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On the coherence conjecture
of Pappas and Rapoport

By Xinwen Zhu

Abstract

We prove the (generalized) coherence conjecture proposed by Pappas

and Rapoport. As a corollary, one of their theorems, which describes the ge-

ometry of the special fibers of the local models for ramified unitary groups,

holds unconditionally. Our proof is based on the study of the geometry

(in particular, certain line bundles and `-adic sheaves) of the global Schu-

bert varieties, which are the equal characteristic counterparts of the local

models.
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1. Introduction

The goal of this paper is to prove the coherence conjecture of Pappas and

Rapoport as proposed in [PR08]. The precise formulation of the conjecture

is a little bit technical and will be given in Section 2.3. In this introduction,

we would like to describe a vague form of this conjecture, to convey the ideas

behind it and to outline the proofs.

The coherence conjecture was proposed by Pappas and Rapoport in or-

der to understand the special fibers of local models. Local models were sys-

tematically introduced by Rapoport and Zink in [RZ96] (special cases were

constructed earlier by Deligne-Pappas [DP94] and independently by de Jong

[dJ93]) as a tool to analyze the étale local structure of certain integral models of

(PEL-type) Shimura varieties with parahoric level structures over p-adic fields.

Unlike the Shimura varieties themselves, which are usually moduli spaces of

abelian varieties, local models are defined in terms of linear algebra and there-

fore are much easier to study. For example, using local models, Görtz (see

[Gör01], [Gör03]) proved the flatness of certain PEL-type Shimura varieties

associated to unramified unitary groups and symplectic groups. (Some special

cases were obtained in earlier works [CN92], [dJ93], [DP94].) On the other

hand, a discovery of G. Pappas (cf. [Pap00]) showed that the originally defined

integral models in [RZ96] are usually not flat when the groups are ramified.

Therefore, nowadays the (local) models defined in [RZ96] are usually called

the naive models. In a series of papers ([PR03], [PR05], [PR09]), Pappas and

Rapoport investigated the corrected definition of flat local models. The easiest
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definition of these local models is by taking the flat closures of the generic fibers

in the naive local models. Usually, an integral model defined in this way is not

useful since the moduli interpretation is lost and therefore it is very difficult to

study the special fiber, etc. (In fact, a considerable part [PR03], [PR05], [PR09]

is devoted in an attempt to cutting out the correct closed subschemes inside

the naive models by strengthening the original moduli problem of [RZ96].) In-

deed, most investigations of local models so far used these strengthened moduli

problems in a way or another. (For a survey of most progress in this area, we

refer to the recent paper [PRS13].)

However, as observed by Pappas and Rapoport in [PR08], the brute force

definition of the local models by taking the flat closure is not totally out of

control as one might think. Namely, it is known after Görtz’ work that the

special fibers of the naive models always embed in the affine flag varieties and

that their reduced subschemes are a union of Schubert varieties. Therefore,

two questions arise: which Schubert varieties appear in the special fibers (of

the flat models) and whether the special fibers are reduced. These questions

are reduced to the coherence conjecture (see [PR08], [PR09], at least in the

case the group splits over a tamely ramified extension), which characterizes

the dimension of the spaces of global sections of certain ample line bundles

on certain union of Schubert varieties. Therefore, we will have a fairly good

understanding of the local models even if we do not know the moduli problem

they represent, provided we can prove the coherence conjecture.

Let us be a little bit more precise. To this goal, we first need to recall the

theory of affine flag varieties. (We refer to Section 2.2 for unexplained notation

and more details.) Let k be a field and G be a flat affine group scheme of finite

type over k[[t]]. Let G be fiber of G over the generic point F = k((t)) =

k[[t]][t−1]. Then one can define the affine flag variety F`G = LG/L+G, which

is an ind-scheme, of ind-finite type (cf. [BL94], [Fal03], [PR08] and Section 2.2).

When G is an almost simple, simply-connected algebraic group over k((t)) and

G is a parahoric group scheme of G, F`G is ind-projective and coincides with

the affine flag varieties arising from the theory of affine Kac-Moody groups as

developed in [Kum02], [Mat88] (at least when G splits over a tamely ramified

extension of k((t))). The jet group L+G acts on F`G by left translations and the

orbits are finite dimensional; their closures are called (affine) Schubert varieties.

When G is an Iwahori group scheme of G, Schubert varieties are parametrized

by elements in the affine Weyl group Waff of G. (More generally, if G is

not simply-connected, they are parametrized by elements in the Iwahori-Weyl

group W̃ .) For w ∈ W̃ , we denote the corresponding Schubert variety by F`w.

Let us come back to local models. Let (G,K, {µ}) be a triple, where G is

a reductive group over a p-adic field F , with finite residue field kF , K is a para-

horic subgroup of G and {µ} is a geometric conjugacy class of one-parameter
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subgroups of G. Let E/F be the reflex field (i.e., the field of definition for {µ}),
with ring of integers OE and residue field kE . Then for most such triples (at

least when µ is minuscule; cf. [PRS13] for a complete list), one can define the

so-called naive model Mnaive
K,{µ}), which is an OE-scheme, whose generic fiber is

the flag variety X(µ) of parabolic subgroups of GE of type µ. Inside Mnaive
K,{µ},

one defines Mloc
K,{µ} as the flat closure of the generic fiber. (For an example

of the definitions of such schemes, see Section 8.) In all known cases, one can

find a reductive group G′ defined over k((t)) and a parahoric group scheme G
over k[[t]] such that the special fiber

Mnaive
K,{µ} :=Mnaive

K,{µ} ⊗ kE

embeds into the affine flag variety F`G = LG′/L+G as a closed subscheme,

which is, in addition, invariant under the action of L+G. In particular, the

reduced subscheme of Mnaive
K,{µ} is a union of Schubert varieties inside F`G .

Which Schubert variety will appear in Mnaive
K,{µ} usually can be read from the

moduli definition of Mnaive
K,{µ}. However, the special fiber of Mloc

K,{µ} is more

mysterious, and a lot of work has been done in order to understand it. (We refer

to [PRS13] (in particular, its Section 4) and references therein for a detailed

survey of the current progress.)

Here we review two strategies to studyMloc
K,{µ}. For simplicity, we assume

that the derived group of G is simply-connected and K is an Iwahori subgroup

of G at this moment. In this case, G will be an Iwahori group scheme of G′.

One can attach to {µ} a subset Adm(µ) in the Iwahori-Weyl group W̃ , usually

called the µ-admissible set; cf. [Rap05] and Section 2.1 for the definitions.

In all known cases, it is not hard to see that the Schubert varieties F`w for

w ∈ Adm(µ) indeed appear in Mloc
K,{µ}; i.e.,

A(µ) :=
⋃

w∈Adm(µ)

F`w ⊂M
loc
K,{µ}.

Now, the first strategy to determine the (underlying reduced closed subscheme

of) the special fiber Mloc
K,{µ} goes as follows. Write down a moduli functor

M′K,{µ} that is a closed subscheme of Mnaive
K,{µ} such that

M′K,{µ} ⊗ E =Mnaive
K,{µ} ⊗ E, M′K,{µ}(k̄) = A(µ)(k̄),

where k̄ is an algebraic closure of kE . Clearly, this will imply that the reduced

subscheme

(1.0.1) (Mloc
K,{µ})red = A(µ).

In fact, much of the previous works aboutMloc
K,{µ} followed this strategy. How-

ever, let us mention that (so far) the definition of M′K,{µ} itself is not group



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 5

theoretical (i.e., it depends on choosing some representations of the group G).

In particular, when G is ramified, its definition can be complicated. In addi-

tion, except a few cases, it is not known whetherM′K,{µ} =Mloc
K,{µ} in general.

There is another strategy to determine Mloc
K,{µ}, as proposed in [PR08].

Namely, let us choose an ample line bundle L over Mnaive
K,{µ}. Then since by

definition Mloc
K,{µ} is flat over OE with generic fiber X(µ), for n� 0,

dimkE Γ(A(µ),Ln) ≤ dimkE Γ(Mloc
K,{µ},Ln) = dimE Γ(X(µ),Ln).

The general expectation (which has been verified in all known cases) that

Mloc
K,{µ} = A(µ)

led Pappas and Rapoport to conjecture the following equivalent statement:

dimkE Γ(A(µ),Ln) = dimE Γ(X(µ),Ln).

Apparently, this conjecture would not be very useful unless one could say

something about the line bundle L. In fact, the statement of the conjecture

in [PR08] is different and more precise. Namely, in loc. cit., they constructed

some line bundle L1 on the affine flag variety F`G and some line bundle L2 on

X(µ), both of which are explicit and are given purely in terms of group theory.

(See Section 2.3 for the precise construction.) Then they conjecture

The Coherence Conjecture. For n� 0,

dimk̄ Γ(A(µ),Ln1 ) = dimE Γ(X(µ),Ln2 ).

In addition, in loc. cit., for certain groups, they constructed natural ample

line bundles L on the corresponding local models, whose restrictions give L1

and L2.

What makes the coherence conjecture useful? First of all, the conjecture

is group theoretic; i.e., the statement is uniform for all groups. The nongroup

theoretic part then is absorbed into the construction of natural line bundles on

local models and the identification of their restrictions with the group theoreti-

cally constructed line bundles. This is a much simpler problem. An example is

illustrated in Section 8. More importantly, the right-hand side in the coherence

conjecture is defined over OE and therefore, it is equivalent to prove that

dimk̄ Γ(A(µ),Ln1 ) = dimk̄ Γ(X(µ),Ln2 ).

Observe that in the above formulation, everything is over the field k rather

than over a mixed characteristic ring.

How can we prove this conjecture? Suppose that we can find a scheme

GrG,µ (the reason we choose this notation will be clear soon), which is flat over

k̄[t], together with a line bundle L such that its fiber over 0 ∈ A1 is (A(µ),L1)

and its fiber over y 6= 0 is (X(µ),L2). Then the coherence conjecture will
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follow. In fact, such GrG,µ does exist and can be constructed purely group

theoretically. They are the (generalized) equal characteristic counterparts of

local models, which we will call the global Schubert varieties. Let us briefly

indicate the construction of GrG,µ here. (The construction of the line bundle

L, which we ignore here, is also purely group theoretical, see Section 4.) For

simplicity, let us assume that G′ is split over k. (The nonsplit case will also be

considered in the paper.) Let B be a Borel subgroup of G′. Then in [Gai01],

Gaitsgory (following ideas of Kottwitz and Beilinson) constructed a family of

ind-schemes GrG over A1, which is a deformation from the affine Grassmannian

GrG′ of G′ to the affine flag variety F`G′ of G′. By its construction,

GrG |Gm ∼= (GrG′ ×G′/B)×Gm,
1 GrG |0 ∼= F`G′ ,

where GrG |0 denotes the scheme theoretic fiber of GrG over 0 ∈ A1. When

µ is minuscule, the Schubert variety Grµ corresponds to µ in GrG′ is in fact

isomorphic to X(µ). In addition, we can “spread it out” over Gm as (Grµ×∗)×
Gm to get a closed subscheme of GrG |Gm , where ∗ is the base point in G′/B.

Now define GrG,µ as the closure of (Grµ × ∗)×Gm inside GrG . By definition,

its fiber over y 6= 0 is isomorphic to X(µ). On the other hand, it is not hard to

see that A(µ) ⊂ GrG,µ|0 (cf. Lemma 3.7). Therefore, the coherence conjecture

will follow if we can show that GrG,µ|0 = A(µ) (and if we can construct the

corresponding line bundle).

At the first sight, it seems the idea is circular. However, it is not the case.

The reason, as we mentioned before, is that GrG,µ now is a scheme over k and

we have many more tools to attack the problem. Observe that to prove that

GrG,µ|0 = A(µ), we need to show that

(1) (GrG,µ|0)red = A(µ) (Theorem 3.8);

(2) GrG,µ|0 is reduced (Theorem 3.9).

Part (1) can be achieved by the calculation of the nearby cycle Zµ =

ΨGrG,µ
(Q`) of the family GrG,µ (see Lemma 7.1). Usually, such a calculation

is a hard problem. The miracle here is that if Zµ is regarded as an object

in the category of Iwahori equivariant perverse sheaves on F`G′ , it has very

nice properties. Namely, by the main result of [Gai01] (in the case when G′

is split), Zµ is a central sheaf; i.e., for any other Iwahori equivariant perverse

sheaf F on F`G′ , the convolution product Zµ ? F (see (7.2.3)–(7.2.4) for the

definition) is perverse and

Zµ ? F ∼= F ? Zµ.
Then by a result of Arhkipov-Bezrukavnikov [AB09, Th. 4], the above proper-

ties put a strong restriction of the support of Zµ, which will imply Part (1). We

1In the main body of this paper, we will work with a different family so that this extra

G′/B factor does not appear.
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shall mention that although we assume here that G′ is split, the same strategy

can be applied to the nonsplit groups. This is done in Section 7, where we

generalize the results of [Gai01] and [AB09] to ramified groups as well. Our

arguments are simpler than the originally arguments in [Gai01], [AB09] and

will provide the following technical advantage. As we mentioned above, GrG,µ
should be regarded as the equal characteristic counterparts of local models.

Therefore, it is natural (and indeed important) to determine the nearby cycles

ΨMloc
K,{µ}

(Q`) for the local models. For example, if one could prove that these

sheaves are also central (the Kottwitz conjecture2), then one could conclude

(1.0.1) directly. It turns out the arguments in Section 7 have a direct gener-

alization to the mixed characteristic situation, and in joint work with Pappas

[PZ13], we use this to show the Kottwitz conjecture. (Some previous cases are

proved by Haines and Ngô [HN02].)

Now we turn to Part (2), which is more difficult. The idea is that we can

assume char k > 0 and use the powerful technique of Frobenius splitting (cf.

[MR85], [BK05]). To prove that GrG,µ|0 is reduced, it is enough to prove that

it is Frobenius split. To achieve this goal, we embed GrG,µ into a larger scheme

Gr
BD
G,µ,λ over A1, which is a closed subscheme of a version of the Beilinson-

Drinfeld Grassmannian. The scheme Gr
BD
G,µ,λ is normal, and its fiber over 0 is

reduced. Then to prove that

GrG,µ|0 = GrG,µ ∩Gr
BD
G,µ,λ|0

is Frobenius split, it is enough to construct a Frobenius splitting of Gr
BD
G,µ,λ,

compatible with GrG,µ and Gr
BD
G,µ,λ|0. Since Gr

BD
G,µ,λ is normal, it is enough to

prove this for some nice open subscheme U ⊂ Gr
BD
G,µ,λ such that Gr

BD
G,µ,λ − U

has codimension two. In particular, the open subscheme U will not intersect

with GrG,µ|0, which is our primary interest. Section 6 is devoted to realizing

this idea.

Now let us describe the organization of the paper and some other results

proved in it.

In Section 2, we review the coherence conjecture of Pappas and Rapoport.

In Section 2.1, we review the basic theory of reductive groups over local fields

and introduce various notation used in the rest of the paper. In Section 2.2, we

rapidly recall the main results of [PR08] (and [Fal03]) concerning loop groups

and the geometry of their flag varieties. In Section 2.3, we state the main

theorems (Theorems 1 and 2) of our paper, which give a modified version of

2In fact, the Kottwitz conjecture is weaker than this statement, and its significance lies

in its use in the Langlands-Kottwitz method for calculating the Zeta functions of Shimura

varieties.
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original coherence conjecture of Pappas and Rapoport. (See Remark 2.1 for

the reason of the modification.)

In Section 3, we introduce the main geometric object we are going to

study in the paper, namely, the global Schubert varieties. They are varieties

projective over the affine line A1, which are the counterparts of local models

in the equal characteristic situation. In Section 3.1, we define the global affine

Grassmannian over a curve for general (nonconstant) group schemes. After

the work of [PR08], [PR10], [Hei10], this construction is now standard. In

Section 3.2, we construct a special Bruhat-Tits group scheme over C = A1,

i.e., a group scheme that is only ramified at the origin. Let us remark that

similar constructions are also considered in [HNY13], [Ric13]. In Section 3.3,

we apply the construction of the global affine Grassmannian to the group

scheme we consider in the paper. We introduce the global Schubert variety

GrG,µ, which is associated to a geometric conjugacy class of one-parameter

subgroup {µ} of G, over a ramified cover C̃ of C. We then state another

main theorem (Theorem 3), which asserts that the special fiber of GrG,µ is

AY (µ), and first show that the variety AY (µ) is contained in this special fiber

(Lemma 3.7). In Section 4, we explain that our assertion about the special

fiber of GrG,µ is equivalent to the coherence conjecture. The key ingredient is

a certain line bundle on the global affine Grassmannian, namely, the pullback

of the determinant line bundle along the closed embedding

GrG → GrLie(G).

We calculate its central charges at each fiber (which turn out to be twice of the

dual Coxeter number) and find the remarkable fact that the central charge of

line bundles on the global affine Grassmannians are constant along the curve

(Proposition 4.1).

In Section 5, we make some preparations towards the proof of our main

theorem. We study two basic geometrical structures of GrG,µ: (i) in Section 5.2,

we will construct certain affine charts of GrG,µ, which turn out to be isomorphic

to affine spaces over C̃; and (ii) in Section 5.3, we will construct a Gm-action

on GrG,µ, so that the map GrG,µ → C̃ is Gm-equivariant, where Gm acts on

C̃ = A1 by natural dilatation. To establish (i), we will need to first construct

the global root subgroups of LG as in Section 5.1.

The next two sections are then devoted to the proof of the theorem con-

cerning the special fiber of GrG,µ, as has been already outlined above. The first

part of the proof, presented in Section 6, concerns the scheme theoretic struc-

ture of the special fiber. Namely, we prove that it is reduced. This is achieved

by the technique of Frobenius splitting. As a warm up, we prove in Section 6.1

that Theorem 1 is a special case of Theorem 2, which should be well known

to experts. Then we introduce the Beilinson-Drinfeld Grassmannian and the
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convolution Grassmannian and reduce Theorem 3.9 to Theorem 6.8. In Sec-

tion 6.3, we prove a special case of Theorem 6.8 by studying the affine flag

variety associated to a special parahoric group scheme. Recall that a result

of Beilinson-Drinfeld (cf. [BD, 4.6]) asserts that the Schubert varieties in the

affine Grassmannian are Gorenstein. In Section 6.3 we examine to what extend

this result holds for ramified groups (i.e., reductive groups split over a ramified

extension). It turns out this result extends to all affine flag varieties associated

to special parahorics except in the case the special parahoric is a parahoric

of the ramified odd unitary group SU2n+1, whose special fiber has reductive

quotient SO2n+1 (Theorem 6.11). In this exceptional case, no Schubert variety

of positive dimension in the corresponding affine flag variety is Gorenstein (Re-

mark 6.1). In Section 7, we give the second part of the proof, which asserts that

topologically, the special fiber of GrG,µ coincides with AY (µ). This is achieved

by the description of the support of the nearby cycle (for the intersection co-

homology sheaf) of this family. In the case when the group is split, this follows

the earlier works of [Gai01] and [AB09]. In Sections 7.2 and Section 7.3, we

generalize their results to ramified groups, with certain simplifications of the

original arguments.

The paper has two appendices. The first one, Section 8, calculates the

line bundles on the local models for the ramified unitary groups. The study

of these local models was the main motivation for Pappas and Rapoport to

make the coherence conjecture. Since their original conjecture is not as stated

in our main theorem, we explain in this appendix why our main theorem is

correct for the applications to local models. The second appendix (Section 9)

collects and strengthens some results, which already exist in literature, in a

form needed in the main body of the paper.

Notation. Let k be a field, and fix k̄ to be an algebraic closure of k. We

will denote by ks ⊂ k̄ the separable closure of k in k̄.

If X be a Y -scheme and V → Y is a morphism, the base change X ×Y V
is denoted by XV or X|V . If V = SpecR, it is sometimes also denoted by XR.

If V = x = Speck is a point, then it is sometimes also denoted by (X)x.

For a vector bundle V on a scheme V , we denote by det(V) the top exterior

power of V, which is a line bundle.

If A is an affine algebraic group (not necessarily a torus) over a field

k, we denote by X•(A) (resp. X•(A)) its character group (resp. cocharac-

ter group) over ks. The Galois group Γ = Gal(ks/k) acts on X•(A) (resp.

X•(A)) and the invariants (resp. coinvariants) are denoted by X•(A)Γ (resp.

X•(A)Γ,X•(A)Γ,X•(A)Γ).

If G is a flat group scheme over V , the trivial G-torsor (i.e., G itself regarded

as a G-torsor by right multiplication) is denoted by E0. For a G-torsor E , we
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use ad E to denote the associated adjoint bundle. If P is a G torsor and X is a

scheme over V with an action of G, we denote the twisted product by P ×GX,

which is the quotient of P ×V X by the diagonal action of G.

If G is a reductive group over a field, we denote by Gder its derived group,

Gsc the simply-connected cover of Gder and Gad its the adjoint group.

Acknowledgements. The author is grateful to D. Gaitsgory, G. Pappas,

M. Rapoport, J.-K. Yu for useful discussions, and G. Pappas and M. Rapoport

for reading an early draft of this paper. He is also extremely grateful to the

referee for pointing out an enormous number of mistakes and typos in an

early draft. The work of the author is supported by the NSF grant DMS-

1001280/1313894.

2. Review of the local picture, formulation of the conjecture

2.1. Group theoretical data. Let k be an algebraically closed field. Let

O = k[[t]] and F = k((t)). Let Γ = Gal(F s/F ) be the inertial (Galois) group,

where F s is the separable closure of F . Let us emphasize that we choose a

uniformizer t. Let G be a connected reductive group over F . In this paper,

unless otherwise stated, G is assumed to split over a tamely ramified extension

F̃ /F . It is called a ramified group if it is nonsplit over F .

Let S be a maximal F -split torus of G. Let T = ZG(S) be the cen-

tralizer of S in G, which is a maximal torus of G since G is quasi-split over

F . (As F is a field of cohomological dimension one, this follows from [Ste65,

Th. 1.9].) Let us choose a rational Borel subgroup B ⊃ T . Let H be a split

Chevalley group over Z such that H ⊗ F s ∼= G ⊗ F s. We need to choose this

isomorphism carefully. Let us fix a pinning (H,BH , TH , X) of H over Z. Let

us recall that this means that BH is a Borel subgroup of H, TH is a split

maximal torus contained in BH , and X = Σã∈∆Xã ∈ LieB, where ∆ is the

corresponding set of simple roots, Ũã is the root subgroup corresponding to

ã and Xã is a generator in the rank one free Z-module Lie Ũã. Let us choose

an isomorphism (G,B, T ) ⊗F F̃ ∼= (H,BH , TH) ⊗Z F̃ , where F̃ /F is a cyclic

extension such that G ⊗ F̃ splits. This induces an isomorphism of the root

data (X•(TH),∆,X•(TH),∆∨) ∼= (X•(T ),∆,X•(T ),∆∨). Let Ξ be the group

of pinned automorphisms of (H,BH , TH , X). The natural map from Ξ to the

group of the automorphisms of the root datum (X•(TH),∆,X•(TH),∆∨) is an

isomorphism ([Con, Prop. 7.1.6]).

Now the action of Γ = Gal(F̃ /F ) on G ⊗F F̃ induces a homomorphism

ψ : Γ→ Ξ. Then we can always choose an isomorphism

(2.1.1) (G,B, T )⊗F F̃ ∼= (H,BH , TH)⊗Z F̃

such that the action of γ ∈ Γ on the left-hand side corresponds to ψ(γ) ⊗ γ.

In the rest of the paper, we fix such an isomorphism. This determines a point
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v0 in A(G,S), the apartment associated to (G,S) ([BT72]).3 This is a special

point of A(G,S), which in turn gives a parahoric group scheme Gv0 over O,

namely

(2.1.2) Gv0 := ((ResOF̃ /O(H ⊗OF̃ ))Γ)0.

Let us explain the notation. Here Res stands for the Weil restriction, so that

ResOF̃ /O(H ⊗OF̃ ) is a smooth group scheme over O (cf. [Edi92, 2.2]), with an

action of Γ. The notation (−)Γ stands for taking the Γ-fixed point subscheme.

Under our tameness assumption, G̃v0 := (ResOF̃ /O(H ⊗ OF̃ ))Γ is smooth by

[Edi92, 3.4]. Finally, (−)0 stands for taking the neutral connected component.

Therefore, Gv0 and G̃v0 have the same generic fiber and the special fiber of Gv0

is the neutral connected component of the special fiber of G̃v0 .

Recall that A(G,S) is an affine space under X•(S)R. For every facet

σ ⊂ A(G,S), let Gσ be the parahoric group scheme over O. (In particular, the

special fiber of Gσ is connected.) Let us choose a special vertex v ∈ A(G,S)

(e.g., v0), and identify A(G,S) with X•(S)R via this choice. Let a be the

unique alcove in A(G,S), whose closure contains the point v and is contained

in the finite Weyl chamber determined by our chosen Borel. This determines

a set of simple affine roots αi, i ∈ S, where S is the set of vertices of the affine

Dynkin diagram associated to G.

Let W̃ be the Iwahori-Weyl group of G (cf. [HR]) that acts on A(G,S).

This is defined to be NG(S)(F )/ kerκ, where NG(S) is the normalizer of S in

G, and

(2.1.3) κ : T (F )→ X•(T )Γ

is the Kottwitz homomorphism (cf. [Kot97, §7]). One has the following exact

sequence:

(2.1.4) 1→ X•(T )Γ → W̃ →W0 → 1,

where W0 is the relative Weyl group of G over F . In what follows, we use tλ
to denote the translation element in W̃ given by λ ∈ X•(T )Γ from the above

map (2.1.4).4 But occasionally, we also use λ itself to denote this translation

element if no confusion is likely to arise. The pinned isomorphism (2.1.1)

determines a set of positive roots Φ+ = Φ(G,S)+ for G. There is a natural

map X•(T )Γ → X•(S)R. We define

(2.1.5) X•(T )+
Γ = {λ | (λ, a) ≥ 0 for a ∈ Φ+}.

3More precisely, v0 is a point in the apartment associated to the adjoint group (Gad, Sad).

But since in the paper we only use the combinatorial structures of A(G,S), we will not

distinguish it from the one associated to the adjoint group.
4Note that under the sign convention of the Kottwitz homomorphism in [Kot97], tλ acts

on A(G,S) by v 7→ v − λ.
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Our choice of the special vertex v of A(G,S) gives a splitting of the exact

sequence, and therefore we can write w = tλwf for λ ∈ X•(T )Γ and wf ∈W0.

Let Waff be the affine Weyl group of G, i.e., the Iwahori-Weyl group of

Gsc, that is a Coxeter group. One has

1→ X•(Tsc)Γ → Waff →W0 → 1,

where Tsc is the inverse image of T in Gsc. One can write W̃ = Waff o Ω,

where Ω is the subgroup of W̃ that fixes the chosen alcove a. This gives W̃ a

quasi-Coxeter group structure. Hence it makes sense to talk about the length

of an element w ∈ W̃ and there is a Bruhat order on W̃ . Namely, if we

write w1 = w′1τ1, w2 = w′2τ2 with w′i ∈ Waff , τi ∈ Ω, then `(wi) = `(w′i) and

w1 ≤ w2 if and only if τ1 = τ2 and w′1 ≤ w′2. A lot of the combinatorics of

the Iwahori-Weyl group arises from the study of the restriction of the length

function and the Bruhat order to X•(T )Γ ⊂ W̃ . Some of them will be reviewed

in Section 9.1.

Now let us recall the definition of the admissible set in the Iwahori-Weyl

group. Let W̄ be the absolute Weyl group of G, i.e., the Weyl group for

(H,TH). Suppose that µ : (Gm)F̃ → G ⊗ F̃ gives a geometric conjugacy

class of one-parameter subgroups. It determines a W̄ -orbit in X•(T ). One can

associate {µ} a W0-orbit Λ in X•(T )Γ as follows. Choose a Borel subgroup of G

containing T and defined over F . This gives a unique element in this W̄ -orbit,

still denoted by µ, which is dominant with respect to this Borel subgroup. Let

µ̄ be its image in X•(T )Γ, and let Λ = W0µ̄. It turns out Λ does not depend on

the choice of the rational Borel subgroup of G since any two such F -rational

Borels that contain T will be conjugate to each other by an element in W0.

