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Potential automorphy and change of weight

By THOMAS BARNET-LAMB, ToBY GEE, DAVID GERAGHTY,
and RICHARD TAYLOR

Abstract

We prove an automorphy lifting theorem for I-adic representations where
we impose a new condition at [, which we call “potentential diagonalizabil-
ity.” This result allows for “change of weight” and seems to be substantially
more flexible than previous theorems along the same lines. We derive sev-
eral applications. For instance we show that any irreducible, totally odd,
essentially self-dual, regular, weakly compatible system of [-adic represen-
tations of the absolute Galois group of a totally real field is potentially
automorphic and hence is pure and its L-function has meromorphic con-
tinuation to the whole complex plane and satisfies the expected functional

equation.
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Introduction

Suppose that ' and M are number fields, that S is a finite set of primes of
F and that n is a positive integer. By a weakly compatible system of n-dimen-
sional l-adic representations of G defined over M and unramified outside S
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we shall mean a family of continuous semi-simple representations
) - GF — GLn(MA),

where A\ runs over the finite places of M, with the following properties:

e If v ¢ S is a finite place of F', then for all A not dividing the residue charac-
teristic of v the representation r) is unramified at v and the characteristic
polynomial of 7(Frob,) lies in M[X] and is independent of \.

e Each representation r) is de Rham at all places above the residue charac-
teristic of A, and in fact crystalline at any place v € S which divides the
residue characteristic of A.

e For each embedding 7 : F < M the 7-Hodge-Tate numbers of ry are
independent of .

In this paper we prove the following theorem. (See Theorem 5.4.1.)

THEOREM A. Let {r\} be a weakly compatible system of n-dimensional
l-adic representations of G defined over M and unramified outside S, where
for simplicity we assume that M contains the image of each embedding F' — M.
Suppose that {ry} satisfies the following properties:

(1) (Irreducibility). Each ry is irreducible.

(2) (Regularity). For each embedding T : F — M the representation 7y has n
distinct T-Hodge—Tate numbers.

(3) (Odd essential self-duality). F' is totally real; and either each ry factors
through a map to GSp,,(M) with a totally odd multiplier character; or
each ry factors through a map to GO, (M) with a totally even multiplier
character. Moreover in either case the multiplier characters form a weakly
compatible system.

Then there is a finite, Galois, totally real extension of F' over which all the ry’s
become automorphic. In particular for any embedding + : M — C the partial
L-function L°({ry}, s) converges in some right half plane and has meromor-
phic continuation to the whole complex plane.

This is not the first paper to prove potential automorphy results for com-
patible systems of [-adic representations of dimension greater than 2; see, for
example, [HSBT10], [BLGHT11], [BLGG11]|. However previous attempts only
applied to very specific, though well known, examples (e.g., symmetric powers
of the Tate modules of elliptic curves) and one had to exploit special properties
of these examples. We believe this is the first general potential automorphy
theorem in dimension greater than 2, and we are hopeful that it can be applied
to many examples. We give an analogous theorem when F' is an imaginary
CM field. Other than this we do not see how to improve much on this theorem
using current methods.
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As one example application, suppose that K is a finite set of positive inte-
gers such that the 27X possible partial sums of elements of K are all distinct.
For each k € K let f; be an elliptic modular newform of weight k& + 1 without
complex multiplication. Then the #K-fold tensor product of the l-adic rep-
resentations associated to the fi is potentially automorphic and the #/K-fold
product L-function for the f has meromorphic continuation to the whole com-
plex plane. (See Corollary 5.4.4.)

The proof of Theorem A follows familiar lines. One works with r) for
one suitably chosen A. One finds a motive X over some finite Galois totally
real extension F’/F which realizes the reduction 7y in its mod [ cohomology
and whose mod I’ cohomology is induced from a character. One tries to argue
that by automorphic induction the mod I’ cohomology is automorphic over F’,
hence by an automorphy lifting theorem the I’-adic cohomology is automorphic
over F’, hence tautologically the mod [ cohomology is automorphic over F’ and
hence, finally, by another automorphy lifting theorem r) is automorphic over
F’. To find X one uses a lemma of Moret-Bailly [MB89], [GPR95] and for this
one needs a family of motives with distinct Hodge numbers, which has large
monodromy. Griffiths transversality tells us that this will only be possible
if the Hodge numbers of the motives are consecutive (e.g., 0,1,2,...,n — 1).
Thus the [-adic cohomology of X may be automorphic of a different weight
(infinitesimal character) than r) and the second automorphy lifting theorem
needs to incorporate a ‘change of weight.” In addition it seems that we can in
general only expect to find X over an extension F’/F which is highly ramified
at [. Thus our second automorphy lifting theorem needs to work over a base
which is highly ramified at . These two related problems were the principal
difficulties we faced. The original higher-dimensional automorphy lifting the-
orems (see [CHTO8], [Tay08]) could handle neither of them. In the ordinary
case one of us (D.G.) proved an automorphy lifting theorem that uses Hida
theory and some new local calculations to handle both of these problems. (See
[Ger10].) This has had important applications, but its applicability is still
severely limited because we do not know how to prove that many compatible
systems of [-adic representations are ordinary infinitely often.

The main innovation of this paper is a new automorphy lifting theorem
that handles both these problems in significant generality. One of our key ideas
is to introduce the notion of a potentially crystalline representation p of the
absolute Galois group of a local field K being potentially diagonalizable: p is
potentially diagonalizable if there is a finite extension K’/K such that plc
lies on the same irreducible component of the universal crystalline lifting ring
of plg,., (with fixed Hodge-Tate numbers) as a sum of characters lifting p|q,, -
(We remark that this does not depend on the choice of integral model for p.)
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Ordinary crystalline representations are potentially diagonalizable, as are crys-
talline representations in the Fontaine—Laffaille range (i.e., over an absolutely
unramified base and with Hodge-Tate numbers in the range [0, — 2]). Poten-
tial diagonalizability is also preserved under restriction to the absolute Galois
group of a finite extension. In this sense they behave better than ‘crystalline
representations in the Fontaine—Laffaille range’ which require the ground field
to be absolutely unramified. Finally “potentially diagonalizable” representa-
tions are perfectly suited to our method of proving automorphy lifting theorems
that allow for a change of weight. It seems to us to be a very interesting ques-
tion to clarify further the ubiquity of potential diagonalizability. Could every
crystalline representation be potentially diagonalizable? (We have no reason
to believe this, but we know of no counterexample.)

The following gives an indication of the sort of automorphy lifting theo-
rems we are able to prove. (See Theorem 4.2.1 and also Section 2.1 for the
definition of any notation or terminology which may be unfamiliar.)

THEOREM B. Let F' be an imaginary CM field with mazximal totally real
subfield F* and let ¢ denote the nontrivial element of Gal (F/F7T). Let n
denote a positive integer. Suppose that | > 2(n + 1) is a prime such that F
does not contain a primitive ' root of 1. Let

T GF — GLn(Ql)

be a continuous irreducible representation and let T denote the semi-simplifi-
cation of the reduction of r. Also let

p:Gp+ —>@1X

be a continuous character. Suppose that r and p enjoy the following properties:

Cc ~v

(1) (Odd essential conjugate-self-duality). r¢ = vVu and u(c,) = —1 for all
v|oo.

(2) (Unramified almost everywhere). r ramifies at finitely many primes.

(3) (Potential diagonalizability and regularity). r|gy, is potentially diagonal-
izable (and so in particular potentially crystalline) for all v|l and for each
embedding T : F < Q; it has n distinct T-Hodge—Tate numbers.

(4) (Irreducibility). The restriction F|GF(CZ) is irreducible.

(5) (Residual ordinary automorphy). There is a regular algebraic, cuspidal,
polarized automorphic representation (mw,x) of GL,(Ar) such that

(7, 70) = (Tua(m), T ()G )
and 7 is 1-ordinary.

Then (r, 1) is automorphic.
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Theorem B implies the following potential automorphy theorem for a sin-
gle l-adic representation, from which Theorem A can be deduced. (See Corol-
lary 4.5.2 and Theorem 5.5.1.)

THEOREM C. Suppose that F is a totally real field. Let n be a positive
integer and let | > 2(n+ 1) be a prime. Let

r:Gp — GL,(Q)

be a continuous representation. We will write 7 for the semi-simplification of
the reduction of r. Suppose that the following conditions are satisfied.

(1) (Unramified almost everywhere). r is unramified at all but finitely many
primes.

(2) (Odd essential self-duality). Either r maps to GSp,, with totally odd mul-
tiplier or it maps to GO,, with totally even multiplier.

(3) (Potential diagonalizability and regularity). r is potentially diagonalizable
(and hence potentially crystalline) at each prime v of F above | and for
each T : F < Q it has n distinct T-Hodge—Tate numbers.

(4) (Irreducibility). f|GF((l) is irreducible.

Then we can find a finite Galois totally real extension F'/F such that r|g,,
is automorphic. Moreover r is part of a weakly compatible system of l-adic
representations. (In fact, v is part of a strictly pure compatible system in the
sense of Section 5.1.)

This theorem has other applications besides Theorem A. For instance we
mention the following irreducibility result. (See Theorem 5.5.2.)

THEOREM D. Suppose that F is a CM field and that 7 is a reqular, al-
gebraic, essentially conjugate self-dual, cuspidal automorphic representation of
GL,(AR). If mo has sufficiently regular weight (“extremely regular” in the
sense of Section 2.1), then forl in a set of rational primes of Dirichlet density
1 the n-dimensional l-adic representations associated to w are irreducible.

To prove Theorem B we employ Harris’ tensor product trick (see [Har09)]),
which was first employed in connection with change of weight in [BLGG11].
However the freedom that “potential diagonalizability” gives us to make highly
ramified base changes in the nonordinary case means that this method becomes
more powerful. More precisely, suppose that r is potentially diagonalizable,
and that rg is a potentially diagonalizable, automorphic lift of 7 (with possibly
different Hodge—Tate numbers to ). In fact making a finite soluble base change
we can assume they are diagonalizable; i.e., we can take K’ = K in the defini-
tion of potential diagonalizability. We choose a cyclic extension M /F of degree
n in which each prime above [ splits completely, and two [-adic characters
and 0y of G s such that



506 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

o 0= 007

e the restriction of Ind gf/l 0 to an inertia group at a prime v|l realizes a
diagonal point on the same component of the universal crystalline lifting
ring of 7|y, as 7lay,

e the restriction of Ind gfw Oy to an inertia group at a prime vl|l realizes a
diagonal point on the same component of the universal crystalline lifting
ring of 7|g,, as 7o|ap, -

Then ry ®Ind g; # is automorphic and has the same reduction as r ® Ind g; 0.
Moreover the restrictions of these two representations to the decomposition
group at a prime v|l lie on the same component of the universal crystalline
lifting ring of (7 ® Ind gi I@g)]GFv. This is enough for the usual Taylor-Wiles—
Kisin argument to prove that r @ Ind gi{ fp is also automorphic, from which we
can deduce (as in [BLGHT11]) the automorphy of r.

Things are a little more complicated than this because it seems to be hard
to combine this with the “level changing” argument in [Tay08]. In addition a
direct argument imposes minor, but unwanted, conditions on the Hodge-Tate
numbers of g and r. So instead of going directly from the automorphy of rg
to that of r we create two ordinary lifts 1 and ro of 7 (at least after a base
change) where 1 has the same local behavior away from [ as ro; ro has the
same local behavior away from [ as r; and where the Hodge—Tate numbers
of r1 and re are chosen suitably. Our new arguments allow us to deduce the
automorphy of 1 from that of ry. D.G.’s results in the ordinary case [Ger10]
allow us to deduce the automorphy of ro from that of r;. Finally applying
our new argument again allows us to deduce the automorphy of r from the
automorphy of r9. To construct r; and ro we use the method of Khare and
Wintenberger [KW09] based on potential automorphy (in the ordinary case,
where it is already available; see, for example, [BLGHT11]).

Along the way we also prove a general theorem about the existence of
l-adic lifts of a given mod [ Galois representation with prescribed local behav-
ior. (See Theorem 4.3.1.) We deduce a rather general theorem about change
of weight and level (see Theorem 4.4.1) of which a very particular instance is
the following.

