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Bounded gaps between primes

By YITANG ZHANG

Abstract

It is proved that
liminf(pp41 — pn) < 7 x 107,

n—o0
where p,, is the n-th prime.

Our method is a refinement of the recent work of Goldston, Pintz and
Yildirim on the small gaps between consecutive primes. A major ingredient
of the proof is a stronger version of the Bombieri-Vinogradov theorem that
is applicable when the moduli are free from large prime divisors only, but
it is adequate for our purpose.
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1. Introduction
Let p, denote the n-th prime. It is conjectured that
lim inf (pn+1 — pn) = 2.

While a proof of this conjecture seems to be out of reach by present methods,
recently Goldston, Pintz and Yildirim [7] have made significant progress toward
the weaker conjecture

(1) lin nf (po 1 — po) < ox.

In particular, they prove that if the primes have level of distribution ¢ =
1/2 + w for an (arbitrarily small) @ > 0, then (1.1) will be valid (see [7,
Th. 1]). Since the result ¥ = 1/2 is known (the Bombieri-Vinogradov theorem),
the gap between their result and (1.1) would appear to be, as said in [7], within
a hair’s breadth. Until very recently, the best result on the small gaps between
consecutive primes was due to Goldston, Pintz and Yildirim [8]. This result
gives that

(1.2) liminf —— 20t = Pn

n—o \/log py(loglog py,)?

One may ask whether the methods in [7], combined with the ideas in Fouvry
and Iwaniec [5] and in Bombieri, Friedlander and Iwaniec [1], [2], [3] which
are employed to derive some stronger versions of the Bombieri- Vinogradov

theorem, would be good enough for proving (1.1) (see [7, Question 1, p. 822]).
In this paper we give an affirmative answer to the above question. We
adopt the following notation of [7]. Let

(1.3) H={hy, hay... I}

be a set composed of distinct nonnegative integers. We say that H is admissible
if v,(H) < p for every prime p, where 1,(H) denotes the number of distinct
residue classes modulo p occupied by the h;.

THEOREM 1. Suppose that H is admissible with ko > 3.5 x 105. Then
there are infinitely many positive integers n such that the ko-tuple

(1.4) {n+h1,n+hg,...,n+hk0}
contains at least two primes. Consequently, we have
(1.5) liminf(pp+1 — pn) <7 X 107,
The bound (1.5) results from the fact that the set H is admissible if it
is composed of kg distinct primes, each of which is greater than kg, and the

inequality
7(7 x 107) — w(3.5 x 10%) > 3.5 x 10°.
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This result is, of course, not optimal. The condition kg > 3.5 x 10° is also
crude, and there are certain ways to relax it. To replace the right side of (1.5)
by a value as small as possible is an open problem that will not be discussed
in this paper.

2. Notation and sketch of the proof

Notation.

p: a prime number.

a, b, c, h, k, [, m: integers.

d, n, q, r: positive integers.

A(q): the von Mangoldt function.

7j(q): the divisor function, 7(q) = 7(q).

©(q): the Euler function.

1(q): the Mébius function.

x: a large number.

L =logzx.

Yy, z: real variables.

e(y) = exp{2miy}.

eq(y) = ey/q)-

l|ly||: the distance from y to the nearest integer.

m = a(q): means m = a(mod q).

¢/d means a/d(mod 1) where ac = 1(mod d).

q ~ @ means @ < q < 2Q.

g: any sufficiently small, positive constant, not necessarily the same in

each occurrence.

B: some positive constant, not necessarily the same in each occurrence.

A: any sufficiently large, positive constant, not necessarily the same in

each occurrence.

n=1+L7%4

#n: the characteristic function of [V, nN) N Z.

Z*l : a summation over reduced residue classes [(mod q).
(mod q)

Cy(a): the Ramanujan sum Z*l( mod ) eq(la).

We adopt the following conventions throughout our presentation. The set
H given by (1.3) is assumed to be admissible and fixed. We write v, for v,(H);
similar abbreviations will be used in the sequel. Every quantity depending on
‘H alone is regarded as a constant. For example, the absolutely convergent

product
—ko
vV, 1
-3
m(e-5)0-5
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is a constant. A statement is valid for any sufficiently small € and for any
sufficiently large A whenever they are involved. The meanings of “sufficiently
small” and “sufficiently large” may vary from one line to the next. Constants
implied in O or <, unless specified, will depend on H, € and A at most.

We first recall the underlying idea in the proof of [7, Th. 1], which consists
in evaluating and comparing the sums

(2.1) S1 = An)

and
ko
(2.2) Sa=>_ <29(n + hi))A(n)Q,
n~r \ =1

where A(n) is a real function depending on H and z, and

0(n) {i)ogn if n is prime,

otherwise.
The key point is to prove, with an appropriate choice of A, that
(2.3) Sy — (log 3xz)S1 > 0.

This implies, for sufficiently large x, that there is a n ~ x such that the tuple
(1.4) contains at least two primes.
In [7] the function A\(n) mainly takes the form

ko-+lo
2.4 A log — l 0
20 M= > (7). w0

d|P(n
d<D

where D is a power of z and

ko
P(n) = [[(n+hy)
j=1
Let
A= X0 A=~ X 4 for (4o
n=e(d) (nad)=1
and

Ci(d)={c:1<c<d, (¢,d)=1, P(c—h;) =0(modd)} for 1<1i<ko.
The evaluations of S7 and S5 lead to a relation of the form

Sy — (log 3x)S1 = (koT5" — LTz 4+ O(xLFo20) 1 0(€)
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for D < 2'/27¢ where T;* and T are certain arithmetic sums (see Lemma 1
below), and

= > D @I dme-1(d) Y [AG:d, o).

1<i<ko d<D2 ceC;(d)

Let o > 0 be a small constant. If
(2.5) D = gl/4+=

and kg is sufficiently large in terms of w, then, with an appropriate choice of
lp, one can prove that

(2.6) koTy — LTy > Lhot2lotl,

In this situation the error £ can be efficiently bounded if the primes have level
of distribution ¥ > 1/24 2w, but one is unable to prove it by present methods.
On the other hand, for D = z'/4~¢, the Bombieri-Vinogradov theorem is good
enough for bounding &, but the relation (2.6) cannot be valid, even if a more
general form of A\(n) is considered (see Soundararajan [13]).

Our first observation is that, in the sums 77" and 75", the contributions
from the terms with d having a large prime divisor are relatively small. Thus,
if we impose the constraint d|P in (2.4), where P is the product of the primes
less than a small power of z, the resulting main term is still > £Fo+2o+1 with
D given by (2.5).

Our second observation, which is the most novel part of the proof, is
that with D given by (2.5) and with the constraint d|P imposed in (2.4), the
resulting error

(2.7) > Y mdme-1(d) Y |A(0:d,c)

1<i<ko d<D? c€Ci(d)
d|P
can be efficiently bounded. This is originally due to the simple fact that if d|P
and d is not too small, say d > 21/27¢ then d can be factored as

(2.8) d=rq

with the range for r flexibly chosen (see Lemma 4 below). Thus, roughly speak-
ing, the characteristic function of the set {d : z'/?~¢ < d < D2, d|P} may be
treated as a well-factorable function (see Iwaniec [11]). The factorization (2.8)
is crucial for bounding the error terms.

It suffices to prove Theorem 1 with

ko = 3.5 x 106,
which is henceforth assumed. Let D be as in (2.5) with
1

~1168°
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Let g(y) be given by

1 D ko+lo '
g(y)—((10g> if y<D

ko + lo)! Y
and
g(y)=0 if y=>D,
where
lo = 180.

Write
(2.9) Dy = %, P=1I »

p<D1
(2.10) Do = exp{L'/*}, Po= H .

p<Do

In the case d|P and d is not too small, the factor ¢ in (2.8) may be chosen such
that (¢, Py) = 1. This will considerably simplify the argument.
We choose

(2.11) Am) = Y u(d)gld).
d|(P(n),P)

In the proof of Theorem 1, the main terms are not difficult to handle,
since we deal with a fixed H. This is quite different from [7] and [8], in which
various sets H are involved in the argument to derive results like (1.2).

By Cauchy’s inequality, the error (2.7) is efficiently bounded via the fol-
lowing

THEOREM 2. For 1 <1i < kg we have

(2.12) S > JA@Gd, o) < zL
d<D? ceC;(d)
dp

The proof of Theorem 2 is described as follows. First, applying combina-
torial arguments (see Lemma 6 below), we reduce the proof to estimating the
sum of |A(~;d, c)| with certain Dirichlet convolutions . There are three types
of the convolutions involved in the argument. Write

(2.13) xy = o3/ zy = /¥4,

In the first two types the function « is of the form v = « * 8 such that the
following hold:
(A1) a = (a(m)) is supported on [M, /' M), j1 <19, a(m) < 7j,(m)L.
(A2) B = (B(n)) is supported on [N, 172N), j2 < 19, B(n) < 75,(n)L,
1 < N < 22172,
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For any ¢, r and a satisfying (a,r) = 1, the following “Siegel-Walfisz” assump-
tion is satisfied:

Z ﬁ(n) - (17‘) Z ﬂ(n) <K TQO(q)N£72OOA.
(?’LE(L)(’I’)l ¥ (n,qr)=1
n,q)=

(A3) j1+j2<20, [MN,n”°MN)C [z,2z).
We say that v is of Type I if x1 < N < x9; we say that v is of Type II if
To < N < 271/2,

In the Type I and II estimates we combine the dispersion method in [5]
and [1] with the factorization (2.8). (Here r is close to N in the logarithmic
scale.) Due to the fact that the modulo d is at most slightly greater than
21/2 in the logarithmic scale, after reducing the problem to estimating certain
incomplete Kloosterman sums, we need only to save a small power of x from
the trivial estimates; a variant of Weil’s bound for Kloosterman sums (see
Lemma 11) will fulfill it. Here the condition N > z1, which may be slightly
relaxed, is essential.

We say that « is of Type III if it is of the form v = a * sen, * 22y, * 22n,
such that « satisfies (A1) with j; < 17 and such that the following hold:

(A4) N3 < Ny < Ny, MN; < ;.
(As) [MNyNyN3,n?* MN1NyN3) C [z,2z).

The Type III estimate essentially relies on the Birch-Bombieri result in the
appendix to [6] (see Lemma 12), which is employed by Friedlander and Iwaniec
[6] and by Heath-Brown [10] to study the distribution of 73(n) in arithmetic
progressions. This result in turn relies on Deligne’s proof of the Riemann
Hypothesis for varieties over finite fields (the Weil Conjecture) [4]. We estimate
each A(v;d, ¢) directly. However, if one applies the method in [6] alone, efficient
estimates will be valid only for M N; < 2%/8=5%/2=¢ Qur argument is carried
out by combining the method in [6] with the factorization (2.8) (here r is
relatively small); the latter will allow us to save a factor r!/2.

In our presentation, all the a(m) and (n) are real numbers.

3. Lemmas

In this section we introduce a number of prerequisite results, some of which
are quoted from the literature directly. Results given here may not be in the
strongest forms, but they are adequate for the proofs of Theorems 1 and 2.

