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Abstract

We prove the (generalized) coherence conjecture proposed by Pappas
and Rapoport. As a corollary, one of their theorems, which describes the ge-
ometry of the special fibers of the local models for ramified unitary groups,
holds unconditionally. Our proof is based on the study of the geometry
(in particular, certain line bundles and f-adic sheaves) of the global Schu-
bert varieties, which are the equal characteristic counterparts of the local
models.
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1. Introduction

The goal of this paper is to prove the coherence conjecture of Pappas and
Rapoport as proposed in [PR0O8]. The precise formulation of the conjecture
is a little bit technical and will be given in Section 2.3. In this introduction,
we would like to describe a vague form of this conjecture, to convey the ideas
behind it and to outline the proofs.

The coherence conjecture was proposed by Pappas and Rapoport in or-
der to understand the special fibers of local models. Local models were sys-
tematically introduced by Rapoport and Zink in [RZ96] (special cases were
constructed earlier by Deligne-Pappas [DP94] and independently by de Jong
[dJ93]) as a tool to analyze the étale local structure of certain integral models of
(PEL-type) Shimura varieties with parahoric level structures over p-adic fields.
Unlike the Shimura varieties themselves, which are usually moduli spaces of
abelian varieties, local models are defined in terms of linear algebra and there-
fore are much easier to study. For example, using local models, Gortz (see
[Gor01], [Gor03]) proved the flatness of certain PEL-type Shimura varieties
associated to unramified unitary groups and symplectic groups. (Some special
cases were obtained in earlier works [CN92], [dJ93], [DP94].) On the other
hand, a discovery of G. Pappas (cf. [Pap00]) showed that the originally defined
integral models in [RZ96] are usually not flat when the groups are ramified.
Therefore, nowadays the (local) models defined in [RZ96] are usually called
the naive models. In a series of papers ([PR03], [PRO05], [PR09]), Pappas and
Rapoport investigated the corrected definition of flat local models. The easiest
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definition of these local models is by taking the flat closures of the generic fibers
in the naive local models. Usually, an integral model defined in this way is not
useful since the moduli interpretation is lost and therefore it is very difficult to
study the special fiber, etc. (In fact, a considerable part [PR03], [PR05], [PR09]
is devoted in an attempt to cutting out the correct closed subschemes inside
the naive models by strengthening the original moduli problem of [RZ96].) In-
deed, most investigations of local models so far used these strengthened moduli
problems in a way or another. (For a survey of most progress in this area, we
refer to the recent paper [PRS13].)

However, as observed by Pappas and Rapoport in [PR08], the brute force
definition of the local models by taking the flat closure is not totally out of
control as one might think. Namely, it is known after Gortz’ work that the
special fibers of the naive models always embed in the affine flag varieties and
that their reduced subschemes are a union of Schubert varieties. Therefore,
two questions arise: which Schubert varieties appear in the special fibers (of
the flat models) and whether the special fibers are reduced. These questions
are reduced to the coherence conjecture (see [PRO8], [PR09], at least in the
case the group splits over a tamely ramified extension), which characterizes
the dimension of the spaces of global sections of certain ample line bundles
on certain union of Schubert varieties. Therefore, we will have a fairly good
understanding of the local models even if we do not know the moduli problem
they represent, provided we can prove the coherence conjecture.

Let us be a little bit more precise. To this goal, we first need to recall the
theory of affine flag varieties. (We refer to Section 2.2 for unexplained notation
and more details.) Let k be a field and G be a flat affine group scheme of finite
type over k[[t]]. Let G be fiber of G over the generic point F' = k((t) =
E[[t]][t~!]. Then one can define the affine flag variety F¢g = LG /LTG, which
is an ind-scheme, of ind-finite type (cf. [BL94], [Fal03], [PR0O8] and Section 2.2).
When G is an almost simple, simply-connected algebraic group over k((¢)) and
G is a parahoric group scheme of G, F/g is ind-projective and coincides with
the affine flag varieties arising from the theory of affine Kac-Moody groups as
developed in [Kum02], [Mat88] (at least when G splits over a tamely ramified
extension of k((t))). The jet group LG acts on Ffg by left translations and the
orbits are finite dimensional; their closures are called (affine) Schubert varieties.
When G is an Iwahori group scheme of G, Schubert varieties are parametrized
by elements in the affine Weyl group W,g of G. (More generally, if G is
not simply-connected, they are parametrized by elements in the Iwahori-Weyl
group W) For w € W, we denote the corresponding Schubert variety by F/,,.

Let us come back to local models. Let (G, K, {i}) be a triple, where G is
a reductive group over a p-adic field F', with finite residue field kr, K is a para-
horic subgroup of G and {u} is a geometric conjugacy class of one-parameter
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subgroups of G. Let E/F be the reflex field (i.e., the field of definition for {u}),
with ring of integers Op and residue field kg. Then for most such triples (at
least when g is minuscule; cf. [PRS13] for a complete list), one can define the

so-called naive model nKa?’/‘j}), which is an Og-scheme, whose generic fiber is

naive

the flag variety X (u) of parabolic subgroups of Gg of type p. Inside KL
one defines Mlﬁf{u} as the flat closure of the generic fiber. (For an example
of the definitions of such schemes, see Section 8.) In all known cases, one can
find a reductive group G’ defined over k((t)) and a parahoric group scheme G
over k[[t]] such that the special fiber

——naive naive

M fuy = ME iy @ ke

embeds into the affine flag variety F¢g = LG'/LTG as a closed subscheme,
which is, in addition, invariant under the action of L*G. In particular, the
reduced subscheme of ﬂ?ﬁ} is a union of Schubert varieties inside F/g.

Which Schubert variety will appear in M“Kil{vj} usually can be read from the
moduli definition of M?g{{vﬁ}. However, the special fiber of MII%?{ ) is more
mysterious, and a lot of work has been done in order to understand it. (We refer
to [PRS13] (in particular, its Section 4) and references therein for a detailed
survey of the current progress.)

Here we review two strategies to study /\/llféc{ ub For simplicity, we assume
that the derived group of G is simply-connected and K is an Iwahori subgroup
of G at this moment. In this case, G will be an Iwahori group scheme of G'.
One can attach to {z} a subset Adm(y) in the Iwahori-Weyl group W, usually
called the p-admissible set; cf. [Rap05] and Section 2.1 for the definitions.
In all known cases, it is not hard to see that the Schubert varieties F¢,, for

w € Adm(p) indeed appear in ﬂ}?‘f{“}; ie.,

——
Ap) = |J  Flw C Mg,
weAdm(p)
Now, the first strategy to determine the (underlying reduced closed subscheme
of) the special fiber ﬂ}‘;f{#} goes as follows. Write down a moduli functor

naive

’K, () that is a closed subscheme of M Kot such that
kg @B =M @B, My 0 (k) = A(u)(k),

where k is an algebraic closure of kg. Clearly, this will imply that the reduced
subscheme

——loc

(1.0.1) (M fu)red = A(p).

In fact, much of the previous works about MII%C{ ) followed this strategy. How-
ever, let us mention that (so far) the definition of M/, () itself is not group
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theoretical (i.e., it depends on choosing some representations of the group G).
In particular, when G is ramified, its definition can be complicated. In addi-
. . . / _ IOC .
tion, except a few cases, it is not known whethc;rlM K} = M Rofuy 0 general.
There is another strategy to determine M ;?{u}’ as proposed in [PROS].

Namely, let us choose an ample line bundle £ over I;?{{Vﬁ}. Then since by

definition MII%C{ ) is flat over O with generic fiber X (p), for n > 0,

dimy, T(A(n), £7) < dimy, T(MES,, £7) = dimpg DX (1), £7).

The general expectation (which has been verified in all known cases) that
——loc

M 1y = Alp)

led Pappas and Rapoport to conjecture the following equivalent statement:
dimy, T'(A(p), L") = dimpg I'(X (@), £").

Apparently, this conjecture would not be very useful unless one could say
something about the line bundle £. In fact, the statement of the conjecture
in [PROS] is different and more precise. Namely, in loc. cit., they constructed
some line bundle £; on the affine flag variety F¥¢g and some line bundle £, on
X (u), both of which are explicit and are given purely in terms of group theory.
(See Section 2.3 for the precise construction.) Then they conjecture

THE COHERENCE CONJECTURE. Forn > 0,
dimy, T(A(p), £}) = dimp D(X (1), £3).

In addition, in loc. cit., for certain groups, they constructed natural ample
line bundles £ on the corresponding local models, whose restrictions give £
and L.

What makes the coherence conjecture useful? First of all, the conjecture
is group theoretic; i.e., the statement is uniform for all groups. The nongroup
theoretic part then is absorbed into the construction of natural line bundles on
local models and the identification of their restrictions with the group theoreti-
cally constructed line bundles. This is a much simpler problem. An example is
illustrated in Section 8. More importantly, the right-hand side in the coherence
conjecture is defined over O and therefore, it is equivalent to prove that

dimy T(A(u), £7) = dimg (X (), £3).

Observe that in the above formulation, everything is over the field k rather
than over a mixed characteristic ring.

How can we prove this conjecture? Suppose that we can find a scheme
Grg,, (the reason we choose this notation will be clear soon), which is flat over
k[t], together with a line bundle £ such that its fiber over 0 € Al is (A(u), £1)
and its fiber over y # 0 is (X (u),L2). Then the coherence conjecture will
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follow. In fact, such Grg, does exist and can be constructed purely group
theoretically. They are the (generalized) equal characteristic counterparts of
local models, which we will call the global Schubert varieties. Let us briefly
indicate the construction of Grg , here. (The construction of the line bundle
L, which we ignore here, is also purely group theoretical, see Section 4.) For
simplicity, let us assume that G’ is split over k. (The nonsplit case will also be
considered in the paper.) Let B be a Borel subgroup of G’. Then in [Gai01],
Gaitsgory (following ideas of Kottwitz and Beilinson) constructed a family of
ind-schemes Grg over A!, which is a deformation from the affine Grassmannian
Grgr of G’ to the affine flag variety Flq of G'. By its construction,
Grglg,, = (Grgr x G,/B) X G, 1 Grglo = Flgr,

where Grglo denotes the scheme theoretic fiber of Grg over 0 € Al. When
w4 is minuscule, the Schubert variety @u corresponds to p in Grgr is in fact
isomorphic to X (x). In addition, we can “spread it out” over G,, as (Gry, x *) X
Gm to get a closed subscheme of Grglg,,, where * is the base point in G'/B.
Now define Grg,, as the closure of (Gr, X %) x G,, inside Grg. By definition,
its fiber over y # 0 is isomorphic to X (p). On the other hand, it is not hard to
see that A(u) C Grg ulo (cf. Lemma 3.7). Therefore, the coherence conjecture
will follow if we can show that Grg,lo = A(x) (and if we can construct the
corresponding line bundle).

At the first sight, it seems the idea is circular. However, it is not the case.
The reason, as we mentioned before, is that @gﬁ now is a scheme over k and
we have many more tools to attack the problem. Observe that to prove that
Grg ulo = A(p), we need to show that

(1) (Grgulo)rea = A(p) (Theorem 3.8);

(2) Grg,ulo is reduced (Theorem 3.9).

Part (1) can be achieved by the calculation of the nearby cycle Z,, =
Vs M((@(g) of the family Grg,, (see Lemma 7.1). Usually, such a calculation

is a hard problem. The miracle here is that if Z, is regarded as an object
in the category of Iwahori equivariant perverse sheaves on F/gr, it has very
nice properties. Namely, by the main result of [Gai0l] (in the case when G’
is split), Z, is a central sheaf; i.e., for any other Iwahori equivariant perverse
sheaf 7 on Flq, the convolution product Z, x F (see (7.2.3)—(7.2.4) for the
definition) is perverse and

Zyx F=FxZ,.
Then by a result of Arhkipov-Bezrukavnikov [AB09, Th. 4], the above proper-
ties put a strong restriction of the support of Z,,, which will imply Part (1). We

"n the main body of this paper, we will work with a different family so that this extra
G’ /B factor does not appear.
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shall mention that although we assume here that G’ is split, the same strategy
can be applied to the nonsplit groups. This is done in Section 7, where we
generalize the results of [Gai0Ol] and [AB09] to ramified groups as well. Our
arguments are simpler than the originally arguments in [Gai01], [AB09] and
will provide the following technical advantage. As we mentioned above, @g#
should be regarded as the equal characteristic counterparts of local models.
Therefore, it is natural (and indeed important) to determine the nearby cycles

LG Mise, }(Qg) for the local models. For example, if one could prove that these
An

sheaves are also central (the Kottwitz conjecture?), then one could conclude
(1.0.1) directly. It turns out the arguments in Section 7 have a direct gener-
alization to the mixed characteristic situation, and in joint work with Pappas
[PZ13], we use this to show the Kottwitz conjecture. (Some previous cases are
proved by Haines and Ngo6 [HN02].)

Now we turn to Part (2), which is more difficult. The idea is that we can
assume char k > 0 and use the powerful technique of Frobenius splitting (cf.
[MR85], [BK05]). To prove that Grg ,|o is reduced, it is enough to prove that
it is Frobenius split. To achieve this goal, we embed Grg, u into a larger scheme

—~—BD . . . o
Grg , \ over A, which is a closed subscheme of a version of the Beilinson-

Drinfeld Grassmannian. The scheme @SB’ \ is normal, and its fiber over O is
reduced. Then to prove that

— — ——BD
Grg,ulo = Grg,, N Grg 5o

is Frobenius split, it is enough to construct a Frobenius splitting of @237 s
compatible with @g# and @237 \o. Since @227 » 1s normal, it is enough to
prove this for some nice open subscheme U C @227 » such that GS?M -U
has codimension two. In particular, the open subscheme U will not intersect
with Grg ,lo, which is our primary interest. Section 6 is devoted to realizing
this idea.

Now let us describe the organization of the paper and some other results
proved in it.

In Section 2, we review the coherence conjecture of Pappas and Rapoport.
In Section 2.1, we review the basic theory of reductive groups over local fields
and introduce various notation used in the rest of the paper. In Section 2.2, we
rapidly recall the main results of [PR08| (and [Fal03]) concerning loop groups
and the geometry of their flag varieties. In Section 2.3, we state the main
theorems (Theorems 1 and 2) of our paper, which give a modified version of

2In fact, the Kottwitz conjecture is weaker than this statement, and its significance lies
in its use in the Langlands-Kottwitz method for calculating the Zeta functions of Shimura
varieties.
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original coherence conjecture of Pappas and Rapoport. (See Remark 2.1 for
the reason of the modification.)

In Section 3, we introduce the main geometric object we are going to
study in the paper, namely, the global Schubert varieties. They are varieties
projective over the affine line A!, which are the counterparts of local models
in the equal characteristic situation. In Section 3.1, we define the global affine
Grassmannian over a curve for general (nonconstant) group schemes. After
the work of [PRO8], [PR10], [Heil0], this construction is now standard. In
Section 3.2, we construct a special Bruhat-Tits group scheme over C' = Al
i.e., a group scheme that is only ramified at the origin. Let us remark that
similar constructions are also considered in [HNY13], [Ric13]. In Section 3.3,
we apply the construction of the global affine Grassmannian to the group
scheme we consider in the paper. We introduce the global Schubert variety
@g,u, which is associated to a geometric conjugacy class of one-parameter
subgroup {u} of G, over a ramified cover C' of C. We then state another
main theorem (Theorem 3), which asserts that the special fiber of @g# is
AY (1), and first show that the variety A (11) is contained in this special fiber
(Lemma 3.7). In Section 4, we explain that our assertion about the special
fiber of @g’u is equivalent to the coherence conjecture. The key ingredient is
a certain line bundle on the global affine Grassmannian, namely, the pullback
of the determinant line bundle along the closed embedding

Grg — GrLie(g)'

We calculate its central charges at each fiber (which turn out to be twice of the
dual Coxeter number) and find the remarkable fact that the central charge of
line bundles on the global affine Grassmannians are constant along the curve
(Proposition 4.1).

In Section 5, we make some preparations towards the proof of our main
theorem. We study two basic geometrical structures of Grg ,: (i) in Section 5.2,
we will construct certain affine charts of Grg,,, which turn out to be isomorphic
to affine spaces over C; and (ii) in Section 5.3, we will construct a G,-action
on @g#, so that the map @g,u — C is G,,-equivariant, where G, acts on
C = A' by natural dilatation. To establish (i), we will need to first construct
the global root subgroups of LG as in Section 5.1.

The next two sections are then devoted to the proof of the theorem con-
cerning the special fiber of Grg ,,, as has been already outlined above. The first
part of the proof, presented in Section 6, concerns the scheme theoretic struc-
ture of the special fiber. Namely, we prove that it is reduced. This is achieved
by the technique of Frobenius splitting. As a warm up, we prove in Section 6.1
that Theorem 1 is a special case of Theorem 2, which should be well known
to experts. Then we introduce the Beilinson-Drinfeld Grassmannian and the
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convolution Grassmannian and reduce Theorem 3.9 to Theorem 6.8. In Sec-
tion 6.3, we prove a special case of Theorem 6.8 by studying the affine flag
variety associated to a special parahoric group scheme. Recall that a result
of Beilinson-Drinfeld (cf. [BD, 4.6]) asserts that the Schubert varieties in the
affine Grassmannian are Gorenstein. In Section 6.3 we examine to what extend
this result holds for ramified groups (i.e., reductive groups split over a ramified
extension). It turns out this result extends to all affine flag varieties associated
to special parahorics except in the case the special parahoric is a parahoric
of the ramified odd unitary group SUs,11, whose special fiber has reductive
quotient SOgy,+1 (Theorem 6.11). In this exceptional case, no Schubert variety
of positive dimension in the corresponding affine flag variety is Gorenstein (Re-
mark 6.1). In Section 7, we give the second part of the proof, which asserts that
topologically, the special fiber of Grg,, coincides with AY (1). This is achieved
by the description of the support of the nearby cycle (for the intersection co-
homology sheaf) of this family. In the case when the group is split, this follows
the earlier works of [Gai0Ol] and [AB09]. In Sections 7.2 and Section 7.3, we
generalize their results to ramified groups, with certain simplifications of the
original arguments.

The paper has two appendices. The first one, Section 8, calculates the
line bundles on the local models for the ramified unitary groups. The study
of these local models was the main motivation for Pappas and Rapoport to
make the coherence conjecture. Since their original conjecture is not as stated
in our main theorem, we explain in this appendix why our main theorem is
correct for the applications to local models. The second appendix (Section 9)
collects and strengthens some results, which already exist in literature, in a
form needed in the main body of the paper.

Notation. Let k be a field, and fix k to be an algebraic closure of k. We
will denote by k* C k the separable closure of k in k.

If X be a Y-scheme and V — Y is a morphism, the base change X xy V
is denoted by Xy or X|y. If V = SpecR, it is sometimes also denoted by Xp.
If V' = 2 = Speck is a point, then it is sometimes also denoted by (X),.

For a vector bundle V on a scheme V', we denote by det()) the top exterior
power of V, which is a line bundle.

If A is an affine algebraic group (not necessarily a torus) over a field
k, we denote by X®(A) (resp. Xq(A)) its character group (resp. cocharac-
ter group) over k. The Galois group I' = Gal(k®/k) acts on X®(A) (resp.
Xe(A)) and the invariants (resp. coinvariants) are denoted by X*(A)l (resp.
X*(A)r, Xa(A)F, Xo(A)r).

If G is a flat group scheme over V, the trivial G-torsor (i.e., G itself regarded
as a G-torsor by right multiplication) is denoted by £°. For a G-torsor &, we
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use ad &€ to denote the associated adjoint bundle. If P is a G torsor and X is a
scheme over V with an action of G, we denote the twisted product by P x9 X,
which is the quotient of P xy X by the diagonal action of G.

If G is a reductive group over a field, we denote by G its derived group,
G the simply-connected cover of Gger and G,q its the adjoint group.

Acknowledgements. The author is grateful to D. Gaitsgory, G. Pappas,
M. Rapoport, J.-K. Yu for useful discussions, and G. Pappas and M. Rapoport
for reading an early draft of this paper. He is also extremely grateful to the
referee for pointing out an enormous number of mistakes and typos in an
early draft. The work of the author is supported by the NSF grant DMS-
1001280/1313894.

2. Review of the local picture, formulation of the conjecture

2.1. Group theoretical data. Let k be an algebraically closed field. Let
O = E[[t]] and F = k((t)). Let I' = Gal(F*/F) be the inertial (Galois) group,
where F is the separable closure of F'. Let us emphasize that we choose a
uniformizer t. Let G be a connected reductive group over F'. In this paper,
unless otherwise stated, G is assumed to split over a tamely ramified extension
F /F. Tt is called a ramified group if it is nonsplit over F.

Let S be a maximal F-split torus of G. Let T' = Z;(S) be the cen-
tralizer of S in GG, which is a maximal torus of G since G is quasi-split over
F. (As F is a field of cohomological dimension one, this follows from [Ste65,
Th. 1.9].) Let us choose a rational Borel subgroup B D T. Let H be a split
Chevalley group over Z such that H ® F° = G ® F'*. We need to choose this
isomorphism carefully. Let us fix a pinning (H, By, Ty, X) of H over Z. Let
us recall that this means that Bp is a Borel subgroup of H, Ty is a split
maximal torus contained in By, and X = Y;ca Xz € Lie B, where A is the
corresponding set of simple roots, U, is the root subgroup corresponding to
a and Xj is a generator in the rank one free Z-module Lie [7@. Let us choose
an isomorphism (G, B,T) ®p F = (H,Bp,Ty) ®z F, where F/F is a cyclic
extension such that G ® F splits. This induces an isomorphism of the root
data (X*(Th), A, Xe(Ty),AV) = (X*(T),A,Xe(T),AV). Let Z be the group
of pinned automorphisms of (H, By, Ty, X). The natural map from = to the
group of the automorphisms of the root datum (X*(Tg), A, Xe(Tx),AY) is an
isomorphism ([Con, Prop. 7.1.6]).

Now the action of I' = Gal(F/F) on G ®p I induces a homomorphism
1 : " = =. Then we can always choose an isomorphism

(2.1.1) (G,B,T)®p F = (H,By,Tr) ©z F

such that the action of v € T" on the left-hand side corresponds to ¥(7y) ® 7.
In the rest of the paper, we fix such an isomorphism. This determines a point
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v in A(G, S), the apartment associated to (G,S) ([BT72]).® This is a special
point of A(G,S), which in turn gives a parahoric group scheme G,, over O,
namely

(2.1.2) Guy = ((Resp . j0(H ® 0:)h)°.

Let us explain the notation. Here Res stands for the Weil restriction, so that
Reso . /0(H ® OF) is a smooth group scheme over O (cf. [Edi92, 2.2]), with an
action of I'. The notation (—)!' stands for taking the I'-fixed point subscheme.
Under our tameness assumption, QNUO = (ReS@F/O(H ® Oﬁ))r is smooth by
[Edi92, 3.4]. Finally, (—)° stands for taking the neutral connected component.
Therefore, G,, and G,, have the same generic fiber and the special fiber of G,
is the neutral connected component of the special fiber of G,,.

Recall that A(G,S) is an affine space under Xo(S)r. For every facet
o C A(G,S), let G, be the parahoric group scheme over Q. (In particular, the
special fiber of G, is connected.) Let us choose a special vertex v € A(G,S)
(e.g., vo), and identify A(G,S) with X4(S)r via this choice. Let a be the
unique alcove in A(G, S), whose closure contains the point v and is contained
in the finite Weyl chamber determined by our chosen Borel. This determines
a set of simple affine roots «;,7 € S, where S is the set of vertices of the affine
Dynkin diagram associated to G.

Let W be the Iwahori-Weyl group of G (cf. [HR]) that acts on A(G, S).
This is defined to be Ng(S)(F)/ ker k, where Ng(S) is the normalizer of S in
G, and

(2.1.3) k: T(F) — Xo(T)r

is the Kottwitz homomorphism (cf. [Kot97, §7]). One has the following exact
sequence:

(2.1.4) 1= X (D) =W — Wy — 1,

where Wy is the relative Weyl group of G over F. In what follows, we use t)
to denote the translation element in W given by A € Xo(T')r from the above
map (2.1.4).% But occasionally, we also use ) itself to denote this translation
element if no confusion is likely to arise. The pinned isomorphism (2.1.1)
determines a set of positive roots ®* = ®(G, S)* for G. There is a natural
map Xe(T)r — Xe(S)r. We define

(2.1.5) Xe(T)E ={A| (\,a) >0forac &}

3More precisely, vg is a point in the apartment associated to the adjoint group (Gad, Sad).
But since in the paper we only use the combinatorial structures of A(G,S), we will not
distinguish it from the one associated to the adjoint group.

4Note that under the sign convention of the Kottwitz homomorphism in [Kot97], ¢y acts
on A(G,S) by v—v— A
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Our choice of the special vertex v of A(G,S) gives a splitting of the exact
sequence, and therefore we can write w = tywy for A € Xo(T)r and wy € Wp.

