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Recovering the good component
of the Hilbert scheme

By Torsten Ekedahl and Roy Skjelnes

Abstract

We give an explicit construction, for a flat map X −→ S of algebraic

spaces, of an ideal in the n’th symmetric product of X over S. Blowing

up this ideal is then shown to be isomorphic to the schematic closure in

the Hilbert scheme of length n subschemes of the locus of n distinct points.

This generalizes Haiman’s corresponding result for the affine complex plane.

However, our construction of the ideal is very different from that of Haiman,

using the formalism of divided powers rather than representation theory. In

the nonflat case we obtain a similar result by replacing the n’th symmetric

product by the n’th divided power product.

0. Introduction

The Hilbert scheme, HilbnX/S , of length n subschemes of a scheme X over

some S is in general not smooth even if X −→ S itself is smooth. Even worse,

it may not even be (relatively) irreducible. In the case of the affine plane over

the complex numbers (where the Hilbert scheme is smooth and irreducible)

Haiman (cf. [14]) realized the Hilbert scheme as the blow-up of a very specific

ideal of the n’th symmetric product of the affine plane. It is the purpose of this

article to generalize Haiman’s construction. As the Hilbert scheme in general

is not irreducible while the symmetric product is (for a smooth geometrically

irreducible scheme over a field say), it does not seem reasonable to hope to

obtain a Haiman-like description of all of HilbnX/S , and indeed we will only

get a description of the schematic closure of the open subscheme of n distinct

points. With this modification we get a general result that seems very close to

that of Haiman. The main difference from the arguments of Haiman is that

we need to define the ideal that we want to blow up in a general situation and

Haiman’s construction seems to be too closely tied to the 2-dimensional affine

space in characteristic zero.
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As a bonus we get that our constructions work very generally. We have

thus tried to present our results in a generality that should cover reasonable

applications. (Encouragement from one of the referees has made us make it

more general than we did in a previous version of this article.)

There are some rather immediate consequences of this generality. The

first one is that we have to work with algebraic spaces instead of schemes as

otherwise the Hilbert scheme (as well as the symmetric product) may not exist.

A second consequence is that we find ourselves in a situation where existing

references do not ensure the existence of HilbnX/S and we give an existence proof

in the generality required by us (which is a rather easy patching argument to

reduce it to known cases).

It turns out that the key to constructing the ideal to blow up is to use the

formalism of divided powers. Recall that if A is a commutative ring and F a

flat A-algebra, then the subring of Sn-invariants of F⊗An is isomorphic to the

n’th divided power algebra ΓnA(F ) (through the map that takes γn(r) to r⊗n).

Using the fact that Γn(F ) is the degree n component of the divided power

algebra Γ∗(F ) we can define an ideal in Γn(F ) (this graded component of the

divided power algebra becomes an algebra using the multiplication of F ) that

is our candidate to be blown up. Note that in the definition of this ideal we

are using in an essential way the multiplication in the divided power algebra

Γ∗(F ) forcing us to carefully distinguish between the multiplication in this

graded algebra and the multiplication of its graded component Γn(F ) induced

by the multiplication on F . On the upside it is exactly this interplay that allow

us to define, in a generality outside of Haiman’s case, the ideal. Furthermore,

the excellent formal properties of Γn(F ) allows us to define an analogue of

the symmetric product of Spec(F ) −→ Spec(A) as Spec(Γn(F )) −→ Spec(A)

in the case when A −→ F is not flat. This makes our arguments go through

without problems in the case when Spec(F ) −→ Spec(A) is not necessarily

flat. (We also need to extend the construction of Spec(Γn(F )) to the nonaffine

case; the gluing argument needed to make this extension uses results of David

Rydh [21].)

In more detail this paper has the following structure. We start with some

preliminaries on divided powers and recall the Grothendieck-Deligne norm

map. The main technical result is to be found in Sections 5 and 6. There

we first find a (local) formula for the multiplication of the tautological rank

n-algebra over the configuration space of n distinct points of X. We then

note that this formula makes sense over the blow-up of a certain ideal in the

full symmetric product. This gives us a family of length n subschemes of X

over this blow-up and hence a map of it to the Hilbert scheme. Once having

constructed it, it is quite easy to show that it gives an isomorphism of the

blow-up to the schematic closure of the subspace of n distinct points of the
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Hilbert scheme. The proof first does this in the case X −→ S is affine and

then discusses the patching (and limit arguments) needed to extend it to the

more general case.

We finish by tying some loose ends. First we generalize Fogarty’s result

on the smoothness of HilbnX/S for X −→ S smooth of relative dimension 2

removing the conditions on the base S needed by Fogarty. Finally, we discuss

how one can, under suitable conditions, embed the blow-up in a Grassmannian

as Haiman does.
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ful reading and their comments. In particular, we are grateful to one of the

referees to an earlier version of this article, who insisted on putting our re-
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We have received a lot of inspiration with conversations with our col-

leagues. In particular, the second author would like to acknowledge input

from Steve Kleiman, Ezra Miller and Dan Laksov.

1. Divided powers and norm

In this section we first recall some properties for the ring of divided powers.

The standard reference is Roby [19] and [20], but see also [5] and [9]. Algebras

in this note are commutative and unital.

1.1. The ring of divided powers. Let A be a commutative ring and M

an A-module. The ring of divided powers ΓAM is constructed as follows.

We consider the polynomial ring over A[γn(x)](n,x)∈N×M , where the variables

γn(x) are indexed by the set N×M , where N is the set of nonnegative integers.

Then the ring ΓAM is obtained by dividing out the polynomial ring by the

following relations:

γ0(x)− 1,(1.1.1)

γn(λx)− λnγn(x),(1.1.2)

γn(x+ y)−
n∑
j=0

γj(x)γn−j(y),(1.1.3)

γn(x)γm(x)−
Ç
n+m

n

å
γn+m(x)(1.1.4)

for all integers m,n ∈ N, all x, y ∈ M , and all λ ∈ A. We denote the residue

class of the variable γn(x) in ΓAM by γnM (x), or simply γn(x) if no confusion

is likely to occur. The ring ΓAM is graded where γn(x) has degree n, and with

respect to this grading we write ΓAM =
⊕
n≥0 ΓnAM .
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1.2. Polynomial laws. Let A be a ring, and let M and N be two fixed

A-modules. Assume that gB : M
⊗

AB −→ N
⊗

AB is a map of sets, for each

A-algebra B, such that for any A-algebra homomorphism u : B −→ B′ the

following diagram is commutative:

M
⊗

AB

��

gB // N
⊗

AB

��
M
⊗
AB

′ gB′ // N
⊗

AB
′,

where the vertical maps are the canonical homomorphisms. Such a collection

of maps is called a polynomial law from M to N , and we denote the polynomial

law with {g} : M −→ N .

Definition 1.3 (Norms). Let A be a ring, M , and let N be two A-modules.

(1) A polynomial law {g} : M −→ N is homogeneous of degree n if for any

A-algebra B, we have that gB(bx) = bngB(x) for any x ∈M⊗
AB and

any b ∈ B.

(2) A polynomial law {g} : F −→ E between two A-algebras F and E is

multiplicative if gB(xy) = gB(x)gB(y) for any x and y in F
⊗
AB for

any A-algebra B. Furthermore, we require that gB(1) = 1.

A norm (of degree n) from an A-algebra F to an A-algebra E is a homogeneous

multiplicative polynomial law of degree n.

1.4. Universal norms. Let n be a nonnegative integer. For any A-algebra

B, we have that ΓnA(M)
⊗

AB is canonically identified with ΓnB(M
⊗
AB). It

follows that we have a polynomial law {γn} : M −→ ΓnAM and by (1.1.2) the

law is homogeneous of degree n. The polynomial law {γn} : M −→ ΓnAM is

universal in the sense that the assignment u 7→ {u ◦ γn} gives a bijection be-

tween the A-module homomorphisms u : ΓnAM −→ N and the set of polynomial

laws of degree n from M to N .

Furthermore, if F is an A-algebra, then ΓnAF is an A-algebra and then the

polynomial law {γn} : F −→ ΓnAF is the universal norm of degree n ([20, Thm.

p. 871], [9, 2.4.2, p. 11] ). The norm {γn} is compatible with the product, that

is γnB(xy) = γnB(x)γnB(y), for all A-algebras B.“Universal” here means in the

sense as described above, but for A-algebra homomorphisms from ΓnAF .

1.5. The different products. We refer to the product structure on ΓAF as

the external structure. We will denote the external product with ∗ in order

to distinguish the external product from the product structure on each graded

component ΓnAF defined in the previous section. (Note that our convention is

the reverse of the one used in [9].)
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1.6. The canonical homomorphism. An important norm is the following.

Let E be an A-algebra that is locally free of finite rank n > 0 as an A-module.

For any A-algebra B, we have the determinant map dB : E
⊗
AB −→ B send-

ing x ∈ E⊗AB to the determinant of the B-linear endomorphism e 7→ ex on

E
⊗
AB. It is clear that the determinant maps give a multiplicative polyno-

mial law {d} : E −→ A, homogeneous of degree n = rankAE. By the universal

properties 1.4 of ΓnAE we then have an A-algebra homomorphism

(1.6.1) σE : ΓnAE −→ A

such that σE(γn(x)) = det(e 7→ ex) for all x ∈ E. We call σE the canonical

homomorphism ([7, §6.3, p.180], [15, §1.4, p.13]).

Proposition 1.7. Let E be an A-algebra such that E is free of finite

rank n > 0 as an A-module. For any element x ∈ E, the characteristic

polynomial det(t − x) ∈ A[t] of the endomorphism e 7→ ex on E is tn +∑n
j=1(−1)jtn−jσE(γj(x) ∗ γn−j(1)). In particular, we have

Trace(e 7→ ex) = σE(γ1(x) ∗ γn−1(1)).

Proof. Let t be an independent variable over A, and write E[t]=E
⊗

AA[t].

By the defining property of the canonical homomorphism σE[t] we have that

the characteristic polynomial det(t − x) = σE[t](γ
n(t − x)). We now use the

defining relations (1.1.2) and (1.1.3) in the A[t]-algebra ΓnA[t]E[t] and obtain

γn(t− x) =
n∑
j=0

(−1)jγj(x) ∗ γn−j(t)

=
n∑
j=0

(−1)jtn−jγj(x) ∗ γn−j(1).

We have that ΓnA(R)
⊗

AB = ΓnB(R
⊗
AB) and that σE[t] = σE ⊗ idA[λ].

Consequently σE[t] acts trivially on the variable t and the action otherwise is

as σE . Thus we obtain that σE(γj(x) ∗ γn−j(1)) in A is the j’th coefficient of

the characteristic polynomial of e 7→ ex, which proves the claim. �

2. Discriminant and ideal of norms

In this section we define the important ideal of norms and show their

connection with discriminants.

Definition 2.1. Let F be an A-algebra. For each integer n ≥ 0, we consider

the A-module homomorphism

δ : ΛnAF
⊗
A ΛnAF

// ΓnA(F )
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that sends x = x1 ∧ · · · ∧ xn and y = y1 ∧ · · · ∧ yn to

δ(x, y) := det∗(γ1(xiyj)) :=
∑
σ∈Sn

sign(σ)γ1(x1yσ(1)) ∗ · · · ∗ γ1(xnyσ(n)).

(Here we use det∗ to denote the determinant with respect to the ∗-product.

We also allow n = 0, the determinant of a 0× 0-matrix being equal to 1.)

