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On the diameter of permutation groups

By Harald A. Helfgott and Ákos Seress

Abstract

Given a finite group G and a set A of generators, the diameter

diam(Γ(G,A)) of the Cayley graph Γ(G,A) is the smallest ` such that every

element of G can be expressed as a word of length at most ` in A ∪ A−1.

We are concerned with bounding diam(G) := maxAdiam(Γ(G,A)).

It has long been conjectured that the diameter of the symmetric group

of degree n is polynomially bounded in n, but the best previously known

upper bound was exponential in
√
n logn. We give a quasipolynomial upper

bound, namely,

diam(G) = exp
(
O((logn)4 log log n)

)
= exp

Ä
(log log |G|)O(1)

ä
for G = Sym(n) or G = Alt(n), where the implied constants are absolute.

This addresses a key open case of Babai’s conjecture on diameters of simple

groups. By a result of Babai and Seress (1992), our bound also implies a

quasipolynomial upper bound on the diameter of all transitive permutation

groups of degree n.

1. Introduction

1.1. Groups and their diameters. LetA be a set of generators for a groupG.

The (undirected) Cayley graph Γ(G,A) is the graph whose set of vertices is

V = G and whose set of edges is E = {{g, ga} : g ∈ G, a ∈ A}. The diameter

diam(Γ) of a graph Γ(V,E) is defined by

(1.1) diam(Γ) = max
v1,v2∈V

min
P a path

from v1 to v2

length(P ).

In particular, the diameter of a Cayley graph Γ(G,A) is the maximum, for

g ∈ G, of the length ` of the shortest expression g = aε11 a
ε2
2 · · · a

ε`
` with ai ∈ A

and εi ∈ {−1, 1} for each i = 1, . . . , `. We may define the diameter diam(G)

of a finite group to be the maximal diameter of the Cayley graphs Γ(G,A) for

all generating sets A of G.

Much recent work on group diameters has been motivated by the following

conjecture:

Ákos Seress passed away on February 13, 2013, after the paper’s acceptance.
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Conjecture 1 (Babai, published as [BS92, Conj. 1.7]). For all finite

simple groups G,

diam(G) ≤ (log |G|)O(1),

where the implied constant is absolute.

Here and henceforth, |S| denotes the number of elements of a set S.

The first class of finite simple groups for which Conjecture 1 was estab-

lished was PSL2(Z/pZ) with p prime, by Helfgott [Hel08]. The paper [Hel08]

initiated a period of intense activity [BG08a], [BG08b], [Din11], [BGS10],

[Hel11], [GH], [Var12], [BGS11], [PS10], [BGT11], [GH10], [GV12]1 on the

diameter problem and the related problem of expansion properties of Cayley

graphs.

As far as work in this vein on the diameter of finite simple groups is con-

cerned, the best results to date are those of Pyber, Szabó [PS10] and Breuil-

lard, Green, Tao [BGT11]. Their wide-ranging generalisation covers all simple

groups of Lie type, but (just like [GH]) the diameter estimates retain a strong

dependence on the rank; thus, they prove Conjecture 1 only for groups of

bounded rank. The problem for the alternating groups remained wide open.2

These two issues are arguably related: product theorems (of the type

|A ·A ·A| � |A|1+δ familiar since [Hel08]) are false both in the unbounded-rank

case and in the case of alternating groups, and the counterexamples described

in both situations in [PPSS12], [PS10] are based on similar principles.

In the present paper we address the case of alternating (and symmetric)

groups. We expect that some of the combinatorial difficulties we overcome will

also arise in the context of linear groups of large rank.

ForG = Alt(n), Conjecture 1 stipulates that diam(Alt(n)) = nO(1); [BS92]

refers to this special case of Conjecture 1 as a “folklore” conjecture. Indeed,

this has long been a problem of interest in computer science (see [KMS84],

[McK84], [BHK+90], [BBS04], [BH05]). On a more playful level, bounds on

the diameter of permutation groups are relevant to every permutation puzzle

(e.g., Rubik’s cube).

The best previously known upper bound on diam(G) for G = Alt(n) or

G = Sym(n) was more than two decades old:

(1.2) diam(G) ≤ exp((1 + o(1))
√
n log n) = exp((1 + o(1))

»
log |G|),

due to Babai and Seress [BS88]. (We write exp(x) for ex.)

1This list is not meant to be exhaustive.
2See, e.g., I. Pak’s remarks (made already before [PS10], [BGT11]) on the relative difficulty

of the work remaining to do in the linear case (to be finished “in the next 10 years”) and of

the problem on Alt(n), for which there was “much less hope” [Pak].
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1.2. Statement of results. Recall that a function f(n) is called quasipoly-

nomial if log(f(n)) is a polynomial function of log n. Our main result estab-

lishes a quasipolynomial upper bound for diam(Alt(n)) and diam(Sym(n)).

Main Theorem. Let G = Sym(n) or Alt(n). Then

diam(G) ≤ exp
Ä
O((log n)4 log logn)

ä
,

where the implied constant is absolute.

The quasipolynomial bound extends to a much broader class of permuta-

tion groups. Recall that a permutation group G acting on a set Ω is called

transitive if

∀α, β ∈ Ω, ∃g ∈ G such that g takes α to β.

The size |Ω| of the permutation domain is called the degree of G.

Kornhauser et al. [KMS84] and McKenzie [McK84] raised the question of

what classes of permutation groups may have polynomial diameter bound in

their degree. A weaker, quasipolynomial bound for all transitive groups was

formally conjectured in [BS92]:

Conjecture 2 ([BS92, Conj. 1.6]). If G is a transitive permutation group

of degree n, then diam(G) ≤ exp((log n)O(1)).

Babai and Seress [BS92] linked Conjecture 2 to the diameter of alternating

groups:

Theorem 1.1 ([BS92, Thm. 1.4]). If G is a transitive permutation group

of degree n, then

diam(G) ≤ exp
Ä
O(log n)3

ä
diam (Alt(k)) ,

where Alt(k) is the largest alternating composition factor of G.

Combining our Main Theorem with Theorem 1.1, we immediately obtain

Corollary 1.2. Conjecture 2 is true; indeed the diameter of any tran-

sitive permutation group G of degree n is

diam(G) ≤ exp
Ä
O((log n)4 log logn)

ä
.

We note that Theorem 1.1 is not only used to prove Corollary 1.2 — it

also comes into play as an inductive tool in the proof of the Main Theorem (see

Lemma 6.3). Since Theorem 1.1 relies on the Classification of Finite Simple

Groups, so does the Main Theorem.

It is well known that, for any finite group G and any set A of generators

of G, the eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ · · · of the adjacency matrix of Γ(G,A)

satisfy

(1.3) λ0 − λ1 ≥
1

diam(Γ(G,A))2
.
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(See [DSC93, Cor. 1] or the references [Ald87], [Bab91], [Gan91], [Moh91]

therein.) Because of (1.3), we obtain immediately that

λ0 − λ1 ≥ exp(−O((log n)4 log log n)),

with consequences on expansion and the mixing rate. (See, for example,

[Lov96], [HLW06].)

Finally, the Main Theorem and Corollary 1.2 extend to directed graphs.

Given G = 〈A〉, the directed Cayley graph ~Γ(G,A) is the graph with vertex

set G and edge set {(g, ga) : g ∈ G, a ∈ A}. The diameter of ~Γ(G,A) is

defined by (1.1), where “path” should be read as “directed path”;
−−−→
diam(G) is

the maximum of diam(~Γ(G,A)) taken as A varies over all generating sets A of

G. Thanks to Babai’s bound
−−−→
diam(G) = O

(
diam(G) · (log |G|)2

)
[Bab06, Cor.

2.3], valid for all groups G, we obtain immediately from Corollary 1.2 that

Corollary 1.3. Let G be a transitive group on n elements. Then
−−−→
diam(G) ≤ exp(O((log n)4 log logn)).

1.3. General approach. An analogy underlies recent work on growth in

groups: much3 of basic group theory carries over when, instead of subgroups,

we study sets that grow slowly (|A ·A ·A| ≤ |A|1+ε). This realisation is clearer

in [Hel11] than in [Hel08] and has become current since then. (The term

“approximate group” [Tao08] actually first arose in a different context, namely,

the generalisation of some arguments in classical additive combinatorics to the

non-abelian case; see also [Hel08, §2.3], [SSV05, Lemma 4.2]. The analogy

between subgroups and slowly growing sets was also explored in a model-

theoretic setting in later work by Hrushovski [Hru12].)

This analogy is more important than whether one works with approximate

subgroups in Helfgott’s sense (|A ·A ·A| ≤ |A|1+ε, or more generally |A ·A ·A| ≤
f(|A|) for some specified f) or Tao’s sense [Tao08, Def. 3.7]; the two definitions

are essentially equivalent, and we will actually work with neither. We could

phrase part of our argument in terms of statements of the form |Ak| ≤ |A|1+ε,

but k would sometimes be larger than n; applying the tripling lemma ([RT85],

[Hel08, Lemma 2.2], [Tao08, Lemma 3.4]) to such statements would weaken

them fatally.

There is another issue worth emphasising: the study of growth needs to

be relative. We should not think simply in terms of a group acting on itself

3Or at least results on subgroups that rely on grosso modo quantitative arguments. Cru-

cially, the orbit-stabiliser theorem carries over Lemma 3.1; Sylow theory, which is quantita-

tive but relies on (necessarily delicate) congruences, does not. As [BBS04, Lemma 2.1] (in

retrospect) and Proposition 5.2 in the present work make clear, probabilistic arguments in

combinatorics can also carry over, provided that the desired probability distribution on a set

can be approximated quickly by the action of a random walk.
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by multiplication — even if, in the last analysis, this is the only operation

available to us. Rather, growth statements often need to be thought of in

terms of the action of a group G on a set X and the effect of this action on

subsets A ⊆ G, B ⊆ X. (Here X may or may not be endowed with a structure

of its own.) This was already clear in [Hel11, Prop. 3.1] and [GH10] and is

crucial here: a key step will involve the action of a normaliser NG(H) on a

subgroup H ≤ G by conjugation.

1.4. Relation to previous work. Our debt to previous work on permutation

groups is manifold. It is worthwhile to point out that some of our main tech-

niques are adaptations to sets of classification-free arguments4 on the properties

of subgroups of Sym(n) by Babai [Bab82], Pyber [Pyb93], Bochert [Boc89], and

Liebeck [Lie83]. Of particular importance is Babai and Pyber’s work on the

order of 2-transitive groups [Bab82], [Pyb93].

We shall also utilise existing diameter bounds. Besides Theorem 1.1, we

shall use the main idea from [BS88] (see Lemma 3.19) and the following theo-

rem by Babai, Beals, and Seress. For a permutation g of a set Ω, the support

supp(g) is the subset of elements of Ω that are displaced by g.

Theorem 1.4. ([BBS04]) For every ε < 1/3, there exists K(ε) such that,

if G = Alt(n) or Sym(n) and A is a set of generators of G containing an

element x ∈ A with 1 < | supp(x)| ≤ εn, then

diam(Γ(G,A)) ≤ K(ε)n8.

We will use this theorem repeatedly in Section 6. As we shall make clear

in Section 4, we also apply — crucially — one of the main methods involved

in the proof of Theorem 1.4, namely, the use of short random walks to mimic

a uniform distribution.

We note that until recently Theorem 1.4 gave the largest known explicit

class of Cayley graphs of Sym(n) or Alt(n) that has polynomially bounded

diameter. In late 2010, partly based on ideas from [BBS04], Bamberg et al.

[BGH+12] proved that if a set of generators of Sym(n) or Alt(n) contains an

element of support size at most 0.63n, then the diameter of the Cayley graph

is bounded by a polynomial of n.

1.5. Outline. Let us begin in medias res, focusing on a crucial moment

at which growth is achieved. Classical reasons aside, this will allow us to

emphasise the link to [Hel08], [Hel11], [BGT11], [PS10], and [GH10], while

4Cf. the role of [LP11] (especially Theorems 4.2 and 6.2) which, in order to provide

alternatives to the Classification of Finite Simple Groups, did (both more and less generally)

for subgroups what [Hel11, §5] did for sets and was later translated back to sets for use in

[BGT11].
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repeating one of the main motifs: growth results from the action of a group

on a set, often, as is the case here, by conjugation.

The setup for the crucial step will involve a set A ⊂ Sym([n]) with A =

A−1 and a fairly large set Σ ⊂ [n] ([n] := {1, 2, . . . , n}) such that the pointwise

stabiliser5 A(Σ) generates a group 〈A(Σ)〉 with a large orbit Γ ⊂ [n] \ Σ. (Say,

for concreteness, that |Σ| ≥ (log n)2 and |Γ| > 0.95n.) The setwise stabiliser

〈AΣ〉 acts on the pointwise stabiliser 〈A(Σ)〉 by conjugation.

We can assume that 〈A(Σ)〉 acts as the alternating or symmetric group

on Γ, as otherwise we are done by a different argument (called descent in

Section 6; we will discuss it later). It follows that we can find a set S of at

most six elements of (A(Σ))
`, ` fairly small, such that 〈S〉 is doubly transitive

on Γ. (This implication is far from trivial; we prove a general result of this

kind (Corollary 4.7) showing that, if a set A′ generates Sym([m]) or Alt([m]),

then there is a small set S ⊂ (A′)`, ` fairly small, such that 〈S〉 is k-transitive.)

Consider the action of the elements of AΣ on the elements of S by conju-

gation. By an orbit-stabiliser principle, either (a) an element g 6= e of AΣ fixes

(i.e., commutes with) every element of S, or (b) the orbit {gsg−1 : g ∈ AΣ} of

some s ∈ S is of size ≥ |AΣ|1/6. In case (a), since 〈S〉 is doubly transitive, g

fixes every point of Γ. We have thus constructed a nonidentity element g ∈ A
with small support, and we are done by Theorem 1.4. In case (b), we have con-

structed many (≥ |AΣ|1/6) distinct elements gsg−1 in the pointwise stabiliser

(A3)(Σ). This is what we call creation in Section 6.

The questions are now — how do we get to the point at which we began

our narrative? And how do we use the conclusion we have just shown, namely,

the creation of many elements in the pointwise stabiliser?

Let us start with the first question. For the conclusion to be strong, AΣ

should be large — for instance, large in comparison to A(Σ) or (A2)(Σ). Now,

AΣ can be much larger than (A2)(Σ) only if A occupies a large number R of

cosets of Sym([n])(Σ) in Sym([n]). (By pigeonhole, |(A2)(Σ)| ≥ |A|/R.) Our

aim will be to find a large Σ such that R is larger than (dn)|Σ|, where d > 1/2

is a constant.

