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On Zaremba’s conjecture

By Jean Bourgain and Alex Kontorovich

Abstract

Zaremba’s 1971 conjecture predicts that every integer appears as the de-

nominator of a finite continued fraction whose partial quotients are bounded

by an absolute constant. We confirm this conjecture for a set of density one.
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1. Introduction

1.1. Statements of the main theorems. For a fixed finite set A ⊂ N, which

we call an alphabet, let CA denote the collection of all x ∈ (0, 1) whose continued

fraction expansion

x = [a1, a2, . . . , ak, . . . ] =
1

a1 +
1

a2 +
.. . +

1

ak +
.. .

,
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has all partial quotients aj belonging to the alphabet A. Any x ∈ CA is

uniformly badly approximable, in the sense that its partial quotients aj are all

bounded by

A := maxA.

When A is an absolute constant, we call such a number absolutely Diophantine

(of height A). That is, when we speak of numbers being absolutely Diophan-

tine, the height A is fixed in advance.

Let RA denote the set of partial convergents to CA, that is,

RA :=

ß
b

d
= [a1, a2, . . . , ak] : 0 < b < d, (b, d) = 1, and ∀j, aj ∈ A

™
,

and let DA ⊂ N be the set of denominators of fractions in RA,

DA :=

ß
d ∈ N : ∃(b, d) = 1 with

b

d
∈ RA

™
.

In 1971, S. K. Zaremba formulated the following assertion.

Conjecture 1.1 (Zaremba [Zar72, p. 76]). Every positive integer is the

denominator of a reduced absolutely Diophantine fraction.

That is, the conjecture predicts the existence of some integer A > 1 so

that

D{1,2,...,A} = N.

In fact, Zaremba suggested that A = 5 may already be sufficient.

Zaremba’s conjecture has important applications to numerical integration

and pseudorandom number generation, producing collections of points of op-

timal discrepancy; see, e.g., the surveys [Nie78] and [Kon13]. Our main result

is the following

Theorem 1.2. Almost every positive integer is the denominator of a re-

duced absolutely Diophantine fraction. That is, there exists an A > 1 so that

1

N
#(D{1,2,...,A} ∩ [1, N ])→ 1,

as N →∞. In particular, A = 50 suffices.

A more refined conjecture was stated by Hensley in 1996. The set CA ⊂
(0, 1) is a Cantor-like fractal; let

δA := H.dim(CA) ∈ [0, 1]

be its Hausdorff dimension. This dimension can be 0 only if |A| = 1; since we

assume A is finite, δA < 1. Allowing a finite number of exceptions in Zaremba’s

conjecture, Hensley asserts the following



ON ZAREMBA’S CONJECTURE 139

Conjecture 1.3 (Hensley [Hen96, Conj. 3, p. 16]). The set of denomina-

tors DA contains every sufficiently large integer if and only if the corresponding

dimension δA exceeds 1/2.

As stated, Hensley’s conjecture is false. For example, consider the alpha-

bet A = {2, 4, 6, 8, 10}. By implementing an algorithm due to Jenkinson and

Pollicott [JP01],1 we have estimated its dimension to be δA ≈ 0.517 > 1/2.

Nevertheless, arbitrarily large numbers are missing from DA. Indeed, it is

elementary to verify that

(1.4) DA(mod 4) ≡ {0, 1, 2};

see Remark 1.33.

We propose the following alternative to Hensley’s conjecture, borrowing

language from Hilbert’s 11th problem on representations of numbers by qua-

dratic forms. We call an integer d admissible (for A) if it passes all finite local

obstructions:

(1.5) ∀q > 1, d ∈ DA(mod q).

Remark 1.6. Admissibility can be checked using only one modulus q =

q(A); see Remark 1.33.

Let AA denote the set of all admissible numbers,

AA := {d ∈ Z : (1.5) holds}.

We say d is represented (by A) if d ∈ DA. The multiplicity of a denominator

d is the number of coprime numerators 0 < b < d with b/d ∈ RA. Clearly d is

represented if and only if its multiplicity is positive.

Conjecture 1.7. If the dimension δA exceeds 1/2, then the set of de-

nominators DA contains every sufficiently large admissible integer.

We interpret this conjecture as a local-global principle, where the dimen-

sion condition and “sufficiently large” are local obstructions at infinity. The-

orem 1.2 follows from the following more refined approximation to Conjec-

ture 1.7.

Theorem 1.8. There exists some δ0 < 1 (see (1.21)) so that, if the di-

mension δA exceeds δ0, then the set of denominators DA contains almost every

admissible integer. More precisely, there is a constant c = c(A) > 0 so that

(1.9)
#(DA ∩ [N/2, N ])

#(AA ∩ [N/2, N ])
= 1 +O

Å
e−c
√

logN
ã
,

1 The program is available at http://math.yale.edu/∼avk23/maths/HausdorffZaremba.nb.

http://math.yale.edu/~avk23/maths/HausdorffZaremba.nb
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as N →∞. Furthermore, each d produced above appears with multiplicity

(1.10) multiplicity(d)� N2δA− 1001
1000 .

The constant c in (1.9) is effectively computable, and the implied constants

above depend only on A.

Some remarks are in order.

Remark 1.11. There exist alphabets A with δA arbitrarily close to 1, so

Theorem 1.8 is not vacuous. Indeed, Hensley [Hen92] gives the asymptotic

expansion

(1.12) δ{1,2,...,A} = 1− 6

π2A
− 72 logA

π4A2
+O

Å
1

A2

ã
.

Remark 1.13. The number 1/2 in Conjectures 1.3 and 1.7 cannot be re-

duced. Hensley [Hen89] showed that the truncated set of rationals

RA(N) :=

ß
b

d
∈ RA : (b, d) = 1, 0 < b < d < N

™
has cardinality

(1.14) #RA(N) � N2δA ,

whence it follows immediately that

#(DA ∩ [1, N ])� N2δA .

Thus if δA < 1/2, then certainly DA is too thin a subset of the integers to

contain even one admissible arithmetic progression.

Remark 1.15. The best previously known estimate,

(1.16) #(DA ∩ [1, N ])� N δA ,

was proved by Hensley [Hen06, Th. 3.2] and follows easily from his estimate

(1.14). In particular, as long as |A| > 1, the set DA grows at least polynomially.

Moreover, taking A large so that δA > 1− ε, one can already produce at least

N1−ε denominators in DA up to N .

Remark 1.17. We explain in Remark 1.33 below that for any A ≥ 2, the

alphabet {1, 2, . . . , A} has no finite local obstructions; that is, A{1,2,...,A} = Z.

This is why the statement of Theorem 1.2 needs no mention of admissibility.

Moreover, the dimension δ{1,2} is known [Goo41], [Bum85], [JP01] to be

(1.18) δ{1,2} ≈ 0.531 · · · ,

which obviously exceeds 1/2. Conjecture 1.7 then implies that D{1,2} al-

ready contains every sufficiently large number, as was conjectured by Hens-

ley [Hen96].
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Remark 1.19. An earlier version2 of this paper also proved two weaker

results made obsolete by Theorem 1.2, namely that for sufficiently large δA,

(i) DA contains a positive proportion of numbers, and

(ii) that DA contains almost every admissible number, without giving the

rate in (1.9).

At the request of the referee to shorten the paper, we have removed these

intermediary results (and of course the methods used to obtain them). We

invite the interested reader to peruse the original arXiv posting for the details.

Note also that some results of this paper have been announced in [BK11].

Remark 1.20. The value of δ0 in Theorem 1.8 coming from our proof is

(1.21) δ0 = 307/312 ≈ 0.984.

We have made no effort to optimize this quantity, as can surely be done with a

modicum of effort. In fact, Frolenkov and Kan [FK13] have since sharpened our

method to prove the weaker statement3 that DA contains a positive proportion

of numbers whenever δA > δ0 with the improved range δ0 = 5/6 ≈ 0.833. It

does not seem likely that these methods can achieve the full range δ0 = 1/2

without significant new ideas. We have estimated the dimension δA corre-

sponding to the alphabet A = {1, 2, . . . , 49, 50} to be about 0.986, exceeding

(1.21), whereas the alphabet A = {1, 2, 3, 4, 5} is known [Jen04] to have di-

mension δA > 5/6.

Remark 1.22. The rate in (1.9) can be improved to a power savings, that

is, an error term of the form O(N−c); see [Bou12].

Although our main result requires large dimension, we are also able to

sharpen the best previously known estimate (1.16) in the full range δA > 1/2.

Theorem 1.23. Write δ for δA. Then for any ε > 0,

(1.24) #(DA ∩ [1, N ])�ε N
δ+

(2δ−1)(1−δ)
5−δ −ε,

as N →∞. This bound improves on (1.16), as long as δ > 1/2.

Remark 1.25. The improvement here is quite modest: for A = {1, 2}, the

exponent δA ≈ 0.531 in (1.18) and (1.16) is replaced in (1.24) by 0.537. We

have again made no attempt to optimize the exponent in (1.24), seeking just

any power gain.

We state the multiplicity bound (1.10) to give another application to pseu-

dorandom numbers. Specifically, in the (homogeneous) linear congruential

2http://arxiv.org/abs/1107.3776v1
3Added in press: Huang [Hua13] has combined the methods of Frolenkov-Kan with ours

to obtain the full density one statement with δ0 = 5/6.

http://arxiv.org/abs/1107.3776v1
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method, optimal conditions require a prime d and a primitive root b(mod d)

so that the fraction b/d is absolutely Diophantine (see [Kon13]). Then the

pseudorandom map with modulus d and multiplier b, that is, x 7→ bx(mod d),

has asymptotically optimal serial correlation of pairs.

Theorem 1.26. There exist infinitely many primes d with primitive roots

b(mod d) so that the fractions b/d are absolutely Diophantine.

The number of such prime d up to N provided by our proof is on the

order of N(logN)−2. Theorem 1.26 is an easy corollary of Theorem 1.8. In

fact, if A = {1, 2, . . . , A} has dimension δA exceeding δ0 as in Theorem 1.8,

then the fractions b/d produced in Theorem 1.26 can be taken to have all

partial quotients bounded by A+ 1.

1.2. Reformulation and admissibility. It is an old and trivial (but for our

purposes crucial) observation that

b

d
= [a1, . . . , ak]

is equivalent to

(1.27)

Ç
∗ b

∗ d

å
=

Ç
0 1

1 a1

åÇ
0 1

1 a2

å
· · ·
Ç

0 1

1 ak

å
.

This observation will allow us to explain all local obstructions, as follows. In

light of (1.27), let

GA ⊂ GL(2,Z)

be the semigroup generated by the matrices

(1.28)

Ç
0 1

1 a

å
for a ∈ A. Then the orbit

(1.29) OA := GA · e2

of e2 = (0, 1)t under GA corresponds to RA; that is, if γ =
Ä
a b
c d

ä
, then γ · e2 =

(b, d)t. Moreover, taking the inner product of this orbit with e2 picks off the

value of d, that is 〈γ · e2, e2〉 = d, and

(1.30) 〈OA, e2〉 = 〈GA · e2, e2〉

is precisely DA (with multiplicity). Zaremba’s conjecture can then be refor-

mulated as: For some finite alphabet A,

N ⊂ 〈GA · e2, e2〉 .

For convenience we pass from GA to its determinant one subsemigroup

(1.31) ΓA = GA ∩ SL2 ⊂ SL2(Z),
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which is (freely and finitely) generated by the matrix products

(1.32)

Ç
0 1

1 a

å
·
Ç

0 1

1 a′

å
for a, a′ ∈ A. The orbit OA is recovered as a finite union of “coset” orbits

OA = ΓA · e2 ∪
⋃
a∈A

ΓA ·
Ç

0 1

1 a

å
e2.

Remark 1.33. It now follows from Strong Approximation [MVW84] and

Goursat’s Lemma (see the discussion in [Kon13, §2.2]) that the reduction of

ΓA mod q is all of SL2(q) for all q coprime to a certain “bad” modulus B. Here

B is effectively computable and depends only on ΓA, that is, on A. Moreover,

B can be chosen so that for any q ≡ 0(B), the reduction ΓA(mod q) is the full

pre-image of ΓA(modB) under the projection map Z/q → Z/B. From the

mod B reductions of ΓA, it is elementary to read off the reductions of OA, and

hence all finite local obstructions in DA; see Remark 1.6. Moreover, for the

alphabet A = {1, 2}, it is easy to see that B = 1, that is, ΓA(mod q) is already

all of SL2(q), for all q > 1; see Remark 1.17. Indeed, the group generated by

ΓA (that is, allowing inverses) is all of SL2(Z), and the two have the same

projections mod q. Finally, we note that this is precisely the phenomenon

responsible for (1.4) in the failure of Hensley’s Conjecture 1.3.

1.3. An overview of the key ideas. An observation which we had made in

a slightly different context [BK10] is that there is a certain bilinear (in fact

multilinear) structure to (1.30), making the problem amenable to the Hardy-

Littlewood circle method via Vinogradov’s techniques for estimating bilinear

forms. We now outline the key steps.

From now on, we treat A as fixed, dropping it from subscripts, writing

δ = δA, Γ = ΓA, etc. In light of (1.30), we would like to study the exponential

sum

(1.34) SN (θ) :=
∑
γ∈Γ
‖γ‖<N

e(θ 〈γe2, e2〉),

where θ ∈ [0, 1] and ‖ · ‖ is the Frobenius matrix norm, ‖
Ä
a b
c d

ä
‖2 = a2 + b2 +

c2 + d2. Then the Fourier coefficient

(1.35) RN (d) := ŜN (d) =

∫ 1

0
SN (θ)e(−dθ)dθ =

∑
γ∈Γ
‖γ‖<N

1{〈γe2,e2〉=d}

is just the “representation number” of d up to N , that is, its multiplicity. Of

course if RN (d) > 0, then d ∈ D.
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Note that by (1.14),

(1.36) SN (0) =
∑
d

RN (d) =
∑
γ∈Γ
‖γ‖<N

1 � N2δ,

so if almost every d ∈ [N/2, N ] is to be represented without much bias, it

should occur with multiplicity roughly N2δ−1.

Following the circle method, we decompose the integral in (1.35) into

“major arcs” and “minor arcs,” the former referring to frequencies θ quite

near rationals with small denominators and the latter being the rest:

RN (d) =

Ç∫
M

+

∫
[0,1]\M

å
SN (θ)e(−dθ)dθ =MN (d) + EN (d).

Here MN is thought of as a “main” term and EN is an “error” term, and the

major arcs M = MQ are given by

(1.37) MQ =
⋃
q<Q

⋃
(a,q)=1

ï
a

q
− Q
N
,
a

q
+
Q
N

ò
,

where Q is roughly of size e−c
√

logN .

A key ingredient is to show that along the major arcs, θ = a
q + β ∈ M,

the function SN essentially splits into two pieces,

(1.38) SN

Å
a

q
+ β

ã
∼ νq(a) ·$(β).

Here νq is a purely modular term and $ is an archimedean one, which has the

right order of magnitude on balls of certain size. It then follows that the main

termMN (d) also splits as a “singular series” S times a “singular integral” Π,

MN (d) ∼ S(d)ΠN (d),

where Π gives the expected archimedean contribution, roughly

ΠN (d)� N2δ−1

for d � N , and the singular series S controls the local obstructions. In par-

ticular, if d 6∈ A is not admissible, then S(d) = 0; otherwise, we have roughly

that

S(d) �
∏
p-d

Å
1 +

1

p2 − 1

ã∏
p|d

Å
1− 1

p+ 1

ã
� 1

log log d
.

