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Truncations of level 1 of elements in the
loop group of a reductive group

By EvA VIEHMANN

Abstract

The aim of this article is to define and study a new invariant of elements
of loop groups that is invariant under o-conjugation by a hyperspecial max-
imal open subgroup and that we call the truncation of level 1. We classify
truncations of level 1 and describe their specialization behavior. Further-
more, we prove group-theoretic conditions for the set of o-conjugacy classes
obtained from elements of a given truncation of level 1 and in particular
for the generic o-conjugacy class in any given truncation stratum. In the
last section we relate our invariant to the Ekedahl-Oort stratification of the
Siegel moduli space and to generalizations to other PEL Shimura varieties.

1. Introduction

Let k& be an algebraically closed field of characteristic p > 0. Let L be
either k((t)) or Quot(W(k)), and let O be the valuation ring. Here W (k) is
the ring of Witt vectors of k. We denote by o : x — z9 the Frobenius of &
over [, for some fixed ¢ = p” and also the Frobenius of L over F' = Fy((¢))
respectively F' = Q; = Quot(W (F,)). Let OF be the valuation ring of F'. We
denote the uniformizer t or p of Of by €.

Let G be a connected reductive group over Op. Then G is quasi-split
and split over an unramified extension of Op (compare Section 2.1). Let B
be a Borel subgroup of G, and let T" be a maximal torus contained in B.
Let K = G(O), and let I be the inverse image of B(k) under the projection
K — G(k). Let K be the kernel of the projection K — G(k).

For b € G(L), we call {g~1bo(g) | g € K} the K-o-conjugacy class of b and
[b] = {g7bo(g) | g € G(L)} the o-conjugacy class of b. In [Kot85] Kottwitz
studies o-conjugacy classes of elements of G(L) and classifies them by two in-
variants, the Newton point and the Kottwitz point; cf. Section 1.2. In particu-
lar, he obtains a discrete invariant on the set of K-o-conjugacy classes. The aim
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of this article is to study a second invariant of K-o-conjugacy classes, namely
the truncation of level 1, which we define as the associated K-o-conjugacy
class in K1\G(L)/ K.

Note that for L of mixed characteristic, both K-o-conjugacy classes and
o-conjugacy classes occur naturally in the study of the reduction of Shimura
varieties of PEL type, i.e., for moduli spaces of abelian varieties or p-divisible
groups with extra structure consisting of a polarization, endomorphisms, and a
level structure. For example, p-divisible groups of height h over an algebraically
closed field k of characteristic p are classified by their Dieudonné modules. The
Dieudonné module is a pair (M, F') where M is a free W (k)-module of rank
h and where F' : M — M is a o-linear homomorphism satisfying F(IM) 2
pM. Here o denotes the Frobenius of W (k) over Z,. Choosing a basis for M
we can write F' = bo for some b € GLy (W (k)[1/p]). A change of the basis
amounts to o-conjugating b by an element of GL,(W(k)) = K. Thus the
isomorphism class of the p-divisible group corresponds to the K-o-conjugacy
class of b. Isogeny classes of p-divisible groups are likewise in bijection with
rational Dieudonné modules, which are described by the o-conjugacy classes
of the corresponding elements b € GLy, (W (k)[1/p]). In the function field case
L = k((t)) a similar interpretation relates K-o-conjugacy classes and conjugacy
classes of elements of G(L) to isomorphism classes and isogeny classes of local
G-shtukas, respectively.

1.1. Classification of truncations of level 1. Let us first introduce some
notation. Let W = Np(L)/T(L) denote the (absolute) Weyl group of T' in
G where Ny denotes the normalizer of T. Let W = Np(L)/T(0) = W x
X.«(T) denote the extended affine Weyl group. For each w € W we choose
a representative in Np(O). We denote this representative by the same letter
as the element itself. If M is a Levi subgroup of G containing T, let Wy,
be the Weyl group of M and denote by MW respectively M W the set of
elements x of W respectively W that are shortest representatives of their coset
Wz, Similarly, WM denotes the set of elements x that are the shortest
representatives of their cosets xWj; and accordingly for W. For a dominant
p € X.«(T), let M, be the centralizer of p and let “W = oL (MuTW). Let
P, = M,B, a standard parabolic with Levi subgroup M. Let z, = wowo,,
where wy denotes the longest element of W and where wq, is the longest
element of Wyy,. Let 7, = e/, where €/ is the image of € under p : Gy, — T
Then 7, is the shortest element of WetW.

The classification of K-o-conjugacy classes of elements of K;1\G(L)/K] is
given by the following theorem which we prove in Section 3. The second part
of the theorem establishes a relation between the subdivisions of K;\G(L)/K;
according to K-o-conjugacy classes and according to Iwahori-double cosets.
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THEOREM 1.1.

(1) Let T = {(w, p) € W X Xo(T)dom | w € PW}. Then the map assigning
to (w, p) the K-o-conjugacy class of Kiwt, K1 is a bijection between
T and the set of K-o-conjugacy classes in K1\G(L)/Kj.

(2) Let p € Xo(T)dgom and w € "W . Then each element of Twt,I is I-o-
conjugate to an element of Kiwt, K.

Definition 1.2. We denote by tr the map G(L) — T assigning to each
b the element of T corresponding to its K-o-conjugacy class in K1\G(L)/K;
under the bijection in Theorem 1.1. The pair tr(b) € W x X.(T) is called the
truncation of level 1 of b.

Let L = k((t)). In this case we can also study the variation of the trun-
cation of level 1 in families. Let LG be the loop group of Gy, i.e., the group
ind-scheme representing the functor on F,-algebras R — G(R((t))); compare
[Fal03, Def. 1]. We show in Section 4 that for each (w,p) € T, the set of
b € G(L) with tr(b) = (w, u) is the set of k-valued points of a bounded locally
closed subscheme of the loop group LG of G, . For the notion of boundedness,
see Section 2.

Definition 1.3. Let (w,p) € T, and assume that char(F) = p. Let Sy,
be the reduced subscheme of the loop group of G, such that S, ,(k) consists
of those g € G(k((t))) with tr(g) = (w, p).

The closure of a stratum S, , in LG is a union of finitely many strata (see
Lemma 4.1).

THEOREM 1.4. Let Sy v, Swyu € LG be two truncation strata. Then
Swipr C Swp if and only if there is a w € W with ww’rwa(w)_l < wr, with
respect to the Bruhat order.

For F' = Q, it is not clear how to define an ind-scheme having G(L) as
its set of k-valued points. However one can study the stratifications induced
on the reduction modulo p of certain Shimura varieties. The main part of
this paper is concerned with elements of G(L) for both cases or, whenever a
scheme structure is involved, the equicharacteristic case. The applications of
our theory to Shimura varieties are detailed in Section 7.

1.2. Truncations of level 1 and o-conjugacy classes. A second major goal
of this article is to compare the stratification of LG by truncations of level 1
to the stratification by o-conjugacy classes. More precisely, we study when
a given truncation stratum intersects a given o-conjugacy class nontrivially.
Our main result in this context (Theorem 1.5) is a necessary condition for
nonemptiness of these intersections that determines, in particular, the generic
o-conjugacy class in each trunction stratum.
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We first review Kottwitz’s classification [Kot85] of the set B(G) of o-con-
jugacy classes of elements b € G(L) that generalizes the notion of Newton
polygons. (Compare also [RR96, §1] for a more complete review of these re-
sults.) Each o-conjugacy class is determined by two invariants. One of them
is given by a map k¢ : B(G) — m1(G)r, where m(G) is the quotient of X, (T')
by the coroot lattice and where I' is the absolute Galois group of F. There
is the following explicit description of kg. Let b € G(L), and let u € X, (T)
be such that b € Ke*K; compare Section 2.3. Then kg(b) is the image of
under the canonical projection from X, (7) to m1(G)r. The second invariant
is the so-called Newton point v = v, of b, an element of (X.(T)g/W)", the
set of I'-invariant W-orbits on X, (7)) ® Q. We usually consider the dominant
representative of v, an element of X*(T)(B which we denote by the same letter
v. This invariant is the direct analog of the usual Newton polygon classifying
F-isocrystals over an algebraically closed field. The images of v, and k(b) in
71(G)r ® Q coincide. Note that Kottwitz’s original article only considers the
case of mixed characteristic, but the other case can be treated in exactly the
same way. Furthermore, the two invariants v and k lie in groups that are
independent of the choice of L; compare Remark 6.9.

We further need the partial order on B(G) defined by Rapoport and
Richartz in [RR96]. It is given by [b] < [0/] if and only if kg (b) = ka(b') and
vy = vy. Here the second condition means that 7, — 7, is a linear combination
of positive coroots with coefficients in Q> where 7y and 73, are dominant rep-
resentatives of the two orbits (compare Lemma 2.2 of loc. cit.). Their Theorem
3.6 shows that for each [b], the union of all o-conjugacy classes that are less
or equal to [b] is closed in the loop group. More precisely, they show a corre-
sponding statement over a field I’ of mixed characteristic. The function field
analog can be shown in a similar, but slightly easier way using properties of
the affine Grassmannian; compare [HV11, Th. 7.3]. For split groups G, [Viel3]
shows that < describes the precise closure relations of the classes [b] C LG.

Let [b] € B(G). Let M be the centralizer of the dominant Newton point
vy of b, the Levi component of a standard parabolic subgroup defined over
Op. In Section 6 we define [b]-short elements as elements = of length 0 in Wy,
with M-dominant Newton point v, and kg (x) = kg(b). In particular, [b]-short
elements are contained in [b]. The following theorem is a necessary condition
for nonemptiness of intersections of truncation strata and o-conjugacy classes.
It is equivalent to nonemptiness of the intersection of a o-conjugacy class with
the closure of a truncation stratum and can (contrary to the definition of
nonemptiness itself) be effectively checked in finite time.

THEOREM 1.5. Let b € G(k((t))), and let (w, p) = tr(b). Then there is a
[b]-short element x € Sy .
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We call an element & € W short if it is [b]-short for some [b] € B(G). Note
that each stratum S, , in the loop group is irreducible (Lemma 4.1), hence it
contains a unique generic o-conjugacy class. From Theorem 1.5, one deduces
the following corollary, which characterizes this o-conjugacy class.