This is also an intermediate aim in [Pyb93] (which treats subgroups, not

sets). Much as there, we use this as follows: R is larger than (dn)|Σ|, and

so AA−1 intersects at least d|Σ||Σ|! cosets of (Sym([n]))(Σ) within (Sym([n]))Σ

(by pigeonhole); this means that the projection (by restriction) of (AA−1)Σ

to Sym(Σ) has size at least d|Σ||Σ|!. At this point Pyber uses the fact (due

to Liebeck [Lie83] and based on Bochert [Boc89]) that, if a subgroup H of

5Defined as in (2.1). The notation here follows Dixon and Mortimer [DM96] and Seress

[Ser03] rather than Wielandt [Wie64]. Wielandt writes AΣ for the pointwise stabiliser, which

we denote by A(Σ); we write AΣ for the setwise stabiliser.
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Sym(Σ) is of size at least s = d|Σ||Σ|!, where d > 1/2, then there must be a

large orbit ∆ ⊂ Σ of H such that the restriction of H to ∆ equals Alt(∆) or

Sym(∆). We will show (Proposition 3.15) that, even if H ⊂ Sym(Σ) is just a

set, not a subgroup, the assumption that H is of size at least s implies that

the restriction of H` to ∆ equals all of Alt(∆) or Sym(∆), where ` is relatively

small. (This works because the proof of Bochert’s nineteenth-century result is

algorithmic.) The fact that we obtain all of Alt(∆) or Sym(∆) is particularly

important for what we called a “descent argument” (as in “infinite descent”)

in the above.

Now, as we said, we must find a large Σ such that A (or A`
′
, `′ mod-

erate) occupies a large number of cosets of Sym([n])(Σ), i.e., sends (Σ) to

many different tuples. Pyber shows this (for A a subgroup) by constructing

Σ = {α1, α2, . . . , αm} so that

(1.4) |α
A(α1,...,αi−1)

i | ≥ dn

for every 1 ≤ i ≤ m. (The use of stabiliser chains A > A(α1) > A(α1,α2) > · · ·
goes back to the algorithmic work of Sims [Sim70], [Sim71], as does the use of

the size of the orbits in (1.4); see [Ser03, §4.1].) This step also works when A is

a subset (Lemma 3.17). The difficult part, of course, is to show that elements

α1, α2, . . . , αm satisfying (1.4) exist.

Here [Pyb93] uses Babai’s splitting lemma [Bab82], which states that, if

H < Sym([n]) is a doubly transitive permutation group and Σ ⊂ [n] is such

that H(Σ) has no orbits of size > (1 − ε)n, then there is a set Σ′ ⊂ [n] with

|Σ′| �ε (log n)|Σ| such that H(Σ′) consists only of the identity. In fact, Σ′ =

ΣS = {xS : x ∈ Σ, s ∈ S}, where S is a subset of H of size |S| � log n. Babai

constructs S by choosing O(log n) elements randomly from H with the uniform

distribution. A random element of H takes a pair (x, y) of distinct elements of

[n] to any other such pair (x′, y′) with the same probability ((n(n − 1)/2)−1)

no matter what (x′, y′) is. Now, given any distinct x, y ∈ [n], it is almost

certain that they will be taken to elements xg, yg of different orbits of H(Σ) by

some g ∈ S ⊂ H, simply because a positive proportion of all pairs (x′, y′) lie

in different orbits (by the fact that there is no orbit of size > (1− ε)n). Then,

x and y belong to different orbits of gHΣg
−1 = H

Σg−1 and thus to different

orbits of HΣS . Summing probabilities over all x and y, we obtain that, with

positive probability, every two distinct x, y ∈ [n] belong to different orbits of

HΣS . This implies that HΣS is trivial.

We adapt this entire argument so as to hold for a set A ⊂ Sym([n])

instead of a subgroup H < Sym([n]); as usual, sometimes H is replaced by A

and sometimes by AA−1 or A`, where ` is moderate (`� nO(1)). The key here

is that the outcome of a random walk of moderate length takes a pair (x, y) to

any other pair (x′, y′) with almost uniform probability.
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We apply the resulting generalisation of the splitting lemma (Proposi-

tion 5.2) and point out that (AA−1)(Σ′) = {e} implies |Σ′| � logn |A| (by

pigeonhole) and so |Σ| � (log |A|)/(log n)2. In other words, we are guaranteed

to be able to construct a stabiliser chain with long orbits as in (1.4) (for any

d < 1) until m gets to size proportional to (log |A|)/(log n)2. We call this the

organising step.

Now that we have the stabiliser chain, and thus the proper setup for the

creation step, how do we use the outcome of the creation step? In [Hel08] and

the work that followed, the main intermediate result stated that a generating

set A always grew in size (|A3| ≥ |A|1+δ [Hel08, Key Proposition]); to prove

that the diameter Γ(G,A) was small, one just had to apply this key proposition

over and over (|A3| ≥ |A|1+δ, |A9| ≥ |A3|1+δ ≥ |A|(1+δ)2
, . . . ). Here we will also

prove our diameter bound by iteration; however, the quantity whose growth

we will keep track of during iteration will not be the size of A`, but rather the

length of the sequence α1, α2, . . . we have constructed satisfying (1.4) (for A`

instead of A).

The iteration is conducted as follows. We actually construct the first

(log n)2 elements of α1, α2, . . . by brute force, by raising A to an nO((logn)2)-th

power. (This works by Lemma 3.9.) Now we get to the main step that gets

repeated (Proposition 6.4): given a sequence α1, . . . , αm satisfying (1.4) (for A`

instead of A), we use the creation step to construct at least (m!)1/6 elements

of (A`
′
)(α1,...,αm), where `′ ≤ nO(logn)`; then we use the organising step to con-

struct new elements αm+1, . . . , αm′ (m′ ≥ m+cm(logm)/(log n)2) so that (1.4)

is satisfied for all i = 1, 2, . . . ,m′ (with A`
′

instead of A`). (We actually repeat

the organising step several times after each creation step; this helps us save a

log in the final exponent.) Repeating this, we keep on lengthening the sequence

α1, α2, . . . until it gets to be of length almost n, and then we are done easily.

* * *

Needless to say, in the above outline, we have left out details that will

be treated in full in the body of the text. Let us discuss one more thing now

— namely, what we have called the descent step. We reach it when we have

constructed a set Σ = {α1, α2, . . . , αm} such that (a) the restriction of AΣ to

Σ acts as Alt(∆) or Sym(∆) on a large subset ∆ ⊂ Σ, (b) the restriction of

〈AΣ〉 to [n]\Σ does not act like Alt or Sym on any subset of [n]\Σ larger than

0.95n (say).

Now we can use Theorem 1.1 (Babai-Seress) and obtain from (b) that the

diameter of 〈AΣ〉 is bounded in terms of the diameter of Alt(k), k = [0.95n].

(It is here, and only here, that the Classification Theorem is needed, since

Theorem 1.1 is based on it.) Now we can use, inductively, our own main

theorem on the diameter of Alt(n), with k instead of n. This gives a bound

on the diameter of 〈AΣ〉. At this point we use Lemma 3.19 (which is [BS87,
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Lemma 3]; see also [BLS87]). This shows that (a) implies that 〈AΣ〉 contains a

nonidentity element g of small support. We can now apply Theorem 1.4 (Babai-

Beals-Seress) to bound the diameter of our group G = Alt(n) or G = Sym(n)

with respect to A. Note that [BS87, Lemma 3] would be prohibitively expensive

if used as a constructive result; here we are using it to show the existence of an

element, which we know can be constructed as a relatively short word thanks

to the bound on the diameter of 〈AΣ〉 we obtained through Theorem 1.1.
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2. Notation

We write [n] = {1, 2, . . . , n}. For a set Ω, Sym(Ω) and Alt(Ω) are the

symmetric and alternating groups acting on Ω. As is customary, we often

write Alt(n) and Sym(n) for Alt([n]) and Sym([n]) — particularly when we

are thinking of these groups as abstract groups as opposed to their actions.

We write H ≤ G to mean that H is a subgroup of G and H CG to mean

that H is a normal subgroup. We say that a group S is a section of a group G

if there exist subgroups H and K of G with KCH and H/K ∼= S. We denote

the identity element of a group by e.

Let A be a subset of a group G. We write A−1 = {a−1 : a ∈ A}, Ak =

{a1a2 · · · ak : a1, . . . , ak ∈ A}. In [Hel08], [Hel11], the first author wrote A` to

mean (A∪A−1∪{e})`; this does not seem to have become standard and would

also not do here due to the potential confusion with alternating groups. (Recall

that An is in common usage as a synonym for Alt(n).) We will often include

A = A−1, e ∈ A explicitly in our assumptions so as to simplify notation. A set

A with A = A−1 is said to be symmetric.

We write |A| for the number of elements of a set A. (All of our sets and

groups are finite.) Given a group G and a subgroup H ≤ G, we write [G : H]

for the index of H in G.

Let a group G act on a set X. As is customary in the study of permutation

groups, given g ∈ G and α ∈ X, we write αg for the image of α under the
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action of g. We speak of the orbit αA = {αg : g ∈ A} of a point α under the

action of a set A of permutations. Our actions are right actions by default:

(αg)h = αgh. In consequence, we also use right cosets by default, i.e., cosets

Hg (and so G/H is the set of all such cosets). Clearly |G/H| = [G : H].

We define the commutator [g, h] by [g, h] = g−1h−1gh. Again, this choice

is customary for permutation groups.

Define

(2.1)
AΣ = {g ∈ A : Σg = Σ} (the setwise stabiliser),

A(Σ) = {g ∈ A : ∀α ∈ Σ (αg = α)} (the pointwise stabiliser).

If Σ = {g1, . . . , gm}, the setwise stabiliser is denoted by A{g1,...,gm} and the

pointwise stabiliser by A(g1,...,gm).

Given a permutation g ∈ Sym(Ω), we define its support supp(g) to be

the set of elements of Ω moved by g: supp(g) = {α ∈ Ω : αg 6= α}. If a

subset ∆ ⊆ Ω is invariant under g, i.e., ∆ is a union of cycles of g, then we

define g|∆ ∈ Sym(∆) as the restriction (natural projection) of g to ∆: the

permutation g|∆ acts on ∆ as g does. If ∆ is invariant under some D ⊆
Sym(Ω), then D|∆ = {g|∆ : g ∈ D}.

A partition B = {Ω1,Ω2, . . . ,Ωk} of a set Ω (Ωi nonempty) is called a

system of imprimitivity for a transitive group G ≤ Sym(Ω) if G permutes the

sets Ωi for 1 ≤ i ≤ k. For |Ω| ≥ 2, a transitive group G ≤ Sym(Ω) is called

primitive if there are only the two trivial systems of imprimitivity for G: the

partition into one-element sets, and the partition consisting of one part Ω1 = Ω.

We say that a graph (or a multigraph) is regular with degree or valency d

if there are d edges adjoining every vertex; that is, “degree” and “valency” of a

vertex mean the same thing. In a directed graph, the out-degree of a vertex x

is the number of edges starting at x while the in-degree is the number of edges

terminating at x. A directed graph is called strongly connected if for any two

vertices x, y, there is a directed path from x to y.

By f(n)� g(n), g(n)� f(n), and f(n) = O(g(n)) we mean one and the

same thing, namely, that there are N > 0, C > 0 such that |f(n)| ≤ C · g(n)

for all n ≥ N .

We write log2 x to mean the logarithm base 2 of x (and not to mean

log log x).

3. Preliminaries on sets, groups and growth

3.1. Orbits and stabilisers. The orbit-stabiliser theorem from elementary

group theory carries over to sets. This is a fact whose importance to the

area is difficult to overemphasise. It underlies already [Hel08] at a key point

(Proposition 4.1); the action at stake there is that of a group G on itself by

conjugation.
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The setting for the theorem is the action of a group G on a set X. The

stabiliser Gx of a point x ∈ X is the set {g ∈ G : xg = x}.

Lemma 3.1 (Orbit-stabiliser theorem for sets). Let G be a group acting

on a set X . Let x ∈ X , and let A ⊆ G be nonempty. Then

(3.1) |AA−1 ∩Gx| ≥
|A|
|xA|

.

Moreover, for every B ⊆ G,

(3.2) |AB| ≥ |A ∩Gx||xB|.

The usual orbit-stabiliser theorem is the special case A = B = H, H a

subgroup of G.

Proof. By the pigeonhole principle, there exists an image x′ ∈ xA such

that the set S = {a ∈ A : xa = x′} has at least |A|/|xA| elements. For any

a, a′ ∈ S, xa(a′)−1
= (x′)(a′)−1

= x. Hence

|AA−1 ∩Gx| ≥ |SS−1| ≥ |S| ≥ |A|
|xA|

.

Let b1, b2, . . . , b` ∈ B, ` = |xB|, be elements with xbi 6= xbj for i 6= j.

Consider all products of the form abi, a ∈ A ∩ Gx, 1 ≤ i ≤ `. If two such

products abi, a
′bi′ are equal, then xbi = xabi = xa

′bi′ = xb
′
i . This implies

bi = bi′ . Since abi = a′bi′ , we conclude that a = a′. We have thus shown that

all products abi, a ∈ A ∩Gx, 1 ≤ i ≤ `, are in fact distinct. Hence

|AB| ≥ |(A ∩Gx) · {bi : 1 ≤ i ≤ `}|

= |A ∩Gx| · ` = |A ∩Gx| · |xB|. �

As the following corollaries show, the relation between the size of A, on

the one hand, and the size of orbits and stabilisers, on the other, implies that

growth in the size of either orbits or stabilisers induces growth in the size of A

itself.

Corollary 3.2. Let G be a group acting on a set X . Let x ∈ X . Let

A ⊆ G be a nonempty set with A = A−1. Then, for any k > 0,

(3.3) |Ak+1| ≥ |A
k ∩Gx|

|A2 ∩Gx|
|A|.

Proof. By (3.2),

|Ak+1| ≥ |Ak ∩Gx||xA| ≥
|Ak ∩Gx|
|A2 ∩Gx|

|A2 ∩Gx||xA|.

Since |A2 ∩Gx||xA| ≥ |A| (by (3.1)), we obtain (3.3). �
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Corollary 3.3. Let G be a group acting on a set X . Let x ∈ X . Let

A ⊆ G be a nonempty set with A = A−1. Then, for any k > 0,

(3.4) |Ak+2| ≥ |x
Ak |
|xA|

|A|.

Proof. By (3.2) and (3.1),

|Ak+2| ≥ |A2 ∩Gx||xA
k | ≥ |A|

|xA|
|xAk | = |x

Ak |
|xA|

|A|. �

3.2. Lemmas on subgroups and quotients. We start by recapitulating some

of the simple material in [Hel11, §7.1]. The first lemma guarantees that we can

always find many elements of AA−1 in any subgroup of small enough index.

Lemma 3.4 ([Hel11, Lemma 7.2]). Let G be a group and H a subgroup

thereof. Let A ⊆ G be a nonempty set. Then

(3.5) |AA−1 ∩H| ≥ |A|
r
,

where r is the number of cosets of H intersecting A. In particular,

|AA−1 ∩H| ≥ |A|
[G : H]

.

Proof. By the orbit-stabiliser principle (3.1) applied to the natural action

of G on G/H by multiplication on the right.6 (Set x = He = H.) �

The following two lemmas should be read as follows: growth in a subgroup

gives growth in the group; growth in a quotient gives growth in the group.

Lemma 3.5 (essentially [Hel11, Lemma 7.3]). Let G be a group and H a

subgroup thereof. Let A ⊆ G be a nonempty set with A = A−1. Then, for any

k > 0,

(3.6) |Ak+1| ≥ |A
k ∩H|

|A2 ∩H|
|A|.

