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Cyclic extensions and
the local lifting problem

By Andrew Obus and Stefan Wewers

Abstract

The local Oort conjecture states that, if Γ is cyclic and k is an alge-

braically closed field of characteristic p, then all Γ-extensions of k[[t]] should

lift to characteristic zero. We prove a critical case of this conjecture. In

particular, we show that the conjecture is always true when vp(|Γ|) ≤ 3

and is true for arbitrarily highly p-divisible cyclic groups Γ when a certain

condition on the higher ramification filtration is satisfied.

1. Introduction

1.1. The local lifting problem. Let Y be a smooth, projective, connected

curve over an algebraically closed field k of characteristic p > 0. Results

in deformation theory going back to Grothendieck show that Y can always

be lifted to characteristic zero. Specifically, one can always find a discrete

valuation ring (DVR) R in characteristic zero, with residue field k, such that

there exists a smooth relative R-curve Y with Y ×R k ∼= Y .

In [24], Oort asked the natural question: can one lift a Galois cover of

curves to characteristic zero? That is, if Γ is a finite group and f̄ : Y → X is

a Γ-Galois cover of smooth, projective, connected curves, is there a Γ-Galois

cover f : Y → X of smooth relative curves over a DVR R in characteristic zero

whose special fiber is f̄ : Y → X? Clearly, the answer is not always “yes.” For

instance, the group Γ = Z/p×Z/p acts faithfully on Y = P1
k via an embedding

into Ga(k). If X = Y /Γ, then the generic fiber of any lift f : Y → X of

f̄ : Y → X must be a Γ-Galois cover P1
K → P1

K , where K = Frac(R). But if

p ≥ 3, then Γ cannot act faithfully on P1 in characteristic zero, so such a lift

does not exist. However, Oort conjectured ([25]) that Γ-covers should always

lift when Γ is cyclic. Our main result (Theorem 1.4) proves the Oort conjecture

whenever vp(|Γ|) ≤ 3, and in many cases for arbitrarily large cyclic groups Γ.

Specific statements are in Section 1.3. The case we prove is critical, as Pop

([26]) is able to reduce the conjecture to the case we have proven, thus proving

the entire conjecture. See Remark 1.5.
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Although this was not fully known at the time of [24], it turns out that

the nature of lifting Galois covers of curves is completely local. Let B be the

branch locus of the Γ-Galois cover f̄ : Y → X. If, for each x ∈ B, one can

lift the cover f̄ when restricted to a formal neighborhood x̂ of x, then one can

lift f as well. This is known as the local-global principle. If Γ is abelian, then

techniques already used in [27] should give a proof. In any case, proofs for

arbitrary Γ have been given by Bertin and Mézard ([3]), Green and Matignon

([15]), and Garuti ([12]).

The restriction f̄ |x̂ is a disjoint union of covers of the form Spec k[[z]] →
Spec k[[t]]. Thus, the study of lifting Galois covers can be reduced to the

following local lifting problem:

Problem 1.1 (The local lifting problem). Let k be an algebraically closed

field of characteristic p and Γ a finite group. Let k[[z]]/k[[t]] be a Γ-Galois ex-

tension (i.e., an integral extension of integrally closed domains that is Γ-Galois

on the level of fraction fields). Does there exist a DVR R of characteristic

zero with residue field k and a Γ-Galois extension R[[Z]]/R[[T ]] that reduces

to k[[z]]/k[[t]]? That is, does the Γ-action on R[[Z]] reduce to that on k[[z]] if

we assume that Z (resp. T ) reduces to z (resp. t)?

Remark 1.2. If L/k[[t]] is any Γ-Galois extension, then the structure theo-

rem for complete DVR’s shows that L is always abstractly isomorphic to k[[z]].

So in the local lifting problem, we may as well talk about general Γ-Galois ex-

tensions of k[[t]].

In light of the local-global principle, one translates the conjecture of Oort

above into the local context.

Conjecture 1.3 (Local Oort conjecture). The local lifting problem can

always be solved when Γ is cyclic.

Note that a consequence of the local Oort conjecture and the local-global

principle is that any Galois cover of k-curves with cyclic inertia groups (not

just cyclic Galois group) lifts to characteristic zero.

The first author’s paper [23] is a detailed exposition of many aspects of

the local lifting problem.

1.2. Previously known results. It is easy to prove that if Conjecture 1.3 is

true for a given Z/pn-extension Ln/k[[t]], then it is also true for any Z/rpn-

extension (p - r) whose unique Z/pn-subextension is Ln/k[[t]]. (See, e.g., the

proof of [23, Prop. 6.3].) Thus, we may reduce to the case where Γ ∼= Z/pn.

If Γ ∼= Z/p or Z/p2, then Conjecture 1.3 has already been shown to be

true. The original proof of the case Γ ∼= Z/p was given by Sekiguchi, Oort, and

Suwa in [27]. Their proof was given in the global context for any Z/p-cover
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of smooth, projective curves (although local-global techniques were implicit in

the proof).

Later, Green and Matignon reproved Conjecture 1.3 for Γ = Z/p, and they

also proved it for Γ = Z/p2 [15, II, Ths. 4.1 and 5.5]. Their lifts were given

by explicit Kummer extensions. The form of these extensions was inspired by

Sekiguchi-Suwa Theory (or Kummer-Artin-Schreier-Witt Theory), although

Green and Matignon developed their proofs independently. This theory gives

(in principle) explicit equations for group schemes classifying unramified Z/pn-

extensions of flat local R-algebras, where R is a complete discrete valuation

ring in mixed characteristic (0, p). When n ≤ 2, it is manageable to write

down these equations explicitly, and Green and Matignon were able to exploit

this to write down their lifts. See [28] for an overview of the general theory,

[29] for an expanded version with proofs included, [30] for a detailed account

of the case n ≤ 2, or [32] for a briefer overview of this case.

Unfortunately, when n ≥ 3, the equations involved in Sekiguchi-Suwa

theory become extremely complicated and extraordinarily difficult to work

with. No one has been able to use the method of [15] to prove Conjecture 1.3

for any Z/pn-extension with n ≥ 3. Indeed, prior to this paper, Conjecture 1.3

for such extensions was only known to be true for sporadic examples arising

from Lubin-Tate formal group laws ([16], [14]).

However, there has long been evidence for the truth of Conjecture 1.3,

in the sense that all of the main known obstructions to lifting (such as the

Bertin/Katz-Gabber-Bertin obstructions of [2], [10] and the Hurwitz tree ob-

struction of [9], [8]) vanish for cyclic extensions.

1.3. Main result. To state our main result, Theorem 1.4, we recall that a

Z/pn-extension Ln/k[[t]] gives rise to a higher ramification filtration Γss≥0 on

the group Γ = Z/pn for the upper numbering ([31, IV]). The breaks in this

filtration (i.e., the values i for which Γi ) Γj for all j > i) will be denoted by

(m1,m2, . . . ,mn). One knows that mi ∈ N and

(1) mi ≥ pmi−1

for i = 2, . . . , n (see, e.g., [13]).

Theorem 1.4. Let Ln/k[[t]] be a Z/pn-extension with upper ramification

breaks (m1,m2, . . . ,mn). Suppose, for 3 ≤ i ≤ n − 1, that there is no integer

ai such that

(2)
mi

p
−mi−1 < ai ≤

Ç
mi

mi −mi−1

åÅ
mi

p
−mi−1

ã
.

Then Conjecture 1.3 holds for Ln/k[[t]].

Remark 1.5.
(i) It is not hard to see that the condition in Theorem 1.4 is satisfied when-

ever Ln/k[[t]] has no “essential ramification,” i.e., that mi < pmi−1 + p
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for 2 ≤ i ≤ n. Pop’s proof of the Oort conjecture in [26] reduces the (lo-

cal) Oort conjecture to the case where there is no essential ramification.

Assuming no essential ramification does not seem to simplify the proof of

Theorem 1.4.

(ii) The condition in Theorem 1.4 is vacuous for n = 3, so Conjecture 1.3 for

Γ ∼= Z/p3 is an immediate consequence.

(iii) The condition (2) for a given i is equivalent to saying that if mi = pmi−1 +

pri−ηi, with ri and ηi integers such that 0 ≤ ηi < p, then 0 ≤ ri ≤ ηi. This

equivalence is proved in [26, Rem. 4.12]. While the phrasing in Theorem 1.4

is arguably more complicated, it is a natural byproduct of the proof.

(iv) One can conjecture further that if Γ ∼= Z/pn, one should be able to take

R = W (k)[ζpn ] in Conjecture 1.3, where ζpn is a pn-th root of unity. This

is known when n ≤ 2. Unfortunately, our proof gives no effective bounds

on R. The proof of [26] gives, in theory, some effective bounds on R, but

they are much weaker than what is expected.

Remark 1.6. It would be interesting to investigate the local lifting problem

when Γ ∼= Z/pn o Z/m, with p - m. One can show that a necessary condition

to lift a Γ-extension L/k[[t]] to characteristic zero is that the action of Z/m
on Z/pn is either faithful or trivial and that if it is faithful, then the upper

ramification breaks (m1, . . . ,mn) of the Z/pn-subextension are all congruent

to −1 (mod m). In light of [26], one can ask if this is the only restriction. For

instance, should all Dpn-extensions lift for odd p?

1.4. Outline of the paper. We start with a short section (Section 2) over-

viewing the basics of the Artin-Schreier-Witt theory, giving an explicit charac-

terization of the Z/pn-extensions of k[[t]]. In Section 3, we set up our induction

on n and show how it proves Theorem 1.4. We prove the base cases n = 1

and n = 2 in Section 4. The paper begins in earnest with Section 5. In Sec-

tions 5.1 and 5.2 we introduce the language of characters, which will often be

more convenient than the language of extensions for expressing our results. In

Section 5.3, we introduce Kato’s Swan conductor in the situation relevant to

us. The Swan conductor serves several purposes in this paper, most notably

giving us a way to measure how bad the reduction of a cover is. In Sections 5.4

and 5.5, we examine the particular case of Z/p-extensions in great detail. This

is important, as Z/p-extensions are the building blocks of our inductive process.

In Section 6, we give the main proofs. Unlike in [15], we do not try to

write down a lift of a given Z/pn-extension explicitly. In particular, we do not

use the Sekiguchi-Suwa theory at all, except in the relatively trivial case of

Z/p-extensions (i.e., Kummer-Artin-Schreier theory). Instead, we write down

what the form of the equations should be in order that we might lift some

Z/pn-extension. Then, we show that if equations in this form do not reduce
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to a Galois extension, then they can be deformed to yield something that

comes closer to reducing to a Galois extension, and this deformation process

eventually terminates. This proves Conjecture 1.3 for some Z/pn-extension.

We then show that, given a solution for some particular extension, we can

find solutions to many more. A more detailed outline of Section 6 is given in

Section 6.1.

The proofs of several key technical results are postponed to Section 7.

This is partially because proving these results would disrupt the continuity of

Section 6 and partially because the proofs share much notation, and thus are

more easily read together.

1.5. Conventions. The letter K will always be a field of characteristic zero

that is complete with respect to a discrete valuation v : K× → Q. We assume

that the residue field k of K is algebraically closed of characteristic p. We

also assume that the valuation v is normalized such that v(p) = 1. The ring

of integers of K will be denoted R. We fix an algebraic closure K of K, and

whenever necessary, we will replace K by a suitable finite extension within

K, without changing the above notation. The maximal ideal of R will be

denoted m. Furthermore, for each r ∈ N, we fix once and for all a compatible

system of r-th roots p1/r in K such that if ab = r, then (p1/r)a = p1/b. Thus

pq ∈ K is well defined for any q ∈ Q. The greatest integer function of x is

written [x].
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2. Artin-Schreier-Witt theory

If Ln/k[[t]] is a Z/pn-extension, then so is the extension Mn/k((t)), where

Mn=Frac(Ln). The classical Artin-Schreier-Witt theory states that Mn/k((t))

is given by an Artin-Schreier-Witt equation

℘(x1, . . . , xn) = (f1, . . . , fn),
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where (f1, . . . , fn) lies in the ring Wn(k((t))) of truncated Witt vectors, F is

the Frobenius morphism on Wn(k((t))), and ℘(x) := F (x) − x is the Artin-

Schreier-Witt isogeny. Adding a truncated Witt vector of the form ℘(y) to

(f1, . . . , fn) does not change the extension, and we obtain a group isomorphism

H1(k((t)),Z/pn) ∼= Wn(k((t)))/℘(Wn(k((t)))). Since we can add ℘(y) to a

Witt vector without changing the extension, we may assume that the fi are

polynomials in t−1, all of whose terms have prime-to-p degree. In this case, if

(3) mi := max{pi−j degt−1(fj) | j = 1, . . . , i},

then the mi are exactly the breaks in the higher ramification filtration of

Mn/k((t)) ([13, Th. 1.1]). From this, one easily sees that p - m1, that mi ≥
pmi−1 for 2 ≤ i ≤ n, and that if p|mi, then mi = pmi−1.

For more details, see [35] or the exercises on page 330 of [20].

3. The induction process

Let Ln/k[[t]] be a Z/pn-extension. A theorem of Harbater-Katz-Gabber

([17], [19]) shows that (after possibly changing the uniformizer t of k[[t]]) there

exists a unique cover Y n → X := P1
k that is étale outside t = 0, totally ramified

above t = 0, and such that the formal completion of Y n → X at t = 0 yields

the extension Ln/k[[t]]. The local-global principle thus shows that solvability

of the local lifting problem from Ln/k[[t]] is equivalent to the following claim,

which will be more convenient to work with.

Claim 3.1. Given a Γ-Galois extension Ln/k[[t]], with Γ ∼= Z/pn, then

after possibly changing the uniformizer t of k[[t]], there exists a Γ-Galois cover

Yn → X := P1
K (where K is the fraction field of some DVR R as above) with

the following properties:

(i) The cover Yn → X has good reduction with respect to the standard model

P1
R of X and reduces to a Γ-Galois cover Ȳn → X̄ = P1

k that is totally

ramified above the point t = 0 and étale everywhere else.

(ii) The completion of Ȳn → X̄ at t = 0 yields Ln/k[[t]].

Remark 3.2. Let T be a coordinate of P1
R reducing to t. Then conditions

(i) and (ii) in Claim 3.1 can be reformulated as follows:

(i) The cover Yn → X is étale outside the open disk

D := {T | |T | < 1}.

(ii) The inverse image of D in Yn is an open disk.

(iii) If A = R[[T ]]{T−1} is the ring∑
j∈Z

ajT
j | aj ∈ R, aj → 0 as j → −∞

 ,
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the cover Yn → X is unramified when base changed to SpecA (which cor-

responds to the “boundary” of the disk D). The extension of residue fields

is isomorphic to the extension of fraction fields coming from Ln/k[[t0]].