Let Wag be the affine Weyl group of G, i.e., the Iwahori-Weyl group of
G, that is a Coxeter group. One has

1 = Xe(Tae)r = Wag — Wy — 1,

where Ty, is the inverse image of T in Gs.. One can write W = Wag X £,
where €2 is the subgroup of W that fixes the chosen alcove a. This gives W a
quasi-Coxeter group structure. Hence it makes sense to talk about the length
of an element w € W and there is a Bruhat order on W. Namely, if we
write wy = wiT, we = whry with w) € Wg, 7, € Q, then f(w;) = £(w)]) and
wy < wy if and only if 71 = 7 and w] < wj. A lot of the combinatorics of
the Iwahori-Weyl group arises from the study of the restriction of the length
function and the Bruhat order to Xo(T)r € W. Some of them will be reviewed
in Section 9.1.

Now let us recall the definition of the admissible set in the Iwahori-Weyl
group. Let W be the absolute Weyl group of G, i.e., the Weyl group for
(H,Ty). Suppose that p : (Gp)p = G® F gives a geometric conjugacy
class of one-parameter subgroups. It determines a W-orbit in X¢(7"). One can
associate {u} a Wy-orbit A in X (7T')r as follows. Choose a Borel subgroup of G
containing 7" and defined over F. This gives a unique element in this W-orbit,
still denoted by p, which is dominant with respect to this Borel subgroup. Let
@ be its image in Xo(7")r, and let A = Wyji. It turns out A does not depend on
the choice of the rational Borel subgroup of GG since any two such F-rational
Borels that contain T" will be conjugate to each other by an element in Wj.
For p € Xo(T'), define the admissible set

(2.1.6) Adm(p) = {w € W | w < t, for some X € A}.

Under the map Xo(T)r — W — W /Wag = Q, the set A maps to a single
element (cf. [Rap05, Lemma 3.1]), denoted by 7,. Define

Adm(p)° = 'ru_lAdm(,u).

For Y C S any subset, let WY denote the subgroup of W,g generated by
{ri,1 € S =Y}, where r; is the simple reflection corresponding to i. Then set

AdmY (p) = WY Adm ()WY ¢ W
and
AdmY (p)° = T;lAde(/L).

Note that AdmY (1)° € Wag, and this subset only depends on the image of u
under Xo(7") — Xo(Thq), where T,q is the image of T in Goq.
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2.2. Loop groups and their flag varieties. Let o C A(G,S) be a facet. Let
Fly =LG/L*G,

be the (partial) flag variety of LG. Let us recall that LG is the loop group
of GG, which represents the functor which associates to every k-algebra R the
group G(R((t))), L*G, is the jet group of G,, which represents the functor that
associates to every k-algebra R the group G, (R|[[t]]), and F¢, = LG/L*G, is
the fpqc quotient. Let us also recall that LG is represented by an ind-affine ind-
scheme, LG, is represented by an affine scheme, which is a closed subscheme
of LG, and FY, is represented by an ind-scheme, ind-projective over k. Denote
by I = L*G, the Iwahori subgroup of LG, and denote F¥, by F¥, which we
call the affine flag variety of G. If G splits over F, so that G = H ® F and
(2.1.1) is the natural isomorphism, then the special vertex v is hyperspecial,
and corresponds to the parahoric group scheme H ® kl[[t]]. Then we denote
Fly, by Gry and call it the affine Grassmannian of H. Let Y C S be a subset,
and let oy C A(G, S) be the facet such that a;(oy) =0 for i € S—Y. Observe
that og = a is the chosen alcove. We also denote F/,, by F0¥ for simplicity.

Let us recall that the I-orbits of F¥ are parametrized by W. In general,
the LtG,, -orbits of F¢¥ are parametrized by WY \ W /WY, where WY is
the Weyl group of G, ® k. For w € W, let Y}"Egl C F¢¥'" denote the corre-
sponding Schubert variety, i.e., the closure of the L*G,, -orbit through w. If
Y =Y, then we simply denote it by FeY. If G is split and G = H @ k[[t]]
is a hyperspecial model, recall that LTG-orbits of Gry are parametrized by
W\ W/W = X (T)*, the set of dominant coweights of G. For p € Xo(T)*,
let Gr, be the corresponding Schubert variety in Gry.

Let us recall the following result of [Fal03], [PROS].

THEOREM 2.1. Let p = chark. Assume that p{ |71(Gger)|, where Gger is
the derived group of G. Then the Schubert variety .7-"65) s normal, has rational
singularities, and is Frobenius-split if p > 0.

For p € Xo(T), let

(2.2.1) AY (1)° = U Y F..
weAdmY (p)°

where oyo = 7 L(oy) and where Yo}"ﬁsivw is the union of Schubert varieties

(more precisely, the closure of LG, ,-orbits) in the partial affine flag variety
FlY = LGs/LGyy. Then AY(1)° is a reducible subvariety of F£Y,, with
irreducible components

VR L, NeACX (T)rcW.
T

t’

Observe that AY (11)° only depends on the image of y under X¢(7T) — Xo(T0d)-
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When p 1 |71 (Gger)|, it is also convenient to consider

(2.2.2) A= U Fa.

weAdmY (1)

Choosing a lift g € G(F') of 7, € W and identifying FtY with the reduced
part of the neutral connected component of F¢¥ (see [PR0S, §6]), we can
define a map .7-"63/0 — F0¥, x — gx. Clearly, this map induces an isomorphism
AY (p)° = AY ().

In particular, if G = H ® F is split and oy = vy is the hyperspecial
vertex corresponding to H ® O, then AY (11)° is denoted by Gr<,, so that if
p1|m1(Gaer)|, then we have the isomorphism Gr<,, = Gr,.

We also need to review the Picard group of F¢. For simplicity, we assume
that GG is simple, simply-connected, absolutely simple. In this case F/ is con-
nected. For each ¢ € S, let P; be the corresponding parahoric subgroup scheme
such that LT P, D I so that LT P;/I = P!. This P! maps naturally to F¢ via
LTP; — LG, and the image will be denoted as P}. Then it is known ([PROS,
§10]) that there is a unique line bundle L(e;) on F¢, whose restriction to the
P! is Op1(1), and whose restrictions to other ]P’}s with j # i is trivial. Then
there is an isomorphism

Pic(Fl) = P ZL(=).
1€S
Let us write ®;L(;)™ as L(> ; nie;). As explained in loc. cit., the ; can be
thought of as the fundamental weights of the Kac-Moody group associated to
LG, and therefore, Pic(F¥) is identified with the weight lattice of the corre-
sponding Kac-Moody group.
There is also a morphism

(2.2.3) ¢: Pic(Fl) - Z

called the central charge. If we identify £ € Pic(F¥¢) with a weight of the
corresponding Kac-Moody group, then ¢(£) is just the restriction of this weight
to the central G,, in the Kac-Moody group. Explicitly,

(2.2.4) c(L(:)) = a)

[l

where @) (i € S) are defined as in [Kac90, 6.1]. The kernel of ¢ can be de-
scribed as follows. Let s denote the closed point of SpecO, and let (Ga)s
denote the special fiber of G,. Recall that for any k-algebra R, F¢(R) is the
set of Ga-torsors on SpecR|[[t]] together with a trivialization over SpecR((t)).
Therefore, by restriction of the Ga-torsors by t — 0 to SpecR C SpecR][[t]], we
obtain a natural morphism F¢ — B(Ga)s (here B(Ga)s is the classifying stack
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of (Ga)s), which induces X*((Ga)s) = Pic(B(Ga)s) — Pic(F¥). We have the
short exact sequence

(2.2.5) 0 — X*((Ga)s) — Pic(Ft) S Z — 0.

Now let Y C S be a nonempty subset. Observe that if £(3" n;e;) is a line
bundle on F¥, with n; =0 for i € S — Y, then this line bundle is the pullback
of a unique line bundle along F¢ — F¢¥, denoted by LY (Y ;cy nigi). In this
way, we have

(2.2.6) Pic(F¥) = P ZL(=:).
€Y

The central charge of a line bundle £ on F¢¥ is defined to be the central charge
of its pullback to FY, i.e., the image of £ under Pic(F¢¥) — Pic(Fl) 5 Z.
Observe that £Y (;ey nig;) is ample on F¢Y if and only if n; > 0 foralli € Y.

In the case G = H ® F is split, the central charge map induces an iso-
morphism ¢ : Pic(Gry) = Z. We will denote by L, the ample generator of
the Picard group of Gry. Observe that, for Y = {i} not special, the ample
generator of Pic(]—"ﬁy) has central charge a), which is in general greater than
one. That is, the composition Pic(F¢¥) — Pic(Fl) = Z is injective but not
surjective in general.

2.3. The coherence conjecture. Now we formulate the coherence conjec-
ture of Pappas and Rapoport. However, the original conjecture, as stated in
loc. cit., needs to be modified (see Remark 2.1).

Assume that G is simple, absolutely simple, simply-connected and splits
over a tamely ramified extension F/F. Let {u} be a geometric conjugacy
class of one-parameter subgroups (G,,) 7 — Gag ® F. First assume that y is
minuscule. Let P(u) be the corresponding maximal parabolic subgroup of H,
and let X (u) = H/P(u) be the corresponding partial flag variety of H. Let
L(p) be the ample generator of the Picard group of X (x). Then define

hy(a) = dim H(X (1), L(1)").

If p = p1 +-- -+ py is @ sum of minuscule coweights, let h, = hy, ---hy,. The

following is the main theorem of this paper, which is a modified version of the
original coherence conjecture of Pappas and Rapoport in [PROS].

Theorem 1. Let = py1 + -+ -+ pin, be a sum of minuscule coweights. Then
for any Y C S and ample line bundle £ on FI¥ , we have

dim HO('AY(M)O?ﬁa) = h'u(C(AC)CL),
where ¢(L) is the central charge of L.

This theorem is a consequence of the following more general theorem.
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Theorem 2. Let p € Xo(Taq). Then for any Y C S and ample line bundle

L on FC¥, we have
dim HO(AY (1)°, £) = dim H(Gr<,,, £57)).

Since Theorem 1 is not the same as what Pappas and Rapoport origi-
nally conjectured and their conjecture is aimed at studying the local models
of Shimura varieties, we will explain why this is the correct theorem for appli-
cations to local models in Section 8. Let us remark that if G is split of type A
or C, Theorem 1 is proved in [PRO8]|, using the previous results on the local
models of Shimura varieties (cf. [Gor01], [Gor03], [PR05]). However, it seems
that Theorem 2 is new even for symplectic groups.

One consequence of our main theorem (see Section 8) is that

COROLLARY 2.2. The statement of Theorem 0.1 in [PR09] holds uncon-
ditionally.

Our main theorem can be also applied to local models of other types
(for example for the (even) orthogonal groups) to deduce some geometrical
properties of the special fibers. This will be done in [PZ13].

Remark 2.1. The original coherence conjecture in [PRO8] needs to be mod-
ified. This is due to a miscalculation in [PR08, 10.a.1]. Namely, when G is
simply-connected, the affine flag variety of G' (denoted by F¢g temporarily) em-
beds into the affine flag variety of H (denoted by Fp temporarily). Therefore,
there is a restriction map Pic(Fp) — Pic(Fg), which was described explicitly
in loc. cit. This description is wrong in the case when the group is a nonsplit
unitary group in an even number of variables. Adjusting the work in loc. cit.
to account for this produces the modified coherence conjecture that we show
in this paper. Let us remark that the same miscalculation led to an incorrect
example in [Heil0, Rem. 19(4) and an incorrect statement in the last sentence
of the first paragraph in p. 502] (see Proposition 4.1).

3. The global Schubert varieties

Theorem 2 will be a consequence of the geometry of the global Schubert
varieties, which will be introduced in what follows. Global Schubert varieties
are the function field counterparts of the local models.

3.1. The global affine Grassmannian. Let C' be a smooth curve over k,
and let G be a smooth affine group scheme over C. Let Grg be the global
affine Grassmannian over C. Let us recall the functor it represents. For every

k-algebra R,

y : SpecR — C, £ is a G-torsor on Cg, }

3.1.1) Grg(R) =1 (v, €,
( ) Grg(R) {(y B) ’ 5;5|CR—Fy%50|CRny is a trivialization
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where I'y denotes the graph of y. This is a formally smooth ind-scheme over
C ([PZ13, Prop. 5.5]).

We also have the jet group £1G and the loop group £G of G. To define it,
we need some notation. Let y : SpecR — C. We will denote by I'y C Cg the
closed subscheme given by the graph of y and consider the formal completion
of Cg along I'y, which is an affine formal scheme. Following [BD, 2.12], we can
also consider the affine scheme f’y given by the relative spectrum of the ring
of regular functions on that completion. There is a natural closed immersion
ry, — fy, and we will denote by f; = fy —I'y the complement of the image.
In our paper, we will soon specialize to the case C' = A! = Speck[v] so that
y : SpecR — C'is given by v — y € R and therefore I'y = SpecR[v]/(v — v)
and fy ~ SpecR|[w]] and the map p : f‘; — Cpr is given by v — w+y. We will
often write I', = SpecR|[[v — y]]. Then f; = SpecR[[v — y]][(v — y)~1].

Now, we define £7G and LG. For any k-algebra R,

(3.1.2) £*G(R) = {(4.8) | y:SpecR — C, B € G(Iy) |
and
(3.1.3) LG(R) = {(v,8) | y:SpecR - C,B€G(I) |

The former is a scheme formally smooth (but not of finite type) over C, and
the latter is a formally smooth ind-scheme over C.

Let us describe the fibers of £G, L1G, Grg over C. Let € C be a closed
point. Let O, denote the completion of the local ring of C' at x and F); be the
fractional field of @,. Then

(£G)e=L(Gr,), (£7G)e=L"(Go,); (Grg)s=GCrg,, =L(Gr,)/L"(Go,)-

The groups £G and £TG naturally act on Grg. To see this, we can use
the descent lemma of Beauville-Laszlo (see [BL95], or rather a general form of
this lemma given in [BD, Th. 2.12.1] and [PZ13, Lemma 5.1]) to show

LEMMA 3.1. The natural map

y : SpecR — C, & is a G-torsor on }

Grg(R & .
1g(R) = {(‘% A Ly, B:&p = <‘i’0|1:o is a trivialization
Yy Yy

is a bijection for each R.

Then £G and LG act on Grg by changing the trivialization 8. The trivial
G-torsor gives Grg — C a section e. Then we have the projection

(3.1.4) pr: LG — LG - e = Grg.

We need the following lemma in the sequel.
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LEMMA 3.2. The formation of Grg, LG, LTG commute with any étale base
change, i.e., if f : C'" — C is étale, then Grg xc¢ C" = Grgx,cr, ete. In
addition, the action of LG on Grg also commutes with any étale base change.

Proof. We have the following observation. Let 3’ : SpecR — C’ be an
R-point of C" and f(y) : SpecR — C be the corresponding R-point of C.
Since f is étale, the morphism obtained from f by completing along 3’ and
y gives an isomorphism of affine formal schemes that induces an isomorphism
fy o~ fy/ between the affine spectra of their coordinate rings. In addition,
this isomorphism restricts to an isomorphism f‘;, ~ f; The lemma now
follows. (]

3.2. The group scheme. We will be mostly interested in the case that G is
a Bruhat-Tits group scheme over C. Let us specify the meaning of this term.
Let n denote the generic point of C. Then a smooth group scheme G over C' is
called a Bruhat-Tits group scheme if G, is (connected) reductive, and for any
closed point y of C, Gp, is a parahoric group scheme of Gp, .

Now let us specify the Bruhat-Tits group scheme that will be relevant to
us. Let G1 be an almost simple, absolutely simple and simply-connected, and
split over a tamely ramified extension F /F, as in the coherent conjecture. Then
we can assume that F /F' is cyclic of order e = 1,2,3. Let v be a generator of
I' = Gal(F/F). For technical reasons, which are apparent from the statement
of Theorem 2.1, we need the following well-known result.

LEMMA 3.3. There is a connected reductive group G over F', which splits
over FI/F, such that Gaer = G1 and Xe(T') — Xo(Taq) is surjective. Here T' is
a mazimal torus of G as in Section 2.1.

For example, if G; = SL,, or Sp,,,, then G can be chosen as GL,, and
GSp,,, respectively.

We let (H, By, Ty, X) be a split pinned group over Z, together with an
isomorphism (G, B,T) ®p F = (H,By,Ty) ® F as in Section 2.1. Let us
choose the special vertex vg to identify A(G,S) with Xe(S)r, and let a be the
chosen alcove in A(G, S) as in Section 2.1. Let Y C S as before.

Let [e] : Al — A! be the ramified cover given by y — y°. To distinguish
these two Als, let us denote it as [e] : C — C. The origin of C is denoted by
0, and the origin of C' is denoted by 0. Write C° = C' — {0} and C° = C' — {0}.
Observe that " acts on H x C naturally. Namely, it acts on the first factor by
pinned automorphisms and the second by transport of structures. Let

Gloo = (Resgeo o (H x O)F.

Then Gp, = G after choosing some Fy = F. Now, gluing G|ce and G,, along
the the fpqc cover C' = C° U SpecQy (see [HeilO, Lemma 5] for the detailed
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discussion of the descent theory in this case), we get a group scheme G over C,
satisfying
(1) G, is connected reductive with connected center, splits over a tamely
ramified extension, such that (G, )qer is simple, absolutely simple, and
simply-connected;
(2) for some choice of isomorphism Fy = F, G, = G;
(3) for any y # 0, Go, is hyperspecial, (noncanonically) isomorphic to
H® Oy;
(4) Go, = Gs, under the isomorphism Gp, = G.

A more detailed account of the construction of this group scheme is given
in Section 5.1. Let us mention that similar group schemes have been con-
structed in [HNY13], [Ric13]. For this group scheme G, we know that the fiber
of Grg over y # 0 is isomorphic to the affine Grassmannian Gry of H, and the
fiber over 0 is isomorphic to the affine flag variety F¢¥ of G. Likewise, the fiber
of LTG over y # 0 is isomorphic to L™ H and the fiber over 0 is isomorphic to
LG, .

Let 7 be the subgroup scheme of G such that

(1) T, is a maximal torus of G,;
(2) for any y # 0, To, is a split torus;
(3) Tr, is the torus T and 7o, is the connected Néron model of Tg,.

We can construct 7 as the neutral connected component of
(3.2.1) T = (Resg o (Tr x O))".

Note that 7 embeds into G naturally. Indeed, under our tameness assumption,
T is the connected Néron model of (Resgo /oo (T X CNY, and T(Op) € G(Op).
Then the claim follows by the construction of parahoric group schemes as in
[BT84, 5.2].

3.3. The global Schubert variety. It turns out that it is more convenient to
base change everything over C' to C. Let u (resp. v) denote a global coordinate
of C' (resp. C) such that the map [e] : C' — C is given by v+ u®. Recall that
0eC(k) (resp. 0 € C(k)) is given by v=0 (resp. u=0). The crucial step toward
the construction of the global Schubert varieties is the following proposition.

PROPOSITION 3.4. For each p € Xo(Ty) = Xo(TH), there is a section
$:C = LT xcC
such that for any §j € C(k), the element
su(F) € (LT)y(k) = Tr, (Fy),  y=I[e](§)

maps under the Kottwitz homomorphism k : Tg,(F,) — X.(’];])Gal(F;/Fy) to the
image of p under the natural projection Xq(T,) — X.(%)Gal(pys/py).
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The proposition is obvious for split groups. But for the ramified groups,
the proof is a little bit complicated, and only the statement of the proposition
will be used in the main body of the paper. Therefore, those who are only
interested in split groups can skip the proof.

Proof. Let us first review how to construct an element in t, € T'(k((t)))
whose image under the Kottwitz homomorphism (2.1.3) is p under the map
Xe(T) = Xo(T)r. Let k((s))/k((t) be a finite separable extension of degree n so
that Tj,) splits, where s™ =t. Then A(s) € T'(k((s))). By the construction of
the Kottwitz homomorphism (cf. [Kot97, §7]), we can take ¢y to be the image
of A(s) under the norm map T'(k((s))) — T(k((t))).

Now we construct s,. Let T is as in (3.2.1). We will first construct a
section s, : C — LT and then prove it indeed factors as Sy C— LT —LT.

Let Ty denote the graph of [e] : C — C. By definition,
Home (C, LT) = Homc(f‘f T) = Hom(f‘fe] xo C, Ty,

e’
where I' acts on ffe] x ¢ C via the action on the second factor.

Recall that we have the global coordinates u, v and the map [e] : C' — C'is
given by v — u®. Then Op. = k[u]((v — u®)). Therefore, the ring of functions
[e]

on f‘[’e] xc C can be written as

A = Ek[ua](v — u})) Qg kluz],
where the map k[v] — k[ug] is given by v — u§. Let v be a generator of
I' = Aut(C/C) acting on ug as ug +— &ug, where ¢ is a primitive e-th root of
unit. For i = 1,...,e, the element (£ ® us — u; ® 1) is invertible in A and
therefore gives a morphism
T;: f“fe] xc C = G
Clearly z; oy = x;41. (As usual, T4 = z;.)

Now choose a basis w1, ...,wy of X*(Ty). Let us define

Sﬂzf\fe] Xcé—>TH

as
. 2,,. €, .
wi(s,) = mguﬁwg)xéuﬁ wj) .xélw wj)
Clearly, s, is independent of the choice of wy,...,wy. (However, it depends on

the global coordinate u on C’) Furthermore, s, is I'-equivariant. Therefore,
we constructed a section Syt C — LT.

Now we prove that this section indeed factors as s, : C— LT — LT. In
other words, the morphism f‘fe] — T factors as f“fe] — T — T. By definition,
T is the neutral connected component of 7. Therefore, it is enough to prove
that the image of f“fe]|0 — '7~'|0 lands in the neutral connected component
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of T|o. Observe that ff€]|0 >~ Speck((uy)). Let Cy be the fiber of C — C

over 0 so that Co = kfu]/u® with a I-action. It has a unique closed point 0.
Recall that T'|p = (Resg, /k(TH x Cp))' and therefore, there is a canonical map

€: 7~‘|0 — T}:I given by adjunction, making the following diagram commute:

Homc(f‘fe], T) — Hom(f‘fe] lo,Tlo) —— Hom(f‘fe] lo, T5)

H |

Hom(I'¢,) x ¢ C, Ty)" ——— Hom(I'},lo x Co, Tr)" ——— Hom(I'?, |0 x {0}, T;)

In our case, e(s,) : f‘fe]\o — Ty is given by
wj(e(5)) = (—un) Do ),

In other words, €(s,) is the composition

Ao —u Y er M
F[e]|0 1 Gm yer

Ty.

Since for any I'-invariant coweight ju, the image p : G,, — T lands in the
neutral connected component of T}; (the torus part), s, : C — LT factors
through C — LT — LT.

Finally, let us check that s, : C — LT x¢C satisfies the desired properties
as claimed in the proposition.

Let § € C(k) be a closed point given by u + § € k. Then su(¥) corre-
sponds to s,(7) : Speck((v — §°)) @) k[uz] — T given by

&
wi(su(@) = T1(€'1 @ ug — y)W7"s),
i=1

If § = 0, the assertion of the proposition follows directly from the review of
the construction of ¢, at the beginning. If § # 0, let w = 1 ® up —y. Then

e

[1(€1 @ up — y) ') = w(ts) f (),

i=1
where .
Jw) = TIE 1@ uz —)*7") € k{fw]).
i=1
Therefore, as an element in Ty (k(w))), which is canonically isomorphic to L7y,
5, () maps to p under the Kottwitz homomorphism. O

Remark 3.1. Note that the natural map £7 — £7T induces isomorphisms
LT|co ~ LT |ce and LT |o — LT |o, but itself is not an isomorphism.

Remark 3.2. For a general pu, there is no such section C' — L7 satisfying
the property of the proposition. This is why we want to base change everything
over C to C. However, if u € X¢(T') is defined over F, then s, indeed descents
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to a section C' — LT . This means that in this case the variety Grg , defined
below, which a priori is a variety over C, descends to a variety over C. One
can summarize this by saying that Grg,, is defined over the “reflex field” of the
geometric conjugacy class {u} (which is the same as the field of definition of
w as G is quasi-split over F' ([Kot84, Lemma 1.1.3])). The same phenomenon
appears in the theory of Shimura varieties.

The composition of s, and the natural morphism (see (3.1.4)) pr: LT —
Grr (resp. LT — LG) gives a section C — Gry x¢ C (resp. C — LG x¢c C),
which is still denoted by Sy

The construction of C' — LT x ¢ C will depend on the choice of the global
coordinate u of C, but the section Syt C — Gry x¢ C does not. Indeed,
there is the following moduli interpretation of such section. Recall that Gry
is ind-proper over C ([Heil0]), and therefore, s, is uniquely determined by a
section C° — Gry x¢ C° = Gry, o (by Lemma 3.2). Then this section,
under the moduli interpretation of GrTHXéO, is given as follows: let A be the
diagonal of C° x C° and O oy2 (uA) be the Tx-torsor on (C°)? such that for
any weight v of T, the associated line bundle is Og. ((, ¥)A). This T-torsor
has a canonical trivialization away from A.