Remark 2.2. Note that for each element z ∈ F the element γ1(z) is in

Γ1
AF = F , but the product γ1(z1) ∗ · · · ∗ γ1(zn) is in ΓnAF .

Remark 2.3. Since F is commutative, we have that δ(x, y) = δ(y, x).

2.4. As a preparation for the next lemma we make the following obser-

vation. If F is the product ring F ′ × F ′′, then if e′, f ′ ∈ F ′ and e′′, f ′′ ∈ F ′′
and s′, s′′, t′, t′′ are polynomial variables, we may expand γn(s′e′ + s′′e′′) ·
γn(t′f ′ + t′′f ′′) = γn(s′t′e′f ′ + s′′t′′e′′f ′′) and conclude that the decomposi-

tion ΓnA(F ′ × F ′′) =
∏
i+j=n ΓiAF

′⊗
A ΓjAF

′′ is a decomposition as rings and

that the ring structure on ΓiAF
′⊗

A ΓjAF
′′ is the tensor product of the ring

structures of ΓiAF
′ and ΓjAF

′′. In particular, for the A-algebra F =
∏m
i=1Aei,

we get that ΓnAF is the product of copies of A with the primitive idempotents

being the DP-monomials γk1(e1) ∗ γk2(e2) ∗ · · · ∗ γkm(em), where 0 ≤ ki and∑
i ki = n.

Lemma 2.5. Let x1, . . . , xn and y1, . . . , yn, n ≥ 0, be 2n-elements in F .

Then we have

δ(x, y) = det(γ1(xiyj) ∗ γn−1(1))1≤i,j≤n.

Proof. We first note that the right-hand side has the same transforma-

tional properties as δ giving rise to an A-linear map ΛnAF
⊗

A ΛnAF −→ ΓnAF .

Furthermore, the statement is compatible with changes in both A and F so

we may assume that A = Z and that F is the polynomial ring in the variables

xi and yi. We may then replace Z by an algebraically closed field K of char-

acteristic zero. Now, the formula to be proven involves only elements of ΛnKF
′

where F ′ ⊆ F is the subspace spanned by the xi and yj , with 1 ≤ i, j ≤ n. This

means that we may replace F by any algebra quotient F −→ F ′′ into which F ′

injects. Since K is algebraically closed, we may assume that F =
∏m
i=1Kei.

As we want to show equality of two K-linear maps ΛnKF
⊗
K ΛnKF −→ ΓnKF ,

we may assume that xi = eri and yj = esj for r1 < r2 < · · · < rn and

s1 < s2 < · · · < sn. However, unless ri = si for all i, both matrices (γ1(xiyj))

and (γ1(xiyj) ∗ γn−1(1)) will contain a zero row or column and hence their de-

terminants will both be zero. Hence we may assume ri = si and then also that

m = n and ri = si = i. This means that the matrix (γ1(xiyj)) will be diagonal

with diagonal entries γ1(ei) and its determinant is therefore γ1(e1)∗· · ·∗γ1(en).

On the other hand we have that 1 = e1+· · ·+en, and hence (γ1(xiyj)∗γn−1(1))
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will also be a diagonal matrix whose i’th diagonal entry consists of all the de-

gree n monomials in the γj(ek) that contain γ1(ei). As the determinant is the

product of these diagonal entries and these monomials are orthogonal idempo-

tents, we see that the only term that survives is the term γ1(e1) ∗ · · · ∗ γ1(en)

from each diagonal entry and their product is again γ1(e1) ∗ · · · ∗ γ1(en). �

Lemma 2.6. Let x1, . . . , xn, n > 0, and f be elements in an A-algebra F .

Then we have that γ1(x1f
n) ∗ γ1(x2) ∗ · · · ∗ γ1(xn) equals

n∑
c=1

(−1)c+1(γc(f) ∗ γn−c(1)) · (γ1(x1f
n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)).

Proof. Using that γn(1) is the identity element with respect to the internal

product on ΓnF , the equality above is equivalent to

0 =
n∑
c=0

(−1)c+1(γc(f) ∗ γn−c(1)) · (γ1(x1f
n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)).

As in the proof of Lemma 2.5 we may assume that F =
∏m
i=1Aei, that x1 = e1

and each xi, i > 1, is equal to some ej and we may further write f =
∑m
i=1 λiei.

Then, for 0 ≤ c ≤ n, γ1(x1f
n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn) equals λn−c1 γ1(x1) ∗

γ1(x2) ∗ · · · ∗ γ1(xn) and hence the sum to be shown to be equal to zero equals

(−1)n+1(γ1(x1) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)) ·
n∑
c=0

(γc(f) ∗ γn−c(−λ1)).

The right multiplicand equals γn(f−λ1), and as f−λ1 =
∑m
i=2(λi−λ1)ei we get

that γn(f−λ1) is a linear combination of DP-monomials γk1(e1)∗γk2(e2)∗· · ·∗
γkn(en) with k1 = 0. On the other hand, as x1 = e1, γ1(x1)∗γ1(x2)∗· · ·∗γ1(xn)

is an integer multiple of a DP-monomial γk1(e1) ∗ γk2(e2) ∗ · · · ∗ γkn(en) with

k1 > 0 and as different DP-monomials have internal product equal to zero, we

conclude. �

Definition 2.7 (The ideal of norms). Let n > 0 be a fixed integer, and let

V ⊆ F be an A-submodule of an A-algebra F . We define IV ⊆ ΓnAF , the ideal

of norms associated to V , as the ideal generated by

δ(x, y) ∈ ΓnAF

for any 2n-elements x = x1, . . . , xn and y = y1, . . . , yn in V ⊆ F .

Remark 2.8. Both the symmetric product and the Hilbert scheme make

sense when n = 0. However, our results become trivial in that case so we shall

from now assume that n > 0.

Lemma 2.9. Let A −→ B be a homomorphism of rings, and let V ⊆ F

be an A-submodule of an A-algebra F . The extension of the ideal IV by the
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A-algebra homomorphism ΓnAF −→ ΓnA(F )
⊗

AB equals the ideal IVB ; the ideal

of norms associated to the B-submodule Im(V
⊗
AB −→ F

⊗
AB).

Proof. Via the canonical identification ΓnA(F )
⊗

AB = ΓnB(F
⊗
AB) the

element δ(x, y)⊗1B is identified with δ(x⊗1B, y⊗1B), from which the lemma

follows. �

Lemma 2.10. Let F = A[T1, . . . , Tr] be the polynomial ring in r > 0 vari-

ables, and let V ⊂ F be the A-module spanned by those monomials whose degree

in each of the variables is less than n. Then the ideals of norms associated to

V and F are equal ; that is, IV = IF . Furthermore, if n! is invertible in A,

then IW = IF , where W ⊂ F is the A-module spanned by monomials of degree

less than n.

Proof. Given x1, . . . , xn and f in F we write x(c) = x1f
c, x2, . . . , xn. For

any y1, . . . , yn, we then obtain from the equality given in Lemma 2.6 that

δ(x(n), y) =
n∑
c=1

(−1)c+1(γc(f) ∗ γn−c(1)) · δ(x(n− c), y).

The first assertion of the lemma follows from the above equality. When n! is

invertible, the n’th powers of linear forms span the module generated by degree

n monomials, and the above equality then also yields the second assertion. �

2.11. Discriminant. Let E be an A-algebra that is free of finite rank n as

an A-module. The trace map E −→ A sends an element x ∈ E to the trace

of the endomorphism e 7→ ex of the A-module E. There is an associated map

E −→ HomA(E,A) taking y ∈ E to the trace tr(xy) for any x ∈ E.

The discriminant ideal DE/A ⊆ A is defined (see, e.g., [1, p. 124]) as the

ideal generated by the determinant of the associated map E −→ Hom(E,A).

Proposition 2.12. Let E be an A-algebra that is free of finite rank n as

an A-module. Then we have for any elements x = x1, . . . , xn and y = y1, . . . , yn
in E that

σE(δ(x, y)) = det(tr(xiyj)),

where σE is the canonical homomorphism σE : ΓnAE −→ A and (tr(xiyj)) is

the (n×n) matrix with entries tr(xiyj). In particular, the extension of IV , the

ideal of norms associated to V = E, by σE is the discriminant ideal, and we

have that the extension σE(IV )A = A if and only if Spec(E) −→ Spec(A) is

étale.

Proof. Let x = x1, . . . , xn be an A-module basis of E = V . We have that

the ideal IV is generated by the single element δ(x, x). By Lemma 2.5 we have

the identity δ(x, x) = det(γ1(xixj) ∗ γn−1(1)) in ΓnAF . As σE is an algebra
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homomorphism, we have

σE det(γ1(xixj) ∗ γn−1(1)) = det(σE(γ1(xixj) ∗ γn−1(1))).

By Proposition 1.7 we have σE(γ1(xixj) ∗ γn−1(1)) = Trace(e 7→ exixj). Thus

we have a matrix with entries Trace(e 7→ exixj), and the determinant is then

the discriminant. �

3. Connection with symmetric tensors

3.1. A norm vector. Let F be an A-algebra, and let n be a fixed positive

integer. We let TnAF = F
⊗

A · · ·
⊗
A F be the tensor product with n copies of

F . For any element x ∈ F , we use the following notation:

x[j] = 1⊗ · · · ⊗ x⊗ · · · ⊗ 1,

where the x occurs at the j’th component of TnAF . The group Sn of permuta-

tions of n letters acts on TnAF by permuting the factors. For any n-elements

x = x1, . . . , xn in F , we define the norm vector

ν(x) = ν(x1, . . . , xn) = det((xi)[j]) ∈ TnAF.

Expanding the determinant we also get that ν(x) =
∑
σ∈Sn sign(σ)xσ(1)⊗· · ·⊗

xσ(n). It is clear that ν extends to a linear map ν : ΛnAF −→ TnAF and that the

image lies in the vectors that are anti-symmetric with respect to the action of

Sn given by permutation of factors of Tn
A F .

3.2. Let TSnA F denote the invariant ring of Tn
A F with respect to the nat-

ural action of the symmetric group Sn in n-letters that permutes the factors.

We have the map F −→ Tn
A F sending x 7→ x ⊗ · · · ⊗ x, and it is clear that

the map factors through the invariant ring TSnA F . The map F −→ TSnA F

determines a norm of degree n, as one readily verifies, hence there exist an

A-algebra homomorphism

(3.2.1) αn : ΓnAF −→ TSnA F

such that αn(γn(x)) = x⊗ · · · ⊗ x for all x ∈ F .

3.3. The shuffle product. When F is an A-algebra that is flat as an A-mod-

ule, or if n! is invertible in A, then the A-algebra homomorphism αn (3.2.1)

is an isomorphism ([19, IV, §5. Prop. IV.5], [5, Exercise 8(a), AIV. p.89]). In

those cases we can identify ΓAF as the graded sub-module

ΓAF =
⊕
n≥0

TSnA F ⊆
⊕
n≥0

Tn
A F = TA F.

The external product structure on ΓAF is then identified with the shuffle

product on the full tensor algebra TA F . The shuffle product of an n-tensor

x⊗· · ·⊗x and an m-tensor y⊗· · ·⊗y is the m+n-tensor given as the sum of all
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possible different shuffles of the n copies of x and m copies of y ([5, Exercise. 8

(b), AIV. p. 89]).