If R is a characteristic zero DVR with residue field k and fraction field K,

set D(r) = {T ∈ K | |T | < |p|r}, using the non-archimedean absolute value

on K induced from the valuation.

We prove Theorem 1.4 (in the context of Claim 3.1) by induction using

the following base case (Lemma 3.3) and induction step (Theorem 3.4).

Lemma 3.3. If n = 1 (resp. n = 2), let Ln/k[[t]] be a Z/pn-extension

with upper ramification break m1 (resp. breaks (m1,m2)). Then there exists a

Z/pn-cover Yn → X satisfying Claim 3.1 for Ln/k[[t]], which is étale outside

the open disk D(rn), where rn = 1/mn(p− 1).

Theorem 3.4.

(i) Suppose n > 1, and let Ln/k[[t]] be a Z/pn-extension with upper ramifi-

cation breaks (m1, . . . ,mn) and Z/pn−1-subextension Ln−1/k[[t]]. Suppose

there exists a Z/pn−1-cover Yn−1 → X satisfying Claim 3.1 for Ln−1/k[[t]],

which is furthermore étale outside the open disk D(rn−1), where rn−1 =

1/mn−1(p− 1). Then there is a Z/pn-cover Yn → X satisfying Claim 3.1

for Ln/k[[t]].

(ii) If Ln/k[[t]] is as in part (i) and there is no integer a satisfying

mn

p
−mn−1 < a ≤

Ç
mn

mn −mn−1

åÅ
mn

p
−mn−1

ã
,

then the Z/pn-cover Yn → X in part (i) can be chosen to be étale outside

D(rn), where rn = 1/mn(p− 1).

Theorem 1.4 now follows easily.

Proof of Theorem 1.4. Let Ln/k[[t]] be in the form of Theorem 1.4. Note

that, for any n′ ≤ n, the unique Z/pn′-subextension Ln′/k[[t]] of Ln/k[[t]] has

upper ramification breaks (m1, . . . ,mn′) ([31, IV, Prop. 14]). Using Lemma 3.3,

Theorem 3.4, and induction, it follows that there is a Z/pn−1-cover Yn−1 → X

satisfying Claim 3.1 for Ln−1/k[[t]], which is étale outside D(rn−1). Then

Theorem 3.4(ii) shows that Claim 3.1, thus Conjecture 1.3, holds for Ln/k[[t]].

�

4. The base case

The proof of Lemma 3.3 is straightforward, using the explicit equations

given in [15].

Proof of Lemma 3.3 for Z/p-extensions. By Artin-Schreier theory, any

Z/p-extension of k((t)) is given by an equation yp − y = f1, where f1 ∈ k((t))
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is unique up to adding elements of the form ap − a, with a ∈ k((t)). Thus,

we may assume that f1 =
∑m1
i=1 ait

−i ∈ k[t−1] is a polynomial in t−1 such that

ai = 0 for i ≡ 0 (mod p). Then the break in the ramification filtration is m1,

which is prime to p. Since m1

»
1/f1 is a uniformizer of k((t)), we may make a

change of variables and assume f1 = t−m1 . So we assume our equation is given

by yp−y = t−m1 . In [15, II, Th. 4.1], a Z/p-cover Y → P1 satisfying Claim 3.1

is given by the Kummer extension

(4) Zp = G1(T ) := 1 + λpT−m1 ,

where T reduces to t and λ = ζp−1 for ζp a primitive p-th root of unity. (This

equation was already used in [27].) In particular, one makes the substitution

Z = 1 + λY , which leads to the equation

Y p − Y + o(1) = T−m1 ,

giving the correct reduction. (Here o(1) refers to terms with coefficients of

positive valuation.) The zeroes of G1 all have valuation

p

m1(p− 1)
>

1

m1(p− 1)
=: r1,

and the unique pole is at T = 0. Since the branch points all have valuation

greater than r1, the lemma is proved. �

Proof of Lemma 3.3 for Z/p2-extensions. Let L2/k((t)) be a Z/p2-exten-

sion with upper ramification breaks (m1,m2), and let ri = 1/mi(p − 1) for

i ∈ {1, 2}. After a possible change of variables, [15, II, Th. 5.5] gives a Z/p2-

cover Y → P1 satisfying Claim 3.1, in the form of a Kummer extension

Zp
2

= G1(T )G2(T )p.

Here G1 is as in (4) and G2 is a polynomial in T−1, which is called

(5) G(T−1) + pµp
m1(p−1)∑
s=1

AsT
−s

in [15, II, Th. 5.5]. Also, v(µ) = 1/p(p− 1) and v(As) ≥ 0 for all s. It is clear

from the expression for G(T−1) given in loc. cit. that the coefficient of each

nonconstant term of G(T−1) has valuation at least 1/(p− 1). The same holds

for the pµpAs by inspection. Furthermore, the proof of [15, II, Th. 5.5] shows

that each term in (5) has degree less than m2 in T−1. (m2 is called d in loc. cit.)

Now, we have already seen that the zeroes and poles of G1 have valuation

greater than r1 > r2. The only pole of G2 is at T = 0, so it suffices to show

that the zeroes of G2 have valuation greater than r2, or equivalently (by the

theory of Newton polygons), that the coefficient of T−` in G2−1 has valuation

greater than `r2 = `/m2(p − 1). But this is true because ` < m2 and the

valuation is at least 1/(p− 1). �
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5. Characters and Swan conductors

In this section we introduce the general geometric setup (characters) and

our most important tools (Swan conductors). As laid out in the introduction,

our goal is to construct pn-cyclic covers Y → X = P1
K of the projective line

reducing to a given cover Y → X = P1
k, which is étale outside the origin.

For technical reasons it is more convenient to work with the corresponding

character of the Galois group of the function field of X.

5.1. Geometric setup. Let X be a smooth, projective, and absolutely irre-

ducible curve over K. We write K for the function field of X. We assume that

X has good reduction, and we fix a smooth R-model XR. We let X := XR⊗Rk
denote the special fiber of XR. We also fix a K-rational point x0 on X and

write x̄0 ∈ X for the specialization of x0 with respect to the model XR. In our

main example, we have X = P1
K , with XR = P1

R and x0 = 0, but we will not

assume this in Section 5.

We let Xan denote the rigid analytic space associated to X. The residue

class of x0 with respect to the model XR,

D :=]x̄0[XR⊂ X
an,

is the set of points of Xan specializing to x̄0 ∈ X ([5]). It is an open subspace

of Xan, isomorphic to the open unit disk. To make this isomorphism explicit

we choose an element T ∈ OXR,x̄0 with T (x0) = 0 and whose restriction

to the special fiber generates the maximal ideal of OX,x̄0 . (This is possible

because XR → SpecR is smooth.) Then ÔXR,x̄0 = R[[T ]], and T induces an

isomorphism of rigid analytic spaces

D ∼= {x ∈ (A1
K)an | v(x) > 0}

that sends the point x0 to the origin. We call T a parameter for the open disk

D with center x0. The choice of T having been made, we identify D with the

above subspace of (A1
K)an.

For r ∈ Q≥0, we define

D[r] := {x ∈ D | v(x) ≥ r}.

We have D[0] = D. For r > 0, the subset D[r] ⊂ D is an affinoid subdomain.

Let vr : K× → Q denote the “Gauss valuation” with respect to D[r]. This

is a discrete valuation on K that extends the valuation v on K and has the

property vr(T ) = r. It corresponds to the supremum norm on the open subset

D[r] ⊂ Xan.

Let κr denote the residue field of K with respect to the valuation vr. For

r = 0, we have that κ0 is the function field of X. We let ordx̄0 : κ×0 → Z denote

the normalized valuation corresponding to the point x̄0 ∈ X.
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Now suppose that r > 0. Then after replacing K by a finite extension

(which depends on r) we may assume that pr ∈ K. Then D[r] is isomorphic to

a closed unit disk over K with parameter Tr := p−rT . Moreover, the residue

field κr is the function field of the canonical reduction D[r] of the affinoid

D[r]. In fact, D[r] is isomorphic to the affine line over k with function field

κr = k(t), where t is the image of Tr in κr. For a closed point x̄ ∈ D[r], we let

ordx̄ : κ×r → Z denote the normalized discrete valuation corresponding to the

specialization of x̄ on D[r]. We let ord∞ denote the unique normalized discrete

valuation on κr corresponding to the “point at infinity.”

Notation 5.1. For F ∈ K× and r ∈ Q≥0, we let [F ]r denote the image of

p−vr(F )F in the residue field κr.

5.2. Characters. We fix n ≥ 1 and assume that K contains a primitive

pn-th root of unity ζpn . (This is true after a finite extension of K.) For an

arbitrary field L, we set

H1
pn(L) := H1(L,Z/pnZ).

In the case of K, we have

H1
pn(K) := H1(K,Z/pnZ) ∼= K×/(K×)p

n
.

(The latter isomorphism depends on the choice of ζpn .) Elements of H1
pn(K)

are called characters on X. Given an element F ∈ K×, we let Kn(F ) ∈ H1
pn(K)

denote the character corresponding to the class of F in K×/(K×)p
n
.

For i = 1, . . . , n, the homomorphism

Z/piZ→ Z/pnZ, a 7→ pn−ia,

induces an injective homomorphism H1
pi(K) ↪→ H1

pn(K). Its image consists of

all characters killed by pi. We consider H1
pi(K) as a subgroup of H1

pn(K) via

this embedding.

A character χ ∈ H1
pn(K) gives rise to a (possibly branched) Galois cover

Y → X. If χ = Kn(F ) for some F ∈ K×, then Y is a connected component

of the smooth projective curve given generically by the Kummer equation

yp
n

= F . If χ has order pi as element of H1
pn(K), then the Galois group of

Y → X is the unique subgroup of Z/pnZ of order pi.

A point x ∈ X is called a branch point for the character χ ∈ H1
pn(K) if it

is a branch point for the cover Y → X. The branching index of x is the order

of the inertia group for some point y ∈ Y above x. The set of all branch points

is called the branch locus of χ and is denoted by B(χ).

Definition 5.2. A character χ ∈ H1
pn(K) is called admissible if its branch

locus B(χ) is contained in the open disk D.
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5.2.1. Reduction of characters. Let χ ∈ H1
pn(K) be an admissible charac-

ter of order pn, and let Y → X be the corresponding cyclic Galois cover. Let

Γ ∼= Z/pnZ denote the Galois group of Y → X. Let YR be the normalization

of XR in Y . Then YR is a normal R-model of Y and we have XR = YR/Γ.

After enlarging our ground field K, we may assume that the character χ is

weakly unramified with respect to the valuation v0; see [11]. By definition, this

means that for all extensions w of v0 to the function field of Y , the ramification

index e(w/v0) is equal to 1. It then follows that the special fiber Y := YR⊗R k
is reduced; see, e.g., [1, §2.2].

Definition 5.3. We say that the character χ has étale reduction if the map

Y → X is generically étale.

In terms of Galois cohomology the definition can be rephrased as follows.

The character χ has étale reduction if and only if the restriction of χ to the

completion K̂0 of K with respect to v0 is unramified. The latter means that

χ|K̂0
lies in the image of the cospecialization morphism

H1
pn(κ0)→ H1

pn(K̂0)

(which is simply the restriction morphism induced by the projection GalK̂0
→

Galκ0). Since the cospecialization morphism is injective, there exists a unique

character χ̄ ∈ H1
pn(κ0) whose image in H1

pn(K̂0) is χ|K̂0
. By construction, the

Galois cover of X corresponding to χ̄ is isomorphic to an irreducible component

of the normalization of Y .

Definition 5.4. If χ has étale reduction, we call χ̄ the reduction of χ and

χ a lift of χ̄.

Remark 5.5. Assume that χ has étale reduction. Then the condition that

χ is admissible implies that the cover Y → X corresponding to the reduction

χ̄ is étale over X − {x̄0}. (The proof uses Purity of Branch Locus; see, e.g.,

[22].) It follows that Y is smooth outside the inverse image of x̄0.

Definition 5.6. Let χ ∈ H1
pn(K) be an admissible character of order pn.

We say that χ has good reduction if it has étale reduction and the cover Y → X

corresponding to the reduction χ̄ of χ is smooth.

Note that a Z/pn-cover of P1
k, unramified outside x0, is uniquely deter-

mined by its germ above the branch point (see, e.g., [19]). Thus, with the

above notation, the local Oort conjecture (more specifically, Claim 3.1) may

be reformulated as follows.

Conjecture 5.7. Suppose that X = P1
K . Let χ̄ ∈ H1

pn(κ0) be a character

of order pn, unramified outside of x̄0. Then (after replacing K by a finite
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extension, if necessary) there exists an admissible character χ ∈ H1
pn(K) with

good reduction lifting χ̄.

5.3. Swan conductors.

5.3.1. Fix r ∈ Q≥0. We assume that pr ∈ K. Let K̂r denote the com-

pletion of K with respect to the valuation vr. Let χ ∈ H1
pn(K) be a character

of order ≤ pn. By Epp’s theorem ([11]) we may assume that the restriction

χ|K̂r is weakly unramified. Under this condition, we can define three types of

invariants that measure in some way the ramification of χ with respect to the

valuation vr.

First of all, we have the depth Swan conductor

δχ(r) := sw(χ|K̂r) ∈ Q≥0;

see [34, Def. 3.3]. By definition, δχ(r) = 0 if and only if χ is unramified with

respect to vr. If this is the case, then the reduction χ̄r ∈ H1
pn(κr) is well

defined. (See the previous subsection on the case r = 0.)

Let us now assume that δχ(r) > 0. Then we can define the differential

Swan conductor of χ with respect to vr:

ωχ(r) := dsw(χ|K̂r) ∈ Ω1
κr ;

see [34, Def. 3.9].

Finally, let ordx̄ : κ×r → Z be a normalized discrete valuation whose

restriction to k is trivial. Of course, ordx̄ corresponds either to a closed point

x̄ on the canonical reduction of the affinoid D[r], or it corresponds to the point

at infinity, x̄ =∞. Then the composite of vr with ordx̄ is a valuation on K of

rank two, which we denote by η(r, x̄) : K× → Q×Z. (See, e.g., [36, §10, p. 43];

the group Q × Z is equipped with the lexicographic ordering.) By definition,

we have

η(r, x̄)(F ) = (vr(F ), ordx̄([F ]r))

for F ∈ K×. In [18], Kato defines a Swan conductor swK
χ (r, x̄) ∈ Q≥0 × Z

of χ with respect to η(r, x̄). (See [18, Defs. 2.4 and 3.10]; note that we have

ε := (0, 1).) By definition, the first component of swK
χ (r, x̄) is equal to δχ(r).