The main ingredient in proving this is the renewal method in the thermo-

dynamic formalism of Ruelle transfer operators (see Lalley [Lal89]), and the

extension to “congruence” such established by Bourgain-Gamburd-Sarnak in

[BGS11]. (We need here not just square-free but arbitrary moduli q, and we

must also use the work of Bourgain-Varjú [BV12].)

With the major arcs controlled, if we could prove that the errors are

individually bounded, |EN (d)| � N2δ−1−ε, say, then we would conclude the full
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Conjecture 1.7. We are not able to establish control of this quality individually,

but do succeed on average, proving essentially that

(1.39)
∑
d�N
|EN (d)|2 � N4δ−1e−c

√
logN ,

from which Theorem 1.8 follows by a standard argument.

Bounds of this type will follow from bounds on

(1.40)

∫
WQ,K

|SN (θ)|2dθ,

where we have decomposed the minor arcs [0, 1] \M into the dyadic regions

(1.41) WQ,K :=

ß
θ =

a

q
+ β : q � Q, (a, q) = 1, |β| � K

N

™
.

By Dirichlet’s approximation theorem, the parameters Q and K vary in the

range Q < N1/2 and K < N1/2

Q .

Unfortunately, we do not know how to obtain such strong bounds for the

function SN as defined in (1.34). But taking a cue from Vinogradov (as we did

in [BK10]), we work with a different function:

(1.42) SN (θ) =
∑
γ1∈Γ

‖γ1‖�N1/2

∑
γ2∈Γ

‖γ2‖�N1/2

e(θ 〈γ1γ2e2, e2〉),

say. Since Γ is a semigroup, this modified function, or rather its Fourier trans-

form, continues to capture elements of D. Moreover, the bilinear nature of

the problem, namely that 〈γ1γ2e2, e2〉 =
〈
γ2e2,

tγ1e2
〉
, allows us to separate

variables.

It is here in the separation of variables and application of Cauchy-Schwarz

that we replace the thin semigroup Γ with all of SL2(Z), a loss we can only

tolerate if the dimension δ is large, at least some δ0. We are then lead to a

more classical setting, and in certain large ranges of the pair (Q,K) in (1.41),

we can obtain the requisite cancelation. For slightly smaller values of (Q,K),

it is beneficial to decompose the sum further as

SN (θ) =
∑
γ1∈Γ

‖γ1‖�N1/2

∑
γ2∈Γ

‖γ2‖�N1/4

∑
γ3∈Γ

‖γ3‖�N1/4

e(θ 〈γ1γ2γ3e2, e2〉).

Continuing in this way, we handle every conceivable range of (Q,K) by con-

sidering a sum of the form

(1.43) SN (θ) =
∑
γ1∈Γ

‖γ1‖�N1/2

∑
γ2∈Γ

‖γ2‖�N1/4

· · ·
∑
γJ∈Γ

‖γJ‖�N
1/2J

e(θ 〈γ1γ2 · · · γJe2, e2〉),
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where J � log logN , so that γJ is of large but constant size (independent of

N).4 Unfortunately, another problem has crept up: we can no longer con-

trol the size of the long product γ1 · · · γJ , which could have norm as large as

N(logN)C .

To remedy this situation, we develop a bit of elementary linear algebra

for Γ, showing that if the expanding vectors of two matrices are close, then

their eigenvalues behave nearly multiplicatively. This forces us to concoct, for

each j = 1, . . . , J , a certain special subset Ξj ⊂ {γ ∈ Γ : ‖γ‖ � N1/2j}, all the

elements of which have expanding eigenvectors pointing near a common direc-

tion (independent of j). We then simply use the pigeonhole principle to make

sure all elements of Ξj have almost the same eigenvalues. Moreover, we need

to ensure that the representation γ = γ1γ2 · · · γJ in (1.43) is unique; that is, if

γ1γ2 · · · γJ = γ′1γ
′
2 · · · γ′J

with γj , γ
′
j ∈ Ξj , then γj = γ′j for all j. We do this by forcing each γj ∈ Ξj to

have the same size in the wordlength metric, again by pigeonhole.

Then the large product ensemble

Ξ1 · Ξ2 · · ·ΞJ
is a good substitute for {γ ∈ Γ : ‖γ‖ � N} to handle the minor arcs. Unfortu-

nately, the concocted sets Ξj are no longer amenable to the major arc methods!

We rectify this by constructing a certain tiny set ℵ ⊂ Γ with good modu-

lar/archimedean distribution properties and by prepending it to the product,

forming

(1.44) ΩN = ℵ Ξ̃1Ξ2 · · · ΞJ .

Here the size of Ξ1 has been cut down a bit to Ξ̃1 to make room for the set ℵ.

The “correct” definition of SN (θ) is then to replace (1.34) by

(1.45) SN (θ) :=
∑
γ∈ΩN

e(θ 〈γe2, e2〉),

from which the argument follows as described above. In the end, we prove

Theorem 1.8, and hence Theorem 1.2. As already mentioned, Theorem 1.26 is

an easy corollary to Theorem 1.8.

Remark 1.46. One may ponder the flexibility of our methods in appli-

cations to other problems. For one, in particular, McMullen [McM09] has

formulated the problem of producing many closed geodesics in a compact sub-

set of the modular surface, defined over a fixed real quadratic number field

Q(
√
f). This is the same as producing many elements γ ∈ G so that tr(γ)2− 4

has square-free part f . Specifically, McMullen asks whether there is a finite

4We could take J even a bit smaller, but choose not to for the sake of exposition.
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alphabet A so that the set of traces in GA contains every sufficiently large

admissible integer. Our use of Vinogradov’s bilinear estimates relies crucially

on the structure in (1.30) and does not apply as it stands to the problem of

traces. We plan to return to this problem in the future.

The proof of Theorem 1.23 follows along completely different lines, and

is inspired by the recent advances in projection theorems [Bou10]. The ob-

servation here is that the set D has a certain “sum-set” structure. Namely, if

b/d ∈ R is a reduced fraction and a ∈ A, then clearly

(1.47)
1

a+ b
d

=
d

b+ ad
∈ R.

This implies that b + ad ∈ D whenever b/d ∈ R and a ∈ A; we exploit this

sum-set structure to produce the bound (1.24). We note further that the

Discretized Ring Theorem [Bou03] can be used to get an exponent gain over

the lower bound (1.16) even when δ ≤ 1/2.

1.4. Outline of the paper. In Section 2, we study the multiplicative proper-

ties of expanding eigen-values and -vectors for matrices in Γ. We use Section 3

to construct the main ensemble ΩN , reserving the construction of the leading

set ℵ for Section 8. The major arc analysis is carried out in Section 4, while

the minor arc bounds are proved in Sections 5–6. Theorem 1.8 is then proved

in Section 7, as is its corollary, Theorem 1.26. Lastly, we prove Theorem 1.23

in Section 9.

Notation. Throughout we use the following standard notation. We write

f ∼ g to mean f/g → 1. We use the Landau/Vinogradov notation f = O(g)

and f � g synonymously to mean there exists an implied constant C > 0

such that for x sufficiently large, f(x) ≤ Cg(x). Moreover, f � g denotes

f � g � f . We allow the implied constants to depend at most on the fixed

alphabet A, unless otherwise specified. We also use the shorthand e(x) = e2πix.

The cardinality of a finite set S is denoted both as #S and |S|, and the

Lebesgue measure of an interval I is also |I|. Throughout there are some

constants c, C > 0 which may change from line to line.

Acknowledgements. We thank Curt McMullen for bringing this problem to

our attention, and Doug Hensley and Peter Sarnak for many helpful comments

and suggestions regarding this work.

2. Large matrix products

In this section, we develop some tools in large matrix products, reminiscent

of the avalanche principle; see, e.g., [Bou05, Ch. 6] or [GS01, §2]. Recall that

Γ = ΓA is the semigroup generated by even words in the matrices a ∈ A. An
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easy induction shows that for γ =
Ä
a b
c d

ä
∈ Γ, γ 6= I, we have

1 ≤ a ≤ min(b, c) ≤ max(b, c) < d.

We use the Frobenius norm:

(2.1) ‖γ‖ :=
√
a2 + b2 + c2 + d2.

Note that the trace and norm are comparable up to constants:

(2.2)
1

2
‖γ‖ ≤ tr γ ≤ 2‖γ‖,

as are the norm, sup-norm, and “second column” norm:

(2.3) ‖γ‖∞ = d < |γe2| =
√
b2 + d2 < ‖γ‖ < 2|γe2| < 4‖γ‖∞.

For γ ∈ Γ, let the expanding and contracting eigenvalues of γ be λ+(γ)

and λ−(γ) = 1/λ+(γ), with corresponding normalized eigenvectors v+(γ) and

v−(γ). Write λ = λ+ for the expanding eigenvalue, so that

λ(γ) = λ+(γ) =
tr(γ) +

»
tr(γ)2 − 4

2
.

Remark 2.4. Note that for all γ ∈ Γ, the eigenvalues are real, and λ > 1

for γ 6= I. In particular, Γ has no parabolic elements.

The goal of this section is to prove the following elementary but very useful

observation.

Proposition 2.5. The eigenvalues of two matrices γ, γ′ ∈ Γ with large

norms behave essentially multiplicatively, subject to their expanding eigenvec-

tors facing nearby directions. That is,

(2.6) λ(γγ′) = λ(γ)λ(γ′)

ñ
1 +O

Ç∣∣∣v+(γ)− v+(γ′)
∣∣∣+ 1

‖γ‖2
+

1

‖γ′‖2

åô
.

Moreover, the expanding eigenvector of the product γγ′ faces a nearby

direction to that of the first γ (and the same in reverse):

(2.7) |v+(γγ′)− v+(γ)| � 1

‖γ‖2
and |v−(γγ′)− v−(γ′)| � 1

‖γ′‖2
.

The implied constants above are absolute.

Proof. For γ large, we have

(2.8) λ(γ) =
tr(γ) +

»
tr(γ)2 − 4

2
= tr(γ) +O

Ç
1

‖γ‖

å



ON ZAREMBA’S CONJECTURE 149

and

v+(γ) =
(b, λ+(γ)− a)»
b2 + (λ+(γ)− a)2

=
(b, d)√
b2 + d2

+O

Ç
1

‖γ‖2

å
,

v−(γ) =
(d− λ−(γ), c)»

(d− λ−(γ))2 + c2
=

(−d, c)√
c2 + d2

+O

Ç
1

‖γ‖2

å
.

Note that for γ large,

(2.9) |
¨
v+(γ), v−(γ)⊥

∂
| = bc+ d2

√
b2 + d2

√
c2 + d2

+O

Ç
1

‖γ‖2

å
≥ 1

2
,

meaning that the angle between expanding and contracting vectors does not

degenerate.

By (2.8), it is enough to show that the traces behave essentially multi-

plicatively. We compute

| tr(γγ′)− tr(γ) tr(γ′)|= |(aa′ + bc′ + cb′ + dd′)− (a+ d)(a′ + d′)|

≤ d

d′

∣∣∣∣∣bc′d′d − a′d′
∣∣∣∣∣+ d′

d

∣∣∣∣∣cb′dd′ − ad
∣∣∣∣∣

≤ d

d′

Ç
1 + c′

∣∣∣∣∣bd′d − b′
∣∣∣∣∣
å

+
d′

d

Ç
1 + c

∣∣∣∣∣b′dd′ − b
∣∣∣∣∣
å

=
d

d′
+
d′

d
+ (cd′ + c′d)

∣∣∣∣∣ bd − b′

d′

∣∣∣∣∣ .
We clearly have ∣∣∣∣∣ bd − b′

d′

∣∣∣∣∣� |v+(γ)− v+(γ′)|+ 1

‖γ‖2
+

1

‖γ′‖2
,

and hence

| tr(γγ′)− tr(γ) tr(γ′)| � dd′
Ç
|v+(γ)− v+(γ′)|+ 1

‖γ‖2
+

1

‖γ′‖2

å
.

From this and (2.8), (2.6) follows easily. One proves (2.7) in a similar fashion.

�

3. Construction of ΩN

3.1. The leading term ℵ. In this subsection, we posit the existence and all

necessary properties of the leading set ℵ used in our construction of the main

ensemble ΩN . The proof of its existence is arguably the most technical part of

the whole paper, so in the interest of exposition, we postpone it to Section 8.

Once and for all, we fix a density point x ∈ C and let

(3.1) v = vx :=
(x, 1)√
1 + x2

be the corresponding unit vector. We will henceforth be largely concerned with

elements of Γ whose expanding eigenvectors point in this direction.
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For ease of exposition, we assume henceforth that for all q ≥ 1, the reduc-

tion of Γ is full,

(3.2) Γ(mod q) ∼= SL2(q),

which is anyway the case for any alphabet A containing 1 and 2; see Re-

mark 1.33. Minor modifications are needed in the general case.

For N large and δ exceeding δ0 in (1.21), let

(3.3) b :=
1

1000
(δ − δ0) > 0,

and let α0 > 0 be a parameter to be chosen later in (8.20). Then we set

(3.4) B := Nb

and

(3.5) Q := eα0

√
logN .

Let

(3.6) U ⊂
ï

1

100
B,

99

100
B

ò
be an arithmetic progression of real numbers starting with u0 = 1

100B having

common difference

(3.7) |u− u′| = 2B/Q5,

for u, u′ consecutive terms in U , and ending with u > ( 99
100 −

2
Q5 )B. Then the

cardinality of U is

(3.8) |U| � Q5.

Proposition 3.9. For each u ∈ U , there are nonempty sets ℵu ⊂ Γ, all

of the same cardinality

(3.10) |ℵu| = |ℵu′ |,

so that the following holds. For every a ∈ ℵu, its expanding eigenvector is

restricted by

(3.11) |v+(a)− v| < Q−5

and its expanding eigenvalue λ(a) is restricted by

(3.12) |λ(a)− u| < B

Q5
.

In particular,

(3.13)
1

200
B < λ(a) < B
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for N large. Moreover, for any q < Q, any ω ∈ SL2(q), and any u ∈ U , we

have

(3.14) # {a ∈ ℵu : a ≡ ω(mod q)} =
|ℵu|
| SL2(q)|

(1 +O(Q−4)),

where the implied constant does not depend on q, ω, or u.

With the sets ℵu as above, we define the main leading set ℵ to be the

union of the sets ℵu,

(3.15) ℵ :=
⊔
u∈U
ℵu.

Note that the sets ℵu are disjoint by (3.12) and (3.7). We repeat that the proof

of Proposition 3.9 will be postponed to Section 8.

3.2. Sector counting. In this section we give the following slight refine-

ment of Hensley’s estimate (1.14), which follows directly from Lalley’s methods

[Lal89] (see also Theorem 8.1 and Remark 8.6).

Proposition 3.16. There is a constant c = c(A) > 0 so that as long as

H < ec
√

log T , we have

(3.17) #

ß
γ ∈ Γ : ‖γ‖ < T and |v+(γ)− v| < 1

H

™
� T 2δ

H
,

as T →∞.

