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Counting points on hyperelliptic curves
in average polynomial time

By David Harvey

Abstract

Let g ≥ 1, and let Q ∈ Z[x] be a monic, squarefree polynomial of degree

2g + 1. For an odd prime p not dividing the discriminant of Q, let Zp(T )

denote the zeta function of the hyperelliptic curve of genus g over the finite

field Fp obtained by reducing the coefficients of the equation y2 = Q(x)

modulo p. We present an explicit deterministic algorithm that given as

input Q and a positive integer N , computes Zp(T ) simultaneously for all

such primes p < N , whose average complexity per prime is polynomial in

g, logN , and the number of bits required to represent Q.

For my wife, Lara

1. Introduction

A central problem in computational arithmetic geometry is to give efficient

algorithms for the calculation of the zeta function of a variety X over a finite

field Fq, where q = pa. The zeta function of X is the generating function

ZX(T ) = exp

Ñ∑
n≥1

#X(Fqn)

n
Tn

é
∈ ZJT K.

Dwork proved that ZX(T ) is a rational function, so to compute it means to ex-

plicitly find its numerator and denominator as polynomials. More background

on the algorithmic theory of zeta functions may be found in the survey article

[Wan08].

In this paper we focus on the specific case of a hyperelliptic curve X of

genus g ≥ 1, with a rational Weierstrass point. Assuming p 6= 2, such a curve

is given by an equation y2 = Q(x) where Q ∈ Fq[x] is monic and squarefree,

of degree 2g + 1. The zeta function has the form

ZX(T ) =
P (T )

(1− T )(1− qT )
,

where P ∈ Z[T ] has degree 2g.
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In this situation, there are many algorithms known for computing ZX(T ).

One family derives from Schoof’s algorithm for elliptic curves [Sch85], [Pil90],

[AH01]. These `-adic algorithms achieve time complexity (log q)g
O(1)

, which

for fixed genus is polynomial in log p and a, but in general is exponential in g.

(In this paper, time complexity always means bit complexity in the sense of

the multitape Turing model [Pap94].) These algorithms have been successfully

deployed in genus one and two — see [Sut12] and [GS12] for recent record

computations — but the author is aware of no attempts for g ≥ 3.

The p-adic algorithms form a much more diverse family. These all have

the drawback that the complexity is exponential in log p. One example, highly

relevant to the present work, is Kedlaya’s algorithm [Ked01], which has com-

plexity p1+εa3+εg4+ε. Here and below, Y ε means Y o(1), where o(1) is a quantity

approaching zero as Y → ∞. The exponent of p can be improved to p1/2+ε

at the expense of increasing the exponents of a and g [Har07], but this is still

exponential in log p.

The main open problem in this area is whether there exists an algorithm

whose complexity is simultaneously polynomial in g and log q. In other words,

we ask for an algorithm whose complexity is polynomial in the size of the input.

The latter is Θ(g log q), the number of bits required to represent Q(x).

In this paper we prove a weaker result in this direction, namely that it is

possible to achieve polynomial time complexity on average over p. We consider

the following situation. Let Q ∈ Z[x] be a monic, squarefree polynomial of

degree 2g + 1 ≥ 3. Let X be the hyperelliptic curve of genus g over Q defined

by y2 = Q(x), i.e., the normalisation of the projective closure of the affine

curve. For any odd prime p not dividing the discriminant of Q(x), let Xp be the

hyperelliptic curve of genus g over Fp defined by the same equation y2 = Q(x)

but with coefficients reduced modulo p. Let ‖Q‖ denote the maximum of the

absolute values of the coefficients of Q.

Theorem 1. There exists an explicit deterministic algorithm with the

following properties. The input consists of integers N ≥ 3, g ≥ 1, and a

polynomial Q ∈ Z[x] defining a hyperelliptic curve X of genus g as above. The

output is the sequence of zeta functions of Xp, for all odd primes p < N , with

p not dividing the discriminant of Q. The algorithm runs in

g8+εN log2N log1+ε(‖Q‖N)

bit operations.

Since the number of primes p < N is asymptotically N/ logN , the average

time per prime is
g8+ε log3N log1+ε(‖Q‖N),

which is polynomial in the size of the input.

One obvious application of this result is to the computation of L-series

of hyperelliptic curves over Q, with a view towards collecting numerical data
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on questions such as the Birch–Swinnerton-Dyer conjecture and the Sato–Tate

conjecture for these curves. Such investigations have recently been carried out

by Fité, Kedlaya, Rotger and Sutherland for curves of genus up to three [KS08],

[KS09], [FKRS12], with particularly detailed information being obtained for

genus two curves. In this context it is reasonable to assume that the coefficients

are small relative to N , say log ‖Q‖ = O(logN), so that the average time per

prime is simply g8+ε log4+εN . The new algorithm may make it possible to

dramatically extend the range of their numerical results.

In fact, even in the case of elliptic curves, Theorem 1 already yields the

best known unconditional complexity bound for computing the trace of Frobe-

nius for all p < N simultaneously. Previously, the best known unconditional

deterministic bound was log5+ε p per prime, achieved by Schoof’s original al-

gorithm (see [BSS00, p. 111]). The Schoof–Elkies–Atkin (SEA) algorithm is

conjectured to improve this (probabilistically) to log4+ε p. For more informa-

tion about the heuristics involved in the latter estimate, see the discussion

preceding Theorem 13 of [Sut12].

It is likely that this theorem can be extended in several ways. First,

the restriction to curves with a rational Weierstrass point is inherited from

[Ked01] and [Har07]; it surely can be lifted, along the lines of [Har12]. Second,

the method should extend to superelliptic curves, following [GG01], [Min10].

Third, it should be possible to apply the same method to a hyperelliptic curve

defined over a number field K. The resulting complexity bound should depend

polynomially on a = [K : Q] and also on the size of the coefficients of a defining

polynomial for K/Q.