For µ ∈ X•(T ), define the admissible set

(2.1.6) Adm(µ) = {w ∈ W̃ | w ≤ tλ for some λ ∈ Λ}.

Under the map X•(T )Γ → W̃ → W̃/Waff
∼= Ω, the set Λ maps to a single

element (cf. [Rap05, Lemma 3.1]), denoted by τµ. Define

Adm(µ)◦ = τ−1
µ Adm(µ).

For Y ⊂ S any subset, let W Y denote the subgroup of Waff generated by

{ri, i ∈ S− Y }, where ri is the simple reflection corresponding to i. Then set

AdmY (µ) = W Y Adm(µ)W Y ⊂ W̃

and

AdmY (µ)◦ = τ−1
µ AdmY (µ).

Note that AdmY (µ)◦ ⊂ Waff , and this subset only depends on the image of µ

under X•(T )→ X•(Tad), where Tad is the image of T in Gad.
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2.2. Loop groups and their flag varieties. Let σ ⊂ A(G,S) be a facet. Let

F`σ = LG/L+Gσ

be the (partial) flag variety of LG. Let us recall that LG is the loop group

of G, which represents the functor which associates to every k-algebra R the

group G(R((t))), L+Gσ is the jet group of Gσ, which represents the functor that

associates to every k-algebra R the group Gσ(R[[t]]), and F`σ = LG/L+Gσ is

the fpqc quotient. Let us also recall that LG is represented by an ind-affine ind-

scheme, L+Gσ is represented by an affine scheme, which is a closed subscheme

of LG, and F`σ is represented by an ind-scheme, ind-projective over k. Denote

by I = L+Ga the Iwahori subgroup of LG, and denote F`a by F`, which we

call the affine flag variety of G. If G splits over F , so that G = H ⊗ F and

(2.1.1) is the natural isomorphism, then the special vertex v0 is hyperspecial,

and corresponds to the parahoric group scheme H ⊗ k[[t]]. Then we denote

F`v0 by GrH and call it the affine Grassmannian of H. Let Y ⊂ S be a subset,

and let σY ⊂ A(G,S) be the facet such that αi(σY ) = 0 for i ∈ S−Y . Observe

that σS = a is the chosen alcove. We also denote F`σY by F`Y for simplicity.

Let us recall that the I-orbits of F` are parametrized by W̃ . In general,

the L+GσY -orbits of F`Y ′ are parametrized by W Y \ W̃/W Y ′ , where W Y is

the Weyl group of GσY ⊗ k. For w ∈ W̃ , let Y F`Y ′w ⊂ F`Y
′

denote the corre-

sponding Schubert variety, i.e., the closure of the L+GσY -orbit through w. If

Y = Y ′, then we simply denote it by F`Yw . If G is split and G = H ⊗ k[[t]]

is a hyperspecial model, recall that L+G-orbits of GrH are parametrized by

W̄ \ W̃/W̄ ∼= X•(T )+, the set of dominant coweights of G. For µ ∈ X•(T )+,

let Grµ be the corresponding Schubert variety in GrH .

Let us recall the following result of [Fal03], [PR08].

Theorem 2.1. Let p = char k. Assume that p - |π1(Gder)|, where Gder is

the derived group of G. Then the Schubert variety F`Yw is normal, has rational

singularities, and is Frobenius-split if p > 0.

For µ ∈ X•(T ), let

(2.2.1) AY (µ)◦ =
⋃

w∈AdmY (µ)◦

Y ◦F`Ysc,w,

where σY ◦ = τ−1
µ (σY ) and where Y ◦F`Ysc,w is the union of Schubert varieties

(more precisely, the closure of L+GσY ◦ -orbits) in the partial affine flag variety

F`Ysc = LGsc/L
+GσY . Then AY (µ)◦ is a reducible subvariety of F`Ysc, with

irreducible components

Y ◦F`Y
sc,τ−1

µ tλ
, λ ∈ Λ ⊂ X•(T )Γ ⊂ W̃ .

Observe that AY (µ)◦ only depends on the image of µ under X•(T )→ X•(Tad).
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When p - |π1(Gder)|, it is also convenient to consider

(2.2.2) AY (µ) =
⋃

w∈AdmY (µ)

F`Yw .

Choosing a lift g ∈ G(F ) of τµ ∈ W̃ and identifying F`Ysc with the reduced

part of the neutral connected component of F`Y (see [PR08, §6]), we can

define a map F`Ysc → F`Y , x 7→ gx. Clearly, this map induces an isomorphism

AY (µ)◦ ∼= AY (µ).

In particular, if G = H ⊗ F is split and σY = v0 is the hyperspecial

vertex corresponding to H ⊗ O, then AY (µ)◦ is denoted by Gr≤µ, so that if

p - |π1(Gder)|, then we have the isomorphism Gr≤µ ∼= Grµ.

We also need to review the Picard group of F`. For simplicity, we assume

that G is simple, simply-connected, absolutely simple. In this case F` is con-

nected. For each i ∈ S, let Pi be the corresponding parahoric subgroup scheme

such that L+Pi ⊃ I so that L+Pi/I ∼= P1. This P1 maps naturally to F` via

L+Pi → LG, and the image will be denoted as P1
i . Then it is known ([PR08,

§10]) that there is a unique line bundle L(εi) on F`, whose restriction to the

P1
i is OP1(1), and whose restrictions to other P1

j s with j 6= i is trivial. Then

there is an isomorphism

Pic(F`) ∼=
⊕
i∈S

ZL(εi).

Let us write ⊗iL(εi)
ni as L(

∑
i niεi). As explained in loc. cit., the εi can be

thought of as the fundamental weights of the Kac-Moody group associated to

LG, and therefore, Pic(F`) is identified with the weight lattice of the corre-

sponding Kac-Moody group.

There is also a morphism

(2.2.3) c : Pic(F`)→ Z

called the central charge. If we identify L ∈ Pic(F`) with a weight of the

corresponding Kac-Moody group, then c(L) is just the restriction of this weight

to the central Gm in the Kac-Moody group. Explicitly,

(2.2.4) c(L(εi)) = a∨i ,

where a∨i (i ∈ S) are defined as in [Kac90, 6.1]. The kernel of c can be de-

scribed as follows. Let s denote the closed point of SpecO, and let (Ga)s
denote the special fiber of Ga. Recall that for any k-algebra R, F`(R) is the

set of Ga-torsors on SpecR[[t]] together with a trivialization over SpecR((t)).

Therefore, by restriction of the Ga-torsors by t 7→ 0 to SpecR ⊂ SpecR[[t]], we

obtain a natural morphism F` → B(Ga)s (here B(Ga)s is the classifying stack
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of (Ga)s), which induces X•((Ga)s) ∼= Pic(B(Ga)s) → Pic(F`). We have the

short exact sequence

(2.2.5) 0→ X•((Ga)s)→ Pic(F`) c→ Z→ 0.

Now let Y ⊂ S be a nonempty subset. Observe that if L(
∑
niεi) is a line

bundle on F`, with ni = 0 for i ∈ S− Y , then this line bundle is the pullback

of a unique line bundle along F` → F`Y , denoted by LY (
∑
i∈Y niεi). In this

way, we have

(2.2.6) Pic(F`Y ) ∼=
⊕
i∈Y

ZL(εi).

The central charge of a line bundle L on F`Y is defined to be the central charge

of its pullback to F`, i.e., the image of L under Pic(F`Y ) → Pic(F`) c→ Z.

Observe that LY (
∑
i∈Y niεi) is ample on F`Y if and only if ni > 0 for all i ∈ Y .

In the case G = H ⊗ F is split, the central charge map induces an iso-

morphism c : Pic(GrH) ∼= Z. We will denote by Lb the ample generator of

the Picard group of GrH . Observe that, for Y = {i} not special, the ample

generator of Pic(F`Y ) has central charge a∨i , which is in general greater than

one. That is, the composition Pic(F`Y ) → Pic(F`) c→ Z is injective but not

surjective in general.

2.3. The coherence conjecture. Now we formulate the coherence conjec-

ture of Pappas and Rapoport. However, the original conjecture, as stated in

loc. cit., needs to be modified (see Remark 2.1).

Assume that G is simple, absolutely simple, simply-connected and splits

over a tamely ramified extension F̃ /F . Let {µ} be a geometric conjugacy

class of one-parameter subgroups (Gm)F̃ → Gad ⊗ F̃ . First assume that µ is

minuscule. Let P (µ) be the corresponding maximal parabolic subgroup of H,

and let X(µ) = H/P (µ) be the corresponding partial flag variety of H. Let

L(µ) be the ample generator of the Picard group of X(µ). Then define

hµ(a) = dimH0(X(µ),L(µ)a).

If µ = µ1 + · · ·+µn is a sum of minuscule coweights, let hµ = hµ1 · · ·hµn . The

following is the main theorem of this paper, which is a modified version of the

original coherence conjecture of Pappas and Rapoport in [PR08].

Theorem 1. Let µ = µ1 + · · ·+µn be a sum of minuscule coweights. Then

for any Y ⊂ S and ample line bundle L on F`Y , we have

dimH0(AY (µ)◦,La) = hµ(c(L)a),

where c(L) is the central charge of L.

This theorem is a consequence of the following more general theorem.
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Theorem 2. Let µ ∈ X•(Tad). Then for any Y ⊂ S and ample line bundle

L on F`Y , we have

dimH0(AY (µ)◦,L) = dimH0(Gr≤µ,Lc(L)
b ).

Since Theorem 1 is not the same as what Pappas and Rapoport origi-

nally conjectured and their conjecture is aimed at studying the local models

of Shimura varieties, we will explain why this is the correct theorem for appli-

cations to local models in Section 8. Let us remark that if G is split of type A

or C, Theorem 1 is proved in [PR08], using the previous results on the local

models of Shimura varieties (cf. [Gör01], [Gör03], [PR05]). However, it seems

that Theorem 2 is new even for symplectic groups.

One consequence of our main theorem (see Section 8) is that

Corollary 2.2. The statement of Theorem 0.1 in [PR09] holds uncon-

ditionally.

Our main theorem can be also applied to local models of other types

(for example for the (even) orthogonal groups) to deduce some geometrical

properties of the special fibers. This will be done in [PZ13].

Remark 2.1. The original coherence conjecture in [PR08] needs to be mod-

ified. This is due to a miscalculation in [PR08, 10.a.1]. Namely, when G is

simply-connected, the affine flag variety of G (denoted by FG temporarily) em-

beds into the affine flag variety of H (denoted by FH temporarily). Therefore,

there is a restriction map Pic(FH)→ Pic(FG), which was described explicitly

in loc. cit. This description is wrong in the case when the group is a nonsplit

unitary group in an even number of variables. Adjusting the work in loc. cit.

to account for this produces the modified coherence conjecture that we show

in this paper. Let us remark that the same miscalculation led to an incorrect

example in [Hei10, Rem. 19(4) and an incorrect statement in the last sentence

of the first paragraph in p. 502] (see Proposition 4.1).

3. The global Schubert varieties

Theorem 2 will be a consequence of the geometry of the global Schubert

varieties, which will be introduced in what follows. Global Schubert varieties

are the function field counterparts of the local models.

3.1. The global affine Grassmannian. Let C be a smooth curve over k,

and let G be a smooth affine group scheme over C. Let GrG be the global

affine Grassmannian over C. Let us recall the functor it represents. For every

k-algebra R,

(3.1.1) GrG(R) =

{
(y, E , β)

∣∣∣∣∣ y : SpecR→ C, E is a G-torsor on CR,

β : E|CR−Γy
∼= E0|CR−Γy is a trivialization

}
,
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where Γy denotes the graph of y. This is a formally smooth ind-scheme over

C ([PZ13, Prop. 5.5]).

We also have the jet group L+G and the loop group LG of G. To define it,

we need some notation. Let y : SpecR → C. We will denote by Γy ⊂ CR the

closed subscheme given by the graph of y and consider the formal completion

of CR along Γy, which is an affine formal scheme. Following [BD, 2.12], we can

also consider the affine scheme Γ̂y given by the relative spectrum of the ring

of regular functions on that completion. There is a natural closed immersion

Γy → Γ̂y, and we will denote by Γ̂◦y := Γ̂y − Γy the complement of the image.

In our paper, we will soon specialize to the case C = A1 = Speck[v] so that

y : SpecR → C is given by v 7→ y ∈ R and therefore Γy = SpecR[v]/(v − y)

and Γ̂y ' SpecR[[w]] and the map p : Γ̂′y → CR is given by v 7→ w+ y. We will

often write Γ̂y = SpecR[[v − y]]. Then Γ̂◦y = SpecR[[v − y]][(v − y)−1].

Now, we define L+G and LG. For any k-algebra R,

(3.1.2) L+G(R) =
{

(y, β)
∣∣∣ y : SpecR→ C, β ∈ G(Γ̂y)

}
and

(3.1.3) LG(R) =
{

(y, β)
∣∣∣ y : SpecR→ C, β ∈ G(Γ̂◦y)

}
.

The former is a scheme formally smooth (but not of finite type) over C, and

the latter is a formally smooth ind-scheme over C.

Let us describe the fibers of LG,L+G,GrG over C. Let x ∈ C be a closed

point. Let Ox denote the completion of the local ring of C at x and Fx be the

fractional field of Ox. Then

(LG)x∼=L(GFx), (L+G)x∼=L+(GOx), (GrG)x∼=GrGOx :=L(GFx)/L+(GOx).

The groups LG and L+G naturally act on GrG . To see this, we can use

the descent lemma of Beauville-Laszlo (see [BL95], or rather a general form of

this lemma given in [BD, Th. 2.12.1] and [PZ13, Lemma 5.1]) to show

Lemma 3.1. The natural map

GrG(R)→

(y, E , β)

∣∣∣∣∣∣
y : SpecR→ C, E is a G-torsor on

Γ̂y, β : E|Γ̂◦y
∼= E0|Γ̂◦y is a trivialization


is a bijection for each R.

Then LG and L+G act on GrG by changing the trivialization β. The trivial

G-torsor gives GrG → C a section e. Then we have the projection

(3.1.4) pr : LG → LG · e = GrG .

We need the following lemma in the sequel.
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Lemma 3.2. The formation of GrG ,LG,L+G commute with any étale base

change, i.e., if f : C ′ → C is étale, then GrG ×C C ′ ∼= GrG×CC′ , etc. In

addition, the action of LG on GrG also commutes with any étale base change.

Proof. We have the following observation. Let y′ : SpecR → C ′ be an

R-point of C ′ and f(y) : SpecR → C be the corresponding R-point of C.

Since f is étale, the morphism obtained from f by completing along y′ and

y gives an isomorphism of affine formal schemes that induces an isomorphism

Γ̂y ' Γ̂y′ between the affine spectra of their coordinate rings. In addition,

this isomorphism restricts to an isomorphism Γ̂◦y′ ' Γ̂◦y. The lemma now

follows. �

3.2. The group scheme. We will be mostly interested in the case that G is

a Bruhat-Tits group scheme over C. Let us specify the meaning of this term.

Let η denote the generic point of C. Then a smooth group scheme G over C is

called a Bruhat-Tits group scheme if Gη is (connected) reductive, and for any

closed point y of C, GOy is a parahoric group scheme of GFy .
Now let us specify the Bruhat-Tits group scheme that will be relevant to

us. Let G1 be an almost simple, absolutely simple and simply-connected, and

split over a tamely ramified extension F̃ /F , as in the coherent conjecture. Then

we can assume that F̃ /F is cyclic of order e = 1, 2, 3. Let γ be a generator of

Γ = Gal(F̃ /F ). For technical reasons, which are apparent from the statement

of Theorem 2.1, we need the following well-known result.

Lemma 3.3. There is a connected reductive group G over F , which splits

over F̃ /F , such that Gder
∼= G1 and X•(T )→ X•(Tad) is surjective. Here T is

a maximal torus of G as in Section 2.1.

For example, if G1 = SLn or Sp2n, then G can be chosen as GLn and

GSp2n respectively.

We let (H,BH , TH , X) be a split pinned group over Z, together with an

isomorphism (G,B, T ) ⊗F F̃ ∼= (H,BH , TH) ⊗ F̃ as in Section 2.1. Let us

choose the special vertex v0 to identify A(G,S) with X•(S)R, and let a be the

chosen alcove in A(G,S) as in Section 2.1. Let Y ⊂ S as before.

Let [e] : A1 → A1 be the ramified cover given by y → ye. To distinguish

these two A1s, let us denote it as [e] : C̃ → C. The origin of C is denoted by

0, and the origin of C̃ is denoted by 0̃. Write C◦ = C−{0} and C̃◦ = C̃−{0̃}.
Observe that Γ acts on H × C̃ naturally. Namely, it acts on the first factor by

pinned automorphisms and the second by transport of structures. Let

G|C◦ = (ResC̃◦/C◦(H × C̃))Γ.

Then GF0
∼= G after choosing some F0

∼= F . Now, gluing G|C◦ and GσY along

the the fpqc cover C = C◦ ∪ SpecO0 (see [Hei10, Lemma 5] for the detailed
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discussion of the descent theory in this case), we get a group scheme G over C,

satisfying

(1) Gη is connected reductive with connected center, splits over a tamely

ramified extension, such that (Gη)der is simple, absolutely simple, and

simply-connected;

(2) for some choice of isomorphism F0
∼= F , GF0

∼= G;

(3) for any y 6= 0, GOy is hyperspecial, (noncanonically) isomorphic to

H ⊗Oy;
(4) GO0 = GσY under the isomorphism GF0

∼= G.

A more detailed account of the construction of this group scheme is given

in Section 5.1. Let us mention that similar group schemes have been con-

structed in [HNY13], [Ric13]. For this group scheme G, we know that the fiber

of GrG over y 6= 0 is isomorphic to the affine Grassmannian GrH of H, and the

fiber over 0 is isomorphic to the affine flag variety F`Y of G. Likewise, the fiber

of L+G over y 6= 0 is isomorphic to L+H and the fiber over 0 is isomorphic to

L+GσY .

Let T be the subgroup scheme of G such that

(1) Tη is a maximal torus of Gη;
(2) for any y 6= 0, TOy is a split torus;

(3) TF0 is the torus T and TO0 is the connected Néron model of TF0 .

We can construct T as the neutral connected component of

(3.2.1) T̃ = (ResC̃/C(TH × C̃))Γ.

Note that T embeds into G naturally. Indeed, under our tameness assumption,

T is the connected Néron model of (ResC̃◦/C◦(TH× C̃))Γ, and T (O0) ⊂ G(O0).

Then the claim follows by the construction of parahoric group schemes as in

[BT84, 5.2].

3.3. The global Schubert variety. It turns out that it is more convenient to

base change everything over C to C̃. Let u (resp. v) denote a global coordinate

of C̃ (resp. C) such that the map [e] : C̃ → C is given by v 7→ue. Recall that

0∈C(k) (resp. 0̃ ∈ C̃(k)) is given by v=0 (resp. u=0). The crucial step toward

the construction of the global Schubert varieties is the following proposition.

Proposition 3.4. For each µ ∈ X•(Tη) ∼= X•(TH), there is a section

sµ : C̃ → LT ×C C̃

such that for any ỹ ∈ C̃(k), the element

sµ(ỹ) ∈ (LT )y(k) = TFy(Fy), y = [e](ỹ)

maps under the Kottwitz homomorphism κ : TFy(Fy)→ X•(Tη)Gal(F sy /Fy) to the

image of µ under the natural projection X•(Tη)→ X•(Tη)Gal(F sy /Fy).
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The proposition is obvious for split groups. But for the ramified groups,

the proof is a little bit complicated, and only the statement of the proposition

will be used in the main body of the paper. Therefore, those who are only

interested in split groups can skip the proof.

Proof. Let us first review how to construct an element in tµ ∈ T (k((t)))

whose image under the Kottwitz homomorphism (2.1.3) is µ under the map

X•(T )→ X•(T )Γ. Let k((s))/k((t)) be a finite separable extension of degree n so

that Tk((s)) splits, where sn = t. Then λ(s) ∈ T (k((s))). By the construction of

the Kottwitz homomorphism (cf. [Kot97, §7]), we can take tλ to be the image

of λ(s) under the norm map T (k((s)))→ T (k((t))).

Now we construct sµ. Let T̃ is as in (3.2.1). We will first construct a

section sµ : C̃ → LT̃ and then prove it indeed factors as sµ : C̃ → LT → LT̃ .

Let Γ[e] denote the graph of [e] : C̃ → C. By definition,

HomC(C̃,LT̃ ) = HomC(Γ̂◦[e], T̃ ) = Hom(Γ̂◦[e] ×C C̃, TH)Γ,

where Γ acts on Γ̂◦[e] ×C C̃ via the action on the second factor.

Recall that we have the global coordinates u, v and the map [e] : C̃ → C is

given by v 7→ ue. Then OΓ̂◦
[e]

∼= k[u]((v − ue)). Therefore, the ring of functions

on Γ̂◦[e] ×C C̃ can be written as

A = k[u1]((v − ue1))⊗k[v] k[u2],

where the map k[v] → k[u2] is given by v 7→ ue2. Let γ be a generator of

Γ = Aut(C̃/C) acting on u2 as u2 7→ ξu2, where ξ is a primitive e-th root of

unit. For i = 1, . . . , e, the element (ξi ⊗ u2 − u1 ⊗ 1) is invertible in A and

therefore gives a morphism

xi : Γ̂◦[e] ×C C̃ → Gm.

Clearly xi ◦ γ = xi+1. (As usual, xi+e = xi.)

Now choose a basis ω1, . . . , ω` of X•(TH). Let us define

sµ : Γ̂◦[e] ×C C̃ → TH

as

ωj(sµ) = x
(µ,γωj)
1 x

(µ,γ2ωj)
2 · · ·x(µ,γeωj)

e .

Clearly, sµ is independent of the choice of ω1, . . . , ω`. (However, it depends on

the global coordinate u on C̃.) Furthermore, sµ is Γ-equivariant. Therefore,

we constructed a section sµ : C̃ → LT̃ .

Now we prove that this section indeed factors as sµ : C̃ → LT → LT̃ . In

other words, the morphism Γ̂◦[e] → T̃ factors as Γ̂◦[e] → T → T̃ . By definition,

T is the neutral connected component of T̃ . Therefore, it is enough to prove
that the image of Γ̂◦[e]|0 → T̃ |0 lands in the neutral connected component
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of T̃ |0. Observe that Γ̂◦[e]|0 ∼= Speck((u1)). Let C̃0 be the fiber of C̃ → C

over 0 so that C̃0
∼= k[u]/ue with a Γ-action. It has a unique closed point 0̃.

Recall that T̃ |0 = (ResC̃0/k
(TH × C̃0))Γ and therefore, there is a canonical map

ε : T̃ |0 → TΓ
H given by adjunction, making the following diagram commute:

HomC(Γ̂◦[e], T̃ ) −−−−→ Hom(Γ̂◦[e]|0, T̃ |0)
ε−−−−→ Hom(Γ̂◦[e]|0, T

Γ
H)∥∥∥ ∥∥∥ ∥∥∥

Hom(Γ̂◦[e] ×C C̃, TH)Γ −−−−→ Hom(Γ̂◦[e]|0 × C̃0, TH)Γ −−−−→ Hom(Γ̂◦[e]|0 × {0̃}, T
Γ
H)

In our case, ε(sµ) : Γ̂◦[e]|0 → TH is given by

ωj(ε(sµ)) = (−u1)(
∑

γ∈Γ γµ,ωj).

In other words, ε(sµ) is the composition

Γ̂◦[e]|0
−u1−−→ Gm

∑
γ∈Γ γµ−−−−−−→ TH .

Since for any Γ-invariant coweight µ, the image µ : Gm → TΓ
H lands in the

neutral connected component of TΓ
H (the torus part), sµ : C̃ → LT̃ factors

through C̃ → LT → LT̃ .

Finally, let us check that sµ : C̃ → LT ×C C̃ satisfies the desired properties

as claimed in the proposition.

Let ỹ ∈ C̃(k) be a closed point given by u 7→ ỹ ∈ k. Then sµ(ỹ) corre-

sponds to sµ(ỹ) : Speck((v − ỹe))⊗k[v] k[u2]→ TH given by

ωj(sµ(ỹ)) =
e∏
i=1

(ξi1⊗ u2 − y)(µ,γiωj).

If ỹ = 0, the assertion of the proposition follows directly from the review of

the construction of tµ at the beginning. If ỹ 6= 0, let w = 1⊗ u2 − y. Then

e∏
i=1

(ξi1⊗ u2 − y)(µ,γiωj) = w(µ,ωj)f(w),

where

f(w) =
e−1∏
i=1

(ξi1⊗ u2 − y)(µ,γiωj) ∈ k[[w]]×.

Therefore, as an element in TH(k((w))), which is canonically isomorphic to LTy,
sµ(ỹ) maps to µ under the Kottwitz homomorphism. �

Remark 3.1. Note that the natural map LT → LT̃ induces isomorphisms

LT |C◦ ' LT̃ |C◦ and LT |0 → LT̃ |0, but itself is not an isomorphism.

Remark 3.2. For a general µ, there is no such section C → LT satisfying

the property of the proposition. This is why we want to base change everything

over C to C̃. However, if µ ∈ X•(T ) is defined over F , then sµ indeed descents



22 XINWEN ZHU

to a section C → LT . This means that in this case the variety GrG,µ defined

below, which a priori is a variety over C̃, descends to a variety over C. One

can summarize this by saying that GrG,µ is defined over the “reflex field” of the

geometric conjugacy class {µ} (which is the same as the field of definition of

µ as G is quasi-split over F ([Kot84, Lemma 1.1.3])). The same phenomenon

appears in the theory of Shimura varieties.

The composition of sµ and the natural morphism (see (3.1.4)) pr : LT →
GrT (resp. LT → LG) gives a section C̃ → GrT ×C C̃ (resp. C̃ → LG ×C C̃),

which is still denoted by sµ.

The construction of C̃ → LT ×C C̃ will depend on the choice of the global

coordinate u of C̃, but the section sµ : C̃ → GrT ×C C̃ does not. Indeed,

there is the following moduli interpretation of such section. Recall that GrT
is ind-proper over C ([Hei10]), and therefore, sµ is uniquely determined by a

section C̃◦ → GrT ×C C̃◦ ∼= GrTH×C̃◦ (by Lemma 3.2). Then this section,

under the moduli interpretation of GrTH×C̃◦ , is given as follows: let ∆ be the

diagonal of C̃◦ × C̃◦ and O(C̃◦)2(µ∆) be the TH -torsor on (C̃◦)2 such that for

any weight ν of TH , the associated line bundle is OC̃◦((µ, ν)∆). This TH -torsor

has a canonical trivialization away from ∆.

Lemma 3.5. The map sµ : C̃◦ → GrT corresponds to (E , β), where E is

the TH-torsor O(C̃◦)2(µ∆) and β is its canonical trivialization over (C̃◦)2−∆.

Proof. The Kottwitz homomorphism κ : LTH(k) → X•(TH) induces an

isomorphism GrH(k) ∼= LTH(k)/L+TH(k). On the other hand, recall that if

we fix a point x on the curve C̃, we can interpret GrTH as the set of (E , β),

where E is a TH -torsor and β is a trivialization of E away from x. Under this

interpretation, any tµ ∈ X•(TH) is interpreted as the TH -torsor OC̃(µx),5 with

its canonical trivialization away from x. Then the lemma is clear. �

By composing with the natural morphism GrT → GrG , we obtain a section

of GrG ×C C̃, still denoted by sµ.

Notation. In what follows, we denote GrG ×C C̃ (resp. L+G ×C C̃, resp.

LG ×C C̃) by ›GrG (resp. flL+G, resp. L̃G).

Definition 3.1. For each µ ∈ X•(Tη) ∼= X•(TH), the global Schubert vari-

ety GrG,µ is the minimal flL+G-stable irreducible closed subvariety of ›GrG that

contains sµ.

Let us emphasize that GrG,µ is not a subvariety of GrG . Rather, it lies in

GrG ×C C̃. Recall that for any µ ∈ X•(T ), one defines a subset AdmY (µ) ⊂ W̃

5The reason that tµ represents OC̃(µx) rather than OC̃(−µx) is due to the original sign

convention of the Kottwitz homomorphism in [Kot97].
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as in (2.1.6). The main geometric property of GrG,µ that we will prove in this

paper is as follows.