Sketch of proof. Lalley [Lal89, Th. 9] proves the asymptotic formula

(3.18) Left-hand side of (3.17) ∼ C · T 2δµ(I)

under the assumption that Γ is a nonelementary convex-cocompact subgroup

of SL2(R). Here I is the interval of length 1/H about v, and µ is the δ-dimen-

sional Hausdorff measure supported on the limit set C, lifted (by abuse of

notation) to P1 via

dµ(x, y) = dµ(x/y),

y 6= 0. After setting up the symbolic dynamics, the requirement that Γ not

contain parabolic elements is needed in the renewal method to make the distor-

tion function eventually positive; see [Lal89, pp. 33, 41]. Our semigroup Γ has

no parabolic elements (see Remark 2.4), so the only difference here between

a group and (free) semigroup is that for the latter, the transition matrix (see

[Lal89, pp. 5, 32]) is trivial; that is, all sequences are allowed in the symbolic

dynamics. The rate in (3.18) can be determined directly from Lalley’s method

(see [BGS11, §12]), with the error crudely estimated as

(3.19) � T 2δe−c
√

log T .
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Since v in (3.1) corresponds to a density point in C, we have, again crudely,

that

µ(I)�ε H
−δ−ε � H−1,

since δ < 1. A sufficient condition for the main term, being bounded below by

CT 2δ/H, to dominate the error in (3.19), is that H < ec
√

log T with c < c. �

Remark 3.20. The methods of Dolgopyat [Dol98] and Naud [Nau05] might

be used to prove (3.17) with H as large as T ε, but this is not needed in our

applications.

With this crude estimate in hand, we proceed in the next subsection to

detail our construction of the special sets Ξ alluded to in Section 1.3.

3.3. The set Ξ(M,H;L, k).

Proposition 3.21. Given M � 1 and H < ec
√

logM , there exists some

L in the range

(3.22)
1

4
M ≤ L ≤ 4M,

an integer k � logM , and a set Ξ = Ξ(M,H;L, k) ⊂ Γ having the following

properties. For all γ ∈ Ξ, the expanding eigenvalues are controlled to within

1/ logL:

(3.23) L

Å
1− 1

logL

ã
< λ(γ) < L,

the expanding eigenvectors are controlled to within 1/H :

(3.24) |v+(γ)− v| < 1

H
,

and the wordlength metric ` (in the generators (1.32) of Γ) is controlled exactly :

(3.25) `(γ) = k.

Moreover, the cardinality of Ξ is controlled by

(3.26) L2δ � #Ξ� L2δ

H(logL)2
.

Recall again the the implied constants depend at most on A, which is

thought of as fixed throughout.

Proof. We proceed by the following algorithm.

(1) Let S1 ⊂ Γ be the set of γ ∈ Γ of norm controlled by ‖γ‖ �M and for

which the expanding vector v+(γ) is within 1
H of the fixed vector v:

S1 :=

ß
γ ∈ Γ :

M

2
< ‖γ‖ < M, |v+(γ)− v| < 1

H

™
.
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By (3.17), we have that

#S1 �
M2δ

H
.

(2) By (2.2) and (2.8), expanding eigenvalues λ(γ) of γ ∈ S1 satisfy
1

4
M ≤ λ(γ) ≤ 4M.

Hence we can find (by pigeonhole) an L in this range so that

#{γ ∈ S1 : L

Å
1− 1

logL

ã
< λ(γ) < L} � L2δ

H logL
.

Call the above set S2; its expanding eigenvalues are all nearly of the

same size.

(3) Lastly, note that the wordlength metric ` is commensurable with the

archimedean one,

`(γ) � log ‖γ‖,
with implied constant depending on A. So (again by pigeonhole) we

can find some k such that

(3.27) #{γ ∈ S2 : `(γ) = k} � L2δ

H(logL)2
.

Call this set S3; then the elements of S3 all have the same wordlength,

in addition to the previous qualities.

We rename this last set S3 to Ξ = Ξ(M,H;L, k). �

3.4. Decomposing N and the ensemble ΩN . We return to our main param-

eter N and decompose it dyadically as follows. Recall that we have already

presupposed the construction of a set ℵ in (3.15), all of whose expanding eigen-

vectors are within Q−5 of v, and with eigenvalues of size B; see (3.13). Recall

from (3.4) that B = Nb and that Q is given by (3.5).

Setup: We start by taking

(3.28) M =
√
N/B = N1/2−b, H = Q5.

The exponent α0 in the definition (3.5) of Q is chosen in (8.20) to be sufficiently

small that H < ec
√

logM . Run the algorithm of the previous subsection to

generate the set Ξ(M,H;L, k). By (3.22), the returned parameter L satisfies

L = α1M = α1N
1/2−b,

with
α1 ∈ (1/4, 4).

Write

Ñ1 := L = α1N
1/2−b, N1 := α1N

1/2 = B · Ñ1,

and rename the returned set to Ξ̃1 = Ξ(M,H;L, k), also setting

Ξ1 := ℵ · Ξ̃1.
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Remark 3.29. Despite the wordlength in ℵ being unrestricted, the word-

length in Ξ̃1 is fixed in (3.25). So the representation of an element in Ξ1 as a

product of ones in ℵ and Ξ̃1 is still unique.

We have crudely that

(3.30) |Ξ1| ≥ |Ξ̃1| �ε Ñ
2δ−ε
1 � N δ−2δb−ε.

(The cardinality of ℵ is quite deficient relative to its norm, so we lose little

from estimating trivially |ℵ| ≥ 1.)

Step 1: Next we set

M =
N

1/2
1

α1
=
N1/4

α
1/2
1

, H = logM,

and we generate another set Ξ(M,H;L, k). Define

N2 := L = α2M =
α2N

1/4

α
1/2
1

,

with α2 ∈ (1/4, 4), and rename the returned set to Ξ2. We have

|Ξ2| �
N2δ

2

(logN2)3
.

Iterate: Start with j = 3 and iterate up to j = J − 1, where

(3.31) 2J−1 = c logN.

Here the constant c > 0 is absolute (independent of N), determined by (3.45).

For each such j, set

(3.32) M :=
(Nj−1)1/2

αj−1
=

N1/2j

α
1/2
j−1α

1/4
j−2 · · · (α1)1/2(j−1)

, H = logM,

and use Proposition 3.21 to generate the set Ξ(M,H;L, k). Define

(3.33) Nj := L = αjM =
αjN

1/2j

α
1/2
j−1α

1/4
j−2 · · · (α1)1/2(j−1)

,

with αj ∈ (1/4, 4), and call the returned set Ξj . Note that

(3.34) |Ξj | �
N2δ
j

(logNj)3

and

(3.35)
1

16
N1/2j < Nj < 16N1/2j .

End : For the last step, j = J , we set

M =
NJ−1

(αJ−1)2
=

N1/2(J−1)

αJ−1(αJ−2)1/2 · · ·α1/2(J−2)

1

, H = logM,
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and we generate one last set ΞJ := Ξ(M,H;L, k). Define

NJ := L =
αJN

1/2(J−1)

αJ−1 · · ·α1/2(J−2)

1

� N1/2(J−1)
= e1/c � 1,

where we used (3.31). Since 1
4 < NJ/M = αJ < 4, we have

(3.36)
1

4
<
N1N2 · · ·NJ

N
=
BÑ1N2 · · ·NJ

N
< 4.

We now define the main ensemble ΩN by concatenating the sets Ξj devel-

oped above.

(3.37) ΩN := Ξ1 · Ξ2 · · ·ΞJ−1 · ΞJ = ℵ · Ξ̃1 · Ξ2 · · ·ΞJ−1 · ΞJ .

3.5. Properties of ΩN . For γ ∈ ΩN , write

γ = a · ξ̃1 ξ2 · · · ξJ
according to the decomposition (3.37). Note that by the fixed wordlength

restriction (3.25), this decomposition is unique; see Remark 3.29. Recall that

the expanding vectors v+ all point nearly in the direction of v in (3.1).

Lemma 3.38. For any 2 ≤ j1 ≤ j2 ≤ J , and ξj1 ∈ Ξj1 , · · · ξj2 ∈ Ξj2 , and

any a ∈ ℵ, ξ̃1 ∈ Ξ̃1, we have the following control on expanding eigen-vectors

and -values of large products :

|v+(ξ̃1 · ξ2 · · · ξJ)− v| � Q−5,(3.39)

1

2
<
λ(ξj1ξj1+1 · · · ξj2−1ξj2)

Nj1Nj1+1 · · ·Nj2−1Nj2

< 2,(3.40)

1

2
<
λ(ξ̃1ξ2 · · · ξj2−1ξj2)

Ñ1N2 · · ·Nj2−1Nj2

< 2,(3.41)

and

1

2
<

λ(aξ̃1ξ2 · · · ξj2−1ξj2)

λ(a)Ñ1 ·N2 · · ·Nj2−1Nj2

< 2.(3.42)

Proof. From (2.7), (3.24), and the choice of H in (3.28), we have that

|v+(ξ̃1 · ξ2 · · · ξJ)− v| ≤ |v+(ξ̃1 · ξ2 · · · ξJ)− v+(ξ̃1)|+ |v+(ξ̃1)− v|

� 1

‖ξ̃1‖2
+

1

Q5
,

whence (3.39) follows from (3.5).

Similarly, we have for j ∈ [j1, j2] ⊂ [2, J ] that

(3.43) |v+(ξjξj+1 · · · ξj2)− v| � 1

logNj
,

where we used the choice of H in (3.32).
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We now prove by downward induction on j1 that

λ(ξj1ξj1+1 · · · ξj2) = Nj1Nj1+1 · · ·Nj2

(3.44)

×
ñ
1 +O

Ç
1

logNj1

+
1

logNj1+1
+ · · ·+ 1

logNj2

åô
.

If j1 = j2, then (3.44) follows immediately from (3.23) and (3.33). If j1 = j2−1,

then from (2.6), (3.23), (3.24), and (3.33), we have

λ(ξj2−1ξj2) = λ(ξj2−1)λ(ξj2)

×
ñ
1 +O

Ç
|v+(ξj2−1)− v+(ξj2)|+ 1

‖ξj2−1‖2
+

1

‖ξj2‖2

åô
=Nj2−1Nj2

ñ
1 +O

Ç
1

logNj2−1
+

1

logNj2

åô
,

as desired.

In general, we have by (3.43) that

λ(ξj1ξj1+1 · · · ξj2) = λ(ξj1)λ(ξj1+1 · · · ξj2)

×
ñ
1 +O

Ç
|v+(ξj1)− v+(ξj1+1 · · · ξj2)|+ 1

‖ξj1‖2
+

1

λ(ξj1+1 · · · ξj2)2

åô
= Nj1λ(ξj1+1 · · · ξj2)

ñ
1 +O

Ç
1

logNj1

+
1

logNj1+1

åô
,

from which (3.44) follows by induction.

The rate in (3.44) may be replaced crudely by

(3.45)

ñ
1 +O

Ç
2J

logN

åô
,

whence (3.40) follows on taking the constant c in (3.31) sufficiently small (in-

dependent of N). Estimates (3.41) and (3.42) are proved in the same way. �

As a consequence of (3.42), (3.13), and (3.36), we have that for all γ ∈ ΩN ,

(3.46) ‖γ‖ ≤ 2λ(γ) ≤ 16N,

so indeed the norms are all controlled.

Moreover, the size of ΩN is not too much smaller than (1.36). Indeed, we

have from (3.30), (3.34), and (3.31) that

#ΩN = #Ξ1 ·#Ξ2 · · · ·#ΞJ(3.47)

�ε Ñ
2δ−ε
1

(N2)2δ

(logN2)3
· · · (NJ)2δ

(logNJ)3

� N2δ−2δb−ε.
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It also follows that for any j ≥ 2,

(3.48) #Ξj ·#Ξj+1 · · · ·#ΞJ � (NjNj+1 · · ·NJ)2δ · e−c(J−j) log logNj

for an absolute constant c > 0.

With the set ΩN constructed, we define our exponential sum SN as in

(1.45) and proceed with the circle method.

4. Major arcs analysis

In this section we estimate the major arcs contribution. First we use the

set ℵ described in Section 3.1 to prove that in the major arcs, our exponential

sum SN in (1.45) splits as a product of modular and archimedean components,

as in (1.38). Then we prove that the major arcs contribution is of the correct

order of magnitude.

4.1. Splitting into modular and Archimedean aomponents. Let Q be as in

(3.5) and B as in (3.4). Recall from (1.37) that the major arcs of level Q are

given by

MQ =
⊔
q<Q

⊔
(a,q)=1

ï
a

q
− Q
N
,
a

q
+
Q
N

ò
.

Let νq : Z/qZ→ C record the mod q distribution of D. That is, for a ∈ Z/qZ,

set

(4.1) νq(a) :=
1

| SL2(q)|
∑

ω∈SL2(q)

e

Å
a

q
〈ωe2, e2〉

ã
.

Theorem 4.2. There exists a function $N : R/Z → C, given explicitly

in (4.19), satisfying the following three conditions :

(1) The Fourier transform“$N : Z→ C : n 7→
∫ 1

0
$N (θ)e(−nθ)dθ

is real-valued and nonnegative, with

(4.3) $N (0) =
∑
n

“$N (n)� |ΩN |.

(2) For 1
25N < n < 1

5N, we have

(4.4) “$N (n)� |ΩN |
N

.

(3) Moreover, we have on the major arcs θ = a
q + β ∈MQ that

(4.5) SN

Å
a

q
+ β

ã
= νq(a)$N (β)

Ä
1 +O(Q−4)

ä
.
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Proof. We use the decomposition (3.37) in the form

(4.6) ΩN = ℵ · Ω′

with

Ω′ = Ξ̃1Ξ2 · · ·ΞJ ,
so that

SN (θ) =
∑
a∈ℵ

∑
γ∈Ω′

e(θ 〈aγe2, e2〉).

For a ∈ ℵ, recall from (3.13) that we have λ(a) � B and from (3.11) and

(3.39) that

(4.7) |v+(a)− v| < Q−5, |v+(γ)− v| � Q−5.

To use the key property (3.12) in the construction of ℵ, we need to convert

the expression 〈aγe2, e2〉 in SN into one involving λ(a).

We will make regular use of the following elementary formula: For any

two linearly independent vectors v+, v− ∈ R2, we can write any w ∈ R2 as

(4.8) w =

¨
w, v⊥−

∂¨
v+, v⊥−

∂v+ +

¨
w, v⊥+

∂¨
v−, v⊥+

∂v−.
Here (x, y)⊥ = (−y, x). Recalling (2.9), it easily follows that for a unit vector

w and any large ξ ∈ Γ,

(4.9) ξw = λ(ξ)

¨
w, v⊥−(ξ)

∂¨
v+(ξ), v⊥−(ξ)

∂v+(ξ)

Ç
1 +O

Ç
1

‖ξ‖2

åå
,

whence

(4.10) 〈ξe2, e2〉 = λ(ξ)

¨
e2, v

⊥
−(ξ)

∂¨
v+(ξ), v⊥−(ξ)

∂ 〈v+(ξ), e2〉
Ç

1 +O

Ç
1

‖ξ‖2

åå
.

Applied to our present situation, we have by (4.7) that

(4.11) 〈γe2, e2〉 = λ(γ)

¨
e2, v

⊥
−(γ)

∂¨
v, v⊥−(γ)

∂ 〈v, e2〉
Å

1 +O

Å
1

Q5

ãã
and

〈aγe2, e2〉= λ(aγ)

¨
e2, v

⊥
−(aγ)

∂¨
v+(aγ), v⊥−(aγ)

∂ 〈v+(aγ), e2〉
Å

1 +O

Å
1

N2

ãã
(4.12)

= λ(a)λ(γ)

¨
e2, v

⊥
−(γ)

∂¨
v, v⊥−(γ)

∂ 〈v, e2〉
Å

1 +O

Å
1

Q5

ãã
,

where we also used (2.6) and (2.7).