Proposition 3.4. Let F be an A-algebra, and let x, y ∈ ΛnAF . The

A-algebra homomorphism αn : ΓnAF −→ TSnA F (3.2.1) has the property

αn(δ(x, y)) = ν(x)ν(y).

Proof. We may assume that x = x1∧· · ·∧xn and y = y1∧· · ·∧yn, and then

we have by Lemma 2.5 that δ(x, y) is the determinant of the matrix (γ1(xiyj)∗
γn−1(1)). Hence αn(δ(x, y)) is the determinant of (αn(γ1(xiyj) ∗ γn−1(1))).

This matrix is the product ((xi)[j])((yi)[j])
t (where ((yi)[j])

t = ((yj)[i]) de-

notes the transpose), and using multiplicativity of determinants we get the

formula. �

Corollary 3.5. For any x, y, z and w in ΛnAF , we have δ(x, y)δ(z, w) =

δ(x, z)δ(y, w). In particular, we have δ(x, y)2 = δ(x, x)δ(y, y).

Proof. We may reduce to the case when F is flat over A, and then we have

that αn : ΓnAF −→ TSnA F is injective. By the proposition we have

αn(δ(x, y)δ(z, w)) = αn(δ(x, y))αn(δ(z, w)) = ν(x)ν(y)ν(z)ν(w),

and rearranging the last product and working backwards we get the desired

formula. �

Remark 3.6. We have used two methods to prove universal relations in

ΓnAF and ΛnAF ; reducing to the case when F is a finite product of copies of

A and explicit computation using primitive idempotents, and reducing to a

computation in Tn
A F . It would have been possible to only use the first (and

no doubt to only use the second) but we felt that both techniques were worth

illustrating. It should also be mentioned that in a version of this article we

used a third method of computing directly in ΓnAF . However, it led to rather

nontransparent combinatorial calculations that we ultimately felt obscured the

underlying arguments too much.

3.7. We have a map αn + ν : ΓnAF
⊕

ΛnAF −→ Tn
A F whose image is a

subring under the product induced from that of F . Even though we shall not

use it we can use δ to define a commutative ring structure on the source making

the map a ring homomorphism. Indeed the ring structure will be Z/2-graded

with respect to the direct sum decomposition. The product ΓnAF × ΓnAF −→
ΓnAF is the interior product, the product ΛnAF × ΛnAF −→ ΓnAF is δ, and the

map ΓnAF×ΛnAF −→ ΛnAF is determined by γn(x)·y1∧· · ·∧yn := xy1∧· · ·∧xyn.

With the aid of Proposition 3.4 it is easy to verify that αn+ν is multiplicative,

and when A = Z and F is A-flat it is also injective. As one can reduce to that

case, we get associativity for the operation.
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Corollary 3.8. Let α̃ : ΓnAF −→ Tn
A F denote the composition of the

map αn and the inclusion TSnA F ⊆ Tn
A F . Let I ⊆ Tn

A F denote the extension

of the ideal of norms IF by α̃, and let J ⊆ Tn
A F denote the ideal of the

schematic union of the diagonals. Then we have
√
I =
√
J .

Proof. Let ϕ : Tn
A F −→L be a morphism with L a field, and let ϕi : F −→L

be the composition of ϕ and the i’th co-projection F −→ Tn
A F , where i =

1, . . . , n. It follows by Lemma 2.9 that we may replace A by L and, in par-

ticular, we may assume that ϕi : F −→ L is surjective for all i = 1, . . . , n. If

ϕ corresponds to a point in the open complement of the diagonals, then all

the maps ϕi are different. That is, no pi = ker(ϕi) is contained in another pj .

Furthermore, since the kernels also are prime ideals, there exists, for each i,

an element xi not in pi, but where xi ∈ pj when j 6= i. We then have that

ϕj(xi) = 0 for j 6= 0 and that ϕi(xi) 6= 0. Hence there are elements x1, . . . , xn
in F such that det(ϕj(xi)) 6= 0. Then also the image of ν(x1, . . . , xn) is nonzero

in L, and we have that the point ϕ is in the open complement of the scheme

defined by I ⊆ Tn
A F .

Conversely, if ϕ corresponds to a point on the diagonals, then at least two

of the maps ϕi are equal. Consequently, for any elements x1, . . . , xn in F , we

have that ϕ(ν(x1, . . . , xn))=0. It follows that I⊆kerϕ, proving the claim. �

4. The Grothendieck-Deligne norm map

In this section we recall the Grothendieck-Deligne norm map following

Deligne ([7]), and we discuss briefly the related Hilbert-Chow morphism. Fur-

thermore, we define the notion of sufficiently big sub-modules.

4.1. The Hilbert functor of n points. We fix an A-algebra F and a positive

integer n. We let HilbnF denote the covariant functor from the category of

A-algebras to sets that sends an A-algebra B to the set

HilbnF (B) = {ideals in F
⊗

AB such that the quotient E is

locally free of rank n as a B-module}.
4.2. The Grothendieck-Deligne norm. If E is an B-valued point of HilbnF

we have the sequence

F // F
⊗
AB // E,

from where we obtain the A-algebra homomorphisms ΓnAF −→ ΓnBE that sends

γn(x) to γn(x̄ ⊗ 1), where x̄ ⊗ 1 is the residue class of x ⊗ 1 in E. Further-

more, when we compose the homomorphism ΓnAF −→ ΓnBE with the canonical

homomorphism σE : ΓnBE −→ B we obtain an assignment that is functorial in

B; that is, we have a morphism of functors

(4.2.1) nF : HilbnF −→ HomA-alg(ΓnAF,−).

The natural transformation nF we call the Grothendieck-Deligne norm map.
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Remark 4.3. The Hilbert functor HilbnF can be viewed in a natural way as

a contra-variant functor from the category of schemes (over Spec(A)) to sets.

In that case the functor HilbnF is representable by a scheme (see, e.g., [13]). If

X = Spec(F ) −→ S = Spec(A), we write nX : HilbnX/S −→ Spec(ΓnAF ) for the

morphism that corresponds to the natural transformation (4.2.1).

4.4. The geometric action. Let A = K be an algebraically closed field,

and let E be a finitely generated Artinian K-algebra. As E is Artinian, it

is a product of local rings E =
∏p
i=1Ei, and we let ρi : E −→ K denote

the residue class map that factors via Ei. Let mi = dimK(Ei), and let n =

dimK(E) = m1 + · · ·+mp. Iversen ([15, Prop. 4.7]) shows that the canonical

homomorphism σE : ΓnKE = TSnK E −→ K factors via the homomorphism

ρ : TnKE −→ K, where

ρ = (ρ1, . . . , ρ1, . . . , ρp, . . . , ρp)

and where each factor ρi is repeated mi-times.

4.5. Hilbert-Chow morphism. Assume that the base ring A = K is a

field, and let X = Spec(F ). Then we can identify Spec(ΓnKF ) with the sym-

metric quotient Symn(X) := Spec(TSnK F ). Furthermore, we have that the

Spec(K)-valued points of HilbnX correspond to closed zero-dimensional sub-

schemes Z ⊆ X of length n. When K is algebraically closed we have by Sec-

tion 4.4 that the Grothendieck-Deligne norm map sends an K-valued point

Z ⊆ X to the “associated” zero-dimensional cycle

nX(Z) =
∑
P∈|Z|

dimK(OZ,P )[P ],

where the summation runs over the points in the support of Z. Hence we

see that the norm morphism nX has the same effect on geometric points as

the Hilbert-Chow morphism. The Hilbert-Chow morphism that appears in

[10] and [8] requires that the Hilbert scheme is reduced, whereas the Hilbert-

Chow morphism that appears in [17] requires that the Hilbert scheme is (semi-)

normal. As the morphism nX does not require any hypothesis on the source,

we have chosen to refer to that morphism with a different name.

Lemma 4.6. Let A = K be a field of characteristic zero, and let F = K[T ]

be the polynomial ring in a finite set of variables T1, . . . , Tr. For n > 0, the

K-algebra ΓnKF is generated by

γ1(m) ∗ γn−1(1)

for monomials m ∈ K[T ] of degree deg(m) ≤ n.

Proof. The identification αn : ΓnKK[T ] −→ TSnK K[T ] identifies, for any

m ∈ K[T ], the element γ1(m)∗γn−1(1) with the shuffled product of α1(m) = m
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and αn−1(1) = 1⊗ · · · ⊗ 1. That is,

αn(γ1(m) ∗ γn−1(1)) = m⊗ 1 · · · ⊗ 1 + · · ·+ 1⊗ · · · 1⊗m = P (m).

By a well-known result of Weyl ([23, II 3]) the invariant ring TSnK F is generated

by the power sums P (m) of monomials m∈K[T ] of degree less or equal to n.

�

Definition 4.7 (Sufficiently big modules). Let us fix an A-algebra F . An

A-submodule V ⊆ F is n-sufficiently big if the composite B-module homomor-

phism

V
⊗
AB // F

⊗
AB // E

is surjective for all A-algebras B and all B-valued points E of the Hilbert

functor HilbnF .

Remark 4.8. Sufficiently big submodules always exist as we can take V = F.

Remark 4.9. If V is n-sufficiently big, then we clearly have a morphism of

functors

HilbnF −→ GrassnV

from the Hilbert functor of rank n-families to the Grassmannian of locally free

rank n quotients of V .

Theorem 4.10. Let F be an A-algebra, n a positive integer, and V ⊆ F
an n-sufficiently big submodule. Then we have for any A-algebra B and any

B-valued point E of HilbnF that the extension of IV , the ideal of norms asso-

ciated to V , by the Grothendieck-Deligne norm map nF : ΓnAF −→ B is the

discriminant ideal of E over B. That is,

nF (IV )B = DE/B ⊆ B.

Proof. As discriminant ideals are compatible with base change, we may

assume that B is a local ring. Let K denote the residue field of B. By

assumption the composite map of K-vector spaces

V
⊗
AK // F

⊗
AK // E

⊗
AK

is surjective. Let x1, . . . , xn in V be such that the residue classes of x1 ⊗
idK , . . . , xn⊗ idK in E⊗AK form a K-vector space basis. It then follows from

Nakayama’s Lemma that the residue classes of x1 ⊗ idB, . . . , xn ⊗ idB form a

B-module basis of E
⊗
AB = EB. By Lemma 2.9 we have that the extension

of IV by the composition ΓnAF −→ ΓnB(EB) is the ideal of norms associated to

EB. The result then follows from Proposition 2.12. �
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5. Families of distinct points

5.1. The canonical morphism. The map F −→ F
⊗
A Γn−1

A F sending z

to z ⊗ γn−1(z) determines a norm of degree n. Consequently there is a

unique A-algebra homomorphism ΓnAF −→ F
⊗
A Γn−1

A F that takes γn(z) to

z ⊗ γn−1(z). Let

(5.1.1) πn : Spec(F )×Spec(A) Spec(Γn−1
A F ) −→ Spec(ΓnAF )

denote the corresponding morphism of schemes. Furthermore, we let ∆ ⊆
Spec(ΓnAF ) denote the closed subscheme corresponding to the ideal of norms

associated to F .

Proposition 5.2. Let U = Spec(ΓnAF )\∆ denote the open set where the

ideal sheaf of norms equals the structure sheaf. Then the induced morphism

πn| : π
−1
n (U) −→ U

is étale of rank n.