Proof. By Corollary 3.2 applied to the action of G on G/H by multipli-

cation on the right (with x = He = H). �

For a group G and a subgroup H ≤ G, we define the coset map πG/H :

G→ G/H that maps each g ∈ G to the right coset Hg containing g.

6Recall that we are following the convention that G/H is the set of right cosets Hg.
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Lemma 3.6 (essentially [Hel11, Lemma 7.4]). Let A ⊆ G be a nonempty

set with A = A−1. Then, for any k > 0,

|Ak+2| ≥
|πG/H(Ak)|
|πG/H(A)|

|A|.

Proof. By Corollary 3.3, applied with G acting on X := G/H by multi-

plication on the right and with x := H seen as an element of G/H. �

The following lemma is a generalisation of Lemma 3.4.

Lemma 3.7. Let G be a group, let H,K be subgroups of G with H ≤ K ,

and let A ⊆ G be a nonempty set. Then

|πK/H(AA−1 ∩K)| ≥
|πG/H(A)|
|πG/K(A)|

≥
|πG/H(A)|

[G : K]
.

In other words: if A intersects r[G : H] cosets of H in G, then AA−1

intersects at least r[G : H]/[G : K] = r[K : H] cosets of H in K. (As usual,

all our cosets are right cosets.)

Proof. Since A intersects |πG/H(A)| cosets of H in G and |πG/K(A)| cosets

of K in G, and every coset of K in G is a disjoint union of cosets of H in G,

the pigeonhole principle implies that there exists a coset Kg of K such that A

intersects at least k = |πG/H(A)|/|πG/K(A)| cosets Ha ⊆ Kg. Let a1, . . . , ak
be elements of A in distinct cosets of H in Kg. Then aia

−1
1 ∈ AA−1 ∩K for

each i = 1, . . . , k. Finally, note that Ha1a
−1
1 , . . . ,Haka

−1
1 are k distinct cosets

of H. �

The above lemmas fall into two types: either (a) they reduce the prob-

lem of proving growth in G to that of proving growth in a smaller structure

(a subgroup in Lemma 3.5, a quotient in Lemma 3.6), or (b) they produce

many elements in a smaller structure (a group in Lemma 3.4, a quotient in

Lemma 3.7).

Lastly, we present a result of a somewhat different nature. It is a version

of Schreier’s lemma (rewritten slightly as in [GH10, Lemma 2.10]). Usually, if

a set A generates a group G, that does not mean that, for H a subgroup of

G, the intersection A ∩ H will generate H. However, Lemma 3.8 tells us, if

A projects onto G/H, then A3 ∩H does generate H. We will use Lemma 3.8

in the proof of Lemma 6.2 (for G a setwise stabiliser (Sym(n))∆ and H the

corresponding pointwise stabiliser (Sym(n))(∆)).

Lemma 3.8 (Schreier). Let G be a group and H a subgroup thereof. Let

A ⊆ G with A = A−1 and e ∈ A. Suppose A intersects each coset of H in G.

Then A3 ∩H generates 〈A〉 ∩H . Moreover, 〈A〉 = 〈A3 ∩H〉A.
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Proof. Let C ⊆ A be a full set of right coset representatives of H, with

e ∈ C. We wish to show that 〈A〉 = 〈A3 ∩ H〉C. (This immediately implies

both 〈A〉 = 〈A3 ∩H〉A and 〈A〉 ∩H = 〈A3 ∩H〉.)
Clearly e ∈ 〈A3 ∩H〉C. It is thus enough to show that, if g = hc, where

h ∈ 〈A3 ∩H〉 and c ∈ C, and a′ ∈ A, then ga′ still lies in 〈A3 ∩H〉C. This is

easily seen: since C is a full set of coset representatives, there is a c′ ∈ C with

c′ = h′ca′ for some h′ ∈ H, and thus

ga′ = hca′ = h((h′)−1)h′ca′ = h((h′)−1)c′ ∈ 〈A3 ∩H〉(A3 ∩H)C = 〈A3 ∩H〉C,
where we use the fact that h′ = c′(a′)−1c−1 ∈ A3. �

3.3. Actions and generators. The proofs of the next two lemmas share

a rather simple idea. Indeed, both lemmas can be seen as consequences of

the well-known fact that every connected graph has a spanning tree.7 The

graph would be the union of the permutation graphs (with X as the vertex

set) induced by the elements of the set A.

We give two brief proofs without graphs.

Lemma 3.9. Let G be a group acting transitively on a finite set X . Let

A ⊆ G with A = A−1, e ∈ A, and G = 〈A〉. Then, for any x ∈ X ,

xA
`

= X,

where ` = |X| − 1.

Proof. Consider the orbits {x} ⊆ xA ⊆ xA
2 ⊆ · · · . Let `′ be the smallest

integer with xA
`′+1

= xA
`′

. As xA
`′+2

= (xA
`′+1

)A = (xA
`′

)A = xA
`′+1

= xA
`′

,

we have xA
`′

= x〈A〉 = xG = X. Since

{x} ( xA ( xA
2
( · · · ( xA

`′
= X,

we have `′ ≤ |X| − 1. �

Lemma 3.10. Let G be a group acting transitively on a finite set X . Let

A ⊆ G with A = A−1 and G = 〈A〉. Then there is a subset A′ ⊆ A, |A′| < |X|,
such that 〈A′〉 acts transitively on X .

Proof. Let x ∈ X. Let A1 = {g}, where g is any element of A such that

xg 6= x. For each i ≥ 1, let Ai+1 be Ai ∪{gi}, where gi is an element of A such

that x〈Ai∪{gi}〉 ) x〈Ai〉. If no such element gi exists, we can conclude that x〈Ai〉

is taken to itself by every gi ∈ A. This implies that x〈Ai〉 is taken to itself by

every product of elements of A, and thus (x〈Ai〉)〈A〉 = x〈A〉 equals x〈Ai〉.

Hence, we have a chain

{x} ( x〈A1〉 ( x〈A2〉 ( · · · ( x〈Ai〉 = x〈A〉 = X.

Clearly i ≤ |X| − 1, and so |Ai| ≤ |X| − 1. Let A′ = Ai. �

7We thank an anonymous referee for this comment.
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3.4. Large subsets of Sym(n). Let us first prove a result on large subgroups

of Sym(n).

Lemma 3.11. Let n ≥ 84. Let G ≤ Sym(n) be transitive, with a section

isomorphic to Alt(k) for some k > n/2. Then G is either Alt(n) or Sym(n).

Proof. Since k ≥ 5, the group Alt(k) is simple. Hence some composition

factor of G has a section isomorphic to Alt(k). Assume that G is imprimitive,

and let B be a nontrivial system of imprimitivity for G. Write b = |B| and

m = n/b, and let K be the kernel of the action of G on B. Since G/K

is isomorphic to a subgroup of Sym(b), K is isomorphic to a subgroup of

Sym(m)b and b,m < k, we obtain that G has no section isomorphic to Alt(k),

a contradiction. This shows that G is primitive.

From [PS80], we obtain that either G ≥ Alt(n) or |G| ≤ 4n. Since |G| ≥
|Alt(k)| = k!/2 ≥ dn/2e!/2, a direct computation shows that the latter case

arises only for n < 84. �

Our aim for the rest of this subsection will be to show that, if A ⊂ Sym(n)

is very large, then An
O(1)

contains a copy of Alt(∆), |∆| > n/2. The next

lemma generalises Bochert’s theorem [Boc89], [DM96, Thm. 3.3B] to subsets.

Recall that, for g ∈ Sym(Ω), we define the support of g by supp(g) = {α ∈ Ω :

αg 6= α}.

Lemma 3.12. Let n ≥ 5. Let A ⊆ Sym([n]) with A = A−1, e ∈ A. If

〈A〉 is a primitive permutation group and |A| > n!/(bn/2c!), then An
4

is either

Alt([n]) or Sym([n]).

This is an example of how one can sometimes modify a proof of a result

about subgroups to give a result about sets: the proof follows the lines of

Bochert’s essentially algorithmic proof plus some bookkeeping.

Proof. Given A ⊆ Sym([n]) as in the statement of the lemma, let k be the

smallest integer such that there exists ∆ ⊆ [n] with |∆| = k and (A2)(∆) = {e}.
Let ∆ be one such set.

Suppose that k ≤ n/2. Then Sym([n])(∆) has n!/(n− k)! < |A| cosets in

Sym([n]). Thus, by the pigeonhole principle, there exist two distinct elements

a and b of A in the same coset. Hence ab−1 ∈ Sym([n])(∆); that is, ab−1 ∈
(A2)(∆). This contradicts the definition of k. We conclude that k > n/2.

The set Ω = [n] \ ∆ has cardinality less than k, so by definition there

exists g ∈ (A2)(Ω) with g 6= e. Let δ ∈ ∆ with δg 6= δ. As the set ∆ \ {δ} has

cardinality less then k, by the definition of k, there exists h ∈ (A2)(∆\{δ}) with

h 6= e. Then supp(h) ⊂ Ω ∪ {δ}. Necessarily, δ ∈ supp(h), otherwise (A2)(∆)

contains the nonidentity element h. Hence supp(g)∩ supp(h) = {δ} and so the

commutator x = [g, h] is a 3-cycle. Note that [g, h] ∈ A8.
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Now, since 〈A〉 is primitive and contains a 3-cycle, by Jordan’s theo-

rem [DM96, Thm. 3.3A] we obtain that 〈A〉 ≥ Alt([n]). In particular, 〈A〉 is

3-transitive, and thus its action by conjugation on the set X of all 3-cycles is

transitive. By Lemma 3.9,

xA
`

= X,

where ` = |X| = n(n− 1)(n− 2)/3 and A` acts on x by conjugation. Thus

An(n−1)(n−2)/3[g, h]An(n−1)(n−2)/3

contains all 3-cycles in Alt([n]).

Since any element of Alt([n]) can be written as a product of at most bn/2c
3-cycles, we obtain that An

4−1 contains Alt([n]). Also, if A contains an odd

permutation, then An
4

= Sym([n]). �

What happens, however, if 〈A〉 is not transitive, let alone primitive? We

shall see first that, if A is large, then 〈A〉 must have at least a large orbit. In

the following two lemmas, we use the inequalities

(3.7)

Å
n

e

ãn
< n! < 3

√
n

Å
n

e

ãn
.

Lemma 3.13. Let H < Sym(n) with |H| ≥ dnn! for some number d with

0.5 < d < 1. If n is greater than a bound depending only on d, then H has an

orbit of length at least dn.

Proof. Let k := bdnc. Suppose that the longest orbit length of H is less

than dn. Then, as is well known, |H| ≤ k!(n − k)!. (The size of a direct

product of symmetric groups Sym(Ωi) only goes up if we pass elements from

the smaller sets Ωi, i ≥ 2, to the largest set Ω1.)

Now, by (3.7), we have the following inequalities:Å
k

n

ãn Ån
e

ãn
<

Å
k

n

ãn
n! ≤ dnn! ≤ |A| ≤ |〈A〉| ≤ k!(n− k)!

< 9
»
k(n− k)

Å
k

e

ãk Ån− k
e

ãn−k
≤ 9

2
n
kk(n− k)n−k

en
.

(3.8)

Simplifying the left-hand side together with the right-hand side, we obtain

kn−k < 9
2n(n− k)n−k; that is,

Ä
k

n−k

än−k
< 9

2n.

We define c :=
Ä

d
1−d

ä1−d
. As

lim
n→∞

Å
k

n− k

ãn−k
n

= c > 1,

for large enough n, depending only on d, we have
Ä

k
n−k

än−k
>
Ä

1+c
2

än
. How-

ever,
Ä

1+c
2

än
< 9

2n is false if n is greater than a bound depending only on d,

proving our claim. �
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Using Bochert’s theorem [Boc89], Liebeck derived a result ([Lie83, Lemma

1.1]; see [Jor57, pp. 68–75] for a classical result of the same kind) on large

subgroups of Sym(n). It does not assume transitivity or primitivity. We will

generalise it to sets (Proposition 3.15). In a somewhat strengthened version

[DM96, Thm. 5.2B], the result from [Lie83] states the following, among other

things: if H is a subgroup of Sym(n), n ≥ 9, and

(3.9) [Sym(n) : H] < min

Ç
1

2

Ç
n

[n/2]

å
,

Ç
n

m

åå
for some m ≥ n/2, then there is a set ∆ ⊂ [n], |∆| > m, such that

(3.10) Alt(n)([n]\∆) ≤ H ≤ Sym(n)[n]\∆.

Here, of course, Alt(n)([n]\∆) ∼ Alt(∆) and Sym(n)[n]\∆ = Sym(n)∆; in

particular, (3.10) implies that ∆ is an orbit of [n]. It is easy to see that, if

|H| ≥ dnn!, 0.5 < d < 1, then (3.9) is fulfilled for m = ddne, provided that n

is larger than a constant depending only on d: by Stirling’s formula,

(3.11)

Ç
n

ddne

å
� 1√

n

nn

ddneddneb(1− d)ncb(1−d)nc �
1

n3/2

Ç
1

dd(1− d)1−d

ån
and, since dd(1−d)1−d < d for d ∈ (1/2, 1), this is certainly greater than (1/d)n

for n large enough. The inequality 1
2

( n
[n/2]

)
� 2n/

√
n implies 1

2

( n
[n/2]

)
> (1/d)n

immediately for all large n. Thus (3.10) holds for some ∆ with |∆| > dn.

We will show an analogue of (3.10) holds for a set A instead of a subgroup

H (Proposition 3.15). This can be shown in two ways: we can use Liebeck’s

result (3.10) for groups, or we can give an elementary proof using only count-

ing arguments. (Both [Lie83] and [DM96] do a detailed examination of the

subgroup structure of Sym(n) in order to give a result valid for small n.)

Let us first give an elementary proof of a somewhat weaker statement.

Lemma 3.14. Let d be a number with 0.5 < d < 1. If A ⊆ Sym([n]) (with

A = A−1) has cardinality |A| ≥ dnn! and n is larger than a bound depending

only on d, then there exists an orbit ∆ ⊆ [n] of 〈A〉 such that |∆| ≥ dn and

(An
4
)|∆ is Alt(∆) or Sym(∆).

Proof. By Lemma 3.13, for large enough n, the group 〈A〉 has an orbit

∆ of length k ≥ dn. Write ρ = k/n, and note that d ≤ ρ ≤ 1. The group

G = B|∆ has order at least dnn!/(n− k)!, so estimating k!(n− k)! from above

as in (3.8) and estimating n! from below by (3.7), we obtain

[Sym(∆) : G] ≤ k!(n− k)!

dnn!
<

9

4
n
kk(n− k)n−k

dnnn

=
9

4
n

Ç
ρρ(1− ρ)1−ρ

d

ån
=

9

4
n

Å
2

1
ρ ρ(1− ρ)

1−ρ
ρ

ãρn Å 1

2d

ãn
.

(3.12)
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Next, we show that for large values of n, the transitive group G cannot

be imprimitive. Indeed, if G is imprimitive, then using (3.7), we have

(3.13) [Sym(∆) : G] ≥ 1

2

Ç
k

bk/2c

å
>

1

2

(ke )k

9k( k2e)
k
>

1

18n
2ρn.