Comparing (4.12) and (4.11), we have that

(4.13) 〈aγe2, e2〉 = λ(a) 〈γe2, e2〉+O
Ä
N/Q5

ä
.
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For θ = a
q + β ∈MQ with |β| < Q/N , we insert (4.13) into SN , giving

SN

Å
a

q
+ β

ã
=
∑
a∈ℵ

∑
γ∈Ω′

e

Å
a

q
〈aγe2, e2〉

ã
e (β 〈aγe2, e2〉)

(4.14)

=
∑
a∈ℵ

∑
γ∈Ω′

e

Å
a

q
〈aγe2, e2〉

ã
e

Ç
βλ(a) 〈γe2, e2〉

å
+O

Ç
Q−4|Ω|

å
=
∑
γ∈Ω′

∑
ω∈SL2(q)

e

Å
a

q
〈ωγe2, e2〉

ã ∑
a∈ℵ

a≡ω(mod q)

e (βλ(a) 〈γe2, e2〉)

+O

Ç
Q−4|ΩN |

å
,

where we decomposed the a sum into residue classes ω in SL2(q).

Next using (3.15), write the innermost sum above as∑
a∈ℵ

a≡ω(mod q)

e (λ(a)β 〈γe2, e2〉)(4.15)

=
∑
u∈U

∑
a∈ℵu

a≡ω(mod q)

e (λ(a)β 〈γe2, e2〉)

=
∑
u∈U

e (βu 〈γe2, e2〉)

Ö ∑
a∈ℵu

a≡ω(mod q)

1

èÄ
1 +O(Q−4)

ä
,

where we applied (3.12).

By (3.14) and (3.10) (that the cardinality of ℵu is the same for all u), the

innermost sum is

(4.16)
∑
a∈ℵu

a≡ω(mod q)

1 =
|ℵ|

|U| · |SL2(q)|
Ä
1 +O(Q−4)

ä
,

where the implied constant does not depend on u, ω, or q.

Returning to (4.14), inputting (4.16) and (4.15) gives

SN

Å
a

q
+ β

ã
=

1

| SL2(q)|
∑

ω∈SL2(q)

e

Å
a

q
〈ωe2, e2〉

ã |ℵ|
|U|

∑
γ∈Ω′

∑
u∈U

e (βu 〈γe2, e2〉)

(4.17)

×
Ä
1 +O

Ä
Q−4

ää
,

where we used the fact that the ω sum runs over all of SL2(q), so is inde-

pendent of γ. Note that SN has already split into modular and archimedean

components, with the first piece being νq(a) as in (4.1).
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We continue to massage the archimedean component. Fix γ and u. For

any m ∈ Z with

|m− u 〈γe2, e2〉 | ≤ B 〈γe2, e2〉 /Q5,

we clearly have

e (βu 〈γe2, e2〉) = e (βm)
Ä
1 +O(Q−4)

ä
,

and there are 2B 〈γe2, e2〉 /Q5 +O(1) integers m in this range. Hence

(4.18) e (βu 〈γe2, e2〉) =
Q5

2B 〈γe2, e2〉
∑
m∈Z∣∣∣ m

〈γe2,e2〉
−u
∣∣∣≤ B
Q5

e (βm)
Ä
1 +O(Q−4)

ä
.

Reversing the u and m sums and inserting (4.18) into (4.17) gives

SN

Å
a

q
+ β

ã
= νq(a)$N (β)

Ä
1 +O

Ä
Q−4

ää
,

where

(4.19) $N (β) :=
|ℵ|
|U|

∑
γ∈Ω′

Q5

2B 〈γe2, e2〉
∑
m∈Z

e (βm)
∑
u∈U

1∣∣∣ m
〈γe2,e2〉

−u
∣∣∣≤ B
Q5

.

Hence (4.5) is satisfied. Also the Fourier transform

(4.20) “$N (n) =
|ℵ|
|U|

∑
γ∈Ω′

Q5

2B 〈γe2, e2〉
∑
u∈U

1∣∣∣ n
〈γe2,e2〉

−u
∣∣∣≤ B
Q5

is clearly real and nonnegative, so (1) is satisfied.

Now, combining (4.11), (2.9), (2.2), (2.3), (2.8), (3.41), and (3.36), we

have

(4.21)
1

4

N

B
< 〈γe2, e2〉 < 4

N

B
,

and hence for 1
25N < n < 1

5N, we have, crudely, that

1

100
B <

n

〈γe2, e2〉
<

99

100
B.

Hence by the spacing in (3.7) of u ∈ U in this range, the innermost sum in

(4.20) is guaranteed to have at least one contribution, giving“$N (n)� |ℵ|
|U|

∑
γ∈Ω′

Q5

2B 〈γe2, e2〉
� |ℵ||Ω

′|
N

=
|ΩN |
N

,

where we used (4.21), (3.8), and (4.6). So (4.4) is satisfied, and the proof of

Theorem 4.2 is complete. �
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4.2. The major arcs contribution. Equipped with (4.5), it is now straight-

forward to produce the necessary major arcs contribution. For technical rea-

sons, we need a smoothed cutoff, and we introduce the triangle function, ψ,

given by

(4.22) ψ(x) :=


1 + x, if −1 < x < 0,

1− x, if 0 ≤ x < 1,

0, otherwise.

It is well known that the Fourier transform is nonnegative:

(4.23) ψ̂(y) =

Ç
sin(πy)

πy

å2

.

Let ψN be the function localized at level Q/N near the origin:

ψN (x) := ψ

Å
N

Q
x

ã
.

Periodize ψN to ΨN on R/Z:

ΨN (θ) :=
∑
m∈Z

ψN (θ +m),

and put each such spike at a major arc:

(4.24) ΨQ,N (θ) :=
∑
q<Q

∑
(a,q)=1

ΨN

Å
θ − a

q

ã
.

Note that the support of ΨQ,N is MQ.

As in (1.35), write the representation number

RN (n) := ŜN (n) =

∫ 1

0
SN (θ)e(−nθ)dθ,

and decompose it into a (smoothed) major arcs contribution and an error

(4.25) RN (n) =MN (n) + EN (n),

where

(4.26) MN (n) :=

∫ 1

0
ΨQ,N (θ)SN (θ)e(−nθ)dθ

and

(4.27) EN (n) :=

∫ 1

0
(1−ΨQ,N (θ))SN (θ)e(−nθ)dθ.

The ultimate goal of this section is to prove the following

Theorem 4.28. For 1
20N ≤ n <

1
10N,

(4.29) MN (n)� 1

log logN

|ΩN |
N

.



162 JEAN BOURGAIN and ALEX KONTOROVICH

Proof. Fix 1
20N ≤ n < 1

10N. Starting with (4.26), insert (4.24) and (4.5)

(recall supp ΨQ,N ⊂MQ), and make the change of variables β = θ − a/q:

MN (n) =
∑
q<Q

∑
(a,q)=1

νq(a)e

Å
−na

q

ã
(4.30)

×
∫ 1

0
ΨN (β) $N (β) e(−nβ) dβ

+O

Å
QQQ

N
|ΩN |Q−4

ã
,

where we used (4.3).

Note thatMN has already split (up to acceptable error) into the product

of the singular series

(4.31) SQ(n) :=
∑
q<Q

∑
(a,q)=1

νq(a)e

Å
−na

q

ã
and the singular integral

ΠN (n) :=

∫ 1

0
ΨN (β) $N (β) e(−nβ) dβ =

∑
m∈Z

“ΨN (n−m)“$N (m)(4.32)

=
Q
N

∑
m∈Z

ψ̂

ÅQ
N

(n−m)

ã “$N (m).

First we sketch an analysis of the singular series, which is standard. Insert

(4.1) into (4.31):

SQ(n) =
∑
q<Q

1

|SL2(q)|
∑

γ∈SL2(q)

cq (〈γe2, e2〉 − n) ,

where cq is the classical Ramanujan sum

cq(m) =
∑

(a,q)=1

e(am/q).

Recall that cq is multiplicative in q and that cq(m) = µ(q) if (m, q) = 1. (Here

µ is the Möbius function.) Hence we may extend the range of the sum q < Q
to q <∞ with a negligible error, obtaining a sum which factors into an Euler

product. At each place, the contribution from prime powers is negligible. We

are left to analyze

SQ(n)� S(n)�
∏
p

Ñ
1 +

1

|SL2(p)|
∑

γ∈SL2(p)

cp (〈γe2, e2〉 − n)

é
(4.33)

=
∏
p-n

Å
1 +

1

p2 − 1

ã∏
p|n

Å
1− 1

p+ 1

ã
� 1

log log n
.
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Returning to (4.32), we now analyze the singular integral. By positivity

and using (4.23) that ψ̂(y) > 2/5 for |y| < 1/2, we have

ΠN (n) =
Q
N

∑
m∈Z

ψ̂

ÅQ
N

(n−m)

ã “$N (m) ≥ 2

5

Q
N

∑
|m−n|<N/(2Q)

“$N (m).

For N (and hence Q) sufficiently large, the ranges n/N ∈ [ 1
20 ,

1
10 ] and |m−n| <

N/(2Q) force m/N ∈ [ 1
25 ,

1
5 ], so (4.4) applies, giving

(4.34) ΠN (n)� Q
N

N

2Q
|ΩN |
N
� |ΩN |

N
.

Inserting (4.34) and (4.33) into (4.30) gives (4.29), as claimed. �

5. Minor arcs analysis I

We keep all the notation from the previous section. Having dealt with the

main term (4.26), we are now tasked with estimating the error EN in (4.27).

As discussed in (1.39)–(1.41), the key goal is to estimate∑
n∈Z
|EN (n)|2 =

∫ 1

0
|1−ΨQ,N (θ)|2|SN (θ)|2dθ,

where we applied Parseval’s formula. For θ outside the major arcs, ΨQ,N
vanishes, and we decompose the above integral into regions

WQ,K :=

ß
θ =

a

q
+ β :

1

2
Q ≤ q < Q, (a, q) = 1,

K

2N
≤ |β| < K

N

™
.

Here the parameters Q and K range dyadically in

(5.1) Q < N1/2, K < N1/2/Q.

If K = O(1), we replace the condition 1
2K/N ≤ |β| < K/N in WQ,K by just

|β| < K/N, and any appearances of K should be replaced by 1.

In this section, we give two bounds for SN (θ), similar to Theorems 5.1

and 6.1 of [BK10]. These will suffice as long as Q or K is large.

5.1. The bound for K large. We will first bound
∫
WQ,K

|SN (θ)|2dθ by

pulling out the largest value of the integrand and multiplying by the mea-

sure of the domain, which � Q2K
N . To get the desired bound of N4δ−1 (see

(1.39)), we need to bound the sup norm of SN on WQ,K by a bit less than

N2δ/(K1/2Q). We will win by an extra K1/2.

Proposition 5.2. Let N , Q, K be as above, and write θ = a
q +β ∈WQ,K .

Then

(5.3) |SN (θ)| � N2δ

Ç
N1−δ

KQ

å
,

as N →∞.
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Proof. This is a simplified version of Theorem 5.1 in [BK10]; we repeat

the arguments. By (3.37), we decompose

(5.4) ΩN = Ξ1 (Ξ2Ξ3 · · ·ΞJ) = Ξ1 · Ω′.

Then by (2.3), (2.2), (2.8), Lemma 3.38, and (3.35), we have for γ ∈ Ξ1 and

ω ∈ Ω′ that

(5.5) |tγe2|, |ωe2| < 50N1/2.

Note also from (3.26) that

(5.6) #Ξ1,#Ω′ � N δ.

Then we can rewrite SN (θ) as

(5.7) SN (θ) =
∑
x∈Z2

∑
y∈Z2

µ(x)ν(y)e(θ 〈x, y〉),

where µ and ν are image measures in Z2 defined by

µ(x) :=
∑
γ∈Ξ1

1{x=tγ·e2},

and similarly

ν(y) :=
∑
ω∈Ω′

1{y=ω·e2}.

The projection ω 7→ ω · e2 in ν is one-to-one, since it is well known that

the continued fraction of a rational number, if restricted to have even length, is

unique. The map µ is also one-to-one, since G is preserved under transposition,
tg ∈ G for g ∈ G (since its generators (1.28) are fixed by transposition). Hence

we have

(5.8) ‖µ‖∞ ≤ 1, ‖ν‖∞ ≤ 1.

Note that for any y, y′ ∈ supp ν, we have from (5.5) that |y−y′| < 100N1/2.

Decompose ν into 100000 blocks ν =
∑
α ν

(α) so that for each α and any

y, y′ ∈ supp ν(α),

(5.9) |y − y′| < 1

2
N1/2.

Write |SN (θ)| ≤∑α |S
(α)
N (θ)|, where

S
(α)
N (θ) :=

∑
x

∑
y

µ(x)ν(α)(y)e(θ 〈x, y〉).

We will bound each such S
(α)
N independently of α, so we drop the superscripts α.

Let Υ : R2 → R+ be a smooth test function which exceeds 1 on the square

[−1, 1]× [−1, 1] and has Fourier transform supported in a ball of radius 1 about
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the origin. Apply Cauchy-Schwarz in the x variable, insert Υ, and open the

squares:

|SN (θ)|�
Ç∑

x

µ2(x)

å1/2
Ñ∑

x

Υ

Å
x

50N1/2

ã∑
y

ν(y)
∑
y′
ν(y′)e(

〈
x, y − y′

〉
θ)

é1/2

.

The first parentheses contribute N δ/2 by (5.6) and (5.8). To the last sum on

x apply Poisson summation, recalling the support of “Υ:

(5.10) |SN (θ)| � N δ/2

Ñ∑
y

ν(y)
∑
y′
ν(y′) N 1{‖(y−y′)θ‖< 1

50N1/2
}

é1/2

.

Here ‖ · ‖ is the distance to the nearest lattice point in Z2. For such y, y′, θ, we

have

‖(y − y′)a
q
‖ ≤ ‖(y − y′)θ‖+ |y − y′||β| < 1

50N1/2
+

1

2
N1/2K

N
<

1

Q
,

where we used (5.9) and (5.1). Then q < Q forces ‖(y − y′)aq ‖ = 0, or

y ≡ y′(q).

This being the case, we now have

1

50N1/2
> ‖(y − y′)θ‖ = |(y − y′)β|;

that is,

|y − y′| � N1/2

K
.

In summary, we have

|SN (θ)|�N (δ+1)/2

Ö∑
y

ν(y)
∑
y′

1ß
y≡y′(q)

|y−y′|�N1/2

K

™è1/2

,

where we used (5.8). Using Q < N1/2

K and the crudest bound on the y′ sum

gives

|SN (θ)|�N (δ+1)/2

(∑
y

ν(y)

Ç
N1/2

QK

å2)1/2

� N δ+1

QK
,

as claimed. �

The bound (5.3) is already conclusive if K is a bit larger than N2(1−δ).