THEOREM E. Let n be a positive integer and let | > 2(n 4+ 1) be a prime.
Fiz1:Q; = C. Let F be a CM field such that all primes of F above | are
unramified over Q and split over the maximal totally real subfield of F. Let
w be a regular, algebraic, polarizable, cuspidal automorphic representation of
GL,(AR) satisfying the following conditions:

o 7 is unramified above [;
® Too has weight (ar,i)T:Fc—xC, i=1,...,n with [ —n —1 > ar1 2 Gr2 2 " 2>
arpn > 0 for all T;
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e the restriction to G (¢, of the modl Galois representationTy,(m) associated
to m and 1 is irreducible.

Note that in this case ar; + Grept1—i = W 15 independent of T and i. Suppose
that we are given a second weight (a;,@')T:F<—>(C, i=1,.n Withl —n —1> a’ﬁl >
Aro > >ap, >0 forall T such that

e a,,+al.,. 1 ;=muwis also independent of T and i;
e for all places v|l of F' the restriction Ty ,(7)|Gy, has a lift which is crystalline
with 7-Hodge-Tate numbers {a,, ; +n —i}.

Then there is a second regular, algebraic, polarizable, cuspidal automorphic
representation @ of GLy,(Ap) giwing rise (via 1) to the same mod | Galois
representation (i.e., “congruent to ™ mod 1”) such that 7' is also unramified

above | and T has weight (a’ ;).

We remark that combining the results of this paper with work of Caraiani,
one can deduce full local global compatibility of the [-adic representations as-
sociated to regular algebraic, essentially conjugate self-dual, cuspidal automor-
phic representations of GL,, over a CM or totally real field. (See [BLGGT12]
and [Carl2b].)

We also remark that Stefan Patrikis and one of us (R.T.) recently com-
bined the methods and results of this paper with one further idea, originating
in [Pat12], and obtained variants of Theorems A and D which are perhaps
more useful in practice. (See [PT12].) More specifically they proved a version
of Theorem A where the irreducibility assumption is replaced by a purity as-
sumption. This is useful because for many compatible systems arising from
geometry purity is known by Deligne’s theorem, but irreducibility can be hard
to check. In particular one can deduce the meromorphic continuation and
functional equation of the L-function of any regular, pure, self-dual motive
over a totally real field. They also prove a version of Theorem D in which the
hypothesis that 7, is “extremely regular” is weakened to “regular,” but the
conclusion is also weakened to give irreducibility only above a set of rational
primes of positive Dirichlet density.

We now explain the structure of the paper. In Section 1 we collect some re-
sults about the deformation theory of Galois representations. These are mostly
now fairly standard results but we recall them to fix notations and in some
cases to make slight improvements. The main exception is the introduction
of potential diagonalizability in Section 1.4, which is new and of key impor-
tance for us. In Section 2 we fix some notations and we recall the existing
automorphy lifting theorems (or slight generalizations of them). Very little in
this section is novel. Between the writing of the first and second versions of
this paper, Jack Thorne [Tho12] has found improved versions of these theorems
which allow one to remove the troublesome “bigness” conditions from [CHTO8]
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and the papers that followed it. Moreover Ana Caraiani [Carl2al, [Car12b] has
proved local-global compatibility in all [ # p cases, temperedness of all regular
algebraic, polarizable, cuspidal automorphic representations, and the purity
of all the Weil-Deligne representations associated to the l-adic representation
associated to automorphic representations including the [ = p case. We have
taken advantage of Caraiani’s and Thorne’s works to optimize our own results.
In Section 3 we make use of the automorphy lifting theorems from Section 2
and the Dwork family to prove a potential automorphy theorem (in the ordi-
nary case) and a theorem about lifting mod | Galois representations (again in
the ordinary case). These arguments follow those of [BLGHT11] and will not
surprise an expert.

In Section 4 we prove our main new theorems. Section 4.1 contains our
main new argument. In Section 4.2 we combine this with the results of Sec-
tions 2 and 3 to obtain our optimal automorphy lifting theorem. In Section 4.3
we use the same ideas to deduce an improved result about the existence of [-adic
lifts of mod [ Galois representations with specified local behavior. Combining
the results of Sections 4.2 and 4.3 we deduce in Section 4.4 a general theo-
rem about change of weight and level for mod [ automorphic forms on GL,,.
Then in Section 4.5 we use the automorphy lifting theorem of Section 4.2 and
our potential automorphy theorem from Section 3.3 to deduce our main new
potential automorphy result for a single l-adic representation.

In Section 5 we turn to applications of our main results. In Section 5.1 we
recall definitions connected to compatible systems of [-adic representations. In
Sections 5.2 and 5.3 we prove some group theoretic lemmas about the images
of compatible systems of [-adic representations. Then in Section 5.4 we deduce
from the potential automorphy theorem of Section 4.5 our main theorem — a
potential automorphy theorem for compatible systems of [-adic representations.
Finally in Section 5.5 we give further applications of our main results — appli-
cations to fitting an l-adic representation into a compatible system and to the
irreducibility of some [-adic representations associated to cusp forms on GL(n).

In the appendix we record some miscellaneous results which we use else-
where in the paper. Some of these are results we suspect are “well known,”
but for which we could not find a reference. In these cases we give a proof.
Others are results for which we know a reference. However we hope it may
assist the reader to recall these here.
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Notation. We write all matrix transposes on the left; so ‘A is the transpose
of A. Let gl, denote the space of n X n matrices with the adjoint action of
GL,, and let sl,, denote the subspace of trace zero matrices. We will write O(n)
(resp. U(n)) for the group of matrices g € GL,(R) (resp. GL,(C)) such that
‘9% = 1n.

If R is a local ring, we write mp for the maximal ideal of R.

If A is an abelian group, we will let A" denote its maximal torsion
subgroup and A its maximal torsion free quotient. If I' is a profinite group,
then I'®" will denote its maximal abelian quotient by a closed subgroup. If
p: T — GL,(Q)) is a continuous homomorphism, then we will let p : T' —
GL,(F;) denote the semi-simplification of its reduction, which is well defined
up to conjugacy.

If M is a field, we let M denote an algebraic closure of M and G, the ab-
solute Galois group Gal (M /M). We will use ¢, to denote a primitive n*-root
of 1. Let ¢ denote the l-adic cyclotomic character and € its reduction modulo
. We will also let w; : Gy — p—1 C Z;° denote the Teichmiiller lift of &. If
N/M is a separable quadratic extension, we will let 6,/ denote the nontrivial
character of Gal (N/M).

If I is a profinite group and M is a topological abelian group with a contin-
uous action of I', then by H*(I", M) we shall mean the continuous cohomology.

We will write Q;r for the unique unramified extension of Q; of degree r
and Z; for its ring of integers. We will write Q" for the maximal unramified
extension of (Q; and Z}* for its ring of integers. We will also write Z}‘r for the
l-adic completion of Z;'" and @?r for its field of fractions.

If K is a finite extension of Q, for some p, we write K™ for its maximal
unramified extension; I for the inertia subgroup of G; Frobg € Gg /I for
the geometric Frobenius; and Wy for the Weil group. If K'/K is a Galois
extension we will write I/ /x for the inertia subgroup of Gal (K'/K). We will
write Art i : KX 5 Wf(b for the Artin map normalized to send uniformiz-
ers to geometric Frobenius elements. We will let recx be the local Langlands
correspondence of [HT01], so that if 7 is an irreducible complex admissible rep-
resentation of GL, (K), then reck (m) is a Frobenius semi-simple Weil-Deligne
representation of the Weil group Wx. We will write rec for recx when the
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choice of K is clear. If (r,N) is a Weil-Deligne representation of Wy, we
will write (r, N)¥'= for its Frobenius semi-simplification. If p is a continu-
ous representation of G over Q; with [ # p, then we will write WD(p) for
the corresponding Weil-Deligne representation of Wi (See, for instance, Sec-
tion 1 of [TY07].) By a Steinberg representation of GL, (K) we will mean a
representation Sp,,(¢) (in the notation of Section 1.3 of [HT01]), where 1) is
an unramified character of K*. If 7; is an irreducible smooth representation
of GL,,(K) for i = 1,2, we will write 71 B w2 for the irreducible smooth rep-
resentation of GLy, 4n,(K) with rec(m B m2) = rec(m) @ rec(ms). If K'/K is
a finite extension and if 7 is an irreducible smooth representation of GL,,(K)
we will write BC gk () for the base change of 7 to K " which is characterized
by reck(BC g1 /i (7)) = reck (7)|w,., -

If p is a continuous de Rham representation of G over Q;, then we will
write WD(p) for the corresponding Weil-Deligne representation of Wy, and if
7: K — Q is a continuous embedding of fields, then we will write HT,(p) for
the multiset of Hodge—Tate numbers of p with respect to 7. Thus HT(p) is a
multiset of dim p integers. In fact if W is a de Rham representation of G over
Q andif7: K = Q;, then the multiset HT (W) contains i with multiplicity
dimg (W @7,k K (i))9x. Thus for example HT,(¢;) = {—1}.

We will let ¢ denote complex conjugation on C. We will write Art g (resp.
Art ¢) for the unique continuous surjection

R* — Gal (C/R)

(resp. C* — Gal (C/C)). We will write recc (resp. recr), or simply rec, for the
local Langlands correspondence from irreducible admissible (Lie GL,(R) ®r C,
O(n))-modules (resp. (Lie GL,(C) ®gr C,U(n))-modules) to continuous, semi-
simple n-dimensional representations of the Weil group Wg (resp. W¢). (See
[Lan89].) If m; is an irreducible admissible (Lie GLy,(R) ®g C, O(n;))-module
(resp. (Lie GL,,(C) ®r C,U(n;))-module) for i = 1,...,rand if n = ny +-- -+
n,, then we define an irreducible admissible (Lie GL,,(R) ®g C, O(n))-module
(resp. (Lie GL,(C) ®g C,U(n))-module) 7 B - -- B m, by
rec(m B ---Bm,) = rec(m) & - - - ® rec(m,).
If 7 is an irreducible admissible (Lie GL,(R) ®r C,O(n))-module, then we
define BC ¢/r(7) to be the irreducible admissible (Lie GL,(C) @r C,U(n))-
module defined by
recc(BC ¢/r(m)) = recg(m)|we-
We will write || || for the continuous homomorphism

=111 lo - A/Q* — R,

where each | |, has its usual normalization, i.e., |p[, = 1/p.
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Now suppose that K/Q is a finite extension. We will write || ||x (or
simply || [|) for || [| o Ng/g. We will also write

Art i = [[Art k, 1 AR /KX (K&)0 = GR.

If v is a finite place of K, we will write k(v) for its residue field, g, for #k(v),
and Frob, for Frobg,. If v is a real place of K, then we will let [¢,] denote the
conjugacy class in G consisting of complex conjugations associated to v. If
K'/K is a quadratic extension of number fields, we will denote by 05 /K the
nontrivial character of Ag /K*Ng/ xAy,. (We hope that this will cause no
confusion with the Galois character dx+ /. One equals the composition of the
other with the Artin map for K.) If K’/K is a soluble, finite Galois extension
and if 7 is a cuspidal automorphic representation of GL,(Ax), we will write
BC gk () for its base change to K’, an (isobaric) automorphic representation
of GL, (Ag) satisfying
BC g1k (m)y = BC k1 /i, (7o)

for all places v of K'. If m; is an automorphic representation of GLy, (Ax)

for ¢ = 1,2, we will write m H 7y for the automorphic representation of
GLy,, 4n, (Ak) satisfying

vl

(7T1 H 71—2)1) = T1w H 20

for all places v of K.

We will call a number field K a CM field if it has an automorphism ¢ such
that for all embeddings ¢ : K < C one has co? = ¢oc. In this case either K is
totally real, or a totally imaginary quadratic extension of a totally real field.
In either case we will let K* denote the maximal totally real subfield of K.