COROLLARY 1.6. Let [b] be the generic o-conjugacy class in Sy, C LG
for some w € PW. Then [b] is equal to the unique mazimal element in the set
of o-conjugacy classes of short elements x € W such that © € m This s
also the same as the mazimal class [x] among all x € W with z < wTy, in the
Bruhat order.

1.3. Comparison between equal and mized characteristic. In Section 6 we
prove the following theorem that allows to translate results between the func-
tion field case and the arithmetic case without having to repeat proofs. It
uses that the set B(G) of o-conjugagcy classes of elements of G(k((t))) can be
canonically identified with that for G(W (k)[1/p]) using the invariants v and &
(Remark 6.9).

THEOREM 1.7. Let (w,p) € T CW x X.(T). Then a o-conjugacy class
in LG(k) contains an element of truncation type (w, 1) if and only if the corre-
sponding o-conjugacy class in G(W (k)[1/p]) contains an element of truncation

type (w, ).
Using this comparison and Theorem 1.4 we obtain the following analog of
Theorem 1.5 in the arithmetic context.

THEOREM 1.8. Let (w,u) € T, and let b € G(W(k)[1/p]) with tr(b) =
(w, ). Then there is a [b]-short element = satisfying the following condition.
Let tr(z) = (w', i'). Then there is a @ € W with ww'r,yo(w0)~! < wry,.

1.4. Comparison with Ekedahl-Oort strata. Let X be a p-divisible group
over an algebraically closed field k of characteristic p. Let (M, F) be its
Dieudonné module, and write F' = bo with b € GL, (W (k)[1/p]) with respect
to some trivialization of M. As pM C F(M) C M, we have b € Kp'K for
some minuscule p € X, (7).

In [Oor01], Oort shows that one obtains a discrete invariant of X (the
so-called Ekedahl-Oort invariant) by considering the isomorphism class of the
p-torsion points X [p], or equivalently by studying the reduction modulo p of
the Dieudonné module M together with the two maps induced by F': M — M
and V = pF~! : M — M. Reformulating this invariant in terms of the element
b, it corresponds to considering the Kj-double coset. In other words, we can
apply our theory in the special case G = GLj, and p minuscule for O = W (k) to
study the Ekedahl-Oort invariant of p-divisible groups. Likewise, truncations
of level 1 for other groups yield classifications of Ekedahl-Oort invariants of
p-divisible groups with extra structure by a polarization or endomorphisms.
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In Section 7 we further study the relation between truncation strata in
loop groups and Ekedahl-Oort strata in PEL Shimura varieties. Using The-
orem 1.7 we obtain a direct comparison for nonemptiness of intersections be-
tween truncation strata and o-conjugacy classes on the one hand and between
Ekedahl-Oort strata and isogeny classes of p-divisible groups on the other hand.
It allows us to deduce a nonemptiness criterion for Shimura varieties that is
analogous to Theorem 1.5 and generalizes a result of Harashita that proved a
conjecture by Oort.
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horn, and Chia-Fu Yu for helpful discussions. I thank Torsten Wedhorn for
pointing out an error in a preliminary version of this article. I want to thank
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pitality, support, and excellent working conditions. This work was partially
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2. Reductive groups over local rings

In this section we summarize some facts about reductive groups over local
rings that are used frequently in the paper.

2.1. Let G be a connected reductive group over Op. Then G is quasi-
split and split over an unramified extension of Op. Indeed, let kg be the
residue field of Op. Then Gy, is quasi-split and split over a finite extension
of kr. Furthermore, a Borel subgroup over kr and a split maximal torus over
a finite extension of kr can be lifted to a Borel subgroup and a split maximal
torus over OF respectively over the corresponding unramified extension of Op;
compare [VW13, A.4].

2.2. The extended affine Weyl group W has a decomposition W QO
Wag. Here Q is the subset of elements of W that fix the chosen Iwahori
subgroup I of G(L). The second factor Wy is the affine Weyl group of G. In
terms of the decomposition W = W x X, (T), it has the following description.
Let Gg be the simply connected cover of G, and let Ty the inverse image of T'
in Gge. Then Wyg 2 W x X, (Ty) and Q = X, (T)/X«(Ty). The affine Weyl
group of G is an infinite Coxeter group. It is generated by the simple reflections
s; associated with the simple roots of T' in G together with the simple affine
root. The choice of I also induces an ordering on W, the Bruhat ordering. It
is defined as follows. Let z,y € W, and let 2 = wya’ and y = wyy’ be their
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decompositions into elements of {2 and Wyg. Then x < y if and only if w, = w,
and if there are reduced expressions ' = s;, ---s;, and ¢/ = sj, - -+ 55, for @’
and y' such that (s;,,...,s;,) is a subsequence of (sj,,...,$;,.).

Recall the morphism kg : G(L) — 71 (G)r where 71 (G) is the quotient of
X.(T) by the coroot lattice. It induces a surjection kg : W =2 W x X, (T) —
m1(G)r. The subgroup W,g of W is in the kernel of kg. On the subgroup
Q of the extended affine Weyl group, kg induces the canonical projection

Q2 X, (T)/ X (Tae) S m1(G) — 71 (G)r.

2.3.  We have the following decompositions. More details can, for exam-
ple, be found in [Tit79].

Twasawa decomposition. Let P be a parabolic subgroup of G. Then
G(L) = P(L)K.

Bruhat-Tits decomposition. G(L) = I, 5 L#1. In the function field case
the double cosets are locally closed subschemes of LG. The closure of Ix[ is
equal to the union of all I2'I, where ' < z in the Bruhat order.

Cartan decomposition. G(L) = [luex. (1) K"K, where X, (T)qom de-
notes the set of dominant elements of X, (7') and where ¢* is defined to be the
image of € under p : G,, — 7. In the function field case the double cosets are
locally closed subschemes of LG. The closure of Ke* K is equal to the union of
all Ket' K where y/ < p. Here p/ < pu if 1 — pi/ is a nonnegative integral linear
combination of positive coroots.

Twahori decomposition. Let P be a standard parabolic subgroup of G,
and let N be its unipotent radical and M the Levi factor containing 7". Let
N be the unipotent radical of the opposite parabolic. Let Iy; = I N M (L) and
analogously for N, N. Then I = InIpI5;.

2.4. A subset of the loop group LG is called bounded if it is contained
in a finite union of double cosets Ke*K. Forn € Nlet K, ={ge K |g=1
(mod €™)}. Then a subscheme S of LG is called admissible if there isan ng € N
with SK,, = S. Let S C LG be a bounded and admissible subscheme, and
let ng be as above. Let B be a finite union of double cosets containing S.
Then S can be studied by considering the image in B/K,,, which is a scheme
of finite type. For example, S is called locally closed if the same holds for its
image in B/K, . The closure of S is defined to be the inverse image under
LG — LG/K,  of the closure of S in LG/K,,. The subscheme S is called
smooth or irreducible if the same holds for its image in B/K, . Note that
these notions do not depend on the choice of B and of ng provided that they
are large enough.

2.5. The following lemma is a variant of the theorem of Lang-Steinberg
for the infinite-dimensional group schemes that we want to consider.
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LEMMA 2.1. Let H C K be a subgroup of K. For all n € Z>q let
H,={h € H|h=1 (mode")}. We assume that H/H,, and H,_1/H, are
connected linear algebraic groups for alln. Let g € G(L) with g~ *H,g C o(H,)
for all n. Then the morphism H — H with h +— o~ Y(g~*h~1g)h is surjective.

Proof. Let h € H and n € N. By the Theorem of Lang-Steinberg there
is an h, € H/H, with c=1(¢7 h, g)h, € hH,. We want to show that we
can lift h,, to an element h,41 € H/H, 11 with cr_l(g_lh;}rlg)hnﬂ € hHp 1.
Let fn+1 € H/H,y1 be an arbitrary lift of h,. We now apply the Theo-
rem of Lang-Steinberg to the morphism H,/H,+1 — Hp/H,41 with ¢ —
h=to= (g ty~t n_ﬁlg)fnﬂw. Note that H,1 is a normal subgroup of H for
all n. Hence this is indeed a well-defined element of H, /H,11. Let ¥,41
be an inverse image of the identity element under this morphism. Then
hnt1 = far1¥n+1 is as claimed. Using induction and passing to the limit
we obtain an element hy, € K with 071 (g7 hlg)heo = h. O

2.6. Let P be a standard parabolic subgroup of G, i.e., B C P. We
denote by M the Levi factor containing T and by N its unipotent radical. Let
w € X (T). Let « be a root and U, the corresponding root subgroup. Then
elUq(x)e™* = Uyl ). In particular, we have e#N(Q)e * C N(O) N K,
if (a, i) > 0 for all roots a of T'in N. This is, for example, the case if y is
dominant and M contains the centralizer of p.

3. Truncations of level 1

The goal of this section is to prove Theorem 1.1; in particular, we allow
both the function field case and the case of mixed characteristic. The proof
follows a strategy by Bédard [Béd85].

Proof of Theorem 1.1. Let b € G(L). By the Cartan decomposition there
is a unique dominant p € X, (T) with b € Ke#K and b is K-o-conjugate to an
element of the form byx,e" = by, with by € K.

To show (1) we have to prove that there is a unique w € #W such that
bo7, is K-o-conjugate to an element of Kyw7,K;. We use induction on i to
show that there exist a sequence of elements u; € W, two sequences of standard
Levi subgroups M;, M/ of G, and a sequence of elements b; € M/(O) with the
following properties:

(a) MO = M(/) = G,

Mj =z, Mz, and My = o~ (M,,),

M; = M!_; Nu; o™ (M,)u;_1, and

M| = M{ N xuo(ui—g M]_yu;))x, b = zuo(uis Myu ), for i > 1.