LEMMA 3.5. The map s, : co — Gry corresponds to (€, ), where £ is
the Tyr-torsor O oy (nA) and B is its canonical trivialization over (C°)% — A.

Proof. The Kottwitz homomorphism « : LTy (k) — Xe(TH) induces an
isomorphism Gry (k) & LTy (k)/LT Ty (k). On the other hand, recall that if
we fix a point z on the curve C, we can interpret Grr, as the set of (€, ),
where £ is a Ty-torsor and f is a trivialization of £ away from z. Under this
interpretation, any t, € X¢(Ty) is interpreted as the Tj-torsor Og(pa),” with
its canonical trivialization away from z. Then the lemma is clear. (]

By composing with the natural morphism Gry — Grg, we obtain a section
of Grg x¢ C, still denoted by s,,.

Notation. In what follows, we denote Grg X¢ C (resp. LTG x¢ C, resp.
LG x¢ C) by Grg (resp. L¥G, resp. LG).

Definition 3.1. For each ach e X, (Ty) = Xo(TH), the global Schubert vari-
ety Grg,, is the minimal LG G-stable irreducible closed subvariety of Gl"g that

contains s 1

Let us emphasize that Grg , is not a subvariety of Grg. Rather, it lies in
Grg x¢ C. Recall that for any 1 € Xo(T'), one defines a subset AdmY (1) C W

5The reason that t,, represents Og (px) rather than Os(—px) is due to the original sign
convention of the Kottwitz homomorphism in [Kot97].
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as in (2.1.6). The main geometric property of Grg,, that we will prove in this
paper is as follows.

Theorem 3. Assume that the group G is as in Lemma 3.3 and the group
scheme G is constructed from G as in Section 3.2. Let y be a closed point of C'.
Then

B Gr, y #0.

In particular, all the fibers are reduced.

_  JUwerdmY .7-"63; y:(),
(Grg,u)y { €Adm™ (u)

We first prove the easy part of the theorem.
LEMMA 3.6. (Grg,), = Gr,, fory # 0.

P?“oof.~ Write C° = C — 0. We want to show that Grg ulge 1s isomorphic
to Gr, x C°. First we have a canonical isomorphism
(3.3.1) G xcC° = HxC".
Therefore, by Lemma 3.2,
(3.3.2) Grg xc C° = Gry, g0, LG xo C° = L(H x C).

Secondly, C° 2 G,,, which admits a global coordinate u so that £(H x C°) =
LH x C° and Gry so = Gry x C°. Finally, by Lemma 3.5, the section
5,0 C° — Grg xo C° = Gry x C° satisfies s,(C°) C Gr,, x C°. O

Using this lemma, we see that it is enough to make the following conven-
tion.

Convention. When we discuss Grg,,, we will assume that p € Xo(Ty) is
dominant with respect to the chosen Borel By as in Sections 2.1 and 3.2.

At this moment, we can also see that

LEMMA 3.7. The scheme (Grg,); C (Grg)o = FI¥ contains FLY, for
w € AdmY ().

Proof. Clearly, it is enough to show that F¢} C (Grg,); for any A in A,
where A is the Wy-orbit in X(7")r containing p as constructed in Section 2.1.
Observe that Grg,, is the flat closure of Grg ,|s. in Grg, since the later is

clearly Ea—stable. Then the claim follows frory the fact that for any A€
Xe(Tp) in the W-orbit of i, s5(0) € F€} and s,(C°) C Grg,,|g. 2 Gr,xC°. O

To prove the theorem, it is remains to show that

THEOREM 3.8. The underlying reduced subscheme of (@g,u)() 1s the union
Y
UwEAde (w) ‘Fgw :
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THEOREM 3.9. (Grg,,)p is reduced.

By the same argument as in [PZ13, 9.2.1], @g# is normal. We conjecture
that it is Cohen-Macaulay as well.

4. Line bundles on Grg and Bung

This section explains why Theorems 3 and 2 are equivalent to each other.
The key ingredients are the line bundles on the global affine Grassmannian Grg.
Observe that Grg can be disconnected. This will create some complications
in trying to determine the line bundle on Grg directly. Instead, we will pass
to its group scheme Gge, (defined below), whose generic fiber then is simply-
connected so that we can apply the results of Heinloth [Heil0] directly.

4.1. Line bundles on Grg and Bung. In this subsection, we temporary
assume that C' is a smooth curve over k and G is a Bruhat-Tits group scheme
over C such that G, is almost simple, absolutely simple, and simply-connected.

PROPOSITION 4.1. Let L be a line bundle on Grg. Then the function cp
that associates to every y € C(k) the central charge of the restriction of L to
(Grg)y is constant.

This proposition implies that the statement in the last sentence of the first
paragraph in page 502 of [Heil0] is not correct.

Proof. Let Pic(Grg/C) denote the relative sheaf of Picard groups over C.
As explained in [Heil0], this is an étale sheaf over C. Let D = Ram(G) be
the set of points of C such that for every y € Ram(G), the fiber G, is not
semi-simple. This is a finite set. Then there is a short exact sequence

(4.1.1) 1— J] X*(G,) = Pic(Grg/C) = ¢ — 1,
yeD

where ¢ is a constructible sheaf, with all fibers isomorphic to Z, and is constant
on C'—D.

According to the description of the sheaf ¢ in Remark 19 (3) of loc. cit., if
L is a line bundle on Grg such that ¢z (y) = 0 for some y € C(k), then ¢, = 0.
Therefore, to prove the proposition, it is enough to construct one line bundle
Lo on Grg such that cg,, is constant on C.

Let Vo = Lie G be the Lie algebra of G. This is a locally free Oc-module on
C of rank dim,, G, on which G acts by the adjoint representation. This induces
a morphism G — GL(Vp) and therefore a morphism i : Grg — Grgry)-
Let L4ct denote the determinant line bundle on GrGL(VO). Let us recall its
construction. We want to associate to every SpecR — Grgr,y,) a line bundle
on SpecR in a compatible way. Recall that a morphism SpecR — Grgr,y)
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represents a morphism y € C(R), a vector bundle V on Cg and an isomorphism
V|cr-r, = Volog-r,. There exists some N large enough such that

Vo(—=NTy) CV C Vo(NTy)
and Vo(NT)/V is R-flat. Then the line bundle on SpecR is
det(Vo(NTy)/V) @ det(Vo(NTy)/Vo) ™,

which is independent of the choice of N up to a canonical isomorphism.

The pullback ¢*L4e is a line bundle on Grg, which will be our L£9.. To
see this is the desired line bundle, we need to calculate its central charge when
restricted to each y € C(k). Let D = Ram(G). First consider y € C — D.
Then the map iy : (Grg), — (Grarvy))y is just

Gry — Grav(vie 1)

where H is the split Chevalley group over Z such that G ® k(n)® = H ® k(n)*.
It is well known that in this case i;ﬁdet over y has central charge 2h", where
hY is the dual Coxeter number of H. (In fact, this statement is a consequence
of the following argument.)

It remains to calculate the central charge of Lo over y € D. Without loss
of generality, we can assume that D consists of one point, denoted by 0. So let
y =0 and G = Gg,. Then the closed embedding io : (Grg)o — (Grarvy))o is
just

LG/L+gOO — GrGL(Lie Goy,)
Let us first assume that Gp, is an Iwahori group scheme of Gr,. Write I =
L*Go, and F¢ = LG/I as usual. We claim that in this case

LEMMA 4.2. We have an isomorphism i§Lqaet = L(2 ies €i)-

Assuming this fact, we find the central charge of i Lqet is 23 ;esa). By
checking all the affine Dynkin diagrams, we find that
Z al =h".
i€S
In fact, we find that for affine Dynkin diagrams X](\:), where X = A, B,C, D,
E,F,Gandr=1,2,3, thesum > a is independent of r (see [Kac90, Rem. 6.1]),
and it is well known (or by definition) that for » = 1, 3" a) = h". Therefore,
the proposition follows in this case.
Now we prove Lemma 4.2. This is equivalent to proving that the restric-
tion of igLqget to each IF’} (whose definition is given in Section 2.2) is isomorphic
to Op1(2). Recall that a k-point gI € F{ corresponds to a pro-algebraic sub-

1 which is the jet group of an Iwahori

group of LGp, given by I' := glg~
group scheme of Gr,. By abuse of notation, we still denote this Iwahori group

scheme by I'. Then F¢ — Grgr e Go,) Maps an Iwahori group scheme I’ of G
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to its Lie algebra Lie I’, which is a free Op-module, together with the canonical
isomorphism Lie I’ ® Fy = Lie G = Lie I @ Fy.

For j € S, let P; be the minimal parahoric (but not Iwahori) group scheme
corresponding to j. Then the subscheme ]P’} C FY/ classifies the Iwahori group
schemes of G that map to Pj. Let Pj;' — P; be the “unipotent radical” of F;.
More precisely, P}' is smooth over Op with Pj* ® Fy = G and the special fiber
of P}' maps onto the unipotent radical of the special fiber of P;. If I "is an
Iwahori group scheme of G' that maps to P;, then

Lie P} C Lie I’ C Lie P;.
Let P]‘-"ed be the reductive quotient of the special fiber of P;. Then P;fed is iso-
morphic to GLg, SLg or SO3 over k. Let Gr(2, Lie ]5;6‘1) = P? denote the Grass-
mannian (over k) of 2-planes in the three-dimensional vector space Lie Pj-red.
We have the following commutative diagram:

P} —— Gr(2,Lie Pj*)

| l

Ft —— GIgr(Liego,):

where ]P)Jl- — G(2, Lie ]5;‘3‘1) is given by

I' — (LieI’/ Lie P} C Lie P;/ Lie P}") = Lie P;?)
and Gr(2, Lie Pjred) — Grgr (e r) 18 given by realizing that Gr(2, Lie P;ed) rep-
resents the free Og-modules that are in between Lie Pj* and Lie Pj. Observe
that the degree of the map IP’JI- — Gr(2,Lie Pj-red) ~ P? is two as it is just
the map that sends a Borel subgroup of SLy to the two-dimensional vector
subspace of sly given by the Lie algebra of the Borel subgroup.

By construction, the restriction of Lge¢ to Gr(2, Lie P;ed) is the (positive)
determinant line bundle on G(2, Lie Pjred), or Op2(1). Therefore, the restriction
of Lget tO IP’} is isomorphic to Op1(2). This finishes the proof of Lemma 4.2,
and therefore the proposition in the case Gp, is Iwahori.

Now let Go, be a general parahoric group scheme. Let G’ be the group
scheme over C' together with G’ — G, such that Qéoo is Iwahori and the restric-
tion of " — G to C' — {0} is an isomorphism. Let Vy = LieG and Vj = LieG’.
We have the natural map

p: (Grg/)o — (Grg)()
induced from G’ — G and the maps
1 Gl"g — GrGL(Vo)v i Grg/ — GI"GL(V(’))-

Let Lot (resp. L) be the determinant line bundle on Grgr,y,) (resp.
GrGL(V{)))- We need to show that p*ifLqer and i L), have the same central
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charge. (Observe that these two line bundles are not isomorphic.) From this,
we conclude that the central charge of i*Lget is also constant along C.

Let us extend G and G’ to group schemes over the complete curve C
such that Glo_joy = G'|c_10}- Let Bung (resp. Bung/) be the moduli stack
of G-torsors (G'-torsors) on C. Let Gy, G be the restriction of the two group
schemes over 0 € C, and let P be the image of G, — Gy. This is indeed a Borel
subgroup of G{,. Recall that by restricting a G’-torsor to 0 € C, we obtain a
map (Grgr)o — BG), and we have the similar map for G. Then we have the
following diagram with both squares Cartesian:

(4.1.2) (Grgr)g — Bung: —— BG) BP

| |

(Grg)o — Bung BGy.

<

Indeed, it is clear that the left square is Cartesian because G|a_yo; = G'|c_10}-
The fact that the second square is Cartesian is established in Proposition 9.7.

Let y : SpecR — (Grgr)o be a morphism given by (&, 3), where £ is a
G’-torsor on C'g. Then we have the natural short exact sequence

0 — ad€ — ad(€ x9 G) — & x9' (LieG/ LieG') — 0.

On the other hand, p : (Grg/)g — (Grg)o is a relatively smooth morphism since
BP — BG is smooth. Let 7, denote the relative tangent sheaf. We claim that
& x9 (LieG/ LieG') = y*T,, where y*7,, is the sheaf on SpecR, regarded as a
sheaf on Cg via the closed embedding {0} x SpecR =: {0}r — Cgr. But this
follows from (4.1.2) and

& x9 (LieG/LieG') = (£|(g,, x% P) x¥ (LieGy/ Lie P).
Therefore, we have
(4.1.3) 0—ad&—ad(Ex9" ¢ = y*T, = 0.

Let us finish the proof that p*ijLqe; and ig L}, have the same central
charge and therefore the proof of the proposition. From the above lemma,

(4.1.4) P*igLaet = ig Laer ® det(Tp).

So it is enough to prove that det7, as a line bundle on (Grg/)o has central
charge zero. But from (4.1.2), det 7, is a pullback of some line bundle from
BP, and hence from BG, which has zero central charge by (2.2.5). O

Now, we assume that C is a complete curve and let Bung be the moduli
stack of G-torsors on C. Let Pic(Bung) be the Picard group of rigidified line
bundles (trivialized over the trivial G-torsor) on Bung. Let D = Ram(G).
Observe that [[,ccm) X*(Gy) = [lyep X*(G,). Fix 0 € C(k). Let Fo¥ =
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LGr,/ L+g(90, which is a partial affine flag variety of Gr,. According to [HeilO,
§7], we have the following commutative diagram:

0O —— HyEC(k) X.(gy) —_— Pic(Bung) Z, 0
0 — X*(Go) —— Pic(F&¥) —4— Z 0.

The left vertical arrow is the projection to the factor corresponding to 0, and
the right vertical arrow is injective (but not necessarily surjective). Presum-
ably, the map Pic(Bung) —Z is in fact given by Pic(Bung) —I'(C, Pic(Grg/C))
— I'(C,¢) = Z and the right vertical arrow is the natural restriction map
I'(C,¢) — c|p. Here we will not need to show this. We can, however, use the
above diagram to show that, for any £ € Pic(}'ﬁy), a certain tensor power of
it will descend to a line bundle on Bung. Therefore, we conclude

COROLLARY 4.3. Let C be a smooth but (not necessarily complete) curve,
and let G be a Bruhat-Tits group scheme over C such that G, is almost simple,
absolutely simple and simply-connected. Let H be the split Chevalley group
over Z such that G ® k(n)®* = H ® k(n)®. Let 0 € C(k), and let L be a line
bundle on F¢¥ = LQFO/L“‘QOO. Then there is a line bundle on Grg whose
restriction to (Grg)o = FI¥ is isomorphic to L™ for some n > 1 and whose
restriction to (Grg)y = Gry(for y € Ram(G)) is isomorphic to Egc(ﬁ), where
Ly is the ample generator of Pic(Gry) = Z.

Proof. Let C be a complete curve containing C. We extend G to a Bruhat-
Tits group scheme over C. Then some tensor power £ of £ descends to a line
bundle £" on Bung. Let hgiop : Grg — Bung be the natural projection. Then
hglobﬁ’ is a line bundle on Grg whose restriction to (Grg)g is isomorphic to
L™, and whose restriction to (Grg), = Gry (y ¢ Ram(G)) has central charge

¢(L™), and therefore is isomorphic to EZC(Q. O

4.2. Theorem 3 1is equivalent to Theorem 2. Let us begin with a general
construction. Let G be a Bruhat-Tits group scheme over a curve C. Then
away from a finite subset D C C, G|c—p is reductive. Let Gyer|c—p be the
derived group of G|c—p so that for y € C(k), (Gaer)F, is the derived group of
Gr, ([DG70, Exposé XXII 6.2]). It is known that there is a canonical bijection
between the facets in the building of (Gger) r, and those in the building of Gr,,
and under this bijection, the corresponding parahoric group scheme for (Gge;) F,
maps to the corresponding parahoric group scheme for Gp,. For example, see
[HR, Prop. 3] and its proof for the last statement. Therefore, we can extend
Gder|c—p to a Bruhat-Tits group scheme over C together with a morphism
Gder — G such that for all y € D, (Gaer)o, — Go, is the morphism of parahoric
group schemes given by the facet determined by Go, .



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 29

Definition 4.1. The group scheme G4, together with the morphism Ggor — G
is called the derived group scheme of G.

Now let G be the group as in Lemma 3.3, and assume that the group
scheme G over C' = Al is constructed from G as in Section 3.2. Let us denote
G1 = Gger for simplicity. Let C° = C' — {0}. Observe that Gi|co is reductive,
(G1)ry = G1 = Gyer, and for y # 0, (G1)o, is hyperspecial for Hyer ® Oy. In
addition, (G1)y is simply-connected.

Let us explain why Theorems 3 and 2 are equivalent. The natural mor-
phism G; — G induces a morphism Grg, — Grg. One can show that this is a
closed embedding. (We will not use this fact; it follows however, a posteriori,
from the argument below.) But at least it follows directly from [PROS8, §6] that
both (Grg,)o — (Grg)o and Grg,|ce — Grg|ce are closed immersions. These
induce isomorphisms from (Grg, )o and (Grg, )ce to the reduced subschemes of
the neutral connected component of (Grg)o and of Grg|ce respectively. Let
p € Xo(T), and let Grg,, be the corresponding global Schubert variety as in
Section 3.3. Recall the section s, from Proposition 3.4. Regard it as a section
of E& that acts on GEQ. Then

Sljlag#’éo C Grgl‘éo.

This follows from t;lﬁﬂ C /Eerer for any p € Xo(TH), where ¢, is consid-
ered as any lifting of t, € W to Ty(F'). Let Grg, <, be the flat closure of
5;1@97” co in Grg,. We claim that the natural map

(4.2.1) Grg, <4 = 5, Grg

is an isomorphism. To see this, first note that it is proper and bijective at the
level of points. Therefore, it is a finite morphism by Zariski’s main theorem.
Now, let z € (Grg, <,)5 and y be its image in (S;lﬁg’u)é. Let A and B be
their local rings respectively. Then A is a finite B-module. Let u be a local
coordinate around 0. Note that since B[u~!] — A[u~!] is an isomorphism and
B has no u-torsion, B — A is injective. On the other hand, (Grg, <.)5 —
(s, 'Grgu)g is a closed embedding since FL¥ — Fr¥ is a closed embedding.
Therefore, B/uB — A/uA is surjective. By Nakayama’s lemma, B = A, and
therefore (4.2.1) is an isomorphism.

Let 7, be the image of p in Q = Xo(T)r/Xe(Tic)r, and let Y° C S so
that oye = 7,'(0y) as before. Let g € G1(F) be a lifting of t_,7, € Wag.
Then since FC), € (Grg,,)s for w € Adm” (1) (see Lemma 3.7), g(¥" Fe), ) C
(Grg, <u)g for w € Adm" ()°. In other words, AY (1)° C (Grg, <u)5-

Let £ be an ample line bundle on ]:ESSZ. Suppose that its certain tensor
power L" extends to a line bundle on Grg, by Corollary 4.3. Then we have

dimT((Grg, <)y, L7°)) = dim T((Grg, <), L") > dimT(AY (1)°, L")



30 XINWEN ZHU

by the flatness and the fact that H'(Y F£Y', £) = 0 for any Schubert variety
YF Egl and any ample line bundle £. In addition, the equality holds if and only
if AY (n)° = (Grg, <)5- Clearly, for y # 0, (Grg, <)y = 9gGr<,. Therefore,

nc(L)y ~u ne(L
L((Grg,,<p)y, Ly ( )) =I(Grey, £, ( ))

by Corollary 4.3. Therefore, Theorem 2 implies Theorem 3. Conversely,
Theorem 3 implies that the statement of Theorem 2 holds for £ £, . ...
Therefore, we have the equality of Fuler characteristic X(Grgu,ﬁgw(c)) =
x(AY (1)°, L™) for any m as both are polynomial in m. But it is well known
that both E;nc(ﬁ) and £™ have no higher cohomology. (The charateristic p > 0
case follows from Frobenius splitting, and the characteristic zero case follows
from the semicontinuity; see [Mat88] for details.) Therefore, the statement of

Theorem 2 also holds for L.

To finish this section, let us mention the following observation.

COROLLARY 4.4. If Theorem 2 (equivalently, Theorem 3) holds for one
prime p{ e, then it holds for all p{ e as well as in the case chark = 0.

Proof. Recall that the affine flag varieties and Schubert varieties are de-
fined over W (k), the ring of Witt vectors of k, and the formation commutes
with base change ([Fal03], [PR08]). In addition, line bundles are also defined
over W (k). (After identifying the affine flag varieties with those arising from
Kac-Moody theory ([PRO08]), this follows from [Mat88, XVIII]. In fact, they
are even defined over Z/, where Z is obtained from Z by adding e-th roots of
unity and inverting e.) By the vanishing of corresponding H! (by the rea-
son mentioned above), both sides are free W (k)-modules and the formation of
cohomology commutes with base change. The corollary follows. O

5. Some properties of @g#

In this section, we study two basic geometrical structures of Grg ,: (i) in
Section 5.2, we will construct certain affine charts of @gw which turn out to
be isomorphic to affine spaces over C; and (ii) in Section 5.3, we will construct
a G,,-action on @gw so that the map @g# — C is Gy,-equivariant, where
Gy acts on C = A! by natural dilatation. To establish (ii), we will need to
first construct the global root subgroups of £G as in Section 5.1. We shall
remark that the proofs of these results for G split are very straightforward. It
is only when G is not split that some complicated discussion is needed. Those
who are only interested in split groups can skip this section.

5.1. Global root groups. We will introduce certain “root subgroups” of LG
(more precisely, of £LTG; see Remark 5.1(i)), whose fibers over 0 € C' is the
usual root subgroups of the loop group LG as constructed in [PROS8, 9.a,9.b].
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Let us first review the shape of root groups of G. Let (H, By, Ty, X)
be a pinned Chevalley group over Z as in Section 2.1. In particular, Hge, is
simply-connected. Let = be the group of pinned automorphisms of Hge, that
is simple, almost simple, simply-connected by our assumption. So = is a cyclic
group of order 1,2 or 3. Let ® = CIJ(H T ) be the set of roots of H with respect
to Ty. For each a € ®(H,Ty), let Uz denote the _corresponding root group.
Then for each v € Z, one has an isomorphism - : Us & Uva The stabilizer of
a in = is either trivial or the whole group. Let us choose a Chevalley-Steinberg
system of H; i.e., for each a € ®(H,Ty), an isomorphism z; : G, = U, over
Z. In addition, we require that

(1) if @ € A is a simple root, then X; = dzz(1), where X = > zca Xa;
(2) if the stabilizer of @ in Z is trivial, then v o 5 = x5 for any vy € =.

Note that if v stabilizes a, it is not necessarily always the case that yox; = x5,
as can be seen for SL3. In this case, one obtains a quadratic character

(5.1.1) Xa 2 — Autz(G,) = {£1}

such that v oz = x5 o xa(7y). Of course, this can happen only if the order of
Zis 2.
Recall that I' = Aut(C/C) is a group of order e = 1,2,3, which acts on
H via pinned automorphisms and the corresponding map I' — = is injective.
Let j : ®(H,Ty) — ®(G,S) be the restriction of the root systems. For
a€ d(G,S), let

n(a) ={a € ®(H,Ty)|j(a) = ma,m = 0}.

This is a subset of ®(H,Ty) satisfying the condition of [Con, 5.1.16]. Let

Un

Un(a) = Taen(a) U, where the product is taken over any given order (which we

(a) be the closed subgroup scheme of H as defined in loc. cit. As a scheme,

fix from now on) on n(a). Informally, this is the subgroup of H generated by
Uz, a € n(a). This subgroup is invariant under Z. Then (Res; P/ FU )T is the
root group of G corresponding to a.

For an integer n, let us denote by G an.C the group scheme over C' that
is the n-th congruence group scheme of G aCr In other words, G ant1,0 is the
dilatation of G, ~ along the trivial subgroup in the fiber over 0 (see [BLR90,
§3.2] or Section 92) More concretely, G, , » = Specklu,tn] ~ G, 5 and
the map Ga7n+17@ — Ga,n,é is given by t, +— ut,4+1. We also have the con-
gruence group schemes U&,n,é of Ua,é" The Chevalley-Steinberg isomorphism

a1 G, — Uz induces the isomorphism

La,n - Ga,é’ = Ga,n,é - Ud,n,é
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making the following diagram commutative:

Ta,n+1 d
Ga,c’ Ud n+1,C

(512) tn’_>Utn+1J/ J/
Ta,n it
Ga,é’ U&,n,é"

Our goal is to construct some global root groups for £G. For the purpose,
we describe a construction of G.