Suppose that K is a number field and

x:Ag/K* — C*
is a continuous character. If there exists a € ZHom (K.C) gych that

Xl(gzyp T — H (tz)r,
7€Hom (K,C)

we will call x algebraic. In this case we can attach to x and a rational prime
[ and an isomorphism 2 : Q; = C, a unique continuous character

ra(x) : G — Q'
such that for all v /I we have
10 Tl,Z(X)|WKU o Art Kv = XU'

There is also an integer wt(x), the weight of y, such that
—wt(x)/2
bl =11 1102,

(See the discussion at the start of Section A.2 for more details.)
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If F is a totally real field, we call a continuous character
x:Ag/K* — C*
totally odd if x,(—1) = —1 for all v|oc. Similarly we call a continuous character
p:Gr — Q)
totally odd if u(e,) = —1 for all v|oc.

1. Deformations of Galois representations

1.1. The group G,. We let G, denote the semi-direct product of GY =
GL,, x GLy by the group {1, 7} where

-1 1

)g,a)y" = (a'g™",a).
We let v : G,, — GL; be the character which sends (g,a) to a and sends 7 to
—1. We will also let GSp,,, C GLjg, denote the symplectic similitude group

defined by the anti-symmetric matrix

0o 1,
JQn(_ln 0 )7

and we will again let v : GSp,,, — GL; denote the multiplier character. Finally
let GO,, denote the orthogonal similitude group defined by the symmetric
matrix 1,,.

There is a natural homomorphism

G X G — G /GO X G /GO, — {1}

which sends both (7,1) and (1,7) to —1. Let (G, X G,,)™ denote the kernel of
this map. There is a homomorphism

X (gn X gm)+ — gnn’m
(g:0) x (¢',a") — (9®4g' ad’),
j X j —> j
There is also a homomorphism

I : gn — GSp2n7
0
(gaa) — ( g 1 )7

0 alg™

(0
J 1, 0 )

Suppose that I' is a group with a normal subgroup A of index 2 and
that 79 € I' — A. Suppose also that A is a ring and that r : ' — G,(A)
is a homomorphism with A = r~1GY(A). Write #* : A — GL,(A) for the
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composition of r| A with projection to GL,,(A4). Write r(yo) = (a, —(vor)(y0))-
Then
(10075 )a'(8) = (vor)(da
for all 6 € A, and
#oR)'a = —(v o r) (0)a.

If r : T' — GSpy,(A4) is a homomorphism with multiplier u, then it gives
rise to a homomorphism 7a : I' — Gay,(A) which sends 6 € A to (r(d), 1(9))
and v € T — A to (r(y)Jy,, —p(7))3. Then A = #,'GY (A) and v o ip = p.
Similarly if r : I' = GO,,(A4) is a homomorphism with multiplier u, then it gives
rise to a homomorphism 75 : I' — G,,(A) which sends § € A to (r(d), u(9))
and v € T — A to (r(7), u(7))s. Then A = 7#:'GY (A) and v o #a equals the
product of x4 with the nontrivial character of T'/A.

If r: T — Gn(A) (resp. ¥ : T — G(A)) is a homomorphism with
r1GY(A) = A (resp. (7')71G0 (A) = A), then we define

I(r)y=1Ior:T — GSpy,(4)

and
r@r =®o(rxr): T — Gun(A).
Note that the multiplier of I(r) equals the multiplier of  and that the multiplier
of r@r’ differs from the product of the multipliers of r and 7’ by the nontrivial
character of I'/A.
If x:A— A% and p: T' — A* satisfy

o XX = pla,

* x(73) = —n(0)
(i.e., the composition of x with the transfer map 2P — A2b equals the product
of p and the nontrivial character of I'/A), then there is a homomorphism

Gp): T — Gi(A),
6 (x(0), 1)),
v o= (e ) =)
forall 6 € A and vy € I' = A. We have vo (x, 1) = u.
(At the referee’s suggestion we include a proof that (x,u) is indeed a
homomorphism in an attempt to convince the reader that all the unsupported

assertions of this section can be checked in an entirely elementary way. Suppose
that 1,02 € A and v1,v2 € ' — A. Then we have

(x> 1) (6102) = (X, 1) (01) (X, 1) (02)
and

(% ) (3172) = (X (517279 ), —1(8172))7
= (X, 1) (01) (X, 1) (72)
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and

X(18270 1), —(1162))s
X(17%0 (106270 1)), —p(1162))7
X 1) (71)7(x (08276 ), 1(52))
X 1) (71) (1(82)X ™ (62) ™, 1u(62))
X 1) (71) (0, ) (02)

(X, 1) (1162) = (
= (
=(
= (
=(

and
(1) (1172) =
1) (1) (r270), —(72))
—p(12)X ™ (270) T —p(12))7
—x(7270)1(70) 1, —p(72))s

as desired.)

In the case that I' = Gp+ and A = G where F is an imaginary CM
field with maximal totally real subfield F™, we call r : Gp+ — Gn(A) (resp.
GSpy,,(A), resp. GO, (A)) totally odd if the multiplier character takes every
complex conjugation to —1 (resp. —1, resp. 1). Note that if r is totally odd,
so is I(r) (resp. 7a, resp. 7'a).

Suppose now that A is a field, that » : A — GL,(A) is absolutely irre-
ducible, and that p : ' — A* is a character so that

2V @ s,

More precisely if v € I' — A, there is a b, € GL,(A), unique up to scalar
multiples, such that

(Y8 1)by 1 (8) = (8)by
for all § € A. Computing r(y25y72) in two ways and using the absolute irre-
ducibility of r, we deduce that r(v?) is a scalar multiple of by'ot. (Write

r(y)r(@)r(v*) "t = r(v*6y7?)
— (8)by (369 b5 = (b, 3 r(8) (b, )

and apply Schur’s lemma.) Substituting § = 72 in the last displayed equation,
we then deduce that

r(v%)'0y = £u(7)by.
One can check that the sign in the above equation is independent of v € I'— A,
and we will denote it —sgn (7, u). (To see this one uses the fact that one can
take bs, = r(0)b, for § € A and v € I' = A.) Then we get a homomorphism

T ' — Gn(A)
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which sends § € A to (r(d),1(0)) and sends vy to (by,, —sgn (r, u)/(70))s. In
particular if sgn (r,) = 1, then v o7, = p, while if sgn(r,u) = —1, then
p~ (v o 7,) is the nontrivial character of T'/A. Moreover 7 = 7.

1.2. Abstract deformation theory. Fix a rational prime [ and let O denote
the ring of integers of a finite extension L of Q; in Q;. Let A\ denote the maximal
ideal of O and let F = O/A. Let I' denote a topologically finitely generated
profinite group and let p: I' — GL,,(F) be a continuous homomorphism.

We will denote by

p~ = o : T = GLa(Ro5)

the universal lifting (or “framed deformation”) of p to a complete noetherian
local O-algebra with residue field F. (We impose no equivalence condition on
lifts other than equality.) We will write

R%’ ® Q

for Raﬁ ®0 Q;. The following lemma is presumably well known, but as we do
not know a reference, we give a proof.

LEMMA 1.2.1. Suppose that O is the ring of integers of a finite extension
L'/L. Then the map

Ro 5 — Rp 5 ®0 O
coming from the universal property of R%,ﬁ and pg ® O is an isomorphism.

In particular, as the notation suggests, the ring RﬁD ® Q; does not depend on
the choice of L.

Proof. Let R(DQ,’W denote the closed subring of R(Dg/ﬁ consisting of elements
which reduce to an element of F modulo the maximal ideal. Then R(DQ,JW isa
complete, noetherian local O-algebra with residue field F and p(Df), is defined over
R(DQ,,IW. Thus the universal property of Raﬁ gives rise to a map Rgﬁ — RD’,JF,E
under which p% pushes forward to p(']g,. This map extends to a O’-linear map
R(Doﬁ ®o O — RD,ﬁ. We claim this is an inverse to our map R%/ﬁ —
R(Dgyﬁ ®o O'.

Under the composite R%,ﬁ — R%,ﬁ the representation p%, pushes for-
ward to itself, and so this map must be the identity. Consider the composite

Rp;— Rpi; — Rp;®0 0.

It factors through the subring (Rgﬁ ®o O)p C Rg’ﬁ ®o O consisting of
elements which reduce modulo the maximal ideal to an element of F. The
representation p% pushes forward to itself, and so this composite must equal
the canonical inclusion, and we have proved the lemma. O
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The maximal ideals are dense in Spec Raﬁ[l/l]. (See [Gro66, 10.5.7].) A
prime ideal g of R(Dlﬁ[l /1] is maximal if and only if the residue field k(p) =
R(Dqﬁ[l /le/ % is (topologically isomorphic to) a finite extension of L. (For the
“if” part note that the image of Rg,ﬁ in k(p) is a compact O-submodule of
k(p) with field of fractions k(). Thus R%ﬁ[l/l] — k(gp). For the “only if” part
see, for instance, Lemma 2.6 of [Tay08].) We get a continuous representation
po : I' = GL,(k(p)). The formal completion R%’ﬁ[l/l}g is the universal lifting
ring for py; i.e., if A is an Artinian local k(p)-algebra with residue field k(p)
and if p : I' = GL,(A) is a continuous representation lifting p,, then there is
a unique continuous map of k(p)-algebras Raﬁ[l /Ul — A so that P~ pushes
forward to p. (Let R denote the image of Rgﬁ in A/ma. Let A° denote
the R-subalgebra of A generated by the matrix entries of the image of p.
Then A° is a complete noetherian local O-algebra with residue field F and
p: T — GL,(A%). The assertion follows easily.) The map which associates a
cocycle ¢ € ZY(T',ad py,) to the lift (1, + ce)p, of p,, defines an isomorphism
between Z1(T", ad and the tangent space Hom R S[1/U0A, k(p)]e]/€?). If
H?(T',ad p () ’: (Osp‘zhen R3, 7[1/23] is foI;mall k(pt)k(l fcr)’p[ / ]P’ )

, o , 0.5 y smooth at p (by the argument of
Proposition 2 of [Maz89], which can be easily adapted to our current situation)
of dimension

dimy () Z'(T, ad py) = n® + dimy,) H'(I', ad py,) — dimy,) H(T',ad p,),

where we use continuous cohomology. (We learned these observations from
Mark Kisin.)

Let H denote the subgroup of GLn(R%ﬁ) consisting of elements which
reduce modulo the maximal ideal to an element that centralizes the image of
p. If h € H, then there is a unique continuous homomorphism

¢n: Rop — Ro
such that p” pushes forward to h=!p~h. We have that

Py © Ph = Dgpy(h)-
(We remark that after Definition 2.2.1 of [CHTO08] this action is defined for
elements of 1,, + Mn(mR%’E), but it is incorrectly stated that this defines an
action of the group 1, + Mn(ng ﬁ) on R%,ﬁ. This is not important in the rest
of [CHTO08)].)

LEMMA 1.2.2. Keep the notation of the previous paragraph. If h € H,
then ¢y, fizes each irreducible component of Spec R(Df)’ﬁ[l/l].

Proof. Suppose that h € H and that O’ is the ring of integers of a finite
extension of L' /L in Q;, with maximal ideal \'. Suppose that p : I' — GL, (O")
lifts . Then h~'ph also lifts p. (We are using h both for an element of
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GLn(R(DQﬁ) and for its image in GL,(O’) under the map R(Dg’p — O induced
by p.) Recall (from Lemma A.1.2) that A=0'(s,t)/(sdet(t1,+(1—t)h)—1) with
the M-adic topology is a complete topological domain. We have a continuous
representation

p=(tl, + (1 —t)h) p(tl, + (1 —t)h) : T — CGL,(A).

Let A denote the closed subalgebra of A generated by the matrix entries
of elements of the image of p and give it the subspace topology. Then

p:T — GL, (A%,

and pmod (A N A%) = p, and p pushes forward to p (resp. h=!ph) under
the continuous homomorphism A% — O’ induced by ¢ + 1 (resp. t — 0).
We will show that A° is a complete, noetherian local O-algebra with residue
field F. Tt will follow that there is a natural map Rgﬁ — A9 through which
the maps R%’ﬁ — O’ corresponding to p and h™!'ph both factor. As A% is a
domain (being a sub-ring of A), we conclude that the points corresponding to
p and h~!ph lie on the same irreducible component of Spec R%ﬁ[l /l]. As any
irreducible component contains an @’-point which lies on no other irreducible
component for some O as above (because such points are Zariski dense in
Spec Raﬁ[l /1]), we see that the lemma follows. (The referee remarks that it
may be helpful to think of this argument as an instance of homotopy.)