A direct computation shows that the function f(ρ) = 21/ρρ(1 − ρ)(1−ρ)/ρ is

monotone increasing in the interval [1/2, 1) with supremum 2. Hence, compar-

ing the upper and lower bounds for [Sym(∆) : G] deduced in (3.12) and (3.13),

we obtain

(3.14)
9

4
n2ρn

Å
1

2d

ãn
>

1

18n
2ρn.

As d > 1/2, for large enough n, we have (2d)n > (18n)(9
4n), and therefore

(3.14) cannot hold.

Hence G is primitive and A|∆ is a set of size at least dnn!/(n − k)! ≥
dnk! > k!/(bk/2c)! (where the last inequality holds for n greater than a lower

bound depending only on d). Therefore, by Lemma 3.12, (A|∆)n
4

is either

Alt(∆) or Sym(∆), and hence so is (An
4
)|∆ = (A|∆)n

4
. �

Now we get the full analogue of (3.10).

Proposition 3.15. Let d be a number with 0.5 < d < 1. Let A ⊆ Sym(n)

with A = A−1 and e ∈ A. If |A| ≥ dnn! and n is larger than a bound depending

only on d, then there exists an orbit ∆ ⊆ [n] of 〈A〉 such that |∆| ≥ dn and

(A8n5
)([n]\∆)|∆ contains Alt(∆).

Proof. By Lemma 3.14, there is an orbit ∆ of 〈A〉 such that |∆| ≥ dn and

(An
4
)|∆ is Alt(∆) or Sym(∆). Let A′ = An

4
.

It is clear that |A′| ≥ |Alt(∆)| > |Sym([n] \∆)|. Thus, by the pigeonhole

principle, there are h1, h2 ∈ A′, h1 6= h2, such that h1|[n]\∆ = h2|[n]\∆, and so

g = h1h
−1
2 fixes [n] \∆ pointwise.

We show that ((A′)14)([n]\∆) contains an element g′ such that g′|∆ is a 3-

cycle. If g|∆ has at least two fixed points, then there exists an element h ∈ A′
such that h|∆ is a 3-cycle, with supp(h|∆) intersecting supp(g|∆) in exactly

one point. Then g′ = [g, h] ∈ (A′)2+1+2+1 = (A′)6 fixes [n] \∆ pointwise and

g′|∆ is a 3-cycle. If g contains a cycle (αβγδ · · · ) of length at least 4, then we

choose an element h ∈ A′ with h|∆ = (αβγ) and let g′ = [g, h] ∈ (A′)6. Then

g′ fixes [n] \∆ pointwise and g′|∆ is the 3-cycle (αβδ).

In all other cases, | supp(g|∆)| ≥ |∆| − 1 ≥ 6 (assuming n ≥ 13, which

implies |∆| ≥ 7) and all nontrivial cycles of g have length 2 or 3. Hence g|∆
contains at least two 3-cycles or at least two 2-cycles.
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If g|∆ contains the cycles (αβγ) and (δην), then we choose an element

h ∈ A′ with h|∆ = (αη)(βδγν). A little computation shows that g′ = [g, h]

fixes [n] \∆ pointwise and g′|∆ is the 3-cycle (δην).

Finally, suppose g contains the 2-cycles (αβ) and (γδ). We again choose

an element h ∈ A′ with h|∆ = (αβγ); then supp([g, h]) = {α, β, γ, δ} and [g, h]

fixes [n] \ ∆ pointwise. Since [g, h] ∈ (A′)6 also fixes at least two points of

∆, we deduce as in the very first case of our analysis that the commutator

g′ = [[g, h], h′] with an appropriate h′ ∈ A′ is a 3-cycle. Note that g′ ∈
(A′)6+1+6+1 = (A′)14.

Given any 3-cycle s in Sym(∆), we can conjugate g′ by an appropriate

element ofA′ to get an element of ((A′)16)([n]\∆) whose restriction to ∆ equals s.

Now, every element of Alt(∆) is the product of at most b|∆|/2c 3-cycles. Hence

((A′)16bn/2c)(bnc\∆)|∆ contains Alt(∆). �

An anonymous referee kindly provides the following argument, showing

that Proposition 3.15, which is a generalisation of (3.10), can be proven using

(3.10).

Second proof of Proposition 3.15. (This proof gives Proposition 3.15 with

A2(n4+1)n4
instead of A8n5

.) By (3.10) applied to H = 〈A〉, there is a set ∆

with |∆| > dn such that (a) H is contained in Sym(n)∆, and (b) H contains

the subgroup D = Alt(n)([n]\∆); i.e., H|∆ contains Alt(∆). Let B = A2 ∩D.

By Lemma 3.4,

|B| = |A2 ∩D| ≥ |A|
[Sym(n)∆ : D]

≥ dnn!

2(n− |∆|)!
>
dn|∆|!

2
≥ |∆|!

2n+1
≥ |∆|!

22|∆|+1
.

For n sufficiently large (and hence |∆| sufficiently large), 22|∆|+1 < b|∆|/2c!,
and so we obtain that |B| > |∆|!/b|∆|/2c!.

Since 〈A|∆〉 = H|∆ contains Alt(∆), 〈(A∪B)|∆〉 is Alt(∆) or Sym(∆) —

and, in particular, it is primitive. Hence, a first application of Lemma 3.12

(with ∆ instead of [n]) implies that ((A ∪B)|∆)n
4

is Alt(∆) or Sym(∆).

The set S = {gbg−1 : g ∈ (A ∪ B)n
4
, b ∈ B} is in D; moreover, 〈S|∆〉

is normal in Alt(∆). Since S∆ is nontrivial (by |B| > 1), we conclude that

〈S|∆〉 = Alt(∆). Now we apply Lemma 3.12 (again with ∆ instead of [n]) and

obtain that (S|∆)n
4

= Alt(∆). Since Sn
4 ⊂ A(2n4+2)n4

, we are done. �

3.5. Bases and stabiliser chains. Given a permutation group G on a set

Ω, a subset Σ of Ω is called a base if G(Σ) = {e}. This definition goes back

to Sims [Sim70]. If, instead of G, we consider a subset A of Sym(Ω), then, as

the following lemma suggests, it makes sense to see whether (AA−1)(Σ) (rather

than A(Σ)) equals {e}.
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Lemma 3.16. Let A ⊆ Sym(Ω), |Ω| = n. If Σ ⊆ Ω is such that (AA−1)(Σ)

= {e}, then |Σ| ≥ logn |A|.

Proof. Notice first that [Sym(Ω) : (Sym(Ω))(Σ)] ≤ n|Σ|. By the pigeonhole

principle, if |A| > n|Σ|, then there exists a right coset of (Sym(Ω))(Σ) containing

more than one element of A, and thus

|(AA−1)(Σ)| = |AA−1 ∩ (Sym(Ω))(Σ)| > 1.

Hence, if (AA−1)(Σ) = {e}, then we have |A| ≤ n|Σ|; i.e., |Σ| ≥ logn |A|. �

The use of stabiliser chains H > Hα1 > H(α1,α2) > · · · is very common in

computational group theory (starting, again, with the work of Sims; see refer-

ences in [Ser03, §4.1]). We may study a similar chain A > Aα1 > A(α1,α2) > · · ·
when A is merely a set.

Lemma 3.17. Let Σ = {α1, . . . , αm} ⊆ [n] and A ⊆ Sym([n]). Suppose

that ∣∣∣∣αA(α1,...,αi−1)

i

∣∣∣∣ ≥ ri
for all i=1, 2, . . . ,m. Then Am intersects at least

∏m
i=1 ri cosets of Sym([n])(Σ).

Proof. For each 1 ≤ i ≤ m, write ∆i = α
A(α1,...,αi−1)

i ; thus |∆i| ≥ ri. For

each δ ∈ ∆i, pick gδ ∈ A(α1,...,αi−1) with αgδi = δ and write Si = {gδ : δ ∈ ∆i}.
Clearly, |Si| = |∆i| and Si ⊆ A. We show that for every two distinct tuples

(s1, s2, . . . , sm), (s′1, s
′
2, . . . , s

′
m) ∈ S1 × · · · × Sm,

the products P = smsm−1 · · · s1 and P ′ = s′ms
′
m−1 · · · s′1 belong to two dis-

tinct cosets of Sym([n])(Σ). From this it follows that Am intersects at least

|S1| · · · |Sm| = |∆1| · · · |∆m| ≥
∏m
i=1 ri cosets of Sym([n])(Σ).

We argue by contradiction; i.e., we assume that P and P ′ map (α1, . . . , αm)

to the same m-tuple. Let j be the smallest index such that sj 6= s′j . Then Q =

Ps−1
1 · · · s

−1
j−1 and Q′ = P ′s−1

1 · · · s
−1
j−1 = P ′s′−1

1 · · · s′
−1
j−1 also map (α1, . . . , αm)

to the same m-tuple. Note that for all k ≤ m, sk and s′k fix (α1, . . . , αk−1)

pointwise. Thus

αQj = α
sj
j 6= α

s′j
j = αQ

′

j ,

contradicting our assumption. �

We thus see that, if we choose α1, α2, . . . so that the orbits α
A(α1,...,αi−1)

i

are large, we get to occupy many cosets of (Sym([n]))(Σ). By Lemma 3.7, this

will enable us to occupy many cosets of (Sym([n]))(Σ) in the setwise stabiliser

(Sym([n]))Σ. We will then be able to apply Proposition 3.15 to build a large

alternating group within Sym(Σ) ∼= (Sym([n]))Σ/(Sym([n]))(Σ). This proce-

dure is already implicit in [Pyb93, Lemma 3]; indeed, what amounts to this is



ON THE DIAMETER OF PERMUTATION GROUPS 631

signalled by Pyber as the main new element in his refinement [Pyb93, Thm. A]

of Babai’s theorem on the order of doubly transitive groups [Bab82]. The main

difference is that we have to work, of course, with sets rather than groups; we

also obtain a somewhat stronger conclusion due to our using Proposition 3.15

rather than invoking Liebeck’s lemma directly.

Lemma 3.18. Let A ⊆ Sym([n]) with A = A−1 and e ∈ A. Let Σ =

{α1, . . . , αm} ⊆ [n] be such that

(3.15)

∣∣∣∣αA(α1,...,αi−1)

i

∣∣∣∣ ≥ dn
for all i = 1, 2, . . . ,m, where d > 0.5. Then, provided that m is larger than a

bound C(d) depending only on d, there exists ∆ ⊆ Σ with |∆| ≥ d|Σ| and

Alt(∆) ⊆ ((A16m6
)Σ)(Σ\∆)|∆.

Proof. By (3.15) and Lemma 3.17, Am intersects at least (dn)m cosets of

Sym([n])(Σ) in Sym([n]). Since

[Sym([n]) : Sym([n])Σ] =
[Sym([n]) : Sym([n])(Σ)]

[Sym([n])Σ : Sym([n])(Σ)]
≤ nm

m!
,

Lemma 3.7 implies (with G = Sym([n]), K = Sym([n])Σ, H = Sym([n])(Σ),

and Am instead of A) that

|πK/H(A2m ∩K)| ≥
|πG/H(Am)|
nm/m!

≥ (dn)m

nm/m!
= dmm!.

Note that |πK/H(A2m∩K)| =
∣∣(A2m)Σ|Σ

∣∣. We can thus apply Proposition 3.15

(with m instead of n, and A′ = (A2m)Σ|Σ instead of A) and obtain that there

is a set ∆ ⊆ Σ such that |∆| ≥ dm and ((A′)8m5
)(Σ\∆)|∆ contains Alt(∆). �

3.6. Existence of elements of small support. The following lemma is es-

sentially [BS87, Lemma 3] (or [BS88, Lemma 1]; see also [BLS87]).

Lemma 3.19. Let ∆ ⊆ [n], |∆| ≥ c(log n)2, c > 0. Let H ≤ (Sym(n))∆.

Assume H|∆ is Alt(∆) or Sym(∆).

Let Γ be any orbit of H . Then, if n is larger than a bound depending only

on c, H contains an element g with g|∆ 6= 1 and | supp(g|Γ)| < |Γ|/4.

Proof. Let p1 = 2, p2 = 3, . . . , pk be the sequence of the first k primes,

where k is the least integer such that p1p2 · · · pk > n4. Much as in [BS87], we

remark that, by elementary bounds towards the prime number theorem,

(3.16) 2p1 + p2 + · · ·+ pk < c(log n)2,

provided that n be larger than a bound depending only on c. Thus H contains

an element h such that h|∆ consists of |∆| − (2p1 + p2 + · · ·+ pk) fixed points
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and cycles of length p1, p1, p2, p3, . . . , pk. (We need two cycles of length p1 = 2

because we want an even permutation on ∆.)

We can now reason as in [BS87, Lemma 3] or [BS88, Lemma 1]. For every

γ ∈ Γ, denote by κγ the length (possibly 1) of the cycle of h containing γ and

for i ≤ k, define Γi := {γ ∈ Γ : pi | κγ}. Then

(3.17)
∑
γ∈Γ

∑
pi|κγ

log pi < |Γ| log n

because κγ < n implies that for all γ, the inner sum is less than log n. Ex-

changing the order of summation,

∑
γ∈Γ

∑
pi|κγ

log pi =
k∑
i=1

|Γi| log pi.

If |Γi| ≥ |Γ|/4 for all i ≤ k, then

k∑
i=1

|Γi| log pi ≥
|Γ|
4

log

(
k∏
i=1

pi

)
>
|Γ|
4

log(n4) = |Γ| log n,

contradicting (3.17). Hence there is a prime p ≤ pk such that p|κγ for fewer

than |Γ|/4 elements γ of Γ. Denoting the order of h by |h|, we define g = h`

for ` := |h|/p. We obtain that | supp(g|Γ)| < |Γ|/4. We also have that g is

nontrivial, since g|∆ contains a p-cycle. Clearly g ∈ H, and so we are done.8 �

4. Random walks and generation

4.1. Random walks. The aim of this subsection is to present some basic

material on random walks. As stated in the outline, our later use of random

walks to mimic the uniform distribution in combinatorial arguments is clearly

influenced by [BBS04]; indeed, this subsection is very close to the first two

thirds of [BBS04, §2].

Let Γ be a strongly connected directed multigraph with vertex set V =

V (Γ). For x ∈ V (Γ), we denote by Γ(x) the multiset of endpoints of the edges

starting at x (counted with multiplicities in case of multiple edges). We are

interested in the special case when Γ is regular of valency d (i.e., |Γ(x)| = d,

for each x ∈ V (Γ)) and Γ is also symmetric in the sense that for all vertices

x, y ∈ V (Γ), the number of edges connecting x to y is the same as the number

of edges connecting y to x. These two conditions imply that the adjacency

matrix A of Γ is symmetric and all row and column sums are equal to d.

8Since we need only the existence of g for the moment, we are not concerned by the fact

that l is very large. Compare this to the situation in [BS88], where the use of a large l causes

diameter bounds much weaker than those in the present paper.
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A lazy random walk on Γ is a stochastic process where a particle moves

from vertex to vertex; if the particle is at vertex x such that Γ(x) = {y1, . . . , yd},
then the particle

• stays at x with probability 1
2 ;

• moves to vertex yi with probability 1
2d for all i = 1, . . . , d.