We define the boundary Swan conductor

swχ(r, x̄) ∈ Z

as the second component of swK
χ (r, x̄).

Remark 5.8. The invariant swχ(r, x̄) is determined by the invariants δχ(r)

and ωχ(r), as follows:

(i) If δχ(r) = 0, then

swχ(r, x̄) = swχ̄r(x̄).
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Here χ̄r is the reduction of χ with respect to vr (well defined because

χ is unramified at vr) and swχ̄r(x̄) is the usual Swan conductor of χ̄r
with respect to the valuation ordx̄ (one less than the Artin conductor for

nontrivial characters; see [31, VI, §2]). This formula follows easily from

the definitions. As a consequence we see that swχ(r, x̄) ≥ 0 and that

swχ(r, x̄) = 0 if and only if χ̄r is unramified with respect to ordx̄.

(ii) If δχ(r) > 0, then we have

swχ(r, x̄) = −ordx̄(ωχ(r))− 1.

This follows from [18, Cor. 4.6].1

Proposition 5.9. Let χ1, χ2 ∈ H1
pn(K), and let χ3 = χ1χ2. For i ∈

{1, 2, 3} and r ∈ Q≥0, set δi = δχi(r). If δi > 0, then we set ωi := ωχi(r). If

δi = 0, then χ̄i ∈ H1
pn(κr) denotes the reduction of χi with respect to vr.

(i) If δ1 6= δ2, then δ3 = max(δ1, δ2). If δ1 > δ2, then ω3 = ω1.

(ii) Assume δ1 = δ2 > 0. Then

ω1 + ω2 6= 0 ⇒ δ1 = δ2 = δ3, ω3 = ω1 + ω2

and

ω1 + ω2 = 0 ⇒ δ3 < δ1.

(iii) Assume δ1 = δ2 = 0. Then δ3 = 0 and χ̄3 = χ̄1χ̄2.

Proof. Parts (i)–(ii) follow from [34, Prop. 3.10]. Part (iii) is clear, because

the cospecialization map H1
pn(κr)→ H1

pn(K̂r) is a homomorphism. �

5.3.2. The finite extension of K that was necessary in order to define the

invariants δχ(r), ωχ(r), and swχ(r, x̄) depends on r. However, the values δχ(r)

and ωχ(r) do not depend on the choice of this extension. Therefore, it makes

sense to consider δχ, ωχ, and swχ as functions in r ∈ Q≥0 and x̄.

Proposition 5.10. δχ extends to a continuous, piecewise linear function

δχ : R→ R≥0.

Furthermore,

(i) For r ∈ Q>0, the left (resp. right) derivative of δχ at r is −swχ(r,∞)

(resp. swχ(r, 0)).

(ii) If r is a kink of δχ (meaning that the left and right derivatives do not

agree), then r ∈ Q.

Proof. See, e.g., [33, Prop. 2.9]. A more direct proof of a special case of

the proposition can be derived from Section 5.4 below. �

1The proof in [18] uses class field theory and works only if the residue field of K is quasi-

finite. For a much more direct and elementary proof, see [7].
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Corollary 5.11. If r ≥ 0 and δχ(r) > 0, then the left and right deriva-

tives of δχ at r are given by ord∞(ωχ(r))+1 and −ord0(ωχ(r))−1, respectively.

Proof. Immediate from Proposition 5.10(i) and Remark 5.8(ii). �

5.3.3. We are going to characterize the case when χ has good reduction

in terms of the function δχ. Our main tool for this is a certain “local vanishing

cycles formula.” As a special case, we recover the criterion for good reduction

from [15, §3.4]. We fix an admissible character χ ∈ H1
pn(K) of order pn and let

Y → X denote the corresponding Galois cover. Let us also fix r ∈ Q≥0 and

assume that pr ∈ K.

Suppose first that r > 0. Then the affinoid subdomain D[r] ⊂ Xan gives

rise to an admissible blowup X ′R → XR with the following properties ([1, §3.5]

and [6]): Firstly, X ′R is a semistable curve whose special fiber X
′
:= X ′R ⊗R k

consists of two smooth irreducible components that meet in exactly one point.

The first component is the strict transform of X, which we may identify with

X. The second component is the exceptional divisor Z of the blowup X ′R →
XR, which is isomorphic to the projective line over k and intersects X in the

distinguished point x̄0. By construction, the complement Z
◦

:= Z\{x̄0} is

identified with the canonical reduction D[r] of the affinoid D[r]. In particular,

this means that the discrete valuation on K corresponding to the prime divisor

Z ⊂ X ′R is equivalent to the valuation vr and that the residue field κr may be

identified with the function field of Z.

Let Y ′R denote the normalization of X ′R in Y . We obtain a commutative

diagram
Y ′R −−−−→ YRy y
X ′R −−−−→ XR

in which the vertical maps are finite Γ-covers and each horizontal map is the

composition of an admissible blowup with a normalization. Let W ⊂ Y ′R be the

exceptional divisor of Y ′R → YR. After enlarging the ground field K we may

assume that W is reduced. Note that this holds if and only if the character χ

is weakly unramified with respect to the valuation vr and that this is exactly

the condition we need to define δχ(r), ωχ(r), and swχ(r, x̄). We now choose a

closed point x̄ ∈ Z◦ = D[r] and a point ȳ ∈W lying over Z. We let

U(r, x̄) :=]x̄[D[r]

denote the residue class of x̄ on the affinoid D[r]. Clearly, U(r, x̄) is isomorphic

to the open unit disk. Finally, we let q : W̃ →W denote the normalization of

W and set
δȳ := dimk (q∗O‹W /OW )ȳ.

Then δȳ ≥ 0 and we have δȳ = 0 if and only if ȳ ∈W is a smooth point.
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The above notation extends to the case r = 0 as follows. If r = 0, then we

let Z := X denote the special fiber of the smooth model XR of X and W := Y

the special fiber of Y . We set x̄ := x̄0 and choose an arbitrary point ȳ ∈ W
above x̄0. The residue class U(r, x̄) is now equal to the open disk D, and the

invariant δȳ is defined in the same way as for r > 0.

Proposition 5.12. With the notation introduced above, we have

swχ(r, x̄) = |B(χ) ∩ U(r, x̄)| − 1− 2δȳ.

Proof. This follows from [18, Th. 6.7]. To see this, note that the left-hand

side of the formula in loc. cit. (the “vanishing cycles”) remains invariant if

the sheaf F is pulled back to a Galois cover of Spec (A) on which F becomes

constant. In our situation we take for A := Oh
X′R,x̄

the henselian local ring of

x̄ on the scheme X ′R and for F the étale sheaf corresponding to the charac-

ter χ. Then the ring extension B := Oh
Y ′R,ȳ

/A gives rise to a Galois cover that

trivializes F . To prove Proposition 5.12, one applies the formula from loc. cit.

to F and its pullback. After equating the left-hand side of both formulas and

tracing back the definitions of all terms appearing in the right-hand side, one

obtains the desired result. �

As a first consequence of the above proposition we reprove the following

important criterion for good reduction from [15, §3.4].

Corollary 5.13.

(i) Let χ ∈ H1
pn(K) be an admissible character of order pn. Then

|B(χ)| ≥ swχ(0, x̄0) + 1.

Also, χ has good reduction if and only if δχ(0) = 0 and equality holds above.

(ii) Suppose χ has good reduction with upper ramification breaks (m1, . . . ,mn).

If 1 ≤ i ≤ n, then

|{x ∈ B(χ) | ramification index of x is exactly pn−i+1}| = mi −mi−1,

where we set m0 = −1.

Proof. The inequality in part (i) follows immediately from Proposition 5.12

since B(χ) ⊂ D = U(0, x̄0) by assumption. Now, by definition, χ has good

reduction if and only if δχ(0) = 0 and Y = W is smooth in any point ȳ above

the distinguished point x̄0. The latter condition is equivalent to δȳ = 0. Thus,

the rest of part (i) also follows from Proposition 5.12.

In the situation of part (ii), the character χi := χp
n−i
n ∈ H1

pi(K) is an

admissible character with reduction χ̄i of order pi with upper ramification

breaks (m1, . . . ,mi). Thus the Swan conductor of χ̄i is mi ([31, Cor. 2 to

Th. 1], noting that the Swan conductor is one less than the Artin conductor).
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By part (i), |B(χi)| = mi + 1. Since elements of B(χi) correspond exactly to

elements of B(χ) with ramification index at least pn−i+1, part (ii) follows. �

Corollary 5.14. Let χ ∈ H1
pn(K) be an admissible character of order

pn, let r ∈ Q>0, and let x̄ a point on the canonical reduction of D[r]. Then

swχ(r, x̄) ≤ |B(χ) ∩ U(r, x̄)| − 1.

Moreover, if χ has good reduction, then equality holds.

Proof. The inequality follows immediately from Proposition 5.12. To

prove the second statement we note that if χ has good reduction, then in

the situation of Proposition 5.12 the point ȳ is a nonsingular point of W . This

is because the curve W is the exceptional divisor of the modification Y ′R → YR.

If χ has good reduction, then YR is smooth over R and hence regular. It follows

from Castelnuovo’s criterion (see, e.g., [21, Th. 9.3.8]) that W is smooth. �

Corollary 5.15. In the situation of Corollary 5.14, if δχ(r) > 0, we

have ordx̄(ωχ(r)) ≥ −|B(χ) ∩ U(r, x̄)|, with equality if χ has good reduction.

Proof. Immediate from Corollary 5.14 and Remark 5.8(ii). �

Remark 5.16.

(i) If χ has good reduction, then Corollaries 5.11 and 5.15 show that δχ is

a piecewise linear, weakly concave down function. Moreover, the position

of the kinks of δχ correspond to the valuations of the ramification points

in B(χ). If r > 0 is a kink, then the number of ramification points of χ

with valuation r is precisely the difference between the left and the right

derivative of δχ at r.

(ii) Now assume that B(χ) ⊂ D(r0) for some r0 ∈ Q>0. Then it follows from

Remark 5.8, Corollary 5.11, and Corollary 5.15 that the restriction of δχ
to the interval [0, r0] is weakly concave up. Together with (i) this shows

that if χ has good reduction, then δχ|[0,r0] is linear.

5.4. Characters of order p.

5.4.1. We will now describe in the special case n = 1 how to determine

the function δχ explicitly in terms of a suitable element F ∈ K× corresponding

to the character χ ∈ H1
p (K) ∼= K×/(K×)p.

Proposition 5.17. Let F ∈ K×\(K×)p, let χ := K1(F ) ∈ H1
p (K), and

let r ∈ Q≥0. Suppose that vr(F ) = 0. Suppose, moreover, that χ is weakly

unramified with respect to vr.

(i) We have

δχ(r) =
p

p− 1
−max

H
vr(F −Hp),

where H ranges over all elements of K.
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(ii) The maximum of vr(F −Hp) in (i) is achieved if and only if

g := [F −Hp]r 6∈ κpr .

If this is the case, and δχ(r) > 0, then

ωχ(r) =

dg/g if δχ(r) = p/(p− 1),

dg if 0 < δχ(r) < p/(p− 1).

If, instead, δχ(r) = 0, then χ̄ corresponds to the Artin-Schreier extension

given by the equation yp − y = g.

Proof. The assumption g 6∈ κpr shows that vr(H) ≥ 0. If vr(H) > 0,

then g = [F ]r. In this case, [34, Prop. 5.3] says that δχ(r) = p/(p − 1) and

ωχ(r) = dg/g. Otherwise,

FH−p = 1 + psG,

where s := vr(F−Hp) > 0 and G ∈ K is an element with vr(G) = 0 and residue

class g. By [34, Prop. 5.3], we now have δχ(r) = p/(p − 1) − s. Moreover, if

δχ(r) > 0, then ωχ(r) = dg.

If δχ(r) = 0, then s = p/(p−1). Make a change of variable 1+λY = FH−p,

where λ ∈ K is the unique element satisfying λp−1 = −p and

v(1 + λ/p1/(p−1)) > 0.

Then the equation (1 + λY )p = 1 + psG yields Y p − Y = G + o(1), which

reduces to the desired Artin-Schreier extension. �

5.5. Detecting the slope of δχ. Let χ ∈ H1
p (K) be an admissible character

of order p, giving rise to a branched cover Y → X. Let m > 1 be a prime-to-p

integer. We assume that the following conditions hold:

(a) The branch locus of χ is contained in the closed disk D[r0], for some r0 > 0,

and T = 0 is one of the branch points.

(b) For all r ∈ (0, r0], the left derivative of δχ at r is ≤ m. (Equivalently, by

Proposition 5.10, swχ(r,∞) ≥ −m.)

(c) For all r ∈ (0, r0], we have δχ(r) > 0.

Because of condition (a) we can represent χ as the Kummer class of a

power series

F = 1 +
∞∑
i=1

aiT
−i,

with ai ∈ R and v(ai) ≥ r0i. We wish to find a polynomial H in T−1 whose

p-th power approximates F well enough to use Proposition 5.17 simultaneously

for all r in an interval (0, s]∩Q for some 0 < s < r0. We will then get explicit

expressions for the slopes of δχ on the interval [0, r0].
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For any N ≥ 1, set

H := 1 +
N∑
j=1

bjT
−j .

Here we consider the bj for the moment as indeterminates. Write

F −Hp =
∞∑
k=1

ckT
−k,

where ck is a polynomial in b1, . . . , bmin(k,N). Note that ck = ak ∈ R for

k > pN .

Lemma 5.18. Assuming condition (a), after replacing K by some finite

extension, there exist b1, . . . , bN ∈ R such that

(i) v(ck) ≥ r0k for all k, and

(ii) ckp = 0 for all k ≤ N .

Proof. For (ii) to hold, we can solve the equations cpN = cp(N−1) = · · · =
cp = 0 inductively:

cpN = bpN − aNp = 0,

cp(N−1) = bpN−1 + · · · = 0,

...
...

One easily checks that these solutions verify v(bj) ≥ jr0 for all j. So we have

vr0(F ), vr0(H)≥0. Thus we get vr0(F −Hp)≥0, which is equivalent to (i). �

Remark 5.19. The proof above shows that there are only finitely many

solutions for the bj and that they vary analytically as the ai do.

Proposition 5.20. Assume conditions (a), (b), and (c) hold. Choose

s ∈ (0, r0) ∩Q and N ∈ N such that

(6) pN ≥ p

(p− 1)(r0 − s)
.

Let b1, . . . , bN be as in Lemma 5.18. Define λm(χ) ∈ [0, r0] by

λm(χ) := max
Ä
{r ∈ (0, r0] | swχ(r,∞) > −m} ∪ {0}

ä
.

Set

µm(χ) := max
Ä
{v(cm)− v(ck)

m− k
| 1 ≤ k < m} ∪ {0}

ä
.