(b) up =1 and
u; = u;_10; for i > 0 for some §; € I/VJ\/IZL1 that is the shortest representative
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of Wiy, d; WM/ and
u; is the shortest representative of Wy, uZWM/

(c) bis K-o-conjugate to an element of Kqu;b; TuKl

(d) u¢WMl_/ C W is uniquely determined by the K-o-conjugacy class of b in
K\G(L)/K.

(e) wbjm, with b; € M;(O) is in the K-o-conjugacy class of b in K1\G(L)/K;
if and only if the images in G(k) = G(O)/K; of the two elements b;, b; are
in the same M;;1(k)-orbit in Upi+1(k)\M{(k)/Uﬁ;+l(k‘) under the action

Mi1(0) x Up,y (R\M; (k) [Up: (k) = Upyy (R\M; (k) /Ur_ (F)
(g,m)— g_lmxucr(uigufl)xljl.

Here

Py=P=G,

P| =z, P, and Py = o7 1(P,),

P =M, ﬂ u; Yo~ (P,)u;—1 and

P/ = M{ N zu,0(ui1P_u; 11) ~1 for 4 > 1 are parabolic subgroups of

M.

Furthermore, Up denotes the unipotent radical of a linear algebraic group P.

Before we begin the proof, let us show that some of the conditions auto-
matically follow from the others. We first check inductively that (a) and (b)
imply that M O P/, and that M, is the Levi subgroup of P/ ; containing
T for all ¢. For ¢ = 0 this is obv10us. The second statement is also clear by in-
duction. From (b) and the induction hypothesis P{ C M]_; we see that P/ ;=
M{ Nayuo(uiPlu; t)a, ! is contained in M{ N @0 (w1 M]_yui))a, ' =M.

Results of Bedard [Béd85], or Lusztig ([Lus04], (a)—(d) in the proof of
Proposition 2.4) show that the last condition in (b) follows automatically using
induction, using the condition on d; and the definition of M; and M.

Note that if g € M;11(O), then xua(uigujl)xgl € M, ,(0), so the action
in (e) is well defined.

CramM. Conditions (a) and (b) above imply that the M; and M, are stan-
dard Levi subgroups.

We show this claim using induction. The Levi subgroups M), and o~1(M,,)
are standard as p is dominant and as B is invariant under . Now we use the
following fact: If M is a standard Levi, if « is a simple root that lies in M, and
if x € WM then x(a) is again positive. If each such z(a) is again simple then
Mz~ is again a standard Levi subgroup. For = = T, = wowo,, this implies
that :L'MMMJ';Ll is standard. For the induction step we show that if M, M’ are
standard and z is the shortest representative of Wy oWy, then M’ NaMa ™!
is also standard. By the above fact it is enough to show that for every simple
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root « in M such that x(«) is a root in M’, this root is also simple. We
have 1+ £(z) = l(xs4) = l(xsqx™ 1) + £(2) where the last equality uses that
r8qx~ 1 € Wiy, compare [DDPWOS8, Lemma 4.17]. Hence {(z50x71) =1, and
z(w) is simple. We apply this first to u; 11 e WMinMioaw | My and M)
to obtain inductively that M; = M!_, Nwu; ', Myu;_ is standard. For M] the
properties of o and x,, already used above imply that it is enough to show that
My Nu M _u; 1 is standard. This follows in the same way as before.

We now carry out the induction to show (a)—(e). For ¢ = 0, (d) is ob-
vious and (c) has been shown above. For (e) Section 2.6 implies that on
Ki-double cosets, the effect of o-conjugation of by7, by g € Up, (O) is the
same as left multiplication of by by g. Similarly one sees e™#Up (O)et C Kj.
Hence right multiplication of by by an element of Uﬁll (O) does not change
the class b7, K. The effect of the action of M;(O) on by corresponds to
o-conjugation of by7, and thus it does not change the K-o-conjugacy class
of bgt,. For the other direction, if an element g € K conjugates by7, into
M{(O)1, = Ke#, then o(g) € K Ne #Ke#. In particular g is contained in the
parahoric subgroup of K of elements whose image in G(k) is in P; (k). Using
the analog of the Iwahori decomposition for this subgroup and the fact that
o(g) € e *Ket we obtain a decomposition of ¢ into factors in Up, (O), M1(O)
and 5_071(“)Upl((9)5071(u) — 0_1(5_“Uﬁu((’))5“) C K. This shows (e) and
finishes the argument for ¢ = 0.

We have to show that (a)—(e) for some i imply the same properties for
i+ 1. Let b; be as in (c). We decompose b; using the Bruhat decompo-
sition to obtain that b; € K1Pi+1((’))5i+1pg+1((’)) for some d;41 as in (b)
and with Piy; and Pj,, as in (e). We may assume that the factor in K
is trivial. By (e) we may further assume that the factors in P;41(O) and
?;H(O) lie in M;11(O) and M, ;(0O), respectively. We obtain a decomposition
uibiT, € (uiMi—l—l(O)ui_l)ui&i—&—lM{Jrl(O)Tu- After o-conjugating u;b;7, with
the factor in u; M;1(O)u; ! and using that o(u; M1 (O)u; ') = T, Mz, C
w;lM{wu = M,, we obtain (c) for i + 1. Property (d) follows from the unique-
ness of the Bruhat decomposition together with (d) and (e) for i. It remains to
show (e). If we replace b;11 by 3b;1 where /3 is an element of Up, ,, (O), this has
the effect that the product u;+1b;117, is multiplied on the left with an element
5(B) of ui1Up,,,(O)uily = Up, (O) Nugy1 M/, ;(O)u; . This does not change
the K-o-conjugacy class in K1\G(L)/K;. Indeed, by Section 2.6 right multipli-
cation by elements of o(Up, (O) ﬁquMHl(O)u;&l) does not change the coset
K1u2~+1b,~+17'u, and hence Klé(ﬁ)ui—i-lbz—f—lTu = Klé(ﬂ)uiﬂbiﬂma(é(ﬁ)_1).

Now we want to show that replacing b;11 by b; 115 with 8 € U—/ ((9) also

does not change the K-o-conjugacy class of uj11bi117,. As M/ C xuMMa:ljl

this replacement has the effect that wu;11b;117, = u;y1b;112,€" is multiplied
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on the right with lelﬁm = xilﬂw“. We o-conjugate with the element
U_l(xllﬁxu)_l c€o ( _IU / ((’))x#) = U_I(MM(O)) N uiHUﬁ;H(O) z+11
(which is in particular in K). Then we obtain an element of
ui+1UF;+l((’))bi+1x#€“.

As biy1 € M{ (0O), the element lies in “HlelUF;H(O)xugu- Using induc-
tion we obtain that this is contained in the same class as w;41b; 17,8, Fi-
nally, the effect of the action of M;;2(O) on bl+1 corresponds to o-conjugation
of u;41bi417, by elements of w;y1M;y2(O)u,. z+1’ and thus it leaves the K-o-
conjugacy class of u;11b;417, stable. It remains to show the other direction
of (e). So assume that w;1b] 17, = u;i(dsy1b;, )7, with bj,; € M, ,(O) is in
the K-o-conjugacy class of wjt1bi117, = wi(di41bi41)7, in K1\G(L)/ K. Us-
ing induction for 0;410; 1, d;11bi11 € M(O) we obtain elements g € M;;1(O),
a€Up,, (0)and d € U?QH(O) with

—1 -1y, .—1 / !
g ivibiizyo(uigu; )z, = adip1biqa

Let h =0, 9611 and @ = b ,a’(bj,,)"". Thena € U , and

1+1
-1 1y, —1 _ 51 1
(1) h™ biv12 0 (uiv1hug ;o )w,” = 6, adi41ab; 4y

Notice that if P, @ are connected linear algebraic subgroups containing 7" such
that P is parabolic and if we denote P = MUp the decomposition into the
Levi subgroup containing 7' and the unipotent radical, then

(2) PNQ=UpNQ)(MNQ).

Indeed, both sides contain 1" and the same root subgroups, and are generated
by these subgroups.
We have b; 1, bgﬂ,x“a(ui“hu;ﬁl) € M{,,(0). Thus (1) implies that

(3) ho Hadia € Ml 1(O).

Hence héijrllaé@“ € ?2“(0), and (as it is equal to 52-;11ga5¢+1), it is also
contained in (5Z+1P+1(52+1)((’)). Using this and (2) we obtain that

Pl N (M4, - (Pryy N6 Piia6i41)))(0)
UFM (M, - (Uﬁ;+ N 52_—}—1 P;i116i41)))(O)
Uy ﬂ5z+11 P;i116i41)(0)

7,
Up,  N631Up,0i41)(Upr N 8 Mit16i11)) (0).

a€

(U5
(
(
(¢
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We write ZL = ajay for this decomposition. Replacing @ by ae and a by
adiy1a10; € Up,,(O) the right hand side of (1) does not change. Hence
we may assume that @ € (U N 5;1M,+161+1)((’))

i+1

In particular, as now a € (5l+1M+15i+1)((9) we have &_151-;11@5”1& €
(52+11Upi+ 9i+1)(O). Equation (1) is equivalent to
a(ha)” bl_‘_lxua(ul_,_lhauwl) l(xua(ul_,_la 1u2+1)$—1)
=a(a" 5i+11a5i+1d)b§+1.
Replacing h by ha € (51-;11M,~+16i+1)((’)) and 6;11a(5i+1 by 6_15;11a5i+1d we
obtain the equivalent equation (using these new variables)
h™ b0 (uiprhu )z, = 654 adipa by ¢
where
~ 1 _ -1 _
¢ = zpo(uimdui )z, € (Mig N $u0(ui+1Uﬁ;+lui+1)%1)(0) = Uﬁ;+2(o)'
As we may multiply b}, ; on the right by elements in Uz (O) we may assume
i+2

that ¢ = 1, which corresponds to (1) for @ = 1. In particular, (3) yields
hé;rlla&ﬂ € M ,(0), and as before it is also an element of ((51-_+11]3¢+15¢+1)((’)).
Thus by (2) we have

héadi € (6745 Mis18ie1 N M 1) (6,,Up,,, 8141 N Mi41))(O).
As h € (51111Mi+15¢+1 and a € Up,,, this implies that
h € (8, Miy16i11 N M{11)(0),
(4) 52-;11a5i+1 € (52+1U 101 N M) (O).
We obtain
h € (6,35 Miy16i41 0 M) (O)
(uz+ ( 1Mz+1$u)“1+1 N M‘, 1)(0)
(UHI ( 1M195u)uz‘+1 N M;1)(0)
= (ui Miuip N M) (0) = z+2( ).
By definition, ul+15z+1U +15z+17~%+1 w;Up,_ u; lc Up,. Thus (4) implies
(5i+1a6i+1 € (quUplqu N Mz+1))(0) =Up,,(0).