Here we are concerned with the asymptotic rate of convergence for the

probability distribution of a particle in a lazy random walk on Γ. For x, y ∈
V (Γ), write pk(x, y) for the probability that the particle is at vertex y after k

steps of a lazy random walk starting at x. For a fixed ε > 0, the `∞-mixing

time for ε is the minimum value of k such that

1

|V (Γ)|
(1− ε) ≤ pk(x, y) ≤ 1

|V (Γ)|
(1 + ε)

for all x, y ∈ V (Γ).

We can give a crude (and well known; see, e.g., [BBS04, Fact 2.1]) upper

bound on the `∞ mixing time for regular symmetric multigraphs in terms of

N = |V (Γ)|, ε, and the valency d alone.

Lemma 4.1. Let Γ be a connected, regular, and symmetric multigraph of

valency d and with N vertices. Then the `∞ mixing time for ε is at most

N2d log(N/ε).

Proof. Let A be the adjacency matrix of Γ. Since A is symmetric, the

eigenvalues of A are real; moreover, their modulus is clearly no more than d in

magnitude. Let

d = µ1 ≥ µ2 ≥ · · · ≥ µN ≥ −d

be the eigenvalues of A, and write P = I/2 + A/2d, where I is the N × N -

identity matrix. The matrix P is the probability transition matrix for the

Markov process described by a lazy random walk on Γ.

The sum of every row or column of P is 1; i.e., P is a doubly stochastic

matrix. The eigenvalues of P are

1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0,

with λi = 1/2 + µi/2d for each i = 1, . . . , N . It is well known that the asymp-

totic rate of convergence to the uniform distribution of a lazy random walk is

determined by λ2: since P is symmetric, there is a basis of RN consisting of

orthogonal eigenvectors v1, v2, . . . , vn of P with eigenvalues λ1, . . . , λN , where

every eigenvector vi has `2-norm 1 with respect to (say) the counting measure;

writing ex for the probability distribution having value 1 at x and 0 elsewhere,
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we see that (by Cauchy-Schwarz and Plancherel)

N∑
j=1

|〈ex, vj〉| |〈vj , ey〉| ≤

Ã
N∑
j=1

|〈ex, vj〉|2
Ã

N∑
j=1

|〈vj , ey〉|2 ≤ |ex|2 · |ey|2 = 1

and, since

pk(x, y) = 〈P kex, ey〉 = 〈
N∑
j=1

〈ex, vj〉 · P kvj , ey〉 =
N∑
j=1

〈ex, vj〉 · λkj 〈vj , ey〉

=
1√
N
· 1k · 1√

N
+

N∑
j=2

〈ex, vj〉 · λkj 〈vj , ey〉,

we see that ∣∣∣∣pk(x, y)− 1

N

∣∣∣∣ ≤ λk2 N∑
j=2

|〈ex, vj〉| |〈vj , ey〉| ≤ λk2.

By [Fie72, Lemma 2.4 and Thm. 3.4], we have

λ2 ≤ 1− 2(1− cos(π/N))µ(P ),

where µ(P ) = min∅6=M⊆V
∑
i∈M,j /∈M pij . As Γ is a connected regular graph of

valency d, we have µ(P ) ≥ 1/2d. Using the Taylor series for cos(x), we see

that (1− cos(π/N)) ≥ 1/N2. Thence |pk(x, y)− 1/N | ≤ (1− 1/(N2d))k. Since

1− x ≤ e−x for all x, we obtain |pk(x, y)− 1/N | ≤ ε/N for k ≥ N2d log(N/ε),

as desired. �

We will generally study regular symmetric multigraphs of the following

type. (The following argument is already present in [BBS04, §2]; indeed, the

only difference between Lemma 4.2 here and corresponding material in [BBS04,

§2] is that Lemma 4.2 applies to ordered as opposed to unordered k-tuples.)

Let G be a group and A be a subset of G with A = A−1 and e ∈ A. Let G

act on a set X. We take the elements of X as the vertices of our multigraph

and draw one edge from x ∈ X to x′ ∈ X for every a ∈ A such that xa = x′.

A walk on the graph then corresponds to the action of an element of A` on an

element x of X, where ` is the length of the walk and x is the starting point

of the walk.

Lemma 4.1 then gives us a lower bound on how large ` has to be for the

action of A` on X to have a rather strong randomising effect.

Lemma 4.2. Let H be a k-transitive subgroup of Sym([n]). Let A be a set

of generators of H with A = A−1 and e ∈ A. Then there is a subset A′ ⊆ A

with A′ = (A′)−1 such that, for every ε > 0, for any ` ≥ 2n3k log(nk/ε), and

for any k-tuples x = (x1, . . . , xk), y = (y1, . . . , yk) of distinct elements of [n],

the probability of the event

y = xg1g2···g`
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for g1, . . . , g` ∈ A′ (chosen independently, with uniform distribution on A′ \{e}
and with the identity being assigned probability 1/2) is at least (1 − ε) (n−k)!

n!

and at most (1 + ε) (n−k)!
n! .

Proof. Let ∆ be the set of k-tuples of distinct elements of [n]. Since H

acts transitively on ∆ and since 〈A〉 = H, Lemma 3.10 gives us a subset A′

of A with 〈A′〉 transitive on ∆ and with |A′| < |∆|. Set A0 = A′ ∪ A′−1. Let

Γ be the multigraph with vertex set ∆ and with Γ(x) = {xa | a ∈ A0} as the

multiset of neighbours of x for each x ∈ ∆. Clearly, Γ is a regular graph of

valency |A0| ≤ 2|∆| and with |∆| ≤ nk vertices. Now the statement follows

from Lemma 4.1 applied to Γ. �

4.2. Generators. GivenA⊆Sym([n]) such that 〈A〉 is Alt([n]) or Sym([n]),

how long can it take to construct a small set of generators for a transitive

subgroup of 〈A〉? This subsection is devoted to answering that question. We

start by proving two auxiliary lemmas.

Lemma 4.3. Let A ⊂ Sym([n]), e ∈ A. Assume 〈A〉 is transitive. Then

there is a g ∈ An such that | supp(g)| ≥ n/2.

Proof. For each i ∈ [n], let gi be an element of A moving i. (If no such

element existed, then 〈A〉 could not be transitive.) Let g = gr11 g
r2
2 · · · grnn , where

r1, r2, . . . , rn ∈ {0, 1} are independent random variables taking the values 0 and

1 with equal probability.9

Let α ∈ [n] be arbitrary. Let j be the largest integer such that gj moves

α. Then g moves α if and only if g′ = gr11 · · · g
rj
j moves α. Take r1, r2, . . . , rj−1

as given. If β = αg
r1
1 ···g

rj−1
j−1 equals α, then g′ moves α if and only if rj = 1;

this happens with probability 1/2. If β 6= α, then g′ certainly moves α if

rj = 0, and thus moves α with probability at least 1/2. Thus g moves α with

probability at least 1/2.10

Summing over all α, we see that the expected value of the number of

elements of [n] moved by g is at least n/2. In particular, there is a g ∈ An
moving at least n/2 elements of [n]. �

9Such an element g is called a random subproduct of the sequence (gi). This notion was

introduced by [BLS88] in the context of the analysis of algorithms on permutation groups.

See, e.g., [Ser03, §2.3] for other applications.
10This argument essentially appears in [BLS88, §6.2] (without proof). It appears again,

with proof and in a much more general context, in [BCF+91]. Indeed, Lemma 4.3 here follows

immediately from [BCF+91, Lemma 2.2] (with K equal to a point stabiliser), and the idea

of the proof of Lemma 4.3 given here is exactly the same as that of [BCF+91, Lemma 2.2].

We thank an anonymous referee for this remark.
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The following is the simplest sphere-packing lower bound, applied to the

Hamming distance. (The Hamming distance on {0, 1}k is d(~x, ~y) = |{1 ≤ j ≤
k : xj 6= yj}|.)

Lemma 4.4. Let n > 0, k ≥ 4.404 log2 n, ρ > 1. Let U = {0, 1}k be the

set of {0, 1}-sequences of length k. Then there exists V ⊆ U , |V | > n such that

any two sequences in V differ in more than log2 n coordinates.

Proof. In general, for U a metric space and V ⊆ U maximal with respect

to the property that the distance between any two points of V is greater than

r, the closed balls of radius r around the points of V clearly cover U ; hence,

if the notion of volume is well defined, |V | is at most Vol(U) divided by the

volume of a closed ball of radius r. Applying this to the Hamming distance,

we obtain that, for V ⊆ U maximal,

|V | ≥ 2k∑brc
j=0

(k
j

) .
By, e.g., [MS77, §10.11, Lemma 8],

brc∑
j=0

Ç
k

j

å
≤ 2kH(brc/k) ≤ 2kH(r/k)

for 0 ≤ r ≤ k/2, where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary

entropy function. Let r = log2 n. It is easy to check that, for 0 ≤ ρ ≤ 1/4.404,

1−H(ρ) > ρ. Hence

|V | ≥ 2k(1−H(r/k)) > 2k·r/k = 2r = n. �

The following lemma is the main step toward answering the question raised

at the beginning of the subsection. Most of the proof goes to show that, for

some g ∈ An, h ∈ A`, and a random β ∈ [n], the orbit of β under 〈g, h〉
is rather large. The following is a brief sketch. If β were being acted upon

by many random elements of Sym([n]) in succession, it would indeed traverse

many points. Now think of this obvious remark as being strengthened twice.

First, let g have large support and let h be a random element of Sym([n]). If

we let h act on β and then let g act (or not) on βh, and we let this happen over

and over, the effect is a great deal as if β were being acted upon by random

elements in succession: if β has arrived at a point x where it has not been

before, then the random element h acts on it in a way that, as far as we are

concerned, is essentially random, in that it is almost independent of any of the

parts of h we have seen so far. This makes the action of the fixed element g on

xh itself random. Here comes the second strengthening: it is actually enough

for h to be the outcome of a random walk of moderate length ` ≤ nO(logn); as

we know (Lemma 4.2), such an h pretends to be a random element of Sym([n])
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very ably as far as its action on k tuples, k � log n, is concerned. These are all

the tuples that we have to deal with, since the above argument gives us large

orbits after O(log n) steps.

The proof below is just a detailed and rigourous version of this sketch.

Lemma 4.5. Let A ⊆ Sym([n]) with A = A−1, e ∈ A, and 〈A〉 = Sym([n])

or Alt([n]). Then there are g ∈ An, h ∈ Abn27 lognc such that the action of 〈g, h〉
on [n] has at most 175(log n)2 orbits, provided that n is larger than an absolute

constant.

Proof. We will show that, for some g ∈ An, for h ∈ A` (` ≤ bn27 lognc)
taken randomly in a sense we will specify, and for any β ∈ [n], the expected

value of 1/|β〈g,h〉| is at most 175(log n)2/n. (Here β〈g,h〉 denotes the orbit

of β under the action of 〈g, h〉 ≤ Sym([n]).) Now,
∑
β∈[n] 1/|β〈g,h〉| is just the

number of orbits of 〈g, h〉 (since each such orbit contributes |β〈g,h〉| ·1/|β〈g,h〉| =
1 to the sum). Hence, by the additivity of expected values,

E(number of orbits of 〈g, h〉) =
∑
β∈[n]

E
Ç

1

|β〈g,h〉|

å
≤ 175(log n)2.

In particular, this will imply that there exists an h ∈ A` such that the number

of orbits of 〈g, h〉 is at most 175(log n)2, and so we will be done.

Let k = d4.404 log2 ne. By Lemma 4.3, there is an element g ∈ An with

| supp(g)| = αn ≥ n/2.

Let ε = 1/n and ` = d2n6k log(n2k/ε)e. (It is easy to check that, for n larger

than an absolute constant, ` ≤ bn27 lognc.) Let h ∈ A` be the outcome of a

random walk of length ` as in Lemma 4.2.

Consider all words of the form

f(~a) = hga1hga2 · · ·hgak ,

where ~a = (ai : 1 ≤ i ≤ k) runs through all sequences in U = {0, 1}k. For

β ∈ [n], we wish to estimate |β〈g,h〉| from below by counting the number of

different images fβ(~a) := βf(~a) for ~a ∈ U .

To this end, for fixed elements ~a = (a1, . . . , ak) and
−→
a′ = (a′1, . . . , a

′
k) in U

and β ∈ [n], we wish to bound from above the probability that fβ(~a) = fβ(
−→
a′ ).

We will do this by examining all possible trajectories (β1, . . . , βk), (β′1, . . . , β
′
k),

where

β1 = βhg
a1
, β2 = βhg

a2

1 , . . . , βk = βhg
ak

k−1 and β′1 = βhg
a′1 , . . . , β′k = βhg

a′
k

k−1 ,

counting how many satisfy βk 6= β′k, and then estimating the probability (for h

chosen randomly in the manner described above) that such a pair of trajectories

be traversed following f(~a) and f(~a′).
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Let R = {1 ≤ i ≤ k : ai 6= a′i}; let the elements of R be k1 < k2 < · · · < kr,

where r = |R|. Let r0 ≤ r be fixed. Let k′ = kr0 . Consider all tuples

(β1, β2, . . . , βk, β
′
k′ , . . . , β

′
k) ∈ [n](2k−k

′)+1 such that

(a) β1, β2, . . . , βk, β
′
k′ , . . . , β

′
k are distinct from each other and from β,

(b) βg
−a1

1 , βg
−a2

2 , . . . , βg
−ak
k ; (β′k′+1)g

−a′
k′+1

, . . . , (β′k)
g
−a′
k are distinct from each

other;

(c) βkj /∈ supp(g) for every j < r0, but βk′ ∈ supp(g);

(d) (β′k′)
g
−a′
k′

= (βk′)
g−ak′ .

The number of such tuples is at least

(4.1)

Ñ
r0−1∏
j=1

(n− | supp(g)| − j)

é
· (| supp(g)| − 1) ·

2k−k′∏
j=(r0+1)

(n− (2j − 1)),

where we count tuples by choosing first βkj ∈ [n]\ supp(g) for 1 ≤ j < r0, then

βk′ ∈ supp(g), then the other βi and β′i. To justify the estimate on the number

of choices at each stage, notice that at the jth choice with j ≤ r0 − 1, we have

to make selections from [n] \ supp(g) so as to satisfy (c) while keeping them

different from previous selections and from β (to satisfy (a)). Then βk′ can be

chosen as an arbitrary element of supp(g) different from β. At this point, (b)

is still satisfied automatically. At later choices, if βi or β′i is selected at stage j,

then enforcing (a) eliminates j possibilities and enforcing (b) eliminates j − 1,

not necessarily different, possibilities. Note that (4.1) also gives a valid lower

estimate (namely, 0) in the case when r0−1 ≥ n−| supp(g)| > 0. (The negative

terms in the first product in (4.1) are made harmless by a term equal to 0.)