Let us normalize the valuation so that w has value 1/e. Then we embed
A(G,S) into A(H,Ty). Let x € oy be a point. It determines a parahoric
group scheme Qw of H® F and G, is the neutral connected component of
(ResF/ng) . (One can see the claim as follows: Lifting x to a point in the

extended building of G, then (G,(O))' C G(F) is the stabilizer of this point.
On the other hand, by [Edi92, 2.2, 3.4], (Res / #Gz)" is smooth. Therefore, its
neutral connected component is the parahorlc group scheme of G given z.)

We extend G, to a group scheme G over C as in Section 3.2, so that
Q~|CO = H x C° and G|o, = G, (under the identification F' = Fy,). From the
construction, G contains

H Ud,fed(vo—x)],é X TH,C’ X H Ud,fed(vo—x)],é
aed(H,Ti)~ aed(H,Ty)*+
as a fiberwise dense open subscheme ([BT84, 2.2.10, 3.9.4]), where [y] denotes
the smallest integer that is > y. Observe that since z is fixed under the action
of I', for a € ®, the closed subgroup scheme [[z¢;(a) 067[6(%(90_1)0)1,@ of G is
invariant under the action of I'. Let

r
UaUY:C - (ReSC’/C H a,[ea(vo—z)], C) )
a€n(a)
which does not depend on z. By [Edi92, 2.2, 3.4], Uy, ¢ is smooth. In
addition, a check for SLy and SUj3 cases shows that U, ¢, ¢ is connected. Then
(Ua,oy,C)F, is the root group of Gg, = G corresponding to a, and for y # 0,
(Uaoy 0)y 2T, n(a) Noncanonically. In addition,

H Us,oy,c X (Resé/CTH’é)F’O X H Usoy,C
acdnd,— acdnd,+

is a fiberwise dense open subscheme of G, where ®"¢ C & = ®(G, S) denote the
set of nondivisible roots; i.e., a € ®"¢ if a/2 ¢ ®. Given an affine root a of G
with vector part a, the corresponding root subgroup of LG will be constructed
as a closed subgroup scheme of LU, 4, c.

Recall that we constructed the special vertex vy in Section 2.1, where we
used this vertex to identify A(G,S) with X¢(S)r. Then we can write affine
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roots as a + m, where a € ®(G,S) and m € %Z. Let a + m be an affine root
such that em > [ea(vg — z)]. Let us construct a closed immersion

(5.1.3) La+m : Ga,C’ — EU(LO'Y,C'

Let us describe x,1,, at the level of R-points, where R is a k-algebra. Re-
call that we write C' = Speck[v],C = Speck[u] such that [e] : C — C is
given by v — u€. Let y : SpecR — C be an R-point of C. We identify
Homc¢ (SpecR, G4 ) with R in an obvious manner. We thus need to construct
a map (functorial in R)

Zatm : B — Home(SpecR, LUq 5y ).
The graph of y : SpecR — C'is I'y = SpecR[v]/(v — y), and therefore
'), = SpecR((v — y)).
Now, by definition,
(5.1.4) Homc¢ (SpecR, LU 5y ) = Hom (SpecR((v —y) xc C,U é)r ,

a,0y,

where I acts on SpecR((v—y)) x ¢ C via the action on C and acts on Ua oy O =

H&Gn(a) Ufl,(@&(vo—xﬂ,é’ as above.
Let us introduce the following notation. Each element s € R((v — y)) Dkfu]

k[u] determines a morphism SpecR((v — 3)) x¢ C — G wc Let
Za.n(s) : SpecR(v — ) xc C — U&,n,é‘

denote the composition of this morphism with xz, : G, &~ — f]& G
Now we construct x,4,,. There are two cases.
(i) 2a € (G, S). In this case, I' acts transitively on n(a). There are two
subcases.
(ia) n(a) = a, so that I' fixes @ and Uy (q) = Us. Define

Tatrm(r) = T4 [ea(vo—z)] (7“ & ut™ (ea(vo—xﬂ) .

Since a + m is an affine root, T’ acts on u®~[ea(t0=2)] exactly via
the quadratic character x; as defined in (5.1.1), and zq 4 (7) is an
element in (5.1.4).

(ib) T" acts simply transitively on n(a). Choose @ € n(a) and v € T' a
generator. Using the isomorphism [[{_; U,i(a) = Uy(q), define

Tatm(r) = [ 25:@) featuo—on (r @ 7' (@) Teet0=01).
i=1

Since for a,a’ € n(a), the groups Uz and Uy commute, and therefore
Zat+m(r) is an element in (5.1.4).
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(i) 2a € ®(G,S), so that n(a) = {a,a’,a + a'}. In this case, chark # 2,
e = 2, and the group is the odd unitary group. In addition, the quadratic
character x4 is nontrivial. Recall that for any s, s/,

(5.1.5) za(s)wa () = za (s")xa(s)vara (£s9),
where + depends on s, 24, a4+, but not on s, s’. Define
Tatm(T) = Ta [ea(uo—z)] (1 ® ue™~Ie00=DT)
X Tt fea(uo—a)] ((—1)7 10000y @ yem=lealo=a)T)

where F is the sign opposite to the sign £ in (5.1.5). Using (5.1.5), it is
clear that x41m,(r) is again an element in (5.1.4).

We have completed the construction of (5.1.3). Note that they are inde-
pendent of the choice of z € oy by (5.1.2). In addition, over 0 € C (i.e., by
setting y = 0), the map (5.1.3) reduces to an isomorphism of G, and the root
subgroup of LG corresponding to a + m, as constructed in [PR08, 9.a,9.b].
This motivates us to define

Definition 5.1. Let a + m be an affine root of G that satisfies em >
[ea(vg—x)]. The subgroup scheme Uy, = Tat-m(Gq,c) is called root subgroup
of LG corresponding to a + m.

Remark 5.1. (i) Note that in the above definition, the requirement em >
fea(vg — )] is necessary, as we need r ® u™~€¢®0=2)] to be an element in
R((v — y)) @k k[u]. Note that in fact Upym C L Usoyc- I f: G — Gisa
map of Bruhat-Tits group schemes, then Lfx,1m = Taam if Tarm is defined
for G’ (and therefore for G).

(ii) By taking the fibers Uyym = (Uat+m)o C (LG)o = LG, we obtain the
root subgroups of LG. Note that, however, as R((v)) @y klu] = R((w)), we
could drop the requirement em > [ea(vg — x)|, and Uy4, C LG is defined for
all affine roots of G . If we do not identify A(G,S) with Xe(S)r via vy, we
write them as U,, where « is an affine root.

The following lemma about the root subgroups for (global) loop groups is
the counterpart of a well-known fact about the root subgroups of Kac-Moody
groups. To describe it, let us use the following notation. For a group (ind)-
scheme U over C and y € C(R) and R-point, U(R) will denote the group of
R-points of U over y.

LEMMA 5.1. Let R be a k-algebra andy € C(R). Let a+m,b+n (a & Rb)
be two affine roots of G such that Uy m,Up+rn are defined. Then the commutator
[Us+m(R),Upn(R)] is contained in the group generated by Uipagb)+(pmtqn) (1),



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 35

where p,q € Z~o such that (pa + gb) + (pm + gn) is also an affine root of G.
(The groups Upayqb)+(pm+qn) are clearly defined for G.)

Proof. Let us define a subset ¥, ; C ® = O(H,Ty) as

U,p={acd|jla)=pa+tqbforpq€Zsg}= U n(pa + gb),
pa+qbednd p q>0

where j : @ — ®. For a € VU, such that j(a) = pa + gb, let k(a) = pm + gn.
Using the same notation as above, let us define

ua+k(a) C £RGSC~/CU

(l,a’y,C’

where Ua,ay,é’ = U&,[ed(vo—x)

y : SpecR — C' are given by

{xd,fe[z(fuo—x)] (r ® uek(&)—fe&(vo—mﬂ) e R}
C Hom¢(SpecR, £ (RGSC/CU ~)) _

CL,O’y,C

1.6 to be the group over C' whose R-points over

Let p,q € Z~, and let Z/N{n(pa+qb)7pm+qn(R) be the subgroup of EResé/C(g)(R)
generated by Z/NldJrk(;z) (R) for those a € n(pa + gb) C ¥, ;. Although one can

show that Z;{n(pa +qb),pm +qn(R) is the group of R-points of some group scheme
over C, it is enough for us to consider it as an abstract group here. Then

u(pa+qb)+(pm+qn) (R) = z:{n(pa—i-qb),pm—i-qn(R) N EUpa—&—qb,ay,C(R)‘

Likewise, let Z;{\I/a,b,m,n(R) be the group generated by L~{5+k(&)(R),d € Yap
Recall that for the fixed Chevalley-Steinberg system {z,a € ®}, and for two
roots a,b € ®, there exists c(p,q) € Z for p,q € Z~¢ such that for any ring R
and r,s € R, the commutator [z3(r), z;(s)] can be written as

[za(r), 23(s)] = I zarglcr,gr’s?)
p&+q5€§>,p,q>0
([Con, Prop. 5.1.14]). Therefore, the c~ommutat0r of [Z/N{a+k(a)(R),L~{5+k(5)(R)] is
conta{nedNin the group generated by upd+ql~)+k(p&+ql~))(R)’ where p,~q € Z~o and
pa+qb € . Now we can apply [BT72, Prop. 6.1.6], with the pair Uz ) (R) C
Ua playing the role Y, C U, in loc. cit. Then we have

Z/N[\pa,b,m,n(R) (5 H Z/?aJrk(a)(R) E> H Z;{n(pa+qb),pm+qn(R)'
acW, pa+qbednd,p,g>0

Here the first isomorphism is obtained by setting W™ in loc. cit. as Vb,
and the second isomorphism is obtained by setting W4 = 75 (pa + ¢b) for all
pa + gb € ®" p g > 0.



36 XINWEN ZHU

Next, let LU 4 (R?) be the group generated by LUpa1gb,0y,c(R), pa+gb €
b, p,q € Z~g. Again by loc. cit., there is a bijection

II LUpatghoy,c(R) = LU(qp)(R).
pa+qbed®nd p g>0

Combining the above two isomorphisms, we thus obtain that
(uaer(R)a Z/Ib+n(R)) C Z:I\IIa’b’m’n(R) m EU(aﬂb) (R)

= H (Z/Nln(paJrqb),perqn (R) N LUpa+qb,ay,C (R))
pa+qbednd p q>0

= H u(pa+qb)+(pm+qn) (R) : U
pa+qbednd p g>0

5.2. Some affine charts of Grg,. We introduce certain affine charts of
@g# that turn out to be isomorphic to affine spaces. Let A = Wyu C Xo(T')r
as before, and let A € A. Denote &) C ®(G, S) to be the subset
(5.2.1)

D) = {a—i—m\ (a,A) > 0,a + m affine root ,0 < m — w < (a,)\)} .
By Lemma 9.1, this is a set with (2p, ) elements. (Recall that pu € Xo(T)7.)
For each a + m, U4 is defined and is a subgroup of £*G.

Let us endow a total order on the set ®, as follows: First fix an order on
{a| (a,\) > 0}N®"¢. Then we can extend it to an order on {a | (a, ) > 0} by
requiring if a,2a € {a | (a,A) > 0}, then a < 2a < bfor any b € {a | (a,A) > 0}
N ®" such that a < b. Finally, we can give an order on ®, by requiring
a+m < b+ n if either a <bor a=b,m <n.

Now, consider []g, Ust+m — L7 G given by multiplication. Here and every-
where else the fiber products are over C'. This is a closed immersion. In fact,
let ¥ C (G, S) be the image of the map &) — ®(G, S) by taking the vector
part of an affine root. Then ¥ N (—¥) = (. Therefore, [[4ew Usoy,c — G is
a closed embedding. On the other hand, for a € W, it is not hard to see that
the morphism [T, Uatm [ L Uzatm: — LT Uaoy,c is a closed immersion. The
claim follows.

Let us denote by Up, C LTG the image of the above map. This is a closed
subscheme of £L1G. We claim that Uy, is indeed a closed subgroup scheme of

LTG.
LEMMA 5.2. Let R be a k-algebra and y € C(R). Then the R-points of
Ugp, overy form the subgroup of LTG(R) generated by Ugim(R),a +m € ®y.

Proof. Let us denote the subgroup generated by Uy m(R),a+m € @y by
(Ustm(R)). By Lemma 5.1, the collection of groups {Uytm(R),a +m € Oy}
satisfies the condition as required by [BT72, Lemma 6.1.7]. Then by loc. cit.,
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we have
Z/{@A (R) = H ua+m(R) = <Ua+m(R)>-
a+m€<1>/\
The lemma follows. O

Recall the section sy, : C — LG as constructed in the paragraph after
Proposition 3.4.% Consider

C)\ :Z/[qgA X C = Grg#, g — gSx.
PROPOSITION 5.3. The morphism cy is an open immersion.

Proof. We first show that the stabilizer of sy in Ug, is trivial. Recall that
LG acts on Grg, and the stabilizer of the section e : C'— Grg (defined by the
trivial G-torsor) is LTG. Therefore, the stabilizer in Eé of the section s is
s,\(zjfé)s/(l. Therefore, it is enough to prove that £7GN 53 {Us, xc C)sy is
trivial, or equivalently,

(£+Uavgy7c Xc é) N le(ua+m Xc C’)S)\

is trivial for all a + m € ®,.
Let us analyze the R-points of s}l(l/{(ﬂrm xc C)sy over y : SpecR — C.
Recall that s)(y) is given by the I'-equivariant map

sx(y) : SpecR((v — y°)) ®ppy) klu] = Th

such that for any weight w of Ty, the composition wsy(y) (which is determined
by an invertible element in R((v—y)) @[y klu]) is TT5=, (1 @7 (1) —y®1) A7),
Note that for any a € ®(H,Ty) such that j(a) =a € {a | (a, A) > 0},
[Ja®y' () —y )7 @yem=leatool g Rily — 4] @y, k],
i=1
as em — [ea(vg — x)] < e(\, a), which implies
£+Ua,ay,c Xc é N 5;1(Ua+m Xc C~Y)8/\

is the trivial subgroup for all a + m € ®,.

Let us remark that using the construction in Section 5.3 there is a less com-
putational way to show that the stabilizer of sy in Up, is trivial. Namely, note
that the G,,-action on G constructed in Section 5.3 also induces a G,,-action
on Ug, and the map c) is equivariant. Therefore, it is enough to show that the
stabilizer of s5(0) in (Us, )o is trivial. For this purpose, it is enough to do the
above calculation for y = 0, which is easier. We will use this argument again
in the proof of Lemma 6.3.

6More precisely, we need to choose a lifting of XeX, (T') of A, but to simply the notation,
we denote this lifting by A.
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Therefore, the stabilizer of sy in Us, is trivial. Then, cy is a monomor-
phism of irreducible varieties over k of the same dimension. We show that
U=c\Usp, xc C’) is open. For simplicity, we write Grg,, — Casf:X — C,
and we write the group scheme Us, xcCbyU. Asdim¥ = dim X = (2p, p)+1,
and U is constructible, it contains a nonempty open subset of X. Let W C U
be the maximal open subset of X contained in U. Then W is U-stable. In
particular, W = U(W N s,(C)). We claim that s)(C) € W, which implies
that W = U. Otherwise, C' — f(W N s,(C)) consist of finitely many points
T1,...,o,. Then W N f~(z;) = 0. Note that Uy, := f~1(x;) N U is just the
orbit of s)(x;)) under Uy, in f~1(z;). As it contains a nonempty open subset
of f=Y(x;), Uy, is open in f~1(z;). Let Z,, = f~'(x;) — U,,. This is a closed
subset of f~1(z;).

Let Y = f~1(f(Wnsx(C))). Then W is open dense in Y. Let D =Y —W,
which is a proper closed subset of Y, and let D be its closure in X. Then
D flat over C. Therefore, D,, := f~(x;) N D is a proper closed subset of
f~Y(xi), of dimension strictly smaller than (2p,u). Therefore, U,, ¢ D.,,.
Now, X — D — J; Z,; is open, contained in U, and is strictly larger than W.
This is a contradiction.

We therefore have proved that c) is a monomorphism that maps onto an
open subset U of Grg,. Finally we show that ¢y : & — U is an isomorphism,
where U is regarded as an open subvariety of Grg,. We can check this étale
locally on U. Note that the £LTG-torsor LG — Grg given by (3.1.4) can be
trivialized in étale topology. (See the proof of [PZ13, Prop. 5.2] with obvious
modifications.) Therefore, we can find a section U — LG XCC’ and can assume
that the closed embedding U — EC;, g — gsy factors through Y — U — LG.
Therefore, U — U is a closed embedding. But this map is surjective and U is
integral, so it must be an isomorphism. [l

In what follows, we denote the image of ¢y (A € A) by Uy, so that Uy is
affine open in Grg,, that is smooth over C' (indeed an affine space over C).
Note that

(Ux)5 = (Us,)55x(0) = LT Gatx
is exactly the LT Ga-orbit through ty in F¢¥.

5.3. A Gy,-action on @g#. Let G be a group scheme over C' as in Sec-
tion 3.2. Let f : évrg — C be the structural map. We construct a natural
Gp,-action on @g that lifts the natural action of G,, on C via dilatations. In
addition, each Grg , is stable under this G,-action.

The construction of the G,,-action on GEQ is straightforward. Recall that
the global coordinate on C' is u and on C' is v and that the map €] : C—C
is given by v — u®. Recall that an R-point of @vrg is given by v — y and

a G-torsor & on Cp that is trivialized over Cr — ['g),). Let r € R* be an
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R-point of G,,,. We need to construct a new G-torsor on Cg, together with a
trivialization over Cr —I'ig(;y). Indeed, let r: Cr — Cg be given by v — rv.
It maps ') to [ig(ry)- Then the pullback of £ along r~¢ is an (r~¢)*G-torsor
on CR, together with a trivialization on Cr — I'(j(y). Therefore, to complete
the construction, it is enough to show that (r~¢)*G is canonically isomorphic
to G as group schemes over Cg. Let us remark that the same construction will
give an action of G,,, on LG (resp Lt g) compatlble with the dilatations on C.
Furthermore, the action of £G (resp. £+ g) on Grg is Gp-equivariant.

Let us define the action of G,, on C' = Speck[v] via (r,v) — rv. Observe
that pe C Gy, acts trivially on C' via this action.

LEMMA 5.4. Given the action of Gy, on C' as above, there is a natural
action of Gy, on G such that G — C is Gy, -equivariant.

Remark 5.2. However, the natural dilatation on C' does not lift to G.

Proof. As has been explained in Section 5.1, there is a group scheme G
over C' satisfying C~¥| co = H X C°, and g~@0 is a parahoric group scheme of
H® Fy, given by a point z € A(H, TH)F7 such that G is the neutral connected
component of (Resg /CQ)F. To prove the proposition, it is enough to prove
that there is a natural G,,, action on G, compatible with the rotation on C. In
addition, this G,,-action should be compatible with the action of I" on G.

Let m,p : G, X C — C be the action map and the projection map
respectively. We need show that there is an isomorphism of group schemes
p*G = m*G over G,, x C satisfying the usual compatibility conditions. Since
Gy, naturally acts on G lgo = H X C° by acting via rotation on the second
factor, there is a natural isomorphism

¢:p°Glg,, xao =M Glg,, xeo
that is compatible with the I'-actions. We need to show that this uniquely ex-
tends to an isomorphism over G,, x C'. Then it will be automatically compatible
with the I'-actions. Indeed, the uniqueness is clear since p*g (resp. m*g) is
flat over G,, x C, so that O,.¢ C Op*g[ufl] (resp. O,,.5 C O, .5lu""]). We
need to prove that the map c : Om*g[u_l] — Op*g[u_l} indeed sends O, .4
to (9 .g- But this can be checked over each closed point of Gp,. Therefore, it
remains to prove that for every r € G,,(k), the isomorphism of r*G| Go =2 G| Go
extends to an isomorphism r*g & Q We can replace C by 0. By (BT84,
Prop. 1.7.6], it is enough to prove that the isomorphism 7 : G (F~) - G( Fp) in-
duces an isomorphism G(Of) — G(Op). But it is clear that each root subgroup
of L(H ® Fy) with respect to (H ® Fy, Ty ® Ey) as constructed in Section 5.1
(see Remark 5.1(ii)) is invariant under this G,,-action. Therefore, for any
x € A(H,Ty), the corresponding parahoric group of H ® Fy is invariant under
this G,,-action. O
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It remains to show that each Grg, is invariant under this G,-action. It
is enough to show that the section s, : C° — a;fr C E}vrg is invariant under
this G,,-action. Recall that s, : C° — Gry x¢ C° = GrTHXéO is given by the
Ty-bundle O, (pA) with its canonical trivialization away from A (see Lemma
3.5). From this moduli interpretation, it is clear that s, is G,-invariant.

By restriction to (ag)() >~ F(¥, we obtain an action of G,, on F¢¥ (and
therefore on F£Y,). As is shown in [PR08], the affine flag variety F£Y, coincides
with the affine flag variety in the Kac-Moody setting. Under this identification,
the above G,,-action on F£Y, should correspond to the action of the extra one-
dimensional torus (usually called the rotation torus) in the maximal torus of
the affine Kac-Moody group. We do not make the statement precise. Instead,
we mention

LEMMA 5.5. Each Schubert variety in F€¥ is invariant under this action
of Gy, on FE¥ .

Proof. Since Gy, acts on G, it acts on L+g@0. Clearly, it also acts on
L*7To,, and therefore it acts on the normalizer N g,y (T(Op)) of T(Op) in
G(Fo). Since Ng(gy)(T(00))/T(Og) = W is discrete, the induced G,,-action
fixes every element. The lemma follows. (|

6. Proofs I: Frobenius splitting of global Schubert varieties

In this section, we prove Theorem 3.9 assuming Theorem 3.8. We also
deduce Theorem 1 from Theorem 2.

6.1. Factorization of affine Demazure modules. In this subsection, we
show that Theorem 2 implies Theorem 1. This proof is essentially contained in
[Zhu09]. However, we repeat some arguments since they serve as a prototype
for the following subsections.

Let H be a split Chevalley group over k such that Hge, is almost simple,
simply-connected, as assumed in Section 2.1. Let Grg be the affine Grassman-
nian of H and L be the line bundle on (Grg)req (the reduced ind-subscheme
of Gry) that restricts to the ample generator of the Picard group of each of
connected component (which is isomorphic to Grg, ). We have the following
two assertions.

LEMMA 6.1. Let u € Xo(Th) be a minuscule coweight, so that Gr, =
X(p) = H/P(un), where P(u) is the mazimal parabolic subgroup corresponding
to u. Then the restriction of Ly to @u is the ample generator of the Picard
group of X (11).

Proof. Let us use the following notation. For v a dominant weight of P(u),
let £(v) be the line bundle on H/P(u) such that I'(H/P(u), £(v))* is the Weyl
module of H of highest weight v.
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First assume that chark = 0. Let us fix a normalized invariant form
(s )norm on Xe¢(Tgr) so that the square of the length of short coroots is two.
Note that this invariant form may not be unique if H is not semi-simple. For a
coweight p € Xo(T) of T, let p* be the image of p under Xo(Tx) — X*(TH)
induced by this form. In other words, (1*,A) = (i, A)norm- Let t, € Grry, (k) C
Grp (k) be the corresponding point as in the proof of Lemma 3.5. Now assume
that p is dominant. For every positive root a of H, corresponding to a copy
of SLy C H, let SLot,, C Ht,, = H/P(u) be the corresponding rational curve.
Then according to [Zhu09, Lemma 2.2.2], the restriction of £ to this rational
curve has degree 2(%‘7’;)) . Therefore, the restriction of £y to Ht, = H/P(u) is
isomorphic to L(u*). Note that for p minuscule, (@, ft)norm = 2, and therefore
w* is the corresponding minuscule weight. The lemma follows in this case.

To prove the lemma in the case chark > 0, observe that everything is
defined over Z. (See [Fal03], where it is proven that the Schubert varieties
are defined over Z and commute with base change.) It is well known that
Pic(H/P(p)z) = Pic(H/P(p);) = Z. The lemma follows. O

The following proposition is essentially equivalent to [FL06, Th. 1], whose
proof is of combinatorial nature. Here we reproduce a proof given in [Zhu09,
Th. 1.2.2].

PROPOSITION 6.2. Let L be a line bundle on (Gry)req whose restriction
to each connected component of Gry has the same central charge. Then

H°(Grpyn, £) =2 H(Gry, £) @ H(Gry, £).