Altogether this means that via the elements h € M, 2(0O), 6i_+11a5,-+1 cUp_,(0),
and ¢ € Uy (O), we proved that the two elements b;y1,b} 4 € M (O) are
i+2

in the same M;2(O)-orbit in Up,,,(k)\M/,(k)/Us 2(1{:) This finishes the
it
induction step for (e) and completes the induction.

The M/ form a decreasing family of Levi subgroups and thus become con-

stant after finitely many steps. Thus for n sufficiently large, x,0(u, M) u,, l)x;1



ELEMENTS OF LOOP GROUPS 1021

= M, = M), and M,, = M. As M, = M]_, we obtain o(u,Mu,) C
w ' Mya, C 2, Mix, = M,. Thus we can apply Lemma 2.1 to obtain that
each element of u, M, (0)7, is up, M}, (O)u,, 1-o-conjugate to u,7,. Then by the
last assertion in (b), w = u,, is as desired.

We now prove (2). Each element of Jwr,I is obviously I-o-conjugate to
some element g € w7,I. We have the Iwahori decomposition I = N, (O)Ip, K1
where Iy, = I N M,(O) and where N, is the unipotent radical of P, = M,B.
We apply this to the last factor of g € wr,I. Now we use Section 2.6 in the
form e*N,(O) C (N,(O) N K1)e* and see that we can multiply g by elements
of Ky on both sides to replace it by an element g € w7,Ip,. Thus it is Ips,-
o-conjugate to an element of In,wr, = Iyywrel. As w € PFW = MW,
conjugation by w maps positive roots in M; to positive roots (not necessarily
in M;). Hence we have w1y, w C I N (w™1M;(O)w). Conjugation by wy
maps all positive roots to negative roots, conjugation by wg , maps positive
roots in M), to negative roots in M, (and vice versa) and leaves positive roots
in N, positive. Hence

Inywre” = wr,(wa,) Ty, we,)e
C Kywz, (I, N (wxu)flllexu))NM(O)e”
C Kywwy,(Iy, N (wx,) My wz,))et K.
Iterating this argument we see that the element g is I-o-conjugate to an element
of Kiwz,lwet Ky where Ino = 1IN ﬂiZO(Ad(wx”)flo_l)i(Mu((’))) and where
Ad(yg,)-1 denotes conjugation with the given element. As
(N (Ad(ug,)-10~) (M)
i>0

is an intersection of Levi subgroups, it is equal to (o (Ad(ya,)-1 o~ Hi{(M,,) for
each sufficiently large n. Thus for the preceeding step it is in fact sufficient to
o-conjugate g by finitely many elements. As I, commutes with e* and satisfies
(wzy,) o I)(wz,) = I we can apply Lemma 2.1 to obtain that each
element of Kiwz, I K1 is Is-0-conjugate to an element in Kyjw7, K. [0

4. Closure relations

In this section we assume that L = k((t)); i.e., we consider the function
field case. Recall that S, ,, is the locus in LG where the truncation of level 1
is equal to (w, p).

LEMMA 4.1.

(1) Each Sy, is bounded and admissible.
(2) The closure Sy, of Sw,y is a union of finitely many strata Syy .
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(3) Sw,p is locally closed, smooth and irreducible.
(4) go € G(L) is in Sy, if and only if it is K-o-conjugate to an element
of Twt, 1.

Proof. The stratum is bounded because it is contained in Kt*K, and
admissible because it is invariant under K. For the second assertion note that
Sw,p 1s invariant under K-o-conjugation and under multiplication by Kj on
both sides. Thus it is a union of strata. The union is finite because m C
Kt*K, hence each of the strata S, , in the closure has to satisfy p/' =< p.
The first assertion of (3) follows from (1) and (2). The other two assertions
of (3) follow as S, /K is the orbit under the o-conjugation action of K
of the subscheme Kjwr,K;. In (4) the second condition implies the first
by Theorem 1.1(2). Now let gy € S, ,. Thus there is a g € G(k[[2]]((¢)))
such that its reduction modulo z is equal to gy and such that its image g, in
G(k((2))((t))) is in Sy . (k((2))). Hence there is an h € G(k((2))*#[[t]]) with
h~lg,o(h) € K jo((2))msWTp K gy((z)yeie-  Here k((2))e denotes an algebraic
closure of k((2)). Replacing h by a suitable element of hKy j((,)ymz We may
assume that it is defined over a finite extension of k((z)). We may replace
k((z)) by that totally ramified extension and thus assume that h is defined
over k((z)) itself. As K/I = G(k)/B(k) is proper, there is a k[[z]]-valued point
of K/I such that the induced k((z))-valued point coincides with the image of
hin K/I(k((2))). Let h € G(k[[z,]]) be a lift of that point. Such a lift exists
because k[[z]] is local, the map G — G/B has local sections, and we have the
section G(k((z))) — K(k((z))) = G(k((2))[[t]]) of the projection morphism
K — G. Denote by hg and h,, the images of h in G(k[[t]]) and G(k((2))[[t]]),
respectively. As the generic points of A and h coincide up to an element of
Ii((z)), we obtain that Bglgno(iln) € ITwr,l. Hence ﬁalgoilo € Twr,I which
proves (4). O

Before proving Theorem 1.4 we need some preparations. They are on the
lines of [He07, §3] where similar results are shown for finite Weyl groups and
without the o-action (but allowing disconnected groups).

Remark 4.2. If z,y, 2 € W with = € IylzI then z = y'z for some 3’ < y.
Indeed, this follows by induction from Is;IzI C Izl U Is;zI for each (finite or
affine) simple reflection s;.

Let N be the unipotent radical of the Borel subgroup opposite of B. Let
N~ be the inverse image of N in G(k[t™!]) C G(k((t))), compare [Fal03, §2].

LEMMA 4.3. Let z,y € W. The subset {z'y | 2’ < x} of W contains a
unique minimal element z. We have 1(z) = I(y) — l(zy~!) and IxIyN— =
IzN—. In particular, z < 2"y’ for every 2’ < x and y' > y.
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Proof. For any 2’ < z, Iz’ C Ixl. Thus Ix'yN— C IzIyN—. We choose
an increasing sequence S; of irreducible bounded subschemes of N~ with N~ =
U; Si- Recall from [Fal03, §3] that I\LG is the disjoint union of the N/ "-orbits
of the elements 2 € W and that Iy N~ C IzoN~ if and only if 29 < x1. Note
that IxIyS; is an irreducible bounded and admissible subscheme of LG. Let
Y; € W be the element whose orbit contains the generic point of IzIyS;. Then
y; > yi+1 for all i, hence y; = y;+1 for all sufficiently large i. Let yo, be this
element of W. Then TzIyN— = TysoN—. As Iz'yN~ C Ty-ocN— we have that
7'y > yoo for all 2/ < x.

It remains to show that Yoo = Zooy for some zo < z with [(zo0y) =
l(y) — l(zo). We use induction on the length of x. If [(xz) = 0, the statement
is clear. Assume that [(x) > 0. Let s; be a simple reflection with s;z < x, and
set £ = s;z. We have

ToIyN— = Is;I€IyN— = Is;TETyN .

By induction there is a & < ¢ such that I[(¢'y) = I(y) — (&) and [ETyN— =
I¢'yN—. Thus

IgyN—  if s’y > €'y,
Isi&'yN— if s;&'y < &y.

Is;IEIYyN— = Is;I8'yN— = Is;,1&'yN— = {

We have ¢’ < s;x < x, thus s;& < z. If s,y > 'y we can choose x5, = £, If
si€'y < 'y then I(sif'y) = 1(¢'y) =1 =1(y) — (') — 1. Thus I(s;) =1(§') +1
and (s;'y) = l(y) — I(s:£’), and we can choose o = s;&’. Thus the assertion
holds for z. O

LEMMA 4.4.

(1) Ifa,b € W and z < ab, then there exist ' < a and b < b with a'b = x
and l(a’) + (V') = l(x).

(2) Let M and M’ be standard Levi subgroups, w € WM N\ MW and v €
War. Then wo € MW if and only if v € KW, where K = M N
wM'w.

Proof. For the first assertion, the general statement follows from the spe-
cial case x = ab. This in its turn is a consequence of the exchange property
of Coxeter groups using induction: If a = ws;, ---s;, with w € Q is a reduced
expression for a and s; a simple affine reflection then either l(as;) = I(a) + 1
or as; = wsj, -+ 8;; - -+ s;, for some j. For a proof of the second statement see

for example [DDPWO08, Th. 4.18]. O

LEMMA 4.5. Let M and M’ be standard Levi subgroups, w € WM My
andv € Wy, Let K =M Nw ' M'w. Then wv = zwy for some x € Wy g1
andy € Wyr N EW.
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Proof. By [DDPWO08, Th. 4.18] we have wv = zwy for some = € Wy
and y € Wy N KWw. But then z = wvy*%u*1 e wWyw N Wy =
U)I/VMI'WuﬁlM’wwi1 = WwKw—1- O

LEMMA 4.6. Let M be a standard Levi subgroup of G and let x € Myy.
Lety € W. Then y > wxo(w)~! for some w € Wy if and only if there are
u,v € Wiy with v < u and y > uwo(v)~L.