Then

(i) For all r ∈ (0, s] ∩Q, we have

[F −Hp]r 6∈ κpr .
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Therefore,

δχ(r) = p/(p− 1)− vr(F −Hp), swχ(r,∞) = −ord∞[F −Hp]r.

(ii) We have

λm(χ) < s ⇔ µm(χ) < s.

(iii) If λm(χ) < s, then λm(χ) = µm(χ).

Remark 5.21. Note that if λm(χ) 6= r0, then Proposition 5.10 implies that

λm(χ) is the largest value in (0, r0] where δχ has a kink.

Proof of Proposition 5.20. Fix r ∈ (0, s]∩Q, and set M := ord∞[F−Hp]r.

By definition and by Lemma 5.18(i), we have

(7) vr(F −Hp) = v(cM )− rM ≥M(r0 − r) ≥M(r0 − s).

On the other hand, condition (c) shows that δχ(r) > 0 and Proposition 5.17

show that

(8) vr(F −Hp) <
p

p− 1
.

Using (7), (8), and the choice of N , we obtain the inequality

(9) M <
p

(p− 1)(r0 − s)
≤ Np.

If M were divisible by p, then (9) and Lemma 5.18 (ii) would show that cM = 0,

which contradicts the definition of M . Therefore, M is prime to p, and part

(i) of the lemma follows from Proposition 5.17 and Remark 5.8(ii).

In order to prove (ii) and (iii) we note that, by condition (b), λm(χ) < s

is equivalent to swχ(s,∞) = −m. Let N be the Newton polygon of the power

series F − Hp =
∑∞
k=1 ckT

−k. By (i), the Swan conductor of χ on (0, s] is

determined by N . In particular, we have swχ(s,∞) = −m for some r ∈ (0, s]

if and only if the point (m, v(cm)) is a vertex of N and s1 ≤ s < s2, where s1

(resp. s2) is the slope of the edge to the left (resp. to the right) of the vertex

(m, v(cm)). Furthermore, in this case we have µm(χ) = s1 < s and λm(χ) = s1,

which proves (iii).

To prove (ii), it remains to show that if µm(χ) < s, then λm(χ) < s. If

(m, v(cm)) is a vertex of N , then as in the paragraph above we have λm(χ) =

µm(χ), so λm(χ) < s. If (m, v(cm)) is not a vertex of N , then there exists a

line segment of N with slope s′ < µm(χ) < s connecting two points (i, v(ci))

and (j, v(cj)), where i < m < j. But this means that swχ(s,∞) ≥ −j, which

contradicts condition (b). This proves (ii). �

Proposition 5.20 will be the key to Section 6.4.
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6. Proof of Theorem 3.4

6.1. Plan of the proof. We continue with the notation of Section 5, and

for the rest of the paper, we set X ∼= P1 and x0 = 0. Recall that D is the unit

disk in (A1
K)an centered at 0. For r ∈ Q≥0, we set

D(r) = {T ∈ (A1
K)an | |T | < |p|r} ⊆ D.

We are given a character χ̄n ∈ H1
pn(κ0) of order exactly pn, with upper ramifi-

cation breaks (m1,m2, . . . ,mn). We further assume that n ≥ 2. For 1 ≤ i ≤ n,

set ri = 1/mi(p− 1). Recall that p - m1 and

mi ≥ pmi−1

for i = 2, . . . , n. Moreover, if the inequality above is strict, then (mi, p) = 1.

For i = 1, . . . , n, we set χ̄i := χ̄p
n−i
n ∈ H1

pi(κ0). By assumption, for each

1 ≤ i < n, there is a character χi lifting χ̄i. We assume that B(χn−1) lies in

the disk D(rn−1), and we may further assume that T = 0 is a branch point of

order pn−1. In order to prove Theorem 3.4, we must show that there exists a

character χn ∈ H1
pn(K) with (good) reduction χ̄n. Furthermore, we must have

B(χn) ⊆ D, and if there is no integer a satisfying

(10)
mn

p
−mn−1 < a ≤

Ç
mn

mn −mn−1

åÅ
mn

p
−mn−1

ã
,

then we must even have B(χn) ⊆ D(rn). We will construct χn such that

χpn = χn−1.

We may assume that χn−1 corresponds to an extension of K given by a

system of Kummer equations

ypi = yi−1Gi, i = 1, . . . , n− 1,

with y0 := 1 and Gi ∈ K. Any χ ∈ H1
pn(K) such that χp = χn−1 is given by

an additional equation

(11) ypn = yn−1G.

Since we must have B(χ) ⊆ D, we will search for G ∈ 1 + T−1m[T−1], where

m is the maximal ideal of R. In particular,

(12) G =
N∏
i=1

(1− xiT−1)ai ,

where ai ∈ N, (ai, p) = 1, and xi ∈ m are pairwise distinct. We will say that

the polynomial G gives rise to the character χ. If xi is a branch point of χn−1,

then we may also transfer the term (1−xit−1)ai into Gn−1. Therefore, we may

assume that none of the xi is a branch point of χn−1. If this is the case, then
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Corollary 5.13(ii) shows that a necessary condition for good reduction of χ is

that N = mn −mn−1. We assume this.

Our proof that a choice Gn for G exists giving rise to a character χn whose

(good) reduction is χ̄n will be done in two parts:

(Part A) We prove that there exists a polynomial Gmin ∈ 1 + T−1m[T−1]

giving rise to a character χmin with good reduction χ̄min having upper

ramification breaks (m1, . . . ,mn−1, pmn−1) at the ramified point.

(Part B) We construct the desired polynomial Gn by modifying Gmin.

Furthermore, we show that if there is no a satisfying (10), and if Gn gives rise

to χn, then B(χn) ⊆ D(rn). This will complete the proof of Theorem 3.4.

We remark that the basic strategy for our proof is adapted from the proof

of the case n = 2 by Green and Matignon, [15]. Essentially, Part (A) corre-

sponds to Lemmas 5.2 and 5.3 in loc. cit., whereas Part (B) corresponds to

Lemma 5.4.

The proof of Part (A) will be done in three steps. The first step (Sec-

tion 6.2) is to find an appropriate family of candidate polynomials for Gmin,

which we will call Gn. This family is defined in Definition 6.7. The second

step (Section 6.3) is to show that if a polynomial in Gn yields a character with

bad reduction, it can be altered (within Gn) to obtain a new polynomial whose

reduction is “closer” to being good (i.e., the depth Swan conductor of the cor-

responding character is lower). The key result here is Proposition 6.13. Lastly

(Section 6.4), we show there must exist a polynomial in Gn that is “closest”

to having good reduction (i.e., the depth Swan conductor of the corresponding

character is minimal). This is the content of Proposition 6.15. Combining

these steps shows that there must exist Gmin ∈ Gn giving a character with

good reduction.

Proposition 6.21 proves Part (B) and is found in Section 6.5.

6.2. A family of candidate polynomials.

6.2.1. We continue with the setup of Section 6.1. In particular, recall

that χi is a lift of χ̄i for 1 ≤ i < n, and χ is the character arising from G, as

in (11). If r ∈ Q≥0, then to simplify the notation we will write δi(r) and ωi(r)

instead of δχi(r) and ωχi(r) for the depth and differential Swan conductors of

χi (Section 5.3). Furthermore, we write δn(r) and ωn(r) instead of δχ(r) and

ωχ(r). As will become apparent in Proposition 6.4 and its proof, it will be

very important to control ωn(rn−1). The polynomials G that give our desired

ωn(rn−1) will comprise our candidate family Gn.

Lemma 6.1. Assume 1 ≤ i < n. Then for r ∈ [0, ri], we have

(13) δi(r) = mi · r.
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Moreover, for 0 < r ≤ ri, we have

(14) ωi(r) =
ci dt

tmi+1
.

Here ci ∈ k× is a constant depending on i and r.

Proof. By hypothesis, χi has good reduction χ̄i. Therefore, δi(0) = 0. On

the other hand, the hypothesis that χi has good reduction and that all of its

mi + 1 branch points are contained in the disk D(ri) implies that

ord0(ωi(r)) = −mi − 1, ordx̄(ωi(r)) = 0

for all r ∈ (0, ri] and x̄ 6= 0,∞, using Corollary 5.15. So (13) follows, using

Corollary 5.11. But now the same corollary shows that

ord∞(ωi(r)) = mi − 1,

and (14) follows as well. �

Remark 6.2. Suppose 1 < i < n and 0 < r < ri. Lemma 6.1 shows that

pδi−1(r) ≤ δi(r) <
1

p− 1
.

Moreover, the first inequality is an equality if and only if mi = pmi−1. It

follows from [34, Th. 4.3 (ii)] that C(ωi(r)) = 0 if and only if mi > pmi−1,

where C is the Cartier operator. This is consistent with (14). On the other

hand, if mi = pmi−1, then

C(ωi(r)) = ωi−1(r).

In particular, we have ci = cpi−1 in (14).

6.2.2. We now focus on the critical radius rn−1. To further simplify the

notation we will, until the end of Section 6.2, write ωi (resp. δi) instead of

ωi(rn−1) (resp. δi(rn−1)). By Lemma 6.1 we have δn−1 = 1/(p − 1). So [34,

Th. 4.3] says that

(15) δn =
p

p− 1

and

(16) C(ωn) = ωn + ωn−1.

Let m be the minimal upper ramification break mi such that mn−1 is a power

of p times mi. Thus m is prime to p. Set ν = n − 1 − i. Thus 0 ≤ ν ≤ n − 2

and mn−1 = mpν .

By Lemma 6.1 and Remark 6.2, we have

ωi =
c dt

tm+1
, . . . , ωn−1 =

cp
ν
dt

tpνm+1
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for some c ∈ k×. After a change of parameter we may assume that c = m,

viewed as an element of k×. Note that mp = m. Set

(17) η := −(ωi + · · ·+ ωn−1) = −m
ν∑
j=0

t−mp
j−1dt.

Lemma 6.3. Let g = [G]rn−1 . Then

ωn = η +
dg

g
.

Proof. One easily checks that C(η) = η + ωn−1. Using (16) we conclude

that

ωn = η +
dh

h

for some h ∈ κ×rn−1
.

Let us first assume that G = 1. Then B(χn) lies in the disk D(rn−1). It

follows from Corollary 5.15 that the differential ωn has no poles outside t = 0.

Since η has no poles outside t = 0, this can happen only if dh/h = 0. This

shows that the lemma is true if G = 1.

To prove the general case, we note that multiplying G by an element

H ∈ K× has the effect of adding the character K1(H) ∈ H1
p (K) to χ. We may

assume that vrn−1(H) = 0 and let h ∈ κrn−1 denote the residue of H. Then we

have

δK1(H) =
p

p− 1
and ωK1(H) =

dh

h

if and only if h 6∈ κprn−1
, by Proposition 5.17. If h ∈ κprn−1

, then δK1(H) <

p/(p − 1). In both cases, Proposition 5.9 shows that multiplying G by H has

the effect of adding dh/h to ωn. The lemma follows. �

The following proposition is not strictly necessary for the proof of Theo-

rem 3.4, but it helps to narrow our search for the correct Gn. Recall that we

assume Gn to be in the form (12) and that N = mn −mn−1.

Proposition 6.4. If χ has good reduction, then the following hold :

(i) For all i, we have v(xi) ≤ rn−1 = 1/mn−1(p− 1).

(ii) For i, j with v(xi) = v(xj) = rn−1, we have x̄i 6= x̄j (where x̄i denotes the

reduction of xip
−rn−1).

(iii) Write N = N1 + N2, where N1 is the number of xi’s with v(xi) = rn−1.

We may assume that v(xi) < rn−1 for i = N1 + 1, . . . , n. Then

N∑
i=N1+1

ai ≡ 0 (mod p).

In particular, if ai = 1 for all i, then N2 ≡ 0 (mod p).
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(iv) If mn = pmn−1, then N1 = mn−1(p − 1) and N2 = 0. Otherwise, N1 <

mn−1(p− 1) and N2 > 0.

Proof. By Lemma 6.3, we have

(18) ωn =
dg

g
−m

ν∑
j=0

t−mp
j−1 dt,

where
g := [G]rn−1 ∈ k[t−1].

It follows that ord0(ωn) = −mn−1 − 1. So if χ has good reduction, then

Corollary 5.15 shows that the number of branch points specializing to 0 (i.e.,

with valuation > rn−1) must be equal to mn−1 + 1. Since χn−1 has exactly

mn−1 + 1 branch points with valuation > rn−1, none of the new branch points

can have this property. This proves (i).

By (18), ωn can have at most a simple pole at any point x̄ 6= 0, and then

good reduction and Corollary 5.15 imply that branch points with radius rn−1

have to lie in distinct residue classes. This proves (ii). It follows similarly from

Corollary 5.15 that ωn has no zeroes outside t = ∞, so the fact that div(ωn)

has degree −2 means that ord∞(ωn) = mn−1 + N1 − 1 ≥ 0. But it is easy to

see that

ord∞(g) =
N∑

i=N1+1

ai,

and (18) shows that ord∞(ωn) ≥ −1 if and only if ord∞g ≡ 0 (mod p). This

proves (iii).

On the other hand, we have C(ωn)=ωn+ωn−1 and ord∞(ωn−1)=mn−1− 1,

which implies, by an easy calculation, that

ord∞ωn ≤ pmn−1 − 1.

It follows that N1 ≤ mn−1(p− 1).

Now suppose that mn = pmn−1. Then Corollaries 5.11 and 5.15 show that

the right derivative of δn is at most mn−1 + N = pmn−1 on [0, rn−1). Since

δn(rn−1) = p/(p−1) by (15), and good reduction requires δn(0) = 0, this slope

must be pmn−1 on the entire interval. Thus

ord∞ωn = mn − 1 = pmn−1 − 1,

by Corollary 5.11. Hence N1 = N = mn−1(p − 1) and N2 = 0. Otherwise, if

mn > pmn−1, then the condition that δn is weakly concave down (Remark 5.16)

and has right derivative mn at r = 0 (Proposition 5.10(i)) implies that δn(r) >

pmn−1r for 0 < r < rn−1. But this means that ord∞ωn + 1 < pmn−1 at

r = rn−1, hence N1 < mn−1(p− 1). It follows that

N2 = mn −mn−1 −N1 > mn − pmn−1 > 0.

This completes the proof of the proposition. �
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It follows from Proposition 6.4 that, up to a constant factor that we may

eliminate by rescaling t, we have

(19) [G]rn−1 = g = ta0
N1∏
i=1

(1− x̄it−1)ai ,

where

a0 := −
N∑

i=N1+1

ai ≡ 0 (mod p).

Hence

(20)
dg

g
=

N1∑
i=1

aix̄it
−2dt

1− x̄it−1
.