Our starting point for the new algorithm is the author’s modification of

Kedlaya’s algorithm [Har07]. The portion of this algorithm whose complexity

is exponential in log p involves computing various ‘reduction matrices.’ These

are products of the form Mp(1)Mp(2) · · ·Mp(p), where Mp(x) is a matrix of

size O(g) whose entries are linear polynomials in x over Zp. In that paper we

suggested using the method of [BGS07] to evaluate this product using g3p1/2+ε

ring operations in Zp.

A key observation is that such products may enjoy a certain redundancy:

for p1 < p2, the product Mp1(1) · · ·Mp1(p1) may be a subproduct of Mp2(1) · · ·
Mp2(p2). To realise any advantage from this, we must overcome two obvious

obstructions. The first is that the values lie in different rings; there is no re-

lation between Qp1 and Qp2 for p1 6= p2. We will deal with this by evaluating

the products over Q rather than Qp. It would appear that coefficient explo-

sion renders this approach woefully inefficient. Coefficient growth does indeed

occur, and one of our key tasks is to bound it.

The second, more fundamental obstruction, is that the entries of Mp(x)

might depend on p, as suggested by the notation. This does in fact occur in



786 DAVID HARVEY

the ‘horizontal reductions’ of [Har07], via the dependence on t in [Har07, §7.2].

The first clue towards removing this dependence is the observation that the

‘vertical reduction’ matrices of [Har07] do not depend on p. The difference is

that these matrices ‘reduce towards zero,’ in a sense that will be made clear in

Section 4. Therefore our solution is to revisit the definition of the relevant co-

homology spaces, and design a reduction strategy that ‘reduces towards zero’ in

all cases. This leads to reduction matrices M(x) whose entries depend only on

the coefficients of Q(x), and not on p. The problem of simultaneous zeta func-

tion computation is thus transformed into the problem of computing products

of the form M(1)M(2) · · ·M(p), modulo a suitable power of p, simultaneously

for all p < N .

For this, we leverage recent work on the computation of Wilson quotients,

or equivalently the residues up = (p−1)! (mod p2). The best known algorithm

for computing a single up has complexity p1/2+ε. For computing the up in bulk,

the paper [CGH14] introduced an ‘accumulating remainder tree’ technique that

computes up for all p < N simultaneously in N log3+εN bit operations; that

is, in average polynomial time per prime. The accumulating remainder tree

succeeds in reconciling two conflicting algorithm design strategies: on the one

hand, we wish to work modulo p2 to avoid the growth of the factorials; on

the other hand, we want to exploit redundancies in the products (p − 1)! for

varying p. This conflict is exactly what we face for the matrix M(x) discussed

above. In this paper we adapt the accumulating remainder tree to the matrix

case, replacing the linear polynomial x by M(x), to compute the products

M(1) · · ·M(p), modulo an appropriate power of p, in average polynomial time

per prime.

2. Preliminaries

For the rest of the paper we fix the following notation. We try to follow

the notation of [Ked01] and [Har07] as closely as possible, with additional

decoration to keep track of the dependence on p.

As in Theorem 1, we take a hyperelliptic curve X given by the equation

y2 = Q(x) where Q ∈ Z[x] is monic and squarefree, and degQ = 2g + 1. We

denote by X ′ the curve obtained from X by removing the point at infinity and

the Weierstrass points. It is affine, with coordinate ring

A = Q[x, y, y−1]/(y2 −Q(x)).

Elements of A may be represented as finite sums

f =
∑

i≥0, j∈Z
ai,jx

iy−j , ai,j ∈ Q.

Let Ω be the A-module of differential forms on X ′. This is the module

generated by symbols du for u ∈ A, subject to the relations d(uv) = u dv+v du
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for u, v ∈ A, and du = 0 for u ∈ Q. Since dy = 1
2Q
′(x)dx/y, elements of Ω

may be represented as finite sums

ω =
∑

i≥0, j∈Z
ai,jx

iy−jdx/y, ai,j ∈ Q.

Let Ω− be the (−1)-eigenspace for the hyperelliptic involution (x, y) 7→ (x,−y).

Its elements are finite sums as above, with ai,j 6= 0 only for even j.

Two forms ω1, ω2 ∈ Ω are cohomologous if ω1 − ω2 = df for some f ∈ A,

and in this case we write ω1 ∼ ω2. Using the same method as in [Ked01], it can

be shown that every ω ∈ Ω− is cohomologous to a unique ω′ =
∑2g−1
i=0 λix

idx/y

with λi ∈ Q, called the reduction of ω.

Now let p be an odd prime of good reduction for X, i.e., such that p does

not divide the discriminant of Q. We denote by X ′p the affine curve over Fp
with coordinate ring

Ap = Fp[x, y, y
−1]/(y2 −Qp(x)),

where Qp ∈ Fp[x] is the reduction of Q modulo p. Let

Ap = Zp[x, y, y
−1]/(y2 −Qp(x)),

where Qp ∈ Zp[x] is the image of Q, and let A†p be the weak completion of Ap,

in the sense of Monsky–Washnitzer [MW68]. Define Ωp to be the A†p-module

of differential forms over Qp (i.e., generated by du for u ∈ A†p ⊗Zp Qp, with

the same relations as before), and let Ω−p be its (−1)-eigenspace. Two forms

ω1, ω2 ∈ Ωp are cohomologous if ω1 − ω2 = df for some f ∈ A†p ⊗Zp Qp. The

quotient of Ωp by this relation is by definition the first Monsky–Washnitzer co-

homology group H1(X ′p;Qp), a vector space over Qp. We are mainly interested

in Vp = H1(X ′p;Qp)
−, the subspace corresponding to Ω−p . It has dimension

2g, with basis {xidx/y}2g−1i=0 . In other words, every ω ∈ Ω−p is cohomologous

to a unique ω′ =
∑2g−1
i=0 λix

idx/y with λi ∈ Qp, again called the reduction of

ω. The two notions of reduction are compatible with the obvious natural map

Ω− → Ω−p .

Let σp : Ap → Ap be the Frobenius map u 7→ up. The essence of Kedlaya’s

method is to give an explicit expression for a lift σp : A†p → A†p and then

to calculate the matrix of its action on Vp with respect to the basis given

above. The numerator P (T ) of the zeta function of Xp is then simply the

characteristic polynomial of this matrix. The Weil conjectures provide bounds

on the coefficients of this polynomial, so it can be recovered exactly, provided

we compute the matrix to sufficiently high p-adic precision.

