-

tion. Then the Hilbert ramification theory applies to F |E endowed with w|v.

Moreover, supposing that the inertia group T of w|v is cyclic, say T = T1×T0

with T0 = Z/peT and T1 = Z/m of order prime to p, it follows that F T1 |F T is a

cyclic Z/peT -extension, which is at the same time the unique maximal totally

wildly ramified subextension of F |F T . Then setting ı0 = 0, by Fact 2.3(2), one

has that the higher ramification jumps ı1 ≤ · · · ≤ ıeT of w|v in F T1 |F T satisfy

pıρ−1 ≤ ıρ for 0 < ρ ≤ eT , and pıρ−1 < ıρ if and only if p 6 |ıρ.

Hence for each ρ = 1, . . . , eT , the division of ıρ − pıρ−1 by p gives

ıρ − pıρ−1 = pqρ + ερ,

with 0 ≤ qρ, 0 ≤ ερ < p. Thus 0 < ερ if and only if (p, ıρ) = 1 if and only if

pıρ−1 < ıρ. We call qρ the essential part of the upper jump for w|v at ρ, and

if 0 < qρ, we say that ıρ is an essential upper jump for w|v in L|K and that ρ

is an essential upper index for w|v in L|K.
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(2) Let R ↪→ S be any generically finite Galois extension of Dedekind

k-algebras with cyclic inertia groups, and let K := Quot(R) ↪→ Quot(S) =: L
be the corresponding Galois extension of their quotient fields. For a maximal

ideal p ∈ Spec(R) and q ∈ Spec(S) above p, let wq and vp be the valuations

of L, respectively K defined by the local rings of q, respectively p. Thus wq

is a prolongation of vp to L. We we will say that R ↪→ S has (no) essential

ramification jumps at p if the following hold: κ(q)|κ(p) is separable and there

are (no) essential upper ramification jumps for wq|vp in K ↪→ L. And we say

that R ↪→ S has no essential ramification if there is no essential ramification

at any maximal ideal p ∈ Spec(R). Otherwise we will say that R ↪→ S has

essential ramification.

In the remaining part of this subsection, we will work in a special case

of the situation presented in Section 2.C, which is as follows: Let o := k[[$]]

be the power series ring in the variable $ 6= t over k, and m := $ o its

valuation ideal, and κ̂ := k(($)) = Quot(o). Let further A := k[[$, t]] = o[[t]]

and K := k(($, t)) := Quot(A) be its field of fractions; thus, in particular,

A = A/($) = k[[t]]. We further consider R := A[$−1] = A ⊗o κ̂, the ring of

power series in t over κ̂ having vκ̂-bounded coefficients, and notice that R is a

Dedekind ring having Spec(R) = Spec(A)\V ($) in bijection with the points of

the open rigid disc of radius 1 over the complete valued field κ̂. In particular,

the elements x ∈ m will be interpreted as κ̂-rational points of SpecR. Finally,

for a finite separable field extension K ↪→ L, we let B ⊂ S be the integral

closures of A ⊂ R in the finite field extension K ↪→ L. Hence B is finite

A-module, and S is a finite R-module, in particular, a Dedekind ring.

In the above context, let A = k[[t]] ↪→ k[[z]] =: B be a cyclic Z/pe-
extension with upper ramification jumps ı1 ≤ · · · ≤ ıe. Let e0 be the number

of essential upper jumps, which could be zero. We set r0 := 1, and if there exist

essential upper jumps, i.e., 0 < e0, let r1 ≤ · · · ≤ re0 be the essential upper

indices for L|K. Thus we get two finite increasing sequences: first, (ri)0≤i≤e0
with r0 := 1 and re0 ≤ e, and second, (di)0≤i≤e0 with d0 := 1 and di := di−1+qi
for 0 < i ≤ e0.

Key Lemma 3.2 (Characteristic p local Oort conjecture). In the above

notation, let A = k[[t]] ↪→ k[[z]] =: B be a cyclic Z/pe-extension with upper

ramification jumps ı1 ≤ · · · ≤ ıe and δ0 := bıe/(p− 1)c. In the above notation,

set N := 1 + q1 + · · ·+ qe and let x1, . . . , xN ∈ mo be distinct elements that are

pδ0-powers. Then there exists a cyclic Z/pe-extension K ↪→ L such that the

integral closures A ↪→ B of A, respectively R ↪→ S of R, in the field extension

K ↪→ L satisfy

(1) B = k[[$,Z]] for some Z ∈ B, and A/($) ↪→ B/($) is Z/pe-isomorphic

to A ↪→ B.
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(2) The canonical morphism R ↪→ S has no essential ramification and is

ramified only at the points yµ ∈ SpecS above the points xµ ∈ SpecR,

1 ≤ µ ≤ N .

(3) For each 1 < µ, consider di such that di−1 < µ ≤ di. Set e1 = e and

eµ = e − ri + 1 for 1 < µ. Then the order of the inertia group Tµ at

yµ 7→ xµ is |Tµ| = peµ and the upper ramification jumps (ıµα)1≤ρ≤eµ are

given by

(i) ı1α = pı1,α−1 + εα for 1 ≤ α ≤ e1;

(ii) ıµα = pα − 1 for 1 < µ ≤ N and 1 ≤ α ≤ eµ.

(4) In particular, the upper ramification jumps ıµ := (ıµ1, . . . , ıµ,eµ) at each

yµ 7→xµ depend only on the initial upper ramification jumps ı :=(ı1, . . . , ıe),

1 ≤ µ ≤ N.

The proof of Key Lemma 3.2 will be carried out in Sections 3.A, 3.B, and

3.C. We begin by recalling that in the notation from Section 2.B, there exists

p =
Ä
p1(t−1), . . . , pe(t

−1)
ä
, say in standard form, such that L = Kp. The

integral closure A ↪→ B of A = k[[t]] in the field extension K ↪→ L is of the

form B = k[[z]] for any uniformizing parameter z of L = Quot(B). And the

degree of the different Dv := DB|A is deg(Dv) =
∑e
ρ=1(ıρ + 1)(pρ − pρ−1).

3.A. Combinatorics of the upper jumps. Given the sequence of upper ram-

ification jumps ı = (ı1, . . . , ıe), recall the notation introduced before Key

Lemma 3.2; namely, e0 is the number of essential upper jumps, which could

be zero. We set r0 := 1, and if e0 > 0, letting r1, . . . , re0 be the essential

upper jumps, we get an increasing sequence (ri)0≤i≤e0 . For technical reasons

(to simplify notation) we set re0+1 := e + 1 and call it the improper upper

index. Note that if e0 = 0, then re0+1 would become r1 := e + 1. Further,

recalling the finite strictly increasing sequence (di)0≤i≤e0 , defined by d0 := 1,

di := di−1 + qri for 0 < i ≤ e0, we notice that N := 1 + q1 + · · ·+ qe = de0 .

Construction 3.3. First, for technical reasons, set θµ0 =0 for 1≤µ≤N . In

the above notation/context we construct an N × e matrix (θµρ)1≤µ≤N, 1≤ ρ≤ e
as follows:

• If e0 = 0, then N = 1, and we define the 1 × e matrix by θ1ρ := ıρ,

1 ≤ ρ ≤ e.
• If e0 > 0, thus N > 1, we define

(a) θ1ρ = pθ1,ρ−1 + ερ for 1 ≤ ρ ≤ e;
(b) for i = 1, . . . , e0 and di−1 < µ ≤ di, define

— θµρ = 0 for 1 ≤ ρ < ri,

— θµρ = pθµ,ρ−1 + p− 1 = p ρ−ri+1 − 1 for ri ≤ ρ ≤ e.

Notice that in the case e0 > 0, one has: Let ρ with 1 ≤ ρ ≤ e be given.

Consider the unique 1 ≤ i ≤ e0 such that ri ≤ ρ < ri+1. (Recall the if ri = e,
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then ri+1 := e + 1 by the convention above!) Then for all µ with 1 ≤ µ ≤ N ,

one has: θµρ 6= 0 if and only if µ ≤ di.

The fundamental combinatorial property of (θµρ)1≤µ≤N, 1≤ ρ≤ e is given

by the following:

Lemma 3.4. For 0 ≤ i ≤ e0 and ri ≤ ρ < ri+1, the following equality

holds : ıρ + 1 =
∑

1≤µ≤di(θµρ + 1).

Proof. The proof follows by induction on ρ = 1, . . . , e. Indeed, if e0 = 0,

then N = 1, and there is nothing to prove. Thus supposing that e0 > 0, one

argues as follows:

• The assertion holds for ρ = 1: First, suppose that r1 = 1, thus ı1 is

an essential upper jump. Since ρ = 1, it follows that i = 1 is the unique

index i for which ri ≤ ρ < ri+1. Hence the sum in the right-hand side is

taken over 1 ≤ µ ≤ d1, where d1 = 1 + q1. Further, by the definitions one

has: θ11 = ε1 and θµ1 = p − 1 for 1 < µ ≤ d1, and ı1 = pq1 + ε1. Thus

ı1 + 1 = pq1 + ε1 + 1 = (ε1 + 1) +
∑

1<µ≤d1
Ä
(p− 1) + 1

ä
=
∑

1≤µ≤d1(θµ1 + 1).

Second, suppose that 1 < r1. Then ı1 is not an essential upper jump, i.e.,

ı1 = ε1 = θ11, and i = 0 is the unique index i for which ri ≤ ρ < ri+1. Hence

di = d0 = 1, and the right-hand sum is
∑

1≤µ≤d0(θµ1 + 1) = θ11 + 1, and the

equality of the Lemma 3.4 becomes obvious in this case.

• If the assertion of Lemma 3.4 holds for ρ < e, the assertion also holds

for ρ+ 1; indeed, let i be such that ri ≤ ρ < ri+1.

Case 1: ρ+1 < ri+1. Then ri ≤ ρ+1 < ri+1 and, in particular, ρ+1 is not

an essential jump index. Hence by definitions one has that ıρ+1 = pıρ + ερ+1

with 0 ≤ ερ+1 < p. On the other hand, by the induction hypothesis we have

that ıρ = θ1ρ +
∑

1<µ≤di(θµρ + 1). Hence taking into account the definitions of

θµ,ρ+1, we conclude the proof in Case 1 as follows:

ıρ+1 + 1 = pıρ + ερ+1 + 1

= p
∑

1≤µ≤di
(θµρ + 1) + ερ+1 + 1

= p
(
θ1ρ +

∑
1<µ≤di

(θµρ + 1)
)

+ ερ+1 + 1

= (pθ1ρ + ερ+1 + 1) +
∑

1<µ≤di

Ä
(pθµρ + p− 1) + 1

ä
= (θ1,ρ+1 + 1) +

∑
1<µ≤di

(θµ,ρ+1 + 1)

=
∑

1≤µ≤di
(θµ,ρ+1 + 1), as claimed.
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Case 2: ρ + 1 = ri+1. Then ρ + 1 is an essential jump index; thus by

definitions one has: ıρ+1 = pıρ+pqρ+1 +ερ+1 with 0 < qρ+1 and 0 < ερ+1 < p,

di+1 = di + qρ+1, ri+1 ≤ ρ + 1 < ri+2. On the other hand, by the induction

hypothesis one has ıρ = θ1ρ+
∑

1<µ≤di(θµρ+1). Therefore, using the definitions

of θµ,ρ+1 and reasoning as above, we get

ıρ+1 + 1 = pıρ + pqρ+1 + ερ+1 + 1

= p
(
θ1ρ +

∑
1<µ≤di

(θµρ + 1)
)

+ pqρ+1 + ερ+1 + 1

= (pθ1ρ + ερ+1 + 1) +
∑

1<µ≤di
(pθµρ + p) + pqρ+1

= (θ1,ρ+1 + 1) +
∑

1<µ≤di

Ä
(pθµρ + p− 1) + 1

ä
+

∑
di<µ≤di+1

Ä
(p− 1) + 1

ä
= (θ1,ρ+1 + 1) +

∑
1<µ≤di

(θµ,ρ+1 + 1) +
∑

di<µ≤di+1

(θµ,ρ+1 + 1)

=
∑

1≤µ≤di+1

(θµ,ρ+1 + 1), as claimed.