Theorem 3. Assume that the group G is as in Lemma 3.3 and the group

scheme G is constructed from G as in Section 3.2. Let y be a closed point of C̃ .

Then

(GrG,µ)y ∼=


⋃
w∈AdmY (µ)F`

Y
w y = 0̃,

Grµ y 6= 0̃.

In particular, all the fibers are reduced.

We first prove the easy part of the theorem.

Lemma 3.6. (GrG,µ)y ∼= Grµ for y 6= 0̃.

Proof. Write C̃◦ = C̃ − 0̃. We want to show that GrG,µ|C̃◦ is isomorphic

to Grµ × C̃◦. First we have a canonical isomorphism

(3.3.1) G ×C C̃◦ ∼= H × C̃◦.

Therefore, by Lemma 3.2,

(3.3.2) GrG ×C C̃◦ ∼= GrH×C̃◦ , LG ×C C̃◦ ∼= L(H × C̃).

Secondly, C̃◦ ∼= Gm, which admits a global coordinate u so that L(H × C̃◦) ∼=
LH × C̃◦ and GrH×C̃◦

∼= GrH × C̃◦. Finally, by Lemma 3.5, the section

sµ : C̃◦ → GrG ×C C̃◦ ∼= GrH × C̃◦ satisfies sµ(C̃◦) ⊂ Grµ × C̃◦. �

Using this lemma, we see that it is enough to make the following conven-

tion.

Convention. When we discuss GrG,µ, we will assume that µ ∈ X•(TH) is

dominant with respect to the chosen Borel BH as in Sections 2.1 and 3.2.

At this moment, we can also see that

Lemma 3.7. The scheme (GrG,µ)0̃ ⊂ (GrG)0
∼= F`Y contains F`Yw for

w ∈ AdmY (µ).

Proof. Clearly, it is enough to show that F`Yλ ⊂ (GrG,µ)0̃ for any λ in Λ,

where Λ is the W0-orbit in X•(T )Γ containing µ as constructed in Section 2.1.

Observe that GrG,µ is the flat closure of GrG,µ|C̃◦ in ›GrG , since the later is

clearly flL+G-stable. Then the claim follows from the fact that for any λ ∈
X•(TH) in the W̄ -orbit of µ, sλ(0̃) ∈ F`Yλ and sλ(C̃◦)⊂GrG,µ|C̃◦∼=Grµ×C̃◦. �

To prove the theorem, it is remains to show that

Theorem 3.8. The underlying reduced subscheme of (GrG,µ)0̃ is the union⋃
w∈AdmY (µ)F`

Y
w .
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Theorem 3.9. (GrG,µ)0̃ is reduced.

By the same argument as in [PZ13, 9.2.1], GrG,µ is normal. We conjecture

that it is Cohen-Macaulay as well.

4. Line bundles on GrG and BunG

This section explains why Theorems 3 and 2 are equivalent to each other.

The key ingredients are the line bundles on the global affine Grassmannian GrG .

Observe that GrG can be disconnected. This will create some complications

in trying to determine the line bundle on GrG directly. Instead, we will pass

to its group scheme Gder (defined below), whose generic fiber then is simply-

connected so that we can apply the results of Heinloth [Hei10] directly.

4.1. Line bundles on GrG and BunG . In this subsection, we temporary

assume that C is a smooth curve over k and G is a Bruhat-Tits group scheme

over C such that Gη is almost simple, absolutely simple, and simply-connected.

Proposition 4.1. Let L be a line bundle on GrG . Then the function cL
that associates to every y ∈ C(k) the central charge of the restriction of L to

(GrG)y is constant.

This proposition implies that the statement in the last sentence of the first

paragraph in page 502 of [Hei10] is not correct.

Proof. Let Pic(GrG/C) denote the relative sheaf of Picard groups over C.

As explained in [Hei10], this is an étale sheaf over C. Let D = Ram(G) be

the set of points of C such that for every y ∈ Ram(G), the fiber Gy is not

semi-simple. This is a finite set. Then there is a short exact sequence

(4.1.1) 1→
∏
y∈D

X•(Gy)→ Pic(GrG/C)→ c→ 1,

where c is a constructible sheaf, with all fibers isomorphic to Z, and is constant

on C −D.

According to the description of the sheaf c in Remark 19 (3) of loc. cit., if

L is a line bundle on GrG such that cL(y) = 0 for some y ∈ C(k), then cL = 0.

Therefore, to prove the proposition, it is enough to construct one line bundle

L2c on GrG such that cL2c is constant on C.

Let V0 = LieG be the Lie algebra of G. This is a locally free OC-module on

C of rank dimη Gη, on which G acts by the adjoint representation. This induces

a morphism G → GL(V0) and therefore a morphism i : GrG → GrGL(V0).

Let Ldet denote the determinant line bundle on GrGL(V0). Let us recall its

construction. We want to associate to every SpecR → GrGL(V0) a line bundle

on SpecR in a compatible way. Recall that a morphism SpecR → GrGL(V0)
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represents a morphism y ∈ C(R), a vector bundle V on CR and an isomorphism

V|CR−Γy
∼= V0|CR−Γy . There exists some N large enough such that

V0(−NΓy) ⊂ V ⊂ V0(NΓy)

and V0(NΓy)/V is R-flat. Then the line bundle on SpecR is

det(V0(NΓy)/V)⊗ det(V0(NΓy)/V0)−1,

which is independent of the choice of N up to a canonical isomorphism.

The pullback i∗Ldet is a line bundle on GrG , which will be our L2c. To

see this is the desired line bundle, we need to calculate its central charge when

restricted to each y ∈ C(k). Let D = Ram(G). First consider y ∈ C − D.

Then the map iy : (GrG)y → (GrGL(V0))y is just

GrH → GrGL(LieH),

where H is the split Chevalley group over Z such that G⊗ k(η)s ∼= H ⊗ k(η)s.

It is well known that in this case i∗yLdet over y has central charge 2h∨, where

h∨ is the dual Coxeter number of H. (In fact, this statement is a consequence

of the following argument.)

It remains to calculate the central charge of L2c over y ∈ D. Without loss

of generality, we can assume that D consists of one point, denoted by 0. So let

y = 0 and G = GF0 . Then the closed embedding i0 : (GrG)0 → (GrGL(V0))0 is

just

LG/L+GO0 → GrGL(LieGO0
).

Let us first assume that GO0 is an Iwahori group scheme of GF0 . Write I =

L+GO0 and F` = LG/I as usual. We claim that in this case

Lemma 4.2. We have an isomorphism i∗0Ldet
∼= L(2

∑
i∈S εi).

Assuming this fact, we find the central charge of i∗0Ldet is 2
∑
i∈S a

∨
i . By

checking all the affine Dynkin diagrams, we find that∑
i∈S

a∨i = h∨.

In fact, we find that for affine Dynkin diagrams X
(r)
N , where X = A,B,C,D,

E,F,G and r=1, 2, 3, the sum
∑
a∨i is independent of r (see [Kac90, Rem. 6.1]),

and it is well known (or by definition) that for r = 1,
∑
a∨i = h∨. Therefore,

the proposition follows in this case.

Now we prove Lemma 4.2. This is equivalent to proving that the restric-

tion of i∗0Ldet to each P1
j (whose definition is given in Section 2.2) is isomorphic

to OP1(2). Recall that a k-point gI ∈ F` corresponds to a pro-algebraic sub-

group of LGF0 given by I ′ := gIg−1, which is the jet group of an Iwahori

group scheme of GF0 . By abuse of notation, we still denote this Iwahori group

scheme by I ′. Then F`→ GrGL(LieGO0
) maps an Iwahori group scheme I ′ of G
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to its Lie algebra Lie I ′, which is a free O0-module, together with the canonical

isomorphism Lie I ′ ⊗ F0
∼= LieG ∼= Lie I ⊗ F0.

For j ∈ S, let Pj be the minimal parahoric (but not Iwahori) group scheme

corresponding to j. Then the subscheme P1
j ⊂ F` classifies the Iwahori group

schemes of G that map to Pj . Let P uj → Pj be the “unipotent radical” of Pj .

More precisely, P uj is smooth over O0 with P uj ⊗ F0 = G and the special fiber

of P uj maps onto the unipotent radical of the special fiber of Pj . If I ′ is an

Iwahori group scheme of G that maps to Pj , then

LieP uj ⊂ Lie I ′ ⊂ LiePj .

Let P̄ red
j be the reductive quotient of the special fiber of Pj . Then P̄ red

j is iso-

morphic to GL2,SL2 or SO3 over k. Let Gr(2,Lie P̄ red
j ) ∼= P2 denote the Grass-

mannian (over k) of 2-planes in the three-dimensional vector space Lie P̄ red
j .

We have the following commutative diagram:

P1
j −−−−→ Gr(2,Lie P̄ red

j )y y
F` −−−−→ GrGL(LieGO0

),

where P1
j → G(2,Lie P̄ red

j ) is given by

I ′ 7→ (Lie I ′/LieP uj ⊂ LiePj/LieP uj ) ∼= Lie P̄ red
j )

and Gr(2,Lie P̄ red
j )→ GrGL(Lie I) is given by realizing that Gr(2,Lie P̄ red

j ) rep-

resents the free O0-modules that are in between LieP uj and LiePj . Observe

that the degree of the map P1
j → Gr(2,Lie P̄ red

j ) ' P2 is two as it is just

the map that sends a Borel subgroup of SL2 to the two-dimensional vector

subspace of sl2 given by the Lie algebra of the Borel subgroup.

By construction, the restriction of Ldet to Gr(2,Lie P̄ red
j ) is the (positive)

determinant line bundle on G(2,Lie P̄ red
j ), or OP2(1). Therefore, the restriction

of Ldet to P1
j is isomorphic to OP1(2). This finishes the proof of Lemma 4.2,

and therefore the proposition in the case GO0 is Iwahori.

Now let GO0 be a general parahoric group scheme. Let G′ be the group

scheme over C together with G′ → G, such that G′O0
is Iwahori and the restric-

tion of G′ → G to C − {0} is an isomorphism. Let V0 = LieG and V ′0 = LieG′.
We have the natural map

p : (GrG′)0 → (GrG)0

induced from G′ → G and the maps

i : GrG → GrGL(V0), i′ : GrG′ → GrGL(V ′0).

Let Ldet (resp. L′det) be the determinant line bundle on GrGL(V0) (resp.

GrGL(V ′0)). We need to show that p∗i∗0Ldet and i′∗0 L′det have the same central
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charge. (Observe that these two line bundles are not isomorphic.) From this,

we conclude that the central charge of i∗Ldet is also constant along C.

Let us extend G and G′ to group schemes over the complete curve C̄

such that G|C̄−{0} = G′|C̄−{0}. Let BunG (resp. BunG′) be the moduli stack

of G-torsors (G′-torsors) on C̄. Let G0,G′0 be the restriction of the two group

schemes over 0 ∈ C, and let P be the image of G′0 → G0. This is indeed a Borel

subgroup of G′0. Recall that by restricting a G′-torsor to 0 ∈ C, we obtain a

map (GrG′)0
r→ BG′0, and we have the similar map for G. Then we have the

following diagram with both squares Cartesian:

(4.1.2) (GrG′)0
//

��

BunG′
r //

��

BG′0 // BP

��
(GrG)0

// BunG
r // BG0.

Indeed, it is clear that the left square is Cartesian because G|C̄−{0} = G′|C̄−{0}.
The fact that the second square is Cartesian is established in Proposition 9.7.

Let y : SpecR → (GrG′)0 be a morphism given by (E , β), where E is a

G′-torsor on CR. Then we have the natural short exact sequence

0→ adE → ad(E ×G′ G)→ E ×G′ (LieG/LieG′)→ 0.

On the other hand, p : (GrG′)0 → (GrG)0 is a relatively smooth morphism since

BP → BG′0 is smooth. Let Tp denote the relative tangent sheaf. We claim that

E ×G′ (LieG/LieG′) ∼= y∗Tp, where y∗Tp is the sheaf on SpecR, regarded as a

sheaf on CR via the closed embedding {0} × SpecR =: {0}R → CR. But this

follows from (4.1.2) and

E ×G′ (LieG/LieG′) ∼= (E|{0}R ×
G′0 P )×P (LieG0/LieP ).

Therefore, we have

(4.1.3) 0→ ad E → ad(E ×G′′ G′)→ y∗Tp → 0.

Let us finish the proof that p∗i∗0Ldet and i′∗0 L′det have the same central

charge and therefore the proof of the proposition. From the above lemma,

(4.1.4) p∗i∗0Ldet
∼= i′∗0 L′det ⊗ det(Tp).

So it is enough to prove that det Tp as a line bundle on (GrG′)0 has central

charge zero. But from (4.1.2), det Tp is a pullback of some line bundle from

BP , and hence from BG′0, which has zero central charge by (2.2.5). �

Now, we assume that C is a complete curve and let BunG be the moduli

stack of G-torsors on C. Let Pic(BunG) be the Picard group of rigidified line

bundles (trivialized over the trivial G-torsor) on BunG . Let D = Ram(G).

Observe that
∏
y∈C(k) X•(Gy) =

∏
y∈D X•(Gy). Fix 0 ∈ C(k). Let F`Y =
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LGF0/L
+GO0 , which is a partial affine flag variety of GF0 . According to [Hei10,

§7], we have the following commutative diagram:

0 −−−−→ ∏
y∈C(k) X•(Gy) −−−−→ Pic(BunG) −−−−→ Z −−−−→ 0y y y

0 −−−−→ X•(G0) −−−−→ Pic(F`Y )
c−−−−→ Z −−−−→ 0.

The left vertical arrow is the projection to the factor corresponding to 0, and

the right vertical arrow is injective (but not necessarily surjective). Presum-

ably, the map Pic(BunG)→Z is in fact given by Pic(BunG)→Γ(C,Pic(GrG/C))

→ Γ(C, c) ∼= Z and the right vertical arrow is the natural restriction map

Γ(C, c)→ c|0. Here we will not need to show this. We can, however, use the

above diagram to show that, for any L ∈ Pic(F`Y ), a certain tensor power of

it will descend to a line bundle on BunG . Therefore, we conclude

Corollary 4.3. Let C be a smooth but (not necessarily complete) curve,

and let G be a Bruhat-Tits group scheme over C such that Gη is almost simple,

absolutely simple and simply-connected. Let H be the split Chevalley group

over Z such that G ⊗ k(η)s ∼= H ⊗ k(η)s. Let 0 ∈ C(k), and let L be a line

bundle on F`Y = LGF0/L
+GO0 . Then there is a line bundle on GrG whose

restriction to (GrG)0
∼= F`Y is isomorphic to Ln for some n ≥ 1 and whose

restriction to (GrG)y ∼= GrH(for y 6∈ Ram(G)) is isomorphic to Lnc(L)
b , where

Lb is the ample generator of Pic(GrH) ∼= Z.

Proof. Let C̄ be a complete curve containing C. We extend G to a Bruhat-

Tits group scheme over C̄. Then some tensor power Ln of L descends to a line

bundle L′ on BunG . Let hglob : GrG → BunG be the natural projection. Then

h∗globL′ is a line bundle on GrG whose restriction to (GrG)0 is isomorphic to

Ln, and whose restriction to (GrG)y ∼= GrH (y 6∈ Ram(G)) has central charge

c(Ln), and therefore is isomorphic to Lnc(L)
b . �

4.2. Theorem 3 is equivalent to Theorem 2. Let us begin with a general

construction. Let G be a Bruhat-Tits group scheme over a curve C. Then

away from a finite subset D ⊂ C, G|C−D is reductive. Let Gder|C−D be the

derived group of G|C−D so that for y ∈ C(k), (Gder)Fy is the derived group of

GFy ([DG70, Exposé XXII 6.2]). It is known that there is a canonical bijection

between the facets in the building of (Gder)Fy and those in the building of GFy ,
and under this bijection, the corresponding parahoric group scheme for (Gder)Fy
maps to the corresponding parahoric group scheme for GFy . For example, see

[HR, Prop. 3] and its proof for the last statement. Therefore, we can extend

Gder|C−D to a Bruhat-Tits group scheme over C together with a morphism

Gder → G such that for all y ∈ D, (Gder)Oy → GOy is the morphism of parahoric

group schemes given by the facet determined by GOy .
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Definition 4.1. The group scheme Gder together with the morphism Gder→G
is called the derived group scheme of G.

Now let G be the group as in Lemma 3.3, and assume that the group

scheme G over C = A1 is constructed from G as in Section 3.2. Let us denote

G1 = Gder for simplicity. Let C◦ = C − {0}. Observe that G1|C◦ is reductive,

(G1)F0
∼= G1 = Gder, and for y 6= 0, (G1)Oy is hyperspecial for Hder ⊗ Oy. In

addition, (G1)η is simply-connected.

Let us explain why Theorems 3 and 2 are equivalent. The natural mor-

phism G1 → G induces a morphism GrG1 → GrG . One can show that this is a

closed embedding. (We will not use this fact; it follows however, a posteriori,

from the argument below.) But at least it follows directly from [PR08, §6] that

both (GrG1)0 → (GrG)0 and GrG1 |C◦ → GrG |C◦ are closed immersions. These

induce isomorphisms from (GrG1)0 and (GrG1)C◦ to the reduced subschemes of

the neutral connected component of (GrG)0 and of GrG |C◦ respectively. Let

µ ∈ X•(T ), and let GrG,µ be the corresponding global Schubert variety as in

Section 3.3. Recall the section sµ from Proposition 3.4. Regard it as a section

of L̃G that acts on ›GrG . Then

s−1
µ GrG,µ|C̃◦ ⊂›GrG1 |C̃◦ .

This follows from t−1
µ Grµ ⊂ GrHder

for any µ ∈ X•(TH), where tµ is consid-

ered as any lifting of tµ ∈ W̃ to TH(F ). Let GrG1,≤µ be the flat closure of

s−1
µ GrG,µ|C̃◦ in ›GrG1 . We claim that the natural map

(4.2.1) GrG1,≤µ → s−1
µ GrG,µ

is an isomorphism. To see this, first note that it is proper and bijective at the

level of points. Therefore, it is a finite morphism by Zariski’s main theorem.

Now, let x ∈ (GrG1,≤µ)0̃ and y be its image in (s−1
µ GrG,µ)0̃. Let A and B be

their local rings respectively. Then A is a finite B-module. Let u be a local

coordinate around 0̃. Note that since B[u−1]→ A[u−1] is an isomorphism and

B has no u-torsion, B → A is injective. On the other hand, (GrG1,≤µ)0̃ →
(s−1
µ GrG,µ)0̃ is a closed embedding since F`Ysc → F`Y is a closed embedding.

Therefore, B/uB → A/uA is surjective. By Nakayama’s lemma, B = A, and

therefore (4.2.1) is an isomorphism.

Let τµ be the image of µ in Ω ∼= X•(T )Γ/X•(Tsc)Γ, and let Y ◦ ⊂ S so

that σY ◦ = τ−1
µ (σY ) as before. Let g ∈ G1(F ) be a lifting of t−µτµ ∈ Waff .

Then since F`Yw ∈ (GrG,µ)0̃ for w ∈ AdmY (µ) (see Lemma 3.7), g(Y
◦F`Ysc,w) ⊂

(GrG1,≤µ)0̃ for w ∈ AdmY (µ)◦. In other words, AY (µ)◦ ⊂ (GrG1,≤µ)0̃.

Let L be an ample line bundle on F`Ysc. Suppose that its certain tensor

power Ln extends to a line bundle on GrG1 by Corollary 4.3. Then we have

dim Γ((GrG1,≤µ)y,Lnc(L)
b ) = dim Γ((GrG1,≤µ)0̃,L

n) ≥ dim Γ(AY (µ)◦,Ln)



30 XINWEN ZHU

by the flatness and the fact that H1(Y F`Y ′w ,L) = 0 for any Schubert variety
Y F`Y ′w and any ample line bundle L. In addition, the equality holds if and only

if AY (µ)◦ = (GrG1,≤µ)0̃. Clearly, for y 6= 0̃, (GrG1,≤µ)y = gGr≤µ. Therefore,

Γ((GrG1,≤µ)y,Lnc(L)
b ) ∼= Γ(Gr≤µ,Lnc(L)

b )

by Corollary 4.3. Therefore, Theorem 2 implies Theorem 3. Conversely,

Theorem 3 implies that the statement of Theorem 2 holds for Ln,L2n, . . . .

Therefore, we have the equality of Euler characteristic χ(Gr≤µ,Lmc(L)
b ) =

χ(AY (µ)◦,Lm) for any m as both are polynomial in m. But it is well known

that both Lmc(L)
b and Lm have no higher cohomology. (The charateristic p > 0

case follows from Frobenius splitting, and the characteristic zero case follows

from the semicontinuity; see [Mat88] for details.) Therefore, the statement of

Theorem 2 also holds for L.

To finish this section, let us mention the following observation.

Corollary 4.4. If Theorem 2 (equivalently, Theorem 3) holds for one

prime p - e, then it holds for all p - e as well as in the case char k = 0.

Proof. Recall that the affine flag varieties and Schubert varieties are de-

fined over W (k), the ring of Witt vectors of k, and the formation commutes

with base change ([Fal03], [PR08]). In addition, line bundles are also defined

over W (k). (After identifying the affine flag varieties with those arising from

Kac-Moody theory ([PR08]), this follows from [Mat88, XVIII]. In fact, they

are even defined over Z′, where Z is obtained from Z by adding e-th roots of

unity and inverting e.) By the vanishing of corresponding H1 (by the rea-

son mentioned above), both sides are free W (k)-modules and the formation of

cohomology commutes with base change. The corollary follows. �

5. Some properties of GrG,µ

In this section, we study two basic geometrical structures of GrG,µ: (i) in

Section 5.2, we will construct certain affine charts of GrG,µ, which turn out to

be isomorphic to affine spaces over C̃; and (ii) in Section 5.3, we will construct

a Gm-action on GrG,µ, so that the map GrG,µ → C̃ is Gm-equivariant, where

Gm acts on C̃ = A1 by natural dilatation. To establish (ii), we will need to

first construct the global root subgroups of LG as in Section 5.1. We shall

remark that the proofs of these results for G split are very straightforward. It

is only when G is not split that some complicated discussion is needed. Those

who are only interested in split groups can skip this section.

5.1. Global root groups. We will introduce certain “root subgroups” of LG
(more precisely, of L+G; see Remark 5.1(i)), whose fibers over 0 ∈ C is the

usual root subgroups of the loop group LG as constructed in [PR08, 9.a,9.b].
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Let us first review the shape of root groups of G. Let (H,BH , TH , X)

be a pinned Chevalley group over Z as in Section 2.1. In particular, Hder is

simply-connected. Let Ξ be the group of pinned automorphisms of Hder that

is simple, almost simple, simply-connected by our assumption. So Ξ is a cyclic

group of order 1, 2 or 3. Let Φ̃ = Φ(H,TH) be the set of roots of H with respect

to TH . For each ã ∈ Φ(H,TH), let Ũã denote the corresponding root group.

Then for each γ ∈ Ξ, one has an isomorphism γ : Ũã ∼= Ũγã. The stabilizer of

ã in Ξ is either trivial or the whole group. Let us choose a Chevalley-Steinberg

system of H; i.e., for each ã ∈ Φ(H,TH), an isomorphism xã : Ga
∼= Ũã over

Z. In addition, we require that

(1) if ã ∈ ∆ is a simple root, then Xã = dxã(1), where X =
∑
ã∈∆Xã;

(2) if the stabilizer of ã in Ξ is trivial, then γ ◦ xã = xγã for any γ ∈ Ξ.

Note that if γ stabilizes ã, it is not necessarily always the case that γ ◦xã = xã,

as can be seen for SL3. In this case, one obtains a quadratic character

(5.1.1) χã : Ξ→ AutZ(Ga) = {±1}

such that γ ◦ xã = xã ◦ χã(γ). Of course, this can happen only if the order of

Ξ is 2.

Recall that Γ = Aut(C̃/C) is a group of order e = 1, 2, 3, which acts on

H via pinned automorphisms and the corresponding map Γ→ Ξ is injective.

Let j : Φ(H,TH) → Φ(G,S) be the restriction of the root systems. For

a ∈ Φ(G,S), let

η(a) = {ã ∈ Φ(H,TH)|j(ã) = ma,m ≥ 0}.

This is a subset of Φ(H,TH) satisfying the condition of [Con, 5.1.16]. Let

Ũη(a) be the closed subgroup scheme of H as defined in loc. cit. As a scheme,

Ũη(a)
∼=
∏
ã∈η(a) Ũã, where the product is taken over any given order (which we

fix from now on) on η(a). Informally, this is the subgroup of H generated by

Ũã, ã ∈ η(a). This subgroup is invariant under Ξ. Then (ResF̃ /F Ũã)
Γ is the

root group of G corresponding to a.

For an integer n, let us denote by Ga,n,C̃ the group scheme over C̃ that

is the n-th congruence group scheme of Ga,C̃ . In other words, Ga,n+1,C̃ is the

dilatation of Ga,n,C̃ along the trivial subgroup in the fiber over 0̃ (see [BLR90,

§3.2] or Section 9.2). More concretely, Ga,n,C̃ = Speck[u, tn] ' Ga,C̃ and

the map Ga,n+1,C̃ → Ga,n,C̃ is given by tn 7→ utn+1. We also have the con-

gruence group schemes Ũã,n,C̃ of Ũã,C̃ . The Chevalley-Steinberg isomorphism

xã : Ga → Ũã induces the isomorphism

xã,n : Ga,C̃ ' Ga,n,C̃ → Ũã,n,C̃
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making the following diagram commutative:

(5.1.2)

Ga,C̃

xã,n+1−−−−→ Ũã,n+1,C̃

tn 7→utn+1

y y
Ga,C̃

xã,n−−−−→ Ũã,n,C̃ .

Our goal is to construct some global root groups for LG. For the purpose,

we describe a construction of G.

Let us normalize the valuation so that u has value 1/e. Then we embed

A(G,S) into A(H,TH). Let x ∈ σY be a point. It determines a parahoric

group scheme G̃x of H ⊗ F̃ , and GσY is the neutral connected component of

(ResF̃ /F G̃x)Γ. (One can see the claim as follows: Lifting x to a point in the

extended building of G, then (G̃x(Õ))Γ ⊂ G(F ) is the stabilizer of this point.

On the other hand, by [Edi92, 2.2, 3.4], (ResF̃ /F G̃x)Γ is smooth. Therefore, its

neutral connected component is the parahoric group scheme of G given x.)

We extend G̃x to a group scheme G̃ over C̃ as in Section 3.2, so that

G̃|C̃◦ = H × C̃◦ and G̃|O0 = G̃x (under the identification F̃ ∼= F̃0). From the

construction, G̃ contains∏
ã∈Φ(H,TH)−

Ũã,deã(v0−x)e,C̃ × TH,C̃ ×
∏

ã∈Φ(H,TH)+

Ũã,deã(v0−x)e,C̃

as a fiberwise dense open subscheme ([BT84, 2.2.10, 3.9.4]), where dye denotes

the smallest integer that is ≥ y. Observe that since x is fixed under the action

of Γ, for a ∈ Φ, the closed subgroup scheme
∏
ã∈η(a) Ũã,deã(x−v0)e,C̃ of G̃ is

invariant under the action of Γ. Let

Ua,σY ,C =

Ç
ResC̃/C

∏
ã∈η(a)

Ũã,deã(v0−x)e,C̃

åΓ

,

which does not depend on x. By [Edi92, 2.2, 3.4], Ua,σY ,C is smooth. In

addition, a check for SL2 and SU3 cases shows that Ua,σY ,C is connected. Then

(Ua,σY ,C)F0 is the root group of GF0
∼= G corresponding to a, and for y 6= 0,

(Ua,σY ,C)y ∼= Ũη(a) noncanonically. In addition,∏
a∈Φnd,−

Ua,σY ,C × (ResC̃/CTH,C̃)Γ,0 ×
∏

a∈Φnd,+

Ua,σY ,C

is a fiberwise dense open subscheme of G, where Φnd ⊂ Φ = Φ(G,S) denote the

set of nondivisible roots; i.e., a ∈ Φnd if a/2 6∈ Φ. Given an affine root α of G

with vector part a, the corresponding root subgroup of LG will be constructed

as a closed subgroup scheme of LUa,σY ,C .