Proof. Let Un ⊆ Spec(Tn
A F ) denote the open complement of the diag-

onals. The group of permutations of n letters, Sn, acts freely on Un, and

the quotient map Un −→ Un/Sn is étale of rank n! = |Sn|. The morphism

Spec(αn) : Spec(TSnA F ) −→ Spec(ΓnAF ) is an isomorphism when restricted

to Un/Sn (see, e.g., [21, Prop. 4.2.6]). It follows from Corollary 3.8 that

Spec(α̃n) : Spec(Tn
A F ) −→ Spec(ΓnAF ) is étale over Spec(ΓnAF ) \ ∆. Fur-

thermore, after a faithfully flat base change A −→ A′ we can assume that

ΓnA(F )
⊗

AA
′ = ΓnA′(F

⊗
AA
′) is generated by elements of the form γn(z) ([9,

Lemma 2.3.1]). Then clearly the diagram

Spec(Tn
A F )

Spec(α̃n)
//

1×Spec(α̃n−1)

))

Spec(ΓnAF )

Spec(F )× Spec(Γn−1
A F )

πn
55

is commutative. As 1×Spec(α̃n−1) is étale of rank (n−1)! on the complement

of π−1
n (∆), it follows that πn is étale of rank n over U . �

5.3. Notation. We have the ordered sequence x = x1, . . . , xn of elements

in F fixed. Let UA(x) be ΓnAF localized at the element δ(x, x), and consider

the induced map

UA(x) // (F
⊗

A Γn−1
A F )

⊗
ΓnAF

UA(x) = MA(x)

obtained by localization of (5.1.1).
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Lemma 5.4. The images of the elements x = x1, . . . , xn by the map F −→
F
⊗

A UA(x) −→MA(x) form an UA(x)-module basis for MA(x).

Proof. We have the morphism F
⊗
A ΓnAF −→ F

⊗
A Γn−1

A F , which we

obtain from Section 5.1, that induces the morphism

ΓnΓnAF
(F
⊗
A ΓnAF ) = ΓnAF

⊗
A ΓnAF −→ ΓnΓnAF

(F
⊗

A Γn−1
A F ).

One verifies, by for instance reducing to the case with F flat, that the above

morphism sends δ(x, x)⊗ 1 to δ(x⊗ 1, x⊗ 1), where x⊗ 1 = x1⊗ 1, . . . , xn⊗ 1

are the images of x = x1, . . . , xn in F
⊗

A Γn−1
A F . Locally on UA(x) we have,

by Proposition 5.2, that MA(x) is free of rank n. Let U be a localization of

UA(x) such that M = MA(x)
⊗
UA(x) U is free. Let e = e1, . . . , en be a basis of

M . Then there exist scalars ai,j ∈ U such that xi ⊗ 1 =
∑n
j=1 ai,jej in M for

i = 1, . . . , n. From Definition 2.1 we obtain that

δ(x⊗ 1, x⊗ 1) = det(ai,j)
2δ(e, e)

in ΓnUM = ΓnΓnAF
(F
⊗
A Γn−1

A F )
⊗

ΓnAF
U . As δ(x ⊗ 1, x ⊗ 1) is invertible, so

is det(ai,j)
2, and consequently x1 ⊗ 1, . . . , xn ⊗ 1 form a basis for M over U .

Since this holds for any localization U of UA(x) such that MA(x)
⊗

UA(x) U is

free, the result follows. �

Definition 5.5. The functor H et
F (x) is the covariant functor from the cat-

egory of A-algebras to sets that maps an A-algebra B to the set of ideals in

F
⊗

AB such that corresponding quotients Q satisfy the following:

(1) the elements q(x1), . . . , q(xn) in Q form a B-module basis, where q : F −→
F
⊗

AB −→ Q is the composite map;

(2) the algebra homomorphism B −→ Q is étale.

Lemma 5.6. Let B be an A-algebra and Q a B-valued point of H et
F (x).

Then we have the following commutative diagram of algebras :

(5.6.1) ΓnAF
//

can

��

ΓnBQ

σQ

��
UA(x) : = (ΓnAF )δ(x,x)

// B.

Proof. The composite morphism F −→F
⊗

AB−→Q induces a morphism

of A-algebras ΓnAF −→ ΓnBQ that sends the element δ(x, x) to δ(q(x), q(x)),

where q(x) = q(x1), . . . , q(xn) in Q. By assumption B −→ Q is étale, and

the elements q(x) form a basis of Q. Then, by Proposition 2.12 we that the

image of δ(q(x), q(x)) by the canonical map σQ : ΓnBQ −→ Q is a unit, and the

commutativity of the diagram (5.6.1) follows. �
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5.7. Universal coefficients. For each pair of indices 1 ≤ i, j ≤ n, we look

at the product xixj in F , and for each k = 1, . . . , n, we consider the sequence

(5.7.1) xi,jk = x1, . . . , xk−1, xixj , xk+1, . . . , xn,

where the k’th element is replaced with the product xixj . We now define the

universal coefficient

αi,jk =
δ(x, xi,jk )

δ(x, x)
in UA(x) = (ΓnAF )δ(x,x).

Proposition 5.8. Let B be an A-algebra, let Q be a B-valued point of

H et
F (x), and let q : F −→ F

⊗
AB −→ Q denote the composite map. For each

k = 1, . . . , n, let bi,jk be the unique elements in B such that

q(xixj) =
n∑
k=1

bi,jk q(xk)

in Q. Then bi,jk is the specialization of the element αi,jk under the natural map

UA(x) −→ B of Lemma 5.6 for each i, j, k = 1, . . . , n. In particular, we have

that MA(x)
⊗
UA(x)B = Q as quotients of F

⊗
AB.

Proof. Having the triplet i, j, k fixed, we let xi,jk denote the sequence (5.7.1)

of elements in F . Consider the element δ(q(x), q(xi,jk )) in ΓnBQ. We replace

the element q(xixj) in Q with
∑
bi,jk q(xk) and obtain

δ(q(x), q(xi,jk )) = bi,jk δ(q(x), q(x)) in ΓnBQ.

The element δ(q(x), q(x)) is the image of δ(x, x) by the induced map ΓnAF −→
ΓnBQ. It follows from the commutative diagram (5.6.1) that bi,jk in B is the

image of αi,jk . �

Corollary 5.9. The pair (UA(x),MA(x)) represents H et
F (x).

Proof. It follows from Proposition 5.2 and Lemma 5.4 that M := MA(x)

is a U := UA(x)-valued point of H et
F (x). If Q is any B-valued point of H et

F (x),

we have by Proposition 5.8 one morphism U −→ B with the desired property,

and we need to establish uniqueness of that map. Therefore, let ϕi : U −→
B (i = 1, 2), be two A-algebra homomorphisms such that both extensions

M
⊗
U B equal Q as quotients of F

⊗
AB. We then have that the natural map

ΓnUM
// ΓnU (M)

⊗
U B = ΓnBQ

is independent of the maps ϕi : U −→ B. In particular, the canonical section

σQ = σM ⊗ 1 : ΓnBQ −→ B is independent of the maps ϕi, (i = 1, 2). For any

element u ∈ U , we have that σM (uγn(1)) = u, and then also that σQ(uγn(1)

⊗ 1B) = ϕi(u). Thus ϕ1 = ϕ2, and we have proven uniqueness. �
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5.10. Étale families. We let H et,n
F denote the functor of étale families of

the Hilbert functor HilbnF of n points on F . That is, we consider the co-variant

functor from A-algebras to sets whose B-valued points are

H et,n
F (B) = {I ∈ HilbnF (B) | B // F

⊗
AB/I is étale}.

It is clear that H et,n
F is an open subfunctor of HilbnF , and we will end this

section by describing the corresponding open subscheme of the Hilbert scheme.

Proposition 5.11. Let F be an A-algebra. Let ∆ ⊆ Spec(ΓnAF ) be the

closed subscheme defined by the ideal of norms IF , and let U = Spec(ΓnAF )\∆

denote its open complement. The family πn| : π
−1
n (U) −→ U of Proposition 5.2

represents H et,n
F .

Proof. Clearly the functors H et
F (x), for different choices of elements x =

x1, . . . , xn in F , give an open cover of H et,n
F . By Corollary 5.9 the restriction

of the family πn| : π
−1
n (U) −→ U to the open subscheme Spec(UA(x)) ⊆ U

represents H et
F (x). We have that the intersection Spec(UA(x))∩Spec(UA(y)),

for x = x1, . . . , xn and y = y1, . . . , yn, equals H et
F (x)∩H et

F (y). And finally by

Corollary 3.5, we have that the union of the schemes Spec(UA(x)), for different

x = x1, . . . , xn, is the scheme U . �

6. Closure of the locus of distinct points

We will continue with the notation from the preceding sections. In this

section we will construct universal families, not for the locus of distinct points

as in Section 5, but for its closure.

6.1. Notation. Let F be an A-algebra, and let R =
⊕
m≥0 I

m
F denote the

graded ring where IF ⊆ ΓnAF is the ideal of norms associated to V = F . We

let x = x1, . . . , xn be n-elements in F , and we denote by R(x) = R(δ(x,x)) the

degree zero part of the localization of R at δ(x, x) ∈ IF . Finally we let E
denote the free R(x)-module of rank n. We will write

(6.1.1) E =
n⊕
i=1

R(x)[xi],

where [xi] is our notation for a basis element pointing out the i’th component

of the direct sum E . As ΓnAF is an A-algebra, we have that E is an A-module.

We define the A-module homomorphism

[ ] : F −→ E

in the following way. For any y ∈ F and any i = 1, . . . , n, we let

xiy = x1, . . . , xi−1, y, xi+1, . . . , xn
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denote the n-elements in F where the i’th element xi is replaced with y. Then

we define the value of the map (6.1.3) on the element y ∈ F as

(6.1.2) [y] =
n∑
i=1

δ(x, xiy)

δ(x, x)
[xi] in E .

Note that when y = xi, the notation of (6.1.1) is consistent with the notation

of (6.1.2). As determinants are linear in its columns (and rows), it follows that

the map [ ] : F −→ E defined above is an A-module homomorphism. We get a

R(x)-module homomorphism R(x) −→ E that sends r 7→ r · [1] and then also

an A-module homomorphism

(6.1.3) F
⊗
AR(x) // E

sending y ⊗ r 7→ r · [y].

6.2. Universal multiplication. With the notation as above we define now

the R(x)-bilinear map E × E −→ E by defining its action on the basis as

(6.2.1) [xi][xj ] := [xixj ] for i, j ∈ {1, . . . , n}.

We will show that the above defined bilinear map gives E the structure of a

commutative R(x)-algebra. We first observe the following simple but impor-

tant fact. Consider E as a sheaf on Spec(R(x)), and let U ⊂ Spec(R(x)) be

a quasi-compact subscheme of Spec(R(x)). Assume furthermore that the bi-

linear map (6.2.1) restricted to EU gives a ring structure on EU . That is, the

product (6.2.1) is associative, has an multiplicative identity and is distributive.

Then we also have a ring structure on EŪ , where Ū is the scheme theoretic clo-

sure of U ⊆ Spec(R(x)). We will apply this observation to a scheme theoretic

dense open subset U ⊆ Spec(R(x)).

Proposition 6.3. Let F be an A-algebra. We have that (6.1.2) defines

an algebra structure on E and that the map (6.1.3) is a surjective R(x)-algebra

homomorphism.