By Lemma 4.2 (with 2k − k′ instead of k, and with properties (a), (b) as

inputs), the probability that a random h ∈ A` satisfies

(β, β1, . . . , βk−1, β
′
k′ , . . . , β

′
k−1)h

= (βg
−a1

1 , βg
−a2

2 , βg
−ak
k , (β′k′+1)g

−a′
k′+1

, . . . , (β′k)
g
−a′
k )

(4.2)

is at least (1−ε) (n−(2k−k′))!
n! > (1−ε) 1

n2k−k′ . If h satisfies (4.2), then βhg
a1 = β1,

βhg
a2

1 = β2,. . . , βhg
ak

k−1 = βk. By properties (c) and (d), we also have βhg
a′1 = β1,

βhg
a′2

1 = β2,. . . , (βk′−1)hg
a′
k′

= (βk′)
g−ak′ g

a′
k′

= (β′k′)
g
−a′
k′ g

a′
k′

= β′k′ ; by (4.2), we

also have (β′k′)
hg
a′
k′+1

= β′k′+1, . . . ,
Ä
β′k−1

ähga′k
= β′k. Thus, in particular, any

two distinct tuples

(β1, β2, . . . , βk, β
′
k′ , . . . , β

′
k)

give us mutually exclusive events, even for different values of r0. Note also

that, by property (a) and what we have just said, fβ(~a) = βk 6= β′k = fβ(~a′).
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Hence the probability P that fβ(~a) 6= fβ(~a′) is at least

P ≥
r∑

r0=1

1− ε
n2k−kr0

·

Ñ
r0−1∏
j=1

(n− αn− j)

é
· (αn− 1) ·

2k−kr0∏
j=(r0+1)

(n− (2j − 1))

>
r∑

r0=1

Å
1− 1

n

ãÅ
1− 4k

n

ã2k Å
α− 1

n

ã
·
r0−1∏
j=1

Å
1− α− j

n

ã
.

(4.3)

If αn = | supp(g)| ≥ n − k, then we estimate P from below by the summand

r0 = 1 in (4.3), yielding

P >

Å
1− 1

n

ãÅ
1− 4k

n

ã2k Å
α− 1

n

ã
> 1− 1

n
− 8k2

n
− k + 1

n
≥ 1− 9k2

n
,

with the last inequality valid for n ≥ 2.

If αn = | supp(g)| < n− k then, estimating the terms (1−α− j/n) in the

last product in (4.3) from below by (1− α− k/n), we obtain

P >

Å
1− 1

n

ãÅ
1− 4k

n

ã2k Å
α− 1

n

ã r∑
r0=1

Å
1− α− k

n

ãr0−1

>

Å
1− 4k

n

ã2k+1 Å
α− 1

n

ã
1− (1− α− (k/n))r

(1− (1− α− (k/n))
(4.4)

=

Å
1− 4k

n

ã2k+1 α− (1/n)

α+ (k/n)
(1− (1− α− (k/n))r) .

Since α ≥ 1/2, we have α−(1/n)
α+(k/n) ≥ 1 − 2(k+1)

n and (1 − α − (k/n))r < (1/2)r,

implying

P > 1− 4k(2k + 1)

n
− 2(k + 1)

n
− 1

2r
> 1− 9k2

n
− 1

2r

if n ≥ 3 (since then k ≥ 7).

We conclude that, for any two nonidentical tuples,

~a = (a1, . . . , ak) ∈ {0, 1}k, ~a′ = (a′1, . . . , a
′
k) ∈ {0, 1}k

and for any β ∈ [n],

Prob(βhg
a1hga2 ...hgak = βhg

a′1hga
′
2 ...hg

a′
k ) <

9k2

n
+

1

2d(~a,~a′)
,

where d(~a, ~a′) is the Hamming distance between ~a and ~a′, i.e., the number of

indices 1 ≤ j ≤ k for which aj 6= a′j .

By Lemma 4.4, there exists a set V of more than n tuples so that any

two tuples differ in more than log2 n coordinates. For fixed β ∈ [n], writing
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fβ(~a) = βhg
a1hga2 ...hgak , ~a ∈ V for the random variable β 7→ fβ(~a) defined

using a random h ∈ A`, we obtain that

E(|{(~a,~a′) ∈ V 2 : fβ(~a) = fβ(~a′)}|) =
∑

~a,~a′∈V
Prob(fβ(~a) = fβ(~a′))

≤ |V |+
Ç

9k2

n
+

1

2d(~a,~a′)

å
|V |(|V | − 1) <

|V |2

n
+

Ç
9k2

n
+

1

n

å
|V |2

< (9k2 + 2)
|V |2

n
< 175(log n)2 |V |2

n

for n larger than an absolute constant.

Concerning the length of the orbit β〈g,h〉, we have

E
Ç

1

|β〈g,h〉|

å
≤ E

Ç
1

|{fβ(~a) : ~a ∈ V }|

å
≤ E

Ç
|{(~a,~a′) ∈ V 2 : fβ(~a) = fβ(~a′)}|

|V |2

å
≤ 175(log n)2

n
,

where we use Cauchy-Schwarz in the second step for the numbers mi that

measure how many times a particular value γi occurs among the fβ(~a), for

some ~a ∈ V . �

Proposition 4.6. Let A ⊆ Sym([n]) with A = A−1, e ∈ A, and 〈A〉 =

Sym([n]) or Alt([n]). If n is larger than an absolute constant, then there are

g1, g2, g3 ∈ Abn
27 lognc such that 〈g1, g2, g3〉 is transitive.

Proof. Let g, h be as in Lemma 4.5. Let ε = 1/n2, ` = d2n6 log(n2/ε)e.
Let g′ ∈ A` be the outcome of a random walk of length ` as in Lemma 4.2.

Note that ` ≤ bn27 lognc for n larger than an absolute constant.

Let ∆ be the union of orbits of 〈g, h〉 of length less than
√
n. Since,

by Lemma 4.5, there are at most 175(log n)2 orbits of 〈g, h〉, we have |∆| <
175
√
n(log n)2. Let S be a set consisting of one element α of each orbit of

length less than
√
n. Then, for each α ∈ S, Lemma 4.2 implies that

Prob
Ä
αg
′ ∈ ∆

ä
≤ (1 + ε)

|∆|
n

<

Å
1 +

1

n2

ã
175(log n)2

√
n

and so

(4.5) Prob
Ä
(∃α ∈ S) (αg

′ ∈ ∆)
ä
<

Å
1 +

1

n2

ã
1752(log n)4

√
n

.

Let κ be an orbit of 〈g, h〉 contained in n \ ∆; by definition, |κ| ≥
√
n.

Let κ0 be the largest orbit; by the pigeonhole principle, |κ0| > n/(175(log n)2).

Then

E(|κg′ ∩ κ0|) =
∑
α∈κ

Prob(αg
′ ∈ κ0) ≥

∑
α∈κ

(1− ε) |κ0|
n

= (1− ε) |κ||κ0|
n

,
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whereas

E
Ä
|κg′ ∩ κ0|2

ä
=

∑
α,β∈κ

Prob
Ä
αg
′ ∈ κ0 ∧ βg

′ ∈ κ0

ä
=
∑
α∈κ

Prob(αg
′ ∈ κ0) +

∑
α,β∈κ
α 6=β

∑
α′,β′∈κ0

α′ 6=β′

Prob((α, β)g
′

= (α′, β′))

≤
∑
α∈κ

(1 + ε)
|κ0|
n

+
∑

α,β∈κ,α 6=β
(1 + ε)

|κ0|(|κ0| − 1)

n(n− 1)

≤ (1 + ε)

Ç
|κ0||κ|
n

+
|κ|(|κ| − 1)|κ0|(|κ0| − 1)

n(n− 1)

å
≤ (1 + ε)

Ç
|κ0||κ|
n

+
|κ|2|κ0|2

n2

å
.

Thus

Var(|κg′ ∩ κ0|) = E(|κg′ ∩ κ0|2)− E(|κg′ ∩ κ0|)2

≤ (1 + ε)

Ç
|κ0||κ|
n

+
|κ0|2|κ|2

n2

å
− (1− ε)2 |κ0|2|κ|2

n2

≤ 3ε
|κ|2|κ0|2

n2
+ (1 + ε)

|κ0||κ|
n

<

Å
1 +

4

n

ã |κ0||κ|
n

.

By Chebyshev’s inequality,

Prob(κg
′ ∩ κ0 = ∅) ≤ Var(|κg′ ∩ κ0|)

E(|κg′ ∩ κ0|)2

≤ (|κ||κ0|/n)(1 + 4/n)

(1− ε)2 |κ|2|κ0|2
n2

≤ 12n

|κ||κ0|
<

12 · 175(log n)2

√
n

.

Hence

(4.6) Prob
Ä
(∃κ ⊆ ([n] \∆)) (κg

′ ∩ κ0 = ∅)
ä
<

12 · 1752(log n)4

√
n

.

Now, for n larger than a constant,Å
1 +

1

n2

ã
1752(log n)4

√
n

+
12 · 1752(log n)4

√
n

< 1.

Therefore, (4.5) and (4.6) imply that with positive probability, (a) κg
′
intersects

[n] \∆ for every orbit κ not contained in [n] \∆, and (b) κg
′

intersects κ0 for

every orbit κ contained in [n]\∆. In particular, this happens for some g′ ∈ A`.
Properties (a) and (b) imply that 〈g, h, g′〉 is transitive. We set g1 = g, g2 = h,

g3 = g′ and are done. �
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We will later use11 the following corollary with k = 2.

Corollary 4.7. Let A ⊆ Sym[(n]) with A = A−1, e ∈ A, and 〈A〉 =

Sym([n]) or Alt([n]). Let k ≥ 1. If n is larger than a constant depending only

on k, then there is a set S ⊆ Abn
28 lognc of size at most 3k such that 〈S〉 is

k-transitive.

Proof. Let α1 ∈ [n] be arbitrary. Since 〈A〉 is transitive, Lemma 3.9

implies that αA
n

1 = [n]. Let G = Sym([n]), H = Gα1 , A′ = An. Since αA
′

1 =

[n], A′ intersects every coset of H in G. By Schreier’s Lemma (Lemma 3.8),

it follows that (A′)3 ∩H generates 〈A〉 ∩H, which is either Sym([n] \ {α1}) or

Alt([n] \ {α1}). Let A1 = (A′)3 ∩H.

Iterating, we obtain a sequence of sets A0 =A,A1, A2, . . . , Ak−1⊆Sym([n])

and a sequence of elements α1, α2, . . . , αk−1 ∈ [n] such that Ai ⊆ A3n
i−1 and 〈Ai〉

is Sym([n] \ {α1, . . . , αi}) or Alt([n] \ {α1, . . . , αi}).
Let (g1)i, (g2)i, (g3)i be as in Proposition 4.6, applied with Ai instead of

A. Then (g1)i, (g2)i, (g3)i ∈ A(3n)ibn27 lognc and 〈(g1)i, (g2)i, (g3)i〉 ⊆ Sym([n] \
{α1, . . . , αi}) is transitive on [n] \ {α1, . . . , αi} for 0 ≤ i ≤ k − 1. Thus, for

S =
⋃k−1
i=0 Ai, 〈S〉 is k-transitive on [n]. �

5. The splitting lemma and its consequences

We will prove what is in effect an adaptation of Babai’s splitting lemma

(proven for groups in [Bab82, Lemma 3.1]) to the case of sets. This is a key

point in this paper: the splitting lemma will allow us to construct long stabiliser

chains with large orbits.

The following easy lemma will make an “unfolding” step possible.

Lemma 5.1. Let A ⊆ Sym([n]), Σ ⊆ [n], and g ∈ Sym([n]). Then

gA(Σg)g
−1 = (gAg−1)(Σ).

Proof. We have Sym([n])(Σg) = g−1 Sym([n])(Σ)g. Therefore,

A(Σg) = A ∩ Sym([n])(Σg) = A ∩ g−1 Sym([n])(Σ)g

= g−1(gAg−1 ∩ Sym([n])(Σ))g = g−1(gAg−1)(Σ)g. �

Notice a feature of the following statement — there is a high power of

A in the assumptions, not just in the conclusion. We will “unfold” the high

power of A in the course of the proof. (By ΣS we mean the set ΣS = {αg :

α ∈ Σ, g ∈ S}.)

11If we wished to, we could use it to obtain a set S of generators of Alt([n]) or Sym([n])

simply by setting k = 6: the Classification of Finite Simple Groups implies that a 6-transitive

group must be either alternating or symmetric.
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Proposition 5.2 (Splitting Lemma). Let A ⊆ Sym([n]) with A = A−1,

e ∈ A, and 〈A〉 2-transitive. Let Σ ⊆ [n]. Assume that there are at least

ρn(n− 1) ordered pairs (α, β) of distinct elements of [n] such that there is no

g ∈ (Ab9n
6 lognc)(Σ) with αg = β. Then there is a subset S of Ab5n

6 lognc with

(AA−1)(ΣS) = {e}

and

|S| ≤
¢

2

log(3/(3− 2ρ))
· log n

•
.

Proof. Set ` = d2n6 log(n2/(1/3))e; note that ` ≤ b5n6 log nc and 2`+2 ≤
b9n6 log nc for n ≥ 5. (For n < 5, the statement is trivial.) By Lemma 4.2

applied with k = 2 and ε = 1/3, we obtain that given any two distinct elements

α, β ∈ [n] and g ∈ A`, the pair (αg, βg) adopts any possible value (α′, β′)

with probability at least (1 − 1/3)/(n(n − 1)), where we choose g ∈ A` with

the distribution in Lemma 4.2 (g = g1g2 · · · g`, gi chosen independently from

A′ ∪ {e}, where A′ is a symmetric subset of A). Since this distribution is

symmetric, this is the same as saying that (αg
−1
, βg

−1
) adopts any possible

value (α′, β′) with probability at least (1− 1/3)/(n(n− 1)).

Now, given (α, β) and g ∈ A`, we have h ∈ (AA−1)(Σg) and αh = β if

and only if ghg−1 ∈ g(AA−1)(Σg)g
−1 and (αg

−1
)ghg

−1
= βg

−1
. By Lemma 5.1

applied to AA−1, we have that ghg−1 ∈ g(AA−1)(Σg)g
−1 only if ghg−1 ∈

(gAA−1g−1)(Σ), which in turn can happen only if ghg−1 ∈ (A2`+2)(Σ). Thus, if

there is no element j ∈ (A2`+2)(Σ) with αg
−1j = βg

−1
, then there is no element

h ∈ (AA−1)(Σg) with αh = β. (This is the “unfolding” step we referred to

before.)

Since by hypothesis there are at least ρn(n−1) ordered pairs (α′, β′) such

that there is no element j ∈ (A2`+2)(Σ) with α′j = β′, and since (αg
−1
, βg

−1
)

equals any such pair with probability at least (2/3)/(n(n−1)), we see that the

probability that there is no element h ∈ (AA−1)(Σg) with αh = β is at least

2ρ/3.

Let S be a set of r random g ∈ A` (chosen independently, with the dis-

tribution as above). The probability that for every g ∈ S there is an element

h ∈ (AA−1)(Σg) with αh = β is at most (1−2ρ/3)r. This must happen if there

is an element h ∈ (AA−1)ΣS such that αh = β. Thus, the probability that

there is such an h is at most (1−2ρ/3)r, and the probability that there is such

an h for at least one of the n(n−1) pairs (α, β) is at most n(n−1)(1−2ρ/3)r.