Theorem 5.11. Assume Q < N1/2 and K < N1/2/Q. Then

(5.12)

∫
WQ,K

|SN (θ)|2dθ � (#ΩN )2

N

ñ
N2(1−δ)+4b

K

ô
.
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Proof. We bound trivially using (5.3):∫
WQ,K

|SN (θ)|2dθ � K

N
Q2

Ç
N δ+1

QK

å2

� N4δ−1

ñ
N2(1−δ)

K

ô
,

and the claim follows from (3.47), on crudely using δ < 1. �

5.2. Another bilinear forms estimate. Next we introduce the cross-section

of WQ,K for given β:

PQ,β :=

ß
θ =

a

q
+ β :

1

2
Q ≤ q < Q, (a, q) = 1

™
.

We will bound using (5.3), giving essentially∫
WQ,K

|SN |2 � sup |SN |
K

N
sup
β

∑
PQ,β

|SN | �
N2δ+

KQ

K

N
sup
β

∑
PQ,β

|SN |.

The trivial bound on
∑
PQ,β |SN | is of course N2δQ2, so we need to save a little

more than a power of Q to get our target bound of less than N4δ−1. This is

achieved by exploiting the extra structure in the a and q sums, as follows.

Proposition 5.13. Let the notation be as above. Then for all ε > 0,

(5.14)
∑

θ∈PQ,β

|SN (θ)| �ε N
2δQ2N1−δ+ε

ï
1

Q3/2
+

1

QN1/8

ò
.

Proof. The proof is nearly identical to that of Theorem 6.1 in [BK10], but

we reproduce it for the reader’s convenience. We again use (3.37) to decompose

ΩN into pieces, now grouping by

ΩN = (Ξ1Ξ2) (Ξ3 · · ·ΞJ) = Ω′ · Ω′′.

As before, we have for γ ∈ Ω′ and ω ∈ Ω′′ that

(5.15) |tγe2| < 300N3/4 and |ωe2| < 2000N1/4.

Also from (3.26), we have

(5.16) #Ω′ � N3δ/2 and #Ω′′ � N δ/2.

Again we define the measures µ and ν on Z2 by

µ(x) :=
∑
γ∈Ω′

1{x=tγe2},

ν(y) :=
∑
ω∈Ω′′

1{y=ωe2},

with µ, ν ≤ 1. For any two elements y, y′ in the support of ν, we have |y−y′| <
4000N1/4. Hence we again decompose ν into O(1) pieces, ν =

∑
α ν

(α), so as
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to make the difference

(5.17) |y − y′| < 1

10000
N1/4

for y, y′ in the support of ν(α). Writing

S
(α)
N (θ) =

∑
x

∑
y

µ(x)ν(α)(y)e(θ 〈x, y〉),

and dropping the superscripts α, we proceed to bound∑
θ∈PQ,β

|SN (θ)|=
∑
q�Q

∑
(a,q)=1

ζ(θ)SN (θ)

=
∑
q�Q

∑
(a,q)=1

ζ(θ)
∑
x

∑
y

µ(x)ν(y)e(θ 〈x, y〉),

where ζ has modulus 1. Recall the bump function Υ which is at least one on

[−1, 1]2; assume now that its Fourier transform is supported in a ball of radius

1/40 about the origin. Apply Cauchy-Schwarz in the x sum and (5.16), insert

the function Υ, reverse orders, and apply Poisson summation:∑
θ∈PQ,β

|SN (θ)|(5.18)

� N3δ/4

Ñ∑
x

Υ

Å
x

300N3/4

ã ∣∣∣∣∣∣∑q�Q ∑
(a,q)=1

ζ(θ)
∑
y

ν(y)e(θ 〈x, y〉)

∣∣∣∣∣∣
2é1/2

� N3(δ+1)/4 X 1/2,

where

(5.19) X = XQ,β :=
∑
q

∑
q′

∑
a

∑
a′

∑
y

∑
y′
ν(y)ν(y′)1¶

‖yθ−y′θ′‖< 1

12000N3/4

©.
Here θ′ = a′

q′ + β; note that β is the same for θ and θ′.

Write y = (y1, y2) and the same with y′. Consider the innermost condition

in (5.19):

(5.20) ‖y1θ − y′1θ′‖, ‖y2θ − y′2θ′‖ <
1

12000N3/4
.

Recall that y = γe2 for some (nonidentity) γ ∈ Γ, and the same for y′; hence

we have

y1y2y
′
1y
′
2 6= 0.

Also note using (5.20), (5.17), and |β| < K/N < 1/(N1/2Q) that

(5.21)∥∥∥∥∥y1
a

q
− y′1

a′

q′

∥∥∥∥∥ ≤ ‖y1θ − y′1θ′‖+ |(y1 − y′1)β| < 1

12000N3/4
+

N1/4

10000N1/2Q
,

and similarly with y2, y
′
2.
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Let Y :=

Ç
y1 y′1
y2 y′2

å
, so that

(5.22) Y := det(Y ) = y1y
′
2 − y′1y2.

Observe then by (5.21), (5.15), and Q < N1/2 that∥∥∥∥Y aq
∥∥∥∥≤

∥∥∥∥∥y′2
Ç
y1
a

q
− y′1

a′

q′

å∥∥∥∥∥+

∥∥∥∥∥y′1
Ç
y′2
a′

q′
− y2

a

q

å∥∥∥∥∥
< 2000N1/4

Ç
1

12000N3/4
+

N1/4

10000N1/2Q

å
× 2

<
1

Q
.

Of course this forces Y ≡ 0(mod q). The same argument gives Y ≡ 0(mod q′),

and hence we have

(5.23) Y ≡ 0(mod q),

where 1
2Q ≤ q < Q2 is the least common multiple of q and q′.

Decompose X in (5.19) as X = X1 + X2 according to whether Y = 0 or

not; we handle the two contributions separately. We will prove the following

two lemmata.

Lemma 5.24. For any ε > 0,

X1 �ε N
δ/2+εQ4

ï
1

N3/4
+Q−2

ò
.

Lemma 5.25. For any ε > 0,

X2 �ε N
δ+εQ.

We momentarily postpone the proofs of these two lemmata, first using

them to finish the proof of Proposition 5.13. Returning to (5.18), we have∑
θ∈PQ,β

|SN (θ)|�εN
3(δ+1)/4+ε

ï
N δ/2Q4

Å
1

N3/4
+Q−2

ã
+N δQ

ò1/2
,

from which the claim follows using Q < N1/2. �

Now we establish the lemmata separately.

5.2.1. Bounding X2: the case Y 6= 0.

Proof of Lemma 5.25. Note from (5.15), (5.17), and (5.22) that

|Y| ≤ |y1(y′2 − y2)|+ |(y1 − y′1)y2| < 2000N1/4 1

10000
N1/4 × 2 < N1/2.

Since q | Y and Y 6= 0, we have

q ≤ min(Q2, N1/2) ≤ QN1/4.
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Then (5.21) and Q < N1/2 forces

(5.26) y1
a

q
− y′1

a′

q′
≡ 0(mod 1),

and the same holds for y2, y
′
2. Let q̃ := (q, q′) and q = q1q̃, q

′ = q′1q̃ so that

q = q1q
′
1q̃. Then (5.26) becomes

y1aq
′
1 ≡ y′1a′q1(mod q),

and the same for y2, y
′
2. Recall a and q are coprime, as are a′ and q′. It then

follows that q1 | y1, and similarly, q1 | y2. But since the coordinates of y are

coprime, (y1, y2) = 1, this forces q1 = 1. The same argument applies to q′1, so

we have q = q′ = q. Then (5.26) now reads

(5.27) y1a ≡ y′1a′(mod q),

and similarly for y2, y
′
2.

Hence, once we fix y, y′ ∈ Ω′′e2, the value of Y is determined, and q | Y
leaves at most N ε choices for q. Then there are at most Q choices for a, from

which a′ is determined by (5.27) (again using the coprimality of the coordinates

of y and y′).

Then using (5.16), X2 is bounded by

X2 �
∑
y

ν(y)
∑
y′
ν(y′)

∑
q|Y

1
2Q≤q<Q

∑
a(mod q)

1(5.28)

�ε

Ä
N δ/2

ä2
N εQ,

as claimed. �

5.2.2. Bounding X1: the case Y = 0.

Proof of Lemma 5.24. The condition Y = 0 implies y1/y2 = y′1/y
′
2. Recall

that rationals have unique continued fraction expansions (of even length), and

thus y = y′. The bottom line savings from this fact is at most N1/4, whereas

we need to save a bit more than Q, which can be as large as N1/2.

Let N ′ := 1
12000N

3/4. The condition (5.20) then becomes

(5.29)

∥∥∥∥∥y1

Ç
a

q
− a′

q′

å∥∥∥∥∥ < 1

N ′
.

Let (y1, q) = v and (y1, q
′) = v′ with q = vr. Assume without loss of generality

that v ≤ v′. Fix y (for which there are N δ/2 choices) and v, v′ | y1 (at most

N ε choices). There are � Q/v′ choices for q′ ≡ 0(mod v′), and then � Q

choices for (a′, q′) = 1. Write ψ for y1a
′/q′(mod 1), which is now fixed, and

write y1 = vz with (z, r) = 1. Then (5.29) becomes∥∥∥∥z ar − ψ
∥∥∥∥ < 1

N ′
.

Let Uz be the set of possible fractions za
r (mod 1) as r varies in Q/(2v) ≤ r <

Q/v, and a ranges up to Q subject to (a, vr) = 1. Note that distinct points
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u ∈ Uz are separated by a distance of at least v2/Q2. Hence the size of the

intersection of Uz with the intervalï
ψ − 1

N ′
, ψ +

1

N ′

ò
contains at most Q2

v2N ′ + 1 points. Once u = f/r ∈ Uz is determined, so is its

denominator; that is, r is determined. Also a(mod r) is determined (to be f),

hence a(mod q) has v possible values (recall q = rv).

In summary, we use (5.16) again to bound X1 by

X1 �
∑
y

ν(y)
∑
v,v′|y1
v≤v′

∑
q′≡0(mod v′)

∑
(a′,q′)=1

∑
f/r∈Uz∩[ψ− 1

N′
,ψ+ 1

N′
]

q=rv

∑
a<q

a≡f(mod r)

1

�
∑
y

ν(y)
∑
v,v′|y1
v≤v′

Q

v′
Q

Ç
Q2

v2N ′
+ 1

å
v

�εN
δ/2N εQ2

Ç
Q2

N3/4
+ 1

å
,

as claimed. �

With the lemmata established, we have completed the proof of Propos-

tion 5.13.

5.3. The bound for Q large. Lastly, we input this bound to get another

bound on the main integral, one which is favorable as long as Q is a bit bigger

than N4(1−δ).

Theorem 5.30. Assume that Q < N1/2 and KQ < N1/2. Then

(5.31)

∫
WQ,K

|SN (θ)|2dθ � (#ΩN )2

N
N2(1−δ)N4b

Å
1

Q1/2
+

1

N1/8

ã
.

Proof. Write∫
WQ,K

|SN (θ)|2dθ � sup
θ∈WQ,K

|SN (θ)| · K
N

sup
|β|�K

N

∑
θ∈PQ,β

|SN (θ)|

�εN
2δ

Ç
N1−δ

KQ

å
· K
N

Å
N2δQ2N1−δ+ε

ï
1

Q3/2
+

1

QN1/8

òã
� N4δ−1N2(1−δ)+ε

Å
1

Q1/2
+

1

N1/8

ã
,

where we used (5.3) and (5.14). The claim follows from (3.47), again crudely

using δ < 1. �

It remains to handle the regions when both K and Q are very small, less

than N ε for ε near zero.
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6. Minor arcs analysis II

We now push the methods of the previous section down to the level of Q

and K being of constant size. We again do this in two stages. But first we

record the following counting bound.

Lemma 6.1. For (qK)13/5 < Y < X , and vectors η, η′ ∈ Z2 having co-

prime coordinates with |η| � X/Y and |η′| � Y ,

#

ß
γ ∈ SL2(Z) : ‖γ‖ � Y, |γη − η′| < X

YK
, and γη ≡ η′(mod q)

™
�
Å
Y

qK

ã2

.

The implied constant is absolute, depending on the implied constants above.

Sketch of proof. Write G(Z) = SL2(Z), and let Gη(q) be the stabilizer of

η mod q:

Gη(q) := {γ ∈ G(Z) : γη ≡ η(q)}.
Then G(Z) ∼= (G(Z)/Gη(q))×Gη(q). Let R = RY,K denote the region

R := {g ∈ SL2(R) : ‖g‖ � Y, |gη − η′| < X/(Y K)}.

The methods in [Goo83] (see also [BKS10]) give an estimate of the form∑
γ∈G(Z)

1{γ∈R}1γη≡η′(mod q) =
∑

ω∈G(Z)/Gη(q)

1ωη≡η′(mod q)

∑
γ′∈Gη(q)

1{ωγ′∈R}

�ε

∑
ω∈G(Z)/Gη(q)

1ωη≡η′(mod q)

ÇÅ
Y

qK

ã2

+ Y 2Θ+ε

å
�
Å
Y

qK

ã2

+ Y 2Θ+ε,

where Θ = 1/2 + 7/64 is the best known bound towards the Ramanujan con-

jectures [Kim03]. (We apply the argument to a smoothed sum.) The first

term dominates as long as (qK)2 < Y 25/32−ε, and the claim follows using

64/25 + ε < 65/25 = 13/5. �

Remark 6.2. Recall that we are not interested here in optimizing the final

value of δ0 in Theorem 1.8, so we allow ourselves to be a bit crude in the above

for the sake of exposition.

6.1. The bound for K at least a small power of Q. We return to the ap-

proach of Section 5.1, that is just bounding the sup norm and needing to win

more than K1/2Q off the trivial bound. Now we use the fact that KQ is quite

small to improve on the trivial bound by (KQ)1−ε with ε small (depending on

the distance from δ to 1). Then we will have, roughly∫
WQ,K

|SN |2 � Q2K

N

Ç
#ΩN

(KQ)1−ε

å2

=
(#ΩN )2

N

Å
Qε

K1−ε

ã
,
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which is a savings as long as K is at least a small power of Q. Note now for

K and Q small that we must be careful with the loss in the size of ΩN in the

lower bound (3.47). We make all of this precise below.

Proposition 6.3. Assume θ ∈WQ,K with

(6.4) 1� KQ < N5/52.

Then

(6.5) |SN (θ)| � #ΩN

(
ec(log log(KQ))2

(KQ)1−(1−δ)52/5

)
.

Proof. Recalling (3.35) that Nj � N1/2j , we can find a 1 ≤ j ≤ J so that

(6.6)
1

100
(QK)13/5 < Nj < (QK)26/5,

say. Here we used (6.4) that (QK)26/5 < N1/2.

Define the sets

Ω(1) := Ξ1Ξ2 · · ·Ξj−1,(6.7)

Ω(2) := Ξj ,

Ω(3) := Ξj+1Ξj+2 · · ·ΞJ .

Hence for gi ∈ Ω(i),

λ(g3)∼Nj+1Nj+2 · · ·NJ =: M,(6.8)

λ(g2)∼Nj ,(6.9)

λ(g1)� N

M Nj
.(6.10)

Note that

(6.11)
Nj

logNj
�M � Nj logNj

and that from (3.48) and (3.26) we have

(6.12) |Ω(3)| � M2δ

ec(log logM)2 , |Ω(2)| � (Nj)
2δ

(logNj)3
.

In the above, we used that J − j � log logM .