Already here there is a subtle difference with [Ked01]. In Kedlaya’s situa-

tion, the input is a curve over Fp, and he lifts it arbitrarily to Zp. In our case,

we begin with a curve over Q, and we are considering the reductions modulo
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p for all p simultaneously. It is crucial for our method that we use the ‘same

lift’ for all p.

The precise definition of σp is not so important for us. (See [Ked01] for

details.) The only information we need is the following description of the action

of σp on the basis elements xidx/y.

Proposition 2. Let µ ≥ 1, and assume that p > (2µ − 1)(2g + 1). Let

Cj,r ∈ Z denote the coefficient of xr in Q(x)j . For 0 ≤ j < µ, let

αj =
µ−1∑
k=j

(−1)j+k
Ç
−1/2

k

åÇ
k

j

å
∈ Z[12 ].

For a, b≥1, with b odd, let Ua,bp denote the reduction of xpa−1y−pb+1dx/y∈Ω−.

Then for 0 ≤ i < 2g, the reduction of σp(x
idx/y) agrees modulo pµ with

the image in Ω−p of

µ−1∑
j=0

(2g+1)j∑
r=0

pαjCj,rU
i+r+1,2j+1
p ;

i.e., the coefficients with respect to the basis {xidx/y}2g−1i=0 agree modulo pµ.

Proof. This is just a restatement of [Har07, Prop. 4.1], taking into account

that reduction respects the map Ω− → Ω−p . �

The point of this result is that to compute the zeta functions of Xp for

many p simultaneously, it will suffice to compute, for finitely many pairs (a, b),

the reductions of xpa−1y−pb+1dx/y, modulo a suitable power of p, for many p

simultaneously. We will return to this in Section 5.

Note that the hypothesis p > (2µ − 1)(2g + 1) is not stated explicitly

in [Har07, Prop. 4.1] but is a standing assumption for that whole paper; see

[Har07, Thm. 1.1]. The original purpose of this assumption was to simplify

analysis of denominators. Indeed, the algorithm of [Har07], and the statement

of Proposition 2 above, can be modified to work for smaller primes, but this

requires increasing the number of terms in the sum and carrying more working

p-adic digits in the algorithm. On the other hand, in the present paper, we

are in effect forced to use the same p-adic precision for all primes. Therefore

this hypothesis now acquires an efficiency implication: to get away with the

minimum possible working precision, we must restrict to those primes p >

(2µ− 1)(2g + 1).

It will be important to keep track of the size of various objects in our

discussion. For a polynomial f with integer coefficients, define ‖f‖ to be the

maximum of the absolute values of its coefficients. If M is a matrix with integer

entries, define ‖M‖ = maxj
∑
i |Mij |, i.e., the maximum of the L1 norms of

the columns of M . This norm is submultiplicative with respect to matrix
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multiplication, because

‖MN‖ ≤ max
j

∑
i

∑
k

|Mik||Nkj | ≤ max
j

∑
k

|Nkj |max
`

∑
i

|Mi`| = ‖N‖‖M‖.

We will freely use the following well-known complexity results. Integers

with at most n bits may be multiplied in n log1+ε n bit operations via fast

Fourier transform methods, and division with remainder of integers with at

most n bits has the same asymptotic cost [vG03, Chs. 8–9]. Matrices of size

n over a ring R may be multiplied using O(n3) ring operations (but see the

comments following the proof of Proposition 4). We denote the set of such ma-

trices by Mn(R). The primes less than N may be enumerated in N log2+εN

bit operations. Note that the usual complexity bound for the sieve of Eratos-

thenes is not valid in the Turing model; see [CGH14, Prop. 2.1] for a discussion

and a proof of the bound given.

We also require a deterministic algorithm for solving certain Bezout equa-

tions over Z[x]. The literature on this problem focuses on probabilistic algo-

rithms. For lack of a suitable reference, we provide the following result. Our

method is quite standard; see, for example, [vG03].

Lemma 3. Let F,G ∈ Z[x] be nonzero and relatively prime. Let m =

degF , n = degG. Let δ ∈ Z be the resultant of F and G, so δ 6= 0. Then

there exist polynomials Ri, Si ∈ Z[x], for 0 ≤ i < m + n, with the following

properties :

(a) FRi +GSi = δxi.

(b) degRi < n and degSi < m.

(c) log |δ|, log ‖Ri‖ and log ‖Si‖ are all in O((m+n) log((m+n)‖F‖‖G‖)).
(d) We may compute δ, and all Ri and Si, in

(m+ n)3+ε log1+ε(‖F‖‖G‖)

bit operations.

Proof. Let Pk denote the space of polynomials in Z[x] of degree less than k.

Let T be the matrix of the map Pn×Pm → Pm+n given by (R,S) 7→ FR+GS,

i.e., the (m+ n)× (m+ n) Sylvester matrix

T =



F0 G0

F1 G1
...

. . . F0
...

. . . G0

Fm F1 Gn G1
...

...

Fm Gn


,
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where Fj and Gj denote the coefficients of F and G. By definition δ = detT ,

and by Cramer’s rule the coefficients of Ri and Si are given by certain principal

minors of T . This proves (a) and (b), and (c) follows by applying the Hadamard

bound to each determinant.

We now sketch an algorithm that proves (d). We say that a prime p is

‘bad’ if it divides δ or the leading coefficients of F or G; otherwise it is ‘good.’

The product of the bad primes is certainly at most |δ|‖F‖‖G‖. By (c) we may

choose β with β = O((m+n) log((m+n)‖F‖‖G‖)) so that we are guaranteed

log max(|δ|, ‖Ri‖, ‖Si‖) ≤ β. Increasing β by

log(|δ|‖F‖‖G‖) +O(1) = O((m+ n) log((m+ n)‖F‖‖G‖)),
and using the estimate

∑
p<β log p ∼ β, we may ensure that the product J

of the good primes less than β is large enough so that knowledge of δ,Ri, Si
modulo J determines δ,Ri, Si precisely over Z.