Proof. Let R =
⊕

n≥0 I
n
F , where IF ⊆ ΓnAF is the ideal of norms. We have

that Spec(R(x)) is an affine open subset of Proj(R), where

ρ : Proj(R) −→ Spec(ΓnAF )

is the blow-up with center ∆ = Spec((ΓnAF )/IF ). The open complement

Proj(R)\ρ−1(∆) of the effective Cartier divisor ρ−1(∆) is schematically dense.

Hence

U := Spec(R(x)) \ ρ−1(∆) ∩ Spec(R(x))

is schematically dense in Spec(R(x)). By Section 6.2 it suffices to show the

statements over U . However we have that U = Spec(UA(x)), as defined in

(5.6.1), and that the restriction of E|U coincides with the family Spec(MA(x)).
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In other words, we have that restriction of the multiplication map (6.1.3) to the

open U coincides with the universal multiplication map of Proposition 5.11.

�

Corollary 6.4. We have that E (x) is an R(x)-valued point of the Hilbert

functor HilbnF .

Proof. By construction the R(x)-module E is free of rank n, and by the

proposition we have that Spec(E ) is a closed subscheme of Spec(F
⊗

AR(x)).

�

Corollary 6.5. The schemes Spec(R(x)), for different choices of x =

x1, . . . , xn in F , form an affine open cover of Proj(R). Moreover, the fami-

lies Spec(E (x)) −→ Spec(R(x)) glue together to a Proj(R)-valued point of the

Hilbert functor HilbnF .

Proof. The first statement follows from Corollary 3.5. To prove the second

assertion it suffices to see that the families glue over an open schematically

dense set. Let U = Proj(R) \ ρ−1(∆), where the morphism ρ : Proj(R) −→
Spec(ΓnAF ) is the blow-up with center ∆. Then we have that Spec(R(x))∩U =

Spec(UA(x)) for any n-elements x = x1, . . . , xn in F , and the result follows. �

7. The good component

7.1. When X −→ S is an algebraic space, we have the Hilbert functor

HilbnX/S of closed subspaces of X that are flat and finite of rank n over the

base. If U −→ X is an étale map, we define the subfunctor H n
U→X of HilbnU/S

by assigning to any S-scheme T the set

H n
U→X(T ) = {Z ∈ HilbnU/S(T ) such that the composite map

Z ⊆ U ×S T −→ X ×S T is a closed immersion}.

Proposition 7.2. Let X −→ S be a separated quasi-compact algebraic

space over an affine scheme S, let U −→ X be an étale representable cover

with U an affine scheme, and let R = U ×X U . Then we have the following :

(1) the functor H n
U→X is representable by a scheme;

(2) the natural map H n
U→X −→ HilbnX/S is representable, étale and surjec-

tive;

(3) the two maps H n
R→X

////H n
U→X form an étale equivalence relation,

and the quotient is HilbnX/S .

Proof. Since X −→ S is separated, the composition Z −→ U ×S T −→
X ×S T will be finite for any Z ∈ HilbnU/S(T ) and any S-scheme T . It is then

clear that H n
U→X is an open subfunctor of HilbnU/S where the latter is known

to be representable ([13]). This shows the first assertion. To see that the map
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H n
U→X −→ HilbnX/S is representable we let T −→ HilbnX/S be a morphism, with

T some S-scheme. Let Z ⊆ X×S T denote the corresponding closed subspace,

and let ZU = Z ×X U . It is easily verified that the set of T -points of the fiber

product H n
U→X ×Hilbn

X/S
T equals the set of sections of ZU −→ Z. Thus the

fiber product equals the Weil restriction of scalars RZ/T (ZU ) of ZU with respect

to Z −→ T . If T is an affine scheme, then so is U ×S T and ZU . In particular,

the fiber of ZU −→ T over any point t ∈ T is contained in some affine open

subscheme of ZU . Therefore [4, Thm. 7.6.4] applies, and the Weil restriction

RZ/T (ZU ) is representable by a scheme. Hence the map H n
U→X −→ HilbnX/S

is representable. Étaleness of the map follows from [4, Prop. 7.6.5], and sur-

jectivity follows as any T -valued point of HilbnX/S étale locally lifts to U . It

is easy to see that the natural map H n
R→X −→ H n

U→X ×Hilbn
X/S

H n
U→X is an

isomorphism. Assertion (3) then follows from (2). �

Corollary 7.3. Let X −→ S be a separated map of algebraic spaces.

Then HilbnX/S is an algebraic space.

Proof. It suffices to show the statement for affine base S. Let X ′ ⊆ X be

an open immersion. Then as X −→ S is assumed separated we have a map

HilbnX′/S −→ HilbnX/S that is a representable open immersion. Furthermore, as

HilbnX/S = ind. lim
X′⊆X

open, q-compact

HilbnX′/S ,

we may assume that X −→ S is quasi-compact as well. Then the result follows

from the proposition. �

Remark 7.4. For a quasi-projective scheme X −→ S over a Noetherian

base scheme S, it was proven by Grothendieck that the Hilbert functor HilbnX/S
is representable by a scheme ([12]). For a separated algebraic space X −→ S

locally of finite presentation, Artin proved that HilbnX/S is an algebraic space

([2]). The proof of the general result above showing that HilbnX/S is an algebraic

space for any separated algebraic space X −→ S was suggested to us by one

of the referees. A similar approach was independently given by Rydh [22].

7.5. The good component. Let X −→ S be a separated map of algebraic

spaces, and let Z −→ HilbnX/S be the universal family, which by definition is

finite, flat of rank n. The discriminant DZ ⊆ HilbnX/S is a closed subspace with

the open complement U et
X/S parametrizing length n étale subspaces of X. We

define Gn
X/S ⊆ HilbnX/S as the schematic closure of the open subspace U et

X/S .

We call Gn
X/S the good or principal component.

Remark 7.6. Let f : Z −→ H be a morphism of algebraic spaces that is

finite and flat morphism of rank n. Then the set U ⊆ H above where f is

étale is an open subset being the complement of the discriminant DZ/H . The
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scheme theoretic closure of U ⊆ H is then the largest closed subspace of H

over which the discriminant of f is a nonzero-divisor.

Theorem 7.7. Let X = Spec(F ) −→ S = Spec(A) be a morphism of

affine schemes, and let ∆ ⊆ Spec(ΓnAF ) be the closed subscheme defined by the

ideal of norms. Then we have that the good component Gn
X/S is isomorphic to

the blow-up Bl(∆) of Spec(ΓnAF ) along ∆. The isomorphism

bX : Gn
X/S

' // Bl(∆)

is induced from restricting the norm map nX : HilbnX/S −→ Spec(ΓnAF ) to the

good component Gn
X/S .

Proof. By Theorem 4.10 we have that the inverse image n−1
X (∆) is the

discriminant DZ ⊆ HilbnX/S of the universal family Z −→ HilbnX . Consequently

we have that the local equation of the closed immersion

Gn
X/S ∩ n−1

X (∆) ⊆ Gn
X/S

is not a zero divisor. Therefore, by the universal properties of the blow-up, we

get an induced morphism bX : Gn
X/S −→ Bl(∆). A morphism we will show is

an isomorphism.

By Corollary 6.5 we have the Bl(∆)-valued point E of the Hilbert func-

tor HilbnF . From the defining properties of the Hilbert scheme we then have

a morphism fE : Bl(∆) −→ HilbnX/S such that the pull-back of the universal

family is E . When restricting E to the open set U = Spec(ΓnAF ) \∆ we have

an étale family — by construction of E . Hence the image fE (U) is contained

in U et
X/S . It follows that the preimage of the schematic closure U et

X/S = Gn
X/S

contains the schematic closure U = Bl(∆). Consequently we have a mor-

phism fE : Bl(∆) −→ Gn
X/S , a morphism we claim is the inverse to the map

bX : Gn
X/S −→ Bl(∆).

By Proposition 5.11 we have that the restriction of fE to U is the inverse

of the restriction of bX to U et
X/S . As both U in Bl(∆) and U et

X/S in Gn
X/S are

open complements of effective Cartier divisors, it follows that fE is the inverse

of bX . �

7.8. For a separated map of algebraic spaces X −→ S, there exists

an algebraic space ΓnX/S that naturally globalizes the affine situation with

Spec(ΓnAF ) ([21]). For the convenience of the reader we will give a description

of this space for X quasi-compact over an affine base. Not only is the quasi-

compact case technically easier to handle, but it turns out to be sufficient in

order to generalize Theorem 7.7.
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7.9. Pro-equivalence. We will say that two decreasing sequences (indexed

by the nonnegative integers) of ideals {Im} and {Jm} in a ring B are pro-

equivalent if for each m there exists an integer m′ ≥ 0 such that Im′ ⊆ Jm and

Jm′ ⊆ Im.

Lemma 7.10. Let G be a finite group acting on a Noetherian ring B, and

let a ⊆ B be an invariant ideal. Assume furthermore that the invariant ring

BG is Noetherian and that B is a finite module over the invariant ring. Then,

as ideals in BG, we have that {(aG)m} is pro-equivalent with {(am)G}.

Proof. Clearly (aG)m
′ ⊆ (am)G for all m′ ≥ m, and consequently it suffices

to show that (am
′
)G ⊆ (aG)m for some m′. An element x ∈ B is a root of the

monic polynomial mx(t) =
∏
g∈G(t − gx). Since a is G-invariant, this gives

that for any x ∈ a we have x|G| ∈ aG. If now a is generated by r-elements, this

implies that

am
′ ⊆ (aG)mB,

where m′ = (r(|G| − 1) + 1)m. By assumption B is a finitely generated

BG-module, and consequently by the Artin-Rees Lemma ([3, Cor. 10.10])

there exists an integer k ≥ 0 such that for m ≥ k, we have that

(aG)mB ∩BG = (aG)m−k
Ä
(aG)kB ∩BG

ä
⊆ (aG)m−k.

Hence (am
′+k)G ⊆ (aG)m. �

Lemma 7.11. Let F be an A-algebra of finite type, and let I ⊆ F be a

finitely generated ideal. For each m > 0, we let Jm denote the kernel of the

natural map ΓnA(F ) −→ ΓnA(F/Im). Then {Jm} is pro-equivalent with {Jm1 }.

Proof. We first show a special case. Let X = x1, . . . , xr and T = t1, . . . , ts
be variables over A = Z, the integers, and let F = Z[X,T ], and I = (T ).

Let am denote the kernel of Tn
A F −→ Tn

A(F/Im). It is easily checked that

{am} is pro-equivalent with {am1 }. The group Sn acts on Tn
A F , and it follows

that {(am1 )Sn} is pro-equivalent with {aSnm }. By Lemma 7.10 we have that

{(am1 )Sn} is pro-equivalent with {(aSn1 )m}. As F/Im is free, and in particu-

lar flat Z-module for all m > 0, we have that ΓnA(F/Im) = TSnA(F/Im). In

particular, we get that

ker(ΓnAF −→ ΓnA(F/Im)) = (am)Sn ,

and we have proven the lemma in the special case. Since we have, for any al-

gebra A, that ΓnZZ[X,T ]
⊗

ZA=ΓnAA[X,T ], the lemma is also proven for F =

A[X,T ] and I = (T ). In the general case we let ϕ : A[X,T ] −→ F denote the

A-algebra homomorphism that sends X to a set of generators of F and T to a

set of generators of the ideal I ⊆ F . For each m > 0, we have induced surjective
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maps ϕm : A[X,T ]/(T )m−→F/Im and Γ(ϕm) : ΓnAA[X,T ]/(T )m−→ΓnAF/I
m.