Estimate

(6.13) |SN (θ)| �
∑

g1∈Ω(1)

∑
g3∈Ω(3)

∣∣∣∣∣∣ ∑
g2∈Ω(2)

e(
¨
g3e2,

tg2
tg1e2

∂
θ)

∣∣∣∣∣∣ .
Fix g1 and set η = tg1e2. Note that

(6.14) |η| � N

MNj
.
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Estimate as in (5.10):

∑
g3∈Ω(3)

∣∣∣∣∣∣ ∑
g2∈Ω(2)

e(
¨
g3e2,

tg2η
∂
θ)

∣∣∣∣∣∣
(6.15)

� (#Ω(3))1/2 M

ñ
#

®
(g, g′) ∈ tΩ(2) × tΩ(2) :

‖ 〈(g − g′)η, e1〉 ‖ � 1
M

‖ 〈(g − g′)η, e2〉 ‖ � 1
M

´ô1/2

,

where we extended the sum over g3 to g3e2 ∈ {z ∈ Z2 : |z| �M}. Write

(6.16)

∥∥∥∥〈(g − g′)η, ei〉 aq
∥∥∥∥ =

∥∥〈(g − g′)η, ei〉 θ∥∥+
∣∣〈(g − g′)η, ei〉β∣∣ ,

where

|
〈
(g − g′)η, ei

〉
β| � Nj

N

MNj

K

N
=
K

M
.

From (6.6) and (6.11) we clearly have K
M < 1

Q , so (6.16) forces

(6.17) (g − g′)η ≡ 0(q)

and

(6.18) |(g − g′)η| � 1

M |β|
� N

KM
.

Fix g′, and enlarge g ∈ tΩ(2) to {g ∈ SL2(Z) : ‖g‖ � Nj}. Applying Lemma 6.1

with η′ = g′η, X = N/M , and Y = Nj , the g cardinality contributes

�
Å
Nj

KQ

ã2

.

Thus we have by (6.12) and (6.11) that

(6.15)�
Ä
#Ω(3) ·#Ω(2)

ä1/2 N2
j

KQ

� #Ω(3) ·#Ω(2) (MNj)
1−δec(log logM)2

(logNj)
3

KQ
.

Hence by (6.6) and (6.11),

(6.13)� #ΩN
(KQ)(1−δ)52/5ec(log log(KQ))2

KQ
,

as claimed. �

Inserting this bound into the main integral and estimating trivially gives

Theorem 6.19. Assuming (6.4),∫
WQ,K

|SN (θ)|2dθ � (#ΩN )2

N

Q(1−δ)104/5ec(log log(KQ))2

K1−(1−δ)104/5
.
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This bound is sufficient for our purposes unless K is much less than

(6.20) Q
104/5(1−δ)

1−104/5(1−δ) ≈ Qε.

6.2. The bound for K even smaller. In this last section, we give the final

bound for minor arcs, which we apply to the remaining range of K. Recall the

approach of Section 5.2: we bound
∫
WQ,K

|SN |2 by the sup norm times K/N

times
∑
Pβ,Q |SN |. The sup norm has already gained almost KQ, so we need to

gain more than a power of Q off of the last summation. We proceed as follows.

Proposition 6.21. Recall the cross section PQ,β for a given |β| � K
N :

PQ,β :=

ß
θ =

a

q
+ β : q � Q, (a, q) = 1

™
.

Then assuming (6.4), we have

(6.22)
∑

θ∈PQ,β

|SN (θ)| � #ΩN Q2

(
(KQ)(1−δ)52/5ec(log log(KQ))2

Q3/2

)
.

Proof. This argument is similar to Proposition 5.13, and we sketch the

proof. Using the same decomposition (6.7), we follow (5.18) and bound the

left-hand side of (6.22) by

�
∑

g1∈Ω(1)

Ä
#Ω(3)

ä1/2
M

(6.23)

×
ï
#

ß
(θ, θ′, g, g′) ∈ Pβ × Pβ × tΩ(2) × tΩ(2) : ‖(gθ − g′θ′)η‖ � 1

M

™ò1/2
,

where η = tg1e2. The innermost condition guarantees q = q′ and

a(gη) ≡ a′(g′η)(mod q).

The number of choices for g′ given g, q, a, and a′ is

�
Å
Nj

Q

ã2

,

hence

(6.23)�#Ω(1)
Ä
#Ω(3)

ä1/2
M

ñ
QQ2#Ω(2)

Å
Nj

Q

ã2
ô1/2

�#ΩN Q2

(
(KQ)(1−δ)52/5ec(log log(KQ))2

Q3/2

)
,

as claimed. �
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Using (6.22) and (6.5), we now have the bound∫
WQ,K

|SN (θ)|2dθ � K

N
#ΩN

(
ec(log log(KQ))2

(KQ)1−(1−δ)52/5

)

×#ΩN Q2

(
(KQ)(1−δ)52/5ec(log log(KQ))2

Q3/2

)
,

from which we immediately have

Theorem 6.24. Assuming (6.4),∫
WQ,K

|SN (θ)|2dθ� (#ΩN )2

N

(
(KQ)(1−δ)104/5ec(log log(KQ))2

Q1/2

)
.

7. Proofs of Theorems 1.8 and 1.25

Keeping all the notation of previous sections, we now prove the main minor

arcs estimate, analogous to (1.39), before completing a proof of Theorem 1.8.

Theorem 7.1. Assume

(7.2) δ > δ0,

with δ0 given by (1.21). Then for some c > 0,

(7.3)
∑
n∈Z
|EN (n)|2 � |ΩN |2

N
Q−c.

Proof. By Parseval, we have

∑
n∈Z
|EN (n)|2 =

∫ 1

0
|1−ΨQ,N (θ)|2|SN (θ)|2dθ =

∫
MQ

+

∫
m
,

where we decomposed the integral into the major arcs MQ and the comple-

mentary minor arcs m = [0, 1] \MQ.

On the major arcs, note from (4.22) that 1− ψ(x) = |x| on [−1, 1]. Then

using (6.5) with K � N |β| gives∫
MQ

�
∑
q<Q

∑
(a,q)=1

∫
|β|<Q/N

∣∣∣∣NQβ
∣∣∣∣2
Ç
|ΩN |

Ç
1

(N |β|Q)1−c

åå2

dβ

� |ΩN |2

N

1

Q1−4c
.

Here 0 < c < (1− δ)52/5 < 1/4 by (7.2), so renaming the constant c > 0, we

are done with the major arcs.
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Decompose the minor arcs m into dyadic regions∫
m
|SN (θ)|2dθ �

∑
Q<N1/2

dyadic

∑
K<N

1/2

Q
dyadic

IQ,K ,

where at least one of Q or K exceeds Q, and

I(Q,K) :=

∫
WQ,K

|SN (θ)|2dθ.

Write Q = Nα, K = Nκ, with the parameters (α, κ) ranging in

(7.4) 0 ≤ α < 1/2 and 0 ≤ κ < 1/2− α.

It will be convenient to define

(7.5) η := (1− δ)104/5.

Assume that 1 − δ < 5/208, so that 0 < η < 1/2. We break the summation

into the following four ranges:

R1 := {(α, κ) : κ > 2(1− δ) + 4b},
R2 := {(α, κ) : α > 4(1− δ) + 8b},
R3 := {(α, κ) : η(α+ κ) < κ and α+ κ < 5/52},

R4 := {(α, κ) : η(α+ κ) <
1

2
α and α+ κ < 5/52}.

We need to show that these four regions cover the entire range (7.4). Using

(3.3) and (7.2) with (1.21) guarantees that the regions R1 and R2 certainly

cover the range α + κ ≥ 5/52. In the complimentary range, R3 and R4 give

two regions: the region below the line through the origin with slope η/(1− η),

and the region above the line through the origin with slope (1/2− η)/η. These

two regions overlap when the slopes overlap, that is, when η < 1/3. Then (7.5)

explains the value of δ0 in (1.21).

Since the four regions cover the full range (7.4), we now just collect the

results of the previous two sections. In the range R1, we apply Theorem 5.11,

getting

(7.6) I(Q,K)� (#ΩN )2

N
K−c

for some c > 0. In R2, we apply Theorem 5.30, getting

(7.7) I(Q,K)� (#ΩN )2

N
Q−c.

In the range R3 with K > Q, Theorem 6.19 gives (7.6), and in R4 with

Q > Q, Theorem 6.24 gives (7.7). Combining these estimates completes the

proof of (7.3). �

It is now standard to derive Theorem 1.8 from (4.29) and (7.3).
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Proof of Theorem 1.8, assuming Proposition 3.9. In light of (4.29), the

proof of which uses Proposition 3.9, we have for n � N that

MN (n)�|ΩN |/(N log logN)

�N2δ−1−1/1000,

where we crudely used (3.47) and (3.3). Hence we expect the same for RN (n).

If this is not the case, it means that

|EN (n)| = |RN (n)−MN (n)| � 1

log logN

|ΩN |
N

.

Let E(N) denote the set of n � N which have a small representation

number RN (n):

E(N) :=

ß
1

20
N ≤ n < 1

10
N : RN (n) <

1

2
MN (n)

™
.

Then assuming (7.2), we have

#E(N)�
∑

1
20
N≤n< 1

10
N

1{|EN (n)|� |ΩN |
N log logN

}

� N2(log logN)2

|ΩN |2
∑
n

|EN (n)|2

� N2(log logN)2

|ΩN |2
|ΩN |2

N
Q−c � Ne−c

√
logN ,

using (7.3) and (3.5). �

This completes the proof of Theorem 1.8, modulo the construction of the

leading set ℵ, which is taken up in the next section. First we give a quick

7.1. Proof of Theorem 1.25. Let P = PN be the set of primes p up to N

which are 3(mod 4), so that (p− 1)/2 is a 10-almost-prime; that is,

P := {p < N : p ≡ 3(mod 4), and m | (p− 1)/2 =⇒ m > N1/10}.

A standard sieve argument shows that P has cardinality � N
(logN)2 . By (1.9),

the cardinality Ne−c
√

logN of the exceptional set is much smaller, and so

DA(N) ∩ P is unbounded in N for δA > δ0.

By (1.10), each p = d in the intersection appears with multiplicity at least

N2δ−1.001 > N10/11, say. That is, there are distinct b1, . . . , bL so that bj/d ∈
RA, j = 1, . . . , L, and L > N10/11. Let r be any primitive root mod d. For

j = 1, . . . , L, let kj be defined by bj ≡ rkj (mod d), and let K = {k1, . . . , kL}.
Of course bj is a primitive root mod d if and only if (kj , d− 1) = 1.

Consider the subset K ′ of k ∈ K for which (k, d − 1) > 2. Since d ∈ P,

each such k has a prime factor of size N1/10, and hence the cardinality of K ′
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is � N9/10. This is less than the cardinality of K, so we may safely discard

K ′ from K, leaving a nonempty set K ′′.

Consider b ≡ rk(mod d) with k ∈ K ′′. If (k, d− 1) = 1, we are done, since

b is a root mod d and b/d ∈ RA. The only other possibility is (k, d − 1) = 2,

whence b is a square mod d. Set b′ := d − b, so b′ ≡ −rk(mod d); since

d ≡ 3(mod 4), b′ is now a primitive root. It is elementary to verify that

b/d ∈ R{1,2,...,A} implies that b′/d = 1 − b/d ∈ R{1,2,...,A+1}. That is, these

quotients are still absolutely Diophantine, completing the proof.

8. Construction of ℵ

In this section, we arrange the special leading set ℵ in the ensemble ΩN as

described in Section 3.1. We need two pieces of background, using Section 8.1

to extract some modular/archimedean counting statements from [BGS11], and

spending Section 8.2 proving a certain “randomness extraction argument.” Fi-

nally, we proceed in Section 8.3 to construct ℵ, thereby proving Proposition 3.9

and finalizing the proof of Theorem 1.8.

8.1. Congruence counting theorems. Recall from Section 3.2 that µ is the

δ-dimensional Hausdorff measure supported on the limit set C, lifted to P1.

Extending the work of Lalley’s [Lal89] to the congruence setting, Bourgain-

Gamburd-Sarnak [BGS11, Th. 1.5] proved the following theorem, adapted to

our present context.

Theorem 8.1 ([BGS11]). Let Γ = ΓA be the semigroup in (1.31). There

exist an integer

(8.2) B = B(A) ≥ 1

and a constant

(8.3) c = c(A) > 0

so that the following holds. For any (q,B) = 1, any ω ∈ SL2(q), any γ0 ∈ Γ,

and parameters T,H → ∞ with H < ec
√

log T , there is a constant C(γ0) > 0

so that

#

®
γ ∈ Γ : γ ≡ ω(mod q), |v+(γ)− v| < 1

H
, and

‖γγ0‖
‖γ0‖

≤ T
´

(8.4)

= C(γ0) · T 2δ µ(I)

|SL2(q)|
+O

Å
T 2δe−c

√
log T
ã
, as T →∞.

Here I is the interval of length 1/H about v, and the implied constant does not

depend on T , H , q, ω, or γ0.
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With the same conditions as above, except for a modulus q with B | q, we

have

#

®
γ ∈ Γ : γ ≡ ω(mod q), v+(γ) ∈ I, and

‖γγ0‖
‖γ0‖

≤ T
´(8.5)

=
|SL2(B)|
|SL2(q)|

·#
®
γ ∈ Γ : γ ≡ ω(modB), v+(γ) ∈ I, and

‖γγ0‖
‖γ0‖

≤ T
´

+O

Å
T 2δe−c

√
log T
ã
.

Remark 8.6. Recall that throughout, the appearance of constants c and

C may change from line to line. The special constant c in (8.3) is in con-

tradistinction with this principle, being the same constant wherever it appears.

Moreover, Proposition 3.16 follows immediately from (8.4), so the constant c

appearing there can be taken to be the same as the one here.

Remark 8.7. In Theorem 8.1, we have stated the result only for the ex-

treme cases (B, q) = 1 and B | q. Of course intermediate cases can be obtained

by summing over suitable arithmetic progressions. This introduces no extra er-

ror since the number of terms is�B 1, and our implied constants may depend

on the fixed alphabet A (recall B depends only on A).

Remark 8.8. The proof of Theorem 8.1 is the same as that of [BGS11,

Th. 1.5], with the following caveats. The latter was proved under the fur-

ther assumptions that the modulus q is square-free and that Γ is a convex-

cocompact subgroup of SL2(Z). As discussed in Section 3.2, the proof also

works when the group is replaced by our free semigroup Γ with no parabolic

elements. As for the level, taking q square-free was enough for the sieving

purposes in [BGS11], but for the circle method used here, we must take arbi-

trary q. The main ingredient in analyzing the modular aspect (see [BGS11,

Lemma 7.2]) was the spectral gap (expansion property) proved using meth-

ods of additive combinatorics and an L2-flattening lemma in [BG08], [BGS10],

again for square-free q. The relevant results have since been established for

arbitrary modulus; see [BV12] and [GV12, Rem. 30]. With this input, [BGS11,

Prop. 12.1] holds for arbitrary q, from which one can derive Theorem 8.1.

Remark 8.9. A final caveat is that there is a minor inaccuracy in the

statement of [BGS11, Th. 1.5], in that one must “unsmoothe” the smoothed

estimate given in [BGS11, Prop. 12.1] to obtain [BGS11, Th. 1.5]. Applying

a Tauberian theorem, the removal of smooth weights results in a loss in the

stated error term where the smooth error term T−c/ log log T must be replaced

in the sharp cutoff by e−c
√

log T ; hence the error terms stated in Theorem 8.1.