LEMMA 1. Let 01(d) and o2(d) be the multiplicative functions supported
on square-free integers such that

01(p) = vp, 02(p) =vp — L.
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Let (dvdo) o1 (dodyds)
-3 S e et ot
do dy  da ou142
and (dyrds)02(dody da)
-3 S aldodalds).
TG odids)
We have
1 2[0 k
1 " - l D O+2[0 k0+210
and
. 1 2lp +2 ko+2l0+1 ko+2lo+1
32  T= (k0+210+1)!<10+1>6(10gm tolk s

Proof. The sum 7;* is the same as the sum Tr(l1, lo; Hi, He) in [7, eq. (7.6)]
with
7‘[1:7'[2:7'[ (klzkgzk?[)), l1:l2:l0, R:D,
o (3.1) follows from [7, Lemma 3]; the sum 75" is the same as the sum
%R(ll,lg;le,'Hg,ho) in [7, eq. (9.12)] with

H1 =Hs ="H, 11:l2:l0, hoeH, R=D,
o0 (3.2) also follows from [7, Lemma 3]. O

Remark. A generalization of this lemma can be found in [13].

LEMMA 2. Let

rd=1
and
p(r) oz (r
g(dr).
(et so(r)
Suppose that d < D and |u(d)| = 1. Then we have
lo
(3.3) A (d) = ﬁ;(?)6<log g) + O(Llo~1He)
0-
and
V2(d) ot lo+
4 _ —_—— 1 — 0TE
(3.4 d) = 26 (10T ) 0L

where ¥1(d) and 92(d) are the multiplicative functions supported on square-free
integers such that

Vp

nn=(1-2) " woi=(1-257)
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Proof. Recall that Dy is given by (2.10). Since g;1(r) < 7x,(r), we have
trivially
Ai(d) < 1+ (log(D/d))* ™™,
so we may assume D/d > exp{(log Do)?} without loss of generality. Write
s = o +it. For 0 > 0 we have

Z”ms = 91(d, )G (s)C(1 + )70,
(r,d)=1

where

Do) e )0

It follows that

aiy= [ A D/
! 2 (1/L) C(1+ s)ko  ghotlo+l

Note that G1(s) is analytic and bounded for ¢ > —1/3. We split the line of
integration into two parts according to |t| < Dy and |t| > Dy. By a well-
known result on the zero-free region for ((s), we can move the line segment

{o=1/L, |t| < Do} to
{o = —k(log Do)~ ", |t| < Dy},

where £ > 0 is a certain constant, and apply some standard estimates to deduce

that
1 / V1(d, s)G1(s) (D/d)" ds +o(L™.

Ai(d) =

2mi Jismye C(1+s)fo shotlotd
Note that 91 (d,0) = ¥ (d) and
91(d, s) — 91(d) = V1(d, s)91(d Z“ Jor® ) _ sy,
I|d

If |s| < 1/L, then ¥1(d,s) < (log £)? so that, by trivial estimation,
91(d,s) — V1(d) < L5
On the other hand, by Cauchy’s integral formula, for |s| < 1/L we have
Gi(s) -6 < 1/L.
It follows that

1 / Y1(d, s)G1(s) (D/d)* ds

210 Jigj=17z C(L+s)ko shotoFl

I (D/d)* ds

lo—14¢
21 s|=1/c  slotl <L '

This leads to (3.3).
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The proof of (3.4) is analogous. We have only to note that
1 Ya(d, s)G D/d)*d
Ay(d) = /( 2(d, 5)Ga(s) (D/d)* ds

—2mi Jayey C(L+s)foT shotlotd
with
vo—1 \ ! v, — 1 1\l
Oo(d,s) =] (1) » Ge(o) =] (17T )(1—> )
2(ds) =11 ( (p— 1)ps> 2() =11 ( (p—1)ps pits
pld p
and G(0) = &. O

LEMMA 3. We have

d)v1(d 1+ 4oo)~ho
(35) Z Ql( )dl( ) _ ( +k0w') 6—1(IOgD)ko +O(£k0—1)
d<xl/4 )
and
0a(d)da(d) (1 +4w)' " ko—1 ko—2
(3.6) d§/4 o@ = (o1l & '(log D)ot + O(L£k0—2).
Proof. Noting that ¥1(p)/p =1/(p — vp), for ¢ > 0 we have

> d)(d

Z Ql(deri( ) = Bi(s)¢(1 + S)kov

d=1
where

=TT (1 ) (56

Hence, by Perron’s formula,

o(d)9i(d) 1 UEHDo By(s)¢(1 + 5)koa/d
I |

= ds + O(D'LB).
d o J1/c—ipo s s+ 0Dy £7)

d<zl/4
Note that Bj(s) is analytic and bounded for ¢ > —1/3. Moving the path of
integration to [—1/3 — iDg, —1/3 + iDy], we see that the right side above is

equal to

1 B 1+ s)kogs/4

7/ 1(8)C( +S) z dS+O(D()_1£B)
271 J|s|=1/L S

Since, by Cauchy’s integral formula, By(s) — B1(0) < 1/L for |s| = 1/L, and

B1(0) = 1;[ (p_py) (1 - ;)ko -6,

ko
> Ql(dwl(d):l@l(E> + oLk,

S d o! 4

This leads to (3.5) since £/4 = (1 + 4w)~!log D by (2.5).

it follows that
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The proof of (3.6) is analogous. We have only to note that, for o > 0,

> 22D _ g+ oot
d=1

1 1 ko—1
1+ —2——|(1-— ,
1;[ ( - Vp)ps> ( p”s)

and By(0) = &1, O

with

Recall that D and P are given by (2.9) and Py is given by (2.10).

LEMMA 4. Suppose that d > D?, d|P and (d,Py) < Di. For any R*
satisfying
(3.7) D? < R* < d,
there is a factorization d = rq such that Dl_lR* <r < R* and (q,Py) = 1.

Proof. Since d is square-free and d/(d, Py) > D1, we may write d/(d, Py)
as
d
(d7 PO)

n

:Hpj with Do <pi <pas < - <pp<Di, n>2.
=1

y (3.7), there is a n’ < n such that

n n'+1
(d, Po) Hpj<R* and  (d,Py) H

The assertion follows by choosing

,n/

r=(d,Po) [[ ps: a= ][] »s

j=1 j=n/+1

and noting that r > (1/p,41)R*. O

LEMMA 5. Suppose that 1 <1i < ko and |u(qr)| = 1. There is a bijection
Ci(gr) = Ci(r) x Ci(q), ¢+ (a,b)

such that ¢(mod qr) is a common solution to ¢ = a(mod r) and ¢ = b(mod q).

Proof. By the Chinese remainder theorem. O

The next lemma is a special case of the combinatorial identity due to
Heath-Brown [9].
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LEMMA 6. Suppose that z'/10 < z* < nz'/19. For n < 2x we have

10
(10
A(n) = E (1) 1( ) § p(ma) ... p(my) E logny.
j=1 J mi,...,m; <x* ny...njmi..m;=n

The next lemma is a truncated Poisson formula.

LEMMA 7. Suppose that n < n* < n' and z'/* < M < 2?/3. Let f be a
function of C*°(—o0,00) class such that 0 < f(y) <1,

flyy=1 if M<y<n'M,
fy)=0 if y¢[1—-M7)M, (1+M )" M],
and
fO0) < M09 5>,

the tmplied constant depending on € and j at most. Then we have

S fm) =5 3 f(h/dyea(-ah) + O
m=a(d

) |h|<H
for any H > dM~'12¢ where f is the Fourier transform of f; i.e.,
e = | fwelys) dy.

LEMMA 8. Suppose that 1 < N < N’ <2z, N'— N > 2°d and (¢,d) = 1.
Then for j,v > 1 we have

NeneN' p(d)
n=c(d)

the tmplied constant depending on €, j and v at most.

Proof. See [12, Th. 1]. O

The next lemma is (essentially) contained in the proof of [6, Th. 4].

LEMMA 9. Suppose that H/N > 2, d > H and (¢,d) = 1. Then we have

(3.8) > min {H, [[en/d|| "'} < (AN)*(H + N).
n<N
(n,d)=1
Proof. We may assume N > H without loss of generality. Write {y}
y — |y], and assume & € [1/H, 1/2]. Note that {cn/d} < ¢ if and only i
bn = c¢(modd) for some b € (0,d¢], and 1 — & < {cn/d} if and only if bn

—
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—c(mod d) for some b € (0,d¢], Thus, the number of the n satisfying n < N,
(n,d) =1 and ||ci/d|| < £ is bounded by

S r(g) < NV
q<dN¢
g==c(d)

Hence, for any interval I of the form

I=(0,1/H), I=[1-1/H,1), I=[¢] or I=[1-¢,1-¢
with 1/H < ¢ <& <1/2, & <2¢, the contribution from the terms on the left
side of (3.8) with {cii/d} € I is < d°N'T¢. This completes the proof. O

LEMMA 10. Suppose that f = (5(n)) satisfies (A2) and R < x~N. Then
for any q we have

>oalr) Y

r~R {( mod r)

2
< T(q)BN2£*100A.

S B - — Y B

n=l(r) SO(T) (n,qr)=1
(n,g)=1

Proof. Since the inner sum is < ¢(r)"!N2£B by Lemma 8, the assertion
follows by Cauchy’s inequality and [1, Th. 0]. O

LEMMA 11. Suppose that N > 1, didy > 10 and |p(d1)| = |p(de)| = 1.
Then we have, for any c1, co and [,

cin  c2 (TL + l) 1/2+¢ (01, dl)(CQ, dg)(dl, d2)2N
3.9 —F——— | K (d1d; .
(39 n%:v e< i d ) (Thda) ™ dyds

(n7d1 ):1
(n+lad2):1

PTOOf. Write do = (dl,dg), tl = dl/do, tQ = dg/do and d = dotltg. Let

K(dl,cl;dQ,CQ;l,m): Z 6(Cdln+62(n+l)+7’nn>
1

o do d
(n,d1)=1
(n+l,d2)=1
We claim that
(310) ’K(dla C1; d27 C2; lv m)‘ < d0|5(m7 bl; tl)S(mv b2; t2)’

for some b; and by satisfying
(3.11) (bis ti) < (ci, di),

where S(m, b;t) denotes the ordinary Kloosterman sum.
Note that dy, t1 and t9 are pairwise coprime. Assume that

n = t1tong + dotani + dotine (mod d)

and
[ = titalp + dot1ls (mod d2)
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The conditions (n,d;) =1 and (n +1[,dz) = 1 are equivalent to
(no,do) = (n1,t1) =1 and (ng+lo,do) = (n2+12,t2) =1
respectively. Letting a;(mod dy), b;(mod ¢;), i = 1,2 be given by
artity = c1(mod dy), agtits = co(mod dy),

bld(Q)tQ = cl(mod tl), bgd%tl = CQ(mOd tg),
so that (3.11) holds, by the relation

1 ti CZO
=24 d1
N + 0 (mod 1)
we have
cin N ca(n+1) _ @mamo + as(no + ly) I biny + ba(nz + 1o) (mod 1).
dy d do f P
Hence,
lel 02(n + l) mn
d1 + d2 * d
_ aing + a2m + mng
= do
. b1y ;r mny ba(ng + l2) : m(ng +1z) ”Zil?(mod 1).
1 2 2

From this we deduce, by the Chinese remainder theorem, that
K(dy,c15d2, c2;1,m)

= e4, (—ml2)S(m, b1;t1)S(m, ba; ta) Z ed, (alﬁ—i-ag(n—i-lo) +mn),
n<d
(n.do)=1
(n+lo,do)=1

whence (3.10) follows.
By (3.10) with m = 0 and (3.11), for any k£ > 0 we have

s (3
k<n<k+d 1 2
(n,d1=1

(n+lvd2):1

< (e1,d1)(e2,d2)dp.