This completes the proof of Lemma 3.4. �

3.B. Deforming ramification. In the context of Key Lemma 3.2, we intro-

duce notation as follows: Let κ̂ ↪→ l be an algebraic closure of κ̂ and ol its

valuation ring, and let v be the prolongation of the canonical valuation of κ̂ to

l. Hence v(κ̂) = Z and v(l) = Q. Further, recall that δ0 := bıe/(p − 1)c, and

let o0 := k[[tp
δ0 ]], and m0 its valuation ideal, and κ̂0 = Quot(o0) = k((tp

δ0 )). In

particular, since k is algebraically closed, it follows that κ̂0 = Frobδ0(κ̂). Since

each xµ ∈ mo is a pδ0-power, it follows that actually one has xµ ∈ m0 ⊂ m; in

particular, v(xµ) ≥ pδ > 0.

Let k[[t]] ↪→ k[[z]] be the Z/pe-cyclic extension given in Key Lemma 3.2

with upper ramification jumps ı1 ≤ · · · ≤ ıe. Then setting K = k((t)) and

L = k((z)), in the notation introduced in Section 2.B, there exists a Witt

vector p =
Ä
p1(t−1), . . . , pe(t

−1)
ä

over k((t)) such that L = Kp, and since k is

algebraically closed, hence We(k) = ℘e
Ä
We(k)

ä
, we can/will suppose that p is

in standard form as introduced and discussed before Fact 2.3; hence

ıρ = max{pıρ−1, deg
Ä
pρ(t

−1)
ä
}, ρ = 1, . . . , e .

Next recall that in the notation an context from Construction 3.3, for every

1 ≤ ρ ≤ e, there exists a unique ri such that ri ≤ ρ < ri+1. And for such a ρ,

by Lemma 3.4, one has that

ıρ = θ1ρ +
∑

1<µ≤di
(θµρ + 1).
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Since k is algebraically closed, thus every pρ(t
−1) is a product of distinct lin-

ear factors, one can write each pρ(t
−1) in k[t−1] (nonuniquely) as a prod-

uct pρ(t
−1) =

∏
1≤µ≤N pµρ(t

−1) whose degrees satisfy deg
Ä
p1ρ(t

−1)
ä
≤ θ1ρ,

deg
Ä
pµρ(t

−1)
ä
≤ θµρ + 1 for 1 < µ ≤ di, and pρ = 1 for di < µ ≤ N . Notice

also that if pıρ−1 < ıρ, then ıρ = deg
Ä
pρ(t

−1)
ä
. Hence by Lemma 3.4 it follows

that in this situation all of the above inequalities are actually equalities; i.e.,

deg
Ä
p1ρ(t

−1)
ä

= θ1ρ, deg
Ä
pµρ(t

−1)
ä

= θµρ + 1 for 1 < µ ≤ di.
Coming back to the context of Key Lemma 3.2, we set tµ := t−xµ ∈ o0[t]

for every µ = 1, . . . , N and consider permissible liftings Qµρ(t
−1
µ ) ∈ o0[t−1

µ ] of

pµρ(t
−1) ∈ k[t−1] under the specialization homomorphism o0[t−1

µ ] → k[t−1],

which means that Qµρ(t
−1
µ ) satisfy

(†) deg
Ä
Q1ρ

ä
≤θ1ρ, deg

Ä
Qµρ
ä
≤θµρ+1 for 1<µ≤di, Qµρ=1 for di<µ≤N.

We further consider the following resulting Witt vector of length e over K:

(††) Q := (Q1, . . . , Qe) ∈We(K), where Qρ :=
∏
µQµρ for ρ = 1, . . . , e

and consider the corresponding cyclic field extension L := KQ. Let A ↪→ B
be the normalization of A in K ↪→ L. Since A = k[[$, t]] is Noetherian and

K ↪→ L is separable, it follows that B is a finite A-algebra, thus Noetherian.

And since A is local and complete, so is B.

We next take a closer look at the branching in the finite extension of

o-algebras A ↪→ B, where o := k[[$]]. In order to do so, we introduce geometric

language as follows: X = SpecA and Y = SpecB, hence A ↪→ B defines a finite

o-morphism Y → X . Further, we denote by Yη := SpecS → SpecR =: Xη
and Ys := SpecB/($)→ SpecA/($) =: Xs the generic fiber, respectively the

special fiber, of Y → X . In particular, Xs = SpecA and Ys → Xs is a finite

morphism.

We notice that since A = k[[$, t]] is a two-dimensional local regular ring,

X is a two-dimensional regular scheme. Therefore, the branch locus of Y→X
is of pure co-dimension one. Thus to describe the branching behavior of Y→X ,

one has to describe the branching at the generic point ($) of the special fiber

Xs ↪→ X of X and at the closed points x of the generic fiber Xη ↪→ X of X .

The branching at ($). Recall that K ↪→ L is defined as a cyclic extension

by Q := (Q1, . . . , Qe), where each Qρ is of the form Qρ =
∏
µQµρ(t

−1
µ ) with

Qµρ(t
−1
µ ) ∈ o[t−1

µ ] ⊂ A[t−1
x1 , . . . , t

−1
xN

]. Since $ does not divide tµ = t − xµ in

the factorial ring A, it follows that t−1
µ ∈ A($), hence A[t−1

x1 , . . . , t
−1
xN

] ↪→ A($).

Thus, Qρ ∈ A($) for 1 ≤ ρ ≤ e, hence $ is not branched in K ↪→ L by the

first part of Fact 2.1(2)(a). Moreover, since (Q1, . . . , Qe) 7→ (p1, . . . , pe) under

the specialization homomorphism A[[t−1
x1 , . . . , t

−1
xN

]] ↪→ A($) → κ($) = K and

p1(t−1) does not lie in ℘(K), it follows by the second part of Fact 2.1(2)(a) that
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Gal(L|K) is contained in the decomposition group of v$. In other words, $ is

totally inert in K ↪→ L. In particular, Y → X is étale above $, and moreover,

the special fiber Ys → Xs of Y → X is reduced, irreducible, and generically it

is the Z/pe-cyclic extension K ↪→ L.

The branching at the points x of the generic fiber Xη = SpecR. First, let

x ∈ Xη be a closed point different from x1, . . . , xN , and let Ox be the local

ring of Xη at x. Then tµ := t − xµ ∈ O×x , because x 6= xµ, hence t−1
µ ∈ Ox as

well. Therefore Qµρ ∈ Ox for all µ and ρ, thus finally Q1, . . . , Qe ∈ Ox. Hence

by the first part of Fact 2.1(2)(a), it follows that x is not branched in the field

extension K ↪→ L.

It is therefore left to analyze the branching behavior of Yη → Xη at the

closed points x1, . . . , xN ∈ Xη. In this process we will also compute the contri-

bution of the different of K ↪→ L at the point xµ to the total different DS|R for

µ = 1, . . . , N . Let vµ be the tµ-adic valuation of K, and let wµ|vµ be a fixed pro-

longation of vµ to L. Finally let Kµ := κ̂((tµ)) be the completion of K at vµ. For

fixed µ, setting aν := xµ−xν , one has that aν ∈ m0 and a 6= 0, and tν = tµ−aν .

Hence tν is a vµ-unit. In particular, t−1
ν ∈ κ̂0[[tµ]] and κ̂0[t−1] ⊂ κ̂0[[tµ]]. Hence

since Qνρ(t
−1
ν ) ∈ κ̂0[t−1

ν ], it follows that Qνρ(t
−1
ν ) ∈ κ̂0[[tµ]] for every ν 6= µ.

Thus ηµρ :=
∏
ν 6=µQνρ(t

−1
ν ) ∈ κ̂0[[tµ]] is itself a power series in tµ over κ̂0 such

that Qρ = ηµρQµρ inside κ̂0((tµ)). Thus we conclude that

(∗) Q = (Q1, . . . , Qe) ∈We

Ä
κ̂0((tµ))

ä
.

Further, since vµ(ηµρ) ≥ 0 and vµ(Qµρ) = −deg
Ä
Qµρ(t

−1
µ )
ä
, we see that

the Witt vector Q = (Q1, . . . , Qe) viewed over Kµ = κ̂((tµ)) has entries Qρ

that for 1 ≤ ρ ≤ e satisfy

(∗∗) −vµ(Qρ) = −v(ηµρQµρ) = −vµ(ηµρ)− vµ(Qµρ) ≤ deg
Ä
Qµρ(t

−1
µ )
ä
.

Thus setting δµ1 := max{−vµ(Q1), 0} and δµρ := max{−vµ(Qρ), pδµ,ρ−1} for

1 < ρ ≤ e, it follows by assertion (†) above and the properties of the (θµρ)ρ
(precisely, that 0 < θ1,1 < p and pθ1,ρ−1 ≤ θ1ρ, and 0 < θµ,ρ−1 implies

θµρ+1 = p(θµ,ρ−1+1) for µ > 1) that δ1e ≤ θ1e and δµe ≤ θµe+1 for 1 < µ ≤ N .

Thus δµ := bδµe/(p− 1)c ≤ bıe/(p− 1)c =: δ0; hence one gets

κ̂0 = Frobδ0(κ̂) ⊆ Frobδµ(κ̂) =: κ̂µ ⊆ κ̂,

and thus the Witt vector Q∈We(K) is defined over κ̂µ((tµ))⊂ κ̂((tµ))=Kµ.

Therefore recalling that wµ|vµ is a prolongation of vµ of L, it follows

by Fact 2.3(1) that the residue field extension κ(wµ)|κ(vµ) is separable,1 and

Q has quasi standard forms Pµ+++aµ with Pµ ∈ We

Ä
κ̂[t−1

µ ]
ä

and aµ ∈ We(κ̂).

Further, setting Pµ := (Pµ1, . . . , Pµe), it follows that deg
Ä
Pµρ
ä
≤ −vµ(Qρ) for

1Actually, κ(vµ) = κ̂ by the fact that xµ is κ̂-rational point of Xη.
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all ρ. Thus using (∗∗) above, it follows that deg
Ä
Pµρ(t

−1
µ )
ä
≤ deg

Ä
Qµρ(t

−1
µ )
ä

for all ρ = 1, . . . , e.

In order to announce the conclusion of these preparations, set rµ := e+ 1

if all Pµρ(t
−1
µ ) are constant, rµ =: 1 if Pµ1(t−1

µ ) is nonconstant, and otherwise,

let 1 < rµ ≤ e be minimal such that Pµρ(t
−1
µ ) is constant for all 1 ≤ ρ < rµ.

Finally, let K ↪→ Lrµ−1 be the unique subextension of K ↪→ L of degree prµ−1.