Now perform the following steps. Compute the images of F and G in

Fp[x] for all p < β. This costs (m + n)β1+ε bit operations using a remainder

tree [Ber08]. For each p < β, we may determine if p is good, and if so, find

polynomials R0, S0 ∈ Fp[x] such that FR0 + GS0 = δ (mod p), degR0 < n,

degS0 < m, in (m+n)1+ε log1+ε p bit operations [vG03, Thm. 11.7, Cor. 11.16].

For i = 1, . . . ,m+n−1, compute Ri = xRi−1 mod G and Si = xSi−1 mod F , in

(m+n) log1+ε p bit operations. Then FRi+GSi = δxi (mod p) and degRi<n,

degSi < m. The cost over all i is (m + n)2 log1+ε p, so over all p < β is

(m+ n)2β1+ε bit operations. Since T is nonsingular modulo the good primes,

the polynomials Ri, Si constructed above must agree modulo p with Ri and

Si. Finally we apply a fast interpolation algorithm [Ber08] to each of the

O((m + n)2) coefficients to reconstruct δ and all Ri, Si in (m + n)2β1+ε bit

operations. �

Finally, we mention that we will omit any analysis of the costs of data re-

arrangement that must be counted in the Turing model; these are all subsumed

within the arithmetic cost, along the same lines as the appendix to [BGS07].

3. An accumulating remainder tree for matrices

The following is a matrix generalisation of [CGH14, Thm. 1.1].

Proposition 4. Let n ≥ 1, λ ≥ 1 and B ≥ 2 be integers, and let τ ∈ R,

τ > 1. We are given as input a sequence of matrices M0,M1, . . . ,MB−1 ∈
Mn(Z), with log ‖Mi‖ ≤ τ for all i. Then we may compute

M0M1 · · ·M(p−1)/2 (mod pλ)

for all primes 3 ≤ p < 2B simultaneously in

n3(τ + λ)B logB log1+ε(τλB)

bit operations.
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Proof. Let ` = dlog2Be. We will construct several binary trees of depth `,

whose nodes are indexed by the pairs (i, j) with 0 ≤ i ≤ ` and 0 ≤ j < 2i. The

root node is (0, 0), the children of (i, j) are (i+ 1, 2j) and (i+ 1, 2j + 1), and

the leaf nodes are (`, j) for 0 ≤ j < 2`.

For each node (i, j), let

Ui,j =

ß
k ∈ Z : j

B

2i
≤ k < (j + 1)

B

2i

™
.

Thus Ui,0, . . . , Ui,2i−1 partition the interval 0 ≤ k < B into 2i sets of roughly

equal size. For 0 ≤ i < `, we have the disjoint union Ui,j = Ui+1,2j ∪Ui+1,2j+1.

For the leaf nodes, we have |U`,j | = 0 or 1 for every j, and for every 0 ≤ k < B,

there is exactly one j such that U`,j = {k}; namely, j = b2`k/Bc.
Now for each node, define

Pi,j =
∏

p prime
1
2
(p−1)∈Ui,j

pλ,

Ai,j =
∏

k∈Ui,j

Mk+1,

Ci,j = M0Ai,0Ai,1 · · ·Ai,j−1 (mod Pi,j),

where for convenience we put MB = I (the identity matrix). Implicit in the

product notation for Ai,j is that the Mk are always multiplied in the correct

left-to-right order and that if Ui,j = ∅, then Ai,j = I.

Note that the desired output may be recovered from the leaf nodes of the

Ci,j tree. Indeed, suppose that 3 ≤ p < 2B. Let k = 1
2(p− 1), and choose j as

above so that U`,j = {k}. Then P`,j = pλ, and C`,j = M0M1 · · ·Mk (mod pλ).

Now we explain how to compute the values in the trees, beginning with

the Pi,j tree. After enumerating the primes less than 2B in B log2+εB bit

operations, we use a standard product tree strategy [Ber08], working from the

bottom of the tree to the top, using the relation Pi,j = Pi+1,2jPi+1,2j+1. To esti-

mate the complexity, note that logPi,j = O(Ni,jλ logB), whereNi,j is the num-

ber of primes in Ui,j , so each product costs λNi,j logB log1+ε(λNi,j logB) =

λNi,j logB log1+ε(λB) bit operations. Since
∑
j Ni,j =π(2B)−1=O(B/ logB),

the cost over all intervals at level i is λB log1+ε(λB) bit operations. Over all

O(logB) levels of the tree, the cost is λB logB log1+ε(λB) bit operations.

The Ai,j tree is computed in a similar manner. We have log ‖Ai,j‖ ≤
|Ui,j |τ by submultiplicativity. Computing the product Ai,j = Ai+1,2jAi+1,2j+1

requires O(n3) multiplications of integers with O(|Ui,j |τ) bits, costing

n3τ |Ui,j | log1+ε(τ |Ui,j |)

bit operations. The total cost at level i is n3τB log1+ε(τB), and the cost over

all levels is n3τB logB log1+ε(τB) bit operations.
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For the Ci,j tree, we work from the top of the tree to the bottom, using

the initial condition C0,0 = M0 (mod P0,0) and the relations

Ci+1,2j = Ci,j (mod Pi+1,2j),

Ci+1,2j+1 = Ci,jAi+1,2j (mod Pi+1,2j+1).

At each node we must perform n2 divisions, and possibly n3 multiplications,

of integers with O(max(|Ui,j |τ,Ni,jλ logB)) bits. The final cost bound follows

by the same argument as the previous paragraphs. �

There are several ways to improve the complexity bound in Proposition 4,

at the expense of obfuscating the statement of the final result. One could of

course substitute a faster matrix multiplication algorithm, such as Strassen’s

algorithm [Str69]. This would reduce the exponent of n and hence the exponent

of g in Theorem 1. Another modification, more important in practice, is that

one can multiply integer matrices by computing the Fourier transform of the en-

tries, multiplying the matrices of Fourier coefficients, and finally transforming

back. The resulting complexity bound depends on what integer multiplication

algorithm is being used. For m-bit matrix entries, roughly speaking we expect

the complexity to drop from n3m log1+εm to n2m log1+εm+ n3m. For small

n and large m, the first term dominates. This corresponds to small g and large

N in Theorem 1 and leads to a savings of a factor of O(g) in Theorem 1 as

N →∞.