It now suffices to prove (3.9) on assuming N < d—1. By standard Fourier
techniques, the left side of (3.9) may be rewritten as

Z u(m)K (dy, c1;da, ca;1,m)

—oo<m<oo

with

(3.12) w(m) <<mm{N = dZ}
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By (3.10) and Weil’s bound for Kloosterman sums, we find that the left side

of (3.9) is

< d0<|u(0)|(b1,t1)(b2,t2) + (t1t2) V21N Ju(m)|(m, by, 1) (m, bg,t2)1/2).

m7#0
This leads to (3.9) by (3.12) and (3.11). O
Remark. In the case dy = 1, (3.9) becomes
di)N
(3.13) Z eq, (a1n) < dl/2+8 M
n<N l
(nd)=1

This estimate is well known (see [2, Lemma 6], for example), and it will find
application somewhere.

LEMMA 12. Let

T(k;myi,ma;q Z Z Z (lt1 I+ k)tz + myty — mztg)

I( mod ¢)t1( mod ¢)t2( mod q)

where Z, is restriction to (I(I + k),q) = 1. Suppose that q is square-free.
Then we have

T(kymi, ma; q) < (k,q)'/?q***e.
Proof. By [6, eq. (1.26)], it suffices to show that
T(k; m1, ma; p) < (k,p)"/*p*/>.

In the case k # 0(mod p), this follows from the Birch-Bombieri result in the
appendix to [6] (the proof is straightforward if m;ms = 0(mod p)); in the case
k = 0(mod p), this follows from Weil’s bound for Kloosterman sums. O

4. Upper bound for S

Recall that S is given by (2.1) and A(n) is given by (2.11). The aim of
this section is to establish an upper bound for S; (see (4.20) below).
Changing the order of summation we obtain

Z Z u dl dg) (dg) Z 1.

di|P do|P P(n)éLON([fll,dﬂ)

By the Chinese remainder theorem, for any square-free d, there are exactly

01(d) distinct residue classes (mod d) such that P(n) = 0(mod d) if and only
if n lies in one of these classes, so the innermost sum above is equal to

01([d1, d2])

dida] O(o1([d1, da))).
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It follows that
(4.1) Sy = Tz + O(D**°),

where

Ti=> > aldugldn)ida)g (d2)91([d1ad2])-

di|P do|P dl’ da]
Note that g1 (d) is supported on square-free integers. Substituting dy = (d1, d2)
and rewriting dy and dy for d;/dy and da2/dy respectively, we deduce that

p(dida)oi1(dodidz)
(4.2) Ti=> > > dodidy 9(dod1)g(doda).

d0|'P d1|'P d2|77

We need to estimate the difference 71 — 7;*. We have
T =31+ 31,

where

=y oy y ddaldehid) g gas),

dodyd
do<zl/t di do 0912

(d1d2)1(dod1d
Ss= >, D ZM : ilé;ldo 12) 9(dodr)g(dodz).
xl/4<dog<D di  d2 09162

In the case dy > x4, dod; < D, dody < D and |u(didz)| = 1, the conditions
d;|P, i = 1,2 are redundant. Hence,

Ti = X2 + Y32,

where

= > 2> pldrds)en (doch dy) g(dody)g(dods),

dodyd
dogxl/‘l di|P da|P 08162
do|P

(d1d2) 1 (dod1d
Spp= Y>> ZM 1d2)01(doc dz) 9(dod1)g(dods).

dod1d
zl/4<dy<D d1  d2 012
do|P

It follows that
(4.3) [T = T7'| < [51] + [Ze] + |Z5],

where

d d d did
s= Y 3 S HhRelddidy) g agy).

2/ 4<do<D d1 d2 d0d1d2
dotP
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First we estimate ;. By Mobius inversion, the inner sum over d; and da
in X4 is equal to

s Yy ARelre @ S )
)

d
O (d1,do)=1 (d2,do)=1 ql(d1,dz

01(do) 3 M(Q)Q;(Q)QAl(doq)z.

0 (gydo)=1

It follows that
d 2

do<z'/* (g,do)=1

The contribution from the terms with ¢ > Dy above is < Dj 128, Thus,
substituting doq = d, we deduce that

(4.5) S1= ) MAl(d)Q +0(DytL?),
d<z/4Dg d
where @)
(d) quZ;d B

d0<x1/4
q<Do

By the simple bounds
(4.6) Ai(d) < L(log £)7,
which follows from (3.3),

9*(d) < (log £)P
and

(47) Z Qléd) < Ek0+1/k0_1’
xl/4<d<xl/4 Dy

the contribution from the terms on the right side of (4.5) with z'/4 < d <
x4 Dy is o(L*0+20). On the other hand, assuming |u(d)| = 1 and noting that

(4.8) 3 wa)ala) _y, (g1,
qld 4
for d < 2'/* we have
9*(d) = 91(d) ™ + O(7e41(d) Dy ),
so that, by (3.3),

1

(@) A1(d)* =

2l
&%91(d) ( log d) +O0(Thes1(d)Dy LLB) +- O£~ 1),
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Inserting this into (4.5) we obtain

(4.9) Y, = &2 Z o1(d ) (log 3)210 o Lko+200).
d<zl/4

Together with (3.5), this yields

(4.10) ‘21| < ].CO!?;O]VG(IOg D)ko+2lo + 0(£k0+2l0),

where

51 = (1 =+ 4@)7]60.

Next we estimate ¥5. Similar to (4.4), we have

- ¥y e 20 4 oo,

dogxl/“ (0.do)= 0¢®
do|P ¢1|77

where
5 KO Cglar)
(rd)=1 "
r|P

In a way similar to the proof of (4.5), we deduce that

(4.11) So= > WA’{(CJF +0(Dy'LP).
d<z'/*Dg
d|P

Assume d|P. By Mobius inversion we have

)o dr 01(q
=y MOalad) g <y 0l g,
(rd)=1 al(rP*) gpe 4
where
Pr = H .
D1<p<D

Noting that
(4.12) ¥1(q) =1+O0(Dyh) if ¢/P* and ¢ < D,
by (3.3) we deduce that

(4.13) |A;(d)] < —6191 (log ) do== o) O(Llo=1F),

q|P*
q<D

If g|P* and ¢ < D, then ¢ has at most 292 prime factors. In addition, by the
prime number theorem we have

(4.14) S L 10g203 4 0(24).

D1<p<D
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It follows that

Z 01(q) <14 % w + O(E—A) =0y + O(L‘A), say.

V!
apr 1 v=1
q<D

Inserting this into (4.13) we obtain

lo
| A3 (d) (‘5191(d)<log§> + O(Lh~1te),

<2

Combining this with (4.11), in a way similar to the proof of (4.9) we deduce
that

lo
|Xo] < Z Ql(d)ﬁl(d)<log3>2 + o(Lkot2o).

2
(1o")? i d
Together with (3.5), this ylelds
52

(4.15) 25] < p 'Z B -6 (log D)ot 4 o(Lkot200),
We now turn to 3. In a way similar to the proof of (4.5), we deduce that
d)d(d
(4.16) Sy= Y aldid) 4 a2,
zl/4<d<D
where
Z H 91
dog=d
1/4<d0
dotP

By (4.6) and (4.7), we find that the contribution from the terms with z'/4 <
d < zY*Dy in (4.16) is o(Lko+2l0),

Now assume that z'/4Dy < d < D, |u(d)| = 1 and d { P. Noting that the
conditions do|d and z'/* < dj together imply do 1 P, by (4.8) we obtain

- ¥ wla)ei(a) :ﬁl(d)*1+0(fk0+1(d)D51).
dog=d
1/4<d0

Together with (3.3), this yields

@A = 1,)

Combining these results with (4.16) we obtain

2lp
&%01(d) ( log fj) + 071 (d) Dy L LP) + O (20~ 1),

1 D 2lg
0 z'/4Do<d<D

P
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By (4.12), (4.14) and (3.5) we have

Z Ql(d)jl(d) < Z 01(d)V1(d) Z 1

d
2/4<d<D d<D pl(d,P*)
dtP

< Z 01(p)Y1(p) Z 01(d)v1(d)
< ., —a
D1<p<D d<D/p
< (log293)01
- (ko — 1)'
Together with (4.17), this yields
(log 293)01
(ko — 1)!(I")?

1 B 1 ko + 2lp 2lp
k‘o!(lo!)Z o (ko + 2l0)' ko lo ’

it follows from (4.3), (4.10), (4.15) and (4.18) that

& (log D)k 4 o(Lk0).

(4.18) ’Z3| < G(IOg D)ko-l—?lo + 0(£k0+2l0)'

Since

X K 21
(4.19) |71 — T < W( 100>6(10g D)ko+2lo + O(Lko+2lo)7
where
ko + 21
k1 = 61(1+ 65 + (log 293)k0)( 0 ;: 0),
0

Together with (3.1), this implies that

1+r1 (2o ko+21 ko-+21
< G(log D)roT=0 LFoT=0),
Tl—(k0+210)!<z0) (log DY +-of )
Combining this with (4.1), we deduce that
4.20 S1<——— log D)ot LroF2loy,
120 i< it (1) Salog D 4 ofai

We conclude this section by giving an upper bound for ;. By the in-
equality
| 1/2, n,—n
n! > (2mn)*/“n"e

and simple computation, we have

log 293)ko)22\* 1
+ 63 + (log 293)ko < < 2051 < g9 (185100)

and

(26500)3.

<k0 + 2l0) 2]{(2)10 < 1
ko (2lp)! /1807
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It follows that

293
log k1 < —3500000 log 202 + 584 1og(185100) + 360 log(26500) < —1200.
This gives
(4.21) k1 < exp{—1200}.

5. Lower bound for S5

Recall that Sy is given by (2.2). The aim of this section is to establish a
lower bound for Sy on assuming Theorem 2 (see (5.6) below), which together
with (4.20) leads to (2.3).