Proof. Recall that H'(Gr,, £) = 0 since Gry, is Frobenius split and £ is
ample. Therefore, it is enough to prove the proposition for £", £?",... and
some n > 1. Therefore, by replacing £ by £", we can assume that the central
charge of L is 2h"; i.e., L = E%hv. Then L™ is the pullback of the n-tensor of
the determinant line bundle L. of Grgywic ) along ¢ : Gry — Grarvie i),
as has been discussed in the proof of Theorem 4.3. Let us choose a complete
curve (e.g., C' = C'U{oo}) and let Buny be the moduli stack of H-bundles on
the curve. Then we know that £ is the pullback along Gry — Bung of a line
bundle on Bungy (which in turn is the pullback along Buny — Bungy,wie m)
of the determinant line bundle on Bungy, e fr)). Denote this line bundle on
Bung as w™!. (In fact, this is the anti-canonical bundle of Bung.)

Consider the convolution affine Grassmannian Gr$°%, over C, defined as

y € C(R), &,& are two H-torsors on Cg,
Cr&%.(R) ={ (v, &,€,8,8) | B: Elep-r, = E%cpr, is a trivialization,

and 8" : €' c—(opn = El(c—{0})n-
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This is an ind-scheme formally smooth over C, and by the same argument as
in [Gai0l, Prop. 5|, we have

Gri%|ce = Gryxee x Gry, (Grii)o = GryxGry,

where GryxGry = LH x LTH Gry is the local convolution Grassmannian.
In addition, Gr%%%, is a fibration over Gryyc by sending (y,&,E,8,8') to
(y,&, ), with the fibers isomorphic to Grg.

Now @“ x Gry extends naturally to a closed variety of Gryyxco x Gry.

. . . Conv - ——Conv .
The closure of this variety in Gry ¢ is denoted as Gry,c , 5. As is proven

in [Zhu09, 1.2.2), for y # 0, (Gryfr,n)y = Gr, x Gry and (Gryfie,,)o =
Gruiﬁ)\, where @Mi@,\ is the “twisted product” of @u and Gry. (See loc.
cit. or (6.2.6) below for the precise definition.)

Let h : Gr%oxr% — Bung be the map sending (y,&,&",3,8') to &'. Then
as explained in [Zhu09, 1.2.2], h*(w=1)", when restricted to Gr&2%|co, is iso-
morphic to £" B L", whereas over (Gr$2%.), it is isomorphic to m*L", where
m : GryxGry — Gry is the natural convolution map (which is obtained from
multiplication in the loop group). Therefore,

HO(@M,E") ® HO(@A,E”) ~ HO(@MQ@A,m*ﬁn) x> HO(@,HA,E”).
The last isomorphism is due to the fact that (’)@HA =~ m*(’)@# <Cry O

Clearly, Lemma 6.1 and Proposition 6.2 together with Theorem 2 will
imply Theorem 1.

6.2. Reduction of Theorem 3.9 to Theorem 6.8. In this subsection, we
prove Theorem 3.9, assuming Theorem 3.8. The key ingredient is the Frobenius
splitting of varieties in characteristic p.

We begin with introducing more ind-schemes. Let G be the group scheme
over C as in Section 3.2. In particular, Gp, = G,y . Let GrgD be the Beilinson-
Drinfeld affine Grassmannian for G over C'. That is, for every k-algebra R,

y € C(R),€& is a G-torsor on Cr, and }

) ~ o0 . c e .
B:€leg-r, = E ey -1, 18 a trivialization

(6.2.1) GrgD(R)z{(y,&ﬂ)

This is a formally smooth ind-scheme ind-proper over C. (The ind-repre-
sentability of GrgP is explained in the proof of Theorem 10.5 of [PZ13].) Again,
by the same argument as in [Gai0l, Prop. 5], we have

GrgP|ce = Grg|ce x (Grg)o, (GrgP)o = (Grg)o = F(Y.
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We also need the convolution affine Grassmannian Grgon". The functor it
represents is as follows. Let R be a k-algebra; then

(6.2.2)
y € C(R), &,&" are two G-torsors on CRg,

Grg™(R) =} (v,€,E,8,8) | B:E&|cp-r, = Ecpr, is a trivialization,

and /Bl : g,|010? % 6|C}>{
The ind-representibility of GrSOHV can be seen from another construction of
Grgonv. Namely, there is a Lt Gp,-torsor Grg over Grg whose R-points clas-
sify

(y,&,B) € Grg(R), and a trivialization}

v:Elp, = g° 7
where I'g = {0} x SpecR is the graph of the constant map SpecR — {0}. Then

Grgonv o Grg,g XL+QOO FrY.

(6.2.3) Grgo(R) = {(%57577)

|5

The projection
e Glr(gjonV — Grg

sends (y,&,&",8,8') to (y,€,B).
There is a natural map

(6.2.4) m: Grr(gjonV — GrgP
sending (y,&,&',5,8") to (y,&',B 0 B'). This is a morphism over C, which is

an isomorphism over C' — {0}. Over 0, this morphism is the local convolution
morphism
(6.2.5) m: FOYXFO = LG x*" 90 F¢¥ — Fr¥,
given by the natural multiplication of the loop group.
In addition, there is a section

Conv

z: Grg — Grg
given by sending (y, &, f) to (y,&, &, B,id). Therefore, via z (resp. mo z), Grg

is realized as a closed subscheme of Grgonv (resp. GrgD).

Letw € Wy\f/lv/ /WY be an element in the extended affine Weyl group and
let F e}j denote the corresponding Schubert variety in F¢¥. Then @u X F 62; C
Gry x F¢¥ extends to a variety

@Q,Méo X fﬂg C (Grg Xc éo) X ]'—EY = GI”SD X C’o = Gr(gjonv Xc éo.
Let @giw denote its flat closure in GrgD x¢ C and @gof; denote its flat

closure in Grgon" x¢ C. Then @S?ZH maps to @Si,w via m.
We have the following key observation.
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LEMMA 6.3. Suppose that v is sufficiently large. Then the fiber (@SZ’V)()
1s irreducible and generically reduced.

Proof We first show the irreducibility. Clearly, the map mg : (@S ) s

(Grg 4,v)g is dominant. From the second definition of Grconv, (7COHV)~

fibration over (Grg,,)s, with fibers isomorphic to FtY. Therefore, by The-
orem 3.8, the underlying reduced subschemes of irreducible components of
(Grg ) )G are just

FIOXXFLY, MeA.

Here and in the sequel we use the following notation. Let S, S5 be two sub-
schemes of ]-"EY, and assume that S is L+g(90 stable. Then we denote

(6.2.6) S1x8y 1= 8 xL"900 g,

where 3’1 is the preimage of S; under LGp, — FrY.
Therefore, the underlying reduced subscheme of each irreducible compo-
nent of

(Grgn,)y C FE¥

is contained in one of mg(FeX xFL,),\ € A. Observe that if A\ € A is not
dominant, for v sufficiently dominant so that A+ v is dominant, by Lemma 9.1,
we have

Utuen) = (2p, v+ A) < (2p,v) + (2p, 1) = £(t) + L(2N).

However, by flatness, all the irreducible components of (@Sz,u)() have di-
mension ¢(t,) + ¢(t,). This implies that (@giy)(] has only one irreducible

component whose underlying reduced subscheme is mﬁ(}"é}fi}"@/) FeY P

Next, we show that (@22 )5 is generically reduced. Let t, = s,,(O) €
fﬁy(k‘) be the point corresponding to v. Let s, ,, denote the section of Grg Xc
C over C given by the closure of Sulgo X {tu} c° — GI‘g|CO x Ft¥. Using
a similar construction as in Section 5.2, we will exhibit a smooth affine chart
around t,4, = s,,(0) in @SBW. We consider the group ind-scheme L£PO'G
over C' whose R-points are pairs (y,7), where y € C(R) and v : Cp — G.
This is a constant group ind-scheme over C whose fibers are just the group of
(polynomial) maps from C — G. Note £P°'G acts on GrgD by changing the
trivialization S.

Note that the root group U, 1., constructed in Section 5.1 can be regarded
as subgroups of £P°'G. In addition, for A, Us, as constructed in Section 5.2 is
a natural closed subgroup scheme of £P°'G. Now we claim that the morphism

(6.2.7) Usp,,, xc C— GTSD xcC, g gsu
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induces an open immersion Ug,,, Xc C — @22#‘ This will complete the
proof of the lemma.

For this purpose, we consider the Beilinson-Drinfeld version of the jet
(resp. loop) group LT GBP (resp. £GBP) whose R-points are pairs (y, ), where
y € C(R), and v is a section of G over m (resp. over (m)o) They
are represented by ind-schemes formally smooth over C. We have

LYGPP|oe = LTG0 x LGy, (L£7GPP)g = LTG,,,
and a similar description for £GBP. In addition, there is a canonical map
LGBP — GrgD (similar to (3.1.4)) that is an £TGBP-torsor and admits sec-
tions étale locally on GrgD. The natural map Im — Cpg induces LG C
£+gBD, and Z/lqm ., can be regarded as a closed subgroup scheme of L1TGBD,
Clearly, @gi’y is stable under the action of £LTGBP x C. Therefore, the
morphism (6.2.7) factors as Us,,, — @SB,V Using the similar argument as
in the proof of Proposition 5.3, one shows that (6.2.7) is a monomorphism and

in fact is an open immersion to Grg , . u
Wy

PROPOSITION 6.4. Let v € Xo(T) be a sufficiently dominant coweight.

Then the variety @SB’V is normal and the fiber (@giy)ﬁ over 0 € C is
reduced.

Proof. The proposition follows from Lemma 6.3 and Hironaka’s lemma
(cf. [Gro65, 5.12.8]). Namely, let V' denote the underlying reduced subscheme
of (@giy)(). Then V is irreducible and, therefore, is a Schubert variety of
F¢¥ that is normal by Theorem 2.1. Therefore, the proposition follows. ([

In fact, we proved that the fiber (@giy)@ is isomorphic to .7-"6}; Yy

If v € Xo(Tse)r C Xo(T)r so that v € Weg, then 2(Grg,,) C @Sf‘; (resp.
mo z(Grg,) C @giu} is naturally a closed subscheme.

By Corollary 4.4, we just need to prove Theorem 3.9 for one prime. There-
fore, we will assume char k = p > 2. Recall the notation of Frobenius splitting
(cf. [MR85], [BKO05]) for varieties in characterisic p > 0.

THEOREM 6.5. Assume that v € Xo(Ts) is a coweight dominant enough
so that Proposition 6.4 holds. Then @SZ’V 1s Frobenius split, compatibly with
— ——BD
Grg, and (Grg,, )5

COROLLARY 6.6. Theorem 3.9 holds. That is, the scheme (Grg,)s is

reduced.

Proof. This is because
— — ——BD
(Grg,u)(] = Grg,, N (Grg,u,y)()»

and therefore it is Frobenius split. In particular, it is reduced. O
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The remaining goal of this subsection is to reduce Theorem 6.5 to the
following Theorem 6.8 via Proposition 6.7. Theorem 6.8 itself will be proven
in later subsections. First, it is enough to prove Theorem 6.5 for the case
where Go, = G, is the Iwahori group scheme. To see this, assume that we
have G; — Ga, where (G1)o, is Iwahori and (G2)0, is a general parahoric group
scheme. Then the natural projection @gi) oy @25 v 18 proper birational
and therefore the push-forward of the structure sheaf is the structure sheaf
by the normality. Furthermore, under the projection, the scheme-theoretical
image of Grg, , (resp. (@gfw,)@) is Grg, . (resp. (@SBWJ)@). Therefore,
from now on we assume that Gp, = Ga and write I = LtG,.

Since @SBW is normal, we just need to find an open subscheme of U C
@Sz’y, whose complement has codimension at least two, such that U is Frobe-
nius split, compatibly with U N (@227,,)6 and U N Grg,, ([BK05, Lemma
1.1.7(iii)]). Therefore, we can throw away some bad loci of @giy that are

hard to control. In particular, we can throw away (Grg,,); C Grg,, C @SB’W
which is of our main interest.
More precisely, we have

PROPOSITION 6.7. There is an open subscheme U of @S?Z such that

(1) m: @Sf;’, — @gzy maps U isomorphically onto an open subscheme

m(U) of@g]l)w, and the complement of m(U) in @g}iy has codimen-
ston two;
(2) U is Frobenius split, compatible with U N (@S(Zﬁ)@ and U N z(Grg,y,).

It is clear that Theorem 6.5 will follow from this proposition.

Proof. Let us first construct this open subscheme U. Recall that in Sec-
tion 5.2, we have constructed the affine open chart ¢,, : U, C Grg,, that satisfies

(1) 5,(C) C U ) )

(2) U, is an affine space over C' and therefore smooth over C;

(3) (Uu)g = C(p) C FE¥ is the Schubert cell containing ¢, i.e., the L*G,-

orbit containing t,,.

Recall that we constructed the section s, : C — @g and that Grg, is the
minimal irreducible closed subvariety of E}vrg that is invariant under ZIC; and
contains s,(C). Let Grg, denote the L+G-orbit through s,. Then Grg,, is
an open subscheme of Grg , that is smooth over C. In fact, Grg , is open in
@g,u since U, C Grg,, and the transformations of U, by Z:E form a cover of
Grg,. Therefore, Grg , is flat over C. Observe that under the isomorphism
Grg x¢ Ce =~ Gryg x C~'O7

Grg ul@o = Gry x C°,
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where Gr,, denotes the L™ H-orbit in Gry through ¢, that is smooth. On the
other hand (Grg )5 = (Uy)g is the Schubert cell C(u) in F¢ containing p that
is irreducible and smooth. Therefore, Grg , is smooth over C.

Let Uy be the preimage of Grg , under 7 : @S?Z — Grg,,. Then Uy is a fi-
bration over Grg,, with fibers F/,. As a scheme over C, the fiber of U; over 0 is

C(u)xF,.

We define U to be the open subscheme of U; that coincides with U; over Cc°
and that is given by

C(u)xC(v) C C(p)xFb,
over 0.

We claim that m : U — m(U) is an isomorphism and the complement of
m(U) in @SBW has codimension two. Over C°, m is an isomorphism. Over 0,
the morphism

——BD
m: Uy — (Grg ,.)5
is the same as
m: C(u)xC(v) = Flyty.

For A, recall the group scheme Us, as constructed in Section 5.2. Denote
(Up,)o C I by Us,. Note that Us,t,Us,t, = Us,,tut,. Therefore, m in-
duces an isomorphism from C(u)xC(v) onto C(p+v). In addition, the preim-
age of C(u+v) is C(u)xC(u), as m(FlyxFl,) for wv < p + v is contained
in a proper Schubert subvariety of F¢,1,. Therefore, m : U — m(U) is a
homeomorphism and m~!m(U) = U. Therefore, m : U — m(U) is a proper,
birational homeomorphism with m(U) normal, which must be an isomorphism.
Note that (Grg,,)s C Grg,, C @giy is not contained in m(U).

To see that the complement of m(U) has codimension two, first observe
that over C°,

Grgylge — m(U)|go = (Cr,, — Gr,) x Fo, x C°,
which has codimension two, since @“ — Gr,, has codimension two in @u-
Over 0,
(Grg )y = m(U)g = Flys, = Clu+v),
which has codimension at least one. This proves that the complement of m(U)
in @giy has codimension two.

Next we turn to the second part of the proposition. Recall that Uy is the
preimage of Grg , under 7 : @S(ﬁlz — Grg,,. From the construction of U, we
know that U C Uy C @SCZ“;, Therefore, it is enough to show that the same
statement of Proposition 6.7 (2) holds for U;. Recall that

Uy 22 (Grg,, Xarg Grgo) x! Fb,
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where Grg g is the I-torsor over Grg as in (6.2.3). To simplify the notation,
for any I-variety V', we denote

Grg7u>~<v = (Grg# XGrg Grgg) XI V.

Now, let * € F¢, be the base point. (Recall that v € X*(Tx.), so that *, the
Schubert variety corresponding to the identity element in the affine Weyl group,
is contained in F¢,.) Then the closed embedding z : Grg , — U corresponds to

Grg , x* = Grg X Fly.
Now the assertion follows from the following more general statement. O

THEOREM 6.8. For anyw &€ W, there is a Frobenius splitting of the scheme
Grg ; x Fly that is compatible with

(GrguxFlw)s = (Grg u)gx Fluw = C (1) x Flo.

In addition, for any v < w in W, Grg X Fly C Grg  xFly, is also compatible
with this splitting.

The remaining goal of this section is to prove this theorem.

6.3. Special parahorics. We continue by assuming that G and G are as
given in Section 3.2, but we are particularly interested in the case when G = G*
is the group scheme over C' such that G¢, , 18 a special parahoric group scheme
of G. In this case, we can easily deduce Theorem 3.9 (assuming Theorem 3.8)
directly from Hironaka’s lemma (without going into the argument presented
in the previous subsection). This will in turn help us prove a special case of
Theorem 6.8; namely, the case when w = 1 (see Corollary 6.17). Let us remark
that if G is split, Proposition 6.15 directly follows from Frobenius splitting of
Schubert varieties. Those who are only interested in split groups can go directly
to the paragraph after this proposition.

Solet v € A(G, S) be a special point in the apartment associated to (G, 5),
and let G, be the corresponding special parahoric group scheme over O. Let
Fl, = LG/L*G, be the partial affine flag variety. To emphasize that it is the
affine flag variety associated to a special parahoric, we sometimes also denote
it by F¢°. As before, for each 1 € Xo(T)r, let us use ¢, to denote its lifting to
T(F) under the Kottwitz homomorphism T'(F') — Xo(7T')r. It gives a point in
F %, still denoted by t,. Then the Schubert variety ¢, is the closure of the
L*G,-orbit in F¢, passing through ¢,. We have the following results special
for Schubert varieties in F¢°, which generalize the corresponding results for
Grp. (See also [Ricl3, Cor. 2.10] for more detailed discussion.)

LEMMA 6.9. The Schubert varieties are parametrized by Xo(T){. For
p € Xe(T)f, the dimension of FL, is (1,2p). Let }"ZZ C FL;, be the unique
open L+G,-orbit in fﬂi. Then ]-"Ez — ]-"KZ has codimension at least two.
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Proof. Observe that the natural map Xe(7){ C Xo(T)r — Wo\W /Wy is a
bijection. The first claim follows. Let I C L*G, be the Iwahori subgroup of LG
corresponding to the alcove a. (Recall that v is contained in the closure of C.)
Then the I-orbits in F¢° are parametrized by minimal length representatives
in W/Wy. Let A € A = Wop C Xo(T)r. By Lemmas 9.1 and 9.3, if w € W is
a minimal length representative for the coset )Wy, then

dim IwL"G,/L*"G, < (u,2p),

and if A € Xo(T )ff , the equality holds. Therefore, dim F¢}, = (u,2p). To prove
the last claim, observe that if F¢35 C .7-"6;, then p— X € X¢(Ty)r and therefore
(1w — A, 2p) is an even integer. O

Recall that in [BD, §4.6], Beilinson and Drinfeld proved that Gr,, is Goren-
stein; i.e., the dualizing sheaf Wer, 18 indeed a line bundle. (See Equation (241)
in loc. cit.) It is natural to ask whether the same result hold for F¢;,. However,
the situation is more complicated in the ramified case due to the fact that not
all special points in the building of G are conjugate under G,q(F'). More pre-
cisely, if Gger is the odd ramified special unitary group SUsg,4+1 (see Section 8
for the definition), then there are two types of special parahoric group schemes
(see Remark 8.1(ii)).

Let us begin with the following lemma. Let v be any point in the apart-
ment A(G,S), and let G, be the corresponding parahoric group scheme for
G. For simplicity, we write K = LTG,. Then K acts on Lie G by the adjoint
representation. Let p € Xo(T)p. Let

P=KnNAd,K,

considered as a proalgebraic group over k. Then Lie K and Ady, Lie K are
P-modules.

LEMMA 6.10. As P-modules,

Lie K <det Ady, Lie K )

6.3.1 det ~
(6.3.1) “ Lie K N Ady, Lie K Lie K N Ady, Lie K

Proof. Recall that we denote by S the chosen maximal split F-torus of G.
Its (connected) Néron model & maps naturally into G, since v € A(G,S)
([BT84, §5.2]), and L*S maps to P. The special fiber Sy of S can be regarded
as the “constant” maps from O to S and can therefore be regarded a subgroup
of LTS. Then Si C P is a maximal torus of P. Thus, X*(P) C X*(S).
Therefore, it is enough to prove (6.3.1) as an isomorphism of Si-modules.

In Section 5.1.3, in particular Remark 5.1 (see also [PROS8, 9.a,9.b]), we
have attached to each affine root a of (G,S) a one-dimensional unipotent
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subgroup U, = G, C LG. Let u, be the Lie algebra of U,. By definition,

LieK =Lie7%& [] ua,
a(v)>0

where 770 is the connected Néron model of T. Then clearly, as Si-modules
(we fix an embedding Sy — L*S),

Lie K
LicK NAdy, Lie K S

a(v)>0,a(v—p)<0
Ady, LieK
Lie K N Adg, Lie K N

Ugy.
a(v)<0,a(v—p)>0
By identifying A(G, S) with X, (S)r using the point v, we can write affine roots
of G by a =a+m,a € ®(G, S), where a is the vector part of a and m = v(a).
Therefore,

{a(v) > 0,a(v —p) <0} ={a+mla € ®(G,S)T,0<m < (u,a)}
and

{a(v) < 0,a(v —A) >0} ={a+ml|ac ®G,S),(1,a) <m < 0}.
Since Sy acts on U, via the weight a, the lemma follows. O

Now we should specify the special vertex. Recall that we assume that Gy,
is simple and simply-connected. If Ggqer # SUsp 41, we can choose an arbitrary
special vertex in the building of G since they are all conjugate under G.q(F).
If G4ger = SUsgp41, we choose the special vertex so that the corresponding
parahoric group has reductive quotient Spy,,. (See Remark 8.1).

THEOREM 6.11. Let G be as in Section 3.2. With the choice of the special
vertexr v as above, the Schubert variety FU, is Gorenstein for all fu.

Proof. As above, we denote by G, the parahoric group of GG corresponding
to v and K = L™G,. Recall that since Ft,, is Cohen-Macaulay, the dualizing
sheaf W, exists. We need to show that it is indeed a line bundle. Let j :

.7-152 — F{;, be the open K-orbit in F¢},. Then we have shown that F¢, — ]-"EZ
has codimension at least two. As F¢}, is normal, wres = j*(wﬁei)' Let Lo be
the pullback to F¢° of the determinant line bundle Lqer of Grapricg,) along
i@ FU° — Granieg,). We first prove that there is an isomorphism of line

° S
bundles w=2% = Log| s on FL, .
e, 20‘}'@ H

Indeed, observe that both sheaves are K-equivariant. The K-equivariant
structure of w]__g?s is induced from the action of K on ]—YZ. On the other hand,

i
a central extension of LG acts on Lo, and a splitting of this central extension
over K defines a K-equivariant structure on Lo.. To fix this K-equivariant
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structure uniquely, we will require that the action of K on the fiber of Lo,
over x € F{° is trivial. Then the K-equivariant structure on Lo, is given as
follows. (For simplicity, we only describe it at the level of k-points, but the
generalization to R-points is clear; for example, see cf. [FZ12, §§2.2.2-2.2.3].)

Recall that for z € F¢°, i(x) is a lattice in Lie G and La¢|, is the k-line
, Lie K i(z)  \ 7
cle = L K = T 1 ~ 7 N\ T 1 ~ 7 N\ .
Lacle = det(i(w)] Lie K) := det Lie K Ni(x) ® det <L1€K N z(:r))

Then for g € K, Loc|ls — Lac|gz is given by
det(g) : det(i(x)| Lie K') = det(i(gz)|g Lie K) = det(i(gz)| Lie K).

Now it is enough to prove that there is an isomorphism Loy, = w;?s lt, as
i

one-dimensional representations of P = t, K t;l N K, the stabilizer of ¢, € F¢°

in K. As the tangent space of ]-"EZ at t, as a P-module is isomorphic to
Lie K
Lie Kmidtu LieK’

o Lie K 2
Wi e, = | det — -
Fe,H Lie K N AdtM Lie K
as P-modules. On the other hand, it follows from the construction of the
determinant line bundle that

Lie K Ad; Lie K -1
et K’

L = det
2ele, = Aot A A, Dok \ 9 Tie K 1 Ady, Lie K

as P-modules. Therefore, the assertion follows from Lemma 6.10.

Next, we prove that there is a K-equivariant line bundle £, on (F¢*),eq
such that £2 = Lo.. Indeed, for any g € G(F) acting on F¢* by left trans-
lation, we have g*Lo. = Lo.. Therefore, it is enough to construct L. in the
neutral connected component of (F¢%);eq, which is isomorphic to F¥5., the
corresponding affine flag variety for Gqe, by [PRO8, §6]. Since v is a special
vertex, Pic(Fl5.) = ZL(s;), where i € S is a special vertex in the local Dynkin
diagram of G corresponding to v. By checking [Kac90, §84, 6], we see that for
our choice of v, we havea) = 1. (For SUg,41, there is another special vertex
i’ € S such that a) = 2, and the reductive quotient of the corresponding para-
horic group is SOsgy,41; see the following remark and Remark 8.1.) Therefore,
the central charge of L(g;) is 1, whereas the central charge of Lo is 2hY by
(2.2.4) and Lemma 4.2. Therefore, L. = L(h"e;).