4. Reduction towards zero

We now return to cohomology. Define a collection of Q-subspaces Ws,t ⊂
Ω−, for s ≥ −1 and t ∈ Z, as follows. If s ≥ 0, put

Ws,t = {F (x)xsy−2tdx/y : F ∈ Q[x], degF ≤ 2g}.

For s = −1, we use the same definition, but insist that the constant term of

F (x) is zero, so that the expression F (x)xsy−2tdx/y still defines an element

of Ω−.

Our goal in this section is to describe explicit reduction maps between

the various Ws,t, that send differentials to cohomologous differentials. The

basic building blocks are horizontal, diagonal, and vertical reduction maps

that send Ws,t to Ws−1,t, Ws−1,t−1, and Ws,t−1 respectively. These maps can

be composed to obtain a map from any Ws,t to W−1,0; by definition this latter

map computes the reduction of a differential in Ws,t, as defined in Section 2.

We will represent these maps by (2g+1)×(2g+1) matrices, acting on coordi-

nate vectors with respect to the natural basis (xsy−2tdx/y, . . . , xs+2gy−2tdx/y)

for each Ws,t. In the case s = −1, the dimension is only 2g, but it will be

convenient to represent elements of W−1,t as vectors of length 2g + 1, where
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it is understood that the first coordinate is always zero. The first row of any

matrix mapping into such a space will always be zero.

We will write δ ∈ Z for the discriminant of Q(x) or, equivalently, the

resultant of Q(x) and Q′(x). It is nonzero because Q(x) is squarefree. The

constant term c0 of Q(x) will also play a special role; some of our results need

to be stated slightly differently in the case that c0 = 0.

Our first result is algebraically the same as the ‘horizontal reduction’ dis-

cussed in [Har07, Prop. 5.4]. However, we now treat both s and t as vari-

ables, and we must analyse coefficient growth, as we are working over Q rather

than Qp.

Lemma 5 (Horizontal reduction). Let

DH(s, t) = (2g + 1)(2t− 1)− 2s ∈ Z[s, t].

There exists a matrix MH ∈M2g+1(Z[s, t]) with the following properties :

(a) Let s ≥ 0, t ∈ Z. Then DH(s, t) 6= 0, and the map DH(s, t)−1MH(s, t)

sends a differential ω ∈Ws,t to a cohomologous differential in Ws−1,t.

(b) The entries of MH have degree at most 1.

(c) log ‖MH‖ = O(log(g‖Q‖)).
(d) MH may be computed in g1+ε log1+ε ‖Q‖ bit operations.

Proof. Using the relations Q(x) = y2 and Q′(x)dx = 2y dy, we have

d(xsy−2t+1) = sxs−1y−2t+1dx− (2t− 1)xsy−2tdy(1)

=

Å
sQ(x)− 1

2
(2t− 1)xQ′(x)

ã
xs−1y−2tdx/y.

Let Q(x) = x2g+1 + P (x), where P ∈ Z[x] has degree at most 2g. After

substituting this into the previous equation and rearranging, we obtain

xs+2gy−2tdx/y ∼ 2sP (x)− (2t− 1)xP ′(x)

DH(s, t)
xs−1y−2tdx/y.

We may therefore take

MH =


0 0 · · · 0 C0

DH 0 0 C1

0 DH 0 C2
... 0

. . .
...

0 0 · · · DH C2g

 ,

where Ci = Ci(s, t) is the coefficient of xi in the polynomial

2sP (x)− (2t− 1)xP ′(x).

Note that DH(s, t) is nonzero for s, t ∈ Z because it assumes only odd values.
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The bound for ‖MH‖ follows from the estimate ‖P ′‖ ≤ 2g‖P‖. The

complexity bound covers O(g) multiplications of integers with O(log ‖Q‖) bits

by integers with O(log g) bits. �

Next we give a generalisation of the ‘vertical reduction’of [Har07, Prop. 5.1],

which was a map W−1,t → W−1,t−1. It turns out that the most natural gen-

eralisation yields a map Ws,t → Ws−1,t−1 rather than Ws,t → Ws,t−1. (The

discrepancy is resolved by reinterpreting the vertical reduction of [Har07] as a

map from a codimension-1 subspace of W0,t to W−1,t−1.)

Lemma 6 (Diagonal reduction). Let

DD(t) = 2t− 1 ∈ Z[t].

There exists a matrix MD ∈M2g+1(Z[s, t]) with the following properties :

(a) Let s ≥ 0, t ∈ Z. Then the map δ−1DD(t)−1MD(s, t) sends a differen-

tial ω ∈Ws,t to a cohomologous differential in Ws−1,t−1.

(b) The entries of MD have degree at most 1.

(c) log |δ| and log ‖MD‖ are both in O(g log(g‖Q‖)).
(d) δ and MD may be computed in g3+ε log1+ε ‖Q‖ bit operations.

Proof. According to Lemma 3, for each 0 ≤ i ≤ 2g, there exist Ri, Si ∈
Z[x], with degRi ≤ 2g − 1 and degSi ≤ 2g, such that

δxi = Ri(x)Q(x) + Si(x)Q′(x).

This implies that

δxs+iy−2tdx/y = xsRi(x)Q(x)y−2tdx/y + xsSi(x)Q′(x)y−2tdx/y

= xsRi(x)y−2t+2dx/y + 2xsSi(x)y−2tdy.

Since

d(xsSi(x)y−2t+1) = (xsSi(x))′y−2t+1dx+ (−2t+ 1)xsSi(x)y−2tdy,

after some algebra we obtain the relation in cohomology

(2) xs+iy−2tdx/y ∼ (2t− 1)xRi(x) + 2sSi(x) + 2xS′i(x)

(2t− 1)δ
xs−1y−2t+2dx/y.