Recall that we constructed the special vertex v0 in Section 2.1, where we

used this vertex to identify A(G,S) with X•(S)R. Then we can write affine
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roots as a + m, where a ∈ Φ(G,S) and m ∈ 1
eZ. Let a + m be an affine root

such that em ≥ dea(v0 − x)e. Let us construct a closed immersion

(5.1.3) xa+m : Ga,C → LUa,σY ,C .

Let us describe xa+m at the level of R-points, where R is a k-algebra. Re-

call that we write C = Speck[v], C̃ = Speck[u] such that [e] : C̃ → C is

given by v 7→ ue. Let y : SpecR → C be an R-point of C. We identify

HomC(SpecR,Ga,C) with R in an obvious manner. We thus need to construct

a map (functorial in R)

xa+m : R→ HomC(SpecR,LUa,σY ,C).

The graph of y : SpecR→ C is Γy = SpecR[v]/(v − y), and therefore

Γ̂◦y = SpecR((v − y)).

Now, by definition,

(5.1.4) HomC (SpecR,LUa,σY ,C) = Hom
Ä
SpecR((v − y))×C C̃, Ũa,σY ,C̃

äΓ
,

where Γ acts on SpecR((v−y))×C C̃ via the action on C̃ and acts on Ũa,σY ,C̃ :=∏
ã∈η(a) Ũã,deã(v0−x)e,C̃ as above.

Let us introduce the following notation. Each element s ∈ R((v− y))⊗k[v]

k[u] determines a morphism SpecR((v − y))×C C̃ → Ga,C̃ . Let

xã,n(s) : SpecR((v − y))×C C̃ → Ũã,n,C̃

denote the composition of this morphism with xã,n : Ga,C̃ → Ũã,n,C̃ .

Now we construct xa+m. There are two cases.

(i) 2a 6∈ Φ(G,S). In this case, Γ acts transitively on η(a). There are two

subcases.

(ia) η(a) = ã, so that Γ fixes ã and Ũη(a) = Ũã. Define

xa+m(r) = xã,dea(v0−x)e
Ä
r ⊗ uem−dea(v0−x)e

ä
.

Since a + m is an affine root, Γ acts on uem−dea(v0−x)e exactly via

the quadratic character χã as defined in (5.1.1), and xa+m(r) is an

element in (5.1.4).

(ib) Γ acts simply transitively on η(a). Choose ã ∈ η(a) and γ ∈ Γ a

generator. Using the isomorphism
∏e
i=1 Ũγi(ã)

∼= Ũη(a), define

xa+m(r) =
e∏
i=1

xγi(ã),dea(v0−x)e
Ä
r ⊗ γi(u)em−dea(v0−x)e

ä
.

Since for ã, ã′ ∈ η(a), the groups Ũã and Ũã′ commute, and therefore

xa+m(r) is an element in (5.1.4).
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(ii) 2a ∈ Φ(G,S), so that η(a) = {ã, ã′, ã + ã′}. In this case, char k 6= 2,

e = 2, and the group is the odd unitary group. In addition, the quadratic

character χã+ã′ is nontrivial. Recall that for any s, s′,

(5.1.5) xã(s)xã′(s
′) = xã′(s

′)xã(s)xã+ã′(±ss′),

where ± depends on xã, xã′ , xã+ã′ , but not on s, s′. Define

xa+m(r) = xã,deã(v0−x)e
Ä
r ⊗ uem−deã(v0−x)e

ä
× xã′,deã(v0−x)e

Ä
(−1)em−deã(v0−x)er ⊗ uem−deã(v0−x)e

ä
× xã+ã′,d2eã(v0−x)e

Å
∓(−1)em−deã(v0−x)e 1

2
r2 ⊗ u2em−d2eã(v0−x)e)

ã
,

where ∓ is the sign opposite to the sign ± in (5.1.5). Using (5.1.5), it is

clear that xa+m(r) is again an element in (5.1.4).

We have completed the construction of (5.1.3). Note that they are inde-

pendent of the choice of x ∈ σY by (5.1.2). In addition, over 0 ∈ C (i.e., by

setting y = 0), the map (5.1.3) reduces to an isomorphism of Ga and the root

subgroup of LG corresponding to a + m, as constructed in [PR08, 9.a,9.b].

This motivates us to define

Definition 5.1. Let a + m be an affine root of G that satisfies em ≥
dea(v0−x)e. The subgroup scheme Ua+m = xa+m(Ga,C) is called root subgroup

of LG corresponding to a+m.

Remark 5.1. (i) Note that in the above definition, the requirement em ≥
dea(v0 − x)e is necessary, as we need r ⊗ uem−dea(v0−x)e to be an element in

R((v − y)) ⊗k[v] k[u]. Note that in fact Ua+m ⊂ L+Ua,σY ,C . If f : G′ → G is a

map of Bruhat-Tits group schemes, then Lfxa+m = xa+m if xa+m is defined

for G′ (and therefore for G).

(ii) By taking the fibers Ua+m = (Ua+m)0 ⊂ (LG)0
∼= LG, we obtain the

root subgroups of LG. Note that, however, as R((v)) ⊗k[v] k[u] = R((u)), we

could drop the requirement em ≥ deã(v0 − x)e, and Ua+m ⊂ LG is defined for

all affine roots of G . If we do not identify A(G,S) with X•(S)R via v0, we

write them as Uα, where α is an affine root.

The following lemma about the root subgroups for (global) loop groups is

the counterpart of a well-known fact about the root subgroups of Kac-Moody

groups. To describe it, let us use the following notation. For a group (ind)-

scheme U over C and y ∈ C(R) and R-point, U(R) will denote the group of

R-points of U over y.

Lemma 5.1. Let R be a k-algebra and y ∈ C(R). Let a+m, b+n (a 6∈ Rb)
be two affine roots of G such that Ua+m,Ub+n are defined. Then the commutator

[Ua+m(R),Ub+n(R)] is contained in the group generated by U(pa+qb)+(pm+qn)(R),
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where p, q ∈ Z>0 such that (pa + qb) + (pm + qn) is also an affine root of G.

(The groups U(pa+qb)+(pm+qn) are clearly defined for G.)

Proof. Let us define a subset Ψa,b ⊂ Φ̃ = Φ(H,TH) as

Ψa,b = {ã ∈ Φ̃ | j(ã) = pa+ qb for p, q ∈ Z>0} =
⋃

pa+qb∈Φnd,p,q>0

η(pa+ qb),

where j : Φ̃ → Φ. For ã ∈ Ψa,b such that j(ã) = pa + qb, let k(ã) = pm + qn.

Using the same notation as above, let us define

Ũã+k(ã) ⊂ LResC̃/CŨa,σY ,C̃ ,

where Ũa,σY ,C̃ = Ũã,deã(v0−x)e,C̃ , to be the group over C whose R-points over

y : SpecR→ C are given by¶
xã,deã(v0−x)e

Ä
r ⊗ uek(ã)−deã(v0−x)e

ä
, r ∈ R

©
⊂ HomC(SpecR,L

Ä
ResC̃/CŨa,σY ,C̃)

ä
.

Let p, q ∈ Z>0, and let Ũη(pa+qb),pm+qn(R) be the subgroup of LResC̃/C(G̃)(R)

generated by Ũã+k(ã)(R) for those ã ∈ η(pa + qb) ⊂ Ψa,b. Although one can

show that Ũη(pa+qb),pm+qn(R) is the group of R-points of some group scheme

over C, it is enough for us to consider it as an abstract group here. Then

U(pa+qb)+(pm+qn)(R) = Ũη(pa+qb),pm+qn(R) ∩ LUpa+qb,σY ,C(R).

Likewise, let ŨΨa,b,m,n(R) be the group generated by Ũã+k(ã)(R), ã ∈ Ψa,b.

Recall that for the fixed Chevalley-Steinberg system {xã, ã ∈ Φ̃}, and for two

roots ã, b̃ ∈ Φ̃, there exists c(p, q) ∈ Z for p, q ∈ Z>0 such that for any ring R

and r, s ∈ R, the commutator [xã(r), xb̃(s)] can be written as

[xã(r), xb̃(s)] =
∏

pã+qb̃∈Φ̃,p,q>0

xpã+qb̃(c(p, q)r
psq)

([Con, Prop. 5.1.14]). Therefore, the commutator of [Ũã+k(ã)(R), Ũb̃+k(b̃)(R)] is

contained in the group generated by Ũpã+qb̃+k(pã+qb̃)(R), where p, q ∈ Z>0 and

pã+qb̃ ∈ Φ̃. Now we can apply [BT72, Prop. 6.1.6], with the pair Ũã+k(ã)(R) ⊂
Ũã playing the role Ya ⊂ Ua in loc. cit. Then we have

ŨΨa,b,m,n(R)
'←

∏
ã∈Ψa,b

Ũã+k(ã)(R)
'→

∏
pa+qb∈Φnd,p,q>0

Ũη(pa+qb),pm+qn(R).

Here the first isomorphism is obtained by setting Ψred in loc. cit. as Ψa,b,

and the second isomorphism is obtained by setting Ψred = η(pa + qb) for all

pa+ qb ∈ Φnd, p, q > 0.
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Next, let LU(a,b)(R) be the group generated by LUpa+qb,σY ,C(R), pa+qb ∈
Φ, p, q ∈ Z>0. Again by loc. cit., there is a bijection∏

pa+qb∈Φnd,p,q>0

LUpa+qb,σY ,C(R)
'→ LU(a,b)(R).

Combining the above two isomorphisms, we thus obtain that

(Ua+m(R),Ub+n(R)) ⊂ ŨΨa,b,m,n(R) ∩ LU(a,b)(R)

=
∏

pa+qb∈Φnd,p,q>0

(Ũη(pa+qb),pm+qn(R) ∩ LUpa+qb,σY ,C(R))

=
∏

pa+qb∈Φnd,p,q>0

U(pa+qb)+(pm+qn)(R). �

5.2. Some affine charts of GrG,µ. We introduce certain affine charts of

GrG,µ that turn out to be isomorphic to affine spaces. Let Λ = W0µ ⊂ X•(T )Γ

as before, and let λ ∈ Λ. Denote Φλ ⊂ Φ(G,S) to be the subset

(5.2.1)

Φλ =

®
a+m | (a, λ) > 0, a+m affine root , 0 ≤ m− dea(v0 − x)e

e
< (a, λ)

´
.

By Lemma 9.1, this is a set with (2ρ, µ) elements. (Recall that µ ∈ X•(T )+.)

For each a+m, Ua+m is defined and is a subgroup of L+G.

Let us endow a total order on the set Φλ as follows: First fix an order on

{a | (a, λ) > 0}∩Φnd. Then we can extend it to an order on {a | (a, λ) > 0} by

requiring if a, 2a ∈ {a | (a, λ) > 0}, then a < 2a < b for any b ∈ {a | (a, λ) > 0}
∩ Φnd such that a < b. Finally, we can give an order on Φλ by requiring

a+m < b+ n if either a < b or a = b,m < n.

Now, consider
∏

Φλ Ua+m → L+G given by multiplication. Here and every-

where else the fiber products are over C. This is a closed immersion. In fact,

let Ψ ⊂ Φ(G,S) be the image of the map Φλ → Φ(G,S) by taking the vector

part of an affine root. Then Ψ ∩ (−Ψ) = ∅. Therefore,
∏
a∈Ψ Ua,σY ,C → G is

a closed embedding. On the other hand, for a ∈ Ψ, it is not hard to see that

the morphism
∏
m Ua+m

∏
m′ U2a+m′ → L+Ua,σY ,C is a closed immersion. The

claim follows.

Let us denote by UΦλ ⊂ L+G the image of the above map. This is a closed

subscheme of L+G. We claim that UΦλ is indeed a closed subgroup scheme of

L+G.

Lemma 5.2. Let R be a k-algebra and y ∈ C(R). Then the R-points of

UΦλ over y form the subgroup of L+G(R) generated by Ua+m(R), a+m ∈ Φλ.

Proof. Let us denote the subgroup generated by Ua+m(R), a+m ∈ Φλ by

〈Ua+m(R)〉. By Lemma 5.1, the collection of groups {Ua+m(R), a + m ∈ Φλ}
satisfies the condition as required by [BT72, Lemma 6.1.7]. Then by loc. cit.,
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we have

UΦλ(R) =
∏

a+m∈Φλ

Ua+m(R) ∼= 〈Ua+m(R)〉.

The lemma follows. �

Recall the section sλ : C̃ → L̃G as constructed in the paragraph after

Proposition 3.4.6 Consider

cλ : UΦλ ×C C̃ → GrG,µ, g 7→ gsλ.

Proposition 5.3. The morphism cλ is an open immersion.

Proof. We first show that the stabilizer of sλ in UΦλ is trivial. Recall that

LG acts on GrG , and the stabilizer of the section e : C → GrG (defined by the

trivial G-torsor) is L+G. Therefore, the stabilizer in L̃G of the section sλ is

sλ(flL+G)s−1
λ . Therefore, it is enough to prove that flL+G ∩ s−1

λ (UΦλ ×C C̃)sλ is

trivial, or equivalently,

(L+Ua,σY ,C ×C C̃) ∩ s−1
λ (Ua+m ×C C̃)sλ

is trivial for all a+m ∈ Φλ.

Let us analyze the R-points of s−1
λ (Ua+m ×C C̃)sλ over y : SpecR → C̃.

Recall that sλ(y) is given by the Γ-equivariant map

sλ(y) : SpecR((v − ye))⊗k[v] k[u]→ TH

such that for any weight ω of TH , the composition ωsλ(y) (which is determined

by an invertible element in R((v−ye))⊗k[v]k[u]) is
∏e
i=1(1⊗γi(u)−y⊗1)(λ,γiω).

Note that for any ã ∈ Φ(H,TH) such that j(ã) = a ∈ {a | (a, λ) > 0},
e∏
i=1

(1⊗ γi(u)− y ⊗ 1)(−λ,γi(ã))uem−deã(v0−x)e 6∈ R[[v − ye]]⊗k[v] k[u],

as em− deã(v0 − x)e < e(λ, a), which implies

L+Ua,σY ,C ×C C̃ ∩ s
−1
λ (Ua+m ×C C̃)sλ

is the trivial subgroup for all a+m ∈ Φλ.

Let us remark that using the construction in Section 5.3 there is a less com-

putational way to show that the stabilizer of sλ in UΦλ is trivial. Namely, note

that the Gm-action on G constructed in Section 5.3 also induces a Gm-action

on UΦλ and the map cλ is equivariant. Therefore, it is enough to show that the

stabilizer of sλ(0̃) in (UΦλ)0 is trivial. For this purpose, it is enough to do the

above calculation for y = 0, which is easier. We will use this argument again

in the proof of Lemma 6.3.

6More precisely, we need to choose a lifting of λ̃ ∈ X•(T ) of λ, but to simply the notation,

we denote this lifting by λ.
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Therefore, the stabilizer of sλ in UΦλ is trivial. Then, cλ is a monomor-

phism of irreducible varieties over k of the same dimension. We show that

U = cλ(UΦλ ×C C̃) is open. For simplicity, we write GrG,µ → C̃ as f : X → C̃,

and we write the group scheme UΦλ×C C̃ by U . As dimU = dimX = (2ρ, µ)+1,

and U is constructible, it contains a nonempty open subset of X. Let W ⊂ U
be the maximal open subset of X contained in U . Then W is U-stable. In

particular, W = U(W ∩ sλ(C̃)). We claim that sλ(C̃) ⊂ W , which implies

that W = U . Otherwise, C̃ − f(W ∩ sλ(C̃)) consist of finitely many points

x1, . . . , xn. Then W ∩ f−1(xi) = ∅. Note that Uxi := f−1(xi) ∩ U is just the

orbit of sλ(xi)) under Uxi in f−1(xi). As it contains a nonempty open subset

of f−1(xi), Uxi is open in f−1(xi). Let Zxi = f−1(xi) − Uxi . This is a closed

subset of f−1(xi).

Let Y = f−1(f(W∩sλ(C̃))). Then W is open dense in Y . Let D = Y −W ,

which is a proper closed subset of Y , and let D̄ be its closure in X. Then

D̄ flat over C̃. Therefore, D̄xi := f−1(xi) ∩ D̄ is a proper closed subset of

f−1(xi), of dimension strictly smaller than (2ρ, µ). Therefore, Uxi 6⊂ D̄xi .

Now, X − D̄ − ⋃i Zxi is open, contained in U , and is strictly larger than W .

This is a contradiction.

We therefore have proved that cλ is a monomorphism that maps onto an

open subset U of GrG,µ. Finally we show that cλ : U → U is an isomorphism,

where U is regarded as an open subvariety of GrG,µ. We can check this étale

locally on U . Note that the L+G-torsor LG → GrG given by (3.1.4) can be

trivialized in étale topology. (See the proof of [PZ13, Prop. 5.2] with obvious

modifications.) Therefore, we can find a section U → LG×C C̃ and can assume

that the closed embedding U → L̃G, g 7→ gsλ factors through U → U → L̃G.

Therefore, U → U is a closed embedding. But this map is surjective and U is

integral, so it must be an isomorphism. �

In what follows, we denote the image of cλ (λ ∈ Λ) by Uλ, so that Uλ is

affine open in GrG,µ that is smooth over C̃ (indeed an affine space over C̃).

Note that

(Uλ)0̃ = (UΦλ)0̃sλ(0) = L+Gatλ
is exactly the L+Ga-orbit through tλ in F`Y .

5.3. A Gm-action on GrG,µ. Let G be a group scheme over C as in Sec-

tion 3.2. Let f : ›GrG → C̃ be the structural map. We construct a natural

Gm-action on ›GrG that lifts the natural action of Gm on C̃ via dilatations. In

addition, each GrG,µ is stable under this Gm-action.

The construction of the Gm-action on ›GrG is straightforward. Recall that

the global coordinate on C̃ is u and on C is v and that the map [e] : C̃ → C

is given by v 7→ ue. Recall that an R-point of ›GrG is given by u 7→ y and

a G-torsor E on CR that is trivialized over CR − Γ[e](y). Let r ∈ R× be an
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R-point of Gm. We need to construct a new G-torsor on CR, together with a

trivialization over CR−Γ[e](ry). Indeed, let re : CR → CR be given by v 7→ rev.

It maps Γ[e](y) to Γ[e](ry). Then the pullback of E along r−e is an (r−e)∗G-torsor

on CR, together with a trivialization on CR − Γ[e](ry). Therefore, to complete

the construction, it is enough to show that (r−e)∗G is canonically isomorphic

to G as group schemes over CR. Let us remark that the same construction will

give an action of Gm on L̃G (resp. flL+G), compatible with the dilatations on C̃.

Furthermore, the action of L̃G (resp. flL+G) on ›GrG is Gm-equivariant.

Let us define the action of Gm on C = Speck[v] via (r, v) 7→ rev. Observe

that µe ⊂ Gm acts trivially on C via this action.

Lemma 5.4. Given the action of Gm on C as above, there is a natural

action of Gm on G such that G → C is Gm-equivariant.

Remark 5.2. However, the natural dilatation on C does not lift to G.

Proof. As has been explained in Section 5.1, there is a group scheme G̃

over C̃ satisfying G̃|C̃◦ = H × C̃◦, and G̃Õ0
is a parahoric group scheme of

H ⊗ F̃0, given by a point x ∈ A(H,TH)Γ, such that G is the neutral connected

component of (ResC̃/C G̃)Γ. To prove the proposition, it is enough to prove

that there is a natural Gm action on G̃, compatible with the rotation on C̃. In

addition, this Gm-action should be compatible with the action of Γ on G̃.

Let m, p : Gm × C̃ → C̃ be the action map and the projection map

respectively. We need show that there is an isomorphism of group schemes

p∗G̃ ∼= m∗G̃ over Gm × C̃ satisfying the usual compatibility conditions. Since

Gm naturally acts on G̃|C̃◦ = H × C̃◦ by acting via rotation on the second

factor, there is a natural isomorphism

c : p∗G̃|Gm×C̃◦
∼= m∗G̃|Gm×C̃◦

that is compatible with the Γ-actions. We need to show that this uniquely ex-

tends to an isomorphism over Gm×C̃. Then it will be automatically compatible

with the Γ-actions. Indeed, the uniqueness is clear since p∗G̃ (resp. m∗G̃) is

flat over Gm × C̃, so that Op∗G̃ ⊂ Op∗G̃ [u−1] (resp. Om∗G̃ ⊂ Om∗G̃ [u−1]). We

need to prove that the map c : Om∗G̃ [u−1] → Op∗G̃ [u−1] indeed sends Om∗G̃
to Op∗G̃ . But this can be checked over each closed point of Gm. Therefore, it

remains to prove that for every r ∈ Gm(k), the isomorphism of r∗G̃|C̃◦ ∼= G̃|C̃◦
extends to an isomorphism r∗G̃ ∼= G̃. We can replace C̃ by O0̃. By [BT84,

Prop. 1.7.6], it is enough to prove that the isomorphism r : G̃(F0̃)→ G̃(F0̃) in-

duces an isomorphism G̃(O0̃)→ G̃(O0̃). But it is clear that each root subgroup

of L(H ⊗ F̃0) with respect to (H ⊗ F̃0, TH ⊗ F̃0) as constructed in Section 5.1

(see Remark 5.1(ii)) is invariant under this Gm-action. Therefore, for any

x ∈ A(H,TH), the corresponding parahoric group of H ⊗ F̃0 is invariant under

this Gm-action. �
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It remains to show that each GrG,µ is invariant under this Gm-action. It

is enough to show that the section sµ : C̃◦ → ›GrT ⊂ ›GrG is invariant under

this Gm-action. Recall that sµ : C̃◦ → GrT ×C C̃◦ ∼= GrTH×C̃◦ is given by the

TH -bundle OC̃◦(µ∆) with its canonical trivialization away from ∆ (see Lemma

3.5). From this moduli interpretation, it is clear that sµ is Gm-invariant.

By restriction to (›GrG)0̃
∼= F`Y , we obtain an action of Gm on F`Y (and

therefore on F`Ysc). As is shown in [PR08], the affine flag variety F`Ysc coincides

with the affine flag variety in the Kac-Moody setting. Under this identification,

the above Gm-action on F`Ysc should correspond to the action of the extra one-

dimensional torus (usually called the rotation torus) in the maximal torus of

the affine Kac-Moody group. We do not make the statement precise. Instead,

we mention

Lemma 5.5. Each Schubert variety in F`Y is invariant under this action

of Gm on F`Y .

Proof. Since Gm acts on G, it acts on L+GO0 . Clearly, it also acts on

L+TO0 , and therefore it acts on the normalizer NG(F0)(T (O0)) of T (O0) in

G(F0). Since NG(F0)(T (O0))/T (O0) ∼= W̃ is discrete, the induced Gm-action

fixes every element. The lemma follows. �

6. Proofs I: Frobenius splitting of global Schubert varieties

In this section, we prove Theorem 3.9 assuming Theorem 3.8. We also

deduce Theorem 1 from Theorem 2.

6.1. Factorization of affine Demazure modules. In this subsection, we

show that Theorem 2 implies Theorem 1. This proof is essentially contained in

[Zhu09]. However, we repeat some arguments since they serve as a prototype

for the following subsections.

Let H be a split Chevalley group over k such that Hder is almost simple,

simply-connected, as assumed in Section 2.1. Let GrH be the affine Grassman-

nian of H and Lb be the line bundle on (GrH)red (the reduced ind-subscheme

of GrH) that restricts to the ample generator of the Picard group of each of

connected component (which is isomorphic to GrHder
). We have the following

two assertions.

Lemma 6.1. Let µ ∈ X•(TH) be a minuscule coweight, so that Grµ ∼=
X(µ) = H/P (µ), where P (µ) is the maximal parabolic subgroup corresponding

to µ. Then the restriction of Lb to Grµ is the ample generator of the Picard

group of X(µ).

Proof. Let us use the following notation. For ν a dominant weight of P (µ),

let L(ν) be the line bundle on H/P (µ) such that Γ(H/P (µ),L(ν))∗ is the Weyl

module of H of highest weight ν.
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First assume that char k = 0. Let us fix a normalized invariant form

(·, ·)norm on X•(TH) so that the square of the length of short coroots is two.

Note that this invariant form may not be unique if H is not semi-simple. For a

coweight µ ∈ X•(TH) of TH , let µ∗ be the image of µ under X•(TH)→ X•(TH)

induced by this form. In other words, (µ∗, λ) = (µ, λ)norm. Let tµ ∈ GrTH (k) ⊂
GrH(k) be the corresponding point as in the proof of Lemma 3.5. Now assume

that µ is dominant. For every positive root ã of H, corresponding to a copy

of SL2 ⊂ H, let SL2tµ ⊂ Htµ ∼= H/P (µ) be the corresponding rational curve.

Then according to [Zhu09, Lemma 2.2.2], the restriction of Lb to this rational

curve has degree 2(µ,ã)
(ã,ã) . Therefore, the restriction of Lb to Htµ ∼= H/P (µ) is

isomorphic to L(µ∗). Note that for µ minuscule, (µ, µ)norm = 2, and therefore

µ∗ is the corresponding minuscule weight. The lemma follows in this case.

To prove the lemma in the case char k > 0, observe that everything is

defined over Z. (See [Fal03], where it is proven that the Schubert varieties

are defined over Z and commute with base change.) It is well known that

Pic(H/P (µ)Z) ∼= Pic(H/P (µ)k) ∼= Z. The lemma follows. �

The following proposition is essentially equivalent to [FL06, Th. 1], whose

proof is of combinatorial nature. Here we reproduce a proof given in [Zhu09,

Th. 1.2.2].

Proposition 6.2. Let L be a line bundle on (GrH)red whose restriction

to each connected component of GrH has the same central charge. Then

H0(Grµ+λ,L) ∼= H0(Grµ,L)⊗H0(Grλ,L).

Proof. Recall that H1(Grµ,L) = 0 since Grµ is Frobenius split and L is

ample. Therefore, it is enough to prove the proposition for Ln,L2n, . . . and

some n ≥ 1. Therefore, by replacing L by Ln, we can assume that the central

charge of L is 2h∨; i.e., L = L2h∨
b . Then Ln is the pullback of the n-tensor of

the determinant line bundle Lndet of GrGL(LieH) along i : GrH → GrGL(LieH),

as has been discussed in the proof of Theorem 4.3. Let us choose a complete

curve (e.g., C̄ = C ∪ {∞}) and let BunH be the moduli stack of H-bundles on

the curve. Then we know that L is the pullback along GrH → BunH of a line

bundle on BunH (which in turn is the pullback along BunH → BunGL(LieH)

of the determinant line bundle on BunGL(LieH)). Denote this line bundle on

BunH as ω−1. (In fact, this is the anti-canonical bundle of BunH .)

Consider the convolution affine Grassmannian GrConv
H×C over C, defined as

GrConv
H×C(R) =

(y, E , E ′, β, β′)

∣∣∣∣∣∣∣∣
y ∈ C(R), E , E ′ are two H-torsors on CR,

β : E|CR−Γy
∼= E0|CR−Γy is a trivialization,

and β′ : E ′|(C−{0})R ∼= E|(C−{0})R .

 .
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This is an ind-scheme formally smooth over C, and by the same argument as

in [Gai01, Prop. 5], we have

GrConv
H×C |C◦ ∼= GrH×C◦ ×GrH , (GrConv

H×C)0
∼= GrH×̃GrH ,

where GrH×̃GrH := LH ×L+H GrH is the local convolution Grassmannian.

In addition, GrConv
H×C is a fibration over GrH×C by sending (y, E , E ′, β, β′) to

(y, E , β), with the fibers isomorphic to GrH .

Now Grµ × Grλ extends naturally to a closed variety of GrH×C◦ × GrH .

The closure of this variety in GrConv
H×C is denoted as Gr

Conv
H×C,µ,λ. As is proven

in [Zhu09, 1.2.2], for y 6= 0, (Gr
Conv
H×C,µ,λ)y ∼= Grµ × Grλ and (Gr

Conv
H×C,µ,λ)0

∼=
Grµ×̃Grλ, where Grµ×̃Grλ is the “twisted product” of Grµ and Grλ. (See loc.

cit. or (6.2.6) below for the precise definition.)