Lemma 3.5. In the above notation, wµ is not ramified in K ↪→ Lrµ−1 and is

totally ramified in Lrµ−1 ↪→ L having upper ramification jumps (ıµα)1≤α≤e−rµ+1

satisfying ıµα ≤ θµ,α+rµ−1.

Proof. Applying Fact 2.3(2) to the quasi standard form Pµ+++aµ of Q,

the only assertion left to be proved is that ıµα ≤ θµ,α+rµ−1 holds for all

1 ≤ α ≤ e− rµ + 1. For that proof, recall that the degrees of Pµρ and Qµρ are

related by deg
Ä
Pµρ(t

−1
µ )
ä
≤ deg

Ä
Qµρ(t

−1
µ )
ä
.

First, suppose that µ= 1. Then, by (†), one has deg
Ä
Q1ρ(t

−1
µ )
ä
≤ θ1ρ for

all ρ = 1, . . . , e. Thus deg
Ä
P1ρ(t

−1
µ )
ä
≤ deg

Ä
Q1ρ(t

−1
µ )
ä
≤ θ1ρ, and we are done.

Second, in the notation from Construction 3.3, suppose that di−1<µ≤di.
Then Qµρ=1 for ρ<ri, and deg

Ä
Qµρ(t

−1
µ )
ä
≤ θµρ+1 = p ρ−ri+1 for ri ≤ ρ ≤ e.

Thus for ri ≤ ρ ≤ e, we have: First, deg
Ä
Pµρ(t

−1
µ )
ä
≤ deg

Ä
Qµρ(t

−1
µ )
ä
≤ p ρ−ri+1

and second, deg
Ä
Pµρ(t

−1
µ )
ä

is prime to p, because Pµ := (Pµ1, . . . , Pµe)+++aµ is

a quasi standard form of Q. Hence at least one of the last two inequalities is

strict; thus deg
Ä
Pµρ(t

−1
µ )
ä
≤ p ρ−ri+1−1 = θµρ for ri ≤ ρ ≤ e. This concludes

the proof of the Lemma 3.5. �

3.C. Finishing the proof of Key Lemma 3.2. Recall that tµ is the canonical

uniformizing parameter at xµ, and let vµ be the tµ-adic valuation of K. Let

further Dvµ be the local part at vµ of the global different DS|R of the extension

of Dedekind rings R ↪→ S. Then by the Hilbert ramification theory one has

deg(DS|R) =
N∑
µ=1

deg(Dvµ).

In order to compute deg(Dvµ), recall that if Tµ ⊆ Z/pe is the inertia

group at some prolongation of vµ to L, in the notation from Lemma 3.5, one

has: |Tµ| = pe−rµ+1 and therefore rµ = e + 1 if and only if |Tµ| = 1 if and

only if vµ is unramified in K ↪→ L if and only if deg(Dvµ) = 0. Equivalently,

rµ ≤ e if and only if vµ has ramification in K ↪→ L, and if so, vµ is unramified

in K ↪→ Lrµ−1, and vµ is totally (wildly) ramified in Lrµ−1 ↪→ L with upper

ramification jumps (ıµα)1≤α≤e−rµ+1 satisfying ıµα ≤ θµ,α+rµ−1. We further

notice that in the notation from Construction 3.3, one has: Consider di such

that di−1 < µ ≤ di, and consider the corresponding ri (which satisfies θµρ = 0
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for ρ < ri and 0 < θµρ for ri ≤ ρ ≤ e). Then by the property (†) above of

deg
Ä
Qµρ
ä

and the inequality deg
Ä
Pµρ(t

−1
µ )
ä
≤ deg

Ä
Qµρ(t

−1
µ )
ä
, one gets that

ri ≤ rµ. Finally, using the formula for deg(Dvµ) given in Section 2(A), we

obtain the following estimates:

deg(Dvµ) = [LTµ : K ]

e−rµ+1∑
α=1

(ıµα + 1)(pα − pα−1)

= prµ−1
e−rµ+1∑
α=1

(ıµα + 1)(pα − pα−1)

=

e−rµ+1∑
α=1

(ıµα + 1)(prµ+α−1 − prµ+α−2)

≤
e−rµ+1∑
α=1

(θµ,α+rµ−1 + 1)(prµ+α−1 − prµ+α−2)

=
e∑

ρ=rµ

(θµρ + 1)(p ρ − p ρ−1)

≤
e∑

ρ=ri

(θµρ + 1)(p ρ − p ρ−1).

Thus recalling that N = 1 + q1 + · · · + qe0 and d0 = 1, di = di−1 + qi for

1 ≤ i ≤ e0, and further, by Lemma 3.4 that
∑

1≤µ≤di (θµρ+ 1) = ıρ+ 1, we get

deg(DS|R) =
∑

1≤µ≤N
deg(Dvµ) = deg(Dv1) +

∑
1≤i≤e0

∑
di−1<µ≤di

deg(Dvµ)

≤
∑

1≤ρ≤e
(θ1ρ + 1)(pρ − pρ−1) +

∑
1≤i≤e0

∑
di−1<µ≤di

∑
ri≤ρ≤e

(θµρ + 1)(pρ − pρ−1)

=
∑

1≤ρ≤e
(θ1ρ + 1)(pρ − pρ−1) +

∑
1≤i≤e0

∑
ri≤ρ<ri+1

∑
d0<µ≤di

(θµρ + 1)(pρ − pρ−1)

=
∑

0≤i≤e0

∑
ri≤ρ<ri+1

Ä
(θ1ρ + 1) +

∑
1<µ≤di

(θµρ + 1)
ä
(pρ − pρ−1)

=
∑

0≤i≤e0

∑
ri≤ρ<ri+1

∑
1≤µ≤di

(θµρ + 1)(pρ − pρ−1)

=
∑

0≤i≤e0

∑
ri≤ρ<ri+1

(ıρ + 1)(pρ − pρ−1)

=
∑

1≤ρ≤e
(ıρ + 1)(pρ − pρ−1)

= deg(DB|A),
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thus concluding that deg(DS|R)≤deg(DB|A). Since by Fact 2.4, the inequality

deg(DS|R)≥ deg(DB|A) always holds, it follows that deg(DS|R)=deg(DB|A),

and we conclude the proof of Key Lemma 3.2 by applying the local criterion

for good reduction Fact 2.4.

Remark. We also notice that all the involved inequalities above are in

fact equalities. In particular, for all i = 0, . . . , e, one has ri = rµ, and further:

ı1α = θ1α for 1 ≤ α ≤ e, and for 1 < µ ≤ di one has that ıµα = θµ,α−ri+1 for

1 ≤ α ≤ e−ri+1. Thus, in particular, deg
Ä
P̃1ρ

ä
= θ1ρ if θ1ρ is prime to p, and

deg
Ä
P̃µρ
ä

= θµρ for all µ > 1 and all ρ. This could be shown directly through

quite tedious computations and not employing Fact 2.4.

3.D. Characteristic p global Oort Conjecture .

Theorem 3.6 (Characteristic p global Oort conjecture). In the notation

from Key Lemma 3.2, let Y → X be a G-cover of complete smooth k-curves

having only cyclic groups as inertia groups, and set Xo := X ×k o. Then there

exists a G-cover of complete smooth o-curves Yo → Xo with special fiber the

G-cover Y → X such that the generic fiber Yκ̂ → Xκ̂ of Yo → Xo has no

essential ramification.

Proof. The proof is similar to the proof of the fact that the general Oort

conjecture is equivalent to the local Oort conjecture for cyclic p-power covers

(see, e.g., Garuti [5, §3], and Saidi [20, §1.2]), the emphasis in our situation

being on deforming the ramification in order have no essential ramification.

The main arguments are as follows.

As in Theorem 3.6, let Y → X be given, and let Yo → Xo = Xo be

the base changes of Y → X under the embedding k ↪→ o and Yκ̂ → Xκ̂ be

the generic fiber of Yo → Xo. Then Yo → Xo and Yκ̂ → Xκ̂ are G-covers of

projective smooth o-curves, respectively κ̂-curves, and let Y
an

κ̂ → X
an

κ̂ be the

(rigid) analytification of Yκ̂ → Xκ̂. Then Y
an

κ̂ → X
an

κ̂ is a G-cover of projective

smooth rigid κ̂-curves. We will deform Y
an

κ̂ → X
an

κ̂ to the rigid analytification

Yan → X an
= X

an

κ̂ of the generic fiber Yκ̂ → Xκ̂ = Xκ̂ of a G-cover Yo → Xo of

projective smooth o-curves such that Yκ̂ → Xκ̂ has no essential ramification.

For y 7→ x under Y → X, let t and u be uniformizing parameters at x,

respectively y, and k[[t]] ↪→ k[[u]] be the local T -extension at y 7→ x, where T is

the inertia group at y 7→ x. The minimal polynomial of u over k((t)) is an Eisen-

stein polynomial of the form p(U) = Un + an−1(t)Un−1 + · · ·+ a1(t)U + a0(t),

where a1(t), . . . , an−1(t) ∈ tk[[t]] and a0(t) = a01t + a02t
2 + · · · ∈ k[[t]] with

a01 6= 0. Here |T | = n.

Step 1: The behavior of Yκ̂ → Xκ̂ above small disks around y 7→ x. Let | · |
be the absolute value of κ̂, and consider the rigid analytic subspaces E ⊂ Y

an

κ̂

defined by |u(y′)| ≤ |$| and D ⊂ X
an

κ̂ defined by |t(x′)| ≤ |η|, where $n =: η.
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Then E is T -invariant, and E → D under the canonical morphism Y
an

κ̂ → X
an

κ̂ .

Further, if EY ⊂ Y
an

κ̂ is the preimage of D ⊂ X
an

κ̂ , there is a G-equivariant

isomorphism of rigid analytic spaces

EY → IndGT E .

Further, letting Yx ⊂ Y be the fiber of Y
an

κ̂ → X
an

κ̂ at x, it follows that

E∗Y := EY \Yx is the preimage of D∗ := D\{x} under EY → D. Further,

E∗Y → D∗ is an étale G-cover of rigid analytic spaces, and the ring of rigid

analytic functions OE∗ on E∗ has a quite concrete description in terms of rigid

analytic functions OD∗ on D∗ as follows. Let T = Z/pe×Z/m with (p,m) = 1.

Let k[[t]] ↪→ k[[t1]] and k[[t]] ↪→ k[[z]] be the Z/m-subextension, respectively

the Z/pe subextension of k[[t]] ↪→ k[[u]]. Since k is algebraically closed, we

can choose t1 such that tm1 = t. Further, the Z/pe subextension is defined by

a Witt vector p = (p1, . . . , pe) over k[t−1], which is in standard form. Thus

if ℘e(z) = p, then one has k((u)) = k((t))[t1, z]. Hence k[[u]] is the integral

closure of k[[t]] in the field of fractions of k[[t]][t1, z]. Thus we conclude that

OE∗ is the normalization of OD∗ [t1, z] in its total ring of fractions (which is

actually a field), and therefore we have

(∗) The T -cover E → D is obtained as the normalization of D in the extension

of the total ring of fractions of the ring extension OD∗ ↪→ OD∗ [t1, z].