According to this formula, we may take MD to be the matrix whose (i+ 1)-th

column consists of the coefficients of (2t−1)xRi(x)+2sSi(x)+2xS′i(x). These

coefficients are clearly of degree at most 1 in s and t, and DD(t) is nonzero for

t ∈ Z because 2t − 1 is odd. This proves (a) and (b), and (c) and (d) follow

from Lemma 3. �

We will also need a genuine ‘vertical reduction’ in the generic case c0 6= 0.



COUNTING POINTS ON HYPERELLIPTIC CURVES 795

Lemma 7 (Vertical reduction). Assume that c0 6= 0. Let

DV (t) = 2t− 1 ∈ Z[t].

There exists a matrix MV ∈M2g+1(Z[s, t]) with the following properties :

(a) Let s ≥ 0, t ∈ Z. Then the map (c0δ)
−1DV (t)−1MV (s, t) sends a

differential ω ∈Ws,t to a cohomologous differential in Ws,t−1.

(b) The entries of MV have degree at most 1.

(c) log ‖MV ‖ = O(g log(g‖Q‖)).
(d) MV may be computed in g3+ε log1+ε ‖Q‖ bit operations.

Proof. We continue the calculation of Lemma 6. Write Si(x) = hi+xTi(x),

where hi ∈ Z, Ti ∈ Z[x], deg Ti ≤ 2g − 1. The right-hand side of (2) becomes

1

(2t− 1)δ

Ä
2hisx

s−1 +
Ä
(2t− 1)Ri(x) + 2sTi(x) + 2S′i(x)

ä
xs
ä
y−2t+2dx/y.

Our goal is now to reduce the xs−1y−2t+2dx/y term ‘to the right.’ Write

Q(x) = c0 + xP (x), where P ∈ Z[x], degP ≤ 2g. Replacing t by t− 1 in (1),

we obtain

2sQ(x)xs−1y−2t+2dx/y ∼ (2t− 3)Q′(x)xsy−2t+2dx/y,

so

2sxs−1y−2t+2dx/y ∼ (2t− 3)Q′(x)− 2sP (x)

c0
xsy−2t+2dx/y.

Combining everything, we finally have

xs+iy−2tdx/y

∼ (2t− 3)hiQ
′ − 2hisP + (2t− 1)c0Ri + 2c0sTi + 2c0S

′
i

(2t− 1)δc0
xsy−2t+2dx/y.

The columns of MV are obtained from the numerator of this expression in the

same way as in the proof of Lemma 6. �

The next result has no analogue in [Har07]. For each a and b, it will allow

us to reduce the forms xpa−1y−pb+1dx/y ∈Wap−1, 1
2
(bp−1) of Proposition 2 along

the same reduction path for many p simultaneously.

We say that a pair of integers (a, b) is admissible if the following conditions

hold:

(i) a, b ≥ 1 and b is odd;

(ii) if c0 = 0, then b ≤ 2a;

(iii) a = O(g2) and b = O(g).

Here the notation a = O(g2) means that a ≤ Cg2 for a suitable absolute

constant C > 0; an explicit value for C could be extracted from the proof of

Theorem 1. A similar remark applies to b = O(g).
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Proposition 8 (Reduction towards zero). Let (a, b) be an admissible pair,

and let r ≥ 1. There exist a matrix Ma,b
r ∈ M2g+1(Z) and a nonzero integer

Da,b
r with the following properties :

(a) The map (Da,b
r )−1Ma,b

r sends a differential ω in

Wa(2r+1)−1, 1
2
(b(2r+1)−1)

to a cohomologous differential in

Wa(2r−1)−1, 1
2
(b(2r−1)−1).

(b) log ‖Ma,b
r ‖ and log ‖Da,b

r ‖ are in O(g2 log(gr‖Q‖)).
(c) Ma,b

r and Da,b
r may be computed in g5+ε log1+ε(r‖Q‖) bit operations.

Proof. Our goal is to reduce along the vector (−2a,−b) in the (s, t)-plane.

We consider two cases.

First suppose that b ≤ 2a. Then we may construct the required map

by performing b diagonal reductions (Lemma 6) followed by 2a− b horizontal

reductions (Lemma 5). More precisely, let

s0 = a(2r + 1)− 1,

t0 = 1
2(b(2r + 1)− 1),

s1 = s0 − b = a(2r + 1)− b− 1,

t1 = t0 − b = 1
2(b(2r − 1)− 1),

s2 = s1 − (2a− b) = a(2r − 1)− 1,

t2 = t1 = 1
2(b(2r − 1)− 1).

These all have absolute value in O(ar). Let

M ′ = MD(s0 − b+ 1, t0 − b+ 1) · · ·MD(s0 − 1, t0 − 1)MD(s0, t0),

D′ = δbDD(t0 − b+ 1) · · ·DD(t0 − 1)DD(t0),

M ′′ = MH(s1 − 2a+ b+ 1, t1) · · ·MH(s1 − 1, t1)MH(s1, t1),

D′′ = DH(s1 − 2a+ b+ 1, t1) · · ·DH(s1 − 1, t1)DH(s1, t1).

Then (D′)−1M ′ maps Ws0,t0 to Ws1,t1 , and (D′′)−1M ′′ maps Ws1,t1 to Ws2,t2 .

For (a) we should therefore take the composition

Ma,b
r = M ′′M ′, Da,b

r = D′′D′

so that (Da,b
r )−1Ma,b

r maps Ws0,t0 to Ws2,t2 .

To prove (c), note that for each 0 ≤ j < b, we have ‖MD(s0− j, t0− j)‖ =

O(ar‖MD‖). Similarly, ‖MH(s1 − j, t1)‖ = O(ar‖MH‖) for 0 ≤ j < 2a − b.
Thus

log ‖Ma,b
r ‖ = O(b log(ar‖MD‖) + (2a− b) log(ar‖MH‖)) = O(g2 log(gr‖Q‖)).