We have

(5.1) = > > bn 24 0().
1<i<kq N~
Assume that 1 < ¢ < kg. Changing the order of summation we obtain
Y 0mAn —hi)? =" > p(da)g(di)p(da)g(do) > 0(n).
e di|P 2P P(n—hy)=0([d1,da))

Now assume |p(d)| = 1. To handle the innermost sum we first note that the
condition

P(n—h;) =0 (modd) and (n,d)=1

is equivalent to n = c¢(modd) for some ¢ € C;j(d). Further, for any p, the
quantity |C;(p)| is equal to the number of distinct residue classes (mod p) oc-
cupied by the h; — h; with h; # h;(mod p), so |C;(p)| = vp — 1. This implies
ICi(d)| = 02(d) by Lemma 5. Thus the innermost sum above is equal to

3 S o) =2 511:522 S 0(n) S A6 [dr, dol, ).

c€C;([d1,d2]) nzc?[;f’dz]) n~wx CGCz‘([dl,dﬂ)

Since the number of the pairs {di,ds} such that [di,ds] = d is equal to 73(d),
it follows that

(5.2) Y 0(n)A(n—h)* =T Y_ 0(n) + O(&)

where

=3 > pdgtd s )g (dQ)Qz([dhdz])

di|P da|P ([dl’ da])
which is independent of 7, and
Ei= Y ms(d)ox(d) > [AB;d,c)l.

d<D? ceC;(d)
d|P



1142 YITANG ZHANG

By Cauchy’s inequality and Theorem 2 we have

(5:3) & < alL™A

It follows from (5.1)—(5.3) and the prime number theorem that
(5.4) Sy = koTox + O(zL™4).

Similar to (4.2), we may rewrite 72 as

_ Yy y Mddosldohda) s ga,),

do[P dv|P da|P p(dodidp)

In a way much similar to the proof of (4.19), from the second assertions of
Lemmas 2 and 3 we deduce that

. K 200+ 2
N e e e L

where
ko—1

ko + 2lo + 1
/ig—51(1+4w)(1+5§+(10g293)k0)< 0+ 2o+ >

Together with (3.2), this implies that
L — Ko 2lp+2 ko+2lo+1 ko421
>_ - v S(log D)kot2lo+ [lot2lo+1y
75_(14/‘0%-2504—1)!(lo%—1> (log D) +ol )
Combining this with (5.4), we deduce that
ko(l — ko) (2o +2
(56) SQ > m lO +1 Gx(log D)k’0+2l0+1 + 0(1’£k0+2l0+1).

We are now in a position to prove Theorem 1 on assuming Theorem 2.
By (4.20), (5.6) and the relation

4
L= log D
1+4w 08
we have
(5.7) Sy — (log 3z)S; > wSz(log D)kot2loFL 4 (g Lhot2otly
where

W — ko(l—fig) 2[0+2 _ 4(1+f€1) 2[0
(ko + 200+ 1)\ lp+1 (1 + 4w) (ko +20p)!'\ 1o )’

which may be rewritten as

1 2l 2(2[0 + 1) k‘o(l — Hg) 4(1 + Iﬂ)
w=-—— — .
(ko + 2lp)! \ 1o lo+1 ky+2p+1 1+4w

Note that

K2 k‘g(/{o + 2lp + 1)(1 + 4w)

== < 108,
K1 (2lp + 1)(2lp + 2)
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Thus, by (4.21), both of the constants k1 and k3 are extremely small. It follows
by simple computation that

(5.8) w > 0.
Finally, from (5.7) and (5.8) we deduce (2.3), whence Theorem 1 follows.

Remark. The bounds (4.19) and (5.5) are crude and there may be some
ways to improve them considerably. It is even possible to evaluate 71 and 7o
directly. Thus one might be able to show that (2.3) holds with a considerably
smaller kg.

6. Combinatorial arguments

The rest of this paper is devoted to proving Theorem 2. In this and the
next six sections we assume that 1 < i < ky. Write

Dy = II/Q_E.

On the left side of (2.12), the contribution from the terms with d < Dy is
< zL£~4 by the Bombieri-Vinogradov Theorem. Recalling that D; and Py are
given by (2.9) and (2.10) respectively, by trivial estimation, for Dy < d < D?
we may also impose the constraint (d,Py) < D; and replace 6(n) by A(n).
Thus Theorem 2 follows from the following;:

(6.1) Z Z A(A;d,c)| < zL74

Dsy<d<D? c€C;i(d)
d|P
(d,P0)<D1

The aim of this section is to reduce the proof of (6.1) to showing that

(6.2) > > |A(yd o) < zL” 414
Da<d<D? ceCi(d)
d|P
(d,PO)<D1

for v being of Type I, II or III.
Let L be given by L(n) = logn. By Lemma 6, for n ~ 2 we have A(n) =
Aq(n), where

Ay - i(_l)H(m) S (g )ee sl ) s 5o+ (Lo,
j=1 D) M., M1 NNy

Here Mj,..., My, Nj,..., N1 > 1 run over the powers of 7 satisfying

(6.3) M, < 2'/10,

(6.4) [Mj...MiNj...N1,n”°M; ... MiN;...N1) N [z,22) # ¢.
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Let Ay have the same expression as A; but with the constraint (6.4) replaced
by

(6.5) [Mj...MyN;...Ny,n*°M;...MiN;...Ny) C [2,22).
Since A1 — Ay is supported on [n~2Yx, n?°z]U[2n~ 2, 2n?2] and (A1 —As)(n) <
To0(n)L, by Lemma 8 we have

S Y AN - Asd, o) < 2LA

Dy<d<D? ceC;i(d)
d|P
(d,P0)<D1

Further, let

10
(66) As= Z(—l)ﬂ'*(?’) (log Ny

j=1
X > (poen;) 5 - - % (paeary) * (seny) - (32,
Mj,...,M1,Nj,....Ny
with Mj, ..., My, Nj, ..., Ny satisfying (6.3) and (6.5). Since (A2 — A3)(n) <
T90(n)L~%4, by Lemma 8 we have

> > |A(A — Agid,o)| < L™

Do <d<D2 CGCZ' (d)
d|P
(d,P0)<D1

Now assume that 1 < j' < j < 10. Let 7 be of the form

Y= (IOgNj’)(N%Mj) ook (/’L%Ml) * (%Nj) Kook (%N1)7
with Mj,..., My, Nj,..., N satisfying (63) and (65), and N; < --- < Ny.
We claim that either the estimate
x17w+€
d
trivially holds for d < D? and (c,d) = 1, or « is of Type I, II or IIL
Write M; = x#t and N; = z¥*. We have

(6.7) A(v;d, o) <

log 2
L
In the case 3/8 + 8w < 11 < 1/2, v is of Type I or II by choosing = »p;;
in the case 1/2 < v; < 1/2+ 3w, ~ is of Type II by choosing a = sy, ; in the

case 1/2 + 3w < vy, the estimate (6.7) trivially holds.
Since v; > 2/5if j = 1,2, it remains to deal with the case

1
Osmsqp Osyis-sw, syt ottt <l+

3
j >3, v < <+ 8w

Write
u*:,uj+---+,u1+1/j+~-+u4.
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(The partial sum vj +-- -+ vy is void if j = 3.) In the case v*+1v; < 3/8+4 8w,
~v is obviously of Type III. Further, if v* has a partial sum, say v/, satisfying

3 5
§+8w<u'+ul<§—8w,

then ~ is of Type I or II. For example, if

3 1
§+8W<Mj+"'+,ul+l/1§§7

we choose 8 = (useng;) * -+ (wsear,) * (sen, ); if

%</sz+"‘+#1+1/1 <g—8w,
we choose av = (psepr;) * -+ - * (usenr, ) * (2n;).-
It now suffices to assume that
(6.8) vt > g — 8w,
and every partial sum v/ of v* satisfies either

3 5)
1/—|—1/1§§+8w or 1/—{—V12§—8w.

Let v be the smallest partial sum of v* such that v{ + 11 > 5/8 — 8w (the
existence of 1| follows from (6.8), and there may be more than one choice of
1), and let ¥ be a positive term in v{. Since ] — ¥ is also a partial sum of v*,
we must have

v — v+ < 3/8 + 8w,
so that
1
> — — 16w.
vz w
This implies that 7 must be one of the v, t > 4 (that arises only if j > 4). In
particular, we have vy > 1/4 — 16tw. Now, the conditions

1 log 2
1—16WSV4SV3SV2§V1, v +rv3+rvy v <1+ -

together imply that

1 3900 < va + <1+log2
- — 1% 1% — .
g T OFmEIITHMS ST o0

It follows that <y is of Type I or II by choosing 3 = s, * 2.

It should be remarked, by the Siegel-Walfisz theorem, that for all the
choices of B above, the Siegel-Walfisz assumption in (Ag) holds. Noting that
the sum in (6.6) contains O(£4%4) terms, by the above discussion we conclude
that (6.2) implies (6.1).
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7. The dispersion method

In this and the next three sections we treat the Type I and II estimates
simultaneously via the methods in [5] and [1, §§3-7]. We henceforth assume
that v = a * [ satisfies (A1), (A2) and (A3). Recall that z; and zy are given
by (2.13). We shall apply Lemma 4 with
(7.1) R* =z°N
if vis of Type I (z1 < N < x9), and
(7.2) R* = 27%%N

if  is of Type II (zo < N < 2z1/2).
Note that D} < R* < Dy. By Lemma 4 and Lemma 5, the proof of (6.2)
is reduced to showing that

ookl Y X Y |Araeb)| <

R*/D1<r<R* a€Ci(r) Do /r<q<D?/r beCi(q)
qalP
(g,7Po)=1

where, for |u(qr)| = (a,r) = (b,q) =1,

1
Alyira;q,) = > y(n) — @) > q(n).
n=a(r) wigr (n,qr)=1
n=b(q)
It therefore suffices to prove that
(7.3)
BriQ.R) =l > > Y |Atnnaigb)| < oL,
r~R a€eC;(r) g~Q  beCi(q)
qaP
(g,rPo)=1
subject to the conditions
(7.4) " “R*<R<R"
and
1
(75) 71,1/275 <QR< x1/2+2w7

2

which are henceforth assumed.
For notational simplicity, in some expressions the subscript ¢ will be omit-
ted even though they depend on it. In what follows we assume that

(7.6) r~R, |u(r)=1 acCr).
Let ¢(r,a;q,b) be given by
c(r,a;q,b) = sgn A(v;r,a;q,b)
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if
qn~ Q7 Q‘Pv ((LTPO) = 1> be Cz(q)a
and
c(rya;q,b) =0 otherwise.