Step 2: The boundary morphisms ∂E → ∂D and ∂EY → ∂D. In the above

notation, let ∂D ⊂ D∗ and ∂E ⊂ E∗ be the “boundaries” of D, respectively

E , which means that ∂D is the affinoid defined by the Tate algebra κ̂〈tη, t−1
η 〉,

where tη = t/η, respectively, ∂E is defined by the Tate algebra κ̂〈t$, t−1
$ 〉,

where t$ = t/$. Since p(U) = Un + an−1(t)Un−1 + · · · + a1(t)U + a0(t) and

k[[t]] ↪→ k[[u]] is a T -extension, one checks easily that ∂E is T -invariant, and

E → D gives rise by restriction to a morphism ∂E → ∂D. Furthermore, the

following hold:

(a) The T -cover ∂E → ∂D is obtained as the normalization of ∂D in the exten-

sion of the total ring of fractions of the ring extension O∂D ↪→ O∂D[t1, z],

where t1 and z are as at (∗) in Step 1 above.

(b) Let ∂EY be the preimage of ∂D under Y
an

κ̂ → X
an

κ̂ . Then there is a G-equi-

variant isomorphism

∂EY → IndGT ∂E .
Step 3: Using Key Lemma 3.2. Recall that k[[t]] ↪→ k[[z]] is the Z/pe-

subextension of k[[t]] ↪→ k[[u]] and p = (p1, . . . , pe) was the Witt vector in

standard form over k[t−1] defining k[[t]] ↪→ k[[z]]. In the notation and con-

text from Key Lemma 3.2, we consider nonzero elements x1, . . . , xN ∈ m0 and

permissible preimages Qµρ of pµρ with |xµ| and |Qµρ − pµρ| (coefficient-wise)
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sufficiently small2 for all µ, ρ. We consider the resulting Z/pe ring extension

A = k[[$, t]] ↪→ k[[$,Z]] = B and its fiber R = k(($))〈t〉 ↪→ k(($))〈Z〉 = S
over k(($)). Thus R ↪→ S is the integral closure of R in the Z/pe-cyclic field

extension of K ↪→ KQ, where Q = (Q1, . . . , Qe) satisfies for each ρ = 1, . . . , e

the following:

(i) Qρ ∈ o0[t−1
1 , . . . , t−1

N ], where tµ = t− xµ for µ = 1, . . . , N .

(ii) Qρ 7→ pρ under the specialization o0[t−1
1 , . . . , t−1

N ]→ k[t−1].

Let Y → X be the rigid analytification of SpecS → SpecR. Recalling that

n := |T | and n = pem with (p,m) = 1, and $n =: η, let D ⊂ X be the closed

ball of radius |η| with parameter t/η and ∂D ⊂ D be its boundary. Finally let

E0 → D and ∂E0 → ∂D be the preimages of D, respectively ∂D, under Y→ X.

Then the ring of rigid analytic functions OE0 on E0 is the integral closure of

OD[Z] in its total ring of fractions (which is a field), where Z := (Z1, . . . , Ze)

satisfies ℘e(Z) = Q. Correspondingly, O∂E0 is the normalization of O∂D[Z] in

its total ring of fractions.

On the other hand, since each |xµ| is sufficiently small, we can set xµ = ηx′µ
with |x′µ| sufficiently small for each µ = 1, . . . , N . Thus one has

(t− xµ)−1 = t−1(1− x′µη/t)−1 = t−1 +
∑∞
n=2 aµη

nt−n = t−1 +
∑∞
n=2 aµnt

−n
η

for some aµn ∈ o with |aµn| sufficiently small as well. Hence each Qρ is of the

form

Qρ = pρ(t
−1) + bρqρ with qρ ∈ κ̂〈tη, t−1

η 〉, |bρ| sufficiently small.

Since |bρ| are sufficiently small for 1 ≤ ρ ≤ e, it follows that Q satisfies

Q ∈ p+ ℘e
Ä
O∂D),

and therefore, O∂D[Z] = O∂D[z], where ℘e(z) = p. Thus the sheaf of rigid

analytic functions O∂E0 is the normalization of O∂D[z] in its (total) ring of

fractions.

Finally let Ẽ and ∂Ẽ be the normalizations of E0, respectively ∂E0 in the

(total) ring of fractions of OE0 [t1], respectively O∂E0 [t1], where tm1 = t. One

gets T = Z/m× Z/pe-covers

Ẽ → D, ∂Ẽ → ∂D,
which satisfy the following:

(1) The T -cover Ẽ → D factors as Ẽ → E0 → D, where E0 → D is a Z/pe-cover,

Ẽ → E0 is a Z/m-cover, and the following hold:

(a) E0 → D is branched at x1, . . . , xN ∈ X only and has no essential

ramification jumps;

(b) Ẽ → D is branched at t = 0, and it is tamely branched there.

2One can give an explicit permissible upper bound for |xµ| and |Qµρ − pµρ|.
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(2) The T -cover ∂Ẽ → ∂D factors as ∂Ẽ → ∂E0 → ∂D, where ∂E0 → ∂D is a

Z/pe-cover and ∂Ẽ → ∂E0 is a Z/m-cover, and the following hold:

(a) ∂E0 → ∂D is the normalization of ∂D in the extension of the total

ring of fractions of the extension O∂D ↪→ O∂D[Z] = O∂D[z];

(b) ∂Ẽ → ∂D is the normalization of ∂D in the extension of the total ring

of fractions of the ring extension O∂D ↪→ O∂D[t1,Z] = O∂D[t1, z].

We thus conclude that the T -cover ∂E → ∂D defined in Step 2 and the

T -cover ∂Ẽ → ∂D defined above are T -equivariantly ∂D-isomorphic. Thus one

has ∂D-isomorphic G-covers:

(∗∗) IndGT ∂E → ∂D, IndGT ∂Ẽ → ∂D .

Step 4: Finishing the proof of Theorem 3.6. Let Σ ⊂ X be the finitely

many branch points of Y → X. For every x ∈ Σ and a fixed y ∈ Yx, let

Tx be the inertia groups at y and EY,x = IndGTx Ex → Dx be the G-cover of

affinoid spaces constructed at Step 1, and let ∂EY,x = IndGTx ∂Ex → ∂Dx be the

corresponding “boundary” G-cover of affinoid spaces constructed in Step 2.

Finally, consider the Tx-covers of affinoids Ẽx → Dx and ∂Ẽx → ∂Dx con-

structed in Step 3 and the resulting induced G-covers ẼY,x := IndGTx Ẽx → Dx
and its “boundary” G-cover ∂ẼY,x := IndGTx ∂Ẽx → ∂Dx. Since by (∗∗) one has

a ∂Dx-isomorphism of G-covers IndGT ∂Ex → IndGT ∂Ẽx, a standard gluing pro-

cedure leads to a G-cover of separated rigid analytic spaces Yan → X an
= X

an

κ̂

which has the properties: First, above Dx it is isomorphic to ∂ẼY,x thus, in

particular, has no essential ramification above Dx, and second, it is isomorphic

to Y
an

κ̂ above the complement of ∪x∈ΣDx hence, in particular, is étale over

the complement of ∪x∈ΣDx. By the rigid/formal GAGA, Yan → X an
is the

analytification of the generic fiber Yκ̂ → Xκ̂ of a unique G-cover of projective

smooth o-curves Yo → Xo. This completes the proof of Theorem 3.6. �

4. Proof of Theorem 1.1

4.A. Generalities about covers of P1.

Notation 4.1. We begin by introducing notation concerning families of

covers of curves that will be used throughout this section. Let S be a separated,

integral normal scheme, e.g., S = SpecA with A an integrally closed domain,

and k := κ(S) its field of rational functions. Let k(t) ↪→ F be a finite extension

of k(t).

(1) P1
t,S = ProjZ[t0, t1]×S is the t-projective line over S, where t = t1/t0 is

the canonical parameter on P1
t,S . In particular, P1

t,S is the gluing of its canonical

affine lines over S, namely A1
t,S := SpecZ[t]×S and A1

t−1, S := SpecZ[t−1]×S.
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(2) Let Yt,S → A1
t,S and Yt−1,S → A1

t−1,S be the corresponding nor-

malizations in k(t) ↪→ F . Then the normalization YS → P1
t,S of P1

t,S in

k(t) ↪→ F is nothing but the gluing of the two affine S-curves Yt,S → A1
t,S

and Yt−1, S → A1
t−1, S .

(3) For p ∈ S, let S(p) ↪→ S be the Zariski closure of p in S (endowed

with the reduced scheme structure). We denote by Op := OS,p the local ring

at p ∈ S. We set Sp := SpecOp and consider the canonical morphism Sp ↪→ S.

We notice that p ↪→ S is both the generic fiber of S(p) ↪→ S and the special

fiber of Sp ↪→ S at p. We get corresponding base changes:

YS(p) → P1
t,S(p), YSp → P1

t,Sp
, Yp → P1

t,p.

We also notice that Yp → P1
t,p is both the generic fiber of YS(p) → P1

t,S(p) and

the special fiber of YSp → P1
t,Sp

.

(4) Finally, affine schemes will be sometimes replaced by the corresponding

rings. Concretely, if S = SpecA and k = Quot(A), for a finite extension

k(t) ↪→ F , one has/denotes

(a) The t-projective line over A is P1
t,A = SpecA[t] ∪ SpecA[t−1], and the

normalization YA → P1
t,A of P1

t,A in k(t) ↪→ F is obtained as the gluing of

SpecRt → SpecA[t] and SpecRt−1 → SpecA[t−1], where Rt, respectively

Rt−1 , are the integral closures of A[t], respectively of A[t−1], in the field

extension k(t) ↪→ F .

(b) For p ∈ Spec(A), one has/denotes: YA/p → P1
t,A/p and YAp → P1

t,Ap
are the

base changes of YA → P1
t,A under A →→ A/p, respectively A ↪→ Ap. And

finally, the special fiber Yκp → P1
t,κp of YA → P1

t,A at p is both the special

fiber of YAp → P1
t,Ap

and the generic fiber of YA/p → P1
t,A/p.

In the above notation, let A = O be a local ring with maximal ideal m

and residue field κm. Suppose that Ov is a (Krull) valuation ring of k that

dominates O and has κm = κv. (Recall that there always exist Krull valuation

rings Ov dominating O and having κm ⊆ κv ⊆ κm, but usually κm ⊂ κv
strictly.) We denote by YO → P1

t,O and YOv → P1
t,Ov the normalizations of the

corresponding projective lines. The canonical morphism SpecOv → SpecO
gives canonically commutative diagrams of dominant morphisms:

YOv → P1
t,Ov Yk → YOv ← Yvy y y∼= y y

YO → P1
t,O, Yk → YO ← Ym.

We denote by ηm ∈ P1
t,m the generic point of the special fiber of P1

t,O, and

by Ym,i ∈ Ym the irreducible components the special fiber of Ym of YO, and by

ηm,i ∈ Ym,i their generic points. Correspondingly, ηv ∈ P1
t,v is the generic point
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of the special fiber of P1
t,Ov , and Yv,j ∈ Yv are the irreducible components of

the special fiber of Yv of YOv , and by ηv,i ∈ Yv,i their generic points. We notice

that P1
t,v → P1

t,m is an isomorphism (because κm = κv). The local ring Oηv of

ηv ∈ P1
t,Ov is the valuation ring of the so-called Gauss valuation vt of k(t), thus

Oηv,j are the valuation rings of the prolongations vj of vt to F . Hence by the

valuation criterion for completeness, for every ηm,i there exists some ηv,j such

that ηv,j 7→ ηm,i under Yv → Ym. Therefore, Yv → Ym maps Yv,j dominantly

onto Ym,i.
Finally, for every complete k-curve C we denote by gC the geometric

genus of C. And to fix notation, let Yv,1 ⊆ Yv and Ym,1 ⊆ Ym be irreducible

components such that ηv,1 7→ ηm,1 under YOv → YO, thus the latter map

defines a dominant morphism of curves Yv,1 → Ym,1.