180 JEAN BOURGAIN and ALEX KONTOROVICH

The condition ‖γγ0‖/‖γ0‖ < T arises naturally in the above through the

renewal method; in fact, this condition is essentially equivalent to

dH(γγ0i, i)− dH(γ0i, i) < C log T,

where dH(·, ·) denotes hyperbolic distance in the upper half-plane H. As in

Section 3.2, one typically sets γ0 = I, but we will use γ0 for a different purpose.

Namely, we will need to control both the expanding direction v+(γ), and its

expanding eigenvalue λ(γ), but taking γ0 = I gives us control only on the norm

‖γ‖ (which can be off by a constant from the eigenvalue). So we instead do

the following.

It is easy to see from (4.10) that

(8.10) ‖γ‖ =
λ(γ)

|
¨
v+(γ), v⊥−(γ)

∂
|

Ç
1 +O

Ç
1

‖γ‖2

åå
.

Assume now that both γ and γ0 lie in I, the interval of length 1/H about v,

and assume ‖γ‖, ‖γ0‖ > H. Then applying (8.10) to γ0 and γγ0 gives

‖γ0‖ =
λ(γ0)

|
¨
v, v⊥−(γ0)

∂
|

Å
1 +O

Å
1

H

ãã
and

‖γγ0‖=
λ(γγ0)

|
¨
v+(γγ0), v⊥−(γγ0)

∂
|

Ç
1 +O

Ç
1

‖γγ0‖2

åå
=

λ(γ)λ(γ0)

|
¨
v, v⊥−(γ0)

∂
|

Å
1 +O

Å
1

H

ãã
,

where we used (2.6) and (2.7). On dividing, we obtain

‖γγ0‖
‖γ0‖

= λ(γ)

Å
1 +O

Å
1

H

ãã
.

We can thus convert statements restricting norms into ones controlling eigen-

values, without losing constants.

The constant C(γ0) in (8.4) approaches a constant C(v) > 0 as ‖γ0‖ → ∞
with v+(γ0) → v; indeed, C(γ0) is obtained by evaluating a certain Gibbs

measure. (See [BGS11, §10] or [Lal89, (2.5)], where his x plays the role of

our γ0.) Hence (8.4) can be replaced by

#

ß
γ ∈ Γ : γ ≡ ω(mod q), |v+(γ)− v| < 1

H
, and λ(γ) ≤ T

™
= C(v) · T 2δ µ(I)

| SL2(q)|

Å
1 +O

Å
1

H

ãã
+O

Å
T 2δe−c

√
log T
ã

and a similar expression analogous to (8.5).
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Finally, we can restrict λ(γ) to a smaller range, λ(γ) = T (1 + O(1/H1)),

for a smaller parameter H1; in applications we take H1 = H1/2. In summary,

we have the following

Corollary 8.11. With notation as above, we have for any T,H,H1 →∞
with H1 = o(H) and H < ec

√
log T , and any (q,B) = 1, ω ∈ SL2(q), that

#

ß
γ ∈ Γ : γ ≡ ω(mod q), |v+(γ)− v| < 1

H
, |λ(γ)− T | < T

H1

™
(8.12)

= C(v) · T
2δ

H1

µ(I)

| SL2(q)|

Å
1 +O

Å
1

H1
+
H1

H

ãã
+O

Å
T 2δe−c

√
log T
ã
.

The implied constants are independent of T , H , H1, q, and ω.

For a modulus q ≡ 0(modB), we have

#

ß
γ ∈ Γ : γ ≡ ω(mod q), v+(γ) ∈ I, |λ(γ)− T | < T

H ′

™(8.13)

=
| SL2(B)|
| SL2(q)|

·#
ß
γ ∈ Γ : γ ≡ ω(modB), v+(γ) ∈ I, |λ(γ)− T | < T

H ′

™
×
Å

1 +O

Å
1

H1
+
H1

H

ãã
+ O

Å
T 2δe−c

√
log T
ã
.

8.2. A randomness extraction argument. Corollary 8.11 gives us good mod-

ular/achimedean control away from the modulus B, but we need ℵ to have good

distribution properties for all moduli. So in the next subsection we will concoct

certain special sets engineered to have good equidistribution mod B. But in

so doing, we will potentially ruin the distribution away from B. To recover

this distribution, we apply a certain more-or-less standard “randomness ex-

traction” argument, which states roughly that if a large set has good modular

distribution, then so does a sufficiently large random subset of it. We will need

to have the flexibility to stay away from a modulus q0, which in applications

is either 1 or B.

Lemma 8.14. Let µ = µS be the normalized (probability) measure of a

finite subset S ⊂ SL(2,Z),

µ(γ) =
1

|S|
∑
s∈S

1{s=γ},

and fix η > 0. Let q0 < Q be a fixed modulus, let ω0 ∈ SL2(q0) be a fixed

element, and let Q = Qq0 ⊂ [1, Q] be the set of moduli q < Q with q0 | q.
Assume that for all q ∈ Q and all ω ∈ SL2(q) with ω ≡ ω0(mod q0), the

projection

πq[µ](ω) =
∑

γ≡ω(mod q)

µ(γ)
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is near the uniform measure on SL2(q) conditioned on being ≡ ω0(mod q0),

(8.15)∥∥∥∥∥πq[µ]− |SL2(q0)|
| SL2(q)|

∥∥∥∥∥
L∞
∣∣∣
≡ω0(mod q0)

= max
ω∈SL(2,q)

ω≡ω0(mod q0)

∣∣∣∣∣πq[µ](ω)− | SL2(q0)|
|SL2(q)|

∣∣∣∣∣ < η.

Then for any T with

(8.16) η−2 logQ < T = o(|S|1/2),

there exist T distinct points γ1, . . . , γT ∈ S = suppµ such that the probability

measure ν = νT,γ1,...,γT defined by

(8.17) ν =
1

T
(1γ1 + · · ·+ 1γT )

has the same property. That is, for all q ∈ Q, projection πq[ν] is also nearly

uniform :

(8.18) max
q∈Q

Ö∥∥∥∥∥πq[ν]− |SL2(q0)|
|SL2(q)|

∥∥∥∥∥
L∞
∣∣∣
≡ω0(mod q0)

è
� η.

The implied constant above is absolute.

Proof. This is a standard argument, so we give a sketch. Take ν as in

(8.17). Let D be the expectation with respect to µ of the left-hand side of

(8.18),

D :=
∑

γ∈SL2(Z)T

max
q∈Q

max
ω∈SL2(q)

ω≡ω0(mod q0)

∣∣∣∣∣∣ 1T
T∑
j=1

1{γj≡ω(q)} −
| SL2(q0)|
| SL2(q)|

∣∣∣∣∣∣µ(T )(γ),

where µ(T ) is the product measure on SL2(Z)T and γ = (γ1, . . . , γT ). Using

(8.15), we have

D<η +
∑

γ∈SL2(Z)T

∑
ξ∈SL2(Z)T

max
q∈Q

max
ω∈SL2(q)

∣∣∣∣∣∣ 1T
T∑
j=1

fω(γj , ξj)

∣∣∣∣∣∣µ(T )(γ)µ(T )(ξ),

where

fω(γj , ξj) := 1{γj≡ω(q)} − 1{ξj≡ω(q)},

and we extended the max over ω to all of SL2(q).

Note that for fixed ω, fω(γj , ξj) are independent, mean zero random vari-

ables and bounded by 1. Hence the contraction principle gives

(8.19) D < η +
∑
γ

∑
ξ

D(γ, ξ)µ(T )(γ)µ(T )(ξ),
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where

D(γ, ξ) :=
1

2T

∑
ε∈{±1}T

max
q∈Q

max
ω∈SL2(q)

∣∣∣∣∣∣ 1T
T∑
j=1

εjfω(γj , ξj)

∣∣∣∣∣∣ .
Replace the max by an Lp norm with p to be chosen later:

D(γ, ξ) ≤ 1

2T

∑
ε∈{±1}T

Ñ∑
q∈Q

∑
ω∈SL2(q)

∣∣∣∣∣∣ 1T
T∑
j=1

εjfω(γj , ξj)

∣∣∣∣∣∣
pé1/p

�

Ñ∑
q∈Q

∑
ω∈SL2(q)

1

2T

∑
ε∈{±1}T

∣∣∣∣∣∣ 1T
T∑
j=1

εjfω(γj , ξj)

∣∣∣∣∣∣
pé1/p

�

Ö∑
q∈Q

∑
ω∈SL2(q)

pp/2

Ñ
T∑
j=1

∣∣∣∣∣fω(γj , ξj)

T

∣∣∣∣∣
2
ép/2

è1/p

�Q4/pp1/2T−1/2,

where we applied Khintchine’s inequality [Haa81]. (The implied constant is

absolute.) Now we choose p = logQ, so that

D(γ, ξ)� (logQ)1/2T−1/2.

Inserting this into (8.19) and setting T > η−2 logQ gives

D � η.

The number of T -tuples γ with distinct γj is |S|!/(|S|−T )!, which is asymptotic

to |S|T for T = o(|S|1/2). This completes the proof. �

Equipped with this randomness extraction argument, we proceed with the

8.3. Proof of Proposition 3.9. Recalling the parameters b in (3.3), c from

(8.3), and B from (8.2), we set R := | SL2(B)| and define α0 in (3.5) by

(8.20) α0 :=
βc

40R
.

For a parameter

(8.21) T = N c1

with small c1 to be determined in (8.30), let H = Q12, H1 = Q6, and set

(8.22) S(T ) :=

ß
γ ∈ Γ : |v+(γ)− v| < 1

H
, |λ(γ)− T | < T

H1

™
.

By (8.12) with q = 1, crudely using δ < 1 we have that

(8.23) #S(T )� T 2δ/Q18 +O(T 2δe−c
√

log T ).
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We have from (8.21), (8.20), and (3.5) that

e−c
√

log T = e−c
√
c1
√

logN = Q−
√
c140R/β .

So as long as

(8.24) c1 >

Å
3b

4R

ã2

,

the estimate (8.23) is significant, with an error of size � T 2δ/Q30.

By the pigeonhole principle, there is some element sT ∈ S(T ) so that

S ′(T ) := {s ∈ S(T ) : s ≡ sT (modB)}

satisfies

(8.25) #S ′(T ) ≥ 1

|SL2(B)|
#S(T )� T 2δ/Q18.

(Recall our implied constants may depend implicitly on A, and B depends

only on A.)

For this set, the counting statement (8.23) remains significant even with

a modular restriction: for any q < Q with B | q and any ω ∈ SL2(q) with

ω ≡ sT (modB), applying (8.13) gives

#{s ∈ S ′(T ) : s ≡ ω(mod q)} = #{s ∈ S(T ) : s ≡ ω(mod q)}

(8.26)

=
|SL2(B)|
|SL2(q)|

#{s ∈ S(T ) : s ≡ ω ≡ sT (modB)} (1 +O(Q−6)) +O(T 2δQ−30)

=
|SL2(B)|
|SL2(q)|

#S ′(T ) (1 +O(Q−6)) +O(T 2δQ−30).

From (8.25), the main term is � T 2δ/Q21, dominating the error.

We just need to play with S ′(T ) to get good distribution modulo B. Recall

R = | SL2(B)|. Then every element of the “coset”

γ ∈ S ′(T ) · sR−1
T

satisfies γ ≡ I(modB). Next write SL2(B) = {γ1, γ2, . . . , γR}, and take

x1, . . . , xR ∈ Γ so that

(8.27) xr ≡ γr(modB), r = 1, . . . , R.

(Recall we had assumed in Section 3.1 that Γ(mod q) is all of SL2(q) for all q,

so such xr exist.) Such xr can be found of size �A 1.

Note that any element

γ ∈ S ′(T ) · sR−1
T · xr
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has γ ≡ γr(modB). Unfortunately, this triple-product does not work since we

do not have control on the expanding vector of xr. To remedy this, we take a

single fixed element f0 ∈ Γ of size

(8.28) λ(f0) � B1/100,

say, with

(8.29) |v+(f0)− v| < Q−6.

Then from (2.7), v+(f0xr) = v(1 +O(Q−6)), and for any s ∈ S ′(T ),

v+(s · sR−1
T · f0xr) = v(1 +O(Q−6)).

Moreover, from (8.22) and (2.6), we have

λ(s · sR−1
T · f0xr) = λ(s)λ(sT )R−1λ(f0xr)

Ä
1 +O(Q−6)

ä
= TRλ(f0xr)

Ä
1 +O(Q−6)

ä
.

Now for each u ∈ U , u � B, and each r = 1, . . . , R, take T = Tu,r so that

TRλ(f0xr) = u;

that is, let

(8.30) Tu,r :=

Ç
u

λ(f0xr)

å1/R

� B99/(100R) = N99b/(100R)

which, by (3.4), determines c1 in (8.21). Note that (8.24) is easily satisfied.

Thus for each u and r, we have sets

Bu,r := S ′(Tu,r) · (sTu,r)R−1 · f0 · xr ⊂ Γ,

so that for all a ∈ Bu,r, the expanding vector is controlled,

|v+(a)− v| � Q−6,

and the eigenvalue is controlled,

λ(a) = u(1 +O(Q−6)).

Since we have saved an extra Q, we can use it to set the implied constant to 1,

getting (3.11) and (3.12).

Note that by (8.26), for all q < Q with B | q, and all ω ∈ SL2(q) with

ω ≡ f0xr(modB), we have, crudely, that

(8.31) #{a ∈ Bu,r : a ≡ ω(mod q)} =
| SL2(B)|
| SL2(q)|

#Bu,r
Ä
1 +O(Q−5)

ä
.

Recall also from (8.23) that the cardinality of Bu,r is

(8.32) � (Tu,r)
2δ/Q18 � N c,

using (8.30).
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Hence for fixed u, we may apply the randomness extraction argument in

Lemma 8.14 to Bu,r, with η = Q−5 and q0 = B. This gives sets B′u,r ⊂ Bu,r
of size � N c, for which (8.31) continues to hold and, moreover, we can force

them all to have exactly the same cardinality independently of r,

|B′u,r| = |B′u,r′ |.
Set

ℵ̃u :=
R⊔
r=1

B′u,r,

and note that for B | q < Q and ω ∈ SL2(q),

#{a ∈ ℵ̃u : a ≡ ω(mod q)} =
|SL2(B)|
|SL2(q)|

#B′u,r
Ä
1 +O(Q−5)

ä
,

where r is the index for which ω ≡ f0xr(modB). Since #B′u,r = |ℵ̃u|/R, and

R = | SL2(B)|, we have that for each u, ℵ̃u satisfies

(8.33) #{a ∈ ℵ̃u : a ≡ ω(mod q)} =
|ℵ̃u|
| SL2(q)|

Ä
1 +O(Q−5)

ä
.

We can now also drop the condition B | q in (8.33) by summing along certain

arithmetic progressions; since B�A 1, the implied constant still depends only

on A (cf. Remark 8.7).

Now we apply Lemma 8.14 again to ℵ̃u, with η = Q−5 and q0 = 1, giving

sets
ℵu ⊂ ℵ̃u

for which (8.33) still holds, that is (3.14) holds, and which all have the same

cardinality, giving (3.10).

This completes the proof of Proposition 3.9.