A similar argument yields log ‖Da,b
r ‖ = O(g2 log(gr‖Q‖)).
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For (d), we may compute D′ and D′′, and hence Da,b
r , using a product tree

[Ber08]; the complexity is soft-linear in the number of bits of output, which is

O(g2 log(gr‖Q‖)). The same result holds for Ma,b
r , with an additional factor

of O(g3) to account for the matrix multiplications. Therefore we obtain the

bit complexity bound g5+ε log1+ε(r‖Q‖). This bound also incorporates the

invocations of Lemmas 5 and 6.

Now consider the case b > 2a. By hypothesis we may assume that c0 6= 0 so

that vertical reductions (Lemma 7) are permissible. We proceed by performing

2a diagonal reductions followed by b− 2a vertical reductions. In other words,

we put

s0 = a(2r + 1)− 1,

t0 = 1
2(b(2r + 1)− 1),

s1 = s0 − 2a = a(2r − 1)− 1,

t1 = t0 − 2a = 1
2(b(2r + 1)− 1)− 2a,

s2 = s1 = a(2r − 1)− 1,

t2 = t1 − (b− 2a) = 1
2(b(2r − 1)− 1),

and

M ′ = MD(s0 − 2a+ 1, t0 − 2a+ 1) · · ·MD(s0 − 1, t0 − 1)MD(s0, t0),

D′ = δ2aDD(t0 − 2a+ 1) · · ·DD(t0 − 1)DD(t0),

M ′′ = MV (s1, t1 − b+ 2a+ 1) · · ·MV (s1, t1 − 1)MV (s1, t1),

D′′ = (c0δ)
b−2aDV (t1 − b+ 2a+ 1) · · ·DV (t1 − 1)DV (t1),

and Ma,b
r = M ′′M ′, Da,b

r = D′′D′. As before, (Da,b
r )−1Ma,b

r maps Ws0,t0

to Ws2,t2 , and the required bounds for log ‖Ma,b
r ‖ and log ‖Da,b

r ‖, and the

complexity bounds, follow in the same way. �

Iterating the previous result enables us to reduce to Wa−1, 1
2
(b−1). The

next result finishes the job, giving the final reduction to W−1,0.

Proposition 9 (Final reduction). Let (a, b) be an admissible pair. There

exist a matrix Ma,b
0 ∈M2g+1(Z) and a nonzero integer Da,b

0 with the following

properties :

(a) The map (Da,b
0 )−1Ma,b

0 sends a differential ω in Wa−1, 1
2
(b−1) to a coho-

mologous differential in W−1,0.

(b) log ‖Ma,b
0 ‖ = O(g2 log(g‖Q‖)) and log |Da,b

0 | = O(g2 log(g‖Q‖)).
(c) Ma,b

0 and Da,b
0 may be computed in g5+ε log1+ε ‖Q‖ bit operations.

Proof. If b ≤ 2a, we perform 1
2(b − 1) diagonal reductions followed by

a− 1
2(b− 1) horizontal reductions. If b > 2a, we perform 1

2(b− 1)− a vertical
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reductions followed by a diagonal reductions. We omit the details, which are

essentially the same as in the proof of Proposition 8. �

5. The main algorithm

Recall that δ denotes the discriminant of Q(x). We say that a pair (a, b)

is p-admissible if it satisfies the following conditions:

(i) a, b ≥ 1 and b is odd;

(ii) if p divides c0, then b ≤ 2a;

(iii) a = O(g2) and b = O(g);

(iv) p does not divide δ;

(v) p > (2g + 1)b+ 2a.

Note that p-admissibility implies admissibility. The following proposition de-

scribes how to efficiently compute the forms Ua,bp introduced in Proposition 2.

Proposition 10. Let (a, b) be admissible, and let N ≥ 3, ν ≥ 1, with

ν = O(g2). Then we may compute Ua,bp modulo pν , simultaneously for all

those p < N such that (a, b) is p-admissible, in

g5+εN log2N log1+ε(‖Q‖N)

bit operations.

Proof. We will systematically omit the superscripts (a, b) for clarity. We

may assume that N is even and put B = N/2. Let M0, . . . ,MB−1 and

D0, . . . , DB−1 be as in Propositions 8 and 9. Then the matrix

Jp = (D0 · · ·D(p−1)/2)
−1(M0 · · ·M(p−1)/2)

maps Wap−1, 1
2
(bp−1) cohomologously to W−1,0. The form xap−1y−bp+1dx/y is

represented by the vector (1, 0, . . . , 0) in the source space, so the coordinates

of Up are given by the first column of Jp.

To obtain results correct modulo pν , we must bound the p-adic valuation of

D0 · · ·D(p−1)/2. First consider the contributions from the vertical and diagonal

reductions. Our hypotheses ensure that the δ and c0 terms do not contribute.

What remains is the factor 2t−1 for t = 1, 2, . . . , 12(bp−1). The only such inte-

gers divisible by p are p, 3p, . . . , (b−2)p. Since p > b, the valuation contributed

is exactly (b− 1)/2.

Now consider the horizontal reductions. If b > 2a, then no horizontal

reductions are performed, so we may assume that b ≤ 2a. We must analyse the

p-adic valuation of (2g+1)(2t−1)−2s for a certain sequence of pairs (s, t). For

all these pairs, we have t ≤ 1
2(bp−1) and s ≤ ap−1, so |(2g+1)(2t−1)−2s| <

p((2g + 1)b + 2a) < p2. Therefore (2g + 1)(2t − 1) − 2s cannot be divisible

by p2, so it suffices to bound the number of factors (2g + 1)(2t − 1) − 2s

that are divisible by p. The pairs coming from the proof of Proposition 8 are
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s = a(2r + 1) − b − 1 − j and t = 1
2(b(2r − 1) − 1) for 1 ≤ r ≤ (p − 1)/2 and

0 ≤ j < 2a− b. For these s and t, we have

(2g+ 1)(2t− 1)− 2s = 2((2g+ 1)b− 2a)r− ((2g+ 1)(b+ 2) + 2(a− b− 1− j)).
Since |(2g + 1)b − 2a| is odd and less than p, the coefficient of r is nonzero

modulo p. Therefore for each j, the factor (2g + 1)(2t− 1)− 2s is divisible by

p for at most one value of r. The pairs coming from Proposition 9 are t = 0

and 0 ≤ s ≤ a− 1− 1
2(b− 1). For these pairs, we have |(2g+ 1)(2t− 1)− 2s| ≤

2g + 1 + 2a < p, so they do not contribute any p-adic valuation.