Lemma 4.2. In the above notation, let Ym,1 → Ym,1 be the normalization

of Ym,1. Suppose that [κ(ηm,1) : κm(t)] ≥ [F : k(t)] and that Yk is smooth.

Then the following hold :

(1) Ym and Yv are irreducible and reduced, and [κ(ηm,1) : κm(t)] = [F : k(t)].

(2) If gYm,1 ≥ gYk , then YOv → P1
t,Ov is a cover of smooth Ov-curves, and

gYm,1 = gYk .

Proof. For (1): One has κ(ηm) = κm(t) = κv(t) = κ(ηv) and a canonical

embedding κ(ηm,1) ↪→ κ(ηv,1). Thus first using the hypothesis and next using

the fundamental (in)equality, one gets that

[κ(ηv,1) : κv(t)] ≥ [κ(ηm,1) : κm(t)] ≥ [F : k(t)]

≥
∑
j

[κ(vj) : κv(t)] e(vj |vt) δ(vj |vt),

where e(·|·) is the ramification index and δ(·|·) is the Ostrowski defect. Thus v1

is the only prolongation of vt to F , and e(v1|vt) = 1 = δ(v1|vt). In particular,

Yv,1 is the unique irreducible component of Yv, and moreover, Yv = Yv,1 is

reduced. In particular, we also have that Ym,1 ⊂ Ym is the unique irreducible

component of Ym, etc.

For (2): Since Yv is reduced and irreducible, by Roquette [18, Satz I], it

follows that the Euler characteristics of the special fiber Yv and that of the

generic fiber Yk of YOv are equal:

χ(Yk|k) = χ(Yv|κv).

Recall that one has dominant morphism Yv = Yv,1 → Ym,1, which give rise

canonically to a dominant morphism of the normalizations Yv → Ym,1; thus

one has gYm,1 ≤ gYv . Therefore using, first, the hypothesis of assertion (2), by

the definition of χ(·|·), we have

1− gYm,1≤1− gYk =: χ(Yk|k)=χ(Yv|κv)≤χ(Yv|κv) ≤ χ(Ym,1|κm)=1− gYm,1 .
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Hence all the above inequalities are in fact equalities and , χ(Yv|κv) = χ(Yv|κv).
But then the normalization Yv → Yv is an isomorphism, and YOv is smooth,

etc. �

In the context above, let A = O be the valuation ring of a valuation v,

and suppose that v is the valuation theoretical composition v := v0 ◦ v1 of

two valuations, say with valuation rings O1 ⊂ k, respectively O0 ⊂ k0, where

k0 := kv1 is the residue field of v1. Then kv =: k := k0v0 is the residue field

of both v and v0. Let vt and v1,t be the Gauss valuations of k(t) defined by

v, respectively v1. Finally letting t0 := t (modmv1,t) be the residue of t with

respect to v1,t, we consider the Gauss valuation v0,t0 of κv1(t0). Then vt is

actually the valuation theoretical composition vt = v0,t0 ◦ v1,t. Suppose that

the following hold:

(i) The special fiber Y1, s of the normalization Y1 → P1
t,O1

of P1
t,O1

in k(t) ↪→ F

is irreducible; hence v1,t has a unique prolongation w1 to F , and the residue

field Fw1 of w1 satisfies F0 := Fw1 = κ(Y1, s).

(ii) The special fiber Y0, s of the normalization Y0 → P1
t,O0

of P1
t,O0

in the field

extension k0(t0) ↪→ F0 is irreducible; hence v0,t0 has a unique prolongation

w0 to F0, and F0w0 = κ(Y0, s).

Lemma 4.3 (Transitivity of smooth covers). In the above notation, sup-

pose that the hypotheses (i), (ii) are satisfied. Set w := w0 ◦ w1, and let

Y → P1
t,O be the normalization of P1

t,O in k(t) ↪→ F . Then w is the unique

prolongation of vt to F , and the following hold :

(1) The base change of Y under O ↪→ Ov1 is Y1 = Y×OOv1 canonically ; thus

Y1, s = Ym1 is the fiber of Y at the valuation ideal m1 ∈ SpecO of v1.

(2) Let YO0 → P1
t,O0

be the base change of Y → P1
t,O under the O →→ O0.

Then Ym1 is the generic fiber of YO0 and Y0 → P1
t,O0

is the normalization

of YO0 → P1
t,O0

.

In particular, Y is a smooth O-curve if and only if Yi is a smooth Oi-curve

for i = 0, 1.

Proof. Clear, by the discussion above and Roquette [18, Satz I], combined

with the fact that a projective curve is smooth if and only if its arithmetic and

geometric genera are equal. �

4.B. A specialization result. We begin by recalling the following two well-

known facts. The first one is by Harbater [8] for p-power covers and by Katz–

Gabber [11] in general: Let k be an algebraically closed field with char(k) = p.

Then the localization at t = 0 gives rise to a bijection between the finite Galois

covers of P1
t,k unramified outside t = 0,∞ and tamely ramified at t = ∞, and

the finite Galois extensions k[[t]] ↪→ k[[z]]. Moreover, this bijection preserves
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the ramification data at t = 0. Thus given a cyclic Z/pe -cover k[[t]] ↪→ k[[z]],

there exists a unique cyclic Z/pe-cover of complete smooth curves Yk → P1
t,k

that is branched only (and totally branched) at t = 0 such that k[[t]] ↪→ k[[z]]

is the extension of local rings of Y → P1
t,k above t = 0. We will say that

Y → P1
t,k is the HKG-cover for k[[t]] ↪→ k[[z]]. The second fact is the local-

global principle for the Oort Conjecture; see, e.g., Garuti [5, §3], Saidi [20,

§1.2, especially Prop. 1.2.4], which among other things imply

LGP 4.4. Let k[[t]] ↪→ k[[z]] be a Z/pe-extension and Yk → P1
t,k be its

HKG-cover. Further let W (k) ↪→ R be a finite extension of DVR’s. Then the

Z/pe-extension k[[t]] ↪→ k[[z]] has a smooth lifting over R if and only if the

Z/pe-cover Yk → P1
t,k has a smooth lifting over R.

Next let e be a fixed positive integer, and consider finite sequences of

positive numbers ı := (ı1 ≤ · · · ≤ ıe) satisfying: 1 ≤ ı1 is prime to p, and

ıν+1 = pıν + ε with ε ≥ 0 and ε prime to p if ε > 0. For such a sequence ı,

we consider the sequence Pı =
Ä
P1, . . . , Pe) of generic polynomials in standard

form Pν = Pν(t−1) =
∑ıν
i=1 aν,it

−i in the variable t−1 over F := Fp, which by

definition means the following:

(i) For all ν, i one has: deg
Ä
pν(t−1)

ä
≤ ıν , and p | i implies aν,i = 0.

(ii) The system (aν,i)ν,i of nonzero coefficients aν,i is algebraically independent

over F := Fp.

We let |ı| = ∑ıe
ν=1

Ä
ıν−bıν/pc

ä
be the number of nonzero coefficients aν,i (where

bac is the integer part of a). We denote by Aı := F[(aν,i)ν,i] the corresponding

polynomial ring in |ı| variables, and we let A|ı| = SpecAı be the |ı|-dimensional

affine space over F.

For every x ∈ A|ı|, let kx be an algebraically closed field extension of F
that contains κx, say via an F-embedding φx : κx ↪→ kx, and let x ∈ A|ı|(kx)

be the kx-rational point of A|ı| defined by φx. Let pı,x = (p1,x, . . . , pe,x) and

pı,x = (p1,x, . . . , pe,x) be the images of Pı over κx, respectively kx. Then

one has virtually by definition that pν,x = φx(pν,x); thus pı,x = φx(pı,x). In

particular, if deg
Ä
Pν(t−1)

ä
= deg

Ä
pν,x(t−1)

ä
for all ν with (p, ıν) = 1, then

pı,x gives rise via the Artin–Schreier–Witt theory mentioned in Section 2.B to a

cyclic extension kx[[t]] ↪→ kx[[zx]] of degree pe with upper jumps ı = (ı1, . . . , ıe),

therefore canonically to the corresponding HKG-cover Ykx → P1
t,kx

.

Definition 4.5. For kx as above, let kx[[t]] ↪→ kx[[zx]] be a cyclic Z/pe-
extension and Ykx → P1

t,kx
be its HKG-cover. We say that kx[[t]] → kx[[zx]] is

an ı-extension at x ∈ A|ı| and that Ykx → P1
t,kx

is an ı-HKG-cover at x ∈ A|ı|
if kx[[t]] ↪→ kx[[zx]] has ı = (ı1, . . . , ıe) as upper ramification jumps.
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Notation 4.6. We denote by Σı ⊆ A|ı| the set of all x ∈ A|ı| that satisfy:

There exists some mixed characteristic otherwise general Krull valuation ring

Rx with residue field kx such that some ı-HKG-cover Ykx → P1
t,kx

has a smooth

lifting over Rx.

Proposition 4.7. In Notation 4.6, suppose that Σı ⊆ A|ı| is Zariski

dense. Then there exist algebraic integers πı ∈ Z such that for every al-

gebraically closed field k with char(k) = p, one has : Every ı-HKG-cover

Yk → P1
t,k has a smooth lifting over W (k)[πı].

Proof. The proof is quite involved, and after the following Lemma 4.8, it

has two main steps as detailed below.

Lemma 4.8. The generic point ηı ∈ A|ı| lies in Σı.

Proof. Let U be an ultrafilter on Σı that contains all the Zariski open

subsets of Σı. (Since Σı is Zariski dense in the irreducible scheme A|ı|, any

Zariski open subset of Σı is dense as well; thus ultrafilter U exist.) Let vx be

the valuation of Rx, and let kx → Θx ⊂ Rx be any set of representatives for

kx in Rx. Consider the following ultraproducts indexed by Σı:

∗k :=
Ä∏

xkx
ä
/U→ ∗Θ

:=
Ä∏

xΘx

ä
/U ⊂ ∗W :=

Ä∏
xW (kx)

ä
/U ↪→

Ä∏
xRx
ä
/U =: ∗R.

By general model theoretical principles, it follows that ∗R is a valuation

ring having residue field equal to ∗k, and ∗Θ ⊂ ∗R is a system of representatives

for the residue field ∗k of ∗R.