Let h : GrConv
H×C → BunH be the map sending (y, E , E ′, β, β′) to E ′. Then

as explained in [Zhu09, 1.2.2], h∗(ω−1)n, when restricted to GrConv
H×C |C◦ , is iso-

morphic to Ln �Ln, whereas over (GrConv
H×C)0, it is isomorphic to m∗Ln, where

m : GrH×̃GrH → GrH is the natural convolution map (which is obtained from

multiplication in the loop group). Therefore,

H0(Grµ,Ln)⊗H0(Grλ,Ln) ∼= H0(Grµ×̃Grλ,m
∗Ln) ∼= H0(Grµ+λ,Ln).

The last isomorphism is due to the fact that OGrµ+λ

∼= m∗OGrµ×̃Grλ
. �

Clearly, Lemma 6.1 and Proposition 6.2 together with Theorem 2 will

imply Theorem 1.

6.2. Reduction of Theorem 3.9 to Theorem 6.8. In this subsection, we

prove Theorem 3.9, assuming Theorem 3.8. The key ingredient is the Frobenius

splitting of varieties in characteristic p.

We begin with introducing more ind-schemes. Let G be the group scheme

over C as in Section 3.2. In particular, GO0 = GσY . Let GrBD
G be the Beilinson-

Drinfeld affine Grassmannian for G over C. That is, for every k-algebra R,

(6.2.1) GrBD
G (R)=

{
(y, E , β)

∣∣∣∣∣ y ∈ C(R), E is a G-torsor on CR, and

β : E|C◦R−Γy
∼= E0|C◦R−Γy is a trivialization

}
.

This is a formally smooth ind-scheme ind-proper over C. (The ind-repre-

sentability of GrBD
G is explained in the proof of Theorem 10.5 of [PZ13].) Again,

by the same argument as in [Gai01, Prop. 5], we have

GrBD
G |C◦ ∼= GrG |C◦ × (GrG)0, (GrBD

G )0
∼= (GrG)0

∼= F`Y .



COHERENCE CONJECTURE OF PAPPAS AND RAPOPORT 43

We also need the convolution affine Grassmannian GrConv
G . The functor it

represents is as follows. Let R be a k-algebra; then

(6.2.2)

GrConv
G (R) =

(y, E , E ′, β, β′)

∣∣∣∣∣∣∣∣
y ∈ C(R), E , E ′ are two G-torsors on CR,

β : E|CR−Γy
∼= E0|CR−Γy is a trivialization,

and β′ : E ′|C◦R
∼= E|C◦R

 .
The ind-representibility of GrConv

G can be seen from another construction of

GrConv
G . Namely, there is a L+GO0-torsor GrG,0 over GrG whose R-points clas-

sify

(6.2.3) GrG,0(R) =

{
(y, E , β, γ)

∣∣∣∣∣ (y, E , β) ∈ GrG(R), and a trivialization

γ : E|Γ̂0

∼= E0|Γ̂0

}
,

where Γ0 = {0}×SpecR is the graph of the constant map SpecR→ {0}. Then

GrConv
G

∼= GrG,0 ×L
+GO0 F`Y .

The projection

π : GrConv
G → GrG

sends (y, E , E ′, β, β′) to (y, E , β).

There is a natural map

(6.2.4) m : GrConv
G → GrBD

G

sending (y, E , E ′, β, β′) to (y, E ′, β ◦ β′). This is a morphism over C, which is

an isomorphism over C − {0}. Over 0, this morphism is the local convolution

morphism

(6.2.5) m : F`Y ×̃F`Y := LG×L+GO0 F`Y → F`Y ,

given by the natural multiplication of the loop group.

In addition, there is a section

z : GrG → GrConv
G

given by sending (y, E , β) to (y, E , E , β, id). Therefore, via z (resp. m ◦ z), GrG
is realized as a closed subscheme of GrConv

G (resp. GrBD
G ).

Let w ∈W Y \W̃/W Y be an element in the extended affine Weyl group and

let F`Yw denote the corresponding Schubert variety in F`Y . Then Grµ×F`Yw ⊂
GrH ×F`Y extends to a variety

GrG,µ|C̃◦ ×F`
Y
w ⊂ (GrG ×C C̃◦)×F`Y ∼= GrBD

G ×C C̃◦ ∼= GrConv
G ×C C̃◦.

Let Gr
BD
G,µ,w denote its flat closure in GrBD

G ×C C̃ and Gr
Conv
G,µ,w denote its flat

closure in GrConv
G ×C C̃. Then Gr

Conv
G,µ,w maps to Gr

BD
G,µ,w via m.

We have the following key observation.
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Lemma 6.3. Suppose that ν is sufficiently large. Then the fiber (Gr
BD
G,µ,ν)0̃

is irreducible and generically reduced.

Proof. We first show the irreducibility. Clearly, the map m0̃ : (Gr
Conv
G,µ,ν)0̃ →

(Gr
BD
G,µ,ν)0̃ is dominant. From the second definition of GrConv

G , (Gr
Conv
G,µ,ν)0̃ is a

fibration over (GrG,µ)0̃, with fibers isomorphic to F`Yν . Therefore, by The-

orem 3.8, the underlying reduced subschemes of irreducible components of

(Gr
Conv
G,µ,ν)0̃ are just

F`Yλ ×̃F`Yν , λ ∈ Λ.

Here and in the sequel we use the following notation. Let S1, S2 be two sub-

schemes of F`Y , and assume that S2 is L+GO0 stable. Then we denote

(6.2.6) S1×̃S2 := S̃1 ×L
+GO0 S2,

where S̃1 is the preimage of S1 under LGO0 → F`Y .

Therefore, the underlying reduced subscheme of each irreducible compo-

nent of

(Gr
BD
G,µ,ν)0̃ ⊂ F`

Y

is contained in one of m0̃(F`Yλ ×̃F`Yν ), λ ∈ Λ. Observe that if λ ∈ Λ is not

dominant, for ν sufficiently dominant so that λ+ν is dominant, by Lemma 9.1,

we have

`(tν+λ) = (2ρ, ν + λ) < (2ρ, ν) + (2ρ, µ) = `(tν) + `(tλ).

However, by flatness, all the irreducible components of (Gr
BD
G,µ,ν)0̃ have di-

mension `(tµ) + `(tν). This implies that (Gr
BD
G,µ,ν)0̃ has only one irreducible

component whose underlying reduced subscheme is m0̃(F`Yµ ×̃F`Yν ) = F`Yµ+ν .

Next, we show that (Gr
BD
G,µ,ν)0̃ is generically reduced. Let tν = sν(0̃) ∈

F`Y (k) be the point corresponding to ν. Let sµ,ν denote the section of GrBD
G ×C

C̃ over C̃ given by the closure of sµ|C̃◦ × {tν} : C̃◦ → ›GrG |C̃◦ × F`
Y . Using

a similar construction as in Section 5.2, we will exhibit a smooth affine chart

around tµ+ν = sµ,ν(0̃) in Gr
BD
G,µ,ν . We consider the group ind-scheme LpolG

over C whose R-points are pairs (y, γ), where y ∈ C(R) and γ : CR → G.

This is a constant group ind-scheme over C whose fibers are just the group of

(polynomial) maps from C → G. Note LpolG acts on GrBD
G by changing the

trivialization β.

Note that the root group Ua+m constructed in Section 5.1 can be regarded

as subgroups of LpolG. In addition, for λ, UΦλ as constructed in Section 5.2 is

a natural closed subgroup scheme of LpolG. Now we claim that the morphism

(6.2.7) UΦµ+ν ×C C̃ → GrBD
G ×C C̃, g 7→ gsµ,ν
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induces an open immersion UΦµ+ν ×C C̃ → Gr
BD
G,µ,ν . This will complete the

proof of the lemma.

For this purpose, we consider the Beilinson-Drinfeld version of the jet

(resp. loop) group L+GBD (resp. LGBD) whose R-points are pairs (y, γ), where

y ∈ C(R), and γ is a section of G over ÿ�Γy ∪ Γ0 (resp. over (ÿ�Γy ∪ Γ0)◦). They

are represented by ind-schemes formally smooth over C. We have

L+GBD|C◦ ∼= L+G|C◦ × L+GσY , (L+GBD)0
∼= L+GσY ,

and a similar description for LGBD. In addition, there is a canonical map

LGBD → GrBD
G (similar to (3.1.4)) that is an L+GBD-torsor and admits sec-

tions étale locally on GrBD
G . The natural map ◊�Γy ∪ γ0 → CR induces LpolG ⊂

L+GBD, and UΦµ+ν can be regarded as a closed subgroup scheme of L+GBD.

Clearly, Gr
BD
G,µ,ν is stable under the action of L+GBD ×C C̃. Therefore, the

morphism (6.2.7) factors as UΦµ+ν → Gr
BD
G,µ,ν . Using the similar argument as

in the proof of Proposition 5.3, one shows that (6.2.7) is a monomorphism and

in fact is an open immersion to Gr
BD
G,µ,ν . �

Proposition 6.4. Let ν ∈ X•(T ) be a sufficiently dominant coweight.

Then the variety Gr
BD
G,µ,ν is normal and the fiber (Gr

BD
G,µ,ν)0̃ over 0̃ ∈ C̃ is

reduced.

Proof. The proposition follows from Lemma 6.3 and Hironaka’s lemma

(cf. [Gro65, 5.12.8]). Namely, let V denote the underlying reduced subscheme

of (Gr
BD
G,µ,ν)0̃. Then V is irreducible and, therefore, is a Schubert variety of

F`Y that is normal by Theorem 2.1. Therefore, the proposition follows. �

In fact, we proved that the fiber (Gr
BD
G,µ,ν)0̃ is isomorphic to F`Yµ+ν .

If ν ∈ X•(Tsc)Γ ⊂ X•(T )Γ so that ν ∈Waff , then z(GrG,µ) ⊂ Gr
Conv
G,µ,ν (resp.

m ◦ z(GrG,µ) ⊂ Gr
BD
G,µ,ν) is naturally a closed subscheme.

By Corollary 4.4, we just need to prove Theorem 3.9 for one prime. There-

fore, we will assume char k = p > 2. Recall the notation of Frobenius splitting

(cf. [MR85], [BK05]) for varieties in characterisic p > 0.

Theorem 6.5. Assume that ν ∈ X•(Tsc) is a coweight dominant enough

so that Proposition 6.4 holds. Then Gr
BD
G,µ,ν is Frobenius split, compatibly with

GrG,µ and (Gr
BD
G,µ,ν)0̃.

Corollary 6.6. Theorem 3.9 holds. That is, the scheme (GrG,µ)0̃ is

reduced.

Proof. This is because

(GrG,µ)0̃ = GrG,µ ∩ (Gr
BD
G,µ,ν)0̃,

and therefore it is Frobenius split. In particular, it is reduced. �
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The remaining goal of this subsection is to reduce Theorem 6.5 to the

following Theorem 6.8 via Proposition 6.7. Theorem 6.8 itself will be proven

in later subsections. First, it is enough to prove Theorem 6.5 for the case

where GO0
∼= Ga is the Iwahori group scheme. To see this, assume that we

have G1 → G2, where (G1)O0 is Iwahori and (G2)O0 is a general parahoric group

scheme. Then the natural projection Gr
BD
G1,µ,ν → Gr

BD
G2,µ,ν is proper birational

and therefore the push-forward of the structure sheaf is the structure sheaf

by the normality. Furthermore, under the projection, the scheme-theoretical

image of GrG1,µ (resp. (Gr
BD
G1,µ,ν)0̃) is GrG2,µ (resp. (Gr

BD
G2,µ,ν)0̃). Therefore,

from now on we assume that GO0 = Ga and write I = L+Ga.

Since Gr
BD
G,µ,ν is normal, we just need to find an open subscheme of U ⊂

Gr
BD
G,µ,ν , whose complement has codimension at least two, such that U is Frobe-

nius split, compatibly with U ∩ (Gr
BD
G,µ,ν)0̃ and U ∩ GrG,µ ([BK05, Lemma

1.1.7(iii)]). Therefore, we can throw away some bad loci of Gr
BD
G,µ,ν that are

hard to control. In particular, we can throw away (GrG,µ)0̃ ⊂ GrG,µ ⊂ Gr
BD
G,µ,ν ,

which is of our main interest.

More precisely, we have

Proposition 6.7. There is an open subscheme U of Gr
Conv
G,µ,ν such that

(1) m : Gr
Conv
G,µ,ν → Gr

BD
G,µ,ν maps U isomorphically onto an open subscheme

m(U) of Gr
BD
G,µ,ν , and the complement of m(U) in Gr

BD
G,µ,ν has codimen-

sion two;

(2) U is Frobenius split, compatible with U ∩ (Gr
Conv
G,µ,ν)0̃ and U ∩ z(GrG,µ).

It is clear that Theorem 6.5 will follow from this proposition.

Proof. Let us first construct this open subscheme U . Recall that in Sec-

tion 5.2, we have constructed the affine open chart cµ : Uµ ⊂ GrG,µ that satisfies

(1) sµ(C̃) ⊂ Uµ;

(2) Uµ is an affine space over C̃ and therefore smooth over C̃;

(3) (Uµ)0̃ = C(µ) ⊂ F`Y is the Schubert cell containing tµ, i.e., the L+Ga-

orbit containing tµ.

Recall that we constructed the section sµ : C̃ → ›GrG and that GrG,µ is the

minimal irreducible closed subvariety of ›GrG that is invariant under flL+G and

contains sµ(C̃). Let GrG,µ denote the flL+G-orbit through sµ. Then GrG,µ is

an open subscheme of GrG,µ that is smooth over C̃. In fact, GrG,µ is open in

GrG,µ since Uµ ⊂ GrG,µ and the transformations of Uµ by flL+G form a cover of

GrG,µ. Therefore, GrG,µ is flat over C̃. Observe that under the isomorphism

GrG ×C C̃◦ ∼= GrH × C̃◦,

GrG,µ|C̃◦ ∼= Grµ × C̃◦,
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where Grµ denotes the L+H-orbit in GrH through tµ that is smooth. On the

other hand (GrG,µ)0̃ = (Uµ)0̃ is the Schubert cell C(µ) in F` containing µ that

is irreducible and smooth. Therefore, GrG,µ is smooth over C̃.

Let U1 be the preimage of GrG,µ under π : Gr
Conv
G,µ,ν → GrG,µ. Then U1 is a fi-

bration over GrG,µ with fibers F`ν . As a scheme over C̃, the fiber of U1 over 0̃ is

C(µ)×̃F`ν .

We define U to be the open subscheme of U1 that coincides with U1 over C̃◦

and that is given by

C(µ)×̃C(ν) ⊂ C(µ)×̃F`ν
over 0̃.

We claim that m : U → m(U) is an isomorphism and the complement of

m(U) in Gr
BD
G,µ,ν has codimension two. Over C̃◦, m is an isomorphism. Over 0̃,

the morphism

m : U0̃ → (Gr
BD
G,µ,ν)0̃

is the same as

m : C(µ)×̃C(ν)→ F`µ+ν .

For λ, recall the group scheme UΦλ as constructed in Section 5.2. Denote

(UΦλ)0 ⊂ I by UΦλ . Note that UΦµtµUΦν tν = UΦµ+ν tµ+ν . Therefore, m in-

duces an isomorphism from C(µ)×̃C(ν) onto C(µ+ν). In addition, the preim-

age of C(µ + ν) is C(µ)×̃C(µ), as m(F`w×̃F`v) for wv < µ + ν is contained

in a proper Schubert subvariety of F`µ+ν . Therefore, m : U → m(U) is a

homeomorphism and m−1m(U) = U . Therefore, m : U → m(U) is a proper,

birational homeomorphism with m(U) normal, which must be an isomorphism.

Note that (GrG,µ)0̃ ⊂ GrG,µ ⊂ Gr
BD
G,µ,ν is not contained in m(U).

To see that the complement of m(U) has codimension two, first observe

that over C̃◦,

Gr
BD
G,µ,ν |C̃◦ −m(U)|C̃◦ ∼= (Grµ −Grµ)×F`ν × C̃◦,

which has codimension two, since Grµ − Grµ has codimension two in Grµ.

Over 0̃,

(Gr
BD
G,µ,ν)0̃ −m(U)0̃

∼= F`µ+ν − C(µ+ ν),

which has codimension at least one. This proves that the complement of m(U)

in Gr
BD
G,µ,ν has codimension two.

Next we turn to the second part of the proposition. Recall that U1 is the

preimage of GrG,µ under π : Gr
Conv
G,µ,ν → GrG,µ. From the construction of U , we

know that U ⊂ U1 ⊂ Gr
Conv
G,µ,ν . Therefore, it is enough to show that the same

statement of Proposition 6.7 (2) holds for U1. Recall that

U1
∼= (GrG,µ ×GrG GrG,0)×I F`ν ,
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where GrG,0 is the I-torsor over GrG as in (6.2.3). To simplify the notation,

for any I-variety V , we denote

GrG,µ×̃V := (GrG,µ ×GrG GrG,0)×I V.

Now, let ∗ ∈ F`ν be the base point. (Recall that ν ∈ X•(Tsc), so that ∗, the

Schubert variety corresponding to the identity element in the affine Weyl group,

is contained in F`ν .) Then the closed embedding z : GrG,µ → U1 corresponds to

GrG,µ×̃∗ → GrG,µ×̃F`ν .

Now the assertion follows from the following more general statement. �

Theorem 6.8. For any w∈W̃ , there is a Frobenius splitting of the scheme

GrG,µ×̃F`w that is compatible with

(GrG,µ×̃F`w)0̃
∼= (GrG,µ)0̃×̃F`w ∼= C(µ)×̃F`w.

In addition, for any v ≤ w in W̃ , GrG,µ×̃F`v ⊂ GrG,µ×̃F`w is also compatible

with this splitting.

The remaining goal of this section is to prove this theorem.

6.3. Special parahorics. We continue by assuming that G and G are as

given in Section 3.2, but we are particularly interested in the case when G = Gs
is the group scheme over C such that GsO0

is a special parahoric group scheme

of G. In this case, we can easily deduce Theorem 3.9 (assuming Theorem 3.8)

directly from Hironaka’s lemma (without going into the argument presented

in the previous subsection). This will in turn help us prove a special case of

Theorem 6.8; namely, the case when w = 1 (see Corollary 6.17). Let us remark

that if G is split, Proposition 6.15 directly follows from Frobenius splitting of

Schubert varieties. Those who are only interested in split groups can go directly

to the paragraph after this proposition.

So let v ∈ A(G,S) be a special point in the apartment associated to (G,S),

and let Gv be the corresponding special parahoric group scheme over O. Let

F`v = LG/L+Gv be the partial affine flag variety. To emphasize that it is the

affine flag variety associated to a special parahoric, we sometimes also denote

it by F`s. As before, for each µ ∈ X•(T )Γ, let us use tµ to denote its lifting to

T (F ) under the Kottwitz homomorphism T (F )→ X•(T )Γ. It gives a point in

F`s, still denoted by tµ. Then the Schubert variety F`sµ is the closure of the

L+Gv-orbit in F`v passing through tµ. We have the following results special

for Schubert varieties in F`s, which generalize the corresponding results for

GrH . (See also [Ric13, Cor. 2.10] for more detailed discussion.)

Lemma 6.9. The Schubert varieties are parametrized by X•(T )+
Γ . For

µ ∈ X•(T )+
Γ , the dimension of F`sµ is (µ, 2ρ). Let F̊`sµ ⊂ F`sµ be the unique

open L+Gv-orbit in F`sµ. Then F`sµ − F̊`
s

µ has codimension at least two.
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Proof. Observe that the natural map X•(T )+
Γ ⊂ X•(T )Γ →W0\W̃/W0 is a

bijection. The first claim follows. Let I ⊂ L+Gv be the Iwahori subgroup of LG

corresponding to the alcove a. (Recall that v is contained in the closure of C.)

Then the I-orbits in F`s are parametrized by minimal length representatives

in W̃/W0. Let λ ∈ Λ = W0µ ⊂ X•(T )Γ. By Lemmas 9.1 and 9.3, if w ∈ W̃ is

a minimal length representative for the coset tλW0, then

dim IwL+Gv/L+Gv ≤ (µ, 2ρ),

and if λ ∈ X•(T )+
Γ , the equality holds. Therefore, dimF`sµ = (µ, 2ρ). To prove

the last claim, observe that if F`sλ ( F`sµ, then µ−λ ∈ X•(Tsc)Γ and therefore

(µ− λ, 2ρ) is an even integer. �

Recall that in [BD, §4.6], Beilinson and Drinfeld proved that Grµ is Goren-

stein; i.e., the dualizing sheaf ωGrµ
is indeed a line bundle. (See Equation (241)

in loc. cit.) It is natural to ask whether the same result hold for F`sµ. However,

the situation is more complicated in the ramified case due to the fact that not

all special points in the building of G are conjugate under Gad(F ). More pre-

cisely, if Gder is the odd ramified special unitary group SU2n+1 (see Section 8

for the definition), then there are two types of special parahoric group schemes

(see Remark 8.1(ii)).

Let us begin with the following lemma. Let v be any point in the apart-

ment A(G,S), and let Gv be the corresponding parahoric group scheme for

G. For simplicity, we write K = L+Gv. Then K acts on LieG by the adjoint

representation. Let µ ∈ X•(T )Γ. Let

P = K ∩AdtµK,

considered as a proalgebraic group over k. Then LieK and Adtµ LieK are

P -modules.

Lemma 6.10. As P -modules,

(6.3.1) det
LieK

LieK ∩Adtµ LieK
∼=
Ç

det
Adtµ LieK

LieK ∩Adtµ LieK

å−1

.

Proof. Recall that we denote by S the chosen maximal split F -torus of G.

Its (connected) Néron model S maps naturally into Gv since v ∈ A(G,S)

([BT84, §5.2]), and L+S maps to P . The special fiber Sk of S can be regarded

as the “constant” maps from O to S and can therefore be regarded a subgroup

of L+S. Then Sk ⊂ P is a maximal torus of P . Thus, X•(P ) ⊂ X•(Sk).
Therefore, it is enough to prove (6.3.1) as an isomorphism of Sk-modules.

In Section 5.1.3, in particular Remark 5.1 (see also [PR08, 9.a,9.b]), we

have attached to each affine root α of (G,S) a one-dimensional unipotent
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subgroup Uα ∼= Ga ⊂ LG. Let uα be the Lie algebra of Uα. By definition,

LieK = Lie T [,0 ⊕
∏

α(v)≥0

uα,

where T [,0 is the connected Néron model of T . Then clearly, as Sk-modules

(we fix an embedding Sk → L+S),

LieK

LieK ∩Adtµ LieK
∼=

⊕
α(v)≥0,α(v−µ)<0

uα,

Adtµ LieK

LieK ∩Adtµ LieK
∼=

⊕
α(v)<0,α(v−µ)≥0

uα.

By identifying A(G,S) with X•(S)R using the point v, we can write affine roots

of G by α = a+m, a ∈ Φ(G,S), where a is the vector part of α and m = v(α).

Therefore,

{α(v) ≥ 0, α(v − µ) < 0} = {a+m|a ∈ Φ(G,S)+, 0 ≤ m < (µ, a)}

and

{α(v) < 0, α(v − λ) ≥ 0} = {a+m|a ∈ Φ(G,S)−, (µ, a) ≤ m < 0}.

Since Sk acts on ua+m via the weight a, the lemma follows. �

Now we should specify the special vertex. Recall that we assume that Gder

is simple and simply-connected. If Gder 6= SU2n+1, we can choose an arbitrary

special vertex in the building of G since they are all conjugate under Gad(F ).

If Gder = SU2n+1, we choose the special vertex so that the corresponding

parahoric group has reductive quotient Sp2n. (See Remark 8.1).

Theorem 6.11. Let G be as in Section 3.2. With the choice of the special

vertex v as above, the Schubert variety F`sµ is Gorenstein for all µ.

Proof. As above, we denote by Gv the parahoric group of G corresponding

to v and K = L+Gv. Recall that since F`sµ is Cohen-Macaulay, the dualizing

sheaf ωF`sµ exists. We need to show that it is indeed a line bundle. Let j :

F̊`sµ → F`sµ be the open K-orbit in F`sµ. Then we have shown that F`sµ−F̊`
s

µ

has codimension at least two. As F`sµ is normal, ωF`sµ = j∗(ωF̊`sµ
). Let L2c be

the pullback to F`s of the determinant line bundle Ldet of GrGL(LieGv) along

i : F`s → GrGL(LieGv). We first prove that there is an isomorphism of line

bundles ω−2

F̊`sµ
∼= L2c|F̊`sµ on F̊`sµ.

Indeed, observe that both sheaves are K-equivariant. The K-equivariant

structure of ω−2

F̊`sµ
is induced from the action of K on F̊`sµ. On the other hand,

a central extension of LG acts on L2c, and a splitting of this central extension

over K defines a K-equivariant structure on L2c. To fix this K-equivariant
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structure uniquely, we will require that the action of K on the fiber of L2c

over ∗ ∈ F`s is trivial. Then the K-equivariant structure on L2c is given as

follows. (For simplicity, we only describe it at the level of k-points, but the

generalization to R-points is clear; for example, see cf. [FZ12, §§2.2.2–2.2.3].)

Recall that for x ∈ F`s, i(x) is a lattice in LieG and L2c|x is the k-line

L2c|x = det(i(x)|LieK) := det
LieK

LieK ∩ i(x)
⊗ det

Ç
i(x)

LieK ∩ i(x)

å−1

.

Then for g ∈ K, L2c|x → L2c|gx is given by

det(g) : det(i(x)|LieK) ∼= det(i(gx)|g LieK) = det(i(gx)|LieK).

Now it is enough to prove that there is an isomorphism L2c|tµ ∼= ω−2

F̊`sµ
|tµ as

one-dimensional representations of P = tµKt
−1
µ ∩K, the stabilizer of tµ ∈ F`s

in K. As the tangent space of F̊`sµ at tµ as a P -module is isomorphic to
LieK

LieK∩Adtµ LieK ,

ω−2

F̊`sµ
|tµ ∼=

Ç
det

LieK

LieK ∩Adtµ LieK

å2

as P -modules. On the other hand, it follows from the construction of the

determinant line bundle that

L2c|tµ ∼= det
LieK

LieK ∩Adtµ LieK
⊗
Ç

det
Adtµ LieK

LieK ∩Adtµ LieK

å−1

as P -modules. Therefore, the assertion follows from Lemma 6.10.

Next, we prove that there is a K-equivariant line bundle Lc on (F`s)red

such that L2
c
∼= L2c. Indeed, for any g ∈ G(F ) acting on F`s by left trans-

lation, we have g∗L2c
∼= L2c. Therefore, it is enough to construct Lc in the

neutral connected component of (F`s)red, which is isomorphic to F`ssc, the

corresponding affine flag variety for Gder by [PR08, §6]. Since v is a special

vertex, Pic(F`ssc) ∼= ZL(εi), where i ∈ S is a special vertex in the local Dynkin

diagram of G corresponding to v. By checking [Kac90, §§4, 6], we see that for

our choice of v, we havea∨i = 1. (For SU2n+1, there is another special vertex

i′ ∈ S such that a∨i′ = 2, and the reductive quotient of the corresponding para-

horic group is SO2n+1; see the following remark and Remark 8.1.) Therefore,

the central charge of L(εi) is 1, whereas the central charge of L2c is 2h∨ by

(2.2.4) and Lemma 4.2. Therefore, Lc = L(h∨εi).

As X•(P )⊂X•(Sk) is torsion free, Lc|tµ∼=det LieK
LieK∩Adtµ LieK as P -modules.

Therefore, we have ω−1

F̊`sµ
∼= Lc|F̊`sµ , which in turn implies that ω−1

F`sµ
= j∗(ωF̊`sµ

)

∼= j∗(Lc|F̊`sµ) = Lc. �
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Observe that the above proof implies that no matter what special vertex

we choose, ω−2
F`sµ

is always a line bundle, where following Section 9.3, we denote

j∗((ωF`sµ |F̊`sµ)n) by ωnF`sµ .

The following corollary is what we need in the sequel.