Setting r = d(log n2)/(log 3/(3−2ρ))e, we obtain that the probability that

there is such an h for at least one pair is less than 1. Hence there is a set S ⊆ A`
with at most r elements such that, for every pair (α, β) of distinct elements of
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[n], there is no h ∈ (AA−1)(ΣS) with αh = β. This implies immediately that

the only element of (AA−1)(ΣS) is the identity. �

Corollary 5.3. Let A ⊆ Sym([n]) with A=A−1, e ∈ A, and 〈A〉 2-tran-

sitive. Let A′ = Ab9n
6 lognc. Let Σ ⊆ [n] be such that

|αA
′
(Σ) | < (1− ρ)n

for every α ∈ [n], where ρ ∈ (0, 1). Then

|Σ| > log |A|⌈
2

log(3/(3−2ρ)) · log n
⌉
· log n

.

In particular, if ρ = 0.05, then |Σ| > (log |A|)/(60(log n)2).

Proof. Since |αA
′
(Σ) | < (1 − ρ)n for every α ∈ [n], there are at least

ρn(n − 1) pairs (α, β) such that there is no g ∈ A′(Σ) with αg = β. By

Proposition 5.2, there is a set S ⊆ Sym([n]) such that (AA−1)(ΣS) = {e} and

|S| ≤
⌈

2
log(3/(3−2ρ)) · log n

⌉
. Since (AA−1)(ΣS) = {e}, we know, by Lemma 3.16,

that |ΣS | ≥ logn |A|. Clearly |ΣS | ≤ |S||Σ|. Hence

|Σ| ≥ logn |A|
|S|

≥ log |A|⌈
2

log(3/(3−2ρ)) · log n
⌉
· log n

. �

A key idea in the proof of the Main Theorem is the following. For A ⊆
Sym([n]), we can construct A′ = Ab5n

6 lognc and a set Σ = {α1, α2, . . . } ⊆ [n]

starting with an empty set and taking at each step αi to be an element such

that |α
(A′)(α1,...,αi−1)

i | ≥ (1 − ρ)n (say); if no such element exists, we stop the

procedure. By Corollary 5.3, |Σ| must be large.

An application of Lemma 3.18 will give that, for A′′ = (A′)16n6
, the set

(A′′)Σ contains a copy of Alt(∆), where ∆ ⊆ Σ and |∆| ≥ (1 − ρ)|Σ|. Such a

large alternating group certainly looks like a valuable tool.

6. Proof of the Main Theorem

The core of this section is Proposition 6.4. It is a growth result, but not

quite of type |A ·A ·A| ≥ |A|1+ε or |Ak| ≥ |A|1+ε. What will grow by a factor

at each step is not the number of elements |A| of A, but rather the length m

of a sequence α1, . . . , αm such that the orbits

(6.1) αA1 , α
Aα1
2 , α

A(α1,α2)

3 , . . . , α
A(α1,α2,...,αm−1)

m

are all large.

This growth result (Proposition 6.4) will be applied iteratively. There are

two ways for the iteration to stop: (a) an element we construct could fix a

large set pointwise (we call this the case of exit), or (b) a group we work with
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could fail to have a large alternating composition factor. In case (a), we obtain

all of G = Alt([n]) in a few steps by Theorem 1.4. In case (b), we can descend

to the problem of proving small diameter for n′ smaller than n by a constant

factor. (Here, as in “infinite descent,” the term “descent” means the same as

induction, seen backwards.)

* * *

Let us sketch briefly the proof of Proposition 6.4. First, we use (6.4) to con-

struct many elements in the setwise stabiliser GΣ, where Σ = {α1, . . . , αm}; in

fact we get an entire copy of a large alternating group in (GΣ)|Σ (Lemma 3.18).

This is the setup. Then comes the creation step: we use the action by con-

jugation of GΣ on the pointwise stabiliser G(Σ) to construct many elements

of G(Σ) (Lemma 6.1). We organise these new elements (all in a power A′ of

A) as follows: we apply Corollary 5.3 (a consequence of the splitting lemma)

to lengthen our stabiliser chain A′ ⊇ A′α1
⊇ · · · ⊇ A′(α1,...,αm) ⊇ · · · up to

A′(α1,...,αm+`)
in such a way that the orbits (defined as in (6.1)) are still large.

We repeat the organiser step about � (log n)/(logm) times. There are only

two ways for this procedure to stop prematurely, namely, exit and descent

(cases (a) and (b) discussed above).

* * *

We start by proving the lemma containing the creation step: we give a way

to construct many elements in a subgroup H− of a group G. The basic idea is

the application of the orbit-stabiliser principle to the action by conjugation of

a subgroup H+ ≤ NG(H−) on H−, where NG(H−) is the normaliser of H−.

Lemma 6.1. Let G = Sym([n]) or Alt([n]), H− ≤ G, H+ ≤ NG(H−), Γ

an orbit of both H− and H+. Let Y = {y1, . . . , yr} ⊆ H− be such that 〈Y 〉|Γ
is 2-transitive on Γ. Let B ⊆ H+. Then either

(a) there is a b ∈ BB−1 \ {e} fixing Γ pointwise, or

(b) |B−1Y B ∩H−| ≥ |B|1/r.

Proof. Consider the action of B on ~y = (y1, . . . , yr) by conjugation: for

b ∈ B, we define ~y b := (yb1, . . . , y
b
r), where yb = b−1yb. Assume first that there

are two distinct elements b1, b2 ∈ B such that ~y b1 |Γ = ~y b2 |Γ. Then b1b
−1
2 |Γ

centralises ~y|Γ, implying that b1b
−1
2 |Γ ∈ C(〈Y 〉|Γ) = {e}. (As is well known

and can be easily seen, the centraliser of a doubly transitive group, such as

〈Y 〉|Γ < Sym(Γ), is trivial.) Hence b1b
−1
2 ∈ B fixes Γ pointwise without being

the identity, i.e., conclusion (a) holds.

Assume now that the restrictions ~y b|Γ are all distinct. Hence, by the

pigeonhole principle, there exists an index j ∈ {1, . . . , r} such that the set W

of conjugates of yj by B satisfies |W |Γ| ≥ |B|1/r. Observe that all elements of
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W are in H−, as Y ⊂ H− and B ⊂ NG(H−). Hence |B−1Y B ∩H−| ≥ |W | ≥
|B|1/r. �

The following useful lemma is in part an easy application of Schreier’s

lemma and in part a consequence of a trick based on the following trivial fact:

one clearly cannot have two disjoint copies within [n] of an orbit of size greater

than n/2.

Lemma 6.2. Let ∆ ⊆ [n]. Let B+ ⊆ (Sym(n))∆ with B+ = (B+)−1,

e ∈ B+. Assume B+|∆ is Alt(∆) or Sym(∆). Let B− =
(
(B+)3

)
(∆).

Then 〈B−〉 = 〈B+〉(∆) C 〈B+〉. Furthermore, if 〈B−〉 has an orbit Γ of

length greater than n/2, then Γ is also an orbit of 〈B+〉.

Proof. Since B+|∆ is a group (Alt(∆) or Sym(∆)), B+|∆ = 〈B+〉|∆.

Thus B+ contains an element from every coset of 〈B+〉(∆) in 〈B+〉 and so,

by Lemma 3.8, B− contains a set of generators of 〈B+〉(∆). Hence 〈B−〉 =

〈B+〉(∆). In particular, 〈B−〉C 〈B+〉, as 〈B+〉(∆) is the kernel of the action of

〈B+〉 on ∆.

The orbits of the normal subgroup 〈B−〉C〈B+〉 are blocks of imprimitivity

for 〈B+〉. Since one cannot have two blocks of length greater than n/2, 〈B+〉
leaves Γ invariant as a set, and so Γ is an orbit of 〈B+〉. �

The following lemma is also crucial to the descent step. In the proof of

the lemma, we use Lemma 3.19 to guarantee the existence of an element that

we then construct by other means.

Lemma 6.3. Let G = Sym([n]) or Alt([n]). Let ∆ ⊆ [n], |∆| ≥ (log n)2.

Let A ⊆ G with A = A−1, e ∈ A and 〈A〉 = G. Let B+ ⊆ (Al)∆, l ≥
1, with B+ = (B+)−1, e ∈ B+. Assume B+|∆ is Alt(∆) or Sym(∆). Let

B− =
(
(B+)3

)
(∆). Assume 〈B−〉 has an orbit Γ of length at least ρn, for some

ρ > 8/9.

If all alternating composition factors Alt(k) of 〈B−〉 satisfy k ≤ δn, where

δ > 0, and

(6.2) max
k≤δn

diam(Alt(k)) ≤ Dδ,

for some Dδ > 0, and n is larger than an absolute constant, then

Able
c(logn)3 ·Dδc ⊇ Alt([n]),

where c = c(ρ) depends only on ρ.

Proof. The group U := 〈B−〉|Γ is transitive. It is also isomorphic to a

quotient of 〈B−〉, so U also has no alternating composition factors Alt(k) with

k > δn. By Theorem 1.1 and by (6.2), there exists an absolute constant C1
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such that for

(6.3) u := beC1(logn)3 ·Dδc, (B−)u|Γ = U.

Let H = 〈B+〉. By Lemma 6.2, Γ is an orbit of H. If n is large enough that

Lemma 3.19 applies then there exists a nonidentity element g ∈ H of support

less than |Γ|/4 on Γ. Take h ∈ B+ with h|∆ = g|∆. Then gh−1 ∈ 〈B+〉(∆) =

〈B−〉 and so, by (6.3), there exists b ∈ (B−)u with gh−1|Γ = b|Γ. Therefore,

bh ∈ (B+)3u+1 satisfies bh|Γ = g|Γ. Since g fixes at least (3/4)|Γ| ≥ (3/4)·ρn >
(2/3)n points in Γ, we have | supp(bh)| ≤ (1−(3/4)ρ)n < n/3. By Theorem 1.4,

(A∪{bh, (bh)−1})Kn8
contains Alt([n]), whereK = K(ε) (ε = 1−(3/4)ρ < 1/3)

is the number defined in Theorem 1.4. Since A ∪ {bh, (bh)−1} ⊆ A(3u+1)l, we

are done. �

We come to the key results in the paper. They will be given as two separate

propositions, proved by a back-and-forth inductive process. For the sake of

clarity, we will state them in terms of functions F1, F2 : R+ → R+ obeying

certain relations; we will later specify functions satisfying these relations.

Proposition 6.4. Let G = Sym([n]) or Alt([n]). Let A ⊂ G with A =

A−1, e ∈ A, and 〈A〉 = G. Let α1, α2, . . . , αm+1 ∈ [n] be such that

(6.4)

∣∣∣∣αA(α1,...,αi−1)

i

∣∣∣∣ ≥ 9

10
n

for every i = 1, 2, . . . ,m+ 1, where m ≥ (log n)2.

There are absolute constants n0 ∈ Z+ and K, c1, c2, c3 > 0 such that the

following holds. Assume n ≥ n0. Assume also that Proposition 6.5 holds for

all smaller values of n with respect to some increasing function F2 : R+ → R+.

Let F1 : R+ → R+ be such that, for all n ∈ Z+,

(6.5) F1(n) ≥ max
Ä
nc3 lognec1(logn)3

F2(0.95n), 2Knc3 logn+8
ä
.

Then either

(6.6) AbF1(n)c ⊇ Alt([n]),

or there are αm+2, αm+3, . . . , αm+l+1 ∈ [n], l ≥ c2(m logm)/(log n), such that

(6.7)

∣∣∣∣∣αA′(α1,...,αi−1)

i

∣∣∣∣∣ ≥ 9

10
n

for A′ = Abn
c3 lognc and every i = 1, 2, . . . ,m+ l + 1.

An easy application of Proposition 6.4 proves Proposition 6.5 (which is

equivalent to our Main Theorem). Conversely, in order to prove Proposi-

tion 6.4, we will use Proposition 6.5 for smaller values of n in an inductive

process. In the proofs of Propositions 6.4 and 6.5, we assume that n is greater

than a well-defined (but not explicitly computed) absolute constant n0; we take
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n0 to be large enough to satisfy the assumptions made in the course of both

proofs. In the statement of Proposition 6.4, the assumption is made explicitly;

in the statement of Proposition 6.5, the assumption is allowed by (6.8), which

implies that, when n ≤ n0, the bound diam(Γ(G, Y )) ≤ F2(n) is trivial and

there is nothing to prove.

Proposition 6.5. Let G = Sym([n]) or Alt([n]). Let Y ⊆ G with Y =

Y −1, e ∈ Y and G = 〈Y 〉. Assume Proposition 6.4 holds for n with respect to

some function F1 : R+ → R+. Let c2 and c3 be the absolute constants in the

statement of Proposition 6.4; let n0 be at least as large as in Proposition 6.4.

Let F2 : R+ → R+ be such that

(6.8) F2(n) ≥ max
Ä
e(logn)3+2 logn+c′c3(logn)3 log lognF1(n) + 2, n0!

ä
for some c′ > c2 and all n ∈ Z+. Then

diam(Γ(G, Y )) ≤ F2(n),

provided that n0 is larger than a constant depending only on c2 and c′.

The proof consists just of a repeated use of Proposition 6.4, plus some

accounting.

Proof. We can assume that n is large enough that m0 ≤ 0.1n ≤ n− 3 for

m0 = b(log n)2c + 1 and so G acts transitively on the set X of all (m0 + 1)-

tuples. Hence, by Lemma 3.9, the set A0 := Y nm0+1 ⊇ Y |X| acts transitively

on the set of all (m0 + 1)-tuples. Thus (6.4) holds with A0 instead of A, m0

instead of m, and αi = i for i = 1, 2, . . . ,m0 + 1. We apply Proposition 6.4

with these parameters, assuming n ≥ n0, where n0 is the absolute constant in

the statement of Proposition 6.4. We obtain either (6.6) or (6.7).

In the latter case, we set `0 = `, m1 = m0 + `0, and iterate: we apply

Proposition 6.4 to

A1 = Ar0, A2 = Ar1 = Ar
2

0 , A3 = Ar2 = Ar
3

0 , . . .

where r = bnc3 lognc. (After each step, we “save” the output ` to `i and set

mi+1 = mi + `i .) We stop when we obtain (6.6); say this happens when we

apply Proposition 6.4 with A = Ak = Ar
k

0 .

It remains to estimate k. By Proposition 6.4,

(6.9) mi+1 ≥ (1 + (c2 logmi)/(log n)) ·mi.

We want to compute how many times we have to iterate (6.9) before we run

into a contradiction with mi ≤ n.

For 1 ≤ j ≤ log n, let tj be the largest index i between 0 and k such

that mi < ej ; if no such index exists, set tj = 1. We have m0 ≥ 3 and so
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t1 = 1. By (6.9) and (1 + c2j/(log n))b(logn)/(c2j)c+2 > e, we have tj+1 ≤
tj + b(log n)/(c2j)c+ 3. Thus

tblognc + 1 ≤ t1 + 1 +

blognc−1∑
j=1

(tj+1 − tj)

≤ 2 +
∑

1≤j≤logn

Å
log n

c2j
+ 3

ã
≤ c′ log n log log n

for any c′ > 1/c2, with the last inequality valid if n is larger than a constant

depending only on c and c′. Since tblognc + 2 > k (because mk ≤ n), we get

that k ≤ c′ log n log log n.