Next, coming to geometry, by general model theoretical principles, it fol-

lows that the family of Z/pe-covers Yx → P1
t,kx

with upper ramification jumps

ı = (ı1, . . . , ıf ) gives rise to a U-generic Z/pe-cover Y∗k → P1
t,∗k of complete

smooth ∗k-curves with upper ramification jumps ı. In terms of finite cyclic

extensions and their HKG-covers that means precisely the following: Recall

that Yx → P1
t,kx

is the HKG-cover whose local behavior at t = 0 is given by the

system of polynomials pı,x = (p1,x, . . . , pe,x) =
Ä
φx(P1), . . . , φx(Pe)

ä
= φx(Pı),

where Pν =
∑ıν
i=0 aν,it

−i is the generic polynomial of degree ıe over F. Then

setting

∗aν,i :=
Ä
φx(aν,i)x

ä
/U ∈ ∗k and ∗pν(t−1) :=

ıν∑
i=0

∗aν,it
−i for 1 ≤ ν ≤ e,

we get a system of polynomials ∗pı := (∗p1, . . . ,
∗pıe) from ∗k[t−1] that defines

the local extension ∗k[[t]] ↪→ ∗k[[z]] with HKG-cover Y∗k → P1
t,∗k. Moreover,

since U contains a basis of the Zariski open subsets of Σı and Σı is Zariski

dense in A|ı|, the F-homomorphism

F[(aν,i)ν,i]→ ∗k, aν,i 7→ ∗aν,i
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is injective. That means that the ∗k-rational point of A|ı| defined above factors

through the generic point ηı ∈ A|ı| and, in particular, ∗pı = ∗φηı(Pı).

Again, by general model theoretical principles for ultraproducts of

(G-covers of) complete smooth curves over rings, one has: The family of

the Z/pe-covers of complete smooth curves YRx → P1
t,Rx

with special fiber

Yx → P1
t,kx

gives rise to a Z/pe-cover Y∗R → P1
t,∗R of complete smooth ∗R-curves,

with Y∗k → P1
t,∗k as special fiber.

On the other hand, the local behavior at t = 0 of the ı-HKG-cover

Y∗k → P1
t,∗k is given by ∗pı = ∗φηı(Pı). Therefore, Σı contains the generic

point ηı of A|ı|. �

Step 1: Constructing a parameter space for ı-HKG-covers. Let A|ı| ↪→ P|ı|
be the canonical embedding of the affine F-space A|ı| := SpecF[(aν,i)ν,i] into the

corresponding projective F-space P|ı| := ProjF[t0, (tν,i)ν,i] via the t0-dehom-

ogenization aν,i = tν,i/t0. Letting Z0 := Znr

p be the maximal unramified exten-

sion and

A|ı|Z0
= SpecZ0[(aν,i)ν,i] and P|ı|Z0

= ProjZ0[t0, (tν,i)ν,i],

the embedding A|ı| ↪→ P|ı| is the special fiber of A|ı|Z0
↪→ P|ı|Z0

. Notice that
∗φηı : Aı → ∗k gives rise via ∗k → ∗Θ canonically to an embedding ofZ0-algebras

defined by

(∗) ∗φZ0
: Aı,Z0

:= Z0[(aν,i)ν,i] ↪→ ∗R, aν,i 7→ ∗φηı(aν,i).

Let R0 ⊂ ∗R be a Z0-algebra of finite type containing Z0[(aν,i)ν,i] such

that the Z/pe-cover Y∗R → P1
t,∗R is defined over R0; i.e., there exists a Z/pe-

cover YR0 → P1
t,R0

of complete smooth R0-curves such that Y∗R → P1
t,∗R is the

base change of YR0 → P1
t,R0

under R0 ↪→ ∗R.

Let ∗m ⊂ ∗R be the valuation ideal of ∗R and ∗v be the valuation of ∗R.

Then q := ∗m ∩R0 is the center of ∗v in U := SpecR0; thus, in particular, the

center of ∗v in U is nonempty.

Since U = SpecR0 is an (integral) affine Z0-scheme of finite type, there

are embeddings U ↪→ AnZ0
↪→ PnZ0

for sufficiently large n. Thus the closure U

of U in PnZ0
is a projective Z0-scheme, and the point q ∈ U ⊂ U is the center of

∗v on U . Next, the canonical Z0-embedding Aı,Z0
↪→ R0 gives rise to a rational

dominant map U --->P|ı|Z0
defined overZ0. Thus considering the blowup Ũ → U

of the indeterminacy locus of the rational map U --->P|ı|Z0
, the resulting rational

map Ũ → U --->P|ı|Z0
is everywhere defined on Ũ ; thus one gets a well-defined

dominant, and hence surjective, Z0-morphism Ũ → P|ı|Z0
. Moreover, U is a

scheme of finite type over Z0, thus so is Ũ , hence Ũ is a projective Z0-scheme.

We also notice that since U --->P|ı|Z0
is defined on U ⊂ U , the morphism Ũ → U

is an isomorphism above U , thus at the center q ∈ U of ∗v on U . Thus letting
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q̃ ∈ Ũ be the preimage of q in Ũ , it follows that Oq̃ = Oq, thus q̃ is the center

of ∗v on Ũ under the canonical embedding κ(Ũ) = κ(U) ↪→ Quot(∗R). Finally,

let V → Ũ be the normalization of Ũ . Then one has: First, V is a projective

Z0-scheme. Second, since valuation rings are integrally closed, it follows that

the canonical morphism Spec ∗R → SpecOq̃ → Ũ factors canonically through

V → Ũ . We denote by p ∈ V the center of ∗v on V under the canonical

morphism Spec ∗R→ V . In other words, if Op is the local ring of p ∈ V , then
∗R dominates Op. We thus have the following:

Conclusion 4.9. There exists a projective normal Z0-scheme V whose

function field κ(V ) is Z0-embeddable in Quot(∗R), say κ(V ) ↪→ Quot(∗R),

satisfying the following:

(1) Let p ∈ V be the center of ∗v on V induced by κ(V ) ↪→ Quot(∗R), and letOp

be the local ring of p. Then the Z/pe-cover of complete smooth ∗R-curves

Y∗R → P1
t,∗R is defined over Op. That means that there exists a Z/pe-cover

of complete smooth Op-curves YOp → P1
t,Op

such that Y∗R → P1
t,∗R is the

base change of YOp → P1
t,Op

under Op ↪→ ∗R.

(2) The image of ∗φZ0
: Aı,Z0

→∗R is contained in the image of the canonical em-

bedding κ(V ) ↪→Quot(∗R), and the resulting Z0-embedding Aı,Z0
↪→κ(V )

is defined by some proper morphism

V → P|ı|Z0
.

We notice that condition (1) implies the following: If Op → κp is the

residue field of Op, then the special fiber Yp → P1
t,p of YOp → P1

t,Op
is a Z/pe-

cover of complete smooth κp-curves whose base change under κp ↪→ ∗k is canon-

ically isomorphic to Y∗k → P1
t,∗k. In other words, the embedding ∗φηı : Aı ↪→ ∗k

defined by (∗) above factors through Aı ↪→ κηı ↪→ κp, and p ∈ V is mapped to

the generic point ηı ∈ P|ı| of the special fiber P|ı| ↪→ P|ı|Z0
under V → P|ı|Z0

.

Let V (p) ⊂ V be the Zariski closure of p in V viewed as a closed Z0-

subscheme of V endowed with the reduced scheme structure. Since p 7→ ηı,

one has that κηı ↪→ κp, hence κp has characteristic p, and p lies in the special

fiber VF of V. We conclude that V (p) ⊂ VF.

Next, if V (p) has codimension > 0 in VF, let Ṽ → V be the normaliza-

tion of the blowup of V along the closed reduced Z0-subscheme V (p). Let

E1, . . . , Er ⊂ Ṽ be the finitely many irreducible components of the preimage

of the exceptional divisor of the blowup. Then the generic points ri of the Ei,

i = 1, . . . , r, are precisely the points of codimension one of Ṽ that map to p

under Ṽ → V , and ∪iEi is the preimage of V (p) in V .

Further, if r = ri is fixed, Or is the local ring of r ∈ Ṽ , and κr is its

residue field, it follows that Op ↪→ Or and κp ↪→ κr canonically. Recall that

by the property (1) above, YOp → P1
t,Op

is a Z/pe-cover of smooth Op-curves

with special fiber Yp → P1
t,p whose base change under κp ↪→ ∗k is Y∗k → P1

t,∗k.
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Therefore, the base change YOr → P1
t,Or

of YOp → P1
t,Op

defined by Op ↪→ Or

is a Z/pe cover of proper smooth Õ-curves whose special fiber Yr → P1
t,r is the

base change of Yp → P1
t,p under κp ↪→ κr. Hence choosing any κp-embedding

κr ↪→ ∗k, we get that the special fiber Yr → P1
t,r becomes Y∗k → P1

t,∗k under the

base change defined by κr ↪→ ∗k.

Hence by replacing V by Ṽ if necessary, we can suppose that p ∈ V

has codimension one in V , or equivalently, that V (p) ⊂ VF is an irreducible

component of VF.

By de Jong’s theory of alterations [10, Th. 6.5 and the discussion there-

after], one has the following:

Fact 4.10. In the above context, there exists a finite extension of discrete

valuation rings Z0 ↪→ Z and a dominant generically finite proper morphism

W → V ×Z0 Z of projective Z-schemes with W strictly semi-stable over Z;

i.e., the generic fiber of W is a smooth projective variety over Quot(Z), and

the special fiber WF is reduced and satisfies: If WF,j with j ∈ J is any set of

|J | distinct irreducible components of WF, then ∩jWF,j is a smooth subscheme

of W of codimension |J |.
We also notice that Z0 has only ramified extension, thus Z = Z0[π0],

where π0 is any uniformizing parameter of Z. We claim that one can choose

π0 to be an algebraic integer, i.e., integral over Z. Indeed, let µ′∞ be the group

of all the roots of unity of order prime to p. Then Z[µ′∞] ⊂ Z0 is p-adically

dense in Z0. Hence the minimal polynomial pπ0(T ) ∈ Z0[T ] of π0 over Z0 can

be approximated arbitrarily close by monic polynomials over Z[µ′∞], etc.

Consider the sequence W → V → P|ı|Z0
of dominant, thus surjective, mor-

phisms of projective integral Z0-schemes, and let q ∈ W be a fixed preimage

of p. Since the first morphism is generically finite, it follows that q has codi-

mension one because p ∈ V has codimension one. And since p ∈ VF, it follows

that q ∈WF. Thus the Zariski closure W (q) ⊆WF is an irreducible component

of the special fiber WF ⊂ W of W . Hence W → V → P|ı|Z0
gives rise to the

sequence of surjective morphisms of projective Z0-schemes

W (q)→ V (p)→ P|ı|,

each of which is an irreducible component of the corresponding ambient Z0-

scheme.

Definition 4.11. We say that W (q) → V (p) → P|ı| is a parameter space

for ı-HKG-covers.

The reason for the above terminology is as follows (see especially Lemma 4.12):

• First, recall that by the Conclusion 4.9 above, YOp → P1
t,Op

is a Z/pe-
cover of smoothOp-curves with special fiber Yp → P1

t,p whose base change under
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κp ↪→ ∗k is Y∗k → P1
t,∗k. Let YOq → P1

t,Oq
be the base change of YOp → P1

t,Op

under Op ↪→ Oq. Then YOq → P1
t,Oq

is a Z/pe-cover of proper smooth Oq-curves

whose special fiber Yq → P1
t,q is the base change of Yp → P1

t,p under κp ↪→ κq.

Again, choosing any κp-embedding of κq ↪→ ∗k, one gets that the base change

of the special fiber Yq → P1
t,q under κq ↪→ ∗k becomes Y∗k → P1

t,∗k. This means

that the embedding ∗φηı : Aı ↪→ ∗k defined at (∗) in the beginning of Step 1

factors through Aı ↪→ κηı ↪→ κp ↪→ κq, reflecting the fact that q 7→ p 7→ ηı. In

other words, there exists a ∗k-rational point ∗φq : κq → ∗k such that the given
∗k-rational point ∗φηı : κηı → ∗k defined by ∗φηı : Aı → ∗k is of the form

(∗∗) ∗φηı = ∗φq ◦ (κηı ↪→ κq).