Corollary 6.5. In the notation of Proposition 6.4, if χ has good reduc-

tion, then

(21) ωn =
dg

g
−m

ν∑
j=0

t−mp
j−1dt =

c dt

tmn−1+1
∏N1
i=1(t− x̄i)

,

where c := (−1)N1+1m(
∏N1
i=1 x̄i) is a nonzero constant. In particular, ord∞ωn=

mn−1 +N1 − 1.

Proof. The middle expression is the expression deduced for ωn in (18). We

have seen in the proof of Proposition 6.4 that ωn has simple poles at the x̄i, a

pole of order mn−1 + 1 at 0, and no zero outside∞. It follows that ωn is equal

to the right-hand side of (21) times a constant. To determine this constant,

one computes the Laurent series representation in t of both sides. �

The next theorem, showing that we can often find a g satisfying the con-

ditions of 6.5, is critical.

Theorem 6.6. Suppose m|mn (equivalently, m|N = mn −mn−1). Then,

under the assumption that ai = 1 for i ≥ 1, there is a solution g ∈ k[t−1] to

(21) as in (19) of degree N .

Proof. This is contained in Corollary 7.8. �

Definition 6.7. If g is the solution to (21) guaranteed by Theorem 6.6,

then we define Gn to be the subset of all G of the form (12) with [G]rn−1 = g

(see Notation 5.1).

Remark 6.8. Corollary 7.8 also shows that if ai = 1 for all i ≥ 1 and N1

is as in (19), then we have m|N1 and

mn−1(p− 1)−mp < N1 ≤ mn−1(p− 1), N1 ≡ N (mod p).
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This determines N1 uniquely. This means that if G is as in (12), has all

ai = 1, and gives rise to χ with good reduction, then the number of zeroes of

G with valuation rn−1 is fixed. The importance of this condition is illustrated

in Example 6.9.

Example 6.9. Assume that p = 5, set n = 3, and suppose the upper

ramification breaks of χ̄3 are (m1,m2,m3) = (1, 5, 34). If G3 is in the form of

(12) with all ai = 1, and if G3 gives rise to a character χ3 with good reduction

χ̄3, then N = 29. Remark 6.8 shows that χ3 gives rise to a cover with exactly

N1 = 19 branch points at radius r2 = 1/20 and N2 = 10 branch points at

radius < 1/20. We know from (15) that δ3(1/20) = 5/4. By Corollaries 5.11

and 5.15, the (left) slope of δ3 at r ≤ 1/20 is equal to 5 + N(r), where N(r)

is the number of branch points with valuation ≥ r. Since δ(0) = 0, one can

show that there must be at least one branch point with valuation ≤ 1/200.

But r3 = 1/136 > 1/200, so B(χ3) cannot lie in the disk D(r3).

See Remark 6.22 and Example 7.18 for such an example with 10 branch

points with valuation exactly 1/200. Note that this does not contradict The-

orem 3.4(ii), as we can take a = 2 there.

Remark 6.10. If we do not assume ai = 1 for all i, then (21) can still

sometimes be solved. In particular, in light of Example 6.9, it would be nice

to find solutions to (21) with arbitrary ai and N1 not satisfying Remark 6.8.

We might then have some hope of finding a lift χn of χ̄n with B(χn) lying

in the disk D(rn), even when the condition in Theorem 3.4(ii) does not hold.

However, even when such solutions to (21) exist, it seems as if our current

techniques are often insufficient to turn them into lifts. For further discussion,

see Remark 7.12.

6.3. Reducing the depth Swan conductor. We maintain the notation of

Section 6.2, and we assume further that mn = pmn−1. Then, by Proposi-

tion 6.4, we have N = N1 = mn−1(p− 1).

Recall that any G ∈ Gn (Definition 6.7) gives rise to a character χ of

order pn lifting χn−1 as in (11), by adjoining the equation ypn = yn−1G. By

Corollaries 6.5 and 5.11, we know that the left derivative of δn at rn−1 is mn.

Recall also from (15) that δn(rn−1) = p/(p − 1) = mnrn−1. It follows that

there exists 0 ≤ λ < rn−1 such that

δn(s) = s ·mn = psmn−1 = pδn−1(s)

for all s ∈ [λ, rn−1] (the last equality following from Lemma 6.1). Let λ(G) be

the minimal value of λ with this property. In other words, λ(G) is the largest

kink of the function δn on the open interval (0, rn−1) (or is zero if δn is linear

on [0, rn−1]). Note that δn(λ) = mnλ < p/(p− 1).
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Proposition 6.11. If G ∈ Gn satisfies λ(G) = 0, then the corresponding

character χ has good reduction.

Proof. By definition, λ(G) = 0 implies δχ(0) = 0. Now, if χ lifts χn−1

and has δχ(0) = 0, then swχ(0, x̄0) ≥ pmn−1, as the Swan conductor of a

pn-cyclic extension must be at least p times the Swan conductor of its index p

subextension (because each upper ramification break of a pn-cyclic extension

must be at least p times the previous one). On the other hand, by construction,

B(χ) has exactly N +mn−1 + 1 = pmn−1 + 1 branch points. The proposition

then follows by Corollary 5.13(i). �

Thus, in order to prove Part (A), it suffices to show that λ(G) = 0 for

some G ∈ Gn. Proposition 6.13 will show that λ(G) = 0 is the only possible

minimal value of λ(G), as G ranges over Gn. In Section 6.4, we will show that

this minimum is realized. First, we state a lemma.

Lemma 6.12. Let G ∈ Gn and r ∈ [0, rn−1). Let f ∈ t−1k[t−1] be a poly-

nomial of degree < mn without constant term, which we regard as an element

of κr. Set s := p/(p− 1)−mnr. Then, after a possible finite extension of K ,

there exists G′ ∈ Gn and F ∈ K such that vr(F ) = 0, [F ]r = f , and

G′

G
≡ 1− psF (mod (K×)p).

Proof. The proof is given as Corollary 7.11. �

Proposition 6.13. Suppose G ∈ Gn with λ(G) > 0. Then there exists

G′ ∈ Gn with λ(G′) < λ(G).

Proof. If λ := λ(G) > 0, then by Corollary 5.11 we have that ord∞(ωn(λ))

+1 is the left derivative of δn(r). Since δn is concave up at λ (Remark 5.16(ii)),

we conclude that

ord∞(ωn(λ)) < mn − 1.

By hypothesis we have p δn−1(λ) = δn(λ) = mnλ < p/(p − 1). Therefore [34,

Prop. 4.3 (ii)] shows that

C(ωn(λ)) = ωn−1(λ) =
c dt

tmn−1+1
,

for some c ∈ k. It follows that

ωn(λ) =
cp dt

tmn+1
+ df

for some f ∈ κλ. Note that by Corollaries 5.11 and 5.15,

ord0(ωn(λ)) = −mn − 1, ordx̄(ωn(λ)) ≥ 0 ∀ x̄ 6= 0.

We may therefore assume that f is a polynomial in t−1 of degree < mn and

without constant term.
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By Lemma 6.12, there exists G′ ∈ Gn such that

G′

G
≡ 1− psF (mod (K×)p),

where vλ(F ) = 0, where [F ]λ = f , and where s := p/(p− 1)−mnλ. Replacing

G by the polynomial G′ has the effect of adding ψ := K1(G′/G) to χ. Using

Proposition 5.17, we see that

δψ(λ) =
p

p− 1
− s = δn(λ).

Therefore, Proposition 5.9 shows that the effect on ωn(λ) is addition of −df ,

and the result is that

ord∞(ωn(λ)) = mn + 1.

We conclude, using Corollary 5.11, that λ(G′) < λ(G). �

Remark 6.14. An important reason why we must assume that B(χn−1) ∈
D(rn−1) is to ensure that no branch point of χn−1 has valuation less than λ.

If there were such a branch point, then ord∞(ωn(λ)) above could be negative,

which would allow f not to be a polynomial in t−1, which would prevent us

from applying Lemma 6.12.

6.4. The minimal depth Swan conductor. We continue with the notation

of Section 6.3, as well as the assumption that mn = pmn−1 and all ai = 1 for

i ≥ 1. To finish the proof of Part (A) from Section 6.1, we must show that

the function λ : Gn → Q≥0 defined in Section 6.3 takes the value 0 for some

χ ∈ Gn. By Proposition 6.13, the existence of such a χ is established by the

following proposition.

Proposition 6.15. The function χ 7→ λ(χ) takes a minimal value on Gn.

The rest of Section 6.4 is devoted to the proof of this proposition.

6.4.1. A lemma from rigid analysis. The following lemma, which is an

easy consequence of the maximum modulus principle, is a crucial ingredient in

the proof of Proposition 6.15.

Lemma 6.16. Let X = Spm(A) be an affinoid domain over K and f1, . . . ,

fn ∈ A analytic functions on X . Then the function

φ : X → R, φ(x) := max
1≤i≤n

i
»
|fi(x)|

takes a minimal value. Equivalently, the function

x 7→ min
i

v(fi(x))

i

takes a maximal value on X .
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Proof. Let B/A be a finite ring extension that contains elements gi ∈ B
such that gii = fi for i = 1, . . . , n. Then B is again an affinoid K-algebra, and

the induced morphism q : Y := Spm(B)→ X is finite and surjective. For any

point y ∈ Y , we have

φ(q(y)) = max
1≤i≤n

|gi(x)|.

So by [4, Lemma 7.3.4/7], the function φ ◦ q takes its minimal value on Y .

Since q is surjective, this shows that φ takes its minimal value on X. �

6.4.2. An affinoid containing Gn. Let G be the set of all polynomials of

the form

G =
N1∏
i=1

(1− xiT−1),

where xi ∈ K has valuation rn−1 and where the residue classes of xi/p
rn−1

in k are all distinct. Given G ∈ G, we may assume (after passing to a finite

extension of K) that x1, . . . , xN1 ∈ K. In this way, we can consider G as a

subset of affine N1-space over K via the coordinates xi and G as a K-rational

point. It is clear that G is an affinoid subdomain of (AN1
K )an. We identify

elements of G with the characters χ that they give rise to (Section 6.1).

Recall that it is a consequence of Proposition 6.4(iv) that Gn ⊆ G. In

particular,

Gn = {G ∈ G | [G]rn−1 = g},
where g is the unique solution of equation (21) guaranteed by Theorem 6.6. As

a rigid analytic space, Gn is isomorphic to the open unit polydisk. The idea of

the proof is to show that λ(G) takes a minimal value on G and that the point

where this minimum is achieved must lie in Gn.

6.4.3. Let φn−1 : Yn−1 → X be the Galois cover corresponding to the

character χn−1. By our induction hypothesis, it has good reduction and is

totally ramified above T = 0. It follows that the rigid analytic subspace C :=

φ−1
n−1(D) ⊆ Yn−1 is an open disk and contains the unique point yn−1 ∈ Yn−1

above T = 0. We choose a parameter ‹T for the disk C such that ‹T (yn−1) = 0.

Then

T = ‹T pn−1
u(‹T ), with u(‹T ) ∈ R[[‹T ]]×.

We conclude that for r > 0, the inverse image of the closed disk D(r) ⊂ D

defined by the condition v(T ) ≥ r is the closed disk C(r̃) defined by v(‹T ) =

r̃ := p−n+1r. Set r̃n−1 := p−n+1rn−1. Let Kn−1 denote the function field of

Yn−1.

Let us fix, for the moment, χ ∈ G such that χp = χn−1. Let χ̃ := χ|Kn−1 ∈
H1
p (Kn−1) denote the restriction of χ to Kn−1. If χ corresponds to a cover

Y → X, then χ̃ corresponds to the cover Y → Yn−1. If χ ∈ Gn, then in
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analogy to λ(χ), we write λ(χ̃) for the minimum r̃ ∈ [0, r̃n−1] such that δχ̃ is

linear on [r̃, r̃n−1]. If χ ∈ G\Gn, then we define λ(χ̃) = r̃n−1.

Lemma 6.17.

(i) For χ ∈ Gn, we have λ(χ̃) = p−n+1λ(χ).

(ii) Let

m̃ = pnmn−1 −
n−1∑
i=1

mi(p− 1)pi−1.

Then p - m̃ and the character χ̃ ∈ H1
p (Kn−1) satisfies the conditions (a),

(b), and (c) of Section 5.5 (with respect to m̃, the open disk C ⊂ Y an
n−1 and

the family of subdisks C(r̃) for r̃ ∈ [0, r̃n−1]).

(iii) If λm̃(χ̃) is as in Proposition 5.20 and if we set r0 in Proposition 5.20

equal to r̃n−1, then λ(χ̃) = λm̃(χ̃) for all χ ∈ G.

Proof. For r > 0, we systematically use the notation r̃ := p−n+1r. Then

the valuation vr̃ on Kn−1 (corresponding to the Gauss norm on C(r̃)) is the

unique extension of vr. By [34, §7.1] we have

δχ̃(r̃) = ψKn−1/K(δχ(r))

= δχ(r)−
Å
δ1(r)

p− 1

pn−1
+ · · ·+ δn−1(r)

p− 1

p

ã
,

where ψ is the inverse Herbrand function ([31, IV, §3]). Since all the characters

χi (1 ≤ i < n) have good reduction and their branch points are contained in

D(rn−1), it follows from Remark 5.16(ii) that each δi (1 ≤ i < n) is linear of

slope mi on the interval [0, rn−1]. Therefore, we have

δχ̃(r̃) = δχ(r) +

Å
m̃

pn−1
− pmn−1

ã
r.

Thus, the left slope of δχ̃ at r̃ is equal to pn−1c + m̃ − pnmn−1, where c is

the left-slope of δχ at r. Part (i) follows immediately. Part (ii) follows from

the fact that c ≤ mn = pmn−1. Part (iii) also follows from this fact, along

with Proposition 5.10 and the fact that swχ(rn−1,∞) = pmn−1 if and only if

χ ∈ Gn. �

Explicitly, the character χ̃ is the Kummer class of the element

F := G
1/pn−1

1 G
1/pn−2

2 · . . . ·G1/p
n−1G ∈ K×n−1.

We write F as a power series in the parameter ‹T :

F = 1 +
∞∑
`=1

a`‹T−`.
Note that since G1, . . . , Gn are fixed, F is uniquely determined by the choice

of G. So we may consider the coefficients a` as functions on the space G. It is
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easy to see that the a` are analytic functions on G that are bounded by 1. In

fact, a` is a polynomial in the coordinates xi with coefficients in R.

6.4.4. We continue with the proof of Proposition 6.15. Let χ0 ∈ Gn be

an arbitrary lift lying in the residue class determined by the reduction g. From

the discussion at the beginning of Section 6.3, it follows that λ(χ0) < rn−1.