Proof. Let y € W and let u,v € Wy with v < u and y > uzo(v)~l. We
have to show that y > wzo(w)~! for some w € W);. We use induction on the
size of the Levi subgroup and thus may assume that the statement is true for
all M" C M. We use a second induction on the length I(u). We write z = ab
with a € MW N W) and b e Wan)- Setting M' = M N ac(M)a™! we
decompose u as ujug with u; € WM and ug € Wy Together with v < u
this induces a decomposition v = vjve with v; < u; and [(v) = [(v1) + [(v2).
Note that our choice of a implies that M’ is again the Levi factor of a standard
parabolic subgroup. We consider two cases:

Case 1: uy = vy = 1. In this case v and v are in Wy, and = € My o1f
M' # M, then the assertion follows from the induction hypothesis. If M’ =
M = ao(M)a~", then since ab € MW, we have that b = 1. Thus uzo(v)~! > z
which implies the assertion.

Case 2: uy # 1. In this case [(u2) < l(u). By induction hypothesis, there
is an 2’ = v'zo(u')! < ugxo(ve)~t. Let vz < vy be such that 2'c(v3) ™! is the
unique element of minimal length in {z'c(v)7™! | v/ < v1} (see Lemma 4.3).
Then the last assertion of Lemma 4.3 implies that

2'o(v3) ! < (ugzo(v2) o (v) ™ = ugzo(v) L.
By Lemma 4.5 we can write

zo(v) ™t = albo(v)™) e MW N WU(M))WU(M)
as aad with o € Wy and 6 € W) nae 'May By Lemma 4.4(2), 8 = ad €
MW/, Thus

Huguozo(v)™Y) = l(ugugaB) = l(uyuga) + 1(B) = l(uy) + L(uge) +1(B)
Hur) 4 HugaB) = l(uy) + l(ugzo(v)™h).

1

As 2'0(v3) 7! < ugwo(v) ™! and vz < v < ug, this implies that

1

(v3u)zo(vsu') ™t = v3z'o(v3) ! < uzo(v) Tt < y. O

Proof of Theorem 1.4. We have to show that (w’, ') is the truncation of
level 1 of an element of Iyl for some y < wr, if and only if it is of the
form in the theorem. The if part is obvious. For the other direction we
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use an approach which is similar to the proof of Theorem 1.1 to compute
the truncations of level 1 occurring in the cosets Iyl for y as above. We
decompose y as wiTyw] with wi,w] € W, p/ dominant and such that the
lengths of the three elements add up to that of y. Each truncation of an element
of Iyl already occurs in Iy = Jwiryw), and thus also in o~ (w))IwiT,.
By Remark 4.2, each such element is contained in Io~!(w})w;i7,/I for some
o~ (w}) < o~ (w}). This is equivalent to @) < wj as I is invariant under o.
Using Lemma 4.4(1) for o ~!(w})w; and replacing y by a smaller element we see
that we may assume that @] = w} and that {(c ™! (w})wiTy) = l(wrTpw]) =
l(w1) + (1) + l(w}). We have to consider the truncation types occurring in
o Y (wh)wiT,yI. Tt is enough to show that for each such type (w', ') there
isaue W with uw'ryo(u)™ < o7l (w))wiTy. Indeed, by Lemma 4.4(1)
this implies that there is a v; < o~ !(w}) such that vy 'uw'r, o (u)to(v1) <
wiTyw). By Lemma 4.6, it is furthermore enough to show the following claim.

CLAIM. Let (w', pi') be the truncation of level 1 of an element g € Iz, I for

some x € W. Then there are v <u € J_I(WMH,) with wvw'ryo(v) ™! = 21,

By o-conjugating with the first factor of ¢ we may assume that it is con-
tained in z7,,I. Changing g within its K;-double coset we may assume that the
factor in [ is in fact contained in INB(O)N P, (O) C INM,(O). A second o-
conjugation then implies that we may assume that g € (I N M;(O))x7, where
My = o' (M) is as in the proof of Theorem 1.1. Note that for the groups
defined in that proof we have M! C M/ and hence u; M;,1(O)u;* C M;(O).
In particular, the construction in this proof implies for the element g € (I N
My(O))x7, that there is an f € M;(O) with f~lgo(f) € Kiw'tyKi. We
decompose f as f = ijuis € IWO.71M#,I. Then iluigw’rﬂza(iluig)_l € lxmyl.
Recall that 7, is the shortest representative of its W-double coset and w' €
o (M)W . Thus w'ry € o (M)W . Hence Izt I C Tulw't lo(u) ' =
Tuw'ryIo(u)~'1. Thus there is a v < u with vw'r o (v)™! = z7,. O

The following corollary to the theorem which considers the special case
wu = ' is analogous to results by He [He07] and Wedhorn [Wed].

COROLLARY 4.7. Sy, C Sy if and only if there is a © € o~ (Way,)
with w™'w'z o (), < w.

Proof. Recall that 7, is the unique shortest element of the extended affine
Weyl group lying in Wt#W. Especially, y < wr, with y € Wt¢W if and
only if y = wy7, for some wy, < w in W. From the theorem we obtain that
Swu C Swy if and only if there is a @ € W such that @ w'r,0(®) = wy7,
for some w, as above. Thus 7,0(w) = v7, for some v € W. As 7, = x,t' we

obtain v = z,0(w)z, ! and o(w) € Way,. O

“w
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5. Nonemptiness of intersections of truncation strata with
o-conjugacy classes

For the discussion of short elements we allow both possible cases for F'.

Definition 5.1. Let [b] € B(G) and let v € X*(T)& be its dominant New-
ton point. Let M, be the centralizer of v in G. Then x € W is called [b]-short
if z € Qup, € Wy, the M,-dominant Newton point of x is equal to v, and
kG(z) = Ka(b). .

An element z € W is called short if it is [b]-short for some b € B(G).

Remark 5.2. From the classification of B(G) we obtain that all [b]-short
elements are contained in [b].

LEMMA 5.3. Fach [b] € B(G) contains a [b]-short element. If G is split,
this element is unique.

Proof. Let v € X*(T)(B be the dominant Newton point of b and let M
be the centralizer of v in G. Then there is an element by of M (L) N [b] whose
M-dominant Newton point is equal to v [Kot85, Prop. 6.2]. Let ug € X.(T) be
M-dominant with by € M (O)e*M(O). Let w be the image of pg in m(M).
Note that its image under the projection to 7 (G)r is equal to kg (b). Let
x € Qpr be the unique element whose image under the isomorphism to m (M)
is equal to w. Then z is basic in M with kyr(x) = kar(bo), hence with M-
dominant Newton point v. In particular, x is [b]-short.

For split G, we have m(G) = m(G)r. The kernel of the projection
m1(M) — m1(G) is torsion free. Hence w € w1 (M) is the unique element whose
image in m (G) is equal to x(b) and whose image in 71 (M) ® Q is equal to the
image of v under the projection to 71 (M) ® Q. Each element ¥’ of [b] N M (L)
whose M-dominant Newton point is equal to v has to satisfy kp(b) = w.
Thus, there is a unique such element which lies in ;. O

For the rest of this section let L = k((¢)), i.e., we consider the function
field case.

Remark 5.4. By Theorem 1.1 (2), S, has nonempty intersection with
some o-conjugacy class [b] if and only if [b] N TwT,I # 0. By the Grothendieck
specialization theorem [RR96, Th. 3.6], the generic o-conjugacy class in Sy,
respectively the generic class in Jwr,I are the largest classes (with respect to
=) whose intersections with S, , respectively Jw7,I are nonempty. Hence also
these generic classes coincide.

PROPOSITION 5.5. Let b € G(L) and let M be the centralizer of its domi-
nant Newton point. Let x € W with b € IxzI. Then there is a [b]-short element
ry €W and a w € MW with w™layo(w) < x in the Bruhat order.
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Proof. Let P = BM be the standard parabolic subgroup of G with Levi
component M, and let N be its unipotent radical. We fix a [b]-short element
y € Wa. Let g € G(L) with g'yo(g) = b € Izl. Using the Iwasawa
decomposition and the Bruhat decomposition we write ¢ = nmijwis with
n € N(L), m € M(L), i1,i2 € I, and w € W. By the Iwahori decomposition,
i1 € P(O)Ky. As w™Kyw C I, we may assume that i; = id. Furthermore, we
can replace g by giy ' without changing the property g 'yo(g) € IzI. Thus
we may assume that g = nmw with g~ 'yo(g) € Izl. Finally we may assume
that w is of minimal length in its coset Wi w.

The next step is to show that we may assume that n = 1, i.e., that
m~tyo(mw) € TxI. We have

(5) g 'yo(g) =w 'm™ [n 7 yo(n)y ] yo(mw).

We abbreviate the expression in the bracket, which is in N(L), by n. We want
to construct a family of elements of Izl over A}c such that its fiber over 1 is
g 'yo(g), and that the fiber over 0 is w™'m~lyo(mw). Let LN be the loop
group associated with N over k, i. e. the group ind-scheme representing the
functor on k-algebras R — N(R((t))). Let x € X«(T) be central in M and
such that (o, x) > 0 for every simple root a of 7" in N. Let

¢: AL\ {0} - LN
ars x(a)ix(a) .
Let o be aroot of T'in N and let U, denote the corresponding root subgroup.
Conjugation by x(a) maps U,(y) to Uy(a’y) where j = (a, x) > 0. Especially,
¢ has an extension to a morphism ¢ : A,lg — LN that maps 0 to id. As x(a) is
central in M,

wfl

1

w ™ m g(a)yo (mw) = (w x(@)w)w ™ m e (mw)(e(w) x(a) o (w))

for every a # 0. Using (5), we obtain that this is in [zI. Hence

'm~yo(mw) € Tal.

whm ¢ (0)yo (mw) = w™

It remains to show that w™'mlyo(mw) € TxT implies that w™lzyo(w) €

Izl for some [b]-short element zp. Let Iny = I N M(L). The minimality

property of w implies that for any positive root a of T in M the root § with

w™lU,w = Up is also positive (although not necessarily in M). As I and M
are defined over Op, the same holds for o(w). Thus

w Iyym ™ yo(m)yo(w) C Twrm ™y (mw)I C TxI.