• Second, let λ := κ(W ) be the function field of W, and let F := κ(YOq) be

the function field of YOq . Then YOq → P1
t,Oq

has as generic fiber a Z/pe-cover

of complete smooth λ-curves Yλ → P1
t,λ and gives rise to a Z/pe extension of

function field in one variable λ(t) ↪→ F. Since Oq is a (discrete) valuation ring

and YOq → P1
t,Oq

is a cover of smooth Oq-curves, it follows by the discussion

in Section 4.A that YOq → P1
t,Oq

is precisely the normalization of P1
t,Oq

in the

function field extension λ(t) ↪→ F . Notice that P1
t,λ is the generic fiber of P1

t,W ,

and consider

YW → P1
t,W

the normalization of P1
t,W in the field extension λ(t) ↪→ F . Then by definition

one has that the base change of YW → P1
t,W under SpecOq ↪→ W is precisely

YOq → P1
t,Oq

.

Lemma 4.12. Let x ∈ A|ı| be such that the image pı,x = (p1,x, . . . , pe,x)

of Pı = (P1, . . . , Pe) under Aı → κx satisfies deg(pν,x) = deg(Pν) for all

ν = 1, . . . , e. Let y ∈ W (q) be a preimage of x under W (q) → V (p) → P|ı|Z0
,

and let Ov be a valuation ring dominating Oy with κv = κy . Let YOv → P1
t,Ov

be the base change of YW → P1
t,W under SpecOv ↪→ W . Then YOv → P1

t,Ov is

a Z/pe-cover of projective smooth Ov-curves.

Proof. Let YOy → P1
t,Oy be the base change of YW → P1

t,W under the

canonical embedding SpecOy ↪→ W ; thus, in particular, YOy → P1
t,Oy is the

normalization of P1
t,Oy in the field extension λ(t) ↪→ F . Since y ∈ W (q) and

the geometric fiber Yq → P1
t,q of YW (q) → P1

t,W (q) is a Z/pe-cover of smooth

complete curves, the same holds correspondingly if one replaces the local ring

Oy = OW,y by oy := OW (q),y = Oy/q and λ(t) ↪→ F by κq(t) ↪→ Fq, where

Fq := κ(Yq) is viewed as function field over κq. Recall that the local extension

κq[[t]] ↪→ κq[[zq]] of Yq → P1
t,q at t = 0 is defined by the image pı,q of Pı under

the canonical embedding Aı ↪→ κηı ↪→ κq. On the other hand, if ox denotes

the local ring of x ∈ A|ı| ⊂ P|ı|, then Aı ⊂ ox and oy dominates ox. Hence
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Aı ↪→ oy, and therefore, pı,q is defined over oy. Further, by the commutativity

of the diagrams

Aı ↪→ oy Pı 7→ pı,qy y y y
κx ↪→ κy, pı,x 7→ pı,y,

it follows that the image of pı,q under the residue homomorphism oy → κy
equals the image of pı,x under κx ↪→ κy. Thus by the functoriality of the

Artin–Schreier–Witt theory, it follows that every irreducible component of the

special fiber of P1
t,oy dominates the ı-HKG-cover of P1

t,κy defined by pı,y. Since

deg(pν,y) = deg(pν,x) = degPν for all ν, the latter cover must have degree pe

and upper ramification jumps ı = (ı1, . . . , ıe). Hence we can apply Lemma 4.2

and conclude that the special fibers Yy and Yv are reduced and irreducible.

In order to conclude, we notice that by the discussion above, the normal-

ization Yy → Yy dominates the ı-HKG-cover of P1
t,y defined by pı,y. Since

every ı-HKG-cover has as genus a constant depending on ı only, thus includ-

ing the generic fiber, it follows that gYy ≥ gYq . We thus conclude the proof of

Lemma 4.12 by applying Lemma 4.2. �

Step 2: Finishing the proof of Proposition 4.7. Coming back to the proof

of Proposition 4.7 we proceed as follows. Let k be any algebraically closed field

with char(k) = p, and let Yk → P1
t,k be an ı-HKG-cover, say with local ring

extension k[[t]] ↪→ k[[z]] at t = 0 defined by pı =
Ä
p1, . . . , pe). Let x ∈ A|ı|

be the point defined by the specialization map φx : Aı → k, Pı 7→ pı. Since

W (q) → V (p) → P|ı| are surjective F-morphisms, there exists a preimage

y ∈ W (q) of x such that κx ↪→ κy is finite. Since k is algebraically closed,

there is a κx-embedding φy : κy ↪→ k such that φx = φy ◦ (κx ↪→ κy). In

particular, if pı,y is the image of pı,x under κx ↪→ κy, then pı = φy(pı,y).

Let WF, j with 1 ≤ j ≤ ny be the irreducible components of WF that

contain y, and set Wy := ∩jWF, j . Then by Fact 4.10 mentioned above, Wy is a

smooth F-subvariety WJ ⊂ WF, and the following hold (see, e.g., de Jong [10,

§2.16 and explanations thereafter]): The local ring Oy of y ∈ W has a system

of regular parameters (u1, . . . , uNy) that satisfy

(i) uj defines locally at y the equation of WF, j and π0 = u1 . . . uny with π0 as

in Fact 4.10.

(ii) (uj)ny<j≤Ny give rise to a regular system of parameters at y ∈ Wy in

Oy/(u1, . . . , uny).

Consider the ideal r := (εiu1 − ui)1<i≤Ny ⊂ Oy, where εi ∈ Oy× are arbitrary.

Then r is a regular point having (εiu1− ui)1<i≤Ny as a regular system of local

parameters, and

Zy := Oy/r
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is a discrete valuation ring with uniformizing parameter πy := u1 (mod r), and

εyπ
ny
y = π0, where εy := ε2 . . . εny(mod r) lies in Z×y . Hence if εy = 1, we

get that π
ny
y = π0. Thus choosing ε2, . . . , εny = 1 and π0 to be an algebraic

integer, πy is an algebraic integer as well.

Since r ∈ SpecOy is a regular point, there exists a valuation v1 of Quot(Oy)
with center r and residue field equal to κr = Quot(Zy). Further, let v0 be the

canonical valuation of the discrete valuation ring Zy. Then the valuation ring

Ov of the valuation theoretical composition v := v0 ◦ v1 dominates Oy and has

κv = κy. Hence by Lemma 4.12, it follows that YOv → P1
t,Ov is a Z/pe-cover of

complete smooth Ov-curves. Hence by Lemma 4.3, it follows that YZy → P1
t,Zy

is a Z/pe-cover of complete smooth Zy-curves.

Now let x ∈ Σı ⊂ A|ı| vary, and for every such x, consider some preimage

y ∈ W (q) under W (q)→ V (p)→ P|ı| such that κx ↪→ κy is a finite extension.

Then performing the above construction, we get the corresponding ny. Notice

that ny < Ny ≤ dim(W ), by the fact that Ny = Krull.dim(Oy), which is the

codimension of y in W .

Let nı = l.c.m.(ny)y∈W (q), and notice that by the discussion above, nı
is bounded by n !, where n = dim(W ) − 1. Choose fixed algebraic integers

π0, πı ∈ Z such that Z = Z0[π0] and πnı
ı = π0. Then there are canonical

embeddingsZy ↪→W (κy)[πy] ↪→W (k)[πı], and the base change of YZy → P1
t,Zy

under Zy ↪→W (k)[πı] is a Z/pe-cover of smooth W (k)[πı]-curves

YW (k)[πı] → P1
t,W (k)[πı]

with special fiber the ı-HKG-cover Yk → P1
t,k attached to the given cyclic Z/pe-

extension k[[t]] ↪→ k[[z]]. This concludes the proof of Proposition 4.7. �

4.C. The strategy of proof for Theorem 1.1. We begin by recalling that

there are several forms of the Oort Conjecture (OC), which are all equivalent;

see, e.g., Bertin–Mézard [1], Garuti [5, §3], Chinburg–Guralnick–Harbater [2],

or Saidi [20, §3.1].

Let k be an algebraically closed field with char(k) = p > 0. Let W (k) be

the ring of Witt vectors over k, and let W (k) ↪→ R denote a finite extension of

discrete valuation rings. We consider the following two situations, which are

related to two variants of OC:

(a) Y → X is a finite (ramified) G-cover of complete smooth k-curves such

that the inertia groups at all closed points y ∈ Y are cyclic.

(b) XR is a complete smooth R-curve with special fiber X, and Y → X is a

(ramified) G-cover of complete smooth curves as in case (a) above.

We say that OC holds over R in case (a) or (b) if there exists a G-cover of

complete smooth R-curves YR → XR, with XR the given one in case (b),

having the G-cover Y → X as special fiber. And given a cyclic extension
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k[[t]] ↪→ k[[u]], we say that the local OC holds over R for k[[t]] ↪→ k[[u]] if there

exists a smooth lifting R[[T ]] ↪→ R[[U ]] of k[[t]] ↪→ k[[u]].

Fact 4.13. Let W (k) ↪→ R be a finite extension of DVR’s. Then the

following hold:

(1) Local global principle for OC. Let Y → X, y 7→ x, be a finite G-cover of

projective k-curves with cyclic inertia groups, and let k[[tx]] ↪→ k[[ty]] be

the corresponding extensions of local rings for y 7→ x. Let XR be some

complete smooth R-curve with special fiber X. Then the following are

equivalent:

(i) There is a G-cover of R-curves YR → XR as above with special fiber

Y → X.

(ii) The local extensions k[[tx]] ↪→ k[[ty]] have smooth liftings over R for

all y 7→ x.

(2) Equivalent forms of OC. Let k[[t]] ↪→ k[[u]] be a cyclic extension, and

let k[[t]] ↪→ k[[z]] be its maximal p-power subextension. The following

assertions are equivalent:

(i) the local OC holds over R for k[[t]] ↪→ k[[u]];

(ii) the local OC holds over R for k[[t]] ↪→ k[[z]];

(iii) the OC holds over R for the HKG-cover of k[[t]] ↪→ k[[z]].

Thus in order to prove Theorem 1.1 from introduction, we can proceed as

follows: Let Y → X be a given G-cover of projective smooth k-curves, with

branch locus Σ ⊂ X. Then for a given algebraic integer π ∈ Z such that

R := W (k)[π] is a DVR, and a smooth R-curve XR with special fiber X, one

has: The OC holds for Y → X over R if and only if the local OC holds for the

local cyclic extension k[[tx]] ↪→ k[[ty]] over R for all x ∈ X; and the local OC

holds for a fixed local cyclic extension k[[tx]] =: k[[t]] ↪→ k[[u]] := k[[ty]] over

R if and only if the local OC holds over R for the cyclic p-power subextension

k[[t]] ↪→ k[[z]] of k[[tx]] ↪→ k[[ty]]. Finally, the latter is equivalent to the

fact that the HKG-cover Y → P1
t,k of k[[t]] ↪→ k[[z]] is smoothly liftable over

R. Thus we conclude that assertions (1) and (2) of Theorem 1.1 are in fact

equivalent, and equivalent as well to assertion (1) for p-power cyclic extensions

and to assertion (2) for HKG-covers Y → P1
t,k of p-power cyclic extensions.