. . ~ Lic K
AsX*(P)C X’(Sk)1 is torsion free, L.y, =det m als P-modules.
Therefore, we have w. . >~ L 7 which in turn implies that W = Jx(wgpe)

7
= (Lol gyr) = Lo O
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Observe that the above proof implies that no matter what special vertex
we choose, w}?s is always a line bundle, where following Section 9.3, we denote
1%
Jel(wreg | 2,)") by Wie -
The following corollary is what we need in the sequel.

COROLLARY 6.12. For any special vertex v of G, Hl(}'ﬁz,w}gs) =0 for
yn
all positive even integers n.

Remark 6.1. In the case Gger = SUgp+1, if we take the special vertex to
be vy, the one defined by the pinning (2.1.1) so that G,, is of the form (2.1.2),
then the reductive quotient is SOg),+1 and the corresponding a) = 2. Since the
dual Coxeter number of SLo, 1 is 2n + 1, this means that on the partial flag
variety F¢° corresponding to this special vertex, Lo, does not have a square
root. Let I be the Iwahori group of Gge corresponding to the chosen alcove
a, i € S given by vg. Let P} = P,/I be the rational line in Fls. = LGqer/I
as constructed in Section 2.2. It projects to a rational curve in F¢° under
LGaer/I = LGqer/ LT Gy, (An explicit description of this rational line is given
in (8.0.1).) Then the restriction of Ly, to this rational line has degree 2n + 1.
Since this line is contained in any Schubert variety F¢;,, this means that w]__-l}i

is not a line bundle; i.e., ]-"KZ is not Gorenstein.

Now we turn to the global Schubert varieties. Let
G° = ((Res o (H x O)F)°

be the Bruhat-Tits group scheme over C' as constructed in Section 3.2. There-
fore, G&,, = G, is the special parahoric group scheme for G, as in (2.1.2).

PROPOSITION 6.13. Assume Theorem 3.8. Then Theorem 3.9 holds for G*.

Proof. By Theorem 3.8, the support of (Grgs ,); is a single Schubert va-
riety. This is because, when G¢, = Gy, is a special parahoric group scheme,
WY =Wy and Wy \ AdmY (1) /Wy consists of only one extremal element in the
Bruhat order, namely ¢, under the projection Adm” (u) — Wo\ Adm" (12)/Wp.
This proves that the special fiber of @gs# is irreducible. On the other hand,
we have the affine chart U, that is an affine space over C (see Section 5.2) of
Grgs , and (Uy,)5 is open in (Grgs ). Therefore, the special fiber of Grgs ,
is generically reduced. By Hironaka’s lemma again, Grgs , is normal over C,
with special fiber reduced, indeed isomorphic to .FEZ. O

COROLLARY 6.14. The global Schubert variety Grgs , is normal and Cohen-
Macaulay.

Proof. The normality follows from Hironaka’s lemma. Since F7;, is Cohen-
Macaulay, the assertion follows. O
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We refer to Section 9.3 for a brief discussion of some facts about Frobenius
splittings.

PROPOSITION 6.15. The variety @gs,u 1s Frobenius split, compatibly with
(Grgs 1)5-

Proof. For simplicity, let us denote Grgs, by X. Then f : X — C is
flat and is fiberwise normal and Cohen-Macaulay (since each X, is a Schubert

variety). Let wy /G be the relative dualizing sheaf on X. We know that fyw X / P

is a vector bundle on C' by Corollary 6.12.
By the construction of Section 5.3, the sheaf f.w 1 p~ is Gp,-equivariant,

and therefore, we can choose a G —equlvarlant 1somorphlsm

(6.3.2) fow ;/g = H(Xgwy.") ® Og

where the G, action on HY (Xﬁ, w}(fp ) comes from the G,-equivariant struc-

ture on wX~p Let o € HO(X(), wX~ P) be a G,,-invariant section that splits Xo
(i.e., o is a splitting of the natural map Ox; — F.Ox,, when regarded as a
morphism from F.Ox, — Ox; via (9.3.1)). Such a section always exists by
Lemma 6.16 below. Let ¢ ® 1 be a section of f*wig/% via the isomorphism

(6.3.2). We claim that o ® 1, regarded as a morphism (FX/O)*OX — Oxw
via (9.3.3), will map 1 to 1. In fact, (60 ®1)(1) is a G,-invariant nonzero func-
tion on Grgs, since its restriction to Xy is nonzero by (9.3.7). But since all
regular functions on Grgs ,, come from C, (0 ®1)(1) is a Gy,-invariant nonzero
function on C, which must be a constant. But its restriction to Xj is 1; the
claim follows.

Now, let (6 ® 1) ® (F-)P~! € fuw X/Z‘ ®wy P fwy YP_ By the formula

(9.3.2) (applied to C') and the commutative dlagram (9.3.6), the proposition
follows. O

LEMMA 6.16. Let X be an algebraic variety over an algebraically closed
field k of positive characteristic with a Gy,-action. Let 7 : F,Ox — Ox be a
splitting map of the inclusion Ox — FyOx. Decompose T = Y ; 7; according
to the weights of the natural action of G,,. Then 1y is also a splitting map.

Proof. By definition, 1 = 7(1) = >, 7;(1), where 7;(1) is a function on X
of weight j under the action of G,,. Comparing the weights of both sides, we
find that 79(1) = 1 and 7;(1) = 0 for j # 0. O

Let G be the group scheme with Go, = Ga. Let I = LTG,. Observe
that the natural projection Grg — Grgs induces an isomorphism from Grg ,
to its image in Grgs . To see this, observe that Grg, is covered by U, and
Grg |0, both of which map isomorphically to their images in Grgs, u- We thus
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regard Grg,, as an open subscheme of Grgs , under this map. The boundary
Grgs ,, — Grg,, has codimension at least two. Therefore, we have proven

COROLLARY 6.17. Grg,, is Frobenius split, compatibly with (Grg ,)g-

COROLLARY 6.18. The pullback along f : Grg, — C gives an isomor-
phism f* : Ho(é', O) 5 HO(Grg,“,OGrg’#).

6.4. Proof of Theorem 6.8. The goal of this subsection is to prove Theo-
rem 6.8. Without loss of generality, we can assume that w € Wg. Let s;(i € S)
be the simple reflections (determined by the alcove a). Let us recall that for
W = (Siy, Siy,- - -, Si,,) & sequence of simple reflections corresponding to affine
simple roots with w = s;, - - - s;,,, the Bott-Samelson-Demazure-Hasen (BSDH)
variety is defined as

Dy =L P, xILtp, xI...xIL*P, /I,

where P; is the parahoric group corresponding to i (so that LT P;/I = P!),
This is a smooth variety that is an iterated fibration by P'. For any subset
{1yt C{L,...,m}, let © = (s;;,,...,si;, ) be the corresponding subse-
quence of w. Let H;,,p=1,2,...,m, be defined as

Hip:{i 9 # (i dal,

LTP;, ifpe {Ji,--sjn}

Then there is a closed embedding o5 4 : Dy — Dy given by

(6.41) Dy=L"P, x' LTP, x' - . xTLTP; /T~ H; x'-- - xH,; /I
s LTP, x'LtP, <! ... x! LY P, /T = Dg.

In particular, let @w[j] denote the subsequence of @ obtained by deleting s;;.
Then
O[] Dﬁ;[]] — DU}

is a divisor. This way, we obtain m divisors of Dyg. If 01,09 are two subse-
quences of w, then the scheme-theoretical intersection Dy, N Dy, inside Dy is
Dy, o, -

For w € Weg, let m = f(w), let us fix a reduced expression of w =
Siy + - Si,, and let W = (siy, Siy, - -, Si,,). Let Dy be the corresponding BSDH
variety so that Dy is smooth and mg : Dg — F¥y, is birational. By twisting by
the I-torsor Grg,, X rg Grg,, we have Grg , X Dy — Grg ;X Fly,, still denoted
by 7g.

By the standard argument, to prove Theorem 6.8, it is enough to prove
that

PROPOSITION 6.19. The variety Grg7u>~<Du~, 18 Frobenius split, compatibly
with all Grg ;X Dyj for all j, and with (Grg ,)5% D .
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Let wp, be the canonical sheaf of Dy. It is known that there is an iso-
morphism (for example, see [Gér01, Prop. 3.19] for the SL,, case, [PR08, proof
of Prop. 9.6], [Mat88, Ch. 8.18] for the general case)

m
(6.4.2) wpr & O(ZDM) ®7r;3,£<25i>,

j=1 i€S
where L£(3 ;g €i) is the line bundle on F/y. as defined in Section 2.2. (Recall
that since we assume that w € Wag, Fly, C Fls. = (F£)°, by [PROS8, §6].) If
we endow L(>;cg &) with the I-equivariant structure such that I acts on its
fiber over x € F/g. trivially, then the isomorphism (6.4.2) is I-invariant. This
observation allows us to formulate a relative version of this isomorphism.

Let us denote by Lo, the line bundle on F¥¢ that is the pullback of Lget
along ¢ — Grgries) as in Section 4.1. (As before, by abuse of notation,
Lie! is considered as an O-module.) We endow it with the I-equivariant
structure so that I acts its fiber over * € F/ trivially. By twisting by the
I-torsor Grg, Xarg; Grgp, we obtain a line bundle on Grg,xF/, denoted
by Loe. In addition, to simply the notation, let us denote the projection
Grg,u>~<Du~, — Grg, by f: X — V. Then by the same argument as in the
proof of (6.4.2) (i.e., by induction on the length of w), we have

(6.4.3) w)_(?v = 0(2 Z Grg’MtiU]) & W;EQC.
j=1

We will later prove the following lemma.

LEMMA 6.20. There is a section g of Lo. whose divisor div(cg) C Grg,,
X Fly, does not intersect z(Grg,,) = Grg,, x*.

Let us remark that the line bundle £(Y;cg€;) is very ample on F¥,,, and
therefore there exists a section of £(Y ;cs¢;i) that does not pass through .
However, ch is twisted by the I-torsor Grg, , Xar, Grg, and it is not ample.
Therefore, some detailed analysis of this line bundle is needed.

Let us first assume this lemma, and let o be a section of w)_(?v whose
divisor is of the form

(6.4.4) div(o) =2 Grg X Dg(j + div(m00).
j=1
We claim that

LEMMA 6.21. A nonzero scalar multiple of the section o 6w}{/{} (recall

that we assume that p > 2), when regarded as a morphism (FX/V)*OX — Oxw
via (9.3.3), will send 1 to 1.
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Proof. Let
h=0"7 (1) e N(XP, 0x0)
be the function as in the lemma. By Corollary 6.18, we have I'(X®), Oxw) =

r(C, Og) and so h is obtained by pullback from a function on C' that then has
to be a constant. To see h is nowhere vanishing, let z € Grg , be a point. It is
enough to show the restriction of h to (Dy)s := Grg’u>~<Du~,|x =~ Dy is not zero.
This is because the restriction of o to Grg ,x Dy, gives a divisor of the form

2371 Dy|y) + D for some D that does not pass through *. Therefore, by (a

slight variant of) [MR85, Prop. 8|, JPT_II( Da)s» When regarded as a morphism
from F.Op, to O(p,), via (9.3.1), will send 1 to a nonzero constant function
on (Dg)y. Therefore, by (9.3.7),

hlg). = o Hpa). (1)
is a nonzero constant. This finishes the proof of the lemma. O

1-p

Now let 7 € Wairg,,

be a section that gives rise to a Frobenius split-

ting of Grg ,, compatible with (Grg )5 by Corollary 6.17. Consider o' @
frr e w;p. By (9.3.6), it gives a splitting of Grg ,x Dy, compatible with
(Grg,)5x D. Again, by (a slight variant of) [MR85, Prop. 8], this splitting is
also compatible with all Grg,utiU]. This finishes the proof of Theorem 6.8.

It remains to prove Lemma 6.20. Let us consider the surjective map
Vw = F(‘Fgw)‘CZC) — F(*a£20) = ‘/l = k

By twisting with the I-torsor Grg ,, X gy Grg g, we obtain a surjective morphism
of vector bundles Vy, = V1 = Ogyq, over Grg,. Clearly, Vy, is W*EQC, where
7 : Grg X Fl — Grg,, is the base change of 7 : Gry™" — Grg. Then to prove
Lemma 6.20 is equivalent to prove that there is a morphism OGYQ,M —= Vuw
(which determines the section g of Ls.) such that the composition (’)Grg# —
Vw — V1 is an isomorphism.

To this goal, let us first observe that the I-torsor GrggxcC° — GrgxcC°
has a canonical section. Namely, we associated an R-point (y, &, 3) of Grg x¢
C° an R-point (y,&,3,7) of Grgo x¢ C° as follows. Since the graph I'y of
y : SpecR — C does not intersect with {0} x SpecR C C X SpecR, we can
define

7 €] °|

—_—
{0} xSpecR {0} xSpecR

as the restriction of 8 : £|c, -1, = EO\CR_py. By base change, we get a canon-
ical section (a canonical trivialization) v of the I-torsor W x g, Grgg — W,
where W = Grgulgo = Gry, x C°. Therefore, Grg  xFly|w = W x Fly
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canonically, and over W, we have
Vi ® Ow —— V1@ Ow

|

Vw|W e V1 |W
To complete the proof of the lemma, it is enough to show

(1) the isomorphism Vi ® Oy — Vi|w extends to an isomorphism V; ®
OGirg,, — Vs
(2) there is a splitting Vi — V,, (equivalently, a section of £(23 ;cs¢€i)
whose divisor does not pass through * € F¥¢,,), such that the induced
map
V1®Ow—>vw®OW—>Vw|W
extends to V1 ® Ogrg , — Va-

Let us first prove (1). Let us consider the general situation: Let £ — B
be a torsor under some group K, and let M be a space with trivial K-action.
Then there is a canonical isomorphism ¢ : E x5 M ~ E/K x M = B x M.
In addition, for any section s : B — E, the induced isomorphism E x®& M ~
(B x K) xX M ~ B x M coincides with ¢. Back to our situation, as the
I-module Vi is trivial, we can apply this general remark to conclude that V;
is canonically trivialized, which restricts to its trivialization over W induced
from the canonical trivialization of the I-torsor over W.
~ To prove (2), let us first complete the curve C = C U {oo} = P! and
C = CU{x}. We extend G to a group scheme over C so that Go__ is the pro-
unipotent radical of the Iwahori opposite to Gp,. More precisely, the pinning of
H (Sections 2.1 and 3.2) determines a unique Borel B~ such that By N B~ =
Ty. Let U- = [B7,B7]. Let G be the group scheme over C' obtained by
dilatation of H x C along By x {0} and U~ x {0}. Then G is the neutral
connected component of (Resé /C,QN)F. This group scheme is the same as the

group scheme G(0,1) in [HNY13]. Let
I~ =T(C -{0},9),

considered as an ind-group over k. Then the Birkhoff decomposition (cf.
[HNY13, Prop. 1(4)]) implies that Lie G = Lie I @ Lie I""~ as k-vector spaces.
(This is the triangular decomposition in the Kac-Moody theory.) Recall that
we identify O ~ Op and G ~ G, (cf. Section 3.2). For an O-lattice L in Lie G,
consider the complex of k-vector spaces

L& Liel“™ — LieQ.

As L varies, its determinant defines a section of Lqe; over the neutral connected
component of Grgr i) (see [Fal03, §2] for details), whose pullback defines
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a section 0¥ of L. vanishing away from * € F¢. This gives us a splitting
Vi — Vi, which we claim is the desired splitting satisfying (2).

To prove this claim, we need two more ingredients. Let Bung be the mod-
uli stack of G-bundles on C. Let us express F/ as the ind-scheme representing
(€,), where € is a G-torsor on C and 3 is a trivialization of £ away from
0 € C. Let wging be the anti-canonical bundle of Bung. Its fiber over a G-
torsor & is the inverse of the determinant of the cohomology det RT'(P!, ad&) L.
Therefore wé&ng is isomorphic to the pullback along Bung — Bungy,icg) of
the inverse of the determinant of cohomology line bundle. As is well known
(e.g., [Fal03]), the pullback of the latter line bundle on Bungr,y) to Grary)
is the determinant line bundle L4¢; we introduced in Section 4. Therefore, we
have Lo, = h*wging.

The following lemma is the first ingredient we need.

LEMMA 6.22. The section 0° of La. descends to a section © € wging.

Proof. Clearly, the adjoint action of I~ preserves the determinant of
L @ Lie I~ — LieG up to a scalar. As I""~ has no nontrivial characters, the
left action of I~ on F/ preserves o°. As Bung is the quotient of F¢ by I~
(cf. [HNY13, Prop. 1]), 0¥ descends. O

By [HNY13, Cor. 1.2], we can translate © to obtain sections of wging over
other connected components of Bung; we will still denote these sections by ©.
Next, consider the following morphisms

Conv M

h h
Bung <+ Grg <~ Grg™™ ™ Grg" % Bung.
The second ingredient we need is as follows.

LEMMA 6.23. Over GrgxFt,, C Grgon", there is an isomorphism
Loe = m*hSw]g&ng ® T h]WBung -

Proof. Since GrgxF/,, is proper over Grg, by the see-saw principle, it is
enough to show that (i) for each x € Grg, the restrictions of m*hﬁwg&ng ®
T*hiWBung and Lo to Fly, C w1(z) are isomorphic; and (ii) when restricting
both line bundles via the section z : Grg — Grgonv, they are isomorphic.

Indeed, recall that over C°, Gr§®™|co = GriP|ce = Grg|ce x F¥, and
over 0 € C(k), the morphisms (Grg)y < (Grg™™)o 5 (Grg")o identify with
Fo & FexFe 3 Fe. Under these isomorphisms,

x —1 ~ %, —1 *, —1 *  —1 ~ p*,,—1
hQWBung |GrSD\Co - hleung |Grg\co ® h wBung? hQWBung |(Gr§D)0 =h wBung‘
Therefore, for all x € Grg, the restriction of m*h%wging QT hiWBung to Fly C

7~ 1(z) is isomorphic to L., which is just the restriction of Lo to 7~ (x) ~ FF.
The first fact is established. For the second fact, one can easily see that when
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restricting both line bundles via z : Grg — Grgon", they are isomorphic to the
trivial bundle. O

Finally, we prove that o° gives the desired splitting satisfying (2). Indeed,
since the I-torsor Grgg xc C° — Grg x¢ C° has a canonical section, we can
spread out ¢ as a section of ZQC over Grg7u>~<}' Ly|w, still denoted by oY. This
induces a map V1 @ Ow — V4, ® O Then to prove (2), it is equivalent to
show that ¢° indeed extends to a section of Ls. over the whole Grg,u>~<]—"€w.
Otherwise, let n > 0 be the smallest integer such that u"¢? extends. (Recall
that we use u to denote the global coordinate on C' so that u = 0 defines the
divisor (Grg,, )X Fly inside Grg ,xFt,.) Then u”00|(Grg#)6;Hw would not
be zero. Observe that by construction, over Grg,ui}"ﬁwlw, we have

™hi0 ® 0¥ = m*h}e,
as sections in m*h%wg&ngbr G.u%Fly|w- Then as sections in m*h%wgéng over

the whole Grg , x F/,,, we would have
T™*hi0 @ u"o? = u"m*h}0.

When restricting this equation to (Grg,, )X F/y, the right-hand side is zero.
However, the left-hand side is not since Tr*h:{@‘(Grg,#)();(]:ew # 0. This is a
contradiction. This finishes the proof of Lemma 6.20.

7. Proofs II: the nearby cycles

7.1. The strategy. In this section, we prove Theorem 3.8. As mentioned in
the introduction, a direct proof would be to write down a moduli problem M,
over C, which is a closed subscheme of Grg, such that (i) Myl e = Grg o
and (ii) (My)5(k) = Upeadm? () FLY (k). Then by Lemma 3.7, Theorem 3.8
would follow. Unfortunately, so far, such a moduli functor is not available
for general group G and general coweight u. In certain cases, such a moduli
problem is available. We refer to [PRS13] for a survey of the known results.

The proof presented here is indirect. Let (S, s,7n) be a Henselian trait; i.e.,
S is the spectrum of a Henselian discrete valuation ring, s is the closed point
of S and 7 is the generic point of S. Assume that the residue field k(s) of s is
algebraically closed, and let ¢ be a prime different from char k(s). Recall that
if p: V — S is a morphism, where V is a scheme, separated and of finite type
over S, then there is the so-called nearby cycle functor

\I/V : chj(vnv@f) — Dz(‘/; Xs 777@4)7

which restricts to an exact functor ([I1194, §4]) between the categories of per-
verse sheaves

Uy - P(Vn,@g) — P(Vs Xs 77,@@)-
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If V is an equidimensional variety over a field whose characteristic is prime to
£, the intersection cohomology sheaf is the Goresky-MacPherson extension to
V of the (shifted) constant sheaf Q/[dim V] on the smooth locus of V. We will

use the following lemma.

LEmMMA 7.1. Let f : V. — S be a proper flat morphism. Let IC be the
intersection cohomology sheaf of V;) :=V xgn, and let Uy (IC) be the nearby
cycle of IC. Then the support of Wy (IC) is V.

Proof. Let x € V be a point in the special fiber Vs and Z be a geometric
point over . Then by definition Wy (IC)z = H*((V(z))7, IC|(v,,);), where V(5
is the strict Henselization of V' at Z and (V(a—:))ﬁ is its fiber over 7, a geometric
point over 1. Let x be a generic point of Vi. Then (V(i)),—] is the union of
finite many points and IC|y, ), = Q¢[dim V]™ for some m > 0. The lemma

follows. O

Now, let £ be a prime different from p. Let IC, be the intersection co-
homology sheaf of Grg,,| @o- Then the nearby cycle \Il@g (IC,) is a perverse
M

sheaf on F¢¥ whose support is (Grg,)s. Therefore, to prove the theorem, it
is enough to determine the support of \Ijﬁg,# (IC,). In fact, we will give a
filtration of \IJ@Q# (IC,) and describe the support of each associated graded
piece.

When the group G is split, such a description can be deduced from [AB09,
Th. 4] directly. In the nonsplit case, we will mostly follow their strategy but
with the following difference. We will not make use of the results in [Bez04,
appendix], and therefore we will not generalize the full version of [AB09, Th. 4]
to the ramified case (but see Remark 7.2). In particular, we will not perform
any categorical arguments as in loc. cit.

7.2. Central sheaves. Let us set K¥Y = L1G,, and let Py (F£¥) denote
the category of KY-equivariant perverse sheaves on F¢¥. Recall that this
category is defined as the direct limit of categories of K'Y -equivariant perverse
sheaves supported on the KY-stable finite-dimensional subvarieties of F¢Y .
(See [Gai0l, appendix] for details.)

LEMMA 7.2. The sheaf Ve, (IC,) has a natural KY -equivariant struc-
N
ture and thus gives an object of Py (FOY).
Proof. Let LG be the n-th jet group of G, i.e., the group scheme over C,

whose R-points classify (y, ) where y € C(R) and € G(I'y,n), where Iy, is
the n-th nilpotent thickening of I'y. It is clear that E,ﬁ G is smooth over C' and

the action of Z?FE on @g,# factors through some C:{ g x¢o C for n sufficiently
large.
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Let m : £}G x5 Grg, — Grg,, be the action map and p be the natural
projection. Then there is a canonical isomorphism m*IC,, = p*IC,, as sheaves
on LG x é@g ul@e- By taking nearby cycles, we have a canonical isomorphism

‘I’cigxécrg#(m*lcu) = ‘I’cigxéerg,u (p"IC,).

Since both m and p are smooth morphisms and taking nearby cycle commutes
with smooth base change, we have

(7.2.1) m Ve (1C,) = p' g (IC,).

The isomorphism m*IC, = p*IC, satisfies the cocycle condition under the
pullback to £;G X Lrg X Grg,,| @o- This implies the cocycle condition for

the isomorphism (7.2.1). The lemma follows. O
Let us set
(7.2.2) Z, = W@Q,H(ICM)

as a K'Y -equivariant perverse sheaf in Py (F£Y).