It remains to show that A is a complete, noetherian, local O-algebra with
residue field F. Let ~1,...,7, denote topological generators of I'. Write

p(vi) = ai + b;,
where a; € GL,(O) lifts p(v;) and where b; € My x,(NA). Then AY is the
closure of the O-subalgebra of A generated by the entries of the b;. As these
entries are topologically nilpotent in A, we get a continuous O-algebra homo-
morphism
Ol Xijklli=1,...rs jk=1,.0. —> A

which sends Xjji to the (j,k)-entry of b;. Let J denote the kernel. As
O[[Xijk]]/J is compact (and A is Hausdorff), this map is a topological iso-
morphism of O[[X;;;]]/J with its image in A and this image is closed. Thus
the image is just A% and we have O[[X;;i]]/J = A°, so that AY is indeed a
complete, noetherian, local O-algebra with residue field F. O

Now suppose that
7: T — G,(F)
is a continuous homomorphism such that I' — G,,/ Qg. Let A denote the kernel

of T' = G,/GY and suppose that 7 : A — GL,(FF) is absolutely irreducible.
Then there is a universal deformation

S e (jo‘;)
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to a complete noetherian local O-algebra with residue field F, where now we
consider two liftings as equivalent deformations if they are conjugate. (See
Section 2.2 of [CHTO08].)

LEMMA 1.2.3.

(1) Suppose that ¥ C T' has finite index, that ¥ is not contained in A and
that %‘Amz 1s absolutely irreducible. Then the natural map R%n%’ — Run“’
induced by r""V |y, makes Rg}i?" a finitely generated RL(IQI?IFTZ -module.

(2) Suppose that s : T' — G, (O) is a continuous homomorphism such that
A = 571G (0) and 5 ® T is absolutely irreducible. Then the natural
map uon;‘égg — ?5“7" induced by r"™V ® s makes R“m" a finitely gener-
ated ‘éﬁ;‘ég—module.

(3) Suppose I(T) is absolutely irreducible and that ¥ is another open subgroup
of index two in T' which does not contain ker I(T). Then the natural map

Ru(r)nil/‘z-;) — Rum" induced by I(r'V)s. makes Rum" a finitely generated
IYaNA
univ

OJ(F)E

Proof. This is essentially an abstraction of Lemma 3.2.1 of [BLGG12].

Write R for R“ni)fE resp. (‘Jgni%@g resp. R“nilr and write m for the maximal
")

ideal of R. We first verify that the image of I' in gn(RumV /mRumV) is finite.
In the first case we use the inclusions

-module.

ker(r™V mod m) D ker(r™V |z mod m) = ker(7|x);
in the second we use the inclusions
ker ("™ mod m) O ker((r"™Y ® s) mod m) Nker(s mod m) = ker(7 ®3) Nker 3;

and in the third case we use the inclusions

ker(r"™" mod m) D ker(I(runiv)y, mod m) = ker I/(\F)E.

Let m denote the order of the image of I' in gn(RumV /mRum") and let

Y1, --5Ym be elements of I chosen so that their images in Qn(RumV /mR“mV)
exhaust the image of I". Let
fm= I TG+ +G) €FT]

(C1yeesCn) Epim (F)™

and let A denote the maximal quotient of F[X; ;]; j—1,.» over which the mthe

power of the matrix (X ;) is 1,. If p is a prime ideal of A, then all the roots
of the characteristic polynomial of (X; ;) over A,,/p are m' roots of unity and
hence f(tr (X;;)) =0in A/p C A,/p. Thus there is a positive integer a such
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that f(tr (X;;))* =0in A. Then we get a map

FITy, ... Tl /(f(T0)% ., f(T)") — REY/mREY
T, — trr"™V(y).

By Lemma 2.1.12 of [CHTO08] (which shows that Rg}?’ is topologically gener-

ated as a O-algebra by the tr "V (+;)) we see that this map has dense image.

On the other hand the source has finite cardinality. We conclude that the map
univ

is surjective and that R“Orfi?" /mROi is finite over F. Hence by Nakayama’s
lemma we conclude that that Rgfi;" is finite over R, as desired. O

1.3. Local theory: | # p. Continue to fix a rational prime [ and let O
denote the ring of integers of a finite extension L of Q; in Q;. Let A denote the
maximal ideal of O and let F = O/\. However in this section we specialize our
discussion to the case I' = Gk, where K/Q), is a finite extension and p # .
Thus 7 : Gxg — GL,(F) is continuous. Write ¢ for the order of the residue
field of K.

In this case the tangent space to R%yﬁ[l /l] at a maximal ideal p has di-
mension

n? + dlmk(p) H! (Gk,ad pp) — dlmk(@) HO(GK, ad pp)
=n?+ dimy,) H?*(Gk,ad py)
= n? + dimy ) H (G, (ad py) (1)),

by the local Euler characteristic formula for ;-modules and local duality for
Q-modules. (The proof of Lemma 9.7 of [Kis03] shows that the usual Euler
characteristic formula with finite coefficients implies the analogous statement in
the case where the coefficients are finite ;-modules. Theorem 1.4.1 of [Rub00]
provides a reference for local duality for -modules.) Moreover R%ﬁ[l /1] is
formally smooth at a maximal ideal p if H°(G, (ad py)(1)) = (0). We will call
a continuous representation p : Gx — GL,(Q;) robustly smooth (resp. smooth)
if H(G g, (ad py)(1)) = (0) for all finite extensions K’/K (resp. for K’ = K).
Our next aim is to show that the set of closed points of Spec R%vﬁ[l /1] which
are robustly smooth is Zariski dense, which will imply that all irreducible
components of Spec Raﬁ[l/l] are generically formally smooth of dimension
n?. (The corresponding result for smooth points can be found in the proof of
Theorem 2.1.6 of [Geell] or in [Cho09], but our proof seems to be different
even in this special case. This case is already sufficient to deduce that all
irreducible components of Spec Raﬁ[l /1] are generically formally smooth of
dimension n?.)

Define a partial order on L™ by a > b if a equals o(b)¢q™ where o €
Gal (L/L), where ( is a root of unity and where m € Zxo. We will write
a ~ b (a “equivalent” to b) if a > b and b > a; and we will write a ~ b (a
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“comparable” to b) if a > b or b > a. These are both equivalence relations.
Further we will write @ > b for a > b but a % b. Choose ¢ € Wg a lift
of Frobg. If V is a finite-dimensional L-vector space with an action of Wy
with open kernel and if a € ™, then we define V((a)) (resp. V(a)) to be the
L-subspace of V such that V((a)) @ L (resp. V(a) ® L) is the sum of the
b-generalized eigenspaces of ¢ in V' as b runs over all elements of L witha~b
(resp. a ~ b). This is independent of the choice of ¢. (If ¢’ is another choice
then the actions of ¢™ and (¢')™ on V are equal for some m € Z~g.) Thus
V(a) and V((a)) are Wi-invariant. We have decompositions

V=P V(@)

X
where a runs over L™/ ~, and

V=PV,
where a runs over L™/ ~. We will say that V has type a if V = V((a)).

LEMMA 1.3.1. Suppose that (r,N) is a Weil-Deligne representation of
Wik on a finite-dimensional L-vector space V. Then we can write

V=DV
i=1 j=1

where

Vi,j 1s mvariant under Ik,

N :V;; 5 Vi1 unless j = s; in which case NV s, = (0);

WgVi; C Vij@® @2,_:11 @, Vi jo and so we get an induced action of Wi
on Vi j;

the action of Wi on (V; ;0@5 @D, Vi) (@52 @, Vi 1) is irreducible;
Vi,; has type a;q"7 for some a; € @lx,

if ! < i, then a; # a;.

Proof. We may suppose that V' = V(b) for some b (because N must take
any V' (b) to itself). We will construct the V; ; by recursion on i. Suppose that
we have constructed V; ; for i < t. Choose a; € L™ such that
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Also choose an irreducible Wx-submodule

t—1
Vi C <V/@@Vi,j> ((ar))

and choose s; minimal such that N*V;; = (0). Lift V1 to an Ix-submodule
Vt?l C V((at)). Then NS‘Vt?l Cc Pl @, Vi;. For each i <t choose j; € Zxs,
such that a;q~% = a;q* 7. (To see that j; > s; we are using the fact that for
i <t we have a; > a;.) Then

0
NSt‘/t71 C @‘[”7]1'
i<t
Thus if v € Vt?l, we can write
Nstv = Z N5t (Y
i<t
for unique elements v; € V; j,—s,. Set V; 1 to be the set of
v — Z V;.
i<t
We see that Vi1 C V((at)) is a Q-sub-vector space lifting V1, which is

Ik-invariant and satisfies N*V; 1 = (0). Set V;; = NI=1V; 1. Tt is not hard to
see that these V; ; have all the desired properties. O

We remark that if we define an increasing filtration on V' by
Fil,V = P P Viy,
i<i j
then
u
VTS~ Por,V.
i=1
LEMMA 1.3.2.

(1) Suppose p : G — GL,(Q;) is a continuous representation, that1: Q, = C
and that 7 is an irreducible smooth representation of GL,(K) over C with
WD (p) =55 = vecy(m). If w is generic, then p is smooth.

(2) The closed points g in Spec R%’ﬁ[l/l] for which pg, is robustly smooth are
Zariski dense.

Proof. For the first part write 7 = Spg, (m1) B --- B Sp, () for some
supercuspidal representations m; of GL,,(K) and positive integers s;,n; with
Y sini = n. (We are using the notation of [HT01].) Then p has a filtra-
tion with graded pieces p; satisfying *WD(p;)*' = = recy(Sp,, (7)), possibly
after reordering the #’s. Thus (ad p)(1) has a filtration with graded pieces
Hom (p;, p;(1)). If this had nonzero invariants, then m; = 7; ® | det |™ for some
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max{1,14+s;—s;} < m < s;j. Thus (m;, s;) and (7;, s;) are linked, contradicting
the assumption that 7 is generic. (See page 36 of [HT01].)

For the second part suppose that p is a closed point of Spec R(Df)ﬁ[l /1]. Set
O’ equal to the image of R%yﬁ inL = R%ﬁ[l/l]/p and let \" denote the maximal
ideal of O@’. By Lemma 1.3.1 we can find a decomposition (L')" = @¥_, V; such
that

e for each i the sub-space V; is invariant under [g;

e for each ¢ the sub-space Fil;V = @2,:1 Vs is invariant under G;

e for each i we have WD(gr;V') = Sp ,, (W;), where W; has some type a;.
(By Sp ,(W) we mean the Weil-Deligne representation of Wx whose underlying
representation of Wy is W @ W(1) @ ---@® W(s — 1) and where N : W (i) =
W(i+1)fori=0,...,s—2.) Choose M € Z~ so that

u

@((O/)n ) Vz) D) (lM_l(')/)n.

i=1
Let

A € ker(GL,(O'[[ X1, ..., X4]]) — GL,(F))

be the unique element which preserves each (V; N (O)") @0 O'[[ X1, ..., Xu]]
and acts on it by multiplication by (1 + I X;). Note that A commutes with
po(IK). Then there is a unique continuous representation

p:Gr — GL,(O'[[X1,. .., Xu]])

such that p|r, = plr, ®or O'[[X1,...,Xy]] and such that for any lift ¢ of
Frobg to Wk we have p(¢) = py(¢)A. Then p is a lift of 5. If z € (X)¥,
write p, for p mod (X1 — 21,..., Xy — x,). Note that py = p,. We will show
that for (Zariski) generic = that p, is robustly smooth and the second part of
the lemma will follow. (Note that if 0 # f € O'[[X1,..., X,]], then f cannot
vanish on all of (\)" by, for instance, Lemma 3.1 of [BLGHT11].)