Changing the order of summation we obtain

> Z \A ¥i7,a:q,b ]— (m)D(r, a;m),
q~Q  beCi( ):1
q|P
(g,rPo)=1
where
D(r,a;m) = Zcra;q, ( Z B(n (r) B(n))
(gym)=1 b mn= Z((r; vl (n,gr)=1

It follows by Cauchy’s inequality that
(77 BrnQ R <MRLE Y |u(r)| > > f(m)D(r,a;m)*,
r~R a€Cyi(r) (myr)=1
where f(y) is as in Lemma 7 with n* = n'%. We have
(7.8) Z f(m)D(r,a;m)? = Si(r,a) — 2Ss(r,a) + S3(r, a),
(m,r)=1
where S;(r,a), j = 1,2,3 are defined by

Zf((ZZraq, ZB>2

(m,r)=1 (g;m)=1 mn=a(r)

mn=b(q)
ZZZZ TaC_Ilabl (TafhabZ)
q1 by 92 bo qzr)
XYY Bm)B(n2) > f(m),
N1 (ng,gor)=1 mni=a(r)
mnlzbl(ql)
(m,q2)=1
ZZZZ ra(habl (TGQQab2)
il e(qur)e(qar)
x Y > B)Bn2) D f(m).
(n1,q1m)=1 (n2,q2r)=1 (m,q1q2r)=1
By (7.7) and (7.8), the proof of (7.3) is reduced to showing that
(7.9) S5 (Si(r,a) — 285(r,a) + S3(r,a)) < aNR™' LA

on assuming A > B. Here we have omitted the constraints given in (7.6) for
notational simplicity, so they have to be remembered in the sequel.
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8. Evaluation of S3(r,a)

In this section we evaluate S3(r,a). We shall make frequent use of the
trivial bound

(8.1) f(z) < M.

By Mobius inversion and Lemma 7, for ¢; ~ @, j = 1,2 we have

(8.2) S fm) = P9 gy o),

(m,q1q27)=1 nqzr
This yields
(r,a; Q1,b1 c(r, a; g2, b2) p(q192)
Ss(
COIDIDD Z )o(q2)p(r)

g1 by 92 bo q1q927
X Z Z B(n1)B(ng) + O(z*N*R™2).
(n1,q1m)=1 (n2,q2r)=1
In view of (2.10), if (q1g2,Po) = 1, then either (¢1,¢92) = 1 or (q1,q2) > Do.

Thus, on the right side above, the contribution from the terms with (g1, ¢2) > 1
is, by (8.1) and trivial estimation,

< zNDy'R™2LP.

It follows that
(8.3) S3(r,a) = f(0)X (r,a) + O(xNDy'R72LP),

where

=22 2

a1 b1 (g2,q1)=1

XZC(T,G;Q1,b1)c(r,a;QQ,b2) Z Z B(n1)B(ns).

by QIQ2TSO(T) (nl ql'r') 1 (7Z27¢I27“ =1

9. Evaluation of Sy(r,a)

The aim of this section is to show that
(9.1) Sy(r,a) = f(0)X (r,a) + O(xNDy ' R72LB).

Assume ¢(r, a; q1, b1)c(r, a; g2,b2) # 0. Let v(mod gi7) be a common solu-
tion to
v = a(mod r), v =bi(mod q1).

Substituting mn, = n and applying Lemma 8 we obtain

doBm) Y, fim)< D o) <

mni=a(r) n<2x
mni=b; (ql) TLEV(ql’I‘)
(m7q2):1

x LB

qr '
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It follows that the contribution from the terms with (g1, ¢2) > 1 in Sa(r, a) is
< eNDy'R2LP,

so that,

(9.2)

Sa(r,a) = Z Z Z Z c(r,a; q1,

@ b1 (g2,q1)=1 b2

x> Y Bm)Bna) Y f(m)+O@@NDy'R™2LP).
N1 (ng,gor)=1 mn1Eba£r))
mni1=01(q1
(m,g2)=1

bi)c(r, a; g2, b2)
©(qar)

Note that the innermost sum in (9.2) is void unless (n1, ¢17) = 1. For |u(q1gar)]
=1 and (g2, Po) = 1 we have

q2 1

=1+ 0O(7(q2)D,

@(Q2) ( (Q2) 0 )
and, by Lemma 8,
ﬁB
Y A Y fm Y ) < PURTED
(n1,q1m)=1 mni=a(r) n<2z a1 Lo
mni1=b1(q1) n=v(qir)
(m,g2)>1 (nyq2)>1

Thus the relation (9.2) remains valid if the constraint (m,g2) = 1 in the in-
nermost sum is removed and the denominator ¢(qger) is replaced by gap(r).
Namely we have

(9.3)

sa-E Y 3 penes

@ by (go.q1)=1 b2 q2¥

x> > Bm)B(n2) D, f(m)+O@@ND;'R2LP).

N1 (ng,q2r)=1 mn15bagr))
mn1=b1(q1

By Lemma 7, for (n1,qir) = 1 we have

~( h
Ym0 A( o Jewr () + O
mni=a(r) ar |h|<H2 aur

mn15b1(q1)

where
Hy = 4QRM 112,

and p(modg;r) is a common solution to

(9.4) puny = a(mod ), uny = by(mod q1).
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Inserting this into (9.3) we deduce that
(9.5) Sy(r,a) = f(0)X (r,a) + Ra(r,a) + O(xNDy ' R72L5),

where

c(r, a; 1, b1)c(r, a; g2, b2) o
-YY ¥ ¥E (T )

b1 (g2,q1)=1 b2 NRreT nz,qz2r)=1
D SRR TOND SRy { oy PR )
(n1,q17)=1 1<|h|<H2
The proof of (9.1) is now reduced to estimating Ra(r,a). First we note
that the second inequality in (7.5) implies
(96) H2 < x71/2+2w+26N < 2x2w+25

since M~! < 27! N. (Here and in what follows, we use the second inequality
in (7.5) only.) This implies that Ra(r,a) = 0 if v is of Type L.
Now assume that ~ is of of Type II. Noting that

o _aqng | bitng

=——+ —— (modl)
qir r q1
by (9.4), we have
(9.7) Ra(r,a) < N'*°R™2 " [R*(r,a;n)],
n~N
(n,r)=1
where
R (ran) Zcraq, Z f<h>e<—ahqn bhrn)
T, a; — - .
(@m)=1 b q 1<inj<m, N7 " q

To estimate the sum of |R*(r,a;n)| we observe that

\R*ran Z Z Z Z Ta(b Ta;q/>b,)

(@)=L b (¢m)=1 ¥ qq'

W\ (a(Wg —hg)n  bhrm YRR
A SNpY f(fﬁ“)f(qr)e( r a7 )

1<|h|<H2 1<|h/|<H2

It follows, by changing the order of summation and applying (8.1), that
(9-8)

. /
M2 Z ‘R*Tan‘2<<zzzz|craq, Je(r,a; ', b))

n~N q
(n,r)=1

<Y Y W aiq.bid VR ),

1<|h|<Hz 1<|h!|<Ha
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where
K@ —hq)n  bhrm V'Rt
W(T, a; q7 b, q/,b/;h,hl) — Z €<a( Q)n . ™™ + /T‘n>'
o N T q q
(n,qq'r)=1
Since M~! < N~1 by the second inequality in (7.4) and (7.2) we have
(9.9) HyQ™ ' < o737,

It follows that, on the right side of (9.8), the contribution from the terms with
Wq=hq is
(9.10) <NQ™? Y Y 7(hg) < x7PFFEN.
1<h<H2 q<2Q
Now assume that ¢(r, a; q,b)c(r,a;¢',b') # 0,1 < |h| < Ha, 1 < |h/| < Hy
and h'q # hq'. Letting d = [q, ¢'|r, we have
a(W'q —hq)  bhr N b hi

c
= - d1
r q ¢ d (mod 1)
for some ¢ with
(c;r) = (M'q = hq,r).
It follows by the estimate (3.13) that
d)N
(9.11) W(r,a;q,b;¢, b5 h, 1) < Y + dN d) .
Since N > 9, by the first inequality in (7.4), (7.2) and (2.13) we have
(9.12) RV < g™ N~ < g7 1/248%
Together with (7.5), this implies that
(9.13) Q < x19%,

By (9.13) and (7.5) we have
d'? < (Q*R)"/? « z/*+6%,
On the other hand, noting that
W@ —hg=(h'q—hqg')qd (modr),

we have
(9.14) (c;d) < (e,7)g,q'] < la, ¢']H2Q-
Together with (9.6), (9.12) and (9.13), this yields
N
(c, (jz) < HyNQR™! < 2105+

Combining these estimates with (9.11) we deduce that
W(r,a;q,b;¢', b/ h, b) < /47
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Together with (9.6), this implies that, on the right side of (9.8), the contribu-
tion from the terms with h'q # hq' is < x'/4T12%  which is sharper than the
right side of (9.10). Combining these estimates with (9.8) we conclude that

Z ‘R*(T’, a; n)|2 < x1—3w+6M.
n~N
(n,r)=1
This yields, by Cauchy’s inequality,
Z |R*(r, a;n)| < x'~3%/2+e,

n~N
(n,r)=1

Inserting this into (9.7) we obtain
(9.15) Ro(r,a) < 2" NR™2,

which is sharper than the O term in (9.5).
The relation (9.1) follows from (9.5) and (9.15) immediately.

10. A truncation of the sum of Si(r,a)

We are unable to evaluate each Si(r,a) directly. However, we shall estab-
lish a relation of the form

(10.0) 33 8(ma) = 33 (FOXa) + Ralr@) + O@NR™ L7

with Ri(r,a) to be specified below in (10.10). In view of (8.3) and (9.1), the
proof of (7.9) will be reduced to estimating R (r,a).
By definition we have

(10.2) Si(rya)=>>">" > c(ra;q1,b1)c(r, a; g2, ba)

q1 by 92 bs

Y Y BB Y. f(m).

N1 no=nq(r) mni=a(r)
mn1£b1 (ql)
mngEbz(qg)
Let U(r,a;qo) denote the sum of the terms in (10.2) with (q1,92) = qo.
Clearly we have U(r,a;qp) = 0 unless

qo0 < 2Q, q|P, (q0,7Po) = 1,

which are henceforth assumed. We first claim that
(10.3) Y>> Ulra;q0) < xN(DoR) ™' LP.
r a qgo>1

Assume that, for j = 1,2,
q ~Q, ¢lP, (g,rPo)=1, b;€Ci(g)
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and (q1,q2) = qo. Write ¢} = ¢1/q90, ¢4 = q2/qo- By Lemma 5, there exist
t1,t2 € Ci(qo), b} € Ci(q}) and by € C;(qh) such that

bj =tj(mod qv), b; = b;-(mod qé)

Note that the conditions mn; = t1(mod qy) and mne = to(mod qy) together
imply that

(10.4) tony = tinz(mod qp).