An element in ker(Γ(ϕm)) is of the form ([19, Prop. IV.8, p. 284])

γc(f̄) ∗ γn−c(ḡ),

where ḡ ∈ A[X,T ]/(T )m and f̄ ∈ ker(ϕm). Clearly we can find elements f and

g in A[X,T ], with f ∈ ker(ϕ), that restrict to f̄ and ḡ by the canonical map.

Thus the induced map ker(Γn(ϕ)) −→ ker(Γn(ϕm)) is surjective for all m > 0.

It follows that the induced map from

am = ker
Ä
ΓnAA[X,T ] −→ ΓnA(A[X,T ]/(T )m)

ä
to Jm = ker(ΓnAF −→ ΓnA(F/Im)) is surjective. In particular, a1 surjects to

J1, so am1 surjects to Jm1 . The lemma now follows by lifting elements to am
and am1 , where the result holds. �

7.12. FPR-sets. Let G be a finite group acting on a separated algebraic

space X. By a result of Deligne the geometric quotient X/G exists as an

algebraic space. We will make use of that result, but we need also to recall the

notion of fixed-point-reflecting (abbreviated FPR) sets.

Following ([16, p. 183]) we say that an equivariant map f : X −→ Y is

FPR at a point ϕ : Spec(L) −→ X, where L is a field, if for all σ ∈ G we have

that σ(fϕ) = fϕ implies that σ(ϕ) = ϕ. An equivalent condition is that we

have an equality of stabilizer groups Gϕ = Gfϕ.

An open invariant subspace U ⊆ X is called a FPR set if f : X −→ Y is

FPR at all points x of U .

Let A be a directed set. A subset S ⊆ A is eventually upwards closed if

there exists an index α ∈ A such that for all β ≥ α we have β ∈ S. Note that

an eventually upwards closed set is nonempty.

Lemma 7.13.

(i) Suppose f : X −→ Y and g : Y −→ Z are G-morphisms, h is their

composite and x is a (field valued) point of X . Then h is FPR at x

precisely when f is FPR at x and g is FPR at f(x).

(ii) Suppose that {Xα} is an inverse system with affine transition maps of

G-spaces. For every point x of X := lim←−αXα, the set Sx := {α | pα is

FPR at x}, where pα : X −→ Xα is the structure map, is eventually

upwards closed.

(iii) Suppose also that {Yα} is an inverse system with affine transition maps

of G-spaces over the same index set and that {fα : Xα −→ Yα} is a

G-morphism of directed systems. Set f := lim←−α fα, and assume that

f : X −→ Y := lim←−α Yα is FPR at the point x of X . Then the set

{α | fα is FPR at pα(x)} is eventually upwards closed.
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Proof. For the first part we always have that Gx ⊆ Gf(x) ⊆ Gh(x) so that

if h is FPR at x, i.e., Gx = Gh(x), then f is FPR at x and g is FPR at f(x)

and clearly conversely.

For the second part, suppose that x ∈ X. Let xα = pα(x), where

pα : X −→ Xα is the structure map. For any g /∈ Gx, we have gx 6= x;

hence there is an index αg such that gxαg 6= xαg . Since G is finite, we can find

an index α such that gxα 6= xα for all g /∈ Gx. Then the inclusion Gx ⊆ Gxα
is an equality, and we have α ∈ Sx. It follows by (i) that for any β ≥ α, we

have β ∈ Sx, so Sx is eventually upwards closed.

Finally, we get from (ii) that there exists an α such that for all β ≥ α we

have that p′β : Y −→ Yβ is FPR at f(x). If f is FPR at x, then by (i) we have

that p′β ◦ f is FPR at x. Since p′β ◦ f = fβ ◦ pβ, it follows by (i) again that fβ
is FPR at xβ for all β ≥ α. �

7.14. We have the induced map (idX , σ) : X −→ X × X for any group

element σ ∈ G. By taking the inverse image of the diagonal of a separated

algebraic space X −→ S, via the map (idX , σ) we get a closed subspace Xσ ⊆
X. If f : X −→ Y is a G equivariant map, we have a closed immersion Xσ ⊆
f−1(Y σ).

Definition-Lemma 7.15. If the equivariant map f : X −→ Y is sepa-

rated and unramified, then Xσ is both open and closed in f−1(Y σ). Hence if

Y is also separated over some S on which G acts trivially, there is a maximal

open FPR-subspace of X , which we call the FPR-locus of f .

In the particular case when U −→ X is an unramified separated map and

X is separated over S, we will denote the FPR-locus of the induced Sn-map

UnS −→ Xn
S by ΩU→X ⊆ UnS .

Proof. We have a map f−1(Y σ) −→ X ×Y X given by x 7→ (x, σx), and

Xσ is the inverse image of the diagonal. As f is unramified and separated,

the diagonal is open and closed in X ×Y X and hence so is Xσ in f−1(Y σ). If

Y is also separated, then f−1(Y σ) is closed in X and hence the complement

of Xσ in f−1(Y σ) is closed in X. Removing such subsets for all σ gives the

FPR-locus. �

Lemma 7.16. Let F −→ F ′ be an étale morphism of A-algebras, where

F and F ′ are of finite type over a Noetherian, strictly Henselian local ring A.

Let ϕ : Tn
A F

′ −→ L be a map to a field L, and let ϕi : F
′ −→ L be the co-

projections of ϕ (with i = 1, . . . , n). Define the ideals J = ∩ kerϕi in F ′ and

I = ∩ kerϕi|F in F . Assume that ϕ is a closed point in the FPR-locus ΩF→F ′

of Spec(Tn
A F

′) −→ Spec(Tn
A F ) lying above the closed point of Spec(A). Then

the induced map
F/Im −→ F ′/Jm

is an isomorphism for all m > 0.
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Proof. Since A/mA is separably closed, we have for each maximal ideal

m of F , lying above mA, that the field extension F/m is purely inseparable.

Consequently, since F −→ F ′ is étale, we have that F ′/mF ′ is a product of

trivial extensions of F/m. In particular, for each maximal ideal m′ of F ′/J

that contracts to m in F/I, we have that the m-adic completion of F/I is

isomorphic to the m′-adic completion of F ′/J . To prove the result we need

only show that we have a bijection between the maximal ideals in F ′/J and

the maximal ideals in F/I.

Since F ′ is of finite type over A, and the point ϕ : Tn
A F

′ −→ L is closed,

we may assume that L is a finite field extension of the residue field A/mA.

It follows that the ideals kerϕi ⊂ F ′, and similarly the ideals kerϕi|F ⊂ F ,

are maximal ideals (i = 1, . . . , n). As the point ϕ is in the FPR-locus ΩF→F ′ ,

we have that ϕi = ϕj if and only if ϕi|F = ϕj|F . Hence, there is a bijection

between the maximal ideals of F/I and the maximal ideals of F ′/J . �

7.17. Notation. Assume now that the base scheme S = Spec(A) is affine

and that X is a quasi-compact, separated, algebraic space. Let furthermore

U = Spec(F ) −→ X be an étale cover. We have the FPR-locus ΩU→X ⊆ UnS ,

and we let

Ω′U→X ⊆ UnS /Sn

denote the image of ΩU→X by the quotient map UnS −→ UnS /Sn. Moreover, the

morphism Spec(α) : Spec(TSnA F ) −→ Spec(ΓnAF ) is a homeomorphism (see,

e.g., [21, Cor. 4.2.5]), and we let

Ω′′U→X ⊆ Spec(ΓnAF )

denote the open set given as the image of Ω′U→X by the morphism Spec(α).

Proposition 7.18. Let F −→ F ′ be an étale morphism of A-algebras,

with F and F ′ of finite type over a Noetherian, strictly Henselian local ring A.

Let ξ ∈ Ω′′F→F ′ be a closed point lying over the closed point of Spec(A). Then

the induced map of completions

(ΓnAF )
f̂(ξ)
−→ (ΓnAF

′)
ξ̂

is an isomorphism, where f(ξ) is the image of ξ by the induced map Spec(ΓnAF
′)

−→ Spec(ΓnAF ).

Proof. It suffices to show that there are ideals I1 ⊂ ΓnAF and J1 ⊂ ΓnAF
′

contained in the ideals corresponding to the points f(ξ) and ξ, respectively,

such that I1 maps to J1 and the induced map of formal neighborhoods

(7.18.1) lim
←−

(ΓnAF )/Im1 −→ lim
←−

(ΓnAF
′)/Jm1

is an isomorphism. As the morphism Spec(TSnA F
′)−→Spec(ΓnAF

′) is a home-

omorphism, the point ξ lifts to a point of Spec(Tn
A F

′). Let ϕ : Tn
A F

′−→L′
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be a lifting of ξ = Spec(L), with L′ some field extension of L. Write ϕ =

(ϕ1, . . . , ϕn), and define the ideal J= ∩ ker(ϕi) in F . We let Jm=ker(ΓnAF
′−→

ΓnA(F ′/Jm)). As the map ΓnAF
′ −→ L factors via ΓnA(F/J), we have that J1 is

contained in the ideal ker(ΓnAF
′ −→ L). We let Im = ker(ΓnAF −→ ΓnA(F/Im))

where I = ∩ ker(ϕi|F ), and we consider the induced map (7.18.1).

By Lemma 7.11 we have the limit of the system {(ΓnAF )/Im1 } equals the

limit of the system {(ΓnAF )/Im = ΓnA(F/Im)}. By Lemma 7.16 we have that

F/Im = F ′/Jm, and it follows that the map (7.18.1) is an isomorphism. �

Corollary 7.19. Let F −→ F ′ be an étale morphism of A-algebras, and

let IF ⊆ ΓnAF and IF ′ ⊆ ΓnAF
′ be the ideals of norms associated to F and F ′,

respectively. These two ideals, IFΓnAF
′ and IF ′ , are equal when restricted to

the open subscheme Ω′′F→F ′ ⊆ Spec(ΓnAF
′).

Proof. Assume first that the result is true when F (and hence F ′) is a

finitely presented A-algebra. We can write f : F −→ F ′ as a limit by a directed

set of étale maps fα : Fα −→ F ′α of finitely presented A-algebras such that

F ′α
⊗
Fα Fβ w F ′β for all α and all β ≥ α. This means that Spec(Tn

A F
′) −→

Spec(Tn
A F ) can be thought of as lim←−β Spec(Tn

A F
′
β) −→ lim←−β Spec(Tn

A Fβ) and

similarly for Tn replaced by TSn (as directed direct limits commute with taking

invariants) and Γn. The equality to be proven is one of equality of stalks so

we may focus on a particular point x′′ ∈ Ω′′F→F ′ that is the image of some

point x ∈ ΩF→F ′ . Let y ∈ Spec(Tn
A F ) denote the image of x under the map

Spec(Tn
A F

′) −→ Spec(Tn
A F ). By Lemma 7.13(ii) we may assume that all

projection maps pα : Spec(Tn
A F ) −→ Spec(Tn

A Fα) are FPR at y. Then by

Lemma 7.13(i) the two compositions

Spec(Tn
A F

′) //

p′α
��

Spec(Tn
A F )

pα

��
Spec(Tn

A F
′
α) // Spec(Tn

A Fα)

are FPR at x for all α. By Lemma 7.13(i) again, we have that Spec(Tn
A F

′
α) −→

Spec(Tn
A Fα) is FPR at p′α(x), which means that p′α(x) ∈ ΩFα→F ′α . But then

x′′α, the image of x′′ under the projection map Spec(ΓnAF
′) −→ Spec(ΓnAF

′
α), is

in Ω′′Fα→F ′α . Hence we get the equality IFαΓnAF
′
α = IF ′αΓnAF

′
α at x′′α, and taking

the direct limit of sheaves in α gives the corollary at x′′ and hence in Ω′′F→F ′ .