We conclude that vp(D0 · · ·D(p−1)/2) ≤ ρ, where

ρ =
1

2
(b− 1) + max(0, 2a− b).

(The ‘vertical’ component of this bound is sharp, but the ‘horizontal’ piece

may be too generous by a constant factor. For practical computations, it

would be important to find the optimal bound, but it does not affect our main

asymptotic result.)

We apply Proposition 4 with λ = ν + ρ to compute the products

D0 · · ·D(p−1)/2 (mod pλ), M0 · · ·M(p−1)/2 (mod pλ)

for all p < N . By the above discussion, their ratio yields Jp, and hence Up,

correctly modulo pν , for those p such that (a, b) is p-admissible.

Now we analyse the complexity. Each invocation of Propositions 8 and 9

(i.e., to compute each Mr and Dr) costs g5+ε log1+ε(N‖Q‖) bit operations.

The total contribution over O(N) invocations is g5+εN log1+ε(N‖Q‖) bit op-

erations. To estimate the contribution from Proposition 4, we may take

τ = maxr log ‖Mr‖ = O(g2 log(gN‖Q‖)). Thus the cost of Proposition 4 is

g3(g2 log(gN‖Q‖) + g2)N logN log1+ε(g4N log(gN‖Q‖))

= g5N logN log(gN‖Q‖) log1+ε(gN log(gN‖Q‖))

= g5N logN log1+ε(gN‖Q‖) log1+ε(gN)

= g5+εN log2N log1+ε(N‖Q‖). �

Finally we may prove the main theorem.

Proof of Theorem 1. According to [Ked01], the Weil conjectures imply

that for each p, it suffices to compute the Frobenius matrix modulo pµp where

µp ≥ g/2 + (2g + 1) logp 2. Therefore the bound µ = dg/2 + (2g + 1) log3 2e
works uniformly for all p. Note that µ = O(g).

Consider the terms appearing in the main sum in Proposition 2. The

corresponding values of a and b satisfy

1 ≤ a = i+ r + 1 ≤ (2g − 1) + (2g + 1)(µ− 1) + 1 = (2g + 1)µ− 1

and
1 ≤ b = 2j + 1 ≤ 2µ− 1.
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In particular, a = O(g2) and b = O(g).

The definition of p-admissiblity requires that p > (2g + 1)b + 2a, and

Proposition 2 requires that p > (2g + 1)(2µ − 1). Since (2g + 1)b + 2a ≤
(2g + 1)(4µ − 1), first we must separately handle those p ≤ M where M =

(2g + 1)(4µ − 1) = O(g2). This can be done using (for example) Kedlaya’s

algorithm for each such p. The complexity is p1+εg4+ε per prime, and there

are O(g2) such primes, so the total is g8+ε.

Now we use Proposition 10 to compute Ua,bp (mod pµ) for all pairs (a, b)

corresponding to terms appearing in Proposition 2. First consider the case

c0 = 0. Then we have Cj,r = 0 for r < j, so the relevant pairs are those

for which 1 ≤ b ≤ 2µ − 1, b odd, and 1
2(b + 1) ≤ a ≤ (2g + 1)(j + 1) − 1.

There are O(g3) such pairs. All these pairs are admissible, and they are also

p-admissible for all primes M < p < N of good reduction. The hypotheses of

Proposition 10 are satisfied, and we obtain Ua,bp (mod pµ), for all desired p, in

g8+εN log2N log1+ε(N‖Q‖) bit operations.

Next consider the case c0 6= 0. The inequality for a becomes 1 ≤ a ≤
(2g+ 1)(j+ 1)− 1, and the corresponding pairs are p-admissible for all primes

M < p < N of good reduction, except those dividing c0. Thus Proposition 10

yields Ua,bp (mod pµ) for all desired primes except those dividing c0. The num-

ber of ‘missing’ primes is O(log |c0|) = O(log ‖Q‖), and we may handle them

separately in O(g8N1/2+ε) bit operations each, using the algorithm of [Har07].

At this stage we have computed Ua,bp (mod pµ) for all relevant pairs (a, b)

and for all primes M < p < N of good reduction. The final step is to evaluate

the main sum in Proposition 2 and compute the characteristic polynomial of

the resulting matrix for each p. We will show that this can be achieved in

g6+ε log1+ε p bit operations per prime or g6+εN log1+εN bit operations alto-

gether.

We know that vp(U
a,b
p ) ≥ −ρ, where ρ = O(g2) is defined as in the proof

of Proposition 10, so to evaluate the sum we must work at a p-adic precision

of µ + ρ digits. (Numerical evidence suggests that in fact pUa,bp is always

p-integral for these primes. A proof can probably be given along the lines of

[Ked01, Lemma 2], but we do not need this here.)

We may compute all the αj (mod pµ+ρ) by a straightforward algorithm,

using O(g2) ring operations (i.e., operations modulo pµ+ρ) and all the Cj,r
(mod pµ+ρ) in g3+ε ring operations. Then for each 0 ≤ i < 2g, we may

evaluate the main sum in O(g3) ring operations to obtain the reduction Ti
of σp(x

idx/y) modulo pµ. Note that the Ti are integral. (See, for example,

the proof of [Har07, Prop. 4.1].) The total cost is O(g4) ring operations or

g6+ε log1+ε p bit operations.
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Let T ∈ M2g(Z/p
µZ) be the matrix whose columns are given by the Ti;

we must compute its characteristic polynomial. We sketch a simple deter-

ministic algorithm for this that avoids divisions by p. Compute the powers

T, T 2, . . . , T 2g. Their traces are the power sums of the eigenvalues of T . New-

ton’s identities may be used to deduce the elementary symmetric polynomials

in these eigenvalues and thus the coefficients of the characteristic polynomial.

This requires O(g4) ring operations, including a single division by each of

the integers 2, 3, . . . , 2g, all of which are less than p. The total complexity is

g5+ε log1+ε p bit operations. �
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