If y € (O)%, let vy : Gi/Ix — (O')* be the unramified character taking
Frobg to y. Then (ad p;)(1) has a filtration with graded pieces

Hom (Vi, Vi (v(11002) /g1 410 2,))) -
Note that if ¢ = j, then
Hom g, (Vi, Vi(v1/4)) = (0)
for any finite K’/K, because
Hom ., (Wi, Wi(v1/4:)) = (0)

for j = 1,...,s; + 1 (because, in turn, W; and W;(v ;) will have different
types). So it remains to show that for general x we will also have

Hom ¢, (Vi, V(Y110 e;) fq(141M ;) = (0)
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for all i # j and all finite K'/K. Let ¢ € W denote a Frobenius lift and let
L" denote the compositum of all extensions of L’ of degree less than or equal
to n. Then L”/L' is finite. It will do to choose (z;) € (A')" so that if i # j and
if o (resp. ) is an eigenvalue of ¢ on V; (resp. V) and if ¢ is a root of unity,
then ga¢(1 + 1Mz;) # B(1 + 1Mx;). However if such an equality were to hold,
then ¢ € L”. As L” contains only finitely many roots of unity, the z;’s need
only satisfy finitely many inequalities, as desired. O

Suppose that C is a set of irreducible components of Spec R(Dgﬁ[l /1] and

let R%EC denote the maximal quotient of R% which is reduced, [-torsion

free and has Spec R(Dg’ﬁc[l /1] supported on the (/:Jomponents in C. Also let D¢
denote the set of liftings of p to complete local noetherian O-algebras R with
residue field F such that the induced map R%ﬁ — R factors through R(Dgﬁc.
By Lemma 1.2.2 above and Lemma 3.2 of [BLGHT11] we see that D¢ is a
deformation problem in the sense of Definition 2.2.2 of [CHTO08].

If K'/K is finite and Galois, we will let Rg’p’ K'—ne denote the maximal

quotient of R(Dlﬁ over which p"(Iy/) = {1,}.

LEMMA 1.3.3. The ring R%757K/_nr[1/l] 1s either the zero ring or is for-

mally smooth of dimension n?.

Proof. Tt suffices to show that for any maximal ideal g of R%ﬁ el 1/1]
we have
H(Gal ((K')™ /K), ad py) = (0)
and

dimy,,) H' (Gal ((K')™/K), ad py,) = dimy,,) H(Gal (K")™ /K), ad p,).

However
HY(Gal (K')™/K),ad p,) = H'(Gx /I, (ad py,) ' m /i)
(ad p,,) % if i =0,
=4 ((ad pp)®) g1 if i =1,
(0) otherwise.
The lemma follows. U

Thus R%@K,_nr[l/l] = R%%CK,_M[I/Z} for some finite set of components
Cyg/—nr of Spec Rgvﬁ' Let Cpnr denote the union of Cx/_,, over all finite Ga-
lois extensions K'/K and set Rgﬁp_nr . A Qp-point of Rg,ﬁ fac-
tors through R(Do,ﬁ,p-nr if and only if it is potentially unramified. The ring

R%ﬁ’p_m[l /1] is either the zero ring or is formally smooth of dimension n?.

For:=1,2, let

_ O
= lRosc

p-nr

pi: G — GLa(Og))
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be a continuous representation. We say that p; connects to p2, which we denote
p1 ~ pa, if and only if

e the reduction p; = p; mod mg, is equivalent to the reduction py = p2 mod
M=
Q

1 Y

e p; and ps define points on a common irreducible component of Spec (RED1 ®
Q).

We say that p; strongly connects to pa, which we write p1 ~» p2, if p1 ~ p2 and
p1 lies on a unique irreducible component of Spec (Rﬁm1 ® Q).
We make the following remarks:

(1) By Lemma 1.2.2 the relations p; ~ py and p; ~» py do not depend on
the equivalence chosen between the reductions p; and p,, nor on the
GLn(C’)@l)—conjugacy class of py or ps.

(2) “Connects” is a symmetric relationship, but “strongly connects” may
not be.

(3) “Strongly connects” is a transitive relationship, whereas “connects” may
not be.

(4) If p1 ~ p2 and pa ~> p3, then p ~ ps.

(5) If p1 ~ pa and H°(G, (ad p1)(1)) = (0), then p; ~ po.

(6) Write WD(p;) = (13, N;). If p1 ~ po, then r1|r, = r2|r,. If p1 ~» p2 and
p2 ~> p1, then (1], N1) = (ra|r,, No).

(7) If p1 and py are unramified and have the same reduction, then p; ~ po.

(8) If K'/K is a finite extension and p1 ~ pa, then p1lg,, ~ p2lg,. -

(9) If p1 ~ p2 and py ~ ph, then p1 & py ~ p2 & p and p1 ® p} ~ pa @ py and
pi{ ~ p3.

(10) If p: G — @lx is a continuous character and if p; ~ po, then py ~ py
and p1 ® p1 ~ p2 @ p.

(11) If p : Gxg — Q, is a continuous unramified character with 7 = 1, then
p1~ P1 & H- '

(12) Suppose that p; is semi-simple and let Fil® be an invariant decreasing
filtration on p; by (’)@l—direct summands; then p; ~ @); grp;.

Two of these assertions, (6) and (12), require proof, so we separate them
out into lemmas. The first was proved in [Cho09], but as this is not yet easily
available we give a proof here.

LEMMA 1.3.4 (Choi). Suppose that p: Gx — GL,(IF).

(1) If p1 and po are two mazimal ideals on the same connected component of
Spec RS © Q;, then

(p7 mod p1)[7;, 2 (p7 mod )|
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(2) Suppose that o1 and po are two mazimal ideals lying on the same irre-
ducible component of Spec RﬁD ® Q; and that neither o1 nor oo lie on any
other irreducible component of Spec R%] ® Q;. Then

(p” mod 1)[r,c = (p” mod a)|ry -

Proof. Let I}? denote the unique Sylow-pro-l-complement in Ix, which
is a closed normal subgroup of Gx. Let H; = kerp| FGE Then H; is also
K

a closed normal subgroup of G, and p~ factors through Gy /H;. Then
(kerp|r,)/H1 = Z;. Let ¢ € Gk denote a lift of Frobg and let Hy denote
the unique closed subgroup of ker p|r, which contains H; and satisfies

Ho/Hy = (o™ = 1)((kerp|1)/Hy).

We see that Hj is normal in Gx and that Hy/H; = Z; and that Ix/Hy is
finite. We will let o denote a generator of Hy/H;.

We will first show that for any prime ideal p of R%' ® Q; the restriction
(p” mod p)(o) is unipotent. To see this first note that, because kerp|r, is
normal in G, the restriction (p~ mod ©)% |ker 5 I 18 semi-simple and hence is
the direct sum of n characters, x1 ®---® xn. Conjugation by ¢ must permute
these characters, and hence each y; is invariant by ¢™. Thus y;(o) = 1 for
each i and so (p™~ mod p)(o) is unipotent.

Again using the fact that Hy is normal in Ix we deduce that for any
prime ideal @ of R%] ® Q the representation (p” mod ©)|7. factors through the
finite group I /Hy. For each of the finitely many isomorphism classes [r] of
n-dimensional representations of I; / Hy over Q; consider the locus in Spec R%j@
Q; where tr p"| 1, = trr. This gives finitely many disjoint closed subsets of
Spec R%' ® Q;, whose union contains every prime of Spec RﬁD ® @Q;. Thus our
closed sets are also all open, and hence a union of connected components of
Spec R% ® Q;. The first part of the lemma follows.

Now suppose that @ is a maximal prime ideal of RﬁD ® Q; and let S denote

2

the formal power series ring in n? variables over Q;. We will first exhibit a

surjection
¢: (R @Q)) —~ S

such that (p")|7, pushes forward to a conjugate of (p~ mod p)|r,,. Choose a
basis e, ..., eq of the centralizer of (p~ mod p)(Ix) in My, x,(Q;) and extend
it to a basis e1,...,eq, f1,- - fa2_g of Myxn(Q;). Because

ﬂ ker(ad (p~ mod p)(7)"! — 1) = @ej

TelK
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we see that we can find 7 € I and p;x € Hom (M, x,(Q;),Q;) such that for
all a € Mpxn(Q)) and all i = 1,...,n% —d,

> pin(ad (p” mod p) (i)' = 1)a
k
is the coefficient of f; when a is written in terms of the basis e, ..., eq, f1,...,

fn27d'
Consider the continuous representation
p:Gx — GL,(Q[[X1,...,Xq,Y1,...,Y,2_4]]) = GL,(S)
o (L+ L Yifi)(p” mod p)(0) (1 + ¥ Xje)" (1 + L Yifi) ™,

where v : Gg/Ix % 7 sends Frobg to 1. It is a lifting of pD mod g, and so
gives rise to a map

¢: (RE®Q)H— S

under which p"|;, pushes forward to a conjugate of (p~ mod p)|r,. It just
remains to show that ¢ is surjective. Modulo m% we have

p(o) = (p~ mod p)(0) <1 + (ad (p” mod p)(c Z Yifi +o( Z X e]>

Looking at

> par((p” mod ) (i) " p(7ik) — 1n)
k

we see that for each i the element Y; is in the image of p — mg/m%. Next
looking at

((p~ mod p)(2) " p(p) = 1n)
we see that for each j the element X is in the image of

o — mg/(m%,Y1,..., V2 ).
We conclude that
¢ p - mg/mj
and hence that
¢: (B @ Q)p > S
as desired.

Write R for R% ® Q; and let I denote the kernel of ¢|z. It is a prime
ideal contained in p. Let T' denote the integral closure of R/I in its field of
fractions, which is finite over R/I and hence has the same Krull dimension as
R/I. Then ¢|g /1 extends to a map ¢7 : T S. Let n denote the contraction

to T of the maximal ideal of S. We have n N R/I = p. Moreover T is a
domain. The map ¢7 gives a map

" — S
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extending ¢. We have
n? = dim R > dim R/I = dimT > dim T} > dim S = n?,

where dim denotes the Krull dimension. Thus the inequalities are equalities
and we deduce that I is a minimal prime ideal of R and that 7)) = S. Thus
R/I — S and so the residue field k(1) of I injects into the field of fractions of S.
As (09|17, and (p~ mod g)|r,. are equivalent over S, they are also equivalent
over k(I).

We deduce that if p; and gy are two maximal primes of RﬁD1 ® Q; each
containing a minimal prime I and each containing no other minimal prime,

then
(P mod p1)[1, = (p1’ mod 2)|1,,
over k(I) and hence over Q. O

LEMMA 1.3.5. Suppose that p; is semi-simple and let Fil? be an invariant
decreasing filtration on p1 by O@l—direct summands; then p1 ~ @, gr'p1.

Proof. We may suppose that L is chosen large enough that p; : Gx —
GL,(0O) and that Fil® is defined over L. Then we may choose a basis {e; ;} of
O™ such that

e for each i the set {ey;: i <4’} is a basis of Fil‘O";
o for each i the set {€;;} (with only j varying) spans a Gg-submodule
of F™.

(Use reverse induction on i.) Let O(t) denote the algebra of power series over
O with coefficients tending to 0, so that O(t) is complete in the l-adic topology.
Let h denote the element of My, (O(t)) such that he; ; = tiei,j for all 7 and j.
Consider the continuous representation

p=nhpth™': G — GL,(O(t)).

Let A° denote the closed subalgebra of O(t) generated by the matrix entries of
the image of p. As in the proof of Lemma 1.2.2, we see that A° is a complete,
noetherian local O-algebra with residue field F and that there is a continuous
homomorphism R(Dgﬁ1 — A° under which the universal lifting of p; pushes
forward to p. Under the map A% — O which sends t to 1, we see that p pushes
forward to p;. Under the map A° — O which sends ¢ to 0, we see that p pushes
forward to @, grpi. As A° is a domain, the claim follows. O

Important convention: Suppose that F' is a global field and that r : G
— GL,(Q;) is a continuous representation with irreducible reduction 7. In
this case there is a model r° : Gp — GLn(O@l) of r, which is unique up
to GLn((’)@l)-conjugation. If v[p is a place of F', we write 7|g,. ~ p2 (resp.
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rlGg, ~ p2, Tesp. p1 ~ TlGy, ) to mean 7°|g,. ~ p2 (resp. r°|g, ~ p2, resp.
P11~ To’G'FU)'

We end this section by recalling some facts about Weil-Deligne repre-
sentations. Recall (from the paragraph before Lemma 1.4 of [TYO07]) that a
Weil-Deligne representation (r, N') of the Weil group Wi of a p-adic field K on
a complex vector space W is called pure of weight w if there is an exhaustive
and separated ascending filtration Fil; of W such that

e cach Fil; W is invariant under r;

o if 0 € Wy maps to Frob})((a), then all eigenvalues of r(o) on gr ;W are Weil
¢™@)_numbers;

e for all j we have N7 : gr

wiiW Soar,_ ;W. (Note that necessarily we have

The following lemma is part of Lemma 1.4 of [TY07].