Thus the innermost sum in (10.2) is void if (10.4) fails to hold for any ¢;,ts €
Ci(qo). On the other hand, if (10.4) holds for some ¢1,t3 € C;(qp), the innermost
sum in (10.2) may be rewritten as

> f(m),
mni=ai(qor)
mn1=b] (q})
mn2=bj(q5)
where aj(mod gor) is a common solution to a; = a(modr) and a; = t;(mod
qo). Hence, changing the order of summation we obtain

ZZc(r,a;qhh TGCI2,b2Z Z B(n1)p Z f(m)

b1 ba n1 no=ni(r) mnlza(r)
mnlzbl(ql)
manbQ(qz)

< Z Z Z Z |B(n1)B(n2)|

t1€Ci(qo) t2€Ci(go) M1 no=ni(r)
tina=tani(qo)

x> fm)T(mny, q1)T (mng, g),
mni=ai(qor)
where
J(n,q) = Z 1.
bieCi(d’)
v.=n(q’)
This yields, by summing over ¢; and g2 with (¢1,¢2) = go and changing the
order of summation,

(10.5) Ur,a;q) < Y S>> 1B(n)B(ny)]

t1 Eci(qo) tzeci(qo) ni no=ni (T)
tina=tani(qo)

X Z f(m)X (mny)X (mng),

mni=a1(qor)

where

X(n)= Y |wd)Ti(n,q).

q'~Q/qo
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We may assume that (n1,qor) = 1, since the innermost sum in (10.5) is void
otherwise. Let az(modgyr) be a common solution to ay = aj(modr) and
az = ta(mod qp). In the case
ny = ny(modr), ting = teng(mod qo),
the condition mn; = aj(mod gor) is equivalent to mna = az(mod gor). Thus
the innermost sum in (10.5) is
< Z f(m)X (mny)? + Z f(m)X (mng)?.
mn1Ea1(q07“) mn25a2(q0r)
Since
1 if q/|P(7’L - hl)a (qlan) =4
0 otherwise,

it follows that

(10.6) X(n)< > )]

q'|P(n—h;)
(¢'m)=1
Assume that j = 1,2, 1 < u < kg and u # i. Write
- ng . h‘H — hz‘
e (nyﬁhu_hi), e (”j7hu_hi)'

Noting that the conditions p|(mn; + h, — h;) and p t n; together imply that
pl(mn;, + h7,), by (10.6) we have
X(mny) < [ 7m(mnju+85,) < > r(mnj,+hi,)o "

1<u<ko 1<u<ko
P e

Since (1, b3,) = (nju, qor) = 1, it follows by Lemma 8 that

Z f(m)X(mn;)? < ML + 2°/3,

T
mn;=aj(qor) 90

(Here the term z</3 is necessary when gor > 2~¢/*M.) Combining these esti-
mates with (10.5), we deduce that

B
U(rya;q0) < (ME +l‘€/3> Z |B(n1)]

r
% (n1,q0m)=1

DD . Bl

t1 Eci(qo) tQECi(qo) no=ni (7")
tina=tani(qo)

Using Lemma 8 again, we find that the innermost sum is

NCB
<« =T 4 a3,
qor
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It follows that
.TN,CB 331+€/2

U(r, a; < 2(
(r,a;q0) < 02(qo) @ aor

This leads to (10.3), since NR™! > 2° and
NQR < $1/2+2‘LUN < xl_wNR_l

by (7.5), (7.1), (7.2) and the second inequality in (7.4).
We now turn to U(r,a;1). Assume |p(qiger)| = 1. In the case (ny, qir) =
(n2,ger) = 1, the innermost sum in (10.2) is, by Lemma 7, equal to

3 (et + O,

—l—a:EN).

q192T \h|<H: q192T
where
(10.7) Hy = 8Q?RM 1%
and p(mod q1gor) is a common solution to
(10.8) uny = a(mod r), pny =bj(mod qr), wung = ba(mod ga).
It follows that
(10.9) U(r,a;1) = F(0O)X*(r,a) + Ri(r,a) + O(1),
where

c(r,a;q1,b1)c(r,a;qs,b
X*(rva)zzz Z Z ( q1 1)( q2 2)

.
@ by (gaq1)=1 b2 a2

x Y > Bln)B(ng)

(n1,q17)=1 na=ni(r)

(n2,q2)=1
and
(10.10)
1. b 0. b
Ri(r,a) = Z co(r,a; g, 1)6(:7Q7Q27 2)
@ b1 (g2,q1)=1 b2 7192
A h
X 5(”1)/8(712) Z f(r)eqmgr(_ﬂh)'
(n1,q17)=1 na=n1(r) 1<|hj<p  \T192

By (10.2), (10.3) and (10.9) we conclude that
SN Sir,a) =33 (f(0)X*(r,a) + Ra(r,a)) + O(xN(DoR) ' LP).

In view of (8.1), the proof of (10.1) is now reduced to showing that
(10.11) SN (X*(ra) — X(r,a)) < N?R7I LTS
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We have

X*(r,a) — ZZ Z Z c(r,a;q1,b1)c (TCH}z,bQ)V(r 0, 3),

r
a1 b1 (g2,q1)=1 b2 a2

with

V(riq,g) = Y, > Blm)B(ny

(n1,q17)=1 na=nq(r)
(n2,q2)=1

1
) Z Z B(n1)B(n2),
P (n1,g1m)=1 (n2,0m)=1
which is independent of a. It follows that
(10.12)
Y > (X*(r,a) — X(r,a <<* >N () S e)Vria,e)l.
roa a~Q @@ N2 R
(7’:(11112)21
Noting that
* 1
Vosae) = ¥ (X s0- s X sw)
Il mod 7 n=l(r) ® (n,q1m)=1
(n,q1)=1
1
(Z s X am)
n=l(r) ¥ (n,q2r)=1
(n,q2)=1

by Cauchy’s inequality, the condition (As) and Lemma 10, we find that the
innermost sum in (10.12) is

< T(quge) PN L7004

whence (10.11) follows.
A combination of (8.3), (9.1) and (10.1) leads to
(10.13)
SN (Silra) —285(r,a) + Ss(r.a)) = DY Ri(r,a) + O(xNR™L54).

T

Note that
b b
H — aqigani i 14271 . 241712 (mod 1)
q1927 r a1 q2
by (10.8). Hence, on substituting no = nj + kr, we may rewrite Ri(r,a) as
1
(10.14) Ri(r,a) = - Z Ri(r,a; k),

r
|k|<N/R
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R oYY ¥yt 5o
1<|h|<H1

> q1492 q1q927T

b
x Y B(n)B(n+ kr)e(—h&(r, a; q, bi; g2, ba;n, k),

(n,q1r)=1
(n4krg2)=1

with

a n biggrn  bagir(n + kr
q142 i 142 4 2611( ).

g(?" a; k; ql,bl,q27b25 )
r qn q2

Recall that, in the Type I and II cases, we have reduced the proof of (6.2)
to proving (7.9) at the end of Section 7. Now, by (10.13) and (10.14), the proof
of (7.9) is in turn reduced to showing that

Ri(r,a; k) < zL£7884
for |k| < NR™!. In fact, we shall prove the sharper bound
(10.15) Ri(r,a;k) < a2

in the next two sections.
We conclude this section by showing that the gap between (10.15) and
some trivial bounds is not too large. It trivially follows from (8.1) that

Ri(r,a; k) < o' T Hy.
On the other hand, in view of (2.13), since
H; < 2°(QR)*(MN) 'NR!

and, by the first inequality in (7.4), (7.1) and (7.2),

wte  if 2 <N <
(10.16) NR ' <{" oSt =Ty
i@ if 29 < N < 22Y/2,

it follows from (7.5) that

Sw+-2e if < N<
(10.17) H < {x Boms e

x8wte if 29 <N 2z1/2,

Thus, in order to prove (10.15), we need only to save a small power of x from
the trivial estimate.

The bounds (10.16) and (10.17) will find application in the next two sec-
tions.



1158 YITANG ZHANG

11. Estimation of Ri(r, a;k): The Type I case

In this and the next sections we assume that |[k| < NR™!, and we abbre-
viate

Ri, c(qi,b1), c(g2,b2) and &(qu,0b1;q2,b2;n)

for
Ri(r,a;k), c(r,a;q1,b1), c(r,a;q2,b2) and  &(r,a,k;qi,b15¢2,b2;1n)

respectively, with the aim of proving (10.15). The variables r, a and k may also
be omitted somewhere else for notational simplicity. The proof is somewhat
analogous to the estimation of Ro(r, a) in Section 9; the main tool we need is
Lemma 11.

Assume that 1 < N < z3 and R* is as in (7.1). We have

c(qr,b
(11.1) Ri < N°Y° ZM > |F(q,bisn)l,
q1 by @ n~N
(n,q1r)=1
where

Flgi,biin) = Y >

1<|h|<H1 (g2,q91 (n+kr))=1

xzc(qz’bQ)f< h )e(—hf((h,bUQ%b?;n))'

by q2 q1927

In what follows assume c(q1,b1) # 0. To estimate the sum of |F(q1,b1;n)| we
observe that, similar to (9.8),

(11.2)
,b ., bl
MY [ Fgubin)P < oot
n~N (92,91)=1 (g5,q1)=1 b2 by 1
(n,q1r)=1
X Z Z ‘g(hah/;qhblquabQ;qg7b/2)|7
1<|hl<H: 1<|W/[<H,
where

G(h,W'; q1,b1, 2, ba; g, b)
= 3 e(Ne(q,bisdh, Uy n) — hé(qr,bis gz, baim) ).

n~N
(nqir)=1
(n+krg2q5)=1
The condition N < x5 is essential for bounding the terms with h'qe = hd)

in (11.2). By (7.5) we have
HlQ—l < SCE(QR)(MN)_IN < x—2w+€'
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It follows that, on the right side of (11.2), the contribution from the terms
with h/gy = hdl is
(11.3) <NQ™? > > r(hg)® < a7*FFEN.
1<h<Hi ¢~Q
Now assume that ¢(ga, b2)c(gy, b5) # 0, (q2¢5,¢q1) = 1 and h'qa # hgh. We
have

R'&(qr, bi; g5, by n) — hé(qr, bi; g2, by n)
(W — hp)aqim

,
R'qh — hio)by7m W'V k hb k
L W q1q2) i zmrq(én +kr) 2q1r((£ + kr) (mod 1).
Letting d; = ¢17 and ds = [g2, ¢5], we may write
R'qh — hig)aqi  (W'dh — hgo)bi7
(W qq . G2)aqy n (W qq - q2)b17 _ % (mod 1)
for some ¢; with
(Clar) - (h/q,Q - hq%r)v
and — o
h b2/q17' _ hboqiT _ c (mod 1)
ds q2 do
for some co, so that
can  co(n+kr
Welar, bisah Vo) — (g, b g, m) = 7 4+ LR g,
Since (dy,d2) = 1, it follows by Lemma 11 that
(01, dl)N

(11.4) G(h, 1 q1, b1, g2, ba; g, Uy) < (dida) /> + 1
1

We appeal to the condition N > z; that gives, by (10.16),
(11.5) Rt < g@TENTY < g73/47 15w He
Together with (7.5), this yields

(did2)? < (Q3R)Y? < 23/4T3% g1  p= 12wty

A much sharper bound for the second term on the right side of (11.4) can be
obtained. In a way similar to the proof of (9.14), we find that

(c1,dr) < (e1,m)qn < HiQ?
It follows by (10.17), (7.5) and the first inequality in (11.5) that

(Clc;zdl) < Hi(QR)R™2 « gV/2+97+ie =2  y=1/4-6w
1
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Here we have used the condition N > z; again. Combining these estimates
with (11.4) we deduce that
G(h, 1’ q1, b1, g2, ba; gy, by) < ™ PFHEN,
Together with (10.17), this implies that, on the right side of (11.2), the con-
tribution from the terms with h/qs # hd) is
< x712w+5H12N < 3;72172+56]\]7

which has the same order of magnitude as the right side of (11.3) essentially.
Combining these estimates with (11.2) we obtain

> |F(hyqu,bisn)|? < 2T

n~N

This yields, by Cauchy’s inequality,

(11.6) Z | F(h; q1,b13n)| < at==H3,

n~N
(n,q17m)=1

The estimate (10.15) follows from (11.1) and (11.6) immediately.