Let D(F¢Y) be the derived category of constructible sheaves on F¢¥
and Dy (FY) be the K'Y -equivariant derived category on F¢¥. Recall that
Dy (F£¥) is a monoidal category and there is a monoidal action (the “con-
volution product”) of Dy (F£) on D(F£Y) (cf. [MV07, §4]). Namely, we have

the convolution diagram
FOx F & LG x FOUO 5 LG <K oY = FoYxFY B R

Let Fi € D(FEY), Fy € Dyy (FEY), and let FiXF, be the unique sheaf on
LG x5 F¢¥ such that

(7.2.3) p*(F1xFe) 2 ¢ (F1 X F).
Then
(7.2.4) Fi* Fo = my(Fi1xFa),

where my is the derived pushforward functor with compact support. In general,
if F1,F2 are perverse sheaves, it is not necessarily the case that Fi x Fo is
perverse. However, we have

THEOREM 7.3. (i) Let F be an arbitrary perverse sheaf on FC¥. Then
F 2, is a perverse sheaf on Fr¥.

(i) If F € Dyev (FLY), then there is a canonical isomorphism cy : FxZ, =
Z,xF.

Remark 7.1. (i) The isomorphism cr is the composition of the isomor-
phisms in Proposition 7.4 below.
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(ii) In the case when G = H is a split group, this theorem is proved by
Gaitsgory (cf. [Gai01]).” The general case proved below follows his line of
argument. Still, we take the opportunity to spell out all the details for the
following reasons. First, the family f}vrg we use here is in fact different from
Gaitsgory’s family, which has no obvious generalization to ramified groups. On
the other hand, this theorem for ramified groups is used in [Zhul4] to establish
the geometric Satake correspondence for ramified groups. Second, the use of
the nonconstant group schemes allows us to simplify Gaitsgory’s argument.
Namely, we can treat (i) and (ii) in Proposition 7.4 below equally. This argu-
ment is generalized to a mixed characteristic situation in [PZ13]. On the other
hand, in [Gai01], the proof of part (i) of Proposition 7.4 is considerably harder
than the proof of part (ii).

(iii) To simplify the notation, in the proof we only consider Y = a an
alcove. In this case, we denote by I = K? = L*G,,, the corresponding Iwahori
subgroup of LG, and we denote F¢ = F¢2. However, the proof (with the only
change replacing I by KY and F¢ by .FEY) is valid in any parahoric case.

Proof. Recall the Beilinson-Drinfeld Grassmannian GrSD as introduced in
(6.2.1). We have

GrgD X éo = Fl x (Grg X éo)
For F € D(F?), let
FRIC, C D(FL x (Grg x¢ C°)),

which can be therefore regarded as a complex on GrgD x¢ C°. Consider the
nearby cycle functor \IJGrgDXcé.

PRrOPOSITION 7.4. (i) If F € D(FY), then there is a canonical isomor-
phism

\IJGrSDXCC’(}—g IC,) = F* Z,.
(ii) If F € D(F¥), then there is a canonical isomorphism
\IJGI‘BDXcé(]:ﬁ IC,) = Z,« F.

It is clear that this proposition will imply the theorem. The isomorphisms
involved in the statement essentially come from the fact that nearby cycles
commute with proper pushforward and smooth pullback. They will be con-
structed in the proof.

"In fact, part (i) of the theorem was proved in [Gai01] under the assumption that F is
perverse. We are not sure whether the argument applies to the case that F is an arbitrary
object in Dy (F£¥).
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We first prove (ii). Let Grgon" be the convolution Grassmannian as in-
troduced in (6.2.2), which we recall is a fibration over Grg with fibers isomor-
phic to F¢. Regard F X IC, as a complex of sheaves on Grgonv xo C° =
Flx (Grg x¢ C‘O) Since taking nearby cycles commutes with proper pushfor-
ward, it is enough to prove that as complex of sheaves on F¢xF/, there is a
canonical isomorphism

qurgoanCé(flx ICH‘) = Zuif,

where Z, xF is the twisted product as defined in (7.2.3).

Recall the I-torsor Grg o over Grg defined in (6.2.3) and Grgon" >~ Grgox!
FL. Let V C F¢ be the support of F, and let I, = L G, (the n-th jet group
as defined in the proof of Lemma 7.2) be the finite-dimensional quotient of I
such that the action of I on V factors through I,,. Let Grg o, be the I,,-torsor
over Grg that classifies (y, &, 3,7) where (y, &, 5) is as in the definition of Grg
and < is a trivialization of £ on the n-th infinitesimal neighborhood of 0 € C.
Then IC,,xF is supported on

(é xc Grgp) x!y = (é xc Grgon) xIn v Grgonv Xc C.

Observe that over C°, it makes sense to talk about IC, X F (as defined via
(7.2.3)), which is canonically isomorphic to F K IC,. We thus need to show
that

(7.2.5) VU ggom w10 X F) & Z, X F.

Let us denote the pullback of IC,, to Grg g xC° by IAC/M. Since Grg o, — Grg
is smooth, qurg,o,nxcé(ICM) is canonically isomorphic to the pullback of Z,,,
and

\Il(Grg,o,ané)XV(fC/“ MF)=w ~(IAéM) XF

Grg onxcC
is I,-equivariant. We thus have (7.2.5).
Next we prove (i). There is another convolution affine Grassmannian
Grgonvl, which is an ind-scheme ind-proper over C' and represents the functor
that associates to every k-algebra R:

(7.2.6)
y € C(R),E,&" are two G-torsors on Ch,

Grg*™ (R) = (9:€,€,8,8) | B+ Elic—qopn = Elc— o 18

trivialization, and 3’ : El\cR_py = Elog-1,

Let us sketch the proof of the ind-representability of Grgom’/. Let £}G be
the n-th jet group of G. As mentioned before, L':{ G is smooth over C. Then
one can present Grg as the inductive limit li_n}Zn, where Z,, is a £LTG-stable
closed subscheme and the action of LG on Z,, factors through £G. Let us
define the £} G-torsor P, over F¢ x C as follows. Its R-points are quadruples
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(y,&,B,7), where y € C(R), (£, 3) are as in the definition of F¢ (and therefore
B is a trivialization of € on C%), and ~ is a trivialization of £ over I'y ,,, the
n-th nilpotent thickening of the graph I'y of y. Then it is not hard to see that
Grgon"/ = ligrﬂ?n xLng Zy, is an ind-scheme ind-proper over C.

Clearly, we have m’ : Grgon"/ — GrSD by sending (y,&,&',8,0') to
(y, &', B'opB). This is a morphism over C, which is an isomorphism over C'—{0},
and m(, again is the local convolution diagram

m : FOxFl — FL.
Again, regarding 7 X IC,, as a sheaf on Grgom’/]éo &~ FU x (Grg xc C°), it is
enough to prove that as sheaves on F{xFY,
Y FRIC,) = FxZ,.

Gréon 6

Observe that the action of Z:é on @g}u factors through some E,ﬁ g xco C
for n sufficiently large. Then we have the twisted product

(P x¢ O) xLnGxcC Grg, C Gr§o™ x¢ C.
Over the restriction of this ind-scheme to C°, we can form the twisted product
F[1]xIC,, as in (7.2.3), which is canonically isomorphic to FKIC,,. By the same

argument as in the proof of (ii) (i.e., by pulling back everything to P, x 5Grg, ),
we have

(FIIXIC,) = Wy, o(FI) X UG (IC,) = FXZ,.

O

~ + e —
(’PnXCfC')XLngXCCG,rg’H Grg,#

7.3. Wakimoto filtrations. Our goal is to prove that the support of Z,, is
exactly the Schubert varieties in F¢¥ labeled by the set WY \ AdmY (u)/ W7,
which will imply Theorem 3.8 by Lemma 7.1. Clearly, it is enough to prove
this in the case that Gp, is Iwahori.

Let us recall some standard objects in Pr(F¥). Recall that [-orbits in F¢
are labeled by elements w € W. For any w, let j, : C(w) — Fly be the
open embedding of the Schubert cell to the Schubert variety. This is an affine
embedding. Let us denote

Jux = () Qell(w)],  Jur = (Ju)Qell(w)].
Then it is well known (e.g., [AB09, Lemma 8]) that there are canonical iso-
morphisms
(7:3.1)  Jus * Jurse = Juwrer  Jut * Junt = Juwt i Lww') = £(w) + £w'),
Jws * Ja=11 = Jy=11 % Jux = Oe.
In addition, if L(ww'w”) = £(w) + £(w') + ¢(w"), then the two isomorphisms

from Jus * Jurs * Jure (r€Sp. from ju * Juwt * Juwr) 0 Juwwws (T€SP. 10 Juwwrw)
are the same.
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Let us recall the following fundamental result due to I. Mirkovic (cf. [ABO09,
appendix]). The proof for ramified groups is exactly the same as for split
groups. In fact, the proof works in the general affine Kac-Moody setting.

PROPOSITION 7.5. Let w,v € W. Then both Jws *Jot aNd Jyt % Jus are per-
verse sheaves. In addition, both sheaves are supported on the Schubert variety

Flyy and ]Zw(]w* *jv!) = j:uv(jw! *jv*) = @Z[z(wv)]
Fix w € Wy to be an element in the finite Weyl group of G. We are going

to define the w-Wakimoto sheaves on F/. Recall the definition of X¢(7){ in
(2.1.5). For u € Xo(T)r, we write = A — v with \,v € w(Xe(T){"). Define

(7.3.2) i = Jeat % Gty

which is well defined up to a canonical isomorphism (by (7.3.1)). By Proposi-
tion 7.5, J;Y € Pr(F¢) and is supported on F¢, with jf J7 = Qele(t,)). Let
us remark that for G being split and w = wy being the longest element in Wy,
they are the Wakimoto sheaves considered in [AB09]. In addition, we have

(7.3.3) Tk TP T

In fact, by (7.3.1) and Lemma 9.1, this is true for u, A for p, A € w(Xe(T)7).
The extension to all p, A is immediate.

One of the important applications of the Wakimoto sheaves is as follows.
An object F € Pr(F¥) is called convolution exact if /' x F is perverse for any
F' € Pr(F{) and is called central if in addition F x F' = F' x F. For example,
Z,, is central. The following proposition generalizes [AB09, Prop. 5], where
the case w = e is considered. The proof is basically the same.

PROPOSITION 7.6. Fiz w € Wy. Any central object in Pr(F{) has a
filtration whose associated graded pieces are Jy', A € Xo(T)r.

Proof. We begin with some general notation and remarks following [AB09].
For a triangulated category D and a set of objects S C Ob(D), let (S) be the
set of all objects obtained from elements of S by extensions; i.e., (S) is the
smallest subset of Ob(D) containing S U {0} and such that

(1) if A¥ B and A € (S), then B € (S); and
(2) for all A, B € (S) and an exact triangle A — C' — B — AJ[l], we have
C e (9).
Let F € Dy(F¥). The x-support of F is defined to be
Wi = {we W |j,F #0},
and the !-support of F is the set

Wh = {we W |j,F+0}.
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By the induction on the dimension of the support of F, it is easy to see that
if 7 € D;(F0)P= (p stands for the perverse t-structure), then F is contained
in (jun] | v € Wi,n > 0). On the other hand, if F € D;(F€)P=°, then
F € (jox[n] | v € Wk, n <0).

For any F € D;(F(), there exists a finite subset Sz C W such that

! * . ! *
ij**]:, ij]*]: Cw- S]—', WJ:*jw*’ W]:*jw! C S]-' - w.

Namely, let F¢, be a Schubert variety such that F is supported in F¥, (in
both the x-sense and the !-sense). Then by the proper base change theorem,
the above assertions will follow if we can show that there exists .S, C W such
that
Cw)xFtyc |J C®), FoxCw)c |J Cw).
v'EWSy v ESyw
This can be proved easily by induction of the length of v.

Now we prove the proposition. Let F € Pr(F¥) be a central object, and
let Sr C W be the finite set associated to F as above. Recall that we have
the special vertex vg in the building of G that determines an isomorphism
W = Xo(T)r x Wy determined by vp. Let p € w(Xe(T){) such that

tuSr Cw(Xe(TENWo, Sty € Wow(Xe(T)E),

where Xo(T){" is the subset of regular elements in Xo(7){:. This is always
possible since Sz is a finite set. We have J; = jju1, and from J,/x F = F* J 7,
we have

Wiwr C tuSr N SFty C w(Xe(T)ET)Wo N Wow(Xe(T)1FT) = w(Xe(T)F ).

Therefore, J;) x F € (jiu[n] | A € w(Xe(T){),n > 0). Observe that J¥ = jy,
for A € w(Xe(T)7). Then by (7.3.3), we have

Fe(J¥n] | )€ Xe(T)r,n > 0).

By choosing p € w(—X.(T)F) large enough and using JY = ji,« for A €
w(—Xe(T)7), we have

(7.3.4) F =i x F = J0 x F € (jix[n] | A € w(=Xo(T){),n > 0).

We claim that this already implies that F’ has a filtration (in the category
of perverse sheaves) with associated graded by j,«, 1 € w(—Xq(T){"). There-
fore, this implies the proposition. Indeed, since F’ is perverse, for any v €
w(—Xe(T)7), the I-stalk of 7 at ¢, has homological degree > —£(t,). On the
other hand, (7.3.4) implies that the !-stalk of 7" at ¢, has homological degree
< —{(t,). The claim follows. O

To proceed, we now study the category of perverse sheaves on F/ that are
generated by Jy.
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LEMMA 7.7. For A\,u € Xo(T)r, RHom(J}, J) = 0 unless w™'(\) =

w~ (). Furthermore, RHom(J}y, J\Y) = Q.

Proof. RHom(JY,J}Y) = RHom(JY,,,J. ) = RHom(jy, 1, Jt,.,1) for
v € Xo(T)r such that A+ v, + v € w(Xe(T)it). The above complex of f-adic
vector spaces is nonzero only if Fty, ., C Fly, ;i.e., txy, <ty in the Bruhat
order. This is equivalent to t,—1(x4,) < ty—1(uq) by Lemma 9.6, which is in
turn equivalent to w1 (A+v) < w™(u+v) by Lemma 9.4, which is equivalent
to w™H(A) < w!(u). The second statement follows from RHom(J)7, Jﬁ’) =
RHom(Jy, J§') = Qp. O

LEMMA 7.8. Let F € Di(F¥). Then for any p € Xo(T)r,

H*(F, JY % F) = {020 (Fg, F).

In particular, H*(F(,J¥) = HW™ 120 (Fe, Jw) = Q.

Proof. For any v € W, let C(v) be the Schubert cell in F¢ corresponding
to v. Then we have m : C'(v)xF{ — F{, which is an affine bundle over F/.
Then the isomorphism jy« x F = m,(Qu[l(v)]xF) induces H*(FU, jypu x F) =
H*(F¢,F)[¢(v)]. Therefore, for u € w(—Xe¢(T)7), the lemma holds by the
above fact and Lemma 9.1. If the lemma holds for A, i, then

H*(FO,F) = H*(Fl,JP % J + F) = H= @ 20 (Fg gv, « F),
H*(FU, TP, * F) = H= @ 020 (Fp gy F) o2 g Crn 20 (7, F).

Therefore, the lemma holds for —\ and A + . Now any element in Xo(T')r
can be written as A — p with A\, u € w(Xe(T){), and using this we complete
the proof. ([

Let W*(F¥) be the full abelian subcategory of P(F¥) generated by J7,
p € Xo(T)r. Let WY(FL),, be the category of WY (F/) that is generated by
J¥ w™H(A) = w™t(p). For each object F € W (F¥), we define a filtration

]::U]fé”“,
n

where FY € WY(F()-, is the maximal subobject of F that belongs to
W¥(F)s,. Then by Lemma 7.7,
gu U éuu/ = ;LU ® W,
w ()= w1 (1)
where “’Wﬁ- is a finite-dimensional Q, vector space. A direct consequence of
Lemma 7.8 is

COROLLARY 7.9. Suppose that the notation is as above. Then for any
F € WY(F?), we have
H (FOL,F)= @ H(FLJ) Q"W
ueXe(T)r
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7.4. Proof of Theorem 3.8. Finally, let us prove Theorem 3.8. Let u €
Xe(T)f. Let Supp(u) denote the subset of W consisting of those w such that
Fly C (Grg,p)s. We need to show that Supp(p) = Adm(p). We already
know that Adm(p) C Supp(p) (Lemma 3.7). By Propositions 7.6 and 7.5, we
also know that the maximal elements in Supp(x) (under the Bruhat order)
belong to Xo(T)r € W. Let t,y € Supp(p) be a maximal element. Then
there exists some w € W such that ¢/ € w(Xe(T)f). By Proposition 7.6,
Z, € WY(FL). Write Z, = Uy(Z,)¥, so that the associated graded pieces
are Jy' ® “’le as above. (We write wW:‘ instead of “’T/Vé\vH for brevity.) By
Lemma 7.1, “’W[j/ # 0. In addition, being a maximal element in Supp(u), ¢,
must have length (p,2p). Therefore, (w='(u),2p) = (1,2p). On the other
hand, t,,(,) € Adm(p) C Supp(u) is also a maximal element in Supp(y) since

U(tw(w) = (2p,p) by Lemma 9.1. Therefore, “’W;;U(“) # 0. We claim that
p' = w(p). Otherwise, we would have

H20(F, 2,) > "W @ vwr®)

whose dimension would be at least two.

On the other hand, the map f : Grg, — C is proper, and therefore
H*(Ft, 2,) =2 Vs(£.1C,). Since Grg |z =2 Gr, x C°, we have H*(F(, Z,,) =
IH*(Gry), where TH* denotes the intersection cohomology of Gr,. It is well
known (for example, see [MV07]) that TH 2 (Gr,) = Qy, which contradicts
the above unless p/ = w(w). In other words, all the maximal elements on
Supp(p) are contained in Adm(u), which proves the theorem.

Remark 7.2. One should be able to generalize [AB09, Th. 4] to the ram-
ified case, which will imply Theorem 3.8 directly. We sketch here a possi-
ble approach. First, W*(F¥) is indeed a monoidal abelian subcategory of
Py(Ft) because JY x J) = JY . Let GrW"(F() be the submonoidal cat-
egory whose objects are direct sums of Jy. One can see that this category
is equivalent to Rep(Tr), where 7" is the dual torus of T defined over Qy,
and TT is the Galois fixed subgroup. By taking the associated graded of the
filtration of F € WY(FY) defined before, one obtains a well-defined functor
Gr : WY(Fl) — GrWY(F¥). As explained in [AB09, Lemma 16], this is a
monoidal functor.

Since Grg|zo = Gry x C°, the nearby cycle functor indeed gives a monoidal
functor from Z : Pr+y(Gry) — WY (FY), where P+ (Grp) is the category
of L™ H-equivariant perverse sheaves on Gry, which is well known to be equiv-
alent to the category of representations of the Langlands dual group H. One
can use a similar argument as in [Bez04, appendix by Gaitsgory| to show that
this functor is in fact central (see Section 2 of loc. cit. for the definition). Then
by the same argument as [AB09], one can show that Gro Z : P+ 5 (Gry) —
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GrW"Y(FY) is in fact a tensor functor that is indeed equivalent to the restriction
functor from the representations of H to the representations of 7.

Remark 7.3. This remark is not used in the rest of the paper. As a sheaf
of nearby cycles, Z,, carries the monodromy action of the Galois group of Fj.
One can show that this action is purely unipotent. (See [Gai0l] for the case
when G is split and [PZ13, Th. 10.9] in general.)

8. Appendix I: line bundles on the local models
for ramified unitary groups

Since Theorem 1 is not quite identical to the original coherence conjecture
given by Pappas and Rapoport, we explain here how to apply it to the local
models. First, if the group G is split of type A or C, we find that all ¢} =1
in this case, and the formulation of Theorem 1 coincides with the original
conjecture of Pappas and Rapoport. Namely, the central charge of £(3 ;cy €;)
is Y. In fact, in these cases, it is proven in loc. cit. (using the results of
[Gor01], [Go6r03], [PRO5]) that the coherence conjecture holds for 1 a sum of
minuscule coweights. In what follows, we mainly discuss the ramified unitary
groups. As the main application of the coherence conjecture, general cases are
treated in [PZ13].

Let us change the notation in the main body of the paper to the following.
Let OF, be a completed discrete valuation ring with algebraically closed residue
field k with char k # 2 and fractional field Fy. Let mg be the uniformizer. For
example, O = k[[t]] with mp = t as in the main body of the paper, or O = Z",
the completion of the maximal unramified extension of Z, and my = p.

We will follow [PRO9] (see also [PROS8]). Let F'/Fy be a quadratic exten-
sion. Let (V,¢) be a split hermitian vector space over F' of dimension > 4.
That is, V is a vector space over F' and ¢ is a hermitian form such that there
is a basis eq, ..., e, of V satisfying

b€, ent1—j) = 0ij, 4,7 =1,...,n.

Let G = GU(V, ¢) be the group of unitary similitudes for (V, ¢); i.e., for any
Fp-algebra R,

G(R) = {9 € GL(V ®p, R)|¢(gv, gw) = c¢(g9)¢(v,w) for some c(g) € R*}.

Then G ®fp, F = GL,, X G,. The derived group Gge, is the ramified special
unitary group SU(V, ¢) consisting of those g € G(R) such that det(g)=c(g)=1.
We fix a square root m of my. There are two associated Fy-bilinear forms,

(v’ w) = TrF/Fo (¢(U7 w))v <vv w> = TrF/Fo (W_lgb(v, w))
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The form (—, —) is symmetric while (—, —) is alternating. Fori =0,...,n—1,
set
A = spanoﬁ{w_lel, o e ey en)s

and complete this into a self-dual periodic lattice chain by setting A;1x, =
7 %A;. Then (—,—) : A_; x A; — Op, is a perfect pairing. In particular, Ag
is self-dual for the alternating form (—, —).

Let us fix a minuscule coweight p, s of G of signature (r,s) with r <
s, 7+ s =n. That is,

pirs(a) = (diag{a, 1}, a),

where a(®) denotes s-copies of a. Let E = F ifr #sand E = Fy if r = s. Let
m = [§]. Let I C {0,...,m} be a nonempty subset with the requirement that
if n is even and m — 1 € I, then m € I as well. (See [PR09, §1.b] or [PROS,
Rem. 4.2.C] for the reason why we make this assumption.)

Let us define the following moduli scheme M3V over Op. A point of
MBalve with values in an Opg-scheme S is given by an Op ®0y, Os-submodule
Fj CA;j ®og, Og for each j € +1 + nZ satisfying the following conditions:

(1) as an Og-module, F;j is locally on S a direct summand of rank n;
(2) for each j < j', 4,7 € I + nZ, the natural inclusion

Aj ®OF0 OS — Aj/ ®(9F0 OS

induces a morphism F; — Fj/, and the isomorphism 7 : A; — A;_,
induces an isomorphism of F; with F;_,;

(3) under the perfect pairing induced by (=, —) : A_; x Aj = Op,, F—; =
.7-"]*, where ]-"jL is the orthogonal complement of F;

(4) the set {F;} should satisfy the determinant condition as in [PRO09,
§1.5.1, d))].

As explained in loc. cit., for any I, M¥V¢ @y FE is isomorphic to the
Grassmannian G(s,n) of s-planes in n-space. In addition, for i € I, there is
a natural projection Mypaive — M?f}}"e (If n is even and i = m — 1, {i} will
mean {m — 1,m}.) Now the local model M¢ is defined as the flat closure of
the generic fiber M}V @ E inside M}ave,

The special fiber M%V¢ @ k (and therefore M!°¢ ® k) embeds into the
(partial) affine flag variety of the unitary group over k((t)). Namely, let (V', ¢')
be a split hermitian space over k((u)) (u? = t) with a standard basis e1, ..., e,
such that ¢'(e;, ent1-5) = ;5. Let Xj,j € {0,1,...,n — 1}, be the standard
lattices in V' defined similarly to A; (replacing = by u and Op by k[[u]] in the
definition of Aj). For I C {0,...,m} as before, write I = ip < i3 < -+ <y
and let P; be the group scheme over k[[t]] that is the stabilizer of the lattice
chain

)‘io C---C )‘ik C u_l)\io
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in GU(V',¢’). As explained in loc. cit., this is not always a connected group
scheme over k[[t]]. But if it is, then it is a parahoric group scheme of GU(V’, ¢/).
In any case, the neutral connected component PI0 of Pr is a parahoric group
scheme.

Consider the ind-scheme F; that to a k-algebra R associates the set of
sequences of R[[u]]-lattice chains

Ly, C---C Lik C uflLiO

in V' ®pw) R((u)) together with an R[[t]]-lattice L C R((t)) satisfying conditions
(a) and (b) as in [PRO09, §3.b]. (Observe that we replace o € R((¢t))*/R[[t]]*
in loc. cit. by a lattice L C R((t)), which seems more natural.) Then

Fr = LGU(V', ¢') /LT Py,

and LGU(V',¢)/LTP? is either isomorphic to LGU(V',¢')/LTP; or to the
disjoint union of two copies of LGU(V',¢’)/L*P;. In addition, to such T,
one can canonically associate a subset Y C S (S is the set of vertices in the
local Dynkin diagram of GU(V’,¢')) such that F¢¥ = LGU(V',¢')/LtPY.
Indeed, by [PR08, Rem. 10.3] (see also [PR09, §1.2.3]), one can identify S with
{0,1,....,m}, if n =2m + 1, resp. {0,1,...,m — 2,m,m'}, if n = 2m, where
m’ is a formal symbol as defined in [PRO8, §4], to which a lattice of V'

-1 -1 -1
)‘m’ = Spa'nk[[u“{u €1, U Em—1,Em, U Em+41,Em42,- - 762m}

is associated. Then Y = I in all cases except when n = 2m,{m — 1,m} C I,
in which case Y = (I \ {m —1}) U{m'}.