Using the Cartan decomposition for M we have m~ yo(m) € M(Op)e* M(Op)

for some M-dominant ;' € X,(T). Let z, € Qp; € Wy be the unique element

whose image under the projection prj; : WM — m1(M) agrees with the image

of y/. In particular, this implies that rps(zp) = kar(m ™ tyo(m)) = ku(y) €

m1(M)r. As xp is basic in M, the M-dominant Newton polygons of x; and
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y agree. Thus xp is a [b]-short element. As z, € Qp we have that Iyl
is the unique closed Is-double coset of the form Iy hly; with A € WM and
prar(h) = pras(zp). It is contained in the closure of any other such double
coset. Applying this to Inym~tyo(m)Iy we obtain

wilfobIMa(w) C IzI.
This implies w™tzyo(w) € Txl. 0O

If G is split, the first (and largest) part of the proof of Proposition 5.5
can also be deduced from a nonemptiness criterion by Goértz, Haines, Kottwitz,
and Reuman, [GHKR10, Cor. 12.1.2] using the relation between short elements
and fundamental alcoves in Lemma 6.11.

COROLLARY 5.6. Let [b;] be the generic o-conjugacy class in Iz for some
z € W. Then [by] is the unique largest (with respect to the order described in
the introduction) among the classes [y] where y € W with y < z in the Bruhat
order. It is also equal to the largest among the [y] where y < x is in addition

1

of the form y = w™lz0(w) where z is [y]-short and where w € MyW for the

centralizer M, of the dominant Newton point of y.

Proof. The generic o-conjugacy classes of Izl and Izl coincide. By the
Grothendieck specialization theorem [RR96, Th. 3.6], the generic class of Tzl
is the unique largest (with respect to the order described in the introduction)
among the classes [g] with g € TxI. Hence the assertion follows from Proposi-
tion 5.5. ([

Proof of Theorem 1.5 and Corollary 1.6. Theorem 1.5 and Corollary 1.6
follow from Proposition 5.5 and Corollary 5.6 by Remark 5.4. (]

PROPOSITION 5.7. Let (w, p) be the truncation type of a [b]-short element
for some o-conjugacy class [b]. If a o-conjugacy class [V'] is contained in [b]
then there exists a [b']-short element &' such that Sy v C Sy, where (w', ') =
tr(z’). If [b] = [bwr,] then the converse also holds. This is in particular always

the case if G is split.
The closure of [b] is a union of o-conjugacy classes. By [RR96, Th. 3.6]

a necessary condition for [b'] C [b] is that [b'] < [b], i.e., kg(b) = Ka(b') and
vy < vp. In [Viel3] it is shown that for split G this condition is also sufficient.

Proof. Assume that [0'] C [b]. Let g € G(k[[2]]((t))) such that Ir((z)) €
[b] and g, € [V]. Let h € G(k((2))8((t))) with W lgryo(h) € Twry,d.
Here k((2))*# denotes an algebraic closure of k((z)). The closed Schubert
cell in LG/I containing h is a scheme of finite type. Thus replacing h by
some representative of hlj(.yis we may assume that h is defined over a finite
extension of k((z)). Replacing k[[z]] by its integral closure in that extension
we may assume h € G(k((z))((t))). Also, as the closed Schubert cell is a
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proper subscheme of LG/I, the class hl contains an element of LG/I(k[[z]]).
As E[[z]] is local for the étale topology, [HV12, Lemma 2.3] shows that we
obtain an element of LG(k[[z]]) = G(k[[2]]((t))) in the inverse image. We
denote this element again by h. Then § = h~'go(h) € G(k[[2]]((t))) with
Jr((z)) € Twr, I C Sy, and gy € [V']. Hence Sy, contains an element of [0/]
and thus by Theorem 1.5 also some stratum Sy ;.

Let now [b] = [byr,] and assume that there exists a [b']-short element z’
such that Sy v C Sy . Then [b'] N [b] # 0, hence [b] C [b].
It remains to show that for split G we always have [b] = [byr,]. Let

(V'] = [bwr,]. Then [b] N [¥'] # 0, hence [b] C [¥']. Let (w’, 1') be the truncation
type of the unique [b/]-short element (compare Lemma 5.3). Then by the
first assertion of this proposition, we have Sy, C Sy ,. On the other hand,
('] NV Twr,I # 0, thus by Proposition 5.5 Sy v C Sy . Thus w = w', p =1/,
and [b] = [V']. O

Remark 5.8. Essentially the same proof also shows the following state-
ment. Let bt € G(L) and let € W such that Izl C [b] (for example a
P-fundamental alcove contained in [b] as in Theorem 6.5). Then [b'] C [0] if
and only if [b'] N Tzl # ().

6. Comparison between the arithmetic case
and the function field case

In this section we consider both cases L = k((t)) and L = Quot(W (k)),
and compare between them.

Definition 6.1.

(1) For x € G(L) let ¢, : G(L) — G(L) with g+ o(zgz™!).

(2) Let P be a semistandard parabolic subgroup of G, i.e., a parabolic
subgroup containing 7" but not necessarily B. Let N be its unipotent
radical and M the Levi factor containing 7. Let N be the unipotent

radical of the opposite parabolic. Then an element x € W is called
P-fundamental if ¢, (Ipr) = Iy, ¢z(In) C Iy, and ¢, (I5) 2 I

Definition 6.1 is a generalization of Gortz, Haines, Kottwitz, and Reuman’s
notion of fundamental P-alcoves for split groups from [GHKR10, 13]. Also,
Lemma 6.4, Theorem 6.5 and Proposition 6.10(1) are generalizations to un-
ramified groups of corresponding results of [GHKR10]. However, for our main
theorem in this context (Theorem 6.5) one needs a different proof than the one
used for split groups.

Remark 6.2. Let x € W. Let 7 > 0 be such that G is split over an
unramified extension of O of degree r. Hence ¢" acts trivially on W. Let
2’ :=o(x)o?(x)---o"(x). Let P = MN be a semistandard parabolic subgroup
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with ¢, (P) = P. Then #'P(z')~! = ¢%(P) = P, hence 2’ € Wj;. We denote
the M-dominant Newton point of the o”-conjugacy class of ' by v, p.

LEMMA 6.3. Let z € [b] N W be P-fundamental for some P = MN. Let
r and x’ be as in Remark 6.2. Then x is Q-fundamental for a semistandard
parabolic QQ = MgNgq if and only if
(i) ¢2(Q) =@,
(ii) vp o is central in Mg, and
(iii) (vpa1,0) >0 for each root o of T in Ng.

Proof. Let P = M N where M is the Levi factor of P containing 7T". As
x is P-fundamental, ¢, stabilizes M and N, hence (i) holds for P. Besides,
Ing = ¢4 (In) = 2'Ing(2')~1. Hence 2’ € Qyy, and the Newton point v, s is
central in M. Similarly, ¢, (In) C Iy implies condition (iii) for P. Indeed, let
7 > 0 be such that (/)" € X,(T) C W. For example, r’ can be chosen to be
the order of the factor in W of 2/ € W & W x X,(T). Then (/)" = 7V
and (iii) follows using Section 2.6. To prove the converse we first consider
a special case. Let M’ be the centralizer of v, ;. Then M C M’'. Let P’
be the parabolic subgroup generated by M’ and N. Let N’ be its unipotent
radical. Then ¢,(P’) = P', and P’ O P and N’ C N. Thus in order to
show that x is P’-fundamental it is enough to verify ¢, (Ipy) = Inp. We
consider the decomposition Iny = InjInaye I, Each of the subgroups
M,NNM' NnNM is stable under ¢,, so we can consider each factor of Iy
separately. For I, the assertion is just the assumption. For Inynyr we have
¢ (Innner) € Inaa for every @ > 0. For i = rr’ (with 1/ as above) we have
equality in the above containment. Indeed, ¢ (g) = o' ((z/)" g(2')~"") and
(2)" € X.(T) with (a, (z')") = (a,7'vy0r) = 0 for every root of T in M’
Considering the whole chain of containments we obtain equality for every i. A
similar argument applies to N N M’. It remains to show that if Q C P’ satisfies
(i)—(iii), then z is Q-fundamental, but this is obvious. O

LEMMA 6.4. If x is P-fundamental then every element of Ixl is [-0-
conjugate to x.

Proof. Each element of IxI is I-o-conjugate to an element of xI. By
Lemma 6.3 we may assume that P is maximal with the property that z is
P-fundamental, i.e., that (v, s, a) > 0 for each root « of T'in N. In particular
¢, is topologically nilpotent on I, see Section 2.6.

Let ¢ € I. We apply the Iwahori decomposition to g to obtain g =
gNgMm9x € InInI5. Note that zgya™' € o7 1(I) = I. Thus

zg = (zgne~ " )rgmgy
is I-o-conjugate to xgr gy ¢z(g) € (1N @, (I)). By the Iwahori decomposition
INgz(I) = ¢ (In)IrI5. Using this to decompose girgyo-(g) and iterating we
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obtain that xzg is I-o-conjugate to an element of (I N2 (I)) for every n. Note
that in the nth iteration we only o-conjugate by an element of z¢"(Iy)z 1.
The morphism ¢, is topologically nilpotent on Iy. Hence the product of
these elements exists and in the limit we obtain that xg is I-o-conjugate to
an element of = (N,>0¢;(I)) = zlnmlz. We write this element as zgj, g%
It is I-o-conjugate to :U(a:_la_l(g’ﬁ)x)gfw = ng((gM)_qu;l(g’N)g?W) ex(In
¢ H(I)NMN). A similar iteration as above shows that g}, g’ﬁ is I-o-conjugate
to an element of xIy;. By our assumption h +— z~to~ Y (h™)zh = ¢ ;1 (h™1)h
defines a morphism I; — Ip;. By Lemma 2.1 it is surjective, hence for every
g € Ipy there is a 0=1(h) € 01 (1)) C I which o-conjugates x to zg. O

THEOREM 6.5. For every [b] € B(G) there exists an = € W such that
x € [b] is P-fundamental for some semi-standard P.

Note that it is not easy to give an explicit description of a P-fundamental
alcove contained in a given [b]. In general, neither [b]-short elements nor the
representatives wr, of their truncation types (w,p) are P-fundamental for
any P.