We are therefore left with the case when F is a finitely presentedA-algebra.

By another (simpler) limit argument we reduce to the case when A is Noether-

ian. Assume, by way of contradiction, that we have a closed point ξ ∈ Ω′′F→F ′
at which IF ′ and IFΓnAF

′ differ. Let Â denote the strict Henselization of the

localization of A at the image ξ′ of ξ. Let F̂ = F ⊗A Â, and let F̂ ′ = F ′⊗A Â.

By the proposition the two ideals IF̂ ′ and IF̂Γn
Â
F̂ ′ are equal at the completion
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of every closed point of Ω′′
F̂→F̂ ′ , above ξ′, hence equal along the special fiber of

Ω′′
F̂→F̂ ′ . But, then it follows that also the ideals IF ′ and IFΓnAF

′ are equal at

ξ and therefore equal at Ω′′F→F ′ . �

Corollary 7.20. Let F −→ F ′ be an étale morphism of A-algebras. The

induced maps Ω′F→F ′ −→ Spec(TSnA F ) and Ω′′F→F ′ −→ Spec(ΓnAF ) are étale.

Proof. We only show that Ω′′F→F ′ −→ Spec(ΓnAF ) is étale; the case with

Ω′F→F ′ is similar. Assume first that F and F ′ are finite type over a Noetherian

ring A. Étaleness can be checked at a point, and by localization and Henseliza-

tion we may assume that A is strictly Henselian and that the point lies in the

special fiber. We can then reduce the question of étaleness to the case with

the point being closed, and then the result follows from the proposition.

In the general case we write A as a limit of a directed system Aα of

Noetherian rings and f : F −→ F ′ as a limit of a system fα : Fα −→ F ′α of

étale maps of finitely presented Aα-algebras such that

F ′α
⊗

Fα Fβ = F ′β.

Let pα,β : Spec(ΓnAβF
′
β) −→ Spec(ΓnAαF

′
α) denote the induced map. We have

the commutative diagram

(7.20.1) p−1
α,β(Ω′′Fα→F ′α) //

��

Spec(ΓnAβFβ)

��
Ω′′Fα→F ′α

// Spec(ΓnAαFα).

The corollary is proven if we show that the diagram is Cartesian. The lower

horizontal map in (7.20.1) is étale by what just proven above. One checks that

we have an inclusion of open sets p−1
α,β(Ω′′Fα→F ′α) ⊆ Ω′′Fβ→F ′β

. Consequently the

upper horizontal map in (7.20.1) is also étale. As the horizontal maps in the di-

agram (7.20.1) are étale, it suffices to check Cartesianity for maps from Spec(k),

with k algebraically closed fields. Since the map Spec(TSnA F ) −→ Spec(ΓnAF )

is a homeomorphism, we can reduce the question of Cartesianity to the cor-

responding statement with Ω′ and TSnA replacing Ω′′ and ΓnA, respectively,

in (7.20.1). But, to check that we lift everything to Ω and Tn
A, where it is

clear. �

Corollary 7.21. Let X −→ S be a quasi-compact separated algebraic

space over an affine base S. Write X as a quotient of R ////U , with affine

schemes U and R. Then we have that Ω′′R→X
////Ω′′U→X is an étale equiva-

lence relation.
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Proof. The étale maps ΩR→X
s //
t
//ΩU→X are Sn-equivariant and form

an equivalence relation. After taking the quotients modulo the Sn-action,

we get induced maps Ω′R→X
s′ //

t′
//Ω′U→X . It is readily checked that the two

projections s′ and t′ will satisfy the reflexivity and symmetry condition. To

verify the transitivity condition we first form the fiber product R2 = R ×U R
given by the maps defining the equivalence relation on U . We then obtain the

commutative diagram

(7.21.1) ΩR2→X
//

��

ΩR→X

s

��
ΩR→X t

// ΩU→X ,

which one can verify is Cartesian. Thus ΩR2→X consists of pairs (x, y) with x

and y in ΩR→X such that t(x) = s(y). Transitivity of s′ and t′ is reduced to

showing that the commutative diagram

(7.21.2) Ω′R2→X
//

��

Ω′R→X

s′

��
Ω′R→X

t′ // Ω′U→X

obtained by taking the Sn-quotients of the Cartesian diagram (7.21.1) remains

Cartesian. It follows by Corollary 7.20 that the arrows in (7.21.2) are étale.

Thus one checks that the diagram (7.21.2) is Cartesian by looking at geometric

points, where it is clear. Since the projections s′ and t′ are étale, the morphism

(7.21.3) Ω′R→X −→ Ω′U→X × Ω′U→X

is unramified. We have that (7.21.3) is injective on field valued points, hence it

is a monomorphism ([11, Prop. 17.2.6]). That is, we have an étale equivalence

relation Ω′R→X
s′ //

t′
//Ω′U→X .

We invoke the same arguments again: Applying the morphism Spec(α)

gives induced maps Ω′′R→X
s′′ //

t′′
//Ω′′U→X . By Corollary 7.20 the arrows in the

corresponding diagram with Ω′′ replacing Ω′ in (7.21.2) are étale. By looking

at geometric points one then obtains that Ω′′R2→X equals the fiber product of

Ω′′R→X ×Ω′′U→X
Ω′′R→X via the two projections s′′ and t′′. This proves the tran-

sitivity axiom, and reflexivity and symmetry is clear. Finally, the morphism

(7.21.4) Ω′′R→X −→ Ω′′U→X × Ω′′U→X
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is unramified. Since Spec(α) is a universal homeomorphism, we have that

(7.21.4) is radicial, hence a monomorphism, and we have proven the claim. �

Proposition 7.22. Let X −→ S be a separated quasi-compact algebraic

space over an affine scheme S = Spec(A). Let U = Spec(F ) −→ X be an étale

affine cover, and let R = U ×X U . Define ΓnX/S as the quotient of the étale

equivalence relation Ω′′R→X
////Ω′′U→X .

(1) We have a Cartesian diagram

H n
U→X

nU

��

// HilbnU/S

nU

��
Ω′′U→X

// ΓnU/S = Spec(ΓnA(F )).

(2) In the diagram below we have nU ◦ pi = qi ◦ nR , i = 1, 2, and conse-

quently there is an induced map nX : HilbnX/S −→ ΓnX/S :

H n
R→X

nR

��

p1 //
p2
// H n

U→X

nU

��

p // HilbnX/S

nX

��
Ω′′R→X

q1 //
q2
// Ω′′U→X

q // ΓnX/S .

Moreover, the commutative diagrams above are Cartesian.

Proof. Let us first consider the special case with S = Spec(k), where k is

an algebraically closed field. A k-valued point Z ⊆ U of the Hilbert functor

HilbnU/S has support at a finite number of points ξ1, . . . , ξp. By Section 4.4 the

associated cycle nU (Z) consists of the points ξ1, . . . , ξp counted with multiplic-

ities m1, . . . ,mp. We have that the cycle nU (Z) is in the FPR-set Ω′′U→X if

and only if the closed subscheme Z ⊆ U also is a closed subscheme of X.

Now, let us prove the proposition. In the first diagram (1) the horizontal

maps are open immersions. To see that it is commutative and Cartesian it

suffices to establish the equality of the two open sets H n
U→X and n−1

U (Ω′′U→X)

of HilbnU/S . This we can be checked by reducing to S = Spec(k), with k

algebraically closed. Then we are in the special case considered above from

which Assertion (1) follows.

In particular, we have proven that the restriction of the norm map nU
to the open subset H n

U→X has Ω′′U→X as range. We therefore obtain the two

leftmost diagrams in (2). Since the horizontal maps in these diagram are

étale (Proposition 7.2 and Corollary 7.21), we can prove that the diagrams are

Cartesian by evaluation over algebraically closed points. We are then again

reduced to the special case considered above, which proves assertions in (2). �
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Proposition 7.23 (Rydh). Let X −→ S be a separated map of algebraic

spaces. Then there exists an algebraic space ΓnX/S −→ S such that

(1) when X −→ S is quasi-compact with S an affine scheme, the space

ΓnX/S coincides with the one constructed above (Proposition 7.22);

(2) for any base change map T −→ S, we have a natural identification

ΓnX/S ×S T = ΓnX×ST/T ;

(3) for any open immersion X ′ ⊆ X , we have an open immersion ΓnX′/S ⊆
ΓnX/S , and moreover

ΓnX/S = lim
X′⊆X

open, q-compact

ΓnX′/S ;

(4) there is a universal homeomorphism Xn
S/Sn −→ ΓnX/S , which is an

isomorphism when X −→ S is flat, or when the characteristic is zero.

Proof. All results can be found in ([21]): Existence of the space ΓnX/S is

Theorem (3.4.1), whereas Assertion (4) is Corollary (4.2.5), and the statement

about open immersions in (3) is a special case of Proposition (3.1.7). The

functorial description of ΓnX/S given by David Rydh immediately gives Asser-

tion (2) and that ΓnX/S is the union of ΓnX′/S with quasi-compact X ′ ⊆ X.

Assertion (1) follows as our Ω′′U→X is what Rydh denotes with Γn(U/S)|reg/f .

(See Proposition (4.2.4), and the proof of Theorem (3.4.1), loc. cit.) �

7.24. The ideal sheaf of norms. For X −→ S quasi-compact and sepa-

rated over an affine base, we have by Corollary 7.19 that the ideals of norms

patch together to form an ideal sheaf IX on ΓnX/S . As these ideals clearly

commute with open immersions and base change we obtain, by (3) and (1)

of Proposition 7.23, an ideal sheaf of norms IX on ΓnX/S for any separated

algebraic space X −→ S. Let

∆X ⊆ ΓnX/S

denote the closed subspace defined by the ideal sheaf of norms.

Theorem 7.25. Let X −→ S be a separated morphism of algebraic spaces.

Then the good component Gn
X/S of HilbnX/S is isomorphic to the blow-up of ΓnX/S

along the closed subspace ∆X ⊆ ΓnX/S , defined by the ideal of norms associated

to X −→ S. Moreover, if X −→ S is flat, then Gn
X/S is obtained by blowing-up

the geometric quotient Xn
S/Sn.

Proof. The Hilbert scheme HilbnX/S and ΓnX/S commute with arbitrary

base change. The good component Gn
X/S as well as blow-ups commute with

flat and, in particular, étale base change. We may therefore assume that the

base S is an affine scheme.
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For any open immersion X ′ ⊆ X, with X ′ quasi-compact, we have a

norm map nX′ : HilbnX′/S −→ ΓnX′/S which, by varying X ′, form a norm map

nX : HilbnX/S −→ ΓnX/S . We claim now that the inverse image n−1
X (∆X) is

locally principal, which we can verify on an open cover. Moreover, given that

fact we obtain an induced map from the good component Gn
X/S to the blow-up

of ΓnX/S along ∆X . To verify that the induced map is an isomorphism, we

also reduce to an open cover. Consequently we may assume that X itself is

quasi-compact.