We may therefore choose a rational number s ∈ (λ(χ0), rn−1). Recall from

Section 6.4.3 that χ̃ is the restriction of χ to the function field Kn−1 of Yn−1.

Then by Lemma 6.17, we have

λ(χ̃) < s̃ := p1−ns < r̃n−1.

We also choose an integer N such that

Np ≥ p

(p− 1)(r̃n−1 − s̃)
.

Compare with (6).

Lemma 6.18. There exist a finite cover G′ → G and analytic functions

b1, . . . , bN on G′ with the following property. Set

H := 1 +
N∑
j=1

bj‹T−j1 ,

and write

F −Hp =
∞∑
`=1

c`‹T−`1 ,

where the c` are now analytic functions on G′. Then

(i) for all ` ≥ 1 and all points x ∈ G′, we have v(c`(x)) ≥ r0`;

(ii) we have cp` = 0 for ` ≤ N .

Proof. By Lemma 5.18 and Remark 5.19, there are finitely many solutions

for the bj at each point in G and the solutions vary analytically as the a` vary

in G. This proves the lemma. �

6.4.5. We can now complete the proof of Proposition 6.15. Let m̃ be as

in Lemma 6.17, and define the function µm̃ : G′ → R by the formula

µm̃(x) := max

Ç®
v(cm̃(x))− v(c`(x))

m̃− `
| 1 ≤ ` < m̃

´
∪ {0}

å
.

Let χ ∈ G, write χ̃ := χ|Kn−1 for its restriction to the function field of Yn−1,

and let x ∈ G′ be an arbitrary point above χ. By Lemma 6.18, we can apply

Proposition 5.20 to compare µm̃(x) to λm̃(χ̃), which by Lemma 6.17 is equal

to λ(χ̃). We conclude that µm̃(x) < s̃ if and only if λ(χ̃) < s̃. Moreover, if this

is the case, then we have µm̃(x) = λ(χ̃). Note also that in any case we have

λ(χ) = pn−1λ(χ̃) when χ ∈ Gn.
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We apply these arguments twice. Firstly, let χ0 ∈ Gn be the character

with λ(χ0) < s from the beginning of Section 6.4.4. Let χ′0 ∈ G′ be a point

above χ0. Then µm̃(χ′0) < s̃.

It follows from Lemma 6.16 that the function µm takes a minimum on G′.
Let x ∈ G′ be a point where this minimum is achieved, and let χ ∈ G be the

corresponding lift. We have µm̃(x) ≤ µm̃(χ′0) < s̃. Since

λm̃(χ̃) = µm̃(x) < s < r̃n−1,

we see that χ ∈ Gn. Applying the above arguments a second time, we conclude

that λ(χ) = pn−1µm̃(x) and that this is actually the minimal value of the

function λ : Gn → R. This completes the proof of Proposition 6.15. �

Combining Propositions 6.11, 6.13, and 6.15 finishes the proof of Part (A)

from Section 6.1. So there is a polynomial Gmin ∈ Gn giving rise to a character

χmin with good reduction and upper ramification breaks (m1, . . . ,mn−1,pmn−1)

at the ramification point.

6.5. Beyond minimality. We now prove Part (B) from Section 6.1. Main-

tain the notation of the previous parts of Section 6. Let Gmin ∈ Gn be such

that its corresponding character χmin has good reduction χ̄min. Such a Gmin

exists by Part (A). Note that Gmin is a polynomial in 1 +T−1m[T−1] of degree

mn−1(p− 1).

Recall that χ̄n is our original character, with upper ramification breaks

(m1, . . . ,mn), and that mn is not necessarily equal to pmn−1. Furthermore,

we saw in Section 2 that χ̄n corresponds (upon completion at t = 0) to a

(truncated) Witt vector wn := (f1, . . . , fn) ∈ Wn(k((t))), and we may assume

that each fi is a polynomial in k[t−1], all of whose terms have prime-to-p degree.

Then (3) shows that mn = max(pmn−1,deg(fn)). On the other hand, χ̄min has

upper ramification breaks (m1, . . . ,mn−1, pmn−1) and corresponds to a Witt

vector wmin := (f1, . . . , fn−1, fmin), where fmin ∈ k[t−1] has degree < pmn−1

and only terms of prime-to-p degree. Subtracting Witt vectors yields

(22) wn − wmin = (0, . . . , 0, fn − fmin).

Let f = fn − fmin, which has degree ≤ mn, and let F ∈ T−1R[T−1] be such

that degF = deg f , the valuation v0(F ) = 0, and [F ]0 = f .

Proposition 6.19. After a possible finite extension of K , there exists

ε ∈ Q>0, as well as Gn ∈ 1 + T−1m[T−1] of degree at most mn −mn−1 and

H ∈ 1 + T−1m[T−1] such that (H,Gn) is a solution to

GminH
p −Gn ≡ −pp/(p−1)F (mod pp/(p−1)+εR[T−1]).

Proof. This follows immediately from Corollary 7.16, substituting mn and

rn for m′n and r′n. �
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Proposition 6.20. Suppose that there is no integer a satisfying

(23)
mn

p
−mn−1 < a ≤

Ç
mn

mn −mn−1

åÅ
mn

p
−mn−1

ã
.

Then we can find H and Gn as in Corollary 7.16 such that vrn(Gn − 1) > 0,

where rn = 1/mn(p− 1). Thus all zeroes of Gn lie in the open disk D(rn).

Proof. This follows immediately from Proposition 7.17, substituting mn

and rn for m′n and r′n. �

Proposition 6.21. There is a character χn whose (good) reduction is χ̄n
such that B(χn) ⊆ D. If there is no a ∈ Z satisfying (23), then B(χn) ⊆ D(rn),

where rn = 1/mn(p− 1).

Proof. The character χn will correspond to Gn, in the notation of Propo-

sition 6.19. From that proposition, we have

(24)
Gn
Gmin

H−p = 1 + pp/(p−1) F

GminHp
=: ‹F .

Now, v0(‹F −1) = p/(p−1) and [‹F −1]0 = f , which is not a p-th power. Thus,

Proposition 5.17 shows that if χ
F̃

= K1(‹F ) ∈ H1
p (K), then δχ

F̃
(0) = 0 and the

reduction χ̄
F̃

corresponds to the Artin-Schreier extension given by yp− y = f .

Thus if χ′
F̃

= Kn(‹F pn−1
) ∈ H1

pn(K), then we also have δχ′
F̃

(0) = 0 and the

reduction χ̄′
F̃

corresponds to the same extension, which is encoded by the Witt

vector (0, . . . , 0, f).

On the other hand, note that χmin corresponds to the element

G1G
p
2 · · ·G

pn−2

n−1 G
pn−1

min ∈ K×/(K×)p
n
,

whereas the character χn coming from Gn corresponds to the element

G1G
p
2 · · ·G

pn−2

n−1 G
pn−1

n ∈ K×/(K×)p
n
.

By (24), we have χminχ
′
F̃

= χn as elements of H1
pn(K). By Proposition 5.9(iii),

we have that χ̄minχ̄
′
F̃

is the reduction of χn. Since χ̄′
F̃

corresponds to the Witt

vector (0, . . . , 0, f), it follows from (22) that the reduction of χn is, in fact,

χ̄n. Since Gn is a polynomial of degree ≤ mn −mn−1 in T−1, we have that

|B(χn)| ≤ mn + 1. By Corollary 5.13(i), we have equality, and thus χn has

good reduction χ̄n, proving the first assertion of the proposition. The second

assertion then follows immediately from Proposition 6.20. �

Proposition 6.21 completes the proof of Part (B), and Theorem 3.4 follows

immediately.

Remark 6.22. Example 7.18 shows that it is possible for the result of

Proposition 6.20 not to hold when there is an a ∈ Z satisfying (23). (In
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particular, we take p = 5, with n = 3, the ramification jumps (m1,m2,m3) =

(1, 5, 34), and a = 2.) When this is the case, the branch locus of χn generated

above does not lie in the disk D(rn).

7. Proofs of technical results

In this section, we give the proofs of Theorem 6.6, Lemma 6.12, and

Propositions 6.19 and 6.20. In fact, we will prove Theorem 6.6 and Lemma 6.12

in somewhat more generality. All the proofs are related to each other and will

share much notation.

Throughout Section 7, we will use notation parallel to that used in Sec-

tion 6. Let (m1, . . . ,mn) be a sequence of positive integers such that p - m1,

that mi ≥ pmi−1 for 1 ≤ i ≤ n, and that if p|mi, then mi = pmi−1. For

1 ≤ i ≤ n, set ri = 1/mi(p − 1). Write N = mn −mn−1. Let N1 and N2 be

nonnegative integers such that N1 + N2 = N and p|N2. Lastly, let m be the

minimal mi such that mn−1 is a p-th power times mi. Set ν = n−1− i. Thus,

mn−1 = mpν .

7.1. Arbitrary types. We work under two helpful assumptions.

Assumption 7.1. There exist a0, a1, . . . , aN1 ∈ Z and x̄1, . . . , x̄N1 ∈ k×

with p|a0, with 0 < ai < p for i ≥ 1, and with x̄i 6= x̄j , such that the

differential form

ω :=
dg

g
−m

ν∑
j=0

t−mp
j−1dt, with g := ta0

N1∏
i=1

(1− x̄it−1)ai ,

satisfies ord∞(ω) = mn −N2 − 1 = N1 +mn−1 − 1 (cf. (18)).

To formulate the second assumption we need more notation. We have, by

(20), that

dg

g
=

N1∑
i=1

aix̄it
−2dt

1− x̄it−1
=
∞∑
`=0

(
N1∑
i=1

aix̄
`+1
i

)
t−`−2dt.

Assumption 7.1 is therefore equivalent to the system of equations

∑
i

aix̄
`+1
i =

m, ` = mpj − 1, 0 ≤ j ≤ ν,
0, otherwise

for ` = 0, . . . ,mn−N2− 2 = N1 +mn−1− 2. The Jacobi matrix of this system

of equations at the point (x̄i) is the (N1 +mn−1 − 1, N1)-matrixÄ
(`+ 1)aix̄

`
i

ä
`,i
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over k. The rows of this matrix corresponding to an index ` with ` ≡ −1

(mod p) vanish. Crossing out these trivial rows we obtain the matrixÄ
(`+ 1)aix̄

`
i

ä
`6≡−1(mod p),i

.

For our key result, Lemma 7.4, we need this matrix to be invertible; this is the

case if and only if the matrix

(25) A :=
Ä
x̄`i
ä
`6≡−1(mod p),i

is invertible.

Assumption 7.2. The matrix A in (25) is invertible.

Remark 7.3. Note that a trivial necessary condition for Assumption 7.2 is

that A is a square matrix. This is not in general true. For instance, if m = 1,

so that mn−1 = pn−2, then A is square if and only if

pn−1 − pn−2 − p < N1 ≤ pn−1 − pn−2.

Fix g as in Assumption 7.1, and assume Assumption 7.2. In the field

K(T ), set ‹T = p−rn−1T . Let Gn denote the family of polynomials in R[T−1] of

the form

G =
N1∏
i=1

(1− xi‹T−1)ai

such that xi reduces to x̄i. In particular, for any G ∈ Gn, we have [G]rn−1 =

t−a0g. Lastly, let m′ = N1 +mn−1.

Lemma 7.4. Under Assumptions 7.1 and 7.2, let G ∈ Gn, and let J ∈
1 + ‹T−1m[‹T−1].

(i) There exist a unique G′ ∈ Gn and a unique polynomial I ∈ 1 + ‹T−pm[‹T−p]
of degree ≤ m′ − 1 in ‹T−1 such that

G′

G
I ≡ J (mod ‹T−m′).

If J ≡ 1 (mod pσ, ‹T−m′) for σ ∈ Q>0, then vrn−1(G′/G − 1) ≥ σ and

vrn−1(I − 1) ≥ σ.

(ii) Let 0 < s < p/(p−1) be a rational number. After a possible finite extension

of K , there exist G′ ∈ Gn and a polynomial H ∈ 1 + ‹T−1m[‹T−1] such that

we have
G′

G
Hp ≡ J (mod ps, ‹T−m′).

If J ≡ 1 (mod pσ, ‹T−m′) for some 0 < σ < p/(p− 1), then we can choose

G′ and H such that vrn−1(G′/G− 1) ≥ σ and vrn−1(Hp − 1) ≥ σ.
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Proof. By assumption we have

G =
N1∏
i=1

(1− xi‹T−1)ai ,

where xi ∈ R is a lift of x̄i. We set

G′ =
N1∏
i=1

(1− x′i‹T−1)ai , x′i := xi + zi,

where the zi are for the moment considered as indeterminates. We also set

I := 1 +

[(m′−1)/p]∑
j=1

bj‹T−pj
for another system of indeterminates bj . Write

G′

G
I = 1 +

∞∑
`=1

c`‹T−`,
where c` is a formal power series in (zi, bj). A simple computation shows that

∂c`
∂zi
|zi=bj=0 = aix

`−1
i ,

∂c`
∂bj
|zi=bj=0 =

1, ` = pj,

0, ` 6= pj.

(26)

The congruence

(27)
G′

G
I ≡ J (mod ‹T−m′)

corresponds to a system of m′ − 1 equations (one equation for each monomial

c`‹T−`, ` = 1, . . . ,m′ − 1) in the indeterminates (zi, bj). The Jacobi matrix

of this system of equations is invertible over R if and only if its reduction is

invertible over k. From (26) it is easy to see that this is true if and only if

the matrix A from (25) is invertible, which is the case by Assumption 7.2.

We conclude that (27) has a unique solution with zi, bj ∈ m. In fact, by the

effective Hensel’s Lemma, v(zi) and v(bj) are all at least as large as vrn−1(J−1).

This proves (i).

To prove (ii), we will build G′ and H through successive approximation.

Let G′1 and

I1 = 1 +

[(m′−1)/p]∑
j=1

bj,1‹T−pj
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be the unique solution guaranteed by (i). So (G′1/G)I1 ≡ J (mod ‹T−m′). Set

H1 := 1 +

[(m′−1)/p]∑
j=1

b
1/p
j,1
‹T−j

for any choice of p-th roots, and set J1 := (G′1/G)Hp
1 . Since Hp

1 ≡ I1 (mod p),

we have that J/J1 ≡ 1 (mod p, ‹T−m′). Now, let G′2 and

I2 = 1 +

[(m′−1)/p]∑
j=1

bj,2‹T−pj
be the unique solution to

G′2
G′1

I2 ≡
J

J1
(mod ‹T−m′)

guaranteed by (i). Note that since the coefficients of J/J1 (mod ‹T−m′) have

valuation at least 1, part (i) gives that v(bj,2) ≥ 1 for all j. Let

H2 := 1 +

[(m′−1)/p]∑
j=1

b
1/p
j,2
‹T−j .