For the proof of the theorem we need the following three lemmas.

LEMMA 6.6. Let P be a semistandard pambolzc subgroup of G. Let I be
an Iwahori subgroup of LG containing T(O). Let Iy = INM and similarly
for In and I . Let x € W with gi)x(IM) = Iy;. Then qu(IN) C Iy if and only

Zf¢x( N) =

Note that in this lemma we do not assume I or P to be fixed by o.

Proof. As I contains T(0O), the group fﬁ is a product of its intersections
with the root subgroups for roots of T"in N. Let U, be such a root subgroup.
We write © = etw, with p, € X.(T) and w, € W. Let ¢(«) be the root of T'
in N with o (wzUy(ayw 1) = U,. The assertion on IN is equivalent to U, ﬂI -

(xINa: 1) for all . ThlS is equivalent to UaﬂIN C a(2(Uypa)N N) ). Note
that U, = G,, hence we can identify U, N I with e®k[[¢]] for some ¢, € Z.
As x = et*w, the above inclusion holds if and only if

(6) (ta, 0 H(@)) + y(a) < o

for all a. As I is an Iwahori subgroup we have ¢q 4+ ¢_o = 1 for all a. Hence
(6) is equivalent to

(oo (—a)) + O_p(a) 2 P—a-

w(—a). Hence this last inequality is equivalent to the
-y O

Note that —i(a) =
inclusion o (zIyz1)
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LEMMA 6.7. Let [b] € B(G), and let M,, be the centralizer of its dominant
Newton point. Let P, be the associated parabolic subgroup and let N, be its
unipotent radical. Then [b] contains a P-fundamental alcove x if and only
if there is an Twahori subgroup I with I N M, = I N M, and an element
bo € Qs N [b] with o(bo(I N N,)bg') C TN N,.

Proof. Assume first that there is an Iwahori subgroup I and a by as above.
As by € Qyy, we have ¢y, (Ing,) = o(Ing,) = Iny,. By Lemma 6.6, ¢y, (INN,) D
INN,. Note that I N M, = I N M, implies that T(0O) C I. Letye W with
y Iy=1. Let M =y M,y and P = y ! P,y with unipotent radical N and
opposite N. Then y~ 'y y = Ins. Let x = o~ (y) hoy € [b]. We have

U(xIMafl) = U(myilfMuymfl)
=y o(boln, by )y

and similar translations for N and N. Hence x is a P-fundamental alcove in
[b]. For the other direction let = be a P-fundamental alcove and let w € MW Mv
with w™!Mw = M,. Then w='(I N M)w = I N M,. A similar translation as
above shows that I = w'Tw and by = o~ (w) ‘zw satisfy ¢y, (P,) = P, =
o(P,), hence by € Wyy,. Furthermore, &b, (Ing,) = Iy, = o(Ing,), whence
boln,by " = Ing, and by € Qyy, . 0

LEMMA 6.8. Let M be the Levi factor containing T' of a standard parabolic
subgroup P, and let N be the unipotent radical of P. Let Iy and I be two
Twahori subgroups containing I N M where I is the standard Iwahori. Then
there is a unique Iwahori subgroup I' containing IN M, Iy " N, and Iy N N
and minimizing the intersection I' N N.

Proof. The Iwahori subgroups we are interested in correspond to alcoves in
the apartment corresponding to 7" in the Bruhat-Tits building of G. Note that
an Iwahori subgroup I containing I N M satisfies TN M = I'N M. The Iwahori
subgroups J containing /NP correspond to the alcoves in the intersection of the
half-spaces of the apartment corresponding to the conditions J N U, 2 I N U,
for each root a in P. We denote this subset of the apartment by P;. Note
that P; = Pj implies that INP =T NP and thus I = I’. It is thus
enough to show that Py, NPy, = Py for some I'. Note that our assumption
It N M = I, N M implies that P, N Pr, is nonempty. Let a; and az denote
the alcoves corresponding to I; and I3. To prove the assertion above we use
induction on the minimal distance in the building between a; and an alcove
in Pr, NPr,. If this distance is 0, then a; € Pr, N Py, hence Pr, N Pr, = Pry,.
Assume now that a; ¢ Pr, NPr,. Then there is an affine hyperplane bounding
a; and with the property that a; and Py N Py, lie on different sides of this
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hyperplane. Let us denote this hyperplane by H. Let a} be the alcove obtained
from a; by reflection at H and let I be the corresponding Iwahori subgroup.
Then by definition the minimal distance of a} to an element of Py, NPy, is 1
less than the corresponding distance for a;. Thus by induction it is enough to
show that Py, NPy, = P N Pr,. For all affine hyperplanes "% H, the two
alcoves a} and a; lie on the same side of H'. Let S be the half-space bounded
by H and containing a}. Then Py ="PnN S. On the other hand we chose H
such that Pr, NPr, € S. Hence P, NPr, = Py N Pr. O

For a precise description of the sets Pr for the standard Iwahori compare
[GHKR10, 3].

Proof of Theorem 6.5. Let v € X, (T)g,dom be the dominant Newton point
of [b]. Let P, be the associated parabolic subgroup and P, = M,N, the
decomposition into the Levi factor containing 7" and the unipotent radical.
Recall that v, P,, M, and N, are o-invariant. Let by € Wy, be a [b]-short
element. By Lemma 6.7 it is enough to prove that there is an Iwahori subgroup
I of LG with I N M, = Iy, and such that ¢, (INN) C INN. Let r > 0
be such that G is split over some unramified extension of O of degree r.
In particular, ¢” then acts trivially on the root system of G and on W. Let
¢ = o(bg)o(bg)---0"(by) € W. Applying the decomposition W = W x
X«(T) we obtain ¢ = wejie. Let n. be the order of w, in W. Replacing r by
ner and using o (bg)a?(by) - - - 0"Meby = ¢ € X,(T) we may assume that we
already have ¢ € X,(T'). Note that as by is [b]-short, we have ¢ = vy, =
rv as elements of X,(T)q. In particular, ¢ is dominant and central in M,,.
Using Section 2.6 and the fact that ¢" acts trivially on W we obtain that
o (cly,cY) = eIy, = Iy, and 0" (cln,c™') = cly,c™' C Iy,. Hence c
itself is a P,-fundamental alcove for the o"-conjugacy class of ¢ in G. Let I
with INM, =1 M, be unique Iwahori subgroup of LG such that INN, is
minimal containing Iy, , ¢p,(IN, ), - - - ,¢7I;0_1(INV), cf. Lemma 6.8. Then QSbO(f)
is again an Iwahori subgroup. It satisfies ¢y, (I) N M, = ¢, (I N M,) = Iy,
and the analogous minimality property for ¢y, (In, ), .-, ¢; (In,). We have

v (In,) = o"(cIn,c™') C In,. Thus ¢y (INN,) € INN,, and I is as
claimed. O

Remark 6.9. Denote for the moment by B(G) () the set of o-conjugacy
classes in G(k((t))), and denote by B(G)w (x)1/p the corresponding set in
G(W (k)[1/p]). Kottwitz’s classification maps both sets injectively to X, (T)g x
71(G)r. Note that X.(T)g x 71(G)r only depends on Gy, but not on k or on
the choice of the arithmetic or the function field case. Furthermore, the images
of B(G)(y) and B(G)w(x)1/p) in X«(T)g X m1(G)r can also be described in
terms of Gr,, and are independent of the choice of L. In particular we obtain
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canonical bijeCtiOHS B(G)k((t)) = B(G)W(k)[l/p} and B(G>k((t)) = B(G)k:’((t))
for all algebraically closed fields &’ of characteristic p. From now on we use
these bijections to identify the sets of o-conjugacy classes and write again B(G)
for all of them.

The main reason to introduce fundamental alcoves in this paper is the
following proposition which yields a direct comparison between nonemptiness
of intersections of o-conjugacy classes and Iwahori double cosets in the function
field case and in the arithmetic case.

PROPOSITION 6.10.

(1) Let L = k((t)) or Quot(W(k)). Let [b] € B(G) and let xp be a P-
fundamental alcove contained in [b]. Then

{zeW |IzInb £ 0} ={z e W |z e Iy ' Ixylo(y)] for somey € W}.

(2) Let x € W. Then a o-conjugacy class in G(W (k)[1/p]) contains an
element of IxI (for I defined with respect to W (k)) if and only if the
corresponding o-conjugacy class in G(k((t))) contains an element of
IxI (where I is now a subgroup of LG(k)).

For split groups the first assertion is [GHKR10, Prop. 13.3.1]. Our state-
ment follows using the same proof. As it is very short we repeat it for the
reader’s convenience.

Proof. Let g € IzIN[b]. Then there is an h € LG with h™1z,0(h) = g. Let
y € W with h € Iyl. Then z € Izl = Igl C Iy='IxyIo(y)I. For the other
direction let x € Iy~ IxyIo(y)I for some y € W. Then IzIny 'zylo(y) # 0.
Recall that every element of Izl is of the form i~lxyo(i) for some i € I
(Lemma 6.4). Thus Ix] contains an element of the form y~1i~la,o(iy) € [b].

From (1) together with Theorem 6.5 we see that both conditions in (2)
can be translated into the same condition in terms of the combinatorics of W
which is independent of the choice of L. Thus (2) follows. O

In particular, we can now easily deduce Theorem 1.7.

Proof of Theorem 1.7. This follows from Proposition 6.10(2) together with
Theorem 1.1(2). O

We finish our discussion of fundamental alcoves by a comparison to short
elements.

LEMMA 6.11. Let G be split. Then every P-fundamental alcove in a given
o-conjugacy class [b] is W -conjugate to the unique [b]-short element.