LEMMA 1.3.6.

(1) A Weil-Deligne representation is pure of weight w if and only if its Frobe-
nius semi-simplification is.

(2) Let K'/K be a finite extension. A Weil-Deligne representation of Wi is
pure of weight w if and only if its restriction to Wy is.

(3) Two pure, Frobenius semi-simple, Weil-Deligne representations (ri, Ni)
and (rg, Na) are equivalent if and only if r1 and r9 are equivalent.

1.4. Local theory: | = p. Continue to fix a rational prime [ and let O
denote the ring of integers of a finite extension L of Q; in Q;. Let A\ denote
the maximal ideal of O and let F = O/\. However in this section we specialize
our discussion to the case I' = Gk, where K/Q; is a finite extension. Thus
p : Gk — GL,(F) is continuous. We will assume that the image of each
continuous embedding K < L is contained in L. Let {H,} be a collection of
n element multisets of integers parametrized by 7 € Hom g, (K, Q).

We call a continuous representation p : Gx — GL,(Q;) ordinary if the
following conditions are satisfied:

e there is a Gg-invariant decreasing filtration Fil® on @' such that for i =
1,...,n the graded piece gr Z@? is one-dimensional and G acts on it by
a character x;;
e and there are integers b,; € Z for 7 € Hom g, (K, Q) andi=1,...,n and
an open subgroup U C K* such that
= (xi o Art g)|v(@) = [1,. k0, (T)",
— b1 <brp<---<bry forall 7.

We will call p ss-ordinary if we may take U = O in the above definition.

We will call p er-ordinary if it is ordinary and crystalline (in which case it is
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also ss-ordinary). If p is ordinary (resp. ss-ordinary), then it is de Rham (resp.
semi-stable) and

HT;(p) = {-br1,...,—brpn}.
If p is ss-ordinary and if for each ¢ there exists a 7 such that b, ;4+1 < by ;41 then
p is cr-ordinary. (See Propositions 1.24, 1.26 and 1.28 of [Nek93] or Lemma
3.1.4 of [GG12].)

Let K'/K denote a finite extension. The universal lifting ring Rgﬁ has
various important quotients R(Dg@ (H, )+ which are uniquely characterized by
requiring that they are reduced without I-torsion and that a Q;-point of R(Dg’p
factors through R%@ (H, ) if and only if it corresponds to a representation

p: G — GL,(Q;) which is de Rham with Hodge—Tate numbers HT(p) = H,
for all 7 : K < @Q; and which has a further specified property P,. We will
consider the following instances of this construction:

e x = cris and P, is “crystalline,”

e x = ss and P, is “semi-stable,”

e x = K’ — cris and P, is “crystalline after restriction to Gg,”
e x = K’ —ss and P, is “semi-stable after restriction to Gg-,”
e x = cr-ord and P, is “cr-ordinary,”

e x = ss-ord and P, is “ss-ordinary.”

(The existence of Rg,@ (H ) in the case x = ss follows from Corollary 2.6.2
of [Kis08]. In the case * = cris it follows from this using Theorem 2.5.5(2) of
[Kis08], because R%’p’ (H, }cris is the maximal reduced, [-torsion free quotient
of ROP{H 1,5 Over which the N of Theorem 2.5.5(2) of [Kis08] becomes 0.
Existence in the cases x = K’ — cris and * = K’ — ss also follow as in the
first paragraph of the proof of Theorem 2.7.6 of [Kis08]. In the cases * =
cr-ord, ss-ord existence follows from Lemma 3.3.3(1) of [Ger10].)

We will write RED,{HT},* ® Q; for R(DZE,{HT},* ®o Q;. This definition is
independent of the choice of O (using the same argument as in the proof of
Lemma 1.2.1).

If H; has n distinct elements for each 7, then each ring Rg@ (Ho Yo is
either zero or equi-dimensional of dimension

1+ n?+ K :Qln(n—1)/2.
(In the cases * = cris, ss this is a special case of Theorem 3.3.4 of [Kis08],
and the cases K’ — cris and K’ — ss are treated in the same way. The cases

« = cr-ord,ss-ord follow from this and from Lemma 3.3.3(2) of [Gerl0].)

We deduce that if K” > K’, then Spec ROp{Hq—} K/ —eris 15 @ union of irre-
ducible components of Spec Rop (H, }, K" —cris* Similarly, Spec Rop (H, } K7 —ss is

a union of irreducible components of Spec RO BAH, YK — . Each of the schemes

Spec Rop (.1, eris1/1]; Spec RD’p (H ) K wrisl1/1] and Spec Rop (.} or- oral1/1]
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are formally smooth. (The case * = cris is a special case of Theorem 3.3.8
of [Kis08], the case * = K’ — cris is treated in the same way and the case
« = cr-ord follows from this and Lemma 3.3.3(2) of [Ger10].) Finally if p is
trivial, then the scheme Spec R%yﬁ’ (H.}, er-ordl1/1] is geometrically irreducible.
(See Lemma 3.4.3 of [Ger10].)

Choose a finite set C of irreducible components of

. |
EI}("II Spec RO,ﬁ,{Hq—},K’*SS'

Let R%,E,C denote the maximal quotient of R(Dgﬁﬁ’ (H, VK —ss which is reduced,

[-torsion free and has Spec R%,ﬁ,c supported on the components in C, for K’
chosen sufficiently large. This is independent of the choice of K’ (as long as
K’ is sufficiently large). Also let D¢ denote the set of liftings of p to complete
local noetherian O-algebras R with residue field F such that the induced map
R(Dg,p — R factors through R%’E’C. Again we see that D¢ is a deformation
problem in the sense of Definition 2.2.2 of [CHTO08].
If p; and ps are continuous representations G — GLn((’)@l), we say that
p1 connects to pa, which we denote p; ~ pa, if and only if
e the reduction p; = p; mod mg, is equivalent to the reduction py = p2 mod
ma,
e p; and py are both potentially crystalline;
e for each continuous 7 : K < Q; we have HT,(p1) = HT,(p2);
e p1 and po define points on the same irreducible component of the scheme
Spec (~};‘)51,~{1{TT(p1 ) K1 ®Qy) for some (and hence all) sufficiently large K.

We make the following remarks.

(1) By the proof of Lemma 1.2.2 we see that the relation p; ~ ps does not
depend on the equivalence chosen between the reductions p; and p,, nor on
the GLn(O@l)—conjugacy class of p1 or ps.

(2) “Connects” is an equivalence relation (because each R(DQ’% (.} K —eris [ L/1]
is formally smooth).

(3) If p1 ~ p2, then WD(p1)|1,, = WD(p2)|1,- (See the proof of Theorem 2.7.6
of [Kis08].)

(4) If K'/K is a finite extension and p1 ~ p2, then pilq,, ~ p2la,., -

(5) If p1 ~ p2 and p ~ ph, then p1 @ p} ~ p2 ® py and p1 @ p} ~ p2 @ py and
pi ~ p3.

(6) If u: Gx — Q" is a continuous unramified character with 7 = 1 and p; is
potentially crystalline, then p; ~ p1 ® p.

(7) Suppose that p; is potentially crystalline and that p; is semi-simple. Let
Fil® be an invariant filtration on p; by (’)@l direct summands; then p; ~
@; er'pi. (This is proved in the same way as Lemma 1.3.5 of the previous
section.)
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We will call a representation p : Gxg — GLn((’)@l) diagonalizable if it is
crystalline and connects to some representation x1 @ - - - ® x, with x; : Gg —
(’)6 crystalline characters. We will call a representation p : Gg — GLn((’)@l)

l

potentially diagonalizable if there is a finite extension K'/K such that plG,. is
diagonalizable. Note that if K”/K is a finite extension and p is diagonalizable
(resp. potentially diagonalizable), then p|g,, is diagonalizable (resp. poten-
tially diagonalizable). It seems to us an interesting, and important, question
to determine which potentially crystalline representations are potentially di-
agonalizable. We know no example of a potentially crystalline representation
that is not potentially diagonalizable.

LEMMA 1.4.1. If p1 and ps are conjugate in GL,(Q;), then py is poten-
tially diagonalizable if and only if ps is potentially diagonalizable.

Thus we can speak of a representation p : Gx — GL,(Q;) being poten-
tially diagonalizable without needing to specify an invariant lattice.

Proof. If p1 and py are conjugate by an element of GL”(O@)’ then after
passing to a finite extension over which p; = p, = 1 we see that p; ~ p2. Thus
we may suppose that p; = gpog~! where g = diag(dy,...,d,) with d; € @lx
satisfying d,|d,,_1]...|d1. Choosing L C Q; large enough we may assume that
p1 and po are defined over O and that dy,...,d, € O. (If d, is not integral,
multiply each d; by a suitable element of L*.) Replacing K by a finite extension
we may also assume that ps = 1 mod ld; /d,, in which case we also have p; = 1.

Consider the complete topological domain

A= 0(t1,s1,t2,52,. s tn—1, Sn—1)/(s1t1 — (d1/d2), .. ., sSp—1tn—1 — (dn—1/dp)).

(See Lemma A.1.4.) Let g = diag(¢; ---tn—1,t2- -tn—1,...,tn—1,1) and let

p=0pg "
If j >4, then the (i, j) entry of p(o) is t;...t;—1 times the (7, j) entry of pa(0).
If ¢ > j, then the (i,7) entry of p(o) is s;...s;_1d;/d; times the (4,7) entry
of pa(0), which is in A by our assumption that ps = 1 mod ld;/d,. Thus we
see that p: Gxg — GL,(A) is a continuous homomorphism. The specialization
under t; — 1 for all 7 is ps. The specialization under s; — 1 for all 7 is p;. As
in the proof of Lemma 1.2.2 we conclude that p; ~ ps, and we are done.  [J

We will establish some cases of (potential) diagonalizability below, but
first we must recall some results from the theory of Fontaine and Laffaille
[FL82], normalized as in Section 2.4.1 of [CHTO08]. Assume that K/Q; is un-
ramified and denote its ring of integers by Ok . Let MJF» denote the category
of finite Ok ®z, O-modules M together with
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e a decreasing filtration Fil ‘M by O ®z, O-submodules which are Og-direct

summands with Fil°M = M and Fil'='M = {0};

. Frob;1 ® 1-linear maps ®° : Fil'M — M with ®%|p i1, = (! and

S ®'Fil'M = M.

Let REPo(Gk) denote the category of finite O-modules with a continuous
Gg-action. There is an exact, fully faithful, covariant functor of O-linear
categories G : MFp — REPy»(GE). The essential image of Gg is closed
under taking sub-objects and quotients. If M is an object of MF @, then the
length of M as an O-module is [K : Q] times the length of Gx (M) as an
O-module.

Let F denote the residue field of O, let MJFp denote the full subcate-
gory of MJFp consisting of objects killed by the maximal ideal A of O and
let REPr(Gk) denote the category of finite F-modules with a continuous
Gr-action. Then Gg restricts to a functor MFr — REPp(Gg). If M is
an object of MFp and 7 is a continuous embedding K < Q;, we let FL,(M)
denote the multiset of integers i such that gr’M Q0K ®7,0,701 O # {0} and ¢
is counted with multiplicity equal to the F-dimension of this space. If M is an
l-torsion free object of MFp, then G (M) ®z, Q; is crystalline and for every
continuous embedding 7 : K < Q; we have

HT (Gg (M) ®z, Q) = FL:(M ®o F).