Remark 8.1. (i) Observe that if n = 2m + 1, under our identification of
{0,1,...,m} with S (the set of vertices of the local Dynkin diagram), i goes
to the label m — i in Kac’s book ([Kac90, p. 55]), and if n = 2m, under the
identification of {0,...,m — 2,m,m'} with S, i goes to m —i for i < m — 2
and {m,m’} go to {0,1}.

(ii) As pointed out in [PRO8], [PR09], if n = 2m + 1, then Py and Py,
are the special parahoric group schemes, and if n = 2m, then Py}, P,y are
the special parahoric group schemes. We further point out the following:

(1) let n =2m + 1. Then
(a) Pyoy is the special parahoric determined by a pinning of GLa, 11 X Gy,
i.e., the group scheme G,, as in (2.1.2), and its reductive quotient is
GO241; and
(b) the special parahoric Py, has reductive quotient GSpy,,, but it is not
of the form (2.1.2).
(2) Let n = 2m. Then both Py, Ppy,y are of the form (2.1.2), and their
reductive quotients are both isomorphic to GSp,,,.
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Fix the isomorphisms Aj ®0, k = Aj @y k, compatible with the actions
of 7 and u, by sending e; — ¢;. Now we embed the special fiber M}V @ k
into Fr as follows. For every k-algebra R,

ij(Aj@k)@kRg(/\j@k)@kR,

and let L; C A\; ® R([[t]] be the inverse image of F; under \; ® R[[t]] = \; ® Os.
In addition, let L =t~ R][[t]] C R((t)). This gives the embedding

Ly M?aive ® k — Fr.

It is proved in [PR09, Prop. 3.1] that A’(u,s) is contained in MY @0, k
under 7, where A!(y, ) is as defined in (2.2.2). Here we show the following
result, which was shown in [PR09, Th. 0.1] to follow from a slightly different
version of the coherence conjecture.

THEOREM 8.1. One has the equality A (p, ) = M}OC ®oy k. Therefore,
the special fiber of MIIOC is reduced and each irreducible component is normal,
Cohen-Macaulay and Frobenius-split.

To prove it, one needs to construct a natural line bundle on M33V¢ and
apply the coherence conjecture to compare the dimensions of the space of global
sections of this line bundle over the generic and the special fibers. There are
several choices of natural line bundles. One of them will be given in [PZ13],
after we give a group theoretical description of M3aVe. Here, we follow the
original approach of [PR08], [PR09] to construct another line bundle £, which
is more explicit.

First, if I = {j}, we define the line bundle Ly over M??i"e whose value at

the Og-point given by F; C Aj®0p,, Og is det(}"j)_l. If n = 2m, we also define
L{m—1,m) over f{lzi‘ﬁ’m} whose value at the Og-point given by F,,—1 C F
is det(Fpn_1)"! ® det(F,)~!. For general I, the line bundle £; is defined as
the tensor product of these Ly;y or Ly, ) along all possible projections
MIIlaIVe _> MI{]?;VQ or MIIlaIVe _> Mf{lfﬁ\iel’m}' .

The restriction of Ly;; to the generic fiber MY @p F = Gr(s,n) is
isomorphic to L?ft, where Lger is the determinant line bundle on Gr(s,n),
which is the positive generator of the Picard group of Gr(s,n). On the other
hand, the restriction of L({m — 1,m}) to the generic fiber of ‘{“f;i‘fl m} 1S

isomorphic to £54. Recall A!(y,,5)° as defined in (2.2.1), and recall that there
is a canonical isomorphism Al (u,5)° = A(1y5) as Gaer = SU,, is simply-

connected.

PROPOSITION 8.2. Under the canonical isomorphism Af (u,.5)° = A (. 5),
the line bundle Ly, when restricted to .AI(MT,S), 18 isomorphic to the restriction

of L jey £(Jj)ej) to AI(,uT’S)O, where
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(1) if n=2m+1, then k(j) =1 for j =0,1,...,m —1 and k(m) = 2;
(2) if n=2m, then k(j) =1 for j =0,...,m —2 and k(m) = k(m') = 2.

Proof. Let us first introduce a convention. In what follows, when we
write \;, we consider it as a k[[u]]-lattice. If we just remember its k[[t]]-lattice
structure, we denote it by \;/k[[t]].

Clearly, we can assume that I = {j}, or when n = 2m, we shall also
consider I = {m — 1,m}. The latter case will be treated at the end of the
proof. So we first assume that j # m — 1.

Observe that we have a natural closed embedding of ind-schemes

LGU(V/, ¢/)/L+P{]} = F{]} — GI‘GL()\].) X GI‘Gm

by just remembering the lattices L; C \j @) R((w) and L C R((t)). By
definition, the line bundle L? j}ﬁ{j} on Mf{l?}‘,"c ®op k is the pullback of the
determinant line bundle on Grgy, »;) along the above map.
Let SU(V’,¢’) be the special unitary group. As explained in [PROS8, §4],
P; = PrnNSU(V’, ¢') is a parahoric group scheme of SU(V’, ¢'). By [PRO08, §6],
we have
LSU(V’,(;ﬁ’)/LJ“P{j} —— LGU(V',¢)/L* Py

l J

Grsp(z)) — GraLo,),
where the ind-schemes in the left column are identified with the reduced part
of neutral connected components of the ind-schemes in the right column. Since
the isomorphism AZ (4, 5)° = Al (11, 5) is obtained from the translation by some
g € GU(V',¢')(F), it is enough to prove

LEMMA 8.3. The pullback of Lger by LSU(V’,¢’)/L+P{’j} — Grgp(y;) 8
L(r(j)e;)-

Proof. Assume that j # 0,m, and in the case n = 2m, j # m — 1. By
(2.2.6), the pullback of Ly is of the form L(me;) for some m. Consider the
rational line IP)jl- C LSU(V/, (b')/L*P{J.} given by the Al = Speck[s]-family of
lattices

Ly = klluller + -+ u kl[ul)ej1
- u k][] (e + sejn) + Kl[ullejr + - + kl[ullen.

It is easy to see that the restriction of Lger to this rational line is O(1). In
fact, by the map

Lj,ﬁLj,s/( 3 u—lk[[unewzk[[uner),

r<j—1 r2j
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this rational curve PP} is identified with the Grassmannian Gr(1,2) classifying
lines in the two-dimensional k-vector space generated by {U_lej,u_1€j+1},
and clearly the restriction of the determinant line bundle of Grgyy;) is the
determinant line bundle on Gr(1,2). Therefore, x(j) = 1 if 7 # 0,m (and
j#m—1if n=2m).

If j = 0, consider the rational line P§ € LSU(V”, qﬁ’)/L*PEO} given by the
A! = Speck|[s]-family of lattices
(8.0.1) Ls = E[[u]ley + - - + k[[u]]en—1 + k[[u]](en + su"tey).

By the same reasoning as above, the restriction of Lge to this rational line is
O(1). Therefore, x(0) = 1.

Now, if n = 2m + 1 and j = m or n = 2m and j = m or m’/, we will
prove that 2 | £(j). Assuming this, to prove the lemma it is enough to find
some rational line ]P’} C LSU(V',¢")/ L+P{ ;) such that the restriction of Lyet
to it is O(2). If n = 2m + 1, we can take the rational line P! given by the
A! = Speck|[s]-family of lattices

Ly =uYk[[u]]ler + - - - 4+ u ' k[[u]]em—1

2

+ u k[[u]] <em + semt+1 — 826m+2> + E[[u]lems1 + - - - + K[[u]]en.

To see that Lge restricts to O(2), consider the map

Ly — LS/( Z uk[[u]]e, + Z k:[[u]]er>,

r<m-—1 r>m
which gives rise to embeddings P, C Gr(1,3) C Grgyy,,). Here Gr(1,3) is
the Grassmannian that classifies lines in the three-dimensional k-vector space
generated by {u"te,,ute, 1, u e, o). Since the pullback of Lyt along
Gr(1,3) = Grgp(y,,) is the determinant line bundle and the embedding PL —
Gr(1,3) is quadratic, the claim follows.
If n = 2m and j = m (the case j = m/ is similar), we can take the rational
line P}, given by the A! = Speck[s]-family of lattices

Ly =u tk[[u]ler + - - + uk[[u]]em—o + u Kk [[u]) (em—1 + S€mi1)
+ u k[[u]](em — semia) + kl[u]lemst + - - - + k[[u]]en.
To see that Lget restricts to O(2), consider the map
Ly — L5/< Z uk[[u)e, + Z k[[uﬂer),
r<m—2 rzm—1

which gives rise to embeddings P}, C Gr(2,4) C Grgyy,,). Here Gr(2,4) is
the Grassmannian that classifies planes in the four-dimensional k£ vector space
generated by {u"'e,_1,...,u  emia}. The restriction of Lge; to Gr(2,4) is the
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determinant line bundle, and therefore it is enough to see that the restriction
of the determinant line bundle on Gr(2,4) along PL, — Gr(2,4) is O(2). If
we use the determinant line bundle on Gr(2,4) to embed Gr(2,4) into P(V),
where V is generated by {{u"te; Au=le; | m —1<i < j<m+2}, then the
composition Speck[s] C PL — Gr(2,4) — P(V)\ {u"tem_1 Au~te,} is given
by

S suflem_l A uilem+2 + suflem A uilemﬂ — 32u*16m+1 VAN uilem+2.
The claim is clear from this description.
So it remains to prove 2 | k(j) forn =2m+ 1,5 =m, or n =2m,j =m

or m’. Recall that when regarding V' as a vector space over k((t)), it has a
split symmetric bilinear form

(v, w) = Tryuy k() (@ (v, w)).
Observe that when n = 2m + 1,7 = m, or n = 2m,j = m or m/, \;/k|[[t]] is
maximal isotropic, i.e., A\j C )\js and dimk()\js/)\j) =0 or 1, where

N ={veV' | (v))CO}

Let Iso(V') C Grg,( x;/k[t])) denote the subspace of maximal isotropic lattices
in V’'. Then the morphism

LSU(V', @)/ LT P{jy = Grsry) = Grsniy /(i)
factors through
LSU(V',¢')/L* P(;y — Lag(V") = Grspa, /kfi)-

By definition, the pullback of L4t along GrSL(Aj) — GrSL()\j/k[[t]]) is Lget, and
it is well known (for example, see [BD, §4]) that the pullback of L4e along
Iso(V’) — Grgpa, k(g admits a square root (the Pffafian line bundle). The
lemma follows. U

To deal with the case n = 2m and I = {m — 1, m}, observe there is a map
LGU(V',¢") /LT Pr — Grgra,,) X Graro, )

by sending L., 1 C Ly, to Ly, gL,;,, where g is the unitary transformation
€m — €m+1, €m+1 > €y and e; — e; for i #m, m + 1. One observes that (7L
on ./\/lIIlaive ®oy k is the pullback along the above map of the tensor product of
the determinant line bundles (on each factor). O

Finally, let us see why this proposition can be used to deduce Theorem
0.1 of [PR09]. First let a; be the Kac labeling as in [Kac90, §6.1]. Using
Remark 8.1(i), by checking all the cases, we find that a)r(i) = 2. Let L£; be
the line bundle on M'¢. Then for a > 0,

(8.0.2) dim T(MY° o, k, £3) = dim (MY @0, E, L$).
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By the above proposition and [PR09, Prop. 3.1],

dim (MY @0, k, L£$) > dimF(.AI(ur,s)o, E(a Z Ii(i)Si)),

€Y
and the central charge of L(a Y ;cy k(i)g;) is
Z aa; k(i) = 2afl.

€Y
The line bundle on right-hand side of (8.0.2) is just the 2afI-power of the
ample generator of the Picard group of G(s,n). Then since Theorem 1 holds,
Theorem 8.1 follows by the argument in [PROS].

9. Appendix II: Some recollections and proofs

We collect and strengthen various results, which exist in literature, in the
form needed in the main body of the paper.

9.1. Combinatorics of Twahori-Weyl group. We recall a few facts about
the translation elements in the Iwahori-Weyl group that are used in the paper.
We keep the notation as in Section 2.1. In particular, we identify the apartment
A(G, S) with X4(S)r via the special vertex v. We choose the alcove a, whose
closure a contains v, and which is contained in the finite Weyl chamber of G
determined by the chosen Borel subgroup. We write W =X, (T)r x Wy using
the vertex v.

Let 2p be the sum of all positive roots (for H). Observe that given u €
Xe(T)r, the integer (fi,2p) is independent of its lifting i € X¢(7T"). By abuse
of notation, we denote this number by (u,2p).

LEMMA 9.1. Let i € Xo(T)7, the set defined in (2.1.5). Let A C Xo(T)r
be the Wy-orbit associated to p as in Section 2.1. Then for all v € A, (t,) =

(2p, ).

Proof. Let x € a be a point in the interior of the alcove a. Then for any
weWw,

(9.1.1) l(w) = {a is an affine root | a(x) > 0, a(w(z)) < 0}.

If w = t, is a translation element, then this is the number of affine roots «
such that 0 < a(x) < (&, v), where & is the vector part of a. (So ¢ is a finite
root of G.) This number can be rewritten as

Z Ha|a=a,0<a(r) <(a,v)}.
a€®,(a,v)>0

Let j : ®(H,TH) — ®(G,S) be the restriction of the root system of H (the
absolute root system) to the root system of G (the relative root system) . Then



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 7

the lemma will follow from the equality

Hald=0a,0<a(@) <(a,n)}= > (&0).
acj—1(a)
This statement involves only one root of G. By checking the semi-simple
subgroup of G of semi-simple F-rank one (which are Weil restrictions of either
SLs or SU3), we see that this equality holds. O

One can easily deduce the following lemma from (9.1.1).

LEMMA 9.2. Let w,w' € W. Then {(ww') = £(w) + £(w') if and only if
the following two statements hold: for a +m an affine root,

(1) if a(z) > 0 and a(w'(z)) < 0, then a(ww'(z)) < 0;

(2) if a(z) > 0 and a(w' " (z)) <0, then a(w(z)) > 0.

LEMMA 9.3. Let i € Xo(T){. Then ((t,we) = €(t,) + L(wy).

Proof. Let w =t,, with u € Xo(T)t and wy € Wy. Assume that a(z) > 0
and a(ws(r)) < 0. As v =anw(a), a(v) = 0. Let a = &, then a(z —v) =
a(z) > 0; i.e., a is a positive root of G. Therefore, a(t,wr(z)) = a(ws(x)) —
(,a) < 0. On the other hand, assume that a(z) > 0 and o(w 1(m)) <0
Then a(v) = 0, and wy(a) is negative. Therefore, (1, a) < 0. Then a(tu(a:))

a(x) — (pu,a) > 0. This proves that £(t,wy) = £(t,) + L(wy).

Ol

On the finitely generated abelian group Xe(7')r, there are two partial
orders. One is the restriction of the Bruhat order on W, denoted by “<.” The
other, denoted by “=<,” is defined as follows. Recall that the lattice Xo(7g)
is the coroot lattice of H. The Galois group I' acts on Xe(7sc), under which
positive coroots of H (determined by the pinning) are sent to positive coroots.
Therefore, it makes sense to talk about positive elements in Xq(7y)r. Namely,
A € Xo(Tse)r is positive if its preimage in Xq(7sc) is a sum of positive coroots
(of (H,Tx)). Since Xo(Tse)r C Xo(T)r, we can define A < p if 1 — A is positive
in Xe(Tsc)r-

LEMMA 9.4. Let A\, € Xo(T)i:. Then A < if and only if ty < t, in the
Bruhat order.

Proof. In the case that G is split, the proof is contained in [Rap05, Props.
3.2, 3.5]. The ramified case can be reduced to the same proof as shown in
[Ric13, Cor. 1.8]. See [PRS13, Rem. 4.2.7]. O

Recall the following lemma.

LEMMA 9.5. Letz,y € W andw € Wag. Assume that ((zw) = 0(z)+0(w)
and l(yw) = L(y) + l(w). Then x <y if and only if zw < yw.
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Proof. By induction on the length of w, we can assume that w is a simple
reflection. Then the lemma is clear. ([

LEMMA 9.6. Let A\, pu € w(Xe(T){). Then ty < t, if and only if t,, -1y <
tu1 -

Proof. Observe that w='\ and w~ !y are dominant. Combining Lem-
mas 9.1 and 9.3,

Cw™y) = Lty-1x) +L(w™) = L(w™) + £(ty).

Therefore, by the above lemma, t,,-1\ < t,-1, if and only if wlty <w e, if
and only if £ <1,. O

9.2. Deformation to the normal cone. Let C be a smooth curve over an
algebraically closed field k. Let X be a scheme faithfully flat and affine over C.
Let z € C(k) be a point, and let X, denote the fiber of X over x. Let Z C X,
be a closed subscheme. Consider the following functor Xz on the category of
flat C-schemes: for each V — C,

Xz(V)={f € Homeg(V,X) | fp : Vu = X, factors through V, - Z C X, }.

It is well known that this functor is represented by a scheme affine and flat over
C, usually called the deformation to the normal cone (or called the dilatation
of X along Z; see [BLR90, §3.2]). Indeed, the construction is easy if X is
affine over C. Namely, we can assume that C' is affine and z is defined by
a local parameter t. Assume that A is the Ocg-algebra defining X over C,
and let Z C A be the ideal sheaf defining 7 C X. Then tA C Z. Let
B = A[LieI] C Alt7!]. It is easy to see that B is flat over O¢ and SpecB
represents Xz.

There is a natural morphism Xz — X that induces an isomorphism over
C — {z}, and over z it factors as (Xz), — Z — X,. If X' is smooth over C,
and Z is a smooth closed subscheme of X, then X, is also smooth over C.
Indeed, étale locally on X, the map (Xz), — Z can be identified with the
map from the normal bundle of Z inside X, to Z, which justifies the name of
the construction.

Now let G; be a connected affine smooth group scheme over the curve C.
Let z € C(k), and let (Gy), be the fiber of G; at z. Let P C (G1), be a smooth
closed subgroup. Let Go = (Gy)p. This is indeed a smooth connected affine
group scheme over C. By restriction to =, we have r : Bung, — B(G2), and
r: Bung, — B(G1),. (Here we assume that C' is a complete curve.)



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 79

PROPOSITION 9.7. We have the following Cartesian diagram:

Bung, —— B(G2). BP

| |

Bung, B(G1)z-

Proof. Let V =SpecR be a noetherian® affine scheme. Let &£ be a Gy-torsor
on Cr and Ep be a P-torsor on V together with an isomorphism Ep x (G1)z =
El{zyxspecr- We need to construct a Go-torsor &' satisfying the appropri-
ate conditions. This construction will provide the inverse to the morphism
Bung, — Bung xpg,), BP.

As a scheme over U, & is faithfully flat. Its fiber over = is &|(zyxspec -
Let Z be the closed subscheme of £, given by the closed embedding

Ep C Ep xT (G1), = {2y xSpec R+

Then &7 is a scheme affine and flat over C, together with a morphism £z — &.
Therefore, £7 is a scheme over Cr. We claim that £z is a Go-torsor over Cg.
First, £7 is faithfully flat over C'r. Indeed, by the local criterion of flatness,
it is enough to prove that £z|(;1xspec g 18 faithfully flat over SpecR. But this
is clear, since étale locally on &| {z}xSpecR, there is an isomorphism between
E7|{zyxSpeck and the normal bundle of Ep C Ep xP (G1)z. Next, there is an
action of Gy on £z. Indeed, the map £z xX¢c, Ga — &€ xXcp G1 — &€, when
restricted to the fiber over x, factors through Z. Therefore, by the definition
of £, it gives rise to a map

EZ XCr 92 — 52.
Finally, it is easy to see that
Ez Xcr €z = E7 Xcop Go.

Indeed, the left-hand side represents the scheme (€ ¢y €)Zxg,e rz and the
right-hand side represents the scheme (€ Xy G1)Zxg,e g+ Then the desired
isomorphism follows from

(g XCR g)ZXSpecRZ = (5 XCR gl)ZXSpeCRP' l:,

9.3. Frobenius morphisms. Let us review some basic facts about the Frob-
enius morphisms of a variety X over an algebraically closed field of characteris-
tic p > 0. The book [BK05, Chap. 1] provides a detailed account of the general
theory.

8This suffices since all the stacks are locally of finite presentation.
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First assume that X is smooth, and let wx be its canonical sheaf. Then
there is the following isomorphism ([BKO05, §§1.3.7-1.3.8]):

(9.3.1) D F*w;(_p = Homoe, (F.Ox, Ox),

where F': X — X is the absolute Frobenius map of X. The existence of this
isomorphism follows from the Grothendieck duality theorem for finite mor-
phisms (see [BKO05, the discussion before §1.3.1]). Explicitly, the isomorphism
is given as follows. Let x € X be a closed point, and let x4, ..., x, be a sequence
of regular parameters of the local ring Ox ;. Then in an étale neighborhood
of z in X, the above isomorphism is given by

(9.32) D™ - 2 (day - day) TP (@)

n

0 if pfm; +¢; + 1 for some ¢,
= (mi+0—p+1)/p (mn+Ln—p+1)/p

Next, assume that X is normal ([BK05, §1.3.12]). It is still make sense to
talk about the canonical sheaf wy and its n-th power wg?] for all n. Namely,
let j : X — X be the open immersion of the smooth locus into X. Then by
definition wg?] = jxw'%sm. The isomorphism (9.3.1) still holds in this situation.

Observe that there is a natural map (w%l])@‘ — ng(:n} (n > 0) that is not
[n]

necessarily an isomorphism. In what follows, we use w’% to denote wy~ if no
confusion will rise. Let us recall that if in addition X is Cohen-Macaulay, wx
is the dualizing sheaf.

Next, we consider a flat family f : X — V of varieties that is fiberwise
normal and Cohen-Macaulay. In addition, let us assume that V is smooth, so
that the total space X is also normal and Cohen-Macaulay. In this case, the
relative dualizing sheaf wy/; commutes with base change and is flat over V.
We have wy = ffwy ®@wx /. Let X ®) be the Frobenius twist of X over V, i.e.,
the pullback of X along the absolute Frobenius endomorphism F': V' — V. Let
Fxpy: X — X () be the relative Frobenius morphism, and let ¢ : X®) — X
be the map such that the composition ¢ o Fiy,y is the absolute Frobenius
morphism F for X. Then

(9.3.3) RD : (Fxyy)awy b = Homo ., (Fxv)«Ox, Oxw)-

Here W’ v a8 in the absolute case, is the pushout of the n-th tensor power of

the relative canonical sheaf on X**™ the maximal open part of X such that
f|xretsm is smooth. In addition, we have the following homorphisms:

(9.3.4) F Fawy ™ 5 Hom(F.Ov, Ov) = Hom(p.0xe), Ox),

(9.3.5) Fuwh ® f*Fuwy P & Faih ® Fuf*wy P — Fuoy .
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The homorphisms (9.3.1), (9.3.3)—(9.3.5) fit into the following commutative
diagram:
(9.3.6)

o Hom((Fx/v)«Ox,0xm) ®ox Hom(p:Oxw),0x) —— Hom(F.Ox,Ox)

I I I

1-p * 1-p 1-p
Fowy )y ®ox frFawy, e Fwy ™.

Finally, let W be another smooth variety over k, and let g : W — V be
a k-morphism (not necessarily flat). By abuse of notation, we still use g to
denote the base change maps Xy — X and (XW)(p) = XI(/IZ;) — X® . Then
the following diagram is commutative:

9*(FX/V>*W;<_/€/ —=— g"Hom((Fxv):Ox,Ox»)

037 N E

(FXW/W)*W}{;/W — Hom((Fxyy, yw)«Oxyy OX‘(jg) )-

To prove the isomorphism (9.3.3), and that (9.3.6) and (9.3.7) are commu-
tative, one can first assume that X is smooth over V. In this case, the proof
of (9.3.1) (as in [BKO05, §1.3]) with obvious modifications applies to (9.3.3).
In particular, étale locally on X, (9.3.3) can be described by the explicit for-
mula as in (9.3.2), with z1,...,x, replaced by a system of local coordinates of
X relative to V. Then (9.3.6) and (9.3.7) follow from the direct calculation.
Then one can easily extend these to the case that X is flat over V' with normal
and Cohen-Macaulay fibers. Indeed, under our assumptions, all the sheaves
appearing in (9.3.3), (9.3.6) and (9.3.7) have the following property: Let F
be such a sheaf on X and j : X™»™ — X be the open embedding as before.
Then F 2 5, (F| xrelsm).
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