Then Hp
2 ≡ I2 (mod p1+1/p). Thus

(28)
G′2
G

(H1H2)p =
G′2
G′1

Hp
2 ·

G′1
G
Hp

1 ≡
J

J1
· J1 ≡ J (mod p1+1/p, ‹T−m′).

We can repeat this process for all i ∈ N, letting G′i and Ii be the unique

solution to
G′i
G′i−1

Ii ≡
J

Ji−1
(mod ‹T−m′)

guaranteed by (i), and constructing Hi from Ii in the same manner as H1 and

H2. Set

Ji =
G′i
G

(H1 · · ·Hi)
p.

If γi =
∑i−1
j=1 1/pj , then

G′i
G′i−1

Hp
i ≡

J

Ji−1
(mod pγi).

Analogously to (28), one derives

G′i
G

(H1 · · ·Hi)
p =

G′i
G′i−1

Hp
i ·

G′i−1

G
(H1 · · ·Hi−1)p ≡ J (mod pγi , ‹T−m′).

Since s < p/(p − 1), we have that γi > s for large enough i. Setting G′ = G′i
and H = (H1 · · ·Hi) for such an i gives the desired solution to part (ii).

To check the last statement of part (ii), we show that vrn−1(Hp
i − 1) ≥ σ

for all i ∈ N. Since vrn−1(I1− 1) ≥ σ by (i), we have vrn−1(Hp
1 − 1) ≥ σ. (Here
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we use that σ < p/(p − 1) to estimate the cross terms.) Since part (i) also

shows vrn−1(G′1/G− 1) ≥ σ, we see that vrn−1(J1 − 1) ≥ σ. An easy induction

now shows that vrn−1(Hp
i − 1) ≥ σ for all i. �

Corollary 7.5. Under Assumptions 7.1 and 7.2, let G ∈ Gn, let r ∈
Q∩(0, rn−1), and let f ∈ t−1k[t−1] be a polynomial of degree < m′ = mn−1+N1

without constant term. Fix some s ∈ Q with

m′(rn−1 − r) ≤ s ≤
p

p− 1
.

Then there exists G′ ∈ Gn, a polynomial H ∈ 1 + T−1R[T−1], and F ∈ K such

that (G′/G)Hp = 1− psF with vr(F ) = 0 and [F ]r = f .

Proof. Let F ′ be a polynomial in T−1 of the same degree as f such that

vr(F
′) = 0 and [F ′]r = f . Now, vrn−1(psF ′) = s − deg(f)(rn−1 − r), which is

positive by our assumptions. Choose σ such that s−(rn−1−r) < σ < p/(p−1).

Then Lemma 7.4(ii) yields G′ and H such that

G′

G
Hp ≡ 1− psF ′ (mod pσ, ‹T−m′).

Lemma 7.4(ii) also allows us to assume that

vrn−1(
G′

G
Hp − 1) ≥ s− deg(f)(rn−1 − r).

If F is such that (G′/G)Hp = 1 − psF , then it suffices to show that

vr(F − F ′) > 0. Write psF − psF ′ as a power series
∑∞
j=0 αj

‹T−j . For j < m′,

we have v(αj) ≥ σ. For j ≥ m′, we have v(αj) ≥ s−deg(f)(rn−1− r). In both

cases, we have v(αj) + j(rn−1 − r) > s, which shows that vr(p
sF − psF ′) > s,

and thus vr(F − F ′) > 0. �

7.2. Specialization to the context of Theorem 6.6 and Lemma 6.12. Main-

tain the notation of Section 7.1. In this section, we show that Assumptions 7.1

and 7.2 are satisfied in the situations of Section 6. In particular, we want to

show that there is a g satisfying Assumption 7.1 in the form

(29) g = t−N2

N1∏
i=1

(1− x̄it−1).

Such a solution (where a0 = −N2 and ai = 1 for i > 1) is called a solution

with simple type. In the situation where we only look for solutions with simple

type, (21) can be rewritten as

(30) ω :=
dg

g
−m

ν∑
j=0

t−mp
j−1dt =

cdt

tN+mn−1+1g
,

where c 6= 0. Recall that N = mn −mn−1 ≥ mn−1(p − 1) and that mn 6≡ 0

(mod p) if the inequality is strict.
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Lemma 7.6. Suppose g is of simple type as in (29). Then g satisfies (30)

(and thus (21)) if and only if it satisfies Assumption 7.1.

Proof. The “only if” direction is immediate from the right-hand side of

(30). To prove the “if” direction, suppose that g is of simple type and satisfies

Assumption 7.1. Then ω has a zero of order mn−1 +N1− 1 at∞, simple poles

at all the N1 zeroes of g, a pole of order mn−1 + 1 at 0, and no other poles.

Thus, ω can have no other zeroes. So the differential forms on each side of (30)

have the same divisor, and we can choose c to get our desired equality. �

Theorem 7.7. Assume that m = 1; i.e.,

(m1, . . . ,mn−1) = (1, p, . . . , pn−2 = pν).

Then (30) has a unique solution g ∈ k(t). This solution is of the form (29),

with pairwise distinct x̄i ∈ k, and where

pν+1 − pν − p < N1 ≤ pν+1 − pν , N1 ≡ N (mod p).

Proof. We rewrite (30) as the nonhomogenous linear differential equation

(31) dg − g ·
Ä ν∑
j=0

t−p
j−1dt

ä
= ct−N−p

ν−1dt,

and we first look for solutions in k((t)) of the form g =
∑∞
i=−N αit

i. We obtain

a system of linear equations in the coefficients αi. In degree −N − pν − 1,

we obtain α−N = −c, and for i ≥ 1, we get a linear expression for α−N+i

in terms of α−N , . . . , α−N+i−1. In other words, (31) has a unique solution of

the form g = −ct−N + · · · ∈ k((t)). We also observe that the linear equations

become periodic in i, as soon as i ≥ pν , which means that the coefficients of g

(which only take values in Fp) are also eventually periodic. This means that g

is actually a rational function in t, i.e., g ∈ k(t) (as if P is the period of the

coefficients of g, then one can write an equation relating g and tP g). Now we

can use (30) to see that

(32) ord0(g) = −N, ordx̄(g) ∈ {0, 1}, x̄ 6= 0,∞.

It follows that g ∈ k[t, t−1] is a Laurent polynomial with leading term −ct−N
with only simple zeroes outside of t = 0,∞. Set

(33) N2 := ord∞(g)

and N1 := N −N2. Then g is of the form (29). It remains to see that N1 is as

claimed in the theorem.

Let ω denote the differential form in (30). By (33) we have

(34) ord∞(ω) = pν − 1 +N1 ≥ pν − 1 ≥ 0,
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which implies that res∞(ω) = res∞(dg/g) = 0. We conclude that N2 ≡ 0

(mod p) and hence N1 ≡ N (mod p). It remains to prove the inequality for

N1 stated in the theorem.

First assume ν = 0. Then ord∞(ω) = N1. Also, C(ω) = dg/g = ω+ t−2dt.

Thus, either N1 =0 or ord∞C(ω)=0. But it is easy to see that if ord∞C(ω) = 0

and ord∞(ω) ≥ 0, then ord∞ω < p. Thus 0 ≤ N1 < p, which is exactly the

condition of the theorem.

Now assume ν ≥ 1. Set

h := t−N2g−1 =
N1∏
i=1

(1− x̄it−1)−1.

Since N2 ≡ 0 (mod p), h satisfies the differential equation

(35) dh+ h ·
Ç ν∑
j=0

t−p
j−1dt

å
= ct−N1−pν−1h2 dt,

which is derived from (31). If we write h = 1 + b1t
−1 + b2t

−2 + · · · and plug

this into (35), we see that the coefficients b1, . . . , bp−1 satisfy the simple linear

equations

b1 = 1, 2b2 = b1, . . . , (p− 1)bp−1 = bp−2.

We conclude that bi = 1/i! 6= 0 for i = 0, 1, . . . , p−1. Write N1 = pM −a with

0 ≤ a < p and M ∈ Z. Then

ω = ct−N1−pν−1h dt = c(t−M−p
ν−1

)p(ta + b1t
a−1 + · · · ) dt

t
,

from which we see that

C(ω) = c1/p · t−M−pν−1
(b1/pa + b

1/p
p+at

−1 + · · · ) dt
t
.

Since ba 6= 0, it follows that

(36) ord∞C(ω) = M + pν−1 − 1.

In particular, this and (34) show that ord∞C(ω) < ord∞ω. Therefore, the

equality

C(ω) = ω + t−p
ν−1dt

shows that

(37) ord∞C(ω) = pν − 1.

Combining (36) and (37), we conclude that M = pν − pν−1 and hence

N1 = pM − a = pν+1 − pν − a.

This completes the proof of the theorem. �
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Corollary 7.8. If m|N , then (30) has a unique solution g(t) ∈ k(t). In

this case, the solution is given by g(t) = h(tm), where h(t) is the solution to

(31) with N replaced by N ′ := N/m and c replaced by c′ := c/m. In particular,

g(t) ∈ k[t−1] is of simple type and of degree N in t−1. Furthermore, m|N1 and

we have

mn−1(p− 1)−mp < N1 ≤ mn−1(p− 1), N1 ≡ N (mod p).

Proof. Equation (30) can be rewritten as

(38) dg − g ·m ·
Ç ν∑
j=0

t−mp
j−1dt

å
= ct−N−mn−1−1dt.

Since g(t) = h(tm), we have dg = mtm−1dh(tm). By definition, h satisfies

(39) dh− h ·
Ç ν∑
j=0

t−p
j−1dt

å
= c′t−N

′−pν−1dt.

Multiplying (39) by t, substituting tm for t on both sides, and then multiplying

by m/t yields (30). This shows that g(t) is as in the corollary. Then g is

unique because its Laurent series coefficients can be calculated by recursion.

The properties of N1 follow easily. �

Remark 7.9. Suppose g ∈ k[t−1] is a solution to (30), thus (38). Let c̄i be

the coefficient of t−i in g (with c̄i = 0 if i < 0). Then (38) in degree −i − 1

gives the equation

(40) ic̄i +m(c̄i−m + c̄i−pm + · · ·+ c̄i−pνm) =

−c i = N +mn−1,

0 otherwise.

Corollary 7.8 proves Theorem 6.6. Since m|mn−1 by definition and N =

mn−mn−1, we have that mn = pmn−1 implies m|N and thus that the solution

g to (30) guaranteed by Corollary 7.8 satisfies Assumption 7.1.

Lemma 7.10. If g is a solution to (30) with simple type, and we further

assume that mn = pmn−1, then Assumption 7.2 holds as well.

Proof. Corollary 7.8 shows that N1 = mn−1(p − 1). One then sees that

the matrix A in (25) is square. We show that ker(A) = 0. Suppose ~v ∈ ker(A)

is nonzero, and let ~x be the vector (x̄1, . . . , x̄n). Then, if ε2 = 0, the vector

~x+ ε~v must also satisfy Assumption 7.1, and thus, by Lemma 7.6, ~x+ ε~v must

satisfy (38) (equivalent to (30)). Now, we claim that replacing ~x with ~x + ε~v

replaces g with g + εh(~v), where h(~v) is a nonzero polynomial in t−1. Given

the claim, equation (38) then implies that dh − h ·m · (∑ν
j=0 t

−mpj−1dt) = 0
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or that
dh

h
= m

Ç ν∑
j=0

t−mp
j−1dt

å
.

But the right-hand side is not logarithmic, as it has a multiple pole at t = 0.

This is a contradiction.

To prove the claim, we must show that h(~v) is nonzero. If ~ej is the j-th

standard basis vector, then h(~ej) = t−N2−1
Ä∏N1

i=1 (1− x̄it−1)
ä
/(1− x̄jt−1). In

particular, x̄i is a zero of h(~ej) for all i 6= j, but not when i = j. But then no

h(~ej) can be a linear combination of the h(~ei) with i 6= j, because that would

imply that x̄j is a zero of h(~ej). Thus h(~v) 6= 0 for ~v 6= 0. �

Corollary 7.11. Lemma 6.12 holds.

Proof. If mn = pmn−1, then Corollary 7.8 and Lemma 7.10 guarantee

that there is a unique g satisfying (30) (thus Assumption 7.1) and Assump-

tion 7.2, and that N2 = 0. By Lemma 7.6, the family Gn from Section 7.1

(in particular, Corollary 7.5) is the same as the family defined in Defini-

tion 6.7. Then Lemma 6.12 follows from Corollary 7.5, noting that since

N = N1 = mn−1(p− 1), we have m′ = mn = pmn−1 in Corollary 7.5. �

Remark 7.12. Suppose m = 1, so that mn−1 = pν−2. Then the condition

pn−1 − pn−2 − p < N1 ≤ pn−1 − pn−2 from Theorem 7.7 is exactly the same as

the necessary condition for the matrix A in (25) to be square (Remark 7.3), and

thus it is necessary in order for Assumption 7.2 to be satisfied. So if g satisfies

Assumption 7.1, even if g does not have simple type, we still must have the same

bounds on N1 in order to proceed with any proof that uses Assumption 7.2,

which is essential for our proof of Lemma 6.12. The importance of bounds on

N1 was shown in Example 6.9 and Remark 6.10.

7.3. An invertible matrix. We give a result (Lemma 7.14) that will be

used in Section 7.4. Assume that mn = pmn−1 and that g is a simple type

solution to (30). By Corollary 7.8, we have N1 = N = mn−1(p−1) and N2 = 0.

Maintain the notation Gn from Section 7.1. Recall that ‹T = p−rn−1T . Recall

also that if Ω ∈ Gn, then Ω ∈ 1 + ‹T−1R[‹T−1] has degree mn−1(p − 1) and

simple zeroes.

Let V ∼= Rmn−1 be the free R-module of polynomials of the form

mn−1∑
j=1

bj‹T−pj (bj ∈ R),

and let W ∼= Rmn−1 be the free R-module of polynomials of the form

pmn−1∑
j=mn−1(p−1)+1

aj‹T−j (aj ∈ R).
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For Ω ∈ Gn, consider the linear map L : V →W defined by

LΩ(J) = (ΩJ)tr,

where (·)tr truncates a polynomial in ‹T−1 to preserve only the terms of degree

mn−1(p− 1) + 1 through pmn−1, inclusive. Let AΩ ∈Mmn−1(R) be the matrix

of this linear map, relative to the input basis ‹T−p, . . . , ‹T−pmn−1 and the output

basis ‹T−(mn−1(p−1)+1), . . . , ‹T−pmn−1 . If ci is the coefficient of ‹T−i in Ω (with

ci = 0 for i < 0), then the matrix AΩ is given by

(41) AΩ =



cmn−1(p−1)−p+1 cmn−1(p−1)−2p+1 · · · c−mn−1+1

cmn−1(p−1)−p+2 cmn−1(p−1)−2p+2 · · · c−mn−1+2

...
...