Corollary 6.12. For any special vertex v of G, H1(F`sµ, ω−nF`sµ) = 0 for

all positive even integers n.

Remark 6.1. In the case Gder = SU2n+1, if we take the special vertex to

be v0, the one defined by the pinning (2.1.1) so that Gv0 is of the form (2.1.2),

then the reductive quotient is SO2n+1 and the corresponding a∨i = 2. Since the

dual Coxeter number of SL2n+1 is 2n + 1, this means that on the partial flag

variety F`s corresponding to this special vertex, L2c does not have a square

root. Let I be the Iwahori group of Gder corresponding to the chosen alcove

a, i ∈ S given by v0. Let P1
i = Pi/I be the rational line in F`sc = LGder/I

as constructed in Section 2.2. It projects to a rational curve in F`s under

LGder/I → LGder/L
+Gv0 . (An explicit description of this rational line is given

in (8.0.1).) Then the restriction of L2c to this rational line has degree 2n+ 1.

Since this line is contained in any Schubert variety F`sµ, this means that ω−1
F`sµ

is not a line bundle; i.e., F`sµ is not Gorenstein.

Now we turn to the global Schubert varieties. Let

Gs = ((ResC̃/C(H × C̃))Γ)0

be the Bruhat-Tits group scheme over C as constructed in Section 3.2. There-

fore, GsO0
∼= Gv0 is the special parahoric group scheme for GF0 as in (2.1.2).

Proposition 6.13. Assume Theorem 3.8. Then Theorem 3.9 holds for Gs.

Proof. By Theorem 3.8, the support of (GrGs,µ)0̃ is a single Schubert va-

riety. This is because, when GsO0
= Gv0 is a special parahoric group scheme,

W Y = W0 and W0 \AdmY (µ)/W0 consists of only one extremal element in the

Bruhat order, namely tµ under the projection AdmY (µ)→W0\AdmY (µ)/W0.

This proves that the special fiber of GrGs,µ is irreducible. On the other hand,

we have the affine chart Uµ that is an affine space over C̃ (see Section 5.2) of

GrGs,µ and (Uµ)0̃ is open in (GrGs,µ)0̃. Therefore, the special fiber of GrGs,µ
is generically reduced. By Hironaka’s lemma again, GrGs,µ is normal over C̃,

with special fiber reduced, indeed isomorphic to F`sµ. �

Corollary 6.14.The global Schubert variety GrGs,µ is normal and Cohen-

Macaulay.

Proof. The normality follows from Hironaka’s lemma. Since F`sµ is Cohen-

Macaulay, the assertion follows. �
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We refer to Section 9.3 for a brief discussion of some facts about Frobenius

splittings.

Proposition 6.15. The variety GrGs,µ is Frobenius split, compatibly with

(GrGs,µ)0̃.

Proof. For simplicity, let us denote GrGs,µ by X. Then f : X → C̃ is

flat and is fiberwise normal and Cohen-Macaulay (since each Xy is a Schubert

variety). Let ωX/C̃ be the relative dualizing sheaf on X. We know that f∗ω
1−p
X/C̃

is a vector bundle on C̃ by Corollary 6.12.

By the construction of Section 5.3, the sheaf f∗ω
1−p
X/C̃

is Gm-equivariant,

and therefore, we can choose a Gm-equivariant isomorphism

(6.3.2) f∗ω
1−p
X/C̃
∼= H0(X0̃, ω

1−p
X0̃

)⊗OC̃ ,

where the Gm action on H0(X0̃, ω
1−p
X0̃

) comes from the Gm-equivariant struc-

ture on ω1−p
X0̃

. Let σ ∈ H0(X0̃, ω
1−p
X0̃

) be a Gm-invariant section that splits X0

(i.e., σ is a splitting of the natural map OX0̃
→ F∗OX0̃

, when regarded as a

morphism from F∗OX0̃
→ OX0̃

via (9.3.1)). Such a section always exists by

Lemma 6.16 below. Let σ ⊗ 1 be a section of f∗ω
1−p
X/C̃

via the isomorphism

(6.3.2). We claim that σ ⊗ 1, regarded as a morphism (FX/C̃)∗OX → OX(p)

via (9.3.3), will map 1 to 1. In fact, (σ⊗ 1)(1) is a Gm-invariant nonzero func-

tion on GrGs,µ since its restriction to X0̃ is nonzero by (9.3.7). But since all

regular functions on GrGs,µ come from C̃, (σ⊗1)(1) is a Gm-invariant nonzero

function on C̃, which must be a constant. But its restriction to X0̃ is 1; the

claim follows.

Now, let (σ ⊗ 1) ⊗ ( udu)p−1 ∈ f∗ω1−p
X/C̃
⊗ ω1−p

C̃
∼= f∗ω

1−p
X . By the formula

(9.3.2) (applied to C̃) and the commutative diagram (9.3.6), the proposition

follows. �

Lemma 6.16. Let X be an algebraic variety over an algebraically closed

field k of positive characteristic with a Gm-action. Let τ : F∗OX → OX be a

splitting map of the inclusion OX → F∗OX . Decompose τ =
∑
j τj according

to the weights of the natural action of Gm. Then τ0 is also a splitting map.

Proof. By definition, 1 = τ(1) =
∑
j τj(1), where τj(1) is a function on X

of weight j under the action of Gm. Comparing the weights of both sides, we

find that τ0(1) = 1 and τj(1) = 0 for j 6= 0. �

Let G be the group scheme with GO0 = Ga. Let I = L+Ga. Observe

that the natural projection GrG → GrGs induces an isomorphism from GrG,µ
to its image in GrGs,µ. To see this, observe that GrG,µ is covered by Uµ and

GrG,µ|C̃◦ , both of which map isomorphically to their images in GrGs,µ. We thus
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regard GrG,µ as an open subscheme of GrGs,µ under this map. The boundary

GrGs,µ −GrG,µ has codimension at least two. Therefore, we have proven

Corollary 6.17. GrG,µ is Frobenius split, compatibly with (GrG,µ)0̃.

Corollary 6.18. The pullback along f : GrG,µ → C̃ gives an isomor-

phism f∗ : H0(C̃,OC̃)
∼→ H0(GrG,µ,OGrG,µ).

6.4. Proof of Theorem 6.8. The goal of this subsection is to prove Theo-

rem 6.8. Without loss of generality, we can assume that w ∈Waff . Let si(i ∈ S)

be the simple reflections (determined by the alcove a). Let us recall that for

w̃ = (si1 , si2 , . . . , sim) a sequence of simple reflections corresponding to affine

simple roots with w = si1 · · · sim , the Bott-Samelson-Demazure-Hasen (BSDH)

variety is defined as

Dw̃ = L+Pi1 ×I L+Pi2 ×I · · · ×I L+Pin/I,

where Pi is the parahoric group corresponding to i (so that L+Pi/I ∼= P1).

This is a smooth variety that is an iterated fibration by P1. For any subset

{j1, . . . , jn} ⊂ {1, . . . ,m}, let ṽ = (sij1 , . . . , sijn ) be the corresponding subse-

quence of w̃. Let Hip , p = 1, 2, . . . ,m, be defined as

Hip =

I if p 6∈ {j1, . . . , jn},
L+Pip if p ∈ {j1, . . . , jn}.

Then there is a closed embedding σṽ,w̃ : Dṽ → Dw̃ given by

(6.4.1) Dṽ = L+Pj1 ×I L+Pj2 ×I · · · ×I L+Pjn/I
∼= Hi1 ×I · · · ×I Him/I

↪→ L+Pi1 ×I L+Pi2 ×I · · · ×I L+Pim/I = Dw̃.

In particular, let w̃[j] denote the subsequence of w̃ obtained by deleting sij .

Then

σw̃[j],w̃ : Dw̃[j] ↪→ Dw̃

is a divisor. This way, we obtain m divisors of Dw̃. If ṽ1, ṽ2 are two subse-

quences of w̃, then the scheme-theoretical intersection Dṽ1 ∩Dṽ2 inside Dw̃ is

Dṽ1∩ṽ2 .

For w ∈ Waff , let m = `(w), let us fix a reduced expression of w =

si1 · · · sim and let w̃ = (si1 , si2 , . . . , sim). Let Dw̃ be the corresponding BSDH

variety so that Dw̃ is smooth and πw̃ : Dw̃ → F`w is birational. By twisting by

the I-torsor GrG,µ×GrG GrG,0, we have GrG,µ×̃Dw̃ → GrG,µ×̃F`w, still denoted

by πw̃.

By the standard argument, to prove Theorem 6.8, it is enough to prove

that

Proposition 6.19. The variety GrG,µ×̃Dw̃ is Frobenius split, compatibly

with all GrG,µ×̃Dw̃[j] for all j, and with (GrG,µ)0̃×̃Dw̃.
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Let ωDw̃ be the canonical sheaf of Dw̃. It is known that there is an iso-

morphism (for example, see [Gör01, Prop. 3.19] for the SLn case, [PR08, proof

of Prop. 9.6], [Mat88, Ch. 8.18] for the general case)

(6.4.2) ω−1
Dw̃
∼= O

Ç m∑
j=1

Dw̃[j]

å
⊗ π∗w̃L

Ç∑
i∈S

εi

å
,

where L(
∑
i∈S εi) is the line bundle on F`sc as defined in Section 2.2. (Recall

that since we assume that w ∈ Waff , F`w ⊂ F`sc = (F`)0
red by [PR08, §6].) If

we endow L(
∑
i∈S εi) with the I-equivariant structure such that I acts on its

fiber over ∗ ∈ F`sc trivially, then the isomorphism (6.4.2) is I-invariant. This

observation allows us to formulate a relative version of this isomorphism.

Let us denote by L2c the line bundle on F` that is the pullback of Ldet

along F` → GrGL(Lie I) as in Section 4.1. (As before, by abuse of notation,

Lie I is considered as an O-module.) We endow it with the I-equivariant

structure so that I acts its fiber over ∗ ∈ F` trivially. By twisting by the

I-torsor GrG,µ ×GrG GrG,0, we obtain a line bundle on GrG,µ×̃F`, denoted

by L̃2c. In addition, to simply the notation, let us denote the projection

GrG,µ×̃Dw̃ → GrG,µ by f : X → V . Then by the same argument as in the

proof of (6.4.2) (i.e., by induction on the length of w), we have

(6.4.3) ω−2
X/V
∼= O

Ç
2
m∑
j=1

GrG,µ×̃Dw̃[j]

å
⊗ π∗w̃L̃2c.

We will later prove the following lemma.

Lemma 6.20. There is a section σ0 of L̃2c whose divisor div(σ0) ⊂ GrG,µ
×̃F`w does not intersect z(GrG,µ) = GrG,µ×̃∗.

Let us remark that the line bundle L(
∑
i∈S εi) is very ample on F`w, and

therefore there exists a section of L(
∑
i∈S εi) that does not pass through ∗.

However, L̃2c is twisted by the I-torsor GrG,µ ×GrG GrG,0, and it is not ample.

Therefore, some detailed analysis of this line bundle is needed.

Let us first assume this lemma, and let σ be a section of ω−2
X/V whose

divisor is of the form

(6.4.4) div(σ) = 2
m∑
j=1

GrG,µ×̃Dw̃[j] + div(π∗w̃σ0).

We claim that

Lemma 6.21. A nonzero scalar multiple of the section σ
p−1

2 ∈ω1−p
X/V (recall

that we assume that p > 2), when regarded as a morphism (FX/V )∗OX → OX(p)

via (9.3.3), will send 1 to 1.
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Proof. Let

h = σ
p−1

2 (1) ∈ Γ(X(p),OX(p))

be the function as in the lemma. By Corollary 6.18, we have Γ(X(p),OX(p)) =

Γ(C̃,OC̃) and so h is obtained by pullback from a function on C̃ that then has

to be a constant. To see h is nowhere vanishing, let x ∈ GrG,µ be a point. It is

enough to show the restriction of h to (Dw̃)x := GrG,µ×̃Dw̃|x ∼= Dw̃ is not zero.

This is because the restriction of σ to GrG,µ×̃Dw̃|x gives a divisor of the form

2
∑m
j=1Dw̃[j] + D for some D that does not pass through ∗. Therefore, by (a

slight variant of) [MR85, Prop. 8], σ
p−1

2 |(Dw̃)x , when regarded as a morphism

from F∗ODw̃ to O(Dw̃)x via (9.3.1), will send 1 to a nonzero constant function

on (Dw̃)x. Therefore, by (9.3.7),

h|(Dw̃)x = σp−1|(Dw̃)x(1)

is a nonzero constant. This finishes the proof of the lemma. �

Now let τ ∈ ω1−p
GrG,µ

be a section that gives rise to a Frobenius split-

ting of GrG,µ, compatible with (GrG,µ)0̃ by Corollary 6.17. Consider σ
p−1

2 ⊗
f∗τ ∈ ω1−p

X . By (9.3.6), it gives a splitting of GrG,µ×̃Dw̃, compatible with

(GrG,µ)0̃×̃Dw̃. Again, by (a slight variant of) [MR85, Prop. 8], this splitting is

also compatible with all GrG,µ×̃Dw̃[j]. This finishes the proof of Theorem 6.8.

It remains to prove Lemma 6.20. Let us consider the surjective map

Vw = Γ(F`w,L2c)→ Γ(∗,L2c) = V1
∼= k.

By twisting with the I-torsor GrG,µ×GrGGrG,0, we obtain a surjective morphism

of vector bundles Vw → V1
∼= OGrG,µ over GrG,µ. Clearly, Vw is π∗L̃2c, where

π : GrG,µ×̃F`→ GrG,µ is the base change of π : Grconv
G → GrG . Then to prove

Lemma 6.20 is equivalent to prove that there is a morphism OGrG,µ → Vw
(which determines the section σ0 of L2c) such that the composition OGrG,µ →
Vw → V1 is an isomorphism.

To this goal, let us first observe that the I-torsor GrG,0×CC◦ → GrG×CC◦
has a canonical section. Namely, we associated an R-point (y, E , β) of GrG ×C
C◦ an R-point (y, E , β, γ) of GrG,0 ×C C◦ as follows. Since the graph Γy of

y : SpecR → C does not intersect with {0} × SpecR ⊂ C × SpecR, we can

define

γ : E|⁄�{0}×SpecR
→ E0|⁄�{0}×SpecR

as the restriction of β : E|CR−Γy
∼= E0|CR−Γy . By base change, we get a canon-

ical section (a canonical trivialization) ψ of the I-torsor W ×GrG GrG,0 →W ,

where W = GrG,µ|C̃◦ ∼= Grµ × C̃◦. Therefore, GrG,µ×̃F`w|W ∼= W × F`w
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canonically, and over W , we have

Vw ⊗OW −−−−→ V1 ⊗OW
∼=

y ∼=

y
Vw|W −−−−→ V1|W .

To complete the proof of the lemma, it is enough to show

(1) the isomorphism V1 ⊗ OW → V1|W extends to an isomorphism V1 ⊗
OGrG,µ → V1;

(2) there is a splitting V1 → Vw (equivalently, a section of L(2
∑
i∈S εi)

whose divisor does not pass through ∗ ∈ F`w), such that the induced

map

V1 ⊗OW → Vw ⊗OW → Vw|W
extends to V1 ⊗OGrG,µ → Vw.

Let us first prove (1). Let us consider the general situation: Let E → B

be a torsor under some group K, and let M be a space with trivial K-action.

Then there is a canonical isomorphism t : E ×K M ' E/K ×M = B ×M .

In addition, for any section s : B → E, the induced isomorphism E ×K M '
(B × K) ×K M ' B × M coincides with t. Back to our situation, as the

I-module V1 is trivial, we can apply this general remark to conclude that V1

is canonically trivialized, which restricts to its trivialization over W induced

from the canonical trivialization of the I-torsor over W .

To prove (2), let us first complete the curve C̄ = C ∪ {∞} ∼= P1 and
¯̃C = C̃ ∪{∞̃}. We extend G to a group scheme over C̄ so that GO∞ is the pro-

unipotent radical of the Iwahori opposite to GO0 . More precisely, the pinning of

H (Sections 2.1 and 3.2) determines a unique Borel B− such that BH ∩B− =

TH . Let U− = [B−, B−]. Let G̃ be the group scheme over ¯̃C obtained by

dilatation of H × ¯̃C along BH × {0̃} and U− × {∞̃}. Then G is the neutral

connected component of (Res ¯̃C/C̄
G̃)Γ. This group scheme is the same as the

group scheme G(0, 1) in [HNY13]. Let

Iu,− = Γ(C̄ − {0},G),

considered as an ind-group over k. Then the Birkhoff decomposition (cf.

[HNY13, Prop. 1(4)]) implies that LieG = Lie I ⊕ Lie Iu,− as k-vector spaces.

(This is the triangular decomposition in the Kac-Moody theory.) Recall that

we identify O ' O0 and G ' GF0 (cf. Section 3.2). For an O-lattice L in LieG,

consider the complex of k-vector spaces

L⊕ Lie Iu,− → LieG.

As L varies, its determinant defines a section of Ldet over the neutral connected

component of GrGL(Lie I) (see [Fal03, §2] for details), whose pullback defines
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a section σ0 of L2c vanishing away from ∗ ∈ F`. This gives us a splitting

V1 → Vw, which we claim is the desired splitting satisfying (2).

To prove this claim, we need two more ingredients. Let BunG be the mod-

uli stack of G-bundles on C̄. Let us express F` as the ind-scheme representing

(E , β), where E is a G-torsor on C̄ and β is a trivialization of E away from

0 ∈ C̄. Let ω−1
BunG

be the anti-canonical bundle of BunG . Its fiber over a G-

torsor E is the inverse of the determinant of the cohomology detRΓ(P1, adE)−1.

Therefore ω−1
BunG

is isomorphic to the pullback along BunG → BunGL(LieG) of

the inverse of the determinant of cohomology line bundle. As is well known

(e.g., [Fal03]), the pullback of the latter line bundle on BunGL(V) to GrGL(V)

is the determinant line bundle Ldet we introduced in Section 4. Therefore, we

have L2c
∼= h∗ω−1

BunG
.

The following lemma is the first ingredient we need.

Lemma 6.22. The section σ0 of L2c descends to a section Θ ∈ ω−1
BunG

.

Proof. Clearly, the adjoint action of Iu,− preserves the determinant of

L⊕ Lie Iu,− → LieG up to a scalar. As Iu,− has no nontrivial characters, the

left action of Iu,− on F` preserves σ0. As BunG is the quotient of F` by Iu,−

(cf. [HNY13, Prop. 1]), σ0 descends. �

By [HNY13, Cor. 1.2], we can translate Θ to obtain sections of ω−1
BunG

over

other connected components of BunG ; we will still denote these sections by Θ.

Next, consider the following morphisms

BunG
h1←− GrG

π←− GrConv
G

m−→ GrBD
G

h2−→ BunG .

The second ingredient we need is as follows.

Lemma 6.23. Over GrG×̃F`w ⊂ GrConv
G , there is an isomorphism

L̃2c
∼= m∗h∗2ω

−1
BunG

⊗ π∗h∗1ωBunG .

Proof. Since GrG×̃F`w is proper over GrG , by the see-saw principle, it is

enough to show that (i) for each x ∈ GrG , the restrictions of m∗h∗2ω
−1
BunG

⊗
π∗h∗1ωBunG and L̃2c to F`w ⊂ π−1(x) are isomorphic; and (ii) when restricting

both line bundles via the section z : GrG → GrConv
G , they are isomorphic.

Indeed, recall that over C◦, GrConv
G |C◦ ∼= GrBD

G |C◦ ∼= GrG |C◦ × F`, and

over 0 ∈ C(k), the morphisms (GrG)0
π← (GrConv

G )0
m→ (GrBD

G )0 identify with

F` π← F`×̃F` m→ F`. Under these isomorphisms,

h∗2ω
−1
BunG
|GrBD
G |C◦

∼= h∗1ω
−1
BunG
|GrG |C◦ ⊗ h

∗ω−1
BunG

, h∗2ω
−1
BunG
|(GrBD

G )0
∼= h∗ω−1

BunG
.

Therefore, for all x ∈ GrG , the restriction of m∗h∗2ω
−1
BunG

⊗π∗h∗1ωBunG to F`w ⊂
π−1(x) is isomorphic to L2c, which is just the restriction of L̃2c to π−1(x) ' F`.
The first fact is established. For the second fact, one can easily see that when
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restricting both line bundles via z : GrG → GrConv
G , they are isomorphic to the

trivial bundle. �

Finally, we prove that σ0 gives the desired splitting satisfying (2). Indeed,

since the I-torsor GrG,0 ×C C◦ → GrG ×C C◦ has a canonical section, we can

spread out σ0 as a section of L̃2c over GrG,µ×̃F`w|W , still denoted by σ0. This

induces a map V1 ⊗ OW → Vw ⊗ OW . Then to prove (2), it is equivalent to

show that σ0 indeed extends to a section of L̃2c over the whole GrG,µ×̃F`w.

Otherwise, let n > 0 be the smallest integer such that unσ0 extends. (Recall

that we use u to denote the global coordinate on C̃ so that u = 0 defines the

divisor (GrG,µ)0̃×̃F`w inside GrG,µ×̃F`w.) Then unσ0|(GrG,µ)0̃×̃F`w
would not

be zero. Observe that by construction, over GrG,µ×̃F`w|W , we have

π∗h∗1Θ⊗ σ0 = m∗h∗2Θ,

as sections in m∗h∗2ω
−1
BunG
|GrG,µ×̃F`w|W . Then as sections in m∗h∗2ω

−1
BunG

over

the whole GrG,µ×̃F`w, we would have

π∗h∗1Θ⊗ unσ0 = unm∗h∗2Θ.

When restricting this equation to (GrG,µ)0̃×̃F`w, the right-hand side is zero.

However, the left-hand side is not since π∗h∗1Θ|(GrG,µ)0̃×̃F`w
6= 0. This is a

contradiction. This finishes the proof of Lemma 6.20.

7. Proofs II: the nearby cycles

7.1. The strategy. In this section, we prove Theorem 3.8. As mentioned in

the introduction, a direct proof would be to write down a moduli problemMµ

over C̃, which is a closed subscheme of ›GrG , such that (i) Mµ|C̃◦ ∼= GrG,µ|C̃◦ ;
and (ii) (Mµ)0̃(k) =

⋃
w∈AdmY (µ)F`

Y
w(k). Then by Lemma 3.7, Theorem 3.8

would follow. Unfortunately, so far, such a moduli functor is not available

for general group G and general coweight µ. In certain cases, such a moduli

problem is available. We refer to [PRS13] for a survey of the known results.

The proof presented here is indirect. Let (S, s, η) be a Henselian trait; i.e.,

S is the spectrum of a Henselian discrete valuation ring, s is the closed point

of S and η is the generic point of S. Assume that the residue field k(s) of s is

algebraically closed, and let ` be a prime different from char k(s). Recall that

if p : V → S is a morphism, where V is a scheme, separated and of finite type

over S, then there is the so-called nearby cycle functor

ΨV : Db
c(Vη,Q`)→ Db

c(Vs ×s η,Q`),

which restricts to an exact functor ([Ill94, §4]) between the categories of per-

verse sheaves

ΨV : P (Vη,Q`)→ P (Vs ×s η,Q`).
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If V is an equidimensional variety over a field whose characteristic is prime to

`, the intersection cohomology sheaf is the Goresky-MacPherson extension to

V of the (shifted) constant sheaf Q`[dimV ] on the smooth locus of V . We will

use the following lemma.

Lemma 7.1. Let f : V → S be a proper flat morphism. Let IC be the

intersection cohomology sheaf of Vη := V ×S η, and let ΨV (IC) be the nearby

cycle of IC. Then the support of ΨV (IC) is Vs.

Proof. Let x ∈ V be a point in the special fiber Vs and x̄ be a geometric

point over x. Then by definition ΨV (IC)x̄ ∼= H∗((V(x̄))η̄, IC|(V(x̄))η̄), where V(x̄)

is the strict Henselization of V at x̄ and (V(x̄))η̄ is its fiber over η̄, a geometric

point over η. Let x be a generic point of Vs. Then (V(x̄))η̄ is the union of

finite many points and IC|(V(x̄))η̄
∼= Q`[dimV ]m for some m > 0. The lemma

follows. �

Now, let ` be a prime different from p. Let ICµ be the intersection co-

homology sheaf of GrG,µ|C̃◦ . Then the nearby cycle ΨGrG,µ
(ICµ) is a perverse

sheaf on F`Y whose support is (GrG,µ)0̃. Therefore, to prove the theorem, it

is enough to determine the support of ΨGrG,µ
(ICµ). In fact, we will give a

filtration of ΨGrG,µ
(ICµ) and describe the support of each associated graded

piece.

When the group G is split, such a description can be deduced from [AB09,

Th. 4] directly. In the nonsplit case, we will mostly follow their strategy but

with the following difference. We will not make use of the results in [Bez04,

appendix], and therefore we will not generalize the full version of [AB09, Th. 4]

to the ramified case (but see Remark 7.2). In particular, we will not perform

any categorical arguments as in loc. cit.

7.2. Central sheaves. Let us set KY = L+GσY and let PKY (F`Y ) denote

the category of KY -equivariant perverse sheaves on F`Y . Recall that this

category is defined as the direct limit of categories of KY -equivariant perverse

sheaves supported on the KY -stable finite-dimensional subvarieties of F`Y .

(See [Gai01, appendix] for details.)

Lemma 7.2. The sheaf ΨGrG,µ
(ICµ) has a natural KY -equivariant struc-

ture and thus gives an object of PKY (F`Y ).

Proof. Let L+
nG be the n-th jet group of G, i.e., the group scheme over C,

whose R-points classify (y, β) where y ∈ C(R) and β ∈ G(Γy,n), where Γy,n is

the n-th nilpotent thickening of Γy. It is clear that L+
nG is smooth over C and

the action of flL+G on GrG,µ factors through some L+
nG ×C C̃ for n sufficiently

large.
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Let m : L+
nG ×C̃ GrG,µ → GrG,µ be the action map and p be the natural

projection. Then there is a canonical isomorphism m∗ICµ
∼= p∗ICµ as sheaves

on L+
nG×C̃GrG,µ|C̃◦ . By taking nearby cycles, we have a canonical isomorphism

ΨL+
nG×C̃GrG,µ

(m∗ICµ) ∼= ΨL+
nG×C̃GrG,µ

(p∗ICµ).

Since both m and p are smooth morphisms and taking nearby cycle commutes

with smooth base change, we have

(7.2.1) m∗ΨGrG,µ
(ICµ) ∼= p∗ΨGrG,µ

(ICµ).

The isomorphism m∗ICµ
∼= p∗ICµ satisfies the cocycle condition under the

pullback to L+
nG ×C̃ L

+
nG ×C̃ GrG,µ|C̃◦ . This implies the cocycle condition for

the isomorphism (7.2.1). The lemma follows. �

Let us set

(7.2.2) Zµ = ΨGrG,µ
(ICµ)

as a KY -equivariant perverse sheaf in PKY (F`Y ).

Let D(F`Y ) be the derived category of constructible sheaves on F`Y
and DKY (F`Y ) be the KY -equivariant derived category on F`Y . Recall that

DKY (F`Y ) is a monoidal category and there is a monoidal action (the “con-

volution product”) of DKY (F`) on D(F`Y ) (cf. [MV07, §4]). Namely, we have

the convolution diagram

F`Y ×F`Y q← LG×F`Y p→ LG×KY F`Y = F`Y ×̃F`Y m→ F`Y .

Let F1 ∈ D(F`Y ), F2 ∈ DKY (F`Y ), and let F1×̃F2 be the unique sheaf on

LG×KY F`Y such that

(7.2.3) p∗(F1×̃F2) ∼= q∗(F1 � F2).

Then

(7.2.4) F1 ? F2 = m!(F1×̃F2),

where m! is the derived pushforward functor with compact support. In general,

if F1,F2 are perverse sheaves, it is not necessarily the case that F1 ? F2 is

perverse. However, we have

Theorem 7.3. (i) Let F be an arbitrary perverse sheaf on F`Y . Then

F ? Zµ is a perverse sheaf on F`Y .

(ii) If F ∈ DKY (F`Y ), then there is a canonical isomorphism cF : F?Zµ ∼=
Zµ ? F .