Moreover, if A is a G-invariant lattice in a crystalline representation V of G
with all its Hodge—Tate numbers in the range [0, — 2], then A is in the image
of Gg. (See [FL82].)

LEMMA 1.4.2. Let K/Q; be unramified. Let M denote an object of MFy
together with a filtration

MZM@DMlD“'Dﬂn—l DMTL:(O)

by MFg-subobjects such that M;/M ;.1 has F-rank [K : Q] fori=0,...,n—1.
Then we can find an object M of MF o which is l-torsion free together with a
filtration by MF o-subobjects

M=DMyD>M DD My,_12M,=(0)
and an isomorphism
M@oF=2M
under which M; @0 F maps isomorphically to M; for all .
Proof. M has an F basis g; » for i=1,...,n and 7€ Hom (K, Q;) such that

e the residue field kg of K acts on €; r via 7;
e M, is spanned over F by the €, , for i > j;
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e for each j there is a subset Q; C {1,...,n} x Hom (K, Q;) such that Fil/M
is spanned over F by the €; - for (i,7) € ;.

Then we define M to be the free O-module with basis e; » for i =1,...,n and
7 € Hom (K, Q).

e We let Ok act on e;  via 7;
e we define M; to the sub O-module generated by the e; » with i > j;
e we define Fil/ M to be the O-submodule spanned by the e; , for (i, 7) € Q;.

We define ® : Fil’M — M by reverse induction on j. If we have defined
PIt1 we define &7 as follows:

o If (’i,T) S Qj+1, then @jei; = lq)jJrlei,T.
o If (4,7) € Qj — Qj41, then ®Je; ; is chosen to be an O-linear combination
of the €y roFvob, for @ > i which lifts ®’e; ..

It follows from Nakayama’s lemma that M is an object of MFp, and then it
is easy to verify that it has the desired properties. ([

We can now state and prove our potential diagonalizability criteria.

LEMMA 1.4.3. Keep the above notation, including the assumption | = p.
Suppose that p : Gx — GL,(Q;) is a potentially crystalline representation.

(1) If p has a Gi-invariant filtration with one-dimensional graded pieces
(in particular if it is ordinary), then p is potentially diagonalizable.

(2) If K/Q is unramified, if p is crystalline and if for each 7 : K — L
the Hodge—Tate numbers HT - (p) C [ar, ar + 1 — 2] for some integer a,
then p is potentially diagonalizable.

Proof. After passing to a finite extension so that p becomes trivial and
each gr’p becomes crystalline, the first part follows from item (7) of the first
numbered list of this section.

For the second we may assume (by twisting) that a; = 0 for all 7.
Note that every irreducible subquotient of p|r, is trivial on wild inertia and
hence one-dimensional. Choose a finite unramified extension K’/K such that
p(Gr') = p(Ik). Then plg,, has a G invariant filtration with one-dimen-
sional graded pieces. From Lemma 1.4.2 (and the discussion just proceeding it)
we see that p|g,, has a crystalline lift p» with the same Hodge-Tate numbers
as pla o Which also has a G gr-invariant filtration with one-dimensional graded
pieces. It follows from Lemma 2.4.1 of [CHTO8] that p|c,, ~ p2. (Note that in
Section 2.4.1 of [CHTO8] there is a running assumption that the Hodge—Tate
numbers are distinct. However this assumption is not used in the proof of
Lemma 2.4.1 of [CHTO08].) From the first part of this lemma we see that ps is
potentially diagonalizable. Hence p is also potentially diagonalizable. O
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Important convention: Suppose that I is a global field and that r : Gp —
GL,(Q,) is a continuous representation with irreducible reduction 7. In this
case there is model r° : Gp — GLn(O@l) of r, which is unique up to GLn((’)@l)—
conjugation. If |l is a place of F', we write r|g,, ~ p2 to mean r°|g, ~ pa. We
will also say that 7|g,. is (potentially) diagonalizable to mean that r°|g,, is.

1.5. Global theory. Fix an odd rational prime [ and let O denote the ring
of integers of a finite extension L of Q; in Q;. Let A\ denote the maximal ideal
of O and let F = O/\. Let F denote an imaginary CM field with maximal
totally real subfield F*. We suppose that each prime of '™ above [ splits in
F and that L contains the image of each embedding F' < L. Let S denote
a finite set of places of F'* which split in F and suppose that S contains all
places of '™ above [. For each v € S choose once and for all a prime o of I
above v and we let S denote the set of & for v € S.

Let

7:Gp+ — Gy (F)
be a continuous representation such that Gr = 7 !G%(F) and such that 7 is
unramified outside S. Let
J G + — o~
be a continuous character lifting v o 7. We suppose that p is de Rham, so
that there is an integer w such that HT.(u) = {w} for all 7 : F™ — L. For
7:F < L let H; denote a multiset of n integers such that

H.oe={w—h: heH}.

For v € S with v/l choose a set C, of irreducible components of the

scheme Spec Rg fo [1/1], and let D, denote the corresponding local deforma-
k) F,.

tion problem. For v € S with v|l choose a finite set C, of irreducible components

D .
OFlc . {Ho b —s5" and let D, denote the corresponding local

deformation problem.
Let

of lim_, g+ Spec R

§= (F/F+,S, g,O,F,M,{DU}ves).

The following proposition is established in [CHTO08]. (See Proposition 2.2.9
and Corollary 2.3.5 of that paper.)

PROPOSITION 1.5.1. Keep the notation and assumptions established in
this section. Suppose moreover that T is absolutely irreducible.
(1) There is a universal deformation

7,“léniv . GF"" N gn (Rgniv)
of T of type S in the sense of Section 2.3 of [CHTO0S].

(2) If p(ey) = =1 for all v|oo and if each H; has n distinct elements, then
RV has Krull dimension at least 1.
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2. Automorphy lifting theorems

2.1. Terminology. Continue to fix a rational prime / and an isomorphism
1 : Q = C. Suppose that F is a CM (or totally real) field and that F* is
the maximal totally real subfield of F'. By a polarized l-adic (resp. mod 1)
representation of Gp we will mean a pair (r, ) (resp. (7, 7)), where

r:Gp —> GLn(@l)
(resp. 7 : Gp — GL,(F})) and
p:Gp+ — @ZX
(resp. 7i : Gp+ — F,') are continuous homomorphisms, such that for some
infinite place v of F't there is &, € {1} and a nondegenerate pairing ( , ),
on Q' (resp. F}') such that
<$7 y)v = 51)<y7 'T>v

and

—~

r(o)z,r(cvocy)y)e = p(0) (2, y)v
(resp.

(F(0)x, T(cvoco)y)o = B(o){, y)v)
for all 2,y € Q" (resp. F}') and all ¢ € Gp. In the case that F is imaginary we
further require that €, = —p(c,). (This last condition can always be achieved
by replacing p by pdp/p+-)

Note the following:

e If the condition is true for one place v|oo, it will be true for all places
v|oo: take ey = p(cpey)ey and (x,y)y = (&, r(cpcy)y)y (resp. (x,y)y =
(2,7 (cocw )y)o)-

e If F' is imaginary, then (r, 1) (resp. (7, )) is a polarized l-adic (resp. mod
[) representation if and only if there is a continuous homomorphism 7 :
Gp+ — Gn(Q)) (resp. Gn(F;)) with 7 = r (resp. 7) and with multiplier s
(resp. fi).

e If F'is totally real, then (7, u) is a polarized l-adic representation if and only
if r factors through GSp,,(Q;) (if u(cy) = —&y) or GOL(Q;) (if pu(cy) = €y)
with multiplier . (Define the pairing on Q' by (z,y) = (z,7(c,)y)y.) A
similar assertion is true in the case of I if [ > 2.

We will call (r,u) (resp. (7, 1)) totally odd if €, = 1 for all v|oo (equiva-
lently, if p(c,) (resp. 7i(cy)) is independent of v|oco and €, = 1 for some v|co).
We call an l-adic (resp. mod 1) representation r (resp. 7) polarizable if there
exists a u (resp. ) such that (r, u) (resp. (¥, 7)) is a polarized representation.
We call an l-adic (resp. mod [) representation r (resp. ) totally odd polariz-
able if there exists a p (resp. i) such that (r,u) (resp. (7,f)) is a totally odd
polarized representation.
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We will call (r, u) (resp. r) algebraic if r is unramified at all but finitely
many primes and if it is de Rham at all primes above . We will call it reqular
algebraic if it is algebraic and if for all 7 : F' — Q; the multiset HT,(r) has n
distinct elements.

We now recall from [CHTO08] and [BLGHT11] the notions of RAESDC
and RAECSDC automorphic representations. In fact, it will be convenient for
us to work with a slight variant of these definitions, where we keep track of
the character which occurs in the essential (conjugate) self-duality. Moreover
the referee suggested we use a less cumbersome name. We have followed this
advice with some reservations. It is less cumbersome, but we have a slight
worry it could be misleading. We hope not.

If F'is a number field and 7 is an automorphic representation of GL,, (Ar),
we will call © reqular algebraic if 7o, has the same infinitesimal character as
an irreducible algebraic representation of the restriction of scalars from F' to
Q of GL,,.

Let F be a CM (or totally real) field with maximal totally real subfield
F*. By a polarized automorphic representation of GL,(Ar) we mean a pair
(m, x) where

e 7 is an automorphic representation of GL, (Ar);

o x: A%, /(FT)* — C* is a continuous character such that x,(—1) is inde-

pendent of v|oo;

o =71V ® (xoNg/p+ odet).
(Here 7¢ denotes the composition of m with complex conjugation on GL, (AF).
If F is totally real, then 7¢ = 7r.) In the case that F' is imaginary we further
suppose that p,(—1) = (=1)" for all v|oo. (This last condition can always be
achieved by replacing u by uép/p+.)

We will call an automorphic representation 7 of GL,,(Ar) polarizable if F
is CM (or totally real) and there is a character p such that (7, p) is a polarized
automorphic representation.

We will say that (, x) is cuspidal if 7 is. We will say that (7, x) is regular
algebraic if w is, in which case x is also algebraic. We will say that (, x) has
level prime to I (resp. level potentially prime to 1) if for all v|l the representation
7y is unramified (resp. becomes unramified after a finite base change).

If Q is an algebraically closed field of characteristic 0, then we will write
(zm)Hom (F):+ for the set of a = (a,;) € (Z7)Hom (B gatisfying

Qr1 2 -+ 2 Qrp.
Let w € Z. If F is totally real or CM (resp. if @ = C), we will write
(Z”)gom (D) for the subset of elements a € (z)Hom () with
Qrj + Qrocntl—i = W
(resp. ar; + Gcorpt+1—i = w). (These definitions are consistent when F is
totally real or CM and Q@ = C.) If F'/F is a finite extension, we define
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ap € (Zn)Hom(F’,Q),—i— by
(@F)ri = Grjp -

We will call a e (Z")Hom (Pt eptremely regular if for some 7 the ar; have
the following property: for any subsets H and H' of {a;; + n — i}, of the
same cardinality, if S pcgh = Y hem h, then H = H'.

If a € (Z")Hom(FO+ et Z, denote the irreducible algebraic represen-
tation of GLEOm (7€)
representations of GL,, with highest weights a,. We will say that a regular
algebraic polarized (resp. regular algebraic) automorphic representation (m, x)
(resp. 7) of GL,,(AF) has weight a if mo has the same infinitesimal character
as ZY. Note that in this case a must lie in (Z”)gom ) for some w € Z.

Suppose 7 is a regular algebraic automorphic representation of GL,,(Ar)
of weight a € (zm)Hom(FC)
uniformizer in Of,. For each integer b > 0 let Iw(v>?) denote the subgroup
of GL,,(OF,) consisting of elements that reduce to upper triangular unipotent

which is the tensor product over 7 of the irreducible

T. Let v be a place of F dividing [ and w, a

. _ bb . . .
matrices modulo v*. The space (¢~ 17,)™ (") carries commuting actions of the
Hecke operators

Uy = {Iw(vb’b) (wolf 0 )Iw(vb’b)}.