To tackle the latter two equivalent cases of Theorem 1.1, we first notice

that given a positive integer δ, one has: Let k be an algebraically closed field

with char(k) = p, and let ıp = (ı1, . . . , ıe) be the upper ramification jumps

sequence of a Z/pe-extension k[[t]] ↪→ k[[z]] having deg(D) ≤ δ. (Notice that

for p-power cyclic extensions k[[t]] ↪→ k[[z]], one has that degp(D) = deg(D)

merely by definition.) By the Hilbert different formula, it follows that p, e, and

ı1, . . . , ıe are bounded by δ. Hence there are only finitely many choices for p

and the upper ramification jumps sequences ıp = (ı1, . . . , ıe) defined by cyclic
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p-power extensions k[[t]] ↪→ k[[z]] having deg(D) ≤ δ. Suppose the following

holds:

(†) For each p and each upper ramification jumps sequence ı = (ı1, . . . , ıe) in

characteristic p, there exists an algebraic integer πı ∈ Z such that for all

algebraically closed fields k with char(k) = p, one has : All ı-HKG-covers

Y → P1
t,k, or equivalently, all Z/pe-cyclic ı-extensions k[[t]] ↪→ k[[z]], have

smooth liftings over W (k)[πı].

Then choosing an algebraic integer πδ ∈ Z such that Zp[πıp ] ⊂ Zp[πδ] for

each p and ıp, it follows that W (k)[πıp ] ⊆ W (k)[πδ] for all p, ıp and k as

above. Thus all the ıp-HKG-covers over k, or equivalently, all the Z/pe-cyclic

ıp-extensions k[[t]] ↪→ k[[z]], have smooth liftings over W (k)[πδ]. Hence to

prove Theorem 1.1, it is sufficient to prove assertion (†) above.

In order to prove assertion (†), let prime number p and an upper ram-

ification jumps sequence ı = (ı1, . . . , ıe) in characteristic p be given. For

ı = (ı1, . . . , ıe), set δ0 := bıe/(p− 1)c, and recall N , e0, (di)0≤i≤e and the ma-

trix (θµρ)µ,ρ, as defined in the beginning of Section 2.A, and Construction 3.3.

Further, for every 1 ≤ µ ≤ N , let 1 ≤ i ≤ e0 be such that di−1 < µ ≤ di,

and set eµ := e − ri + 1. Finally, set ıµ,α := θµ,ri−1+α for all 1 ≤ α ≤ eµ ,

1 ≤ µ ≤ N , and consider the resulting N sequences ıµ = (ıµ1, . . . , ıµ,eµ).

Let k be an algebraically closed field with char(k) = p. We view o := k[[$]]

as a DVR with valuation ideal mo, and we let x1, . . . , xN ∈ mo be distinct

elements which are pδ0-powers.

(1) Consider any Z/pe-extension k[[t]] ↪→ k[[z]] with upper ramification jumps

sequence ı = (ı1, . . . , ıe), and let Y → P1
t,k be the corresponding ı-HKG-

cover.

(2) By Theorem 3.6 combined with Key Lemma 3.2, there exists a Z/pe-cover

of complete smooth o-curves Yo → P1
t,o such that the following hold:

(a) the special fiber of Yo → P1
t,o is the given ı-HKG-cover Y → P1

t,k;

(b) the generic fiber Yκ̂ → P1
t,κ̂ of Yo → P1

t,o is branched above x1, . . . , xN
only;3

(c) the upper ramification jumps above xµ are ıµ := (ıµ1, . . . , ıµ,eµ) for

every µ = 1, . . . , N . Thus Yκ̂ → P1
t,κ̂ has no essential ramification.

In the above context, let κ̂ ↪→ l be an algebraic closure of κ̂. For every

µ = 1, . . . , N , consider the ıµ-HKG-cover Yµ → P1
t,l of the local Z/peµ-extension

l[[tµ]] ↪→ l[[zµ]], where zµ and tµ are local parameters at yµ 7→ xµ.

Hypothesis 4.14. In Notation 4.6, suppose that the subset Σıµ ⊂ A|ıµ|
is Zariski dense for every ıµ = (ıµ1, . . . , ıµeµ), µ = 1, . . . , N.

3N.B., Yκ̂ → P1t,k is in general not an ı-HKG-cover because it has N branched points!
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Since Σıµ ⊂ A|ıµ| is Zariski dense, we can apply Proposition 4.7 for each

ıµ = (ıµ1, . . . , ıµeµ) and get: There exists some algebraic integer πµ such that

the ıµ-HKG-cover Yµ → P1
t,l has a smooth lifting over W (l)[πµ]. Thus by the

local-global principle Fact 4.13, it follows that if πı is an algebraic integer such

that πµ ∈ W (l)[πı] for all µ = 1, . . . , N , then Yl → P1
t,l has a smooth lifting

YO1 → P1
t,O1

over O1 := W (l)[πı].

Let v1 be the canonical valuation of O1, and let v0 be the (unique) pro-

longation of the valuation of o to l, say having valuation ring O0. Then the

base change YO0 → P1
t,O0

of Yo → P1
t,o defined by o ↪→ O0 is a Z/pe-cover of

complete smooth O0-curves with generic fiber Yl → P1
t,l. And the Z/pe-cover

of complete smooth l-curves Yl → P1
t,l is the special fiber of the Z/pe-cover of

smooth O1-curves YO1 → P1
t,O1

. Then setting v := v0 ◦ v1 and letting O be the

valuation ring of v, it follows by Lemma 4.3 that there exists a smooth lifting

of the ı-HKG-cover Y → P1
t,k to a Z/pe-cover of smooth O-curves YO → P1

t,O.

Finally, let pı = (p1, . . . , pe) with pρ(t
−1) ∈ k[t−1] be a standard system

of polynomials defining the Z/pe-extension k[[t]] ↪→ k[[z]] we started with at

point (3) above. In the context of Notation 4.6, let x ∈ A|ı| be the point defined

by the specialization map Pı 7→ pı. Since the above (Krull) valuation ring O
is a mixed characteristic valuation ring with residue field k, it follows by the

definition of Σı ⊂ A|ı| that x ∈ Σı. On the other hand, the Z/pe-extension

k[[t]] ↪→ k[[z]] we started with at point (3) above was arbitrary. Therefore the

set Σı ⊂ A|ı| is Zariski dense. Hence using Proposition 4.7, we conclude that

Hypothesis 4.14 implies the existence of an algebraic integer πı such

that every ı-HKG-cover Y → P1
t,k has a smooth lifting over W (k)[πı].

4.D. Concluding the proof of the Oort Conjecture . By the observation

above, the proof of the Oort Conjecture is reduced to showing that Hypoth-

esis 4.14 holds for every system of upper ramification indices ı = (ı1, . . . , ıe)

that has no essential jump indices; i.e., pıρ−1 ≤ ıρ < pıρ−1 +p for ρ = 1, . . . , e.

Via the local-global principle Fact 4.13, this fact is equivalent to a (very) spe-

cial case of the local Oort Conjecture, which follows from a result recently

announced by Obus–Wewers [15, Th. 1.4]. The special case we need is

Key Lemma 4.15 (Special case of Obus–Wewers). In the notation and

context as above, let k[[t]] ↪→ k[[z]] be cyclic extension of degree pe that has no

essential ramification. Then the local Oort Conjecture holds for k[[t]] ↪→ k[[z]];

i.e., k[[t]] ↪→ k[[z]] has a smooth lifting over some finite extension R of W (k)

to a smooth cyclic cover R[[T ]] ↪→ R[[Z]].

Proof. Recall that Theorem 1.4 from Obus–Wewers [15] asserts that the

local Oort conjecture holds for cyclic extensions k[[t]] ↪→ k[[z]] of degree pe,

provided the upper ramification jumps ı1 ≤ · · · ≤ ıe satisfy the following:
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Hypothesis 4.16. For every 3 ≤ ν < e, there is no a ∈ Z such that

ıν+1 − pıν < pa ≤ (ıν+1 − pıν)
ıν+1

ıν+1 − ıν
.

Notice that if k[[t]] ↪→ k[[z]] has no proper essential ramification jumps,

thus by definition ıν+1 ≤ pıν + p − 1 for all 1 ≤ ν < e, then hypothesis (∗)
above is satisfied. Indeed, if a satisfies both inequalities above, then pıν ≤ ıν+1

implies that a must be positive. Hence setting ε := ıν+1− pıν and u := ıν , the

second inequality becomes pa
Ä
ε + (p − 1)u

ä
≤ ε(ε + pu), which is equivalent

to p(p− 1)au ≤ ε(ε+ pu− pa). Hence taking into account that ε ≤ p− 1, we

get p(p − 1)au ≤ (p − 1)(p − 1 + pu − ap); thus dividing by (p − 1), we get

pau ≤ p− 1 + pu− ap, or equivalently, p(a− 1)(u+ 1) + 1 ≤ 0, which does not

hold for any positive integer a. �

This concludes the proof of Theorem 1.1.

Remark 4.17. To see how restrictive Hypothesis 4.16 is, proceed as follows:

Setting ε := ıν+1−pıν and u := ıν , we have that ıν+1 = ε+pu for some 0 ≤ ε,
and if 0 < ε, then p 6 |ε. Hence writing ε = rp − η with 1 ≤ η ≤ p − 1,

Hypothesis 4.16 for a := r implies that

At least one of the inequalities ε < rp ≤ ε(ε+pu)/
Ä
ε+(p−1)u

ä
does not hold.

Since the first inequality holds, the second inequality must not hold. Therefore

we must have rp > ε(ε+ pu)/
Ä
ε+ (p− 1)u

ä
. Since the right-hand side equals

ε + εu/
Ä
ε + (p − 1)u

ä
, and rp − ε = η, the above inequality is equivalent to

η > εu/
Ä
ε + (p − 1)u

ä
, hence to ηε + η(p − 1)u > εu, and finally equivalent

to η2(p − 1) >
Ä
ε − η(p − 1)

ä
(u − η). Thus since ε − η(p − 1) = (r − η)p,

the last inequality becomes η2(p − 1) > p(r − η)(u − η). Since p > p − 1, the

last inequality implies η2 > (r − η)(u− η). On the other hand, recalling that

u = ıν and ν ≥ 3, it follows that u ≥ ı3 ≥ pı2 ≥ p2ı1 ≥ p2. On the other hand,

since 1 ≤ η < p, one has u − η ≥ p2 − (p − 1) > (p − 1)2 ≥ η2. Therefore, in

order to satisfy the inequality η2 > (r− η)(u− η), one must have r− η ≤ 0, or

equivalently, r ≤ η. One concludes that the Hypothesis 4.16 is equivalent to

Hypothesis 4.16′. Setting ıν+1 − pıν = prν − ην with 0 ≤ ην < p, one

has 0 ≤ rν ≤ ην .

It seems to me that this is a better/easier formulation than the original

form of Hypothesis 4.16. Using this reformulation, we also can see how restric-

tive the Hypothesis 4.16 is. Namely, if ıν+1 ≡ −1 (mod p), then one must have

ıν+1 = pıν + p − 1. In general, one has ıν+1 ≤ pıν + (p − 1)2 and this upper

bound can be reached only if ıν+1 ≡ 1 (mod p). This shows that for 3 < e, the

Hypothesis 4.16 becomes quite restrictive indeed.
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