Thus

Ak = Ar
k

0 ⊆ Y nb(logn)2c+2·rbc′ logn log lognc ⊆ Y be(logn)3+2 logn+c′c3(logn)3 log lognc.

Then, by (6.6) (valid for A = Ak), we obtain

Alt([n]) ⊆ (Y be
(logn)3+2 logn+c′c3(logn)3 log lognc)bF1(n)c ⊆ Y bF2(n)c−1

for n larger than a constant. If Y ⊆ Alt([n]), then Y bF2(n)c−1 = Alt([n]). If Y

contains an odd permutation, then Y bF2(n)c = Sym([n]). �

We finally turn to the proof of Proposition 6.4.

Proof of Proposition 6.4. We can assume that n is large enough that m ≥
(log n)2 > C(0.9), where C(0.9) is as in Lemma 3.18. Apply Lemma 3.18 with

d = 0.9 and Σ = {α1, . . . , αm}. We obtain a set ∆ ⊆ Σ such that |∆| ≥ 0.9|Σ|
and

ÄÄ
A16m6

ä
Σ

ä
(Σ\∆)

|∆ contains Alt(∆). Let

B+ =

ß
g ∈
ÄÄ
A16m6ä

Σ

ä
(Σ\∆)

: g|∆ ∈ Alt(∆)

™
, B− =

Ä
(B+)3

ä
(∆)

.

This is our initial setup: we have a large set B+ in the setwise stabiliser GΣ;

furthermore, we have constructed a large subset ∆ ⊆ Σ such that B+ ⊆
(GΣ)(Σ\∆) and B+|∆ = Alt(∆). We also have a set B− in the pointwise

stabiliser G(Σ). By (6.4) with i = m + 1,
∣∣∣αB−m+1

∣∣∣ ≥ 9
10n, and so 〈B−〉 has an

orbit Γ of length at least 0.9n. By Lemma 6.2, Γ is also an orbit of 〈B+〉.
We would like 〈B−〉 to act as an alternating or symmetric group on Γ; let

us show that, if this is not the case, we obtain descent. We are assuming that

Proposition 6.5 holds for n′ < n (inductive hypothesis). Hence, if 〈B−〉 has no

composition factor Alt(k) with k > 0.95n, then Lemma 6.3 (descent) gives us

Ab16m6ec1(logn)3 ·F2(0.95n)c ⊇ Alt([n]),

for n larger than an absolute constant, where c1 = c(0.9) is from Lemma 6.3.

By (6.5), we conclude that (6.6) holds and we are done. (We are assuming

that n is larger than a constant, so that 16n6 ≤ ec3 logn, where c3 > 0 will be

set later.)
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Thus, we can suppose from now on that 〈B−〉 does have a composition

factor Alt(k) for some k > 0.95n. The only orbit of 〈B−〉 that can be of length

at least k is Γ, so 〈B−〉|Γ = 〈B−|Γ〉 must contain Alt(k) as a section. Hence,

by Lemma 3.11, 〈B−|Γ〉 ≥ Alt(Γ). (We can assume 0.95n > 84, and thus

Lemma 3.11 does apply.) Note we also get that |Γ| > 0.95n.

Now that we know that 〈B−|Γ〉 ≥ Alt(Γ). Corollary 4.7 gives us a small set

of elements Y = {y1, y2, . . . , y6} ⊆ (B−)bn
28 lognc such that 〈Y 〉|Γ is 2-transitive

on Γ. We apply Lemma 6.1 (creation) with H− = 〈B−〉, H+ = 〈B+〉, B = B+,

and r = 6. (The condition H− CH+ is fulfilled thanks to Lemma 6.2.)

If conclusion (a) in Lemma 6.1 holds, then there is a b ∈ B+(B+)−1 \ {e}
with supp(b) ≤ 0.05n. Theorem 1.4 thus gives us that (A∪{b})Kn8 ⊇ Alt([n]),

where K = K(0.1) ≥ K(0.05) is an absolute constant. (We set K = K(0.1),

instead of K = K(0.05), because we are planning to use the same constant

later.) By (6.5),

2 · 48m6 ·Kn8 < 96Kn14 ≤ F1(n),

and so (provided that n is larger than a constant) (6.6) holds and we are done.

(This is what we call an exit from the procedure.)

We can thus assume that conclusion (b) in Lemma 6.1 holds; i.e., we

have created a set W = (B+)−1Y B+ ∩ 〈B−〉 with |W | ≥ |B+|1/6. Note that

(B+)−1Y B+ ⊂ Abn29 lognc (for n larger than a constant) and |B+| ≥ |Alt(∆)| =
(1/2)|∆|! ≥ m0.899m (for m larger than a constant; recall that |∆| ≥ 0.9m).

Hence

(6.10)
∣∣∣Abn29 lognc ∩ 〈B−〉

∣∣∣ ≥ m0.149m.

Now that we have created many elements in the pointwise stabiliser of Σ, it

is our task to organise them: we wish to produce αm+2, . . . , αm+`+1 satisfying

(6.7).

This can be done in two ways. One is short and simple, gives a bound of

l � m(logm)/(log n)2, and results in a bound of O((log n)5(log log n)) in the

exponent of the final result. The other is longer, but gives the stronger bound

of l � m(logm)/(log n) promised in the statement of the proposition, and

results in a bound of O((log n)4 log logn) in the exponent of the final result.

Let us go through both arguments for the sake of clarity.

In the first argument, we simply apply Corollary 5.3 with Sym(Γ) instead

of Sym([n]) and A[n29 logn] ∩ 〈B−〉 ⊃ B− instead of A. We obtain that any

maximal sequence of elements αm+2, . . . , αm+`+1 satisfying (6.7) must be of

length

� (log |A[n29 logn] ∩ 〈B−〉|)/(log n)2 � logm0.149m

(log n)2
� m(logm)

(log n)2
.

Thus `� m(logm)/(log n)2.
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Let us now carry out the second argument in detail. The basic idea is that

the creation step has given us enough elements that we can apply the organiser

step several times in succession.

For i ≥ 0, we define recursively Ai, Bi ⊆ 〈A〉 and a sequence Σi of points

in [n]. Let A0 = Abn
29 lognc, m0 = m, Σ0 = (α1, . . . , αm0+1), and B0 =

(A0)(Σ0\{αm0+1}).

If Ai,Σi, Bi are already defined then let A′i+1 = A
b9n6 lognc
i and let Σi+1

be a maximal extension Σi+1 = (α1, . . . , αmi+1+1) of Σi = (α1, . . . , αmi+1) such

that

(6.11)

∣∣∣∣α(A′i+1)(α1,...,αj−1)

j

∣∣∣∣ ≥ 0.9n

for all j = 1, 2, . . . ,mi+1 + 1. Finally, let

Ai+1 = (A′i+1)29n6
and Bi+1 = (Ai+1)(Σi+1\{αmi+1+1}).

Note that for all i ≥ 0, 〈Bi〉 has an orbit Γi of length at least 0.9n because∣∣∣αBimi+1

∣∣∣ ≥ 0.9n. We went up to i = m + 1 in condition (6.4) and up to

i = m+ l+1 in conclusion (6.7) (rather than i = m and i = m+ l, respectively)

so that we could do this useful trick!

We stop the recursion, and set w := i for the last i for which Ai is defined,

if either

(a) |Bi|Γi | < |Bi|, i.e., there are two elements b1, b2 ∈ Bi such that b1b
−1
2

fixes Γi pointwise; or

(b) |Γi| ≤ 0.95n or 〈Bi|Γi〉 6⊃ Alt(Γi); or

(c) nmi−m0 >
√
m0.149m.

By (6.10), we have |B0| ≥ m0.149m.

First, we estimate the differences mi+1−mi. If the recursion did not stop

after the definition of Ai, Bi, and Σi then, in particular, the stopping criterion

(c) is not fulfilled at step i. Lemma 3.4, applied with 〈B0〉 as G, G(Σi\{αmi+1})
as H, and B0 as A, then implies that

|Bi| ≥ |B2
0 ∩H| ≥

|B0|
nmi−m0

≥
√
m0.149m.

Also, by the criteria (a) and (b), we have |Bi|Γi | = |Bi| and 〈Bi〉|Γi acts as

Alt(Γi) or Sym(Γi) on Γi, where |Γi| > 0.95n.

Since 0.9n < 0.95 · 0.95n ≤ 0.95|Γi|, we can apply Corollary 5.3 with ρ =

0.05, Bi|Γi instead of A, and Γi instead of [n], and obtain that, for 1 ≤ i < w,

(6.12) mi+1 −mi >
log |Bi|

60(log n)2
≥ c2m logm

60(log n)2
,
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where we define c2 := 0.149/2 = 0.0745. (This is what we have called an

organiser step. It is ultimately based on the splitting lemma (Proposition 5.2),

of which Corollary 5.3 is a corollary.)

At the same time, nmw−1−m0 ≤
√
m0.149m implies

mw−1 −m0 ≤
c2 logm

log n
m.

Since mw−1 −m0 =
∑w−1
i=1 (mi −mi−1), from (6.12) it follows that

c2 logm

log n
m > (w − 1)

c2m logm

60(log n)2

and we conclude that w − 1 < 60 log n. Hence

Aw = A
b9n6 logncw(48n6)w

0 ⊆ Abn29 lognc·b432n12 logncw ⊆ Abnc3 lognc

for c3 := 750 > 29+12 ·60, provided that n is larger than an absolute constant.

If nmw−m0 >
√
m0.149m (stopping condition (c)), then

mw −m0 ≥
c2 logm

log n
m

and so, setting ` = mw −m0, we obtain (6.7).

(In other words, as long as our organising has consumed less than the

square-root of the material we created, we are organising rapidly; if our organ-

ising has consumed at least the square-root of the said material, then we have

already organised plenty.)

If we stopped because condition (a) holds then A2
w contains a nontrivial

element b1b
−1
2 with support less than 0.1n. By Theorem 1.4, (A∪{b1b−1

2 })Kn
8 ⊇

Alt([n]), where K = K(0.1) is an absolute constant. By (6.5),

2 · bnc3 lognc ·Kn8 ≤ F1(n),

and so we obtain (6.6). (This is an exit case.)

Finally, suppose we stopped in case (b), i.e., 〈Bw|Γw〉 6⊃ Alt(Γw) or |Γw| ≤
0.95n. As |Σw| ≥ m > C(0.9), we can apply Lemma 3.18 with Σw \ αmw+1 as

Σ and A′w as A to obtain ∆w ⊆ Σw \αmw+1, |∆w| ≥ 0.9|Σw \αmw+1| such that

B+
w = (((A′w)16n6

)Σw\{αmw+1})(Σw\({αmw+1}∪∆w))

satisfies (B+
w )|∆w = Alt(∆w). (This is a fresh setup.) Also, by Lemma 6.2, B−w =(

(B+
w )3

)
(∆w) generates 〈B+

w 〉(∆w)C 〈B+
w 〉. Note that B−w ⊆ Bw and 〈B−w 〉 has

an orbit of length at least 0.9n, simply because B−w contains (A′w)Σw\{αmw+1},

and the orbit of αmw+1 under (A′w)Σw\{αmw+1} is of length ≥ 0.9n by (6.11).

We are ready for another descent. The group 〈B−w 〉 has no composition

factor Alt(k) with k > 0.95n, because such a factor would be a section of

〈Bw〉 and Lemma 3.11 would imply that 〈Bw|Γw〉 is an alternating group on

> 0.95n elements, in contradiction with condition (b). Thus the hypotheses of
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Lemma 6.3 are satisfied with δ = 0.95 and ρ = 0.9 and, by the assumption that

Proposition 6.5 holds for n′ ≤ 0.95n < n (inductive hypothesis), Lemma 6.3

gives us that

Abn
c3 lognec(logn)3 ·F2(0.95n)c ⊇ Alt([n]),

where c = c(0.9). We apply (6.5) and conclude that (6.6) holds. �

We now use Proposition 6.5 to prove both the Main Theorem and Corol-

lary 1.3 (for Sym(n) and Alt(n)).

Theorem 6.6. Let G = Sym(n) or Alt(n). Then

(6.13)
diam(G) = O(ec(logn)4 log logn),
−−−→
diam(G) = O(e(c+1)(logn)4 log logn)

for an absolute constant c > 0.

As we shall see, c1 = 49071 is valid (and by no means optimal).

Proof. We must find functions F1, F2 satisfying (6.5) and (6.8). We can

set

F2(n) = e(logn)3+2 logn+c′c3(logn)3 log lognF1(n) + 2

for c′ > c2 arbitrary. Now we must make sure that

(6.14)

F1(n) ≥ nc3 lognec1(logn)3

·
Ä
ec
′c3(log 0.95n)3 log log 0.95n+(log 0.95n)3+2 log 0.95nF1(0.95n) + 2

ä
.

(Here we can assume n > 1 so that log log n is well defined.) Choose c4 > c′c3.

Then, for n larger than a constant n′0 depending only on c1, c3, c′, and c4,

(6.14) will hold provided that

(6.15) F1(n) ≥ ec4(logn)3 log logn max(F1(0.95n), 1).

For any c > c4/(4| log 0.95|) and any C ≥ 1, (6.15) is fulfilled by

F1(n) = Cec(logn)4 log logn,

provided that n is larger than a constant n′′0 depending only on c and c4. We set

C = n′′′0 !, where n′′′0 = max(n0, n
′
0, n
′′
0, 2K). Then (6.5) holds for all n ≥ n′′′0 ,

and (6.8) holds with n0! replaced by n′′′0 !. We now apply Proposition 6.5

for our n, with n0 replaced by n′′′0 ; it uses Proposition 6.4, which in turn

uses Proposition 6.5 for smaller n, and so on. The recursion ends when n ≤
max(n′′′0 , 1), as then Proposition 6.5 is trivially true (due to the bound F2(n) ≥
n′′′0 ! in (6.8)).

We obtain that

(6.16) diam(Γ(G, Y )) ≤ Cec(logn)4 log logn
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for any set Y of generators of G with Y = Y −1, e ∈ Y . A quick calculation

shows that, since c2 = 0.0745 and c3 = 750 (see the proof of Proposition 6.4),

we can set c′ = 13.423 > 1/0.0745, c4 = 10068 > c′c3 and

c =

ú
c4

4| log 0.95|

ü
= 49071.

Let A be an arbitrary set of generators of G. Let Y = A∪A−1∪{e}. The

undirected Cayley graph Γ(G, Y ) is just the undirected Cayley graph Γ(G,A)

with a loop at every vertex; their diameters are the same. Thus, by (6.16),

diam(Γ(G,A)) = diam(Γ(G, Y )) ≤ Cec(logn)4 log logn.

By [Bab06, Cor. 2.3],

diam(~Γ(G,A)) ≤ O
Ä
diam(G)(n log n)2

ä
≤ O

Ä
e(c+1)(logn)4 log logn

ä
. �
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