12. Estimation of R(r,a;k): The Type II case

Assume that zo < N < 2z'/2 and R* is as in (7.2). We have

(12.1) R1<N° ) [K(n),
n~N
(n,r)=1
where

k=Y ¥ Y ¥ c(q1, b1)c(gz, ba)

(qg1,m)=1 b1 (g2,q1(n+kr))=1 b2 1192

3 f( )e(—hf(qbbl;@,b%n))-

L<|h|<Hy

q1927

Let Z# stand for a summation over the 8-tuples (q1,b1;q2,b2; ¢, b); ¢, bh)
with
(q1,92) = (41, ¢5) = 1.
To estimate the sum of |[K(n)| we observe that, similar to (9.8),
(12.2)
MY Km)P <Y |e(g1, b1)e(g2, b2)c(qy, b1 )e(gs, b))

n~N q1 QQQi QQ
(n,r)=1

Xy > Mk, B qu, b qa, b 4y, bhi g, B,
1<|h|<Hy 1<|h/|<H,
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where
M(h, 15 q1,b1; g2, bas g1, VY5 45, by)

/
= > e(W&(qy, bY; b, byim) — hE(qr, br; g, bain)).
n~N

Here ZI is restriction to (n,q1¢ir) = (n + kr, q2q5) = 1.
Similar to (9.9), we have

HIQ_2 < x—3w+a'
Hence, on the right side of (12.2), the contribution from the terms with
Waiq2 = hqygy is
(12.3) < NQ™ Z Z Z 7(hqq')? < 737 TEN.
1<h<H1 ¢~Q ¢'~Q

Note that the bounds (9.12) and (9.13) are valid in the present situation.
Since R is near to z'/2 in the logarithmic scale and @ is small, it can be shown
via Lemma 11 that the terms with h'q1q2 # hq}¢5 on the right side of (12.2)
make a small contribution in comparison with (12.3). Assume that
c(qr, b1)e(ga, ba)e(ar, U1)e(gs, b3) # 0, (q1,42) = (dh.42) =1, Waqrge # hdigs.
We have
(12.4)  W&(qr, b1 g5, by n) — hE(qr, bri g, basm)
sn tin tin ta(n4kr)  th(n+kr
74_17_’_17/_’_ 2( )+ 2( i )
r q1 q1 q2 as

(mod 1)

with

s = a(h'q¢,qy — hgigz)(mod ), t; = —bihger(mod q1), t) = VA ¢hr(mod ¢}),
ty = —bohqir(mod q2),  th = byh'¢r(mod ¢b).

Letting dy = [q1, ¢}]r, d2 = [g2, ¢5], we may rewrite (12.4) as

cin co(n+kr
WE(qy, by db, é;n)—hf(Q1,b1;Q2,b2;n)E;l+2(612) (mod 1)

for some ¢; and cy with
(c1,7) = (P'q)qh — hqiqa, 7).
It follows by Lemma 11 that

(c1,d1)(d1,d2)?N

(12.5) M(h, s q1,b15 g2, boi dh, Uy: g5, b5) < (didz)/>7° + dy

By (7.5) and (9.13) we have
(d1d2)1/2 < (Q4R>1/2 < x1/4+16w.
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On the other hand, we have (di,ds2) < (q1¢}, ¢2¢5) < Q?, since (qagh,7) = 1,
and, similar to (9.14),

(e, dr) < (er,M)lars 4] < a1, a1 H1 Q.
It follows by (10.16), (9.13) and the first inequality in (9.12) that
(c1,d1)(d1, d2)*N

dq

Combining these estimates with (12.5) we deduce that
M(B 51,1 g2, bas 47, b5 g, Uy) <t/ AT10H,

Together with (10.16), this implies that, on the right side of (12.2), the con-
tribution from the terms with h'q1q2 # hqdb is

< HiNQ°R™! « 2™=.

< xl/4+16w+£H12 < g4

which is sharper than the right side of (12.3). Combining these estimates with
(12.2) we obtain

Z |K:(n)|2<<x173w+€M.

n~N
(n,r)=1
This yields, by Cauchy’s inequality,
(12.6) > IKm)| <.
n~N
(n,r)=1

The estimate (10.15) follows from (12.1) and (12.6) immediately.

13. The Type III estimate: Initial steps

Assume that v = « * sy, * sen, * 2, is of Type III. Our aim is to prove
that

1—¢/2
(13.1) Aysd,e) < 2

for any d and c satisfying
(dye) =1, 2'?7°<d<2"*2= 4P, (d,Po) < Dx,

which are henceforth assumed. This leads to (6.2).
We first derive some lower bounds for the N; from (A4) and (As). We

have
. 1/2

13.2 Ny > Ny > S 5/16—4w
(13:2) v () 2o
and

X
13.3 Noa> 2 > pl/4-16w )~ . 1/4-16w
(13.3) 3= MN Ny = ° =
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Let f be as in Lemma 7 with n* = n and with N; in place of M. Note
that the function sy, — f is supported on [Ny, N1] U [pNy,nN;] with N =
(1 4+ Ny °)Ny. Letting v* = a * sen, * 22w, * f, we have

i — "\ (n ple/2
2@ (n%::l(’y 7)(n) <

and

S - <L Y > 7o)
n=c(d) Ny <g<N; 1<I<3z/q
(gd)=1  lg=c(d)
x175/2
+ L Z Z T19(l) < d
nN1<q<nN; 1<I<3z/q
(g d)=1  lg=c(d)

It therefore suffices to prove (13.1) with v replaced by ~*. In fact, we shall
prove the sharper bound

1—w/3
d )

In a way similar to the proof of (8.2), we obtain

(13.4) Al(yde) < &

> s =D f0) + 06)

This yields, by (13.2),

1 f 1..3/4
— — O(d~
oD o T 2 2 2 el O,

1 ng"‘Ng 7‘L2NN2
(n3,d)=1 (n2,d)=1

Here and in what follows, n ~ N stands for N <n < nN. On the other hand,
we have

Yo=Y > > am Y flm)
n=c(d) (m,d)=1 m3~N3 mn2~N2 mnanani =c(d)
(n3,d)=1 (n2,d)=1
The innermost sum is, by Lemma 7, equal to

S f(h/d)eq( — chimmznz) + O(z2),

d
|h|<H*

where

H* = dNy 2.
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It follows that
A(v*d,c) =

2. 2 2 am

m’;‘M ns 2N3 no BNQ
(m,d):l (ng,d)=1 (ng,d)=1

x> f(h/d)ea( — chimmznz) + O(da®/*).
1<|h|<H*

Ul =

The proof of (13.4) is therefore reduced to showing that

(13.5) S X > f(h/d)eq(ahmzmz) < ot TFAEM!

1<h<H* mn3~Ns na~Na
(ns3,d)=1 (n2,d)=1

for any a with (a,d) = 1.
On substituting d; = d/(h, d) and applying Mdbius inversion, the left side
of (13.5) may be rewritten as

X Y Y fh/d)ea (ahmmma)

d1|d 1<h<H mn3~N3 mna~Ns>
(hyd1)=1 (n3,d)=1 (n2,d)=1

= > >0 ulbub) DD

dido=d b3|d2 bg‘dg 1<h<H ’ngZNg/bg
(h7d1):1 (nS,dl):l

x> f(h/di)eq, (ahbsbanzns),
ngZNQ/bQ
(n2,d1)=1

where
(13.6) H = dy N, %,
It therefore suffices to show that

(13.7) Sy >S© f(h/dr)eq, (bhzmz) < o'/ AN

1<h<H ng";‘Né TLQZNé
(h,d1)=1 (n3,d1)=1 (n2,d1)=1

for any dy, b, N3 and N satisfying

di N d N
(138)  difd, (bd)=1, —F<N<Nz — <N <N,
which are henceforth assumed. Note that (13.2) implies
(139) H << $3/16+6w+5.

In view of (13.6), the left side of (13.7) is void if d; < N{ %, so we may
assume d; > N~ 2. By the trivial bound

A~

(13.10) f(z) < Ny,
and (3.13), we find that the left side of (13.7) is

< HN3N, (dy/* 4 d7 ' Ne) << /PP N NG,
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In the case d; < 2°/1276% the right side is < 213 M~! by (A4) and (2.13).
This leads to (13.7). Thus we may further assume
(13.11) dy > 2%/1276%

We appeal to the Weyl shift and the factorization (2.8) with d; in place
of d. By Lemma 4, we can choose a factor r of d; such that

(13.12) M7 < < g1
Write
Nk = 3 3 X f(h/d)eq (bh(ng + hEr)ns),
1<h<H n3~Nj na~N}

(hvdl):]- (’ng,d1):1 (n2+hkr,d1):1
so that the left side of (13.7) is just N (d1,0). Assume k > 0. We have
(13.13) N(di, k) = N(d1,0) = Qi(d1, k) — Qa(d1, k),

where

Qi(di k)= > S > f(h/di)eq, (bhing),  i=1,2,

ISIH - =Ny 1)
(h di)= (n;g,dl):l (I,d1)=1

with
Iy (h) = [nN, nNy + hkr),  Iy(h) = N3, Nj + hkr).

To estimate Q;(dy, k) we first note that, by Mobius inversion,

Qi(dik)= 3" puls) D Do D [f(h/t)e(bhins).

st=dy 1<h<H/s n3~Nj I€Z;i(h )
(n3,d1)=1 (L,d1)=

The inner sum is void unless s < H. Since H? = o(d;) by (13.9) and (13.11),
it follows, by changing the order of summation, that

Qidi, k)< Y Y Y >~ f(h/t)ey(bhins)|,

st=d1 n3~Nj} 1€Z;(H) | heJ;(s,l)
H (ng,dy) 21 (1d1)=1
where J;(s,l) is a certain interval of length < H and depending on s and [.
Noting that, by integration by parts,
d -
— f(2) < min {N7,|2| 2N§},
dzf(z) mm{ 12l 1}
by partial summation and (13.10) we obtain

>" f(h/t)er(bhing) < Ni* min {H, ||blng/t|| "}
heJ;(s,l)
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It follows that

Qi(di, k) < Ny > S N min {H, ||blnsg/t]|'}.
t|d1 lGIi(H) n3<2N3
t>H (1,dy)=1 (n3,d1)=1

Since H = o(N3) by (13.3) and (13.9), the innermost sum is < N3¢ by
Lemma 9. In view of (13.6), this leads to

(13.14) Q;(dy, k) < di ¥ krNs.
We now introduce the parameter
(13.15) K = [z~ /27489 N Ny,

which is > x'/87%6% by (13.2). By (As) and the second inequality in (13.12),
we see that the right side of (13.14) is < 1"+t M~1 if k < 2K. Hence, by
(13.13), the proof of (13.7) is reduced to showing that

1
(13.16) = 7 N(dy, k) < 2= FEN L
k~K

14. The Type III estimate: Completion

The aim of this section is to prove (13.16), which will complete the proof
of Theorem 2.
We start with the relation

h(ng + hkr) =1+ kr (modd;)

for (h,dy) = (ng+hkr,d;) = 1, where [ = hny (mod d;). Thus we may rewrite
N(dy, k) as

N(d,k)y= > w(lyd) > eq (bl +kr)ng),

I( mod d1) n3~N}
(l+kfrydl):1 (n37d1)=1
with
/A
V(I dy) = Fnjdy)

B’I’LQE

1)

I(d
Here ZI is restriction to 1 < h < H, (h,d1) = 1 and ng ~ NJ. It follows by
Cauchy’s inequality that

2
(14.1) > N(di,k)| < PPy,
k~K
where
N
b= Z w(l;d)?, Pa= Z Z Z edl(b(l+kr)n)
I( mod dy) I( mod dy) k~K n~N{

(l-i-k:?“,d1)=1 (n,d1 ):1
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The estimation of Pj is straightforward. By (13.10) we have
P < le #{(hl,hQ;nl,ng) : hong = hlng(mod dl), 1<h; < H,n; ~ Né}
The number of the 4-tuples (hy, ho;, n1,n2) satisfying the above conditions is
2
< Y ( > T(m)) .