Note that for split groups, W-conjugation coincides with W-g-conjugation.
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Proof. Let by be P-fundamental and contained in [b]. We write P =
MN for the unipotent radical N of P and the Levi factor M containing T
Let z be the [b]-short element and let M, be the centralizer of the dominant
Newton point v of b. By definition 2 € W is an element of length 0 in WMV.
By Lemma 6.3 we may assume that M is equal to the centralizer of the M-
dominant Newton point of by. As [bg] = [b], their Newton points coincide and
kG (bo) = ki (b). As in the proof of Lemma 5.3 the Newton point of by together
with kg(bo) determines rkps(bp). Hence there is a w € W that conjugates
M to M, and also kps(bo) to the element v, € m1(M,) defined in the proof
of Lemma 5.3. Choosing w of minimal length in its coset WrwWy,, it also
conjugates Iy to Ips,. Now wlbow and z are in I/T/MV and both have length
0 as elements of WMV. Thus they are in the subgroup Q. As G is split,
we have that kpr, @ Qp, — m(M,) is an isomorphism. As the images of z
and wbyw under K, coincide, the elements have to be equal. Hence bg is
W-conjugate to the [b]-short element x. O

7. Applications

In this section we consider the case F' = QQ,. We review some of the theory
of Ekedahl-Oort strata and relate it to our notion of truncations of level 1. We
concentrate on the example of the moduli space A, of principally polarized
abelian varieties of dimension g, and briefly indicate possible generalizations
to other Shimura varieties of PEL type. For more details on this general theory
of Ekedahl-Oort strata we refer to [VW13].

The Ekedahl-Oort stratification is the stratification of 4, according to
the p-torsion (A, \)[p| of the principally polarized abelian varieties (A, \) as-
sociated with the points of A,. It was first defined and studied by Oort in
[Oor01]. Oort classifies the p-torsion (A, A)[p] by a finite combinatorial invari-
ant, so-called elementary sequences. A second description of the Ekedahl-Oort
invariant (and more generally of G(k)-orbits on a certain variety associated
with a reductive group G over Z, together with a fixed Levi subgroup that
is also defined over Z,) has been given by Moonen and Wedhorn in [MWO04].
They use a description by so-called F-zips and identify the index set for the
Ekedahl-Oort stratification of A, with #W where y is the minuscule dominant
element given by the Shimura datum and where W is the Weyl group of GSpy,.
Another related theory is Vasiu’s classification of so-called Shimura F-crystals
in [Vas10, Main Theorem C].

In the language of truncations of level 1 the Ekedahl-Oort invariant on
A, can be studied as follows. From an element of Ay (k) we obtain a polarized
p-divisible group (A, \)[p™]. The polarization equips its Dieudonné module
with a symplectic form (-,-). In the same way as in Section 1.4 we trivialize
its Dieudonné module and obtain that the Frobenius is given by an element b
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of GSpy, (W (k)[1/p]), well-defined up to o-conjugation with GSp,, (W (k)) =
K (k). It satisfies that b € K (k)u(p)K (k) where p is as above, i.e., u(p) is the
diagonal matrix with entries p and 1, each with multiplicity g. The Ekedahl-
Oort stratification is then nothing but the stratification that one obtains by
considering the truncations of level 1 of the elements b. The index set for
truncations of level 1 of elements of Ku(p)K is equal to #W (Theorem 1.1(1)).
This identification coincides with the one used in the classification by Moonen
and Wedhorn.

For w € *W let Sy, be the reduced subscheme of the reduction of A, given
by the condition that (A, \)[p] has Ekedahl-Oort invariant w. Oort proves that
each stratum S,, is locally closed, and the closure S,, is a union of strata. The
set of strata that are contained in Sy, is determined in [Wed] together with (6.4)
of loc. cit. It is given by the same formula as the closure relations between the
corresponding strata Sy, in the loop group of G = GSpy, (that we compute
in Corollary 4.7).

Recall that in Theorem 1.1(2) we established a comparison between the
stratification by truncations of level 1 and the subdivision of LG into Iwahori
double cosets. Relations between the Ekedahl-Oort stratification and the sub-
division into Iwahori-double cosets are also used in the theory of moduli spaces
of abelian varieties, see for example [EvdG09, Cor. 8.4(iii)] or [GY12, 9].

We now compare Oort’s minimal p-divisible groups (see [Oor05]) to our
notion of short elements. Let X be a p-divisible group over an algebraically
closed field k£ and let (M, F') be its Dieudonné module. Let N = M ®yy (1)
Quot(W (k)). By definition there is a unique isomorphism class of minimal p-
divisible groups in each isogeny class of p-divisible groups (see [Oor05]). Explic-
itly, if X is minimal, its Dieudonné module is isomorphic to a Dieudonné mod-
ule of the following form. There is a decomposition of the rational Dieudonné
module into simple summands N = @ézl N; such that M = @5:1 M N N;.
Let \; = n;/h; with (n;, h;) = 1 be the slope of N;. Then M N N; has a basis
el ... ,e}'” such that F(eé-) = e§~+ni. Here we use the notation e§-+hi = peé-.
Equivalently, X is minimal if the endomorphisms of (M, F') are a maximal
order in the endomorphisms of (N, F').

Let now f; = eﬁli 41— Let h = dim N. One easily checks that if we write
F = bo for b € GLy(L) with respect to the basis f{,..., f,%l, f2,..., then b is
contained in the Levi subgroup M given by the decomposition N = @2:1 N;.
Furthermore, if y denotes the M-dominant Hodge polygon of b (with respect to
the choice of the upper triangular matrices as Borel subgroup), then p € {0, 1}
is minuscule and b = 7, ) satisfies bl wb™! = Is. Hence a p-divisible group is
minimal if and only if the K-o-conjugacy class of the element determining the
Frobenius on the Dieudonné module contains a short element, or equivalently
(by Lemma 6.11) a P-fundamental alcove.
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COROLLARY 7.1. Let X be a minimal p-divisible group over k and let Y
be a p-divisible group with X[p] =2 Y[p]. Then X =Y. An analogous assertion
holds for polarized p-divisible groups.

This reproves the main theorem of [Oor05].

Proof. We use Dieudonné theory and trivialize the Dieudonné modules of
X and Y to reformulate the assertion. Let G = GLj, respectively GSp,, where
h is the height of X. Let bx € G(W(k)[1/p]) be the element describing the
Frobenius on the Dieudonné module of X. As X is minimal we can choose the
trivialization in such a way that bx is a P-fundamental alcove for some P. Let
by € G(W(k)[1/p]) be the element describing the Frobenius on the Dieudonné
module of Y. As X[p] = Y[p] we can choose the trivialization in such a way
that by € KibxK;. By Lemma 6.4, bx and by are I-o-conjugate to each
other. In particular, they are K-o-conjugate which implies that X 2Y. 0O

It would be interesting to construct a generalization of minimal p-divisible
groups for all good reductions of PEL Shimura varieties. In particular, one
would be interested in a representative of a given isogeny class of p-divisible
groups with endomorphisms and polarization satisfying the analogue of Corol-
lary 7.1. Although we constructed P-fundamental alcoves for all o-conjugacy
classes of elements of G(L) for all G, our theory does not imply the existence
of such minimal p-divisible groups with extra structure for nonsplit G. The
reason is that we did not study whether there exist P-fundamental alcoves in a
given o-conjugacy class which in addition lie in the prescribed K-double coset
given by p. A weaker generalization of the notion of minimality would be to
call a p-divisible group with PEL structure minimal if the K-o-conjugacy class
of the element determining the Frobenius on the Dieudonné module contains
a short element. Our theory implies the existence of such elements in each
isogeny class, compare the discussion after Corollary 7.2.

One interesting open question about Ekedahl-Oort strata is to determine
which Newton polygons occur in a given Ekedahl-Oort stratum. Our theory for
loop groups (in particular, Theorem 1.5) together with the comparison results
of the preceding section yield the following necessary condition.

COROLLARY 7.2. Let x be a k-valued point of Sy, for some w. Let xy €
Ag(k) be a point corresponding to the minimal p-divisible group in the isogeny
class corresponding to x. Then xg € Sy.

Proof. Let p be the Hodge vector associated with Ag. Let [b] € B(G)
be the class corresponding to the isogeny class of the p-divisible group corre-
sponding to x. By Theorem 1.7 the corresponding class [b] in LG intersects
the truncation stratum S, , € LG. Let by € W be a [b]-short element. Then
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the representative of by in GSpy, (W (k)[1/p]) describes the Dieudonné mod-
ule of the minimal p-divisible group in [b]. Let (wo, 1) be its truncation type.
From Theorem 1.5 we obtain that Sy, C Sy, in LG. Recall that the closure
relations between the strata S,, are known to coincide with those between the
corresponding strata Sy, in the loop group of G = GSpy,. Thus the corollary
follows. O

For the Siegel moduli space A4 this has been conjectured by Oort [Oor04],
Conjecture 6.9 and has been shown previously by Harashita in [Har07], [Har09],
[Har10] using different methods. While this article was being finished, Ha-
rashita published a preprint [Har12] in which he proves an analog of Corol-
lary 7.2 for some catalog of p-divisible groups in the nonpolarized case (without
endomorphisms). Our approach to prove Corollary 7.2 also leads to variants
without polarization, and/or with endomorphisms: Let S, denote the trun-
cation strata in a moduli space of abelian varieties associated with a PEL
Shimura variety with good reduction at p. The same proof as above then
shows that x € Sy, (k) for some w € #W implies that there is an element
whose p-divisible group (with extra structure) is isogenous to the one corre-
sponding to z, such that the associated element b, € G(W (k)[1/p]) is short,
and such that zg € S,. This element is in general (for nonsplit G') not uniquely
defined by the isogeny class (compare Lemma 5.3). For more details we refer
to [VW13].

For the moduli space A, of principally polarized abelian varieties of di-
mension ¢ in characteristic p > 2 we know by [EvdG09, Th. 11.5] that each
Ekedahl-Oort stratum which is not contained in the supersingular locus is ir-
reducible. In particular, there is a unique generic Newton polygon in each
Ekedahl-Oort stratum S, of Ag. Then in the same way as for the loop group
we can use the above result to determine this Newton polygon.

COROLLARY 7.3. Let v be the generic Newton polygon in S, C Ay for
some w € *W. Then v is the mazximal element in the set of Newton polygons
of short elements x such that x € Sy,.
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