Remark 7.1. (i) The isomorphism cF is the composition of the isomor-

phisms in Proposition 7.4 below.
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(ii) In the case when G = H is a split group, this theorem is proved by

Gaitsgory (cf. [Gai01]).7 The general case proved below follows his line of

argument. Still, we take the opportunity to spell out all the details for the

following reasons. First, the family ›GrG we use here is in fact different from

Gaitsgory’s family, which has no obvious generalization to ramified groups. On

the other hand, this theorem for ramified groups is used in [Zhu14] to establish

the geometric Satake correspondence for ramified groups. Second, the use of

the nonconstant group schemes allows us to simplify Gaitsgory’s argument.

Namely, we can treat (i) and (ii) in Proposition 7.4 below equally. This argu-

ment is generalized to a mixed characteristic situation in [PZ13]. On the other

hand, in [Gai01], the proof of part (i) of Proposition 7.4 is considerably harder

than the proof of part (ii).

(iii) To simplify the notation, in the proof we only consider Y = a an

alcove. In this case, we denote by I = Ka = L+GσY the corresponding Iwahori

subgroup of LG, and we denote F` = F`a. However, the proof (with the only

change replacing I by KY and F` by F`Y ) is valid in any parahoric case.

Proof. Recall the Beilinson-Drinfeld Grassmannian GrBD
G as introduced in

(6.2.1). We have

GrBD
G ×C C̃◦ ∼= F`× (GrG ×C C̃◦).

For F ∈ D(F`), let

F � ICµ ⊂ D(F`× (GrG ×C C̃◦)),

which can be therefore regarded as a complex on GrBD
G ×C C̃◦. Consider the

nearby cycle functor ΨGrBD
G ×C C̃

.

Proposition 7.4. (i) If F ∈ D(F`), then there is a canonical isomor-

phism

ΨGrBD
G ×C C̃

(F � ICµ) ∼= F ? Zµ.

(ii) If F ∈ DI(F`), then there is a canonical isomorphism

ΨGrBD
G ×C C̃

(F � ICµ) ∼= Zµ ? F .

It is clear that this proposition will imply the theorem. The isomorphisms

involved in the statement essentially come from the fact that nearby cycles

commute with proper pushforward and smooth pullback. They will be con-

structed in the proof.

7In fact, part (ii) of the theorem was proved in [Gai01] under the assumption that F is

perverse. We are not sure whether the argument applies to the case that F is an arbitrary

object in DKY (F`Y ).
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We first prove (ii). Let GrConv
G be the convolution Grassmannian as in-

troduced in (6.2.2), which we recall is a fibration over GrG with fibers isomor-

phic to F`. Regard F � ICµ as a complex of sheaves on GrConv
G ×C C̃◦ ∼=

F`× (GrG ×C C̃◦). Since taking nearby cycles commutes with proper pushfor-

ward, it is enough to prove that as complex of sheaves on F`×̃F`, there is a

canonical isomorphism

ΨGrConv
G ×C C̃(F � ICµ) ∼= Zµ×̃F ,

where Zµ×̃F is the twisted product as defined in (7.2.3).

Recall the I-torsor GrG,0 over GrG defined in (6.2.3) and GrConv
G

∼= GrG,0×I
F`. Let V ⊂ F` be the support of F , and let In = L+

nGO0 (the n-th jet group

as defined in the proof of Lemma 7.2) be the finite-dimensional quotient of I

such that the action of I on V factors through In. Let GrG,0,n be the In-torsor

over GrG that classifies (y, E , β, γ) where (y, E , β) is as in the definition of GrG
and γ is a trivialization of E on the n-th infinitesimal neighborhood of 0 ∈ C.

Then ICµ×̃F is supported on

(C̃ ×C GrG,0)×I V ∼= (C̃ ×C GrG,0,n)×In V ⊂ GrConv
G ×C C̃.

Observe that over C̃◦, it makes sense to talk about ICµ×̃F (as defined via

(7.2.3)), which is canonically isomorphic to F � ICµ. We thus need to show

that

(7.2.5) ΨGrConv
G ×C C̃(ICµ×̃F) ∼= Zµ×̃F .

Let us denote the pullback of ICµ to GrG,0,n×C C̃◦ by ĨCµ. Since GrG,0,n → GrG
is smooth, ΨGrG,0,n×C C̃(ĨCµ) is canonically isomorphic to the pullback of Zµ,

and

Ψ(GrG,0,n×C C̃)×V (ĨCµ � F) ∼= ΨGrG,0,n×C C̃(ĨCµ) � F
is In-equivariant. We thus have (7.2.5).

Next we prove (i). There is another convolution affine Grassmannian

GrConv′
G , which is an ind-scheme ind-proper over C and represents the functor

that associates to every k-algebra R:

(7.2.6)

GrConv′
G (R) =

(y, E , E ′, β, β′)

∣∣∣∣∣∣∣∣
y ∈ C(R), E , E ′ are two G-torsors on CR,

β : E|(C−{0})R ∼= E
0|(C−{0})R is a

trivialization, and β′ : E ′|CR−Γy
∼= E|CR−Γy

 .
Let us sketch the proof of the ind-representability of GrConv′

G . Let L+
nG be

the n-th jet group of G. As mentioned before, L+
nG is smooth over C. Then

one can present GrG as the inductive limit lim−→Zn, where Zn is a L+G-stable

closed subscheme and the action of L+G on Zn factors through L+
nG. Let us

define the L+
nG-torsor Pn over F`× C as follows. Its R-points are quadruples
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(y, E , β, γ), where y ∈ C(R), (E , β) are as in the definition of F` (and therefore

β is a trivialization of E on C◦R), and γ is a trivialization of E over Γy,n, the

n-th nilpotent thickening of the graph Γy of y. Then it is not hard to see that

GrConv′
G = lim−→Pn ×

L+
nG Zn is an ind-scheme ind-proper over C.

Clearly, we have m′ : GrConv′
G → GrBD

G by sending (y, E , E ′, β, β′) to

(y, E ′, β′◦β). This is a morphism over C, which is an isomorphism over C−{0},
and m′0 again is the local convolution diagram

m : F`×̃F`→ F`.
Again, regarding F � ICµ as a sheaf on GrConv′

G |C̃◦ ∼= F`× (GrG ×C C̃◦), it is

enough to prove that as sheaves on F`×̃F`,
Ψ

GrConv′
G ×C C̃

(F � ICµ) ∼= F×̃Zµ.

Observe that the action of flL+G on GrG,µ factors through some L+
nG ×C C̃

for n sufficiently large. Then we have the twisted product

(Pn ×C C̃)×L
+
nG×C C̃ GrG,µ ⊂ GrConv′

G ×C C̃.
Over the restriction of this ind-scheme to C̃◦, we can form the twisted product

F [1]×̃ICµ as in (7.2.3), which is canonically isomorphic to F�ICµ. By the same

argument as in the proof of (ii) (i.e., by pulling back everything to Pn×C̃GrG,µ),

we have

Ψ
(Pn×C C̃)×L

+
n G×CC̃GrG,µ

(F [1]×̃ICµ) ∼= ΨF`×C̃(F [1])×̃ΨGrG,µ
(ICµ) ∼= F×̃Zµ.

�

7.3. Wakimoto filtrations. Our goal is to prove that the support of Zµ is

exactly the Schubert varieties in F`Y labeled by the set W Y \AdmY (µ)/W Y ,

which will imply Theorem 3.8 by Lemma 7.1. Clearly, it is enough to prove

this in the case that GO0 is Iwahori.

Let us recall some standard objects in PI(F`). Recall that I-orbits in F`
are labeled by elements w ∈ W̃ . For any w, let jw : C(w) → F`w be the

open embedding of the Schubert cell to the Schubert variety. This is an affine

embedding. Let us denote

jw∗ = (jw)∗Q`[`(w)], jw! = (jw)!Q`[`(w)].

Then it is well known (e.g., [AB09, Lemma 8]) that there are canonical iso-

morphisms

jw∗ ? jw′∗ ∼= jww′∗, jw! ? jw′! ∼= jww′! if `(ww′) = `(w) + `(w′),(7.3.1)

jw∗ ? jw−1!
∼= jw−1! ? jw∗ ∼= δe.

In addition, if `(ww′w′′) = `(w) + `(w′) + `(w′′), then the two isomorphisms

from jw∗ ? jw′∗ ? jw′′∗ (resp. from jw! ? jw′! ? jw′′!) to jww′w′′∗ (resp. to jww′w′′!)

are the same.
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Let us recall the following fundamental result due to I. Mirkovic (cf. [AB09,

appendix]). The proof for ramified groups is exactly the same as for split

groups. In fact, the proof works in the general affine Kac-Moody setting.

Proposition 7.5. Let w, v ∈ W̃ . Then both jw∗ ?jv! and jw! ?jv∗ are per-

verse sheaves. In addition, both sheaves are supported on the Schubert variety

F`wv and j∗wv(jw∗ ? jv!) ∼= j∗wv(jw! ? jv∗) ∼= Q`[`(wv)].

Fix w ∈W0 to be an element in the finite Weyl group of G. We are going

to define the w-Wakimoto sheaves on F`. Recall the definition of X•(T )+
Γ in

(2.1.5). For µ ∈ X•(T )Γ, we write µ = λ− ν with λ, ν ∈ w(X•(T )+
Γ ). Define

(7.3.2) Jwµ = jtλ! ? jtν∗,

which is well defined up to a canonical isomorphism (by (7.3.1)). By Proposi-

tion 7.5, Jwµ ∈ PI(F`) and is supported on F`µ with j∗tµJ
w
µ
∼= Q̄`[`(tµ)]. Let

us remark that for G being split and w = w0 being the longest element in W0,

they are the Wakimoto sheaves considered in [AB09]. In addition, we have

(7.3.3) Jwµ ? J
w
λ
∼= Jwµ+λ.

In fact, by (7.3.1) and Lemma 9.1, this is true for µ, λ for µ, λ ∈ w(X•(T )+
Γ ).

The extension to all µ, λ is immediate.

One of the important applications of the Wakimoto sheaves is as follows.

An object F ∈ PI(F`) is called convolution exact if F ′ ?F is perverse for any

F ′ ∈ PI(F`) and is called central if in addition F ?F ′ ∼= F ′ ?F . For example,

Zµ is central. The following proposition generalizes [AB09, Prop. 5], where

the case w = e is considered. The proof is basically the same.

Proposition 7.6. Fix w ∈ W0. Any central object in PI(F`) has a

filtration whose associated graded pieces are Jwλ , λ ∈ X•(T )Γ.

Proof. We begin with some general notation and remarks following [AB09].

For a triangulated category D and a set of objects S ⊂ Ob(D), let 〈S〉 be the

set of all objects obtained from elements of S by extensions; i.e., 〈S〉 is the

smallest subset of Ob(D) containing S ∪ {0} and such that

(1) if A ∼= B and A ∈ 〈S〉, then B ∈ 〈S〉; and

(2) for all A,B ∈ 〈S〉 and an exact triangle A→ C → B → A[1], we have

C ∈ 〈S〉.
Let F ∈ DI(F`). The ∗-support of F is defined to be

W ∗F := {w ∈ W̃ | j∗wF 6= 0},

and the !-support of F is the set

W !
F := {w ∈ W̃ | j!

wF 6= 0}.
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By the induction on the dimension of the support of F , it is easy to see that

if F ∈ DI(F`)p,≤0 (p stands for the perverse t-structure), then F is contained

in 〈jv![n] | v ∈ W ∗F , n ≥ 0〉. On the other hand, if F ∈ DI(F`)p,≥0, then

F ∈ 〈jv∗[n] | v ∈W !
F , n ≤ 0〉.

For any F ∈ DI(F`), there exists a finite subset SF ⊂ W̃ such that

W !
jw∗?F ,W

∗
jw!?F ⊂ w · SF ; W !

F?jw∗ ,W
∗
F?jw!

⊂ SF · w.

Namely, let F`v be a Schubert variety such that F is supported in F`v (in

both the ∗-sense and the !-sense). Then by the proper base change theorem,

the above assertions will follow if we can show that there exists Sv ⊂ W̃ such

that

C(w)×̃F`v ⊂
⋃

v′∈wSv
C(v′), F`v×̃C(w) ⊂

⋃
v′∈Svw

C(v′).

This can be proved easily by induction of the length of v.

Now we prove the proposition. Let F ∈ PI(F`) be a central object, and

let SF ⊂ W̃ be the finite set associated to F as above. Recall that we have

the special vertex v0 in the building of G that determines an isomorphism

W̃ = X•(T )Γ oW0 determined by v0. Let µ ∈ w(X•(T )+
Γ ) such that

tµSF ⊂ w(X•(T )++
Γ )W0, SF tµ ⊂W0w(X•(T )++

Γ ),

where X•(T )++
Γ is the subset of regular elements in X•(T )+

Γ . This is always

possible since SF is a finite set. We have Jwµ = jµ!, and from Jwµ ?F ∼= F ? Jwµ ,

we have

W ∗Jwµ ?F ⊂ tµSF ∩ SF tµ ⊂ w(X•(T )++
Γ )W0 ∩W0w(X•(T )++

Γ ) = w(X•(T )++
Γ ).

Therefore, Jwµ ? F ∈ 〈jtλ![n] | λ ∈ w(X•(T )+
Γ ), n ≥ 0〉. Observe that Jwλ = jtλ!

for λ ∈ w(X•(T )+
Γ ). Then by (7.3.3), we have

F ∈ 〈Jwλ [n] | λ ∈ X•(T )Γ, n ≥ 0〉.

By choosing µ ∈ w(−X•(T )+
Γ ) large enough and using Jwλ = jtλ∗ for λ ∈

w(−X•(T )+
Γ ), we have

(7.3.4) F ′ := jtµ∗ ? F = Jwµ ? F ∈ 〈jtλ∗[n] | λ ∈ w(−X•(T )+
Γ ), n ≥ 0〉.

We claim that this already implies that F ′ has a filtration (in the category

of perverse sheaves) with associated graded by jtµ∗, µ ∈ w(−X•(T )+
Γ ). There-

fore, this implies the proposition. Indeed, since F ′ is perverse, for any ν ∈
w(−X•(T )+

Γ ), the !-stalk of F ′ at tν has homological degree ≥ −`(tν). On the

other hand, (7.3.4) implies that the !-stalk of F ′ at tν has homological degree

≤ −`(tν). The claim follows. �

To proceed, we now study the category of perverse sheaves on F` that are

generated by Jwλ .
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Lemma 7.7. For λ, µ ∈ X•(T )Γ, RHom(Jwλ , J
w
µ ) = 0 unless w−1(λ) �

w−1(µ). Furthermore, RHom(Jwµ , J
w
µ ) ∼= Q`.

Proof. RHom(Jwλ , J
w
µ ) = RHom(Jwλ+ν , J

w
µ+ν) = RHom(jtλ+ν !, jtµ+ν !) for

ν ∈ X•(T )Γ such that λ+ ν, µ+ ν ∈ w(X•(T )+
Γ ). The above complex of `-adic

vector spaces is nonzero only if F`tλ+ν
⊂ F`tµν ; i.e., tλ+ν ≤ tµ+ν in the Bruhat

order. This is equivalent to tw−1(λ+ν) ≤ tw−1(µ+ν) by Lemma 9.6, which is in

turn equivalent to w−1(λ+ν) � w−1(µ+ν) by Lemma 9.4, which is equivalent

to w−1(λ) � w−1(µ). The second statement follows from RHom(Jwµ , J
w
µ ) ∼=

RHom(Jw0 , J
w
0 ) ∼= Q`. �

Lemma 7.8. Let F ∈ DI(F`). Then for any µ ∈ X•(T )Γ,

H∗(F`, Jwµ ? F) ∼= H∗−(w−1(µ),2ρ)(F`,F).

In particular, H∗(F`, Jwµ ) = H(w−1(µ),2ρ)(F`, Jwµ ) ∼= Q̄`.

Proof. For any v ∈ W̃ , let C(v) be the Schubert cell in F` corresponding

to v. Then we have m : C(v)×̃F` → F`, which is an affine bundle over F`.
Then the isomorphism jv∗ ? F ∼= m∗(Q`[`(v)]×̃F) induces H∗(F`, jv∗ ? F) ∼=
H∗(F`,F)[`(v)]. Therefore, for µ ∈ w(−X•(T )+

Γ ), the lemma holds by the

above fact and Lemma 9.1. If the lemma holds for λ, µ, then

H∗(F`,F) ∼= H∗(F`, Jwλ ? Jw−λ ? F) ∼= H∗−(w−1(λ),2ρ)(F`, Jw−λ ? F),

H∗(F`, Jwλ+µ ? F) ∼= H∗−(w−1(λ),2ρ)(F`, Jwµ ? F) ∼= H∗−(w−1(λ+µ),2ρ)(F`,F).

Therefore, the lemma holds for −λ and λ + µ. Now any element in X•(T )Γ

can be written as λ − µ with λ, µ ∈ w(X•(T )+
Γ ), and using this we complete

the proof. �

Let Ww(F`) be the full abelian subcategory of PI(F`) generated by Jwµ ,

µ ∈ X•(T )Γ. Let Ww(F`)�µ be the category of Ww(F`) that is generated by

Jwλ , w
−1(λ) � w−1(µ). For each object F ∈Ww(F`), we define a filtration

F =
⋃
µ

Fw�µ,

where Fw�µ ∈ Ww(F`)�µ is the maximal subobject of F that belongs to

Ww(F`)�µ. Then by Lemma 7.7,

Fw�µ/
⋃

w−1(µ′)�w−1(µ)

Fw�µ′ ∼= Jwµ ⊗ wWµ
F ,

where wWµ
F is a finite-dimensional Q` vector space. A direct consequence of

Lemma 7.8 is

Corollary 7.9. Suppose that the notation is as above. Then for any

F ∈Ww(F`), we have

H∗(F`,F) ∼=
⊕

µ∈X•(T )Γ

H∗(F`, Jwµ )⊗ wWµ
F .
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7.4. Proof of Theorem 3.8. Finally, let us prove Theorem 3.8. Let µ ∈
X•(T )+

Γ . Let Supp(µ) denote the subset of W̃ consisting of those w such that

F`w ⊂ (GrG,µ)0̃. We need to show that Supp(µ) = Adm(µ). We already

know that Adm(µ) ⊂ Supp(µ) (Lemma 3.7). By Propositions 7.6 and 7.5, we

also know that the maximal elements in Supp(µ) (under the Bruhat order)

belong to X•(T )Γ ⊂ W̃ . Let tµ′ ∈ Supp(µ) be a maximal element. Then

there exists some w ∈ W0 such that µ′ ∈ w(X•(T )+
Γ ). By Proposition 7.6,

Zµ ∈ Ww(F`). Write Zµ = ∪λ(Zµ)w�λ so that the associated graded pieces

are Jwλ ⊗ wW λ
µ as above. (We write wW λ

µ instead of wW λ
Zµ for brevity.) By

Lemma 7.1, wWµ′
µ 6= 0. In addition, being a maximal element in Supp(µ), tµ′

must have length (µ, 2ρ). Therefore, (w−1(µ′), 2ρ) = (µ, 2ρ). On the other

hand, tw(µ) ∈ Adm(µ) ⊂ Supp(µ) is also a maximal element in Supp(µ) since

`(tw(µ)) = (2ρ, µ) by Lemma 9.1. Therefore, wW
w(µ)
µ 6= 0. We claim that

µ′ = w(µ). Otherwise, we would have

H(µ,2ρ)(F`,Zµ) ⊃ wWµ′
µ ⊕ wWw(µ)

µ

whose dimension would be at least two.

On the other hand, the map f : GrG,µ → C̃ is proper, and therefore

H∗(F`,Zµ) ∼= ΨC̃(f∗ICµ). Since GrG,µ|C̃◦ ∼= Grµ× C̃◦, we have H∗(F`,Zµ) ∼=
IH∗(Grµ), where IH∗ denotes the intersection cohomology of Grµ. It is well

known (for example, see [MV07]) that IH(µ,2ρ)(Grµ) ∼= Q`, which contradicts

the above unless µ′ = w(µ). In other words, all the maximal elements on

Supp(µ) are contained in Adm(µ), which proves the theorem.

Remark 7.2. One should be able to generalize [AB09, Th. 4] to the ram-

ified case, which will imply Theorem 3.8 directly. We sketch here a possi-

ble approach. First, Ww(F`) is indeed a monoidal abelian subcategory of

PI(F`) because Jwλ ? Jwµ
∼= Jwλ+µ. Let GrWw(F`) be the submonoidal cat-

egory whose objects are direct sums of Jwλ . One can see that this category

is equivalent to Rep(T̂Γ), where T̂ is the dual torus of T defined over Q̄`,

and T̂Γ is the Galois fixed subgroup. By taking the associated graded of the

filtration of F ∈ Ww(F`) defined before, one obtains a well-defined functor

Gr : Ww(F`) → GrWw(F`). As explained in [AB09, Lemma 16], this is a

monoidal functor.

Since GrG |C̃◦ ∼= GrH×C̃◦, the nearby cycle functor indeed gives a monoidal

functor from Z : PL+H(GrH) → Ww(F`), where PL+H(GrH) is the category

of L+H-equivariant perverse sheaves on GrH , which is well known to be equiv-

alent to the category of representations of the Langlands dual group Ĥ. One

can use a similar argument as in [Bez04, appendix by Gaitsgory] to show that

this functor is in fact central (see Section 2 of loc. cit. for the definition). Then

by the same argument as [AB09], one can show that Gr ◦ Z : PL+H(GrH) →
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GrWw(F`) is in fact a tensor functor that is indeed equivalent to the restriction

functor from the representations of Ĥ to the representations of T̂Γ.

Remark 7.3. This remark is not used in the rest of the paper. As a sheaf

of nearby cycles, Zµ carries the monodromy action of the Galois group of F0.

One can show that this action is purely unipotent. (See [Gai01] for the case

when G is split and [PZ13, Th. 10.9] in general.)

8. Appendix I: line bundles on the local models

for ramified unitary groups

Since Theorem 1 is not quite identical to the original coherence conjecture

given by Pappas and Rapoport, we explain here how to apply it to the local

models. First, if the group G is split of type A or C, we find that all a∨i = 1

in this case, and the formulation of Theorem 1 coincides with the original

conjecture of Pappas and Rapoport. Namely, the central charge of L(
∑
i∈Y εi)

is ]Y . In fact, in these cases, it is proven in loc. cit. (using the results of

[Gör01], [Gör03], [PR05]) that the coherence conjecture holds for µ a sum of

minuscule coweights. In what follows, we mainly discuss the ramified unitary

groups. As the main application of the coherence conjecture, general cases are

treated in [PZ13].

Let us change the notation in the main body of the paper to the following.

Let OF0 be a completed discrete valuation ring with algebraically closed residue

field k with char k 6= 2 and fractional field F0. Let π0 be the uniformizer. For

example, O = k[[t]] with π0 = t as in the main body of the paper, or O = Zurp ,

the completion of the maximal unramified extension of Zp and π0 = p.

We will follow [PR09] (see also [PR08]). Let F/F0 be a quadratic exten-

sion. Let (V, φ) be a split hermitian vector space over F of dimension ≥ 4.

That is, V is a vector space over F and φ is a hermitian form such that there

is a basis e1, . . . , en of V satisfying

φ(ei, en+1−j) = δij , i, j = 1, . . . , n.

Let G = GU(V, φ) be the group of unitary similitudes for (V, φ); i.e., for any

F0-algebra R,

G(R) = {g ∈ GL(V ⊗F0 R)|φ(gv, gw) = c(g)φ(v, w) for some c(g) ∈ R×}.

Then G ⊗F0 F
∼= GLn × Gm. The derived group Gder is the ramified special

unitary group SU(V, φ) consisting of those g∈G(R) such that det(g)=c(g)=1.

We fix a square root π of π0. There are two associated F0-bilinear forms,

(v, w) = TrF/F0
(φ(v, w)), 〈v, w〉 = TrF/F0

(π−1φ(v, w)).
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The form (−,−) is symmetric while 〈−,−〉 is alternating. For i = 0, . . . , n− 1,

set

Λi = spanOF̃ {π
−1e1, . . . , π

−1ei, ei+1, . . . , en},
and complete this into a self-dual periodic lattice chain by setting Λi+kn =

π−kΛi. Then 〈−,−〉 : Λ−j × Λj → OF0 is a perfect pairing. In particular, Λ0

is self-dual for the alternating form 〈−,−〉.
Let us fix a minuscule coweight µr,s of GF of signature (r, s) with r ≤

s, r + s = n. That is,

µr,s(a) = (diag{a(s), 1(r)}, a),

where a(s) denotes s-copies of a. Let E = F if r 6= s and E = F0 if r = s. Let

m = [n2 ]. Let I ⊂ {0, . . . ,m} be a nonempty subset with the requirement that

if n is even and m − 1 ∈ I, then m ∈ I as well. (See [PR09, §1.b] or [PR08,

Rem. 4.2.C] for the reason why we make this assumption.)

Let us define the following moduli scheme Mnaive
I over OE . A point of

Mnaive
I with values in an OE-scheme S is given by an OF ⊗OF0

OS-submodule

Fj ⊂ Λj ⊗OF0
OS for each j ∈ ±I + nZ satisfying the following conditions:

(1) as an OS-module, Fj is locally on S a direct summand of rank n;

(2) for each j < j′, j, j′ ∈ ±I + nZ, the natural inclusion

Λj ⊗OF0
OS → Λj′ ⊗OF0

OS
induces a morphism Fj → Fj′ , and the isomorphism π : Λj → Λj−n
induces an isomorphism of Fj with Fj−n;

(3) under the perfect pairing induced by 〈−,−〉 : Λ−j × Λj → OF0 , F−j =

F⊥j , where F⊥j is the orthogonal complement of Fj ;
(4) the set {Fj} should satisfy the determinant condition as in [PR09,

§1.5.1, d)].

As explained in loc. cit., for any I, Mnaive
I ⊗OE E is isomorphic to the

Grassmannian G(s, n) of s-planes in n-space. In addition, for i ∈ I, there is

a natural projection Mnaive
I → Mnaive

{i} . (If n is even and i = m − 1, {i} will

mean {m− 1,m}.) Now the local model Mloc
I is defined as the flat closure of

the generic fiber Mnaive
I ⊗ E inside Mnaive

I .

The special fiber Mnaive
I ⊗ k (and therefore Mloc

I ⊗ k) embeds into the

(partial) affine flag variety of the unitary group over k((t)). Namely, let (V ′, φ′)

be a split hermitian space over k((u)) (u2 = t) with a standard basis e1, . . . , en
such that φ′(ei, en+1−j) = δij . Let λj , j ∈ {0, 1, . . . , n − 1}, be the standard

lattices in V ′ defined similarly to Λj (replacing π by u and OF by k[[u]] in the

definition of Λj). For I ⊂ {0, . . . ,m} as before, write I = i0 < i1 < · · · < ik
and let PI be the group scheme over k[[t]] that is the stabilizer of the lattice

chain

λi0 ⊂ · · · ⊂ λik ⊂ u
−1λi0
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in GU(V ′, φ′). As explained in loc. cit., this is not always a connected group

scheme over k[[t]]. But if it is, then it is a parahoric group scheme of GU(V ′, φ′).

In any case, the neutral connected component P 0
I of PI is a parahoric group

scheme.

Consider the ind-scheme FI that to a k-algebra R associates the set of

sequences of R[[u]]-lattice chains

Li0 ⊂ · · · ⊂ Lik ⊂ u
−1Li0

in V ′⊗k((u))R((u)) together with an R[[t]]-lattice L ⊂ R((t)) satisfying conditions

(a) and (b) as in [PR09, §3.b]. (Observe that we replace α ∈ R((t))×/R[[t]]×

in loc. cit. by a lattice L ⊂ R((t)), which seems more natural.) Then

FI ∼= LGU(V ′, φ′)/L+PI ,

and LGU(V ′, φ′)/L+P 0
I is either isomorphic to LGU(V ′, φ′)/L+PI or to the

disjoint union of two copies of LGU(V ′, φ′)/L+PI . In addition, to such I,

one can canonically associate a subset Y ⊂ S (S is the set of vertices in the

local Dynkin diagram of GU(V ′, φ′)) such that F`Y = LGU(V ′, φ′)/L+P 0
I .