9. Proof of Theorem 1.22

Recall that RA(N) is the set of rationals b/d with partial quotients bounded

in the alphabet A with d < N , DA(N) is the set of continuants up to N , and

CA is the limit set of RA with Hausdorff dimension δ = δA. Recall the sum-set

structure (1.47), that if a ∈ A and b/d ∈ RA, then d and b + ad are in DA.

The same holds for another a′ ∈ A; that is, all three of d, b+ ad, and b+ a′d

are in DA.

We wish to show (1.24) that for any ε > 0,

#(DA ∩ [1, N ])�ε N
δ+(2δ−1)(1−δ)/(5−δ)−ε.

For ease of notation, we lose no generality by specializing from now on to the

case 1, 2 ∈ A; whence b/d ∈ RA(N) implies that

(9.1) d, b+ d, b+ 2d ∈ DA(3N).

And again, we can drop the subscript A from D, R, and C.
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Our new ensemble of focus is the collection Ω = ΩN of intervals given by

(9.2) Ω :=
⋃
d∈D

N/2≤d<3N

ï
d

N
,
d+ 1

N

ò
⊂ [1/2, 3],

so that

(9.3) |Ω| � #(D ∩ [1, 3N ])

N
.

Hensley’s conjecture implies, assuming δ > 1/2, that we should have

(9.4) |Ω| � 1.

A priori, we do not even know that |Ω| > 1, and the bound (1.16) follows from

(9.5) |Ω| � N−(1−δ),

so this is what we must improve upon.

Note from (9.1) that

(9.6) 1Ω(x)1Ω(y)1Ω(x+ y)1R

Å
y

x
− 1

ã
= 1

if x = d/N and y = (b+ d)/N with b/d ∈ R. Just as we thickened 1D to some

intervals 1Ω in (9.2), we wish to thicken 1R to some intervals.

By Frostman’s theorem [Fro35], there is a probability measure µ supported

on the Cantor set C, so that for any interval I ⊂ [0, 1], we have

(9.7) µ(I)�ε |I|δ−ε.

The most naive thickening of R we could take is at the scale of 1/N2; namely,

for each x ∈ C, there is (by Dirichlet’s approximation theorem and properties

of continued fractions) some b/d ∈ R(N) with∣∣∣∣x− b

d

∣∣∣∣ < 1

N2
.

So we can find a collection of � N2δ intervals of length � 1/N2 which cover

C, each of which has a point in R(N). Note also that the spacing between

consecutive points in R(N) is ≥ 1/N2. Instead it will be more fruitful to

collect points at square-root this scale, 1/N , as follows.

By (9.7), there is a collection {I`}`≤L of L � N δ disjoint intervals I` ⊂
[1/2, 1], each of length 1/N , so that

(9.8) µ(I`)�ε N
−δ−ε.

Denote their union by

(9.9) R̃ :=
L⊔
`=1

I`.



188 JEAN BOURGAIN and ALEX KONTOROVICH

Subdividing each I` into intervals I`,n of length 1/N2, it follows that there are

at least � N δ−ε of them intersecting C. For each such `, n, the intersection

I`,n ∩ R(N) is also nonempty, possibly after replacing I`,n with a doubling.

Hence the cardinality of

R̃(N) :=

ß
b

d
∈ R ∩ R̃ : (b, d) = 1, N/2 < b < d < N

™
is of the right order

(9.10) #R̃(N)�ε N
2δ−ε.

We thicken these intervals just a little further, setting

(9.11) R :=
L⋃
`=1

Å
I` +

ï
− 2

N
,

2

N

òã
.

Note that since L� N δ, we have

(9.12) |R| � N−(1−δ).

Note further that C, and hence R, is contained strictly inside [0, 1]; that is, for

some ν = νA > 0, we have

(9.13) R ⊂ [ν, 1− ν].

Consider now our main integral J , motivated by (9.6), defined by

(9.14) J :=

∫∫
R2

1Ω(x)1Ω(y)1Ω(x+ y)1R

Å
y

x
− 1

ã
dydx.

By (9.2), the domain of integration above is supported in the box [1/2, 3] ×
[1/2, 3].

For each b/d ∈ R̃(N), the intervals

d

N
≤ x ≤ d+ 1/2

N
,

b+ d

N
≤ y ≤ b+ d+ 1/2

N

belong to Ω, by (9.1), as does the interval

b+ 2d

N
≤ x+ y ≤ b+ 2d+ 1

N
.

Moreover, the interval

b

d
− 2

N
<
b− 1

d
≤ y

x
− 1 ≤ b+ 1

d
<
b

d
+

2

N

is in R by the thickening in (9.11). That is, these intervals contribute 1/N2 to

J for each b/d, and hence by (9.10), we have established the following lower

bound.

Proposition 9.15.

(9.16) J �ε N
−2(1−δ)−ε.
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The trivial bound J � |Ω|2 from (9.14) recovers (9.5), which is what we

must improve. The rest of the appendix is devoted to establishing the following

Proposition 9.17.

(9.18) J �ε N
− 1−δ

2
+ε|Ω|2−

3(1−δ)
2(2−δ) .

Then Theorem 1.23 follows immediately from (9.16), (9.18), and (9.3).

9.1. Proof of Proposition 9.17. Let M > 0 be a parameter to be chosen

later (it will be a little less than N−(1−δ)), and decompose

(9.19) J = J1 + J2,

where

(9.20) J1 :=

∫∫
(1Ω∗1−Ω)(−x)<M

· · · dxdy,

and

(9.21) J2 :=

∫∫
(1Ω∗1−Ω)(−x)≥M

· · · dxdy.

Then writing 1R ≤ 1, we have

J1≤
∫∫

(1Ω∗1−Ω)(−x)<M

1Ω(x)1Ω(y)1−Ω(−x− y)dxdy(9.22)

≤
∫

(1Ω∗1−Ω)(−x)<M

1Ω(x)

Ç
1Ω ∗ 1−Ω(−x)

å
dx

<M |Ω|.

It is clear already that to get a gain on |Ω|, we must take M a power less than

N−(1−δ).

We are left to analyze J2. Note that in the domain of J2, we have

1Ω(x+ y) ≤ 1 ≤ 1

M
(1Ω ∗ 1−Ω)(−x).

Hence we can write

J2 ≤
1

M

∫∫
R2
η(x) (1Ω ∗ 1−Ω)(−x) 1Ω(y) 1R

Å
y

x
− 1

ã
dydx,

where we have bounded 1Ω(x) by a smooth bump function η(x) with support

in [1/4, 4], say, and η ≥ 1 on [1/2, 3] to recall (9.2) that x ∈ [1/2, 3].

For a smooth, nonnegative, even function Υ with compact support and∫
Υ = 1, let ΥN (y) := 10NΥ(10Ny), and dominate 1Ω(y), up to constant, by

the smooth function

SΩ := 1Ω ∗ΥN .
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Figure 1. The Fourier multiplier λ0.

So we have

(9.23) J2 �
1

M
· J ′2,

where

(9.24) J ′2 :=

∫∫
R2
η(x)(1Ω ∗ 1−Ω)(−x) SΩ(y) 1R

Å
y

x
− 1

ã
dydx.

Note that, by the smoothness of Υ, the Fourier spectrum of SΩ is con-

tained, up to negligible error, in [−N1+ε, N1+ε]. So we can decompose SΩ(y)

by the technique of “slicing.” That is, introduce a certain dyadic partition of

unity via the Fourier multipliers λk(ξ), defined as follows. Let λ0(ξ) be even,

≡ 1 on [1, 2], and decaying piecewise-linearly to 0 at ξ = 1/2 and ξ = 4; see

Figure 1. For integers k ranging in

(9.25) 0 < 22k < N1+ε,

define

λk(ξ) := λ0(ξ · 2−2k).

Let Λk be the Fourier inverse of λk, so

Λk(y) = 22kΛ0(22ky) = (D22kΛ0)(y),

where

Λ0(y) :=
sin2

Ä
3
2πy
ä

π2y2

Ç
2 cos (2πy)− cos (πy) + cos (5πy)

å
,

and Du is the dilation representation:

(Duf)(y) := uf(uy).

We also introduce Tu, the translation representation,

Tuf(y) := f(y + u).

Of course ÷Λk ∗ f = λk · f̂ , so we have

SΩ =
∑

22k<N1+ε

(Λk ∗ SΩ) + Err,

where Err is bounded by an arbitrarily large power of 1/N , and will henceforth

be ignored.
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Then we can bound (9.24) as

(9.26)
∣∣J ′2∣∣�∑

k

∣∣∣J (k)
2

∣∣∣ ,
where

(9.27) J (k)
2 :=

∫∫
η(x) (1Ω ∗ 1−Ω)(−x) (Λk ∗ SΩ)(y) 1R

Å
y

x
− 1

ã
dydx.

Since the Fourier spectrum of SΩ is now controlled, so is that of 1R, as

follows. Write 1R
( y
x − 1

)
= 1xR (y − x) = (T−x1xR)(y). Then the y integral

can be written as∫
R

(Λk ∗ SΩ)(y) (T−x1xR)(y)dy(9.28)

=

∫
R
λk(ξ)ŜΩ(ξ) ⁄�(T−x1xR)(ξ)dξ

=

∫
R
λk(ξ)ŜΩ(ξ) λ′k(xξ)

⁄�(T−x1xR)(ξ)dξ,

where we inserted another bump function λ′k which is smooth in addition to

other properties of λk. Namely, let λ′0 be even, ≡ 1 on ±[1/16, 16], and decay

smoothly to 0 outside of ±[1/32, 32]; then set λ′k(ξ) := λ′0(ξ2−2k). The point

is that λ′k(xξ) ≡ 1 on the support of λk, since x ∈ [1/4, 4] by the support of η,

so the above equality holds.

Then writing Λ′k for the inverse transform of λ′k, we have

(9.29) J (k)
2 =

∫∫
η(x) (1Ω∗1−Ω)(−x) (Λk ∗SΩ)(y)

ñ
Λ′k ∗1R

ôÅ
y

x
− 1

ã
dy dx.

Now we handle two ranges of k separately. We introduce a cutoff param-

eter K to be chosen later, see (9.41).

9.1.1. The range k ≤ K. We wish to prove

Lemma 9.30. For k ≤ K,

(9.31)
∣∣∣J (k)

2

∣∣∣�ε |Ω|3 22k(1−δ) N−(1−δ)+ε.

This is a gain of a power of |Ω|. (Recall we are assuming |Ω| < 1.)

Proof. Estimate (9.29) by

(9.32)
∣∣∣J (k)

2

∣∣∣� ‖1Ω ∗ 1−Ω‖1 · ‖Λk ∗ SΩ‖1 ·
∥∥∥∥∥Λ′k ∗ 1R

∥∥∥∥∥
∞
.
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The first factor contributes |Ω|2, and the second is� |Ω|, since Λ0 is integrable.

For the last term, write∥∥∥∥∥Λ′k ∗ 1R
∥∥∥∥∥
∞
� sup

z

∫
R

22k|Λ′0(u22k)|1R(z − u)du(9.33)

�
∑
m≥0

22(k−m) sup
|U|=2m+1−2k

|R ∩ U|,

where the supremum is taken over intervals U . Here we used that Λ′0 has rapid

decay, so certainly

Λ′0(y)� 1|y|<1 +
1

22
1|y|<2 +

1

42
1|y|<4 +

1

82
1|y|<8 + · · · .

Note by (9.25) that

|U| ≥ 2−2k+1 ≥ 2

N1+ε
.

We have yet to exploit the structure of R and do so now. This requires

the following

Lemma 9.34. For any interval U of length at least 1/N1+ε, we have

(9.35) |R ∩ U| � N−(1−δ)+ε|U|δ+ε.

Postponing the proof of this lemma, we see that applying (9.35) in (9.33)

gives

(9.36)

∥∥∥∥∥Λ′k ∗ 1R
∥∥∥∥∥
∞
�ε 22k(1−δ)N−(1−δ)+ε.

Putting (9.36) into (9.32) gives (9.31), as claimed. �

It remains to establish (9.35).

Proof of Lemma 9.34. From the structure of R in (9.11), we have that

|R ∩ U| ≤
∑
`

∣∣∣∣∣U ∩
Ç
I` + [−2/N, 2/N ]

å∣∣∣∣∣
� 1

N
#

®
` ≤ L : U ∩

Ç
I` + [−2/N, 2/N ]

å
6= ∅
´

�ε
1

N

µ(U + [0, 1/N ])

N−δ−ε

�εN
−(1−δ)+ε|U|δ+ε,

where we used (9.8) and (9.7) in the penultimate and final lines, respectively.

�
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9.1.2. The range k > K. In this range, we will establish

Lemma 9.37. For k > K and any ε > 0,

(9.38)
∣∣∣J (k)

2

∣∣∣�ε |Ω|3/2 2−kδ N−(1−δ)+ε.

Proof. Changing variables y 7→ yx in (9.29), we have∣∣∣J (k)
2

∣∣∣� ∣∣∣∣∣
∫∫

f(x)(Λk ∗ SΩ)(xy) η(y)

Ç
Λ′k ∗ 1R

å
(y − 1) dy dx

∣∣∣∣∣ ,
where we set

(9.39) f(x) := x η(x)(1Ω ∗ 1−Ω)(−x).

By the rapid decay of Λ′k and (9.13), we may restrict the integral to y � 1

with a negligible error. Now reverse orders, apply Parseval in x, reverse orders

again, use the definition of the Fourier multipliers λk, apply Cauchy-Schwarz

in y, change variables y 7→ ξ/y, and estimate∣∣∣J (k)
2

∣∣∣ � ∣∣∣∣∣
∫
y�1

Ç∫
|ξ|/y�22k

f̂(ξ) ŜΩ(ξ/y)
1

y
dξ

å
(Λ′k ∗ 1R) (y − 1) dy

∣∣∣∣∣
�
∫
|ξ|�22k

|̂f(ξ)|
Ç

1

|ξ|

∫
|ŜΩ(y)|2dy

å1/2

‖Λ′k ∗ 1R‖2 dξ

�ε

Ç
2−k

∫
ξ∈R
|̂f(ξ)|dξ

å
|Ω|1/2 2k(1−δ)N−(1−δ)+ε,

where we estimated the last piece by∥∥Λ′k ∗ 1R∥∥2 ≤
∥∥Λ′k ∗ 1R∥∥1/2

∞
∥∥Λ′k ∗ 1R∥∥1/2

1

�ε 2k(1−δ)N−(1−δ)/2+ε|R|1/2

�ε 2k(1−δ)N−(1−δ)+ε,

using the L∞ bound in (9.36) and (9.12). We easily estimate from (9.39) that

‖̂f‖1 � |Ω|, giving (9.38), as claimed. �

9.1.3. Completion of Proof. It is now a simple matter to establish Propo-

sition 9.17. Putting (9.31), (9.38), and (9.26) into (9.23) gives

J2�ε
1

M
N−(1−δ)+ε

Ä
|Ω|3 22K(1−δ) + |Ω|3/2 2−Kδ

ä
(9.40)

�ε
1

M
N−(1−δ)+ε |Ω|3/(2−δ) ,

on setting

(9.41) K :=
−3 log2 |Ω|

2(2− δ)
.
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Combining (9.40) with (9.22) and choosing

M = N−(1−δ)/2+ε|Ω|(1+δ)/(4−2δ)

gives (9.18), as claimed. This competes the proof of Theorem 1.23.
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