I(mod dy) N1<m<2HN>
mEl(dl)

Since HNy < d}™ by (13.6), it follows that
(14.2) P, < djT°N?.

The estimation of P, is more involved. We claim that
(143) P2 < d1$3/16+52w+€K2.

Write dy = rq. Note that
(14.4) ]\f’/’ > /669
by (13.8), (13.11), (13.3) and the second inequality in (13.12). Since
ST e (bl+krn)= 3 3 eq (bl +kr)(nr +5)) + O(r),

n~NJ 0<s<r nNN'/T
(n,d1)=1 (8:m)=1 (nr+s,q)=

it follows that

Z S eq (0 + kr)n) = U(1) + O(K7),
(l+kT d1) 1 (:;1];7,

where
Z Z Z ed, (b(l + kr)(rn + s))
0<s<r kK ne=Ng /r
(s;r)=1 (Hkrd)=1 (yy s 0)=1
Hence,
(145 P Y U+ di(Er)

I( mod dy)

The second term on the right side is admissible for (14.3) by the second
inequality in (13.12). On the other hand, we have

(14.6) Yoo umP=> > > Y Vike— ks, s2),

I( mod dy) ki~K ka~vK 0<s1<r 0<sa<r
(s1,7)=1 (s2,r)=1
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where

Viksst,s) = > )
n1~N}/r na~N}/r
(nar+s1,9)=1 (n2r+s2,9)=1

xS eq (bl(nir + s1) — bl + kr)(nar + 52)).
I( mod dy)

Here Z/ is restriction to (I,dy) = (I + kr,dy) = 1.

To handle the right side of (14.6) we first note that if | = l;r+l2g( mod dy),
then the condition (I(I+kr),d;) = 1 is equivalent to (l;(l1+k),q) = (I2,7) = 1.
In this situation, by the relation

1

r o q
—=_41 d1
i q * r (mod 1),
we have
l(nir + s1) — (I + kr)(nar + s2)
dy
_ r2li(nir 4 s1) — r2(ly + k) (ner + s2) I g*s152l2(s2 — s1) (mod 1).
q T

Thus the innermost sum in the expression for V(k;si,s2) is, by the Chinese
remainder theorem, equal to

Cr(s2 — s1) Z €q (erZ(nlr +s1) = br2(L + k) (nar + 82)).
I( mod q)
(U(1+k),q)=1

It follows that
(14.7) V(k; s1,82) = Wi(k;s1,82)Cr(s2 — $1),

where

Wikisy,s2) = > >
n1~Nj/r na~N} /r
(n1ir+s1,9)=1 (n2r+s2,q)=1

xS eq(br2nar + 1) — b2 + k) (nar + 52)).
I( mod q)

Here Z/ is restriction to (I(l + k),q) = 1.

By virtue of (14.7), we estimate the contribution from the terms with k; =
ko on the right side of (14.6) as follows. For (nir + s1,¢q) = (nar + s2,q) = 1,
we have

Z* eq (brgl(mr + s1) — br2l(ner + 32)) = Cy((n1 — na)r + s1 — s2).
I( mod q)
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On the other hand, since Nj < 23 by (13.11) and the second inequality in
(13.12) we have

N/
(14.8) d—3 < g7 V12H6w ol
1
This implies N3/r = o(q), so that
> [Colnr + m)| < ¢t
n~Nj /7
for any m. It follows that
W (0; 51, 89) < ¢'*r NG,
Inserting this into (14.7) and using the simple estimate
Z Z |Cr (52 — s1)] < r2te,
0<s1<r 0<s2<r

we deduce that
Z Z V(0; s1,82) < d%%Ng.

0<s1<r 0<so<r
(s1,7)=1 (s2,r)=1

It follows that the contribution from the terms with k1 = ko on the right side
of (14.6) is < d} T K N3, which is admissible for (14.3), since

K—1N3 < 331/2+48wa1 < x3/16+52w
by (13.15) and (13.2). The proof of (14.3) is therefore reduced to showing that
(1490 3 3 3 > Vike— ki, s0) < dpa®/ TR,

ki~K ko~K 0<s1<r 0<sa<r
ko#k1 (s1,m)=1 (s2,r)=1

In view of (14.4) and (14.8), letting
n' =min{n: n ~ N/r}, n' =max{n: n~ Ni/r},
we may rewrite W (k; s1, s2) as

W (k; s1,82) = Z Z Z F(n1/q)F(n2/q)

n1<q n2<q I( mod q)
(nir+s1,9)=1 (n2r+sz,q)=1

X eq(bTQZ(m'r +s1) = br2(L + k) (nar + 32)),

where F(y) is a function of C?[0, 1] class such that

0< F(y) <1,
Fiy)=1 if L<y<™,
q q
n 1 n’ 1
Fy:(] if Yy — =z, t
) ¢ q 29 q 2q
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and such that the Fourier coefficient

1
= [ P)et-my)dy
satisfies

(14.10) k(m) < K*(m) == min {1, 1 q}.

r’m| m?
Here we have used (14.8). By the Fourier expansion of F(y) we obtain

(14.11) W (k; 515 59) Z Z ma)Y (k;mq, mo; s1, 82),

mi]=—00 ma=—00

where

Y (k;m1,mo; s1, 52)

- Z Z Z/ eq(d(l,k; m17m2;n1,n2;31,32)),

n1<q n2<q [( mod q)
(nir+s1,q)=1 (nar+s2,9)=1

with

8(1, kyma, ma;ny, na; s1, s2) = brél(nir + s1)

—br2(l + k) (nar + s2) + ming + mans.

Moreover, if n;r + s; = tj(mod q), then n; = 7(t; — s;)(mod ¢), so that

miny + mang = 7(myt; + maty) — 7(m1s1 + mase) (mod q).
Hence, on substituting n;r + s; = t;, we may rewrite Y (k;m1, ma; s1, s2) as
(14.12) Y (k;ma,me; s1,82) = Z(k;ma, mg)eq( — 7F(mysy + mQSQ)),
where
Z(k;m1,mo)

= 37 3TN e (0 — 2T R + F(maty + mats) ).

t1(mod g)t2( mod q) I( mod q)

It follows from (14.7), (14.11) and (14.12) that

(14.13) o> Vikisi,s2)

0<s1<r 0<sa<r
(s1,7)=1 (s2,r)=1

[e.9]

> > k(ma)k(ma)Z(kyma, ma)J (my,my),

mi=—00 My=—00
where
J(my, mg) Z Z (—T m151+m282))0r(52—81).

0<s1<r 0<sgo<r
(s1,7)=1 (s2,r)=1
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We now appeal to Lemma 12. By simple substitution we have
Z(k;my,my) = T(k, b7, —bma7; q),
so Lemma 12 gives
Z(k;mi,ma) < (k,q)Y2¢3/%+e,

the right side being independent of m; and msg. On the other hand, we have
the following estimate, which will be proved later:

(14.14) i i K*(ma)K* (me)|J (1, ma)| < r1Te.

M1=—00 Ma=—00
Combining these two estimates with (14.13) we obtain

Z Z V(k’ 81752) < (k,q)1/2q3/2+57.1+€'

0<s1<r 0<sa<r
(s1,7)=1 (s2,r)=1

This leads to (14.9), since

q1/2 _ (dl/r)l/Q < $1/4721w — x3/16+52w

by the first inequality in (13.12), and
Z Z (k2_k17Q)1/2 < qEsz

ki~K ko~ K
ko #ky

whence (14.3) follows.
The estimate (13.16) follows from (14.1)—(14.3) immediately since

Ny < 23/8+8@ =1 dy < z'/?+¥= 31 136w =1- 2.
32 2
It remains to prove (14.14). The left side of (14.14) may be rewritten as

% Yoo D Y & my)w (ma+ k)| (my,ma+ k).

m1=—00 ma=—00 0<k<r

In view of (14.10), we have

o0

Z K*(m) < L,

m=—oo
and k*(m + k) < k*(m) for 0 < k < r, since r < ¢ by (13.11) and the second
inequality in (13.12). Thus, in order to prove (14.14), it suffices to show that

(14.15) > | (ma,me + k)| < r?te
0<k<r

for any m1 and msy.
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Substituting so — sy =t and applying Mobius inversion we obtain

(14.16) J(my,m2) Z Cr( Z eq( — r(mat + (m1 + mg)s))
[t]<r s€ly

(s(s+t),r)=1

<SG X eqrm+ma)s)),

[t|<r ri|r sely
s(s+t)=0(r1)

where [I; is a certain interval of length < r and depending on ¢. For any ¢ and
square-free r1, there are exactly 7(r1/(t,71)) distinct residue classes (mod )
such that
s(s+t)=0 (modr)
if and only if s lies in one of these classes. On the other hand, if r = 179, then
> eq(F(m1 4+ ma)s) < min {7‘2, ||72(m1 + m2)/¢1\|71}

s€l
s=a(r1)

for any a. Hence the inner sum on the right side of (14.16) is
< 7(r) > _min {ry, [|F2(m1 +m2)ql| "'},
ro|r

which is independent of ¢. Together with the simple estimate

> G O<r(r)r,

[t|<r
this yields

J(my, mg) < 7(r T‘Zmln{’l“g, [|T2(m1 4+ ma)/q||” 1}
ra|r

It follows that the left side of (14.15) is
(14. 17)

<<T Z Z Z mln{r% ’7”2 m1+m2+k1r2—|—/~cg)/q\| 1}

T1r2=" 0<k1<r; 0<ko<ra

Assume ra|r. By the relation

for 0 < k < r9 we have

ra(m+k) _rom gk +0<1> (mod 1).
q q T2 q

This yields

(14.18) > min {ry, [[Fa(m + k) /ql| 7'} < oL
0<k<ra

for any m. The estimate (14.15) follows from (14.17) and (14.18) immediately.
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