Indeed, by [PR08, Rem. 10.3] (see also [PR09, §1.2.3]), one can identify S with

{0, 1, . . . ,m}, if n = 2m + 1, resp. {0, 1, . . . ,m − 2,m,m′}, if n = 2m, where

m′ is a formal symbol as defined in [PR08, §4], to which a lattice of V ′

λm′ = spank[[u]]{u−1e1, . . . , u
−1em−1, em, u

−1em+1, em+2, . . . , e2m}

is associated. Then Y = I in all cases except when n = 2m, {m − 1,m} ⊂ I,

in which case Y = (I \ {m− 1}) ∪ {m′}.

Remark 8.1. (i) Observe that if n = 2m + 1, under our identification of

{0, 1, . . . ,m} with S (the set of vertices of the local Dynkin diagram), i goes

to the label m − i in Kac’s book ([Kac90, p. 55]), and if n = 2m, under the

identification of {0, . . . ,m − 2,m,m′} with S, i goes to m − i for i ≤ m − 2

and {m,m′} go to {0, 1}.
(ii) As pointed out in [PR08], [PR09], if n = 2m+ 1, then P{0} and P{m}

are the special parahoric group schemes, and if n = 2m, then P{m}, P{m′} are

the special parahoric group schemes. We further point out the following:

(1) let n = 2m+ 1. Then

(a) P{0} is the special parahoric determined by a pinning of GL2n+1×Gm,

i.e., the group scheme Gv0 as in (2.1.2), and its reductive quotient is

GO2m+1; and

(b) the special parahoric P{m} has reductive quotient GSp2m, but it is not

of the form (2.1.2).

(2) Let n = 2m. Then both P{m}, P{m′} are of the form (2.1.2), and their

reductive quotients are both isomorphic to GSp2m.
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Fix the isomorphisms Λj ⊗O0 k
∼= λj ⊗k[[t]] k, compatible with the actions

of π and u, by sending ei → ei. Now we embed the special fiber Mnaive
I ⊗ k

into FI as follows. For every k-algebra R,

Fj ⊂ (Λj ⊗ k)⊗k R ∼= (λj ⊗ k)⊗k R,

and let Lj ⊂ λj⊗R[[t]] be the inverse image of Fj under λj⊗R[[t]]→ λj⊗OS .

In addition, let L = t−1R[[t]] ⊂ R((t)). This gives the embedding

ιI :Mnaive
I ⊗ k → FI .

It is proved in [PR09, Prop. 3.1] that AI(µr,s) is contained in Mloc
I ⊗OE k

under ιI , where AI(µr,s) is as defined in (2.2.2). Here we show the following

result, which was shown in [PR09, Th. 0.1] to follow from a slightly different

version of the coherence conjecture.

Theorem 8.1. One has the equality AI(µr,s) =Mloc
I ⊗OE k. Therefore,

the special fiber of Mloc
I is reduced and each irreducible component is normal,

Cohen-Macaulay and Frobenius-split.

To prove it, one needs to construct a natural line bundle on Mnaive
I and

apply the coherence conjecture to compare the dimensions of the space of global

sections of this line bundle over the generic and the special fibers. There are

several choices of natural line bundles. One of them will be given in [PZ13],

after we give a group theoretical description of Mnaive
I . Here, we follow the

original approach of [PR08], [PR09] to construct another line bundle LI , which

is more explicit.

First, if I = {j}, we define the line bundle L{j} overMnaive
{j} whose value at

the OS-point given by Fj ⊂ Λj⊗OEOS is det(Fj)−1. If n = 2m, we also define

L{m−1,m} over Mnaive
{m−1,m} whose value at the OS-point given by Fm−1 ⊂ Fm

is det(Fm−1)−1 ⊗ det(Fm)−1. For general I, the line bundle LI is defined as

the tensor product of these L{j} or L{m−1,m} along all possible projections

Mnaive
I →Mnaive

{j} or Mnaive
I →Mnaive

{m−1,m}.

The restriction of L{j} to the generic fiber Mnaive
{j} ⊗E F ∼= Gr(s, n) is

isomorphic to L⊗2
det, where Ldet is the determinant line bundle on Gr(s, n),

which is the positive generator of the Picard group of Gr(s, n). On the other

hand, the restriction of L({m − 1,m}) to the generic fiber of Mnaive
{m−1,m} is

isomorphic to L⊗4
det. Recall AI(µr,s)◦ as defined in (2.2.1), and recall that there

is a canonical isomorphism AI(µr,s)◦ ∼= AI(µr,s) as Gder = SUn is simply-

connected.

Proposition 8.2. Under the canonical isomorphism AI(µr,s)◦∼=AI(µr,s),
the line bundle LI , when restricted to AI(µr,s), is isomorphic to the restriction

of L(
∑
j∈Y κ(j)εj) to AI(µr,s)◦, where
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(1) if n = 2m+ 1, then κ(j) = 1 for j = 0, 1, . . . ,m− 1 and κ(m) = 2;

(2) if n = 2m, then κ(j) = 1 for j = 0, . . . ,m− 2 and κ(m) = κ(m′) = 2.

Proof. Let us first introduce a convention. In what follows, when we

write λj , we consider it as a k[[u]]-lattice. If we just remember its k[[t]]-lattice

structure, we denote it by λj/k[[t]].

Clearly, we can assume that I = {j}, or when n = 2m, we shall also

consider I = {m − 1,m}. The latter case will be treated at the end of the

proof. So we first assume that j 6= m− 1.

Observe that we have a natural closed embedding of ind-schemes

LGU(V ′, φ′)/L+P{j} ∼= F{j} → GrGL(λj) ×GrGm

by just remembering the lattices Lj ⊂ λj ⊗k((u)) R((u)) and L ⊂ R((t)). By

definition, the line bundle ι∗{j}L{j} on Mnaive
{j} ⊗OE k is the pullback of the

determinant line bundle on GrGL(λj) along the above map.

Let SU(V ′, φ′) be the special unitary group. As explained in [PR08, §4],

P ′I = PI ∩SU(V ′, φ′) is a parahoric group scheme of SU(V ′, φ′). By [PR08, §6],

we have
LSU(V ′, φ′)/L+P ′{j} −−−−→ LGU(V ′, φ′)/L+P{j}y y

GrSL(λj) −−−−→ GrGL(λj),

where the ind-schemes in the left column are identified with the reduced part

of neutral connected components of the ind-schemes in the right column. Since

the isomorphism AI(µr,s)◦ ∼= AI(µr,s) is obtained from the translation by some

g ∈ GU(V ′, φ′)(F ), it is enough to prove

Lemma 8.3. The pullback of Ldet by LSU(V ′, φ′)/L+P ′{j} → GrSL(λj) is

L(κ(j)εj).

Proof. Assume that j 6= 0,m, and in the case n = 2m, j 6= m − 1. By

(2.2.6), the pullback of Ldet is of the form L(mεj) for some m. Consider the

rational line P1
j ⊂ LSU(V ′, φ′)/L+P ′{j} given by the A1 = Speck[s]-family of

lattices

Lj,s = u−1k[[u]]e1 + · · ·+ u−1k[[u]]ej−1

+ u−1k[[u]](ej + sej+1) + k[[u]]ej+1 + · · ·+ k[[u]]en.

It is easy to see that the restriction of Ldet to this rational line is O(1). In

fact, by the map

Lj,s → Lj,s/

Ç ∑
r≤j−1

u−1k[[u]]er +
∑
r≥j

k[[u]]er

å
,
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this rational curve P1
j is identified with the Grassmannian Gr(1, 2) classifying

lines in the two-dimensional k-vector space generated by {u−1ej , u
−1ej+1},

and clearly the restriction of the determinant line bundle of GrSL(λj) is the

determinant line bundle on Gr(1, 2). Therefore, κ(j) = 1 if j 6= 0,m (and

j 6= m− 1 if n = 2m).

If j = 0, consider the rational line P1
0 ⊂ LSU(V ′, φ′)/L+P ′{0} given by the

A1 = Speck[s]-family of lattices

(8.0.1) Ls = k[[u]]e1 + · · ·+ k[[u]]en−1 + k[[u]](en + su−1e1).

By the same reasoning as above, the restriction of Ldet to this rational line is

O(1). Therefore, κ(0) = 1.

Now, if n = 2m + 1 and j = m or n = 2m and j = m or m′, we will

prove that 2 | κ(j). Assuming this, to prove the lemma it is enough to find

some rational line P1
j ⊂ LSU(V ′, φ′)/L+P ′{j} such that the restriction of Ldet

to it is O(2). If n = 2m + 1, we can take the rational line P1
m given by the

A1 = Speck[s]-family of lattices

Ls = u−1k[[u]]e1 + · · ·+ u−1k[[u]]em−1

+ u−1k[[u]]

Ç
em + sem+1 −

s2

2
em+2

å
+ k[[u]]em+1 + · · ·+ k[[u]]en.

To see that Ldet restricts to O(2), consider the map

Ls → Ls/

Ç ∑
r≤m−1

u−1k[[u]]er +
∑
r≥m

k[[u]]er

å
,

which gives rise to embeddings P1
m ⊂ Gr(1, 3) ⊂ GrSL(λm). Here Gr(1, 3) is

the Grassmannian that classifies lines in the three-dimensional k-vector space

generated by {u−1em, u
−1em+1, u

−1em+2}. Since the pullback of Ldet along

Gr(1, 3)→ GrSL(λm) is the determinant line bundle and the embedding P1
m →

Gr(1, 3) is quadratic, the claim follows.

If n = 2m and j = m (the case j = m′ is similar), we can take the rational

line P1
m given by the A1 = Speck[s]-family of lattices

Ls = u−1k[[u]]e1 + · · ·+ u−1k[[u]]em−2 + u−1k[[u]](em−1 + sem+1)

+ u−1k[[u]](em − sem+2) + k[[u]]em+1 + · · ·+ k[[u]]en.

To see that Ldet restricts to O(2), consider the map

Ls → Ls/

Ç ∑
r≤m−2

u−1k[[u]]er +
∑

r≥m−1

k[[u]]er

å
,

which gives rise to embeddings P1
m ⊂ Gr(2, 4) ⊂ GrSL(λm). Here Gr(2, 4) is

the Grassmannian that classifies planes in the four-dimensional k vector space

generated by {u−1em−1, . . . , u
−1em+2}. The restriction of Ldet to Gr(2, 4) is the
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determinant line bundle, and therefore it is enough to see that the restriction

of the determinant line bundle on Gr(2, 4) along P1
m → Gr(2, 4) is O(2). If

we use the determinant line bundle on Gr(2, 4) to embed Gr(2, 4) into P(V ),

where V is generated by {{u−1ei ∧ u−1ej | m− 1 ≤ i < j ≤ m + 2}, then the

composition Speck[s] ⊂ P1
m → Gr(2, 4)→ P(V ) \ {u−1em−1 ∧ u−1em} is given

by

s 7→ su−1em−1 ∧ u−1em+2 + su−1em ∧ u−1em+1 − s2u−1em+1 ∧ u−1em+2.

The claim is clear from this description.

So it remains to prove 2 | κ(j) for n = 2m + 1, j = m, or n = 2m, j = m

or m′. Recall that when regarding V ′ as a vector space over k((t)), it has a

split symmetric bilinear form

(v, w) = Trk((u))/k((t))(φ
′(v, w)).

Observe that when n = 2m + 1, j = m, or n = 2m, j = m or m′, λj/k[[t]] is

maximal isotropic, i.e., λj ⊂ λ̂j
s

and dimk(λ̂j
s
/λj) = 0 or 1, where

λ̂j
s

= {v ∈ V ′ | (v, λj) ⊂ O}.

Let Iso(V ′) ⊂ GrSL(λj/k[[t]]) denote the subspace of maximal isotropic lattices

in V ′. Then the morphism

LSU(V ′, φ′)/L+P ′{j} → GrSL(λj) → GrSL(λj/k[[t]])

factors through

LSU(V ′, φ′)/L+P ′{j} → Lag(V ′)→ GrSL(λj/k[[t]]).

By definition, the pullback of Ldet along GrSL(λj) → GrSL(λj/k[[t]]) is Ldet, and

it is well known (for example, see [BD, §4]) that the pullback of Ldet along

Iso(V ′) → GrSL(λj/k[[t]]) admits a square root (the Pffafian line bundle). The

lemma follows. �

To deal with the case n = 2m and I = {m− 1,m}, observe there is a map

LGU(V ′, φ′)/L+PI → GrGL(λm) ×GrGL(λm′ )

by sending Lm−1 ⊂ Lm to Lm, gLm, where g is the unitary transformation

em 7→ em+1, em+1 7→ em and ei 7→ ei for i 6= m,m+ 1. One observes that ι∗ILI
onMnaive

I ⊗OE k is the pullback along the above map of the tensor product of

the determinant line bundles (on each factor). �

Finally, let us see why this proposition can be used to deduce Theorem

0.1 of [PR09]. First let a∨i be the Kac labeling as in [Kac90, §6.1]. Using

Remark 8.1(i), by checking all the cases, we find that a∨i κ(i) = 2. Let LI be

the line bundle on Mloc
I . Then for a� 0,

(8.0.2) dim Γ(Mloc
I ⊗OE k,L

a
I ) = dim Γ(Mloc

I ⊗OE E,L
a
I ).
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By the above proposition and [PR09, Prop. 3.1],

dim Γ(Mloc
I ⊗OE k,L

a
I ) ≥ dim Γ

Ç
AI(µr,s)◦,L

Ç
a
∑
i∈Y

κ(i)εi

åå
,

and the central charge of L(a
∑
i∈Y κ(i)εi) is∑

i∈Y
aa∨i κ(i) = 2a]I.

The line bundle on right-hand side of (8.0.2) is just the 2a]I-power of the

ample generator of the Picard group of G(s, n). Then since Theorem 1 holds,

Theorem 8.1 follows by the argument in [PR08].

9. Appendix II: Some recollections and proofs

We collect and strengthen various results, which exist in literature, in the

form needed in the main body of the paper.

9.1. Combinatorics of Iwahori-Weyl group. We recall a few facts about

the translation elements in the Iwahori-Weyl group that are used in the paper.

We keep the notation as in Section 2.1. In particular, we identify the apartment

A(G,S) with X•(S)R via the special vertex v. We choose the alcove a, whose

closure a contains v, and which is contained in the finite Weyl chamber of G

determined by the chosen Borel subgroup. We write W̃ = X•(T )Γ oW0 using

the vertex v.

Let 2ρ be the sum of all positive roots (for H). Observe that given µ ∈
X•(T )Γ, the integer (µ̃, 2ρ) is independent of its lifting µ̃ ∈ X•(T ). By abuse

of notation, we denote this number by (µ, 2ρ).

Lemma 9.1. Let µ ∈ X•(T )+
Γ , the set defined in (2.1.5). Let Λ ⊂ X•(T )Γ

be the W0-orbit associated to µ as in Section 2.1. Then for all ν ∈ Λ, `(tν) =

(2ρ, µ).

Proof. Let x ∈ a be a point in the interior of the alcove a. Then for any

w ∈ W̃ ,

(9.1.1) `(w) = {α is an affine root | α(x) > 0, α(w(x)) < 0}.

If w = tν is a translation element, then this is the number of affine roots α

such that 0 < α(x) < (α̇, ν), where α̇ is the vector part of α. (So α̇ is a finite

root of G.) This number can be rewritten as∑
a∈Φ,(a,ν)>0

]{α | α̇ = a, 0 < α(x) < (a, ν)}.

Let j : Φ(H,TH) → Φ(G,S) be the restriction of the root system of H (the

absolute root system) to the root system of G (the relative root system) . Then
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the lemma will follow from the equality

]{α | α̇ = a, 0 < α(x) < (a, ν)} =
∑

ã∈j−1(a)

(ã, ν̃).

This statement involves only one root of G. By checking the semi-simple

subgroup of G of semi-simple F -rank one (which are Weil restrictions of either

SL2 or SU3), we see that this equality holds. �

One can easily deduce the following lemma from (9.1.1).

Lemma 9.2. Let w,w′ ∈ W̃ . Then `(ww′) = `(w) + `(w′) if and only if

the following two statements hold : for a+m an affine root,

(1) if α(x) > 0 and α(w′(x)) < 0, then α(ww′(x)) < 0;

(2) if α(x) > 0 and α(w′−1(x)) < 0, then α(w(x)) > 0.

Lemma 9.3. Let µ ∈ X•(T )+
Γ . Then `(tµwf ) = `(tµ) + `(wf ).

Proof. Let w = tµ with µ ∈ X•(T )+
Γ and wf ∈W0. Assume that α(x) > 0

and α(wf (x)) < 0. As v = a ∩ wf (a), α(v) = 0. Let a = α̇, then a(x − v) =

α(x) > 0; i.e., a is a positive root of G. Therefore, α(tµwf (x)) = α(wf (x)) −
(µ, a) < 0. On the other hand, assume that α(x) > 0 and α(w−1

f (x)) < 0.

Then α(v) = 0, and wf (a) is negative. Therefore, (µ, a) ≤ 0. Then α(tµ(x)) =

α(x)− (µ, a) > 0. This proves that `(tµwf ) = `(tµ) + `(wf ). �

On the finitely generated abelian group X•(T )Γ, there are two partial

orders. One is the restriction of the Bruhat order on W̃ , denoted by “≤.” The

other, denoted by “�,” is defined as follows. Recall that the lattice X•(Tsc)

is the coroot lattice of H. The Galois group Γ acts on X•(Tsc), under which

positive coroots of H (determined by the pinning) are sent to positive coroots.

Therefore, it makes sense to talk about positive elements in X•(Tsc)Γ. Namely,

λ ∈ X•(Tsc)Γ is positive if its preimage in X•(Tsc) is a sum of positive coroots

(of (H,TH)). Since X•(Tsc)Γ ⊂ X•(T )Γ, we can define λ � µ if µ−λ is positive

in X•(Tsc)Γ.

Lemma 9.4. Let λ, µ ∈ X•(T )+
Γ . Then λ � µ if and only if tλ ≤ tµ in the

Bruhat order.

Proof. In the case that G is split, the proof is contained in [Rap05, Props.

3.2, 3.5]. The ramified case can be reduced to the same proof as shown in

[Ric13, Cor. 1.8]. See [PRS13, Rem. 4.2.7]. �

Recall the following lemma.

Lemma 9.5. Let x, y ∈ W̃ and w ∈Waff . Assume that `(xw) = `(x)+`(w)

and `(yw) = `(y) + `(w). Then x ≤ y if and only if xw ≤ yw.
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Proof. By induction on the length of w, we can assume that w is a simple

reflection. Then the lemma is clear. �

Lemma 9.6. Let λ, µ ∈ w(X•(T )+
Γ ). Then tλ ≤ tµ if and only if tw−1λ ≤

tw−1µ.

Proof. Observe that w−1λ and w−1µ are dominant. Combining Lem-

mas 9.1 and 9.3,

`(w−1tλ) = `(tw−1λ) + `(w−1) = `(w−1) + `(tλ).

Therefore, by the above lemma, tw−1λ ≤ tw−1µ if and only if w−1tλ ≤ w−1tµ if

and only if tλ ≤ tµ. �

9.2. Deformation to the normal cone. Let C be a smooth curve over an

algebraically closed field k. Let X be a scheme faithfully flat and affine over C.

Let x ∈ C(k) be a point, and let Xx denote the fiber of X over x. Let Z ⊂ Xx
be a closed subscheme. Consider the following functor XZ on the category of

flat C-schemes: for each V → C,

XZ(V ) = {f ∈ HomC(V,X ) | fx : Vx → Xx factors through Vx → Z ⊂ Xx}.

It is well known that this functor is represented by a scheme affine and flat over

C, usually called the deformation to the normal cone (or called the dilatation

of X along Z; see [BLR90, §3.2]). Indeed, the construction is easy if X is

affine over C. Namely, we can assume that C is affine and x is defined by

a local parameter t. Assume that A is the OC-algebra defining X over C,

and let I ⊂ A be the ideal sheaf defining Z ⊂ X . Then tA ⊂ I. Let

B = A[ it , i ∈ I] ⊂ A[t−1]. It is easy to see that B is flat over OC and SpecB
represents XZ .

There is a natural morphism XZ → X that induces an isomorphism over

C − {x}, and over x it factors as (XZ)x → Z → Xx. If X is smooth over C,

and Z is a smooth closed subscheme of Xx, then XZ is also smooth over C.

Indeed, étale locally on Xx, the map (XZ)x → Z can be identified with the

map from the normal bundle of Z inside Xx to Z, which justifies the name of

the construction.

Now let G1 be a connected affine smooth group scheme over the curve C.

Let x ∈ C(k), and let (G1)x be the fiber of G1 at x. Let P ⊂ (G1)x be a smooth

closed subgroup. Let G2 = (G1)P . This is indeed a smooth connected affine

group scheme over C. By restriction to x, we have r : BunG2 → B(G2)x and

r : BunG1 → B(G1)x. (Here we assume that C is a complete curve.)
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Proposition 9.7. We have the following Cartesian diagram :

BunG2

r //

��

B(G2)x // BP

��
BunG1

r // B(G1)x.

Proof. Let V =SpecR be a noetherian8 affine scheme. Let E be a G1-torsor

on CR and EP be a P -torsor on V together with an isomorphism EP ×P (G1)x ∼=
E|{x}×SpecR. We need to construct a G2-torsor E ′ satisfying the appropri-

ate conditions. This construction will provide the inverse to the morphism

BunG2 → BunG ×B(G1)x BP .

As a scheme over C, E is faithfully flat. Its fiber over x is E|{x}×SpecR.

Let Z be the closed subscheme of Ex given by the closed embedding

EP ⊂ EP ×P (G1)x ∼= E|{x}×SpecR.

Then EZ is a scheme affine and flat over C, together with a morphism EZ → E .

Therefore, EZ is a scheme over CR. We claim that EZ is a G2-torsor over CR.

First, EZ is faithfully flat over CR. Indeed, by the local criterion of flatness,

it is enough to prove that EZ |{x}×SpecR is faithfully flat over SpecR. But this

is clear, since étale locally on E|{x}×SpecR, there is an isomorphism between

EZ |{x}×SpecR and the normal bundle of EP ⊂ EP ×P (G1)x. Next, there is an

action of G2 on EZ . Indeed, the map EZ ×CR G2 7→ E ×CR G1 → E , when

restricted to the fiber over x, factors through Z. Therefore, by the definition

of EZ , it gives rise to a map

EZ ×CR G2 7→ EZ .

Finally, it is easy to see that

EZ ×CR EZ ∼= EZ ×CR G2.

Indeed, the left-hand side represents the scheme (E ×CR E)Z×SpecRZ and the

right-hand side represents the scheme (E ×CR G1)Z×SpecRP . Then the desired

isomorphism follows from

(E ×CR E)Z×SpecRZ
∼= (E ×CR G1)Z×SpecRP . �

9.3. Frobenius morphisms. Let us review some basic facts about the Frob-

enius morphisms of a variety X over an algebraically closed field of characteris-

tic p > 0. The book [BK05, Chap. 1] provides a detailed account of the general

theory.

8This suffices since all the stacks are locally of finite presentation.
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First assume that X is smooth, and let ωX be its canonical sheaf. Then

there is the following isomorphism ([BK05, §§1.3.7–1.3.8]):

(9.3.1) D : F∗ω
1−p
X

∼→ HomOX (F∗OX ,OX),

where F : X → X is the absolute Frobenius map of X. The existence of this

isomorphism follows from the Grothendieck duality theorem for finite mor-

phisms (see [BK05, the discussion before §1.3.1]). Explicitly, the isomorphism

is given as follows. Let x ∈ X be a closed point, and let x1, . . . , xn be a sequence

of regular parameters of the local ring OX,x. Then in an étale neighborhood

of x in X, the above isomorphism is given by

D(xm1
1 · · ·x

mn
n (dx1 · · · dxn)1−p)(x`11 · · ·x

`n
n )(9.3.2)

=

0 if p - mi + `i + 1 for some i,

x
(m1+`1−p+1)/p
1 · · ·x(mn+`n−p+1)/p

n .

Next, assume that X is normal ([BK05, §1.3.12]). It is still make sense to

talk about the canonical sheaf ωX and its n-th power ω
[n]
X for all n. Namely,

let j : Xsm → X be the open immersion of the smooth locus into X. Then by

definition ω
[n]
X := j∗ω

n
Xsm . The isomorphism (9.3.1) still holds in this situation.

Observe that there is a natural map (ω
[±1]
X )⊗n → ω

[±n]
X (n > 0) that is not

necessarily an isomorphism. In what follows, we use ωnX to denote ω
[n]
X if no

confusion will rise. Let us recall that if in addition X is Cohen-Macaulay, ωX
is the dualizing sheaf.

Next, we consider a flat family f : X → V of varieties that is fiberwise

normal and Cohen-Macaulay. In addition, let us assume that V is smooth, so

that the total space X is also normal and Cohen-Macaulay. In this case, the

relative dualizing sheaf ωX/V commutes with base change and is flat over V .

We have ωX ∼= f∗ωV ⊗ωX/V . Let X(p) be the Frobenius twist of X over V , i.e.,

the pullback of X along the absolute Frobenius endomorphism F : V → V . Let

FX/V : X → X(p) be the relative Frobenius morphism, and let ϕ : X(p) → X

be the map such that the composition ϕ ◦ FX/V is the absolute Frobenius

morphism F for X. Then

(9.3.3) RD : (FX/V )∗ω
1−p
X/V

∼→ HomO
X(p)

((FX/V )∗OX ,OX(p)).

Here ωnX/V , as in the absolute case, is the pushout of the n-th tensor power of

the relative canonical sheaf on Xrel,sm, the maximal open part of X such that

f |Xrel,sm is smooth. In addition, we have the following homorphisms:

(9.3.4) f∗F∗ω
1−p
V

∼→ f∗Hom(F∗OV ,OV ) ∼= Hom(ϕ∗OX(p) ,OX),

(9.3.5) F∗ω
1−p
X/V ⊗ f

∗F∗ω
1−p
V
∼= F∗ω

1−p
X/V ⊗ F∗f

∗ω1−p
V → F∗ω

1−p
X .
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The homorphisms (9.3.1), (9.3.3)–(9.3.5) fit into the following commutative

diagram:

(9.3.6)
ϕ∗Hom((FX/V )∗OX ,OX(p)) ⊗OX

Hom(ϕ∗OX(p) ,OX) −−−−→ Hom(F∗OX ,OX)x x x
F∗ω

1−p
X/V ⊗OX

f∗F∗ω
1−p
V −−−−→ F∗ω

1−p
X .

Finally, let W be another smooth variety over k, and let g : W → V be

a k-morphism (not necessarily flat). By abuse of notation, we still use g to

denote the base change maps XW → X and (XW )(p) ∼= X
(p)
W → X(p). Then

the following diagram is commutative:

(9.3.7)

g∗(FX/V )∗ω
1−p
X/V

∼=−−−−→ g∗Hom((FX/V )∗OX ,OX(p))

∼=

y y∼=
(FXW /W )∗ω

1−p
XW /W

∼=−−−−→ Hom((FXW /W )∗OXW ,OX(p)
W

).

To prove the isomorphism (9.3.3), and that (9.3.6) and (9.3.7) are commu-

tative, one can first assume that X is smooth over V . In this case, the proof

of (9.3.1) (as in [BK05, §1.3]) with obvious modifications applies to (9.3.3).

In particular, étale locally on X, (9.3.3) can be described by the explicit for-

mula as in (9.3.2), with x1, . . . , xn replaced by a system of local coordinates of

X relative to V . Then (9.3.6) and (9.3.7) follow from the direct calculation.

Then one can easily extend these to the case that X is flat over V with normal

and Cohen-Macaulay fibers. Indeed, under our assumptions, all the sheaves

appearing in (9.3.3), (9.3.6) and (9.3.7) have the following property: Let F
be such a sheaf on X and j : Xrel,sm → X be the open embedding as before.

Then F ∼= j∗(F|Xrel,sm).
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en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994),

59–79. MR 1266495. Zbl 0826.14027. Available at http://www.numdam.

org/item?id=CM 1994 90 1 59 0.

[DG70] M. Demazure and A. Grothendieck (eds.), Schémas en Groupes. III:
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