When X is quasi-compact we choose an étale affine cover U −→ X. Then

by using the Cartesian diagrams (2) and (1) of Proposition 7.22 one establishes,

using Theorem 4.10, that n−1
X (∆X) is locally principal. By Theorem 7.7 we

have that the blow-up of ∆U ⊆ ΓnU/S yields the good component Gn
U/S , and

the isomorphism is induced by the norm map nU . It then follows by the two

Cartesian diagrams (2) and (1) of Proposition 7.22, that the map induced map

from Gn
X/S to the blow-up of ∆X ⊆ ΓnX/S is an isomorphism. �

7.26. The case of surfaces. Before we give a corollary to this result we

need a generalization of a result of Fogarty on the smoothness of the Hilbert

scheme ([10, Thm. 2.9]). Fogarty proves that the Hilbert scheme of a smooth

map X −→ S of relative dimension 2 is smooth provided that S is a Dedekind

scheme. As the Hilbert scheme commutes with base change and flatness can be

verified in the integral Noetherian case by pulling back to Dedekind bases, it

follows that the result of Fogarty is valid when the base S is integral. However,

as we will see, no conditions on the base is needed for that statement. We shall

give a direct proof by proving formal smoothness using the infinitesimal lifting

criterion and the Hilbert-Burch theorem.

Proposition 7.27. Let X −→ S be a smooth and separated morphism of

relative dimension 2. Then HilbnX/S −→ S is smooth for all n.

Proof. As HilbnX/S commutes with base change, we can assume that the

base is Noetherian. It is enough to show formal smoothness so the state-

ment would follow if we could show that for every small thickening T ⊂ T ′

of local Artinian S-schemes, any T -flat finite subscheme Z ⊆ X ×S T can

be extended to a T ′-flat finite subscheme of X ×S T ′. Let s be the closed

point in S. The obstruction for the existence of such a lifting is an element

α ∈ Ext1
OXs

(IZs ,OXs/IZs). We have an exact “local-to-global” sequence

H1(Xs,H omOXs
(IZs ,OXs/IZs)) −→ Ext1

OXs
(IZs ,OXs/IZs)

−→ H0(Xs,Ext1
OXs

(IZs ,OXs/IZs)).

As H omOXs
(IZs ,OXs/IZs) has finite support, the left term of the above

sequence is 0, and consequently it suffices to show that the image of the obstruc-

tion element α in H0(Xs,Ext1
OXs

(IZs ,OXs/IZs)) is zero. As Z is a disjoint
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union of points, we have that α =
∏
αzi , where at a point z ∈ Z the factor

αz is the obstruction for lifting Spec OZ,z, which is a closed flat subscheme of

Spec OX×ST ,z, to a flat subscheme of Spec OX×ST ′,z. It is thus enough to show

that these local obstructions vanish. Hence our situation is as follows: We have

a surjection of local Artinian rings R′ −→ R whose kernel is 1-dimensional over

the residue field, an essentially smooth 2-dimensional local R′-algebra S′, and

a quotient S := S′
⊗
R′ R −→ T such that T is a finite flat R-module. We then

want to lift T to a quotient S′ −→ T ′ that is a flat R′-module. We first claim

that T has projective dimension 2 over S. As T is R-flat, it is enough to check

T has projective dimension 2 over S, where (−) denotes reduction modulo the

maximal ideal of R. In that case we have that T is a Cohen-Macaulay module

over the regular local ring S with support of codimension 2 and the result

follows.

By [18, Thm. 7.15] (cf. also the original proof in [6]) it then follows that the

ideal IT defining T is the determinant ideal of n×n-minors of an n+1×n-matrix

M and that the grade (the maximal length of S-regular sequence contained

in IT ) of IT is 2. We then (arbitrarily) lift M to a matrix M ′ over S′ and

let T ′ be defined by n × n-minors of M ′. What remains to show is that T ′

is R′-flat. The grade of IT ′ is also 2 as we may lift an S-regular sequence in

IT to elements of IT ′ , which then give an S′-regular sequence. Hence by [18,

Thm. 7.16], the sequence

0 −→ (S′)n −→ (S′)n+1 −→ S′ −→ T ′ −→ 0

is exact, where (S′)n−→(S′)n+1 is given by the lifted matrix and (S′)n+1−→S′

by its minors (with appropriate signs). For the same reason this sequence

tensored with the residue field of R′ remains exact, which shows that T ′ is

R′-flat. �

Corollary 7.28. Let X −→ S be a smooth, separated morphism of pure

relative dimension 2. Then we have that the Hilbert scheme HilbnX/S is the

blow-up of ΓnX/S along ∆X .

Proof. As in the proof of Corollary 7.3 we may reduce to the case when

S is affine and X −→ S is quasi-compact. If we can prove that the open locus

U et of HilbnX/S is schematically dense, then we are finished by the theorem.

As the defining ideal of the complement of U et is locally principal and as

HilbnX/S −→ S is flat by the proposition, this can be checked fiber-by-fiber,

and so we may assume that S is the spectrum of a field k. Now, in that case

HilbnX/S is smooth by the proposition or by Fogarty’s result. For the density

statement we may reduce to the base field k being algebraically closed. Write

X = ti=1,...,pXi as a disjoint union of integral surfaces. We then have that

HilbnX/S is the disjoint union tn1+···+np=n
∏
i Hilbni(Xi). As U et is nonempty



RECOVERING THE GOOD COMPONENT OF THE HILBERT SCHEME 837

in each of the components Hilbni(Xi) that are irreducible ([10, Props. 2.3, 2.4]),

this implies that it is schematically dense in HilbnX/S . �

Remark 7.29. As pointed out by the referee, there is a small inaccuracy

in ([10, Props. 2.3, 2.4]) concerning the connectedness of the Hilbert scheme

in that the Hilbert scheme of a connected scheme is not necessarily connected.

The proof had to take that into account.

8. The good component for affine varieties

In this last section we will generalize the approach Haiman gives in [14],

using the fact that the Hilbert scheme HilbnY , for a projective scheme Y , can

be embedded as a closed subscheme of the Grassmannian of rank n-quotients

of H0(Y,OY (N)), when N is large enough.

Proposition 8.1. Let X = Spec(F ) −→ S = Spec(A) be a finite type

morphism of affine schemes, and let V ⊆F be an n-sufficiently bigA-submodule.

Let IV and IF be the ideals of norms associated to V and F , respectively. The

natural morphism
⊕
m≥0 I

m
V −→

⊕
m≥0 I

m
F induces a morphism

ϕ : Gn
X/S = Proj

( ⊕
m≥0

ImF

)
−→ BlIV (ΓnAF ) = Proj

( ⊕
m≥0

ImV

)
that is finite.

Proof. Let U , respectively U ′, be the open complement of Spec(ΓnAF ) in

Spec(
⊕

m≥0 I
m
F ), respectively Spec(

⊕
m≥0 I

m
V ). That the map on Proj’s is well

defined means that the map on spectra maps U into U ′. Assume therefore, by

way of contradiction, that we have a point x of U that does not map into U ′.

This gives us a field valued point of HilbnSpec(F )/ Spec(A), i.e., an n-dimensional

quotient F
⊗

A k → R. However, the assumption that the image of x does not

lie in U ′ means that the image of V does not span R. This however contradicts

the assumption that V is n-sufficiently big.

For graded elements f in a graded ring R, we let D+(f) denote the basic

open affine in Proj(R), given as the spectrum of the degree zero part of the

localized ring Rf . We have, for any f ∈ IV , that ϕ−1(D+(f)) = D+(f). Hence

the morphism ϕ is an affine morphism. Since F is assumed of finite type, it

follows from Lemma 2.10 that IF is of finite type, and consequently Gn
X/S is

proper over Spec(ΓnAF ). Since BlIV (ΓnAF ) is separated, it follows that ϕ is

proper. Thus the morphism ϕ is both proper and affine, hence finite. �

When V ⊆ F is n-sufficiently big we have an induced morphism

h : HilbnX/S −→ GrassnV

from the Hilbert scheme to the Grassmannian.
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Lemma 8.2. Let X = Spec(F ) −→ S = Spec(A) be of finite type, and let

V ⊂ F be n-sufficiently big, finitely generated A-module. We have a commu-

tative diagram

Gn
X/S

ϕ

��

// HilbnX/S

h

��
BlIV (ΓnAF ) // GrassnV .

Proof. Since V is finitely generated, we can use the Plücker coordinates

to embed GrassnV as a closed subscheme of P(ΛnV ). Composition with the

diagonal embedding and the Segre embedding yields the closed immersion ι1
given as the composite

GrassnV ⊂ P(ΛnAV ) ⊂ P(ΛnAV )×P(ΛnAV ) ⊂ P(ΛnAV
⊗

A ΛnAV ).

The natural map of A-modules ΛnV
⊗
A ΛnV −→ IV will by definition hit

all the generators for the ideal IV and will consequently determine a closed

immersion ι2 : BlIV (ΓnAF ) −→ P(ΛnAV
⊗
A ΛnAV )×Spec(ΓnA(F )). We now have

the commutative diagram

Gn
X/S

ϕ

��

// HilbnX/S
h // GrassnV

ι1

��
BlIV (ΓnAF )

p1◦ι2 // P(ΛnAV
⊗

A ΛnAV ),

where p1 is the projection on the first factor. The inverse image ϕ−1(E) of

the exceptional divisor E ⊆ BlIV (ΓnAF ) is the exceptional divisor of Gn
X/S , and

on the open complement we have that ϕ is an isomorphism. Consequently

p1 ◦ ι2 : BlIV (ΓnAF ) −→ P(ΛnAV
⊗

A ΛnAV ) factors through GrassnV since it does

so on the complement of a Cartier divisor. �

8.3. Consider now Y = Pr
S , and let g : Y −→ S denote the structure

map. For any closed subscheme Z ⊆ Y that is flat, locally free of rank n over

S, the induced map

g∗OY (N) −→ g∗OZ(N)

is easily seen to be surjective for N ≥ n− 1. Furthermore, the ideal sheaf IZ

twisted with N ≥ n is regular; that is, Rpg∗IZ(N − p) = 0 for p > 0 when

N ≥ n. It follows that IZ(N) is generated by its sections and (cf. [12]) that

the induced morphism

(8.3.1) HilbnY/S −→ Grassng∗OY (N)

is a closed immersion for N ≥ n.



RECOVERING THE GOOD COMPONENT OF THE HILBERT SCHEME 839

Proposition 8.4. Let F be an A-algebra generated by t1, . . . , tr, and let

V ⊆ F be spanned by the monomials of degree ≤ n in the t1, . . . , tr. Then the

morphism
ϕ : Gn

X/S −→ BlIV (ΓnAF )

is an isomorphism.

Proof. We embed X = Spec(F ) in Y = Pr
S using (1: t1 : · · · : tr). We have

natural maps h : HilbnX/S −→ GrassnV and GrassnV −→ Grassng∗(OY (N)), N ≥ n,

where the latter is a closed immersion. As HilbnX/S immerses into HilbnY/S , and

the map (8.3.1) is an immersion, it follows that the map h : HilbnX/S −→ GrassnV
is an immersion.

By Lemma 8.2 we have that the restriction of h to Gn
X/S factors through

ϕ : Gn
X/S −→ BlIV (ΓnAF ).

Hence ϕ must be an immersion as well. However, by Proposition 8.1 the

map ϕ is proper, and consequently we have that the map ϕ must be a closed

immersion. Furthermore, since ϕ is an isomorphism over the complement of a

Cartier divisor, it is an isomorphism. �
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