. . .
...

cpmn−1−p cpmn−1−2p · · · c0


.

Lemma 7.13. For any Ω ∈ Gn, the matrix AΩ above lies in GLmn−1(R).

Proof. We note that AΩ lying in GLmn−1(R) is equivalent to the reduction

AΩ of AΩ lying in GLmn−1(k), which is equivalent to the linear transformation

given by AΩ being surjective. Since AΩ does not depend on the choice of

Ω ∈ Gn, it suffices to show that, for any w ∈ W , there exists some Ω ∈ Gn
and some v ∈ V such that LΩ(v) = w. Consequently, it suffices to exhibit an

R-basis w1, . . . , wmn−1 of W such that each wi is in the image of some LΩ.

Take any G ∈ Gn, and let

w′i = (‹T−(mn−1(p−1)+i)G)tr, 1 ≤ i ≤ mn−1.

One easily sees that the w′i form an R-basis of W . If i = mn−1, take wmn−1 =

w′mn−1
= ‹T−pmn−1 . Then, wi = LΩ(‹T−pmn−1), regardless of Ω.

Now, suppose 1 ≤ i < mn−1. For any small ε ∈ Q>0, let r ∈ Q be such

that

(mn−1 − i)(rn−1 − r) = ε.

(We choose ε small enough so that r > 0.) If s = pmn−1(rn−1 − r), then the

monomial

F = p(mn−1(p−1)+i)(r−rn−1)‹T−(mn−1(p−1)+i)

satisfies [F ]r = t−(mn−1(p−1)+i) and (psFG)tr = pεw′i. By Lemma 7.4(i) with

J = 1 + psF , there is a unique solution (G′, I) to

G′I −G ≡ psFG (mod ‹T−pmn−1),

where G′ ∈ Gn and I is of the form 1 +
∑mn−1−1
j=1 bj‹T−pj , with all bj ∈ m. Then

LG′(I − 1) = pεw′i + cwmn−1 , with c ∈ R and I − 1 ∈ V . By continuity and

the linearity of LG′ , it follows that there exists c′ ∈ R and v ∈ V such that
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LG′(v) = w′i + c′wmn−1 . If wi = w′i + c′wmn−1 , then wi is in the image of LG′ .

Since w1, . . . , wmn−1 form a basis of W , we are done. �

Lemma 7.14. Let α = (mn− p[mn/p]). Let C ∈Mmn−1(R) be the matrix

with Cij = cmn−1(p−1)−pj+i+α. Then C ∈ GLmn−1(R).

Proof. It suffices to show that the reduction C of C to Mmn−1(k) is in-

vertible. For all j, let cj be the reduction of cj to k. These are the coefficients

of t−j in g (see Remark 7.9).

By Lemma 7.13, the reduction A of AΩ in (41) to Mmn−1(k) is invertible.

Notice that A satisfies Aij = cmn−1(p−1)−pj+i. Thus, up to reordering rows, the

matrix C is derived from the matrix A by replacing each of the first α rows

R1, . . . , Rα of A with rows R′1, . . . , R
′
α such that each entry c` in Ri is replaced

by c`+mn−1 in R′i.

Now, setting i = l + mn−1 in (40), we obtain that the cl satisfy the

recursion

(42) c`+mn−1 = − m

`+mn−1
(c`+mn−1−m + c`+mn−1−pm + · · ·+ c`+mn−1−pνm),

so long as p - `+mn−1. Since 0 ≤ α < p, we see that in the first α rows of A,

no cl appears with p|`+mn−1, so (42) holds. All entries of R1 are of the form

c`, with ` ≡ 1−mn−1 (mod p), so (42) shows that R′1 is a linear combination

of the rows of A, where the coefficient of R1 is the unit −m/1. So replacing R1

with R′1 gives a matrix A1 such that det(A1) = −mdet(A). In particular, A1

is invertible. For the same reasons, replacing the row R2 of A1 with R′2 gives

a matrix A2 that is again invertible. Repeating this process a total of α times

yields an invertible matrix Aα. Since C is obtained from Aα by reordering

rows, it is also invertible. �

7.4. Proof of Propositions 6.19 and 6.20. Maintain the notation and as-

sumptions of Section 7.3. Let Gmin ∈ Gn. Note that Gmin ∈ R[‹T−1] has degree

mn−mn−1 = mn−1(p−1). Let m′n ≥ mn = pmn−1, with m′n prime to p unless

m′n = mn. Let F ∈ T−1R[T−1] have degree ≤ m′n.

In order to prove Proposition 6.19, we begin by trying to find polynomials

I and G′n in R[T ] such that

(43) GminI −G′n ≡ −pp/(p−1)F (mod pp/(p−1)+εR[T−1])

for some ε > 0, with I having only monomials of degree divisible by p and G′n
having degree at most m′n −mn−1. Consider instead the congruence

(44) GminI −G′n ≡ −pp/(p−1)F (mod ‹T−m′n−1K[‹T−1]).
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Since F has degree at most m′n in ‹T−1, we look for I of the form

I =

[m′n/p]∑
i=0

bi‹T−pi.
Being able to chooseG′n affords us some freedom; we may choose the coefficients

bi for i ≤ m′n/p −mn−1 at will. This is because the terms in GminI to which

these bi contribute have degree at most m′n −mn−1. As in Section 7.3, write

Gmin =
∑mn−1(p−1)
i=0 ci‹T−i, with ci = 0 for i not between 0 and mn−1(p− 1).

Proposition 7.15. After a possible finite extension of K , there exists a

solution (I,G′n) to the equation

GminI −G′n ≡ −pp/(p−1)F (mod ‹T−m′n−1K[‹T−1])

as described above with coefficients in K . Furthermore, a solution exists with

b0 = 1, bi = 0 for 1 ≤ i ≤ m′n/p−mn−1, and

v(bi) ≥
p

p− 1
− m′n
mn−1(p− 1)

for all other i.

Proof. We take b0 = 1 and bi = 0 for 1 ≤ i ≤ m′n/p −mn−1. We rewrite

(43) as

Gmin(I − 1)−G′n ≡ pp/(p−1)F −Gmin (mod ‹T−m′n−1K[‹T−1]).

This is a system of m′n + 1 equations (corresponding to the terms of degree 0

through m′n) in m′n + 1 variables (corresponding to the coefficients c0 through

cm′n−mn−1 of G′n and b[m′n/p]−mn−1+1 through b[m′n/p] of I). Let E be the matrix

representing this system. We will show that E ∈ GLm′n+1(R). Let the columns

of E correspond to the variables just listed, and let the rows of E correspond

to degrees 0 through m′n, in order. Then E can be written as a block matrix,

(45) E =

Ö
−Im′n−mn−1+1 B

0 C

è
,

where Im′n−mn−1+1 is the identity matrix of size m′n − mn−1 + 1. Since the

entries of B and C lie in R, being coefficients of Gmin, we see that showing

that E ∈ GLm′n+1(R) is equivalent to showing that C ∈ GLmn−1(R). Now, the

ij-th entry of C is c`, with

` = m′n −mn−1 + i− p
Çñ

m′n
p

ô
−mn−1 + j

å
= mn−1(p− 1)− pj + i+

Ç
m′n − p

ñ
m′n
p

ôå
.

By Lemma 7.14, the matrix C lies in GLmn−1(R), thus so does E.
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Lastly, we show that we have

v(bi) ≥
p

p− 1
− m′n
mn−1(p− 1)

for all i > m′n/p−mn−1. Since F ∈ R[T−1], the coefficient of ‹T−i in −pp/(p−1)F

has valuation at least p/(p−1)−i/mn−1(p−1). Since F has degree at most m′n
in ‹T−1, all coefficients of −pp/(p−1)F (in terms of ‹T ) have valuation at least

p

p− 1
− m′n
mn−1(p− 1)

.

The bi in question are given as entries of the column vector E−1~v, where ~v

is the column vector whose entries are the coefficients of 1, ‹T−1, . . . , ‹T−m′n in

−pp/(p−1)F . Since E−1 has entries in R, we are done. �

We now prove Proposition 6.19.

Corollary 7.16. Let

I =

[m′n/p]∑
i=0

bi‹T−pi
be the solution to (44) found in Proposition 7.15. If

H =

[m′n/p]∑
i=0

b
1/p
i
‹T−i,

for any choice of p-th roots, then there exists (after a possible finite extension of

K) Gn ∈ R[T−1] of degree at most m′n −mn−1 such that (H,Gn) is a solution

to

GminH
p −Gn ≡ −pp/(p−1)F (mod pp/(p−1)+εR[T−1])

for some ε ∈ Q>0. Furthermore, H and Gn lie in 1 + T−1m[T−1].

Proof. Working in terms of ‹T , we have that Hp − I =
∑p[m′n/p]
i=1 pai‹T−i,

where for all i,

v(ai) ≥ min
j

(v(bj)) ≥
p

p− 1
− m′n
mn−1(p− 1)

.

Since Gmin ∈ R[‹T−1], it follows that

Gmin(Hp − I) ≡
m′n∑
i=1

ei‹T−i (mod ‹T−m′n−1R[‹T−1]),

where

v(ei) ≥ 1 +
p

p− 1
− m′n
mn−1(p− 1)
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for all i. Set Gn = G′n +
∑m′n−mn−1

i=1 ei‹T−i, where G′n is as in Proposition 7.15.

We must show that GminH
p − Gn ≡ −pp/(p−1)F (mod pp/(p−1)+εR[T−1]) for

small enough ε ∈ Q>0.

If 0 ≤ i ≤ m′n−mn−1, then the terms involving ‹T−i (and thus T−i) agree

exactly for GminH
p −Gn and −pp/(p−1)F by construction.

If m′n − mn−1 + 1 ≤ i ≤ m′n, then the terms involving ‹T−i (or T−i)

agree exactly for GminI and −pp/(p−1)F . (Gn and G′n have no terms of these

degrees.) So the coefficient of ‹T−i in GminH
p−Gn+pp/(p−1)F is ei, which has

valuation at least

1 +
p

p− 1
− m′n
mn−1(p− 1)

.

Thus the coefficient of T−i in GminH
p −Gn + pp/(p−1)F has valuation at least

1 +
p

p− 1
− m′n
mn−1(p− 1)

+
i

mn−1(p− 1)
>

p

p− 1
+
p− 2

p− 1
≥ p

p− 1
,

so the desired congruence holds for these terms.

For i > m′n, the coefficient of ‹T−i in GminH
p − Gn + pp/(p−1)F (which

is the same as in GminH
p, as F is of degree ≤ m′n) has valuation at least

p/(p − 1) − m′n/mn−1(p − 1). So the corresponding coefficient of T−i has

valuation at least

p

p− 1
− m′n
mn−1(p− 1)

+
i

mn−1(p− 1)
>

p

p− 1
,

proving the desired congruence.

To prove the last assertion, note that any nonconstant coefficient of H is

of the form b
1/p
i
‹T i, with

v(bi) ≥
p

p− 1
− m′n
mn−1(p− 1)

and i > m′n/p−mn−1. It follows easily that v(b
1/p
i )+irn−1 > 0. Thus, when H

is written in terms of T−1, all nonconstant coefficients have positive valuation.

The same is then true for Gn. �

We examine our solution above in greater detail to prove Proposition 6.20.

Proposition 7.17. Let Gn and H be as in Corollary 7.16. Suppose that

there is no integer a satisfying

(46)
m′n
p
−mn−1 < a ≤

Ç
m′n

m′n −mn−1

åÇ
m′n
p
−mn−1

å
.

Then vr′n(H − 1) > 0 and vr′n(Gn − 1) > 0, where r′n = 1/m′n(p− 1). Thus all

zeroes of Gn lie in the open disk D(r′n).
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Proof. Since vr′n(Gmin − 1) > 0, we need only show that vr′n(H − 1) > 0.

Let T ′ = p−r
′
nT . Writing H − 1 as

∑
i γi(T

′)−i, we see from Proposition 7.15

and the definition of H that γi is nonzero only when

[m′n/p]−mn−1 + 1 ≤ i ≤ [m′n/p].

In particular, i > m′n/p−mn−1. Furthermore, if bi is the coefficient of ‹T−pi in

I (Proposition 7.15), then by the definition of H (Corollary 7.16), we have

v(γi) =
v(bi)

p
+ i

Ç
1

mn−1(p− 1)
− 1

m′n(p− 1)

å
≥ 1

p− 1

Ç
1− m′n

pmn−1
+

i

mn−1
− i

m′n

å
.

If

i >

Ç
m′n

m′n −mn−1

åÇ
m′n
p
−mn−1

å
,

then v(γi) > 0, and we are done. �

Example 7.18. We give a counterexample to Proposition 7.17 when there

is an a satisfying (46). Let p = 5, with n = 3, the ramification jumps

(m1,m2,m3) = (1, 5, 34), and F = T−34. Take Gmin ∈ G3 as above. Then

the matrix C from (45) becomes

c20 c15 c10 c5 c0

c21 c16 c11 c6 c1

c22 c17 c12 c7 c2

c23 c18 c13 c8 c3

c24 c19 c14 c9 c4


.

Now, based on (40) and the fact that c0 must be 1, one can calculate that the

reduction of this matrix to M5(k) is

C =



4 0 0 0 1

0 1 1 1 1

0 0 4 2 3

0 0 0 1 1

0 0 0 0 4


and C

−1
has a nonzero entry in the upper right-hand corner (easily checked

using the adjoint formula for the inverse).
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Now, if E is as in (45), then

E−1 =

Ö
−I30 BC−1

0 C−1

è
.

We calculate the coefficient b2 of ‹T−10 in I (from Proposition 7.15). It is the

entry of E−1~v (see end of proof of Proposition 7.15) corresponding to the top

row ~w of C−1 (i.e., the row (0|~w) of E−1). Here ~v is a vector whose only

nonzero entry is in the last position, and is the coefficient of ‹T−34 in 55/4F ,

which has valuation 5/4 − 34(1/5(4)) = −9/20. Since C−1 has an entry of

valuation zero in the upper right-hand corner, we see that v(b2) = −9/20. If

T ′ = 5−r3T = 5r2−r3‹T , then if we write I in terms of T ′, the coefficient of

(T ′)−10 has valuation −9/20 + 10/20 − 10/34(4) = 1/20 − 10/136 < 0. The

coefficient of (T ′)−10 in Hp has the same valuation, as does the coefficient of

(T ′)−10 in GminH
p, as does the coefficient of (T ′)−10 in G3. So the zeroes of

G3 do not all lie in the disk D(r3). In fact, using the Newton polygon, one can

show that 10 zeroes of G3 have valuation 1/200.
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