Lo

(See, for instance, Lemma 2.3.3 of [Ger10].) We define rescaled Hecke operators

U :=< 1 H<w>> ug)

T:Ff—)@l i=1
for j =1,...,n. We define the ordinary part (L_lﬂ'v)lw(”b’b)"’rd of (L_lﬂv)lw(”b’b)
to be the maximal subspace which is invariant under each UL(*jg,wv and such

that every eigenvalue of each UL(*j C)L,w-u is an [-adic unit. This definition does not

depend on the choice of uniformizer w,. (If we choose another uniformizer w,,

(0P?)

then U ;J ) = <u>U£—frU) where (u) is an operator on " that commutes with

Uz(gv) and whose b-th power is trivial.)

We say that 7 is t-ordinary if for each v|l there is an integer b > 0 such

w(v"®).0ord ig nonzero. Note that if 1 is an algebraic

that the space (1 !7,)
character of AY/F*, then 7 is ¢-ordinary if and only if 7 ® (¢ o det) is -
ordinary. Also recall (from Lemma 5.1.5 of [Ger10]) that if 7 has weight 0 and
if m, is Steinberg for all v|l, then 7 is +-ordinary.

We recall that thanks to the work of many people (we mention in particu-
lar Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse, Shin and

R.T., and the references [Kot92], [Clo90], [HT01], [BC11], [Shill], [CHLN11],
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[Clo13], [Carl2a] and [Carl2b]) we can associate [-adic representations to reg-
ular algebraic cuspidal polarized automorphic representations:

THEOREM 2.1.1. Suppose that (m,x) is a reqular algebraic, cuspidal, po-
larized automorphic representation of GL,(Ar). Then there is a continuous
semi-simple representation

Tl’l(ﬂ) : GF — GLn(@l)

and an integer w with the following properties:

(1) (reu(m), €6 "r1.(X)) is a totally odd, polarized l-adic representation.
(2) Ifv [l is a place of F, then

zWD(rl,l(w)\GFv)F_SS = rec(m, ® | det |1()1_”)/2),

and these Weil-Deligne representations are pure of weight w.

(3) 71,(m) is de Rham and if 7 : F < Q, then
HT,(r1,(7)) = {awi +n—1 a2 +n—2,... 010}
Moreover
HTroc(r1,(m)) ={w —h: h € HT(r,(7))}.
(4) If v|l and 7, has an Twahori fized vector, then
zWD(rl7l(7T)|GFU)F_SS = rec(m, ® | det |{177)/2).

In particular ry,(m) is semi-stable at v, and if 7, is unramified, then it is
crystalline.

(For most of this theorem we refer to Theorems 1.1 and 1.2 of [BLGHT11],
strengthened by incorporating the main theorems of [Carl2a] and [Carl2b].
We warn the reader that the main theorem of [Car12b] depends on the current
paper, however there is no circularity, because it does not do so in the case that
I, has an Iwahori fixed vector, which is the only case we are quoting here.
The first part follows from Theorem 1.2 and Corollary 1.3 of [BC11]. Note
that Theorem 1.2 of [BC11] can easily be extended to the case x nontrivial
by a twisting argument. Also note that irreducible factors r of r;,(m) which
do not satisfy 7¢ = 7V ® ¢ "r;,(x) occur in pairs r and (7)Y ® ¢ "rp,(x),
and it is straightforward to put a pairing of the desired form on r @ (r°)¥ ®
ell_”rl,l(x). When F' is CM, note that by definition ell_”rm(x) takes every
complex conjugation to —1.) We also have the following remarks.

(6) If m is 1-ordinary and v|l, then ry,(7)|Gy, is ordinary. (This follows from
Lemma 5.2.1 of [Ger10] using the same twisting argument as in Section 1
of [BLGHT11].)

(7) If m has level potentially prime to | and if r,(7) is ordinary, then 7 is
1-ordinary. (See Lemmas 5.1.6 and 5.2.1 of [Ger10].)
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We remark that it is presumably both true and provable that 7 is ¢-ordinary
if and only if 7, (7) is ordinary, but to work out the details here would take us
too far afield.
We will let 77 ,(7) denote the semi-simplification of the reduction of (7).
If F is totally real and if y,(—1) = (=1)""! for all v|oo, then 7;,(7) factors
through a map
71.(7) : Gp — GO,(F))

with multiplier € "7, (x). If F is totally real and if y,(—1) = (—1)" for all
v|oo, then n is even and 7, () factors through a map

%1,2(71’) : GF — Gspn(Fl)

with multiplier €l1_"ﬂﬂ(x). If F' is imaginary CM, then it extends to a contin-
uous homomorphism

%l,z(ﬂ-) : GF+ — gn(Fl)

with multiplier & "7, (x).

We will call (r, ) (resp. (7,7), resp. 7, resp. T) automorphic if there is
a regular algebraic, polarized cuspidal automorphic representation (m, x) such
that

(ry 1) & (ri(m), ()€ ")
(resp.
(7, 10) = (F1(m), 71,007 ™),
resp.
r= Tl,z(ﬁ)a
resp.

T =Ty, (m)).
We will say that (r, u) or (7, z) or r or T is automorphic of level prime to l (resp.
automorphic of level potentially prime to l, resp. ordinarily automorphic, resp.
potentially diagonalizably automorphic) if (7, x) has level prime to [ (resp. has
level potentially prime to [, resp. is t-ordinary, resp. has level potentially prime
to l and r;,(m) is potentially diagonalizable). By Theorem 3.13 of [Clo90] these
definitions do not depend on the choice of 1.
Finally recall the following definition from [Thol2]. We will call a sub-
group H C GL,(F,) adequate if the following conditions are satisfied:
e HY(H,F;) = (0) and H'(H,sl,(F;)) = (0);
e H(H,sl,(F)) = (0);
e the elements of H with order coprime to [ span Mnxn(E) over F;.
Note that this is not exactly the definition given in Definition 2.3 of
[Thol2], however it is equivalent to it by Lemma 1 of [GHTT10]. Note also



540 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

that if H is adequate, then T? is an irreducible H-module (by the third condi-
tion) and [ /n (by the second condition, as when I|n we have F;1,, C sl,(F;)).
The following proposition is Theorem 9 of [GHTT10].

PROPOSITION 2.1.2. Suppose that H is a finite subgroup of GL,,(F;) such
that the tautological representation of H is irreducible. Let HY denote the
subgroup of H gemerated by all elements of l-power order and let d denote the
mazimal dimension of an irreducible HO-submodule of F}. Ifl > 2(d+1), then
H is adequate.

(R.T. would like to take this opportunity to make two corrections to
[CHTO08]. Robert Guralnick points out that the assumption in Corollary 2.5.4
of [CHTO08] should be [ > 2n+1 and not [ > 2n—1. The application of Lemma
(2.7) ¢) of [CPS75] in the penultimate sentence of the proof of Corollary 2.5.4
of [CHTO8] requires | > 2n+ 1, not | > n+1 as was stated there. The correct
form of the Corollary was used in [HSBT10].

Florian Herzig points out that in the proof of Corollary 4.4.4 of [CHTO08]
we should have written Sp,,(F;)/{£1} and not PSp,,(F;). R.T. would like to
thank Guralnick and Herzig for these observations.)

2.2. Lemmas on automorphy. Our first lemma is elementary.

LEMMA 2.2.1. Suppose that F' is a CM (or totally real) field and that 1) is
an algebraic character of Gp. If F is imaginary, let ¢ denote the composition
of ¥ with the transfer map G%bJr — G, If F is totally real, let ¢ = 1%. Then
(r, 1) is automorphic if and only if (r @ ¥, pe) is.

The next lemma is proven in the same way as Lemma 4.2.2 of [CHTOS|.
(See also Lemmas 4.3.2 and 4.3.3 of [CHT08].)

LEMMA 2.2.2. Suppose that M/F is a soluble Galois extension of fields
and that M is CM (or totally real). Suppose that (r,u) is a polarized l-adic
representation of Gp with r|q,, irreducible. Then (r, ) is automorphic if and
only if (r|Gy, tla,,, ) is automorphic.

The next lemma is a generalization of Lemma 7.1 of [BLGHT11].

LEMMA 2.2.3. Suppose that 7 is an irreducible, unitary, admissible mod-
ule for ((Lie GL,(R))®@rC,O(n)) or ((Lie GL,(C))®rC, U(n)) with half inte-
gral Harish-Chandra parameter (i.e., this parameter lies in 1/2 the co-character
group of a maximal torus in the complezified group). Then

C ~ \%

s ™.

Proof. In the second case this is Lemma 7.1 of [BLGHT11]. However, we
will give here a uniform proof in both cases. From the classification of irre-
ducible unitary admissible ((Lie GL,(R)) ®r C,0(n)) and ((Lie GL,(C)) Qg
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C, U(n))-modules, we see that 7 is of the form
7o == = = I
where
T = (07 ® | det |P7)/2) B (05 @ | det |BT™/2) @B .. B (07 ® | det |Mi/2)

with m; € Z~¢ and o; an irreducible, unitary, discrete series, admissible mod-
ule for ((Lie GL,,(R)) ®@r C,O(n;)) or ((Lie GLy,(C)) ®r C, U(n;)) with half-
integral Harish-Chandra parameter. (We are using the form of the classification
proposed by Tadic in 1985 and proved in [Tad09]. A similar classification was
given earlier in [Vog86]. [Clo87] indicates how the formulation we are using
can be deduced from the one given in [Vog86].)

The only possibilities for o; are

e the ((Lie GL;1(R))®r C, O(1))-module associated to the trivial or sign rep-
resentation of R*;

e the unique discrete series ((Lie GL2(R)) ®gr C, O(2))-module with the same
infinitesimal character as the representation Sym® ®|det|~%? of GLy(R)
for some a € Z>;

e the ((Lie GL1(C)) ®r C, U(1))-module associated to one of the represen-
tations z — (z/|z])® of C* for some a € Z.

In each case we see that 0 = of. Thus 7" = 7¢, as desired. (Note that, by
known properties of the Langlands local reciprocity map rec, we have (my B
mo)V &y By and (m B mo)° = 7§ B 7§.) O

The next lemma formalizes and generalizes the argument of step 3 of the
proof of Theorem 7.5 of [BLGHT11]. Partial generalizations of this argument
have already been given in Proposition 5.2.1 of [BLGG11] and Proposition
5.1.1 of [BLGG12).

LEMMA 2.2.4. Let F be a CM (or totally real) field and M/F a soluble
Galois, CM (or totally real) extension of degree m. Let r : Gy — GL,(Q))
be an irreducible continuous representation and p : Gp+ — @lx a continuous
character such that (Ind g]\F/‘, W) is an automorphic polarized l-adic represen-
tation of Gp. Then (r,ulc,,. ) is also automorphic and polarized.

Proof. Inductively we may reduce to the case that m is prime. Let o
denote a generator of Gal (M/F) and r a generator of Gal(M/F)Y. Let
(II, x) be a regular algebraic, cuspidal polarized automorphic representation
of GLyn(AF) such that 7, (II) = Ind g;r and p = ellfm"rlvz(x). Because

1, (I1) ® Kk = 1y, (I1),

we deduce that
I ® (ko Art podet) 211,
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and so from Theorems 3.4.2 and 3.5.1 of [AC89] there is a cuspidal automorphic
representation m of GL,,(A /) such that

rEH..-Bao

is a strong base change of II in the sense of Definitions 1.6.1 and 3.1.2 and
Section 1.7 of [AC89]. Lemma VII.2.6 of [HT01] then shows that

m—1

BC yyp(l) = 7B B - - Br?

Note that, because II is regular algebraic, m ® || det Hn(l ™2 g regular al-
gebraic and that the representations 7% for i = 0,1,...,m — 1 are pairwise
nonisomorphic.

Because IT° 2 1TV ® (y o Np/p+ o det), we see that
2V g (x o Ny p+ o det)

for some ¢ = 0,...,m — 1. If ¢b denotes the central character of 7, which must
also be algebraic, then we see that

2wt (1) = nwt(x).
(See the discussion at the start of Section A.2.) Thus the central character of
T ® || det ||1;Wt x)/4 (i.e., Y| ||_Wt(w ) is unitary, and so 7 ® || det ||;Wt(x>/4 is
also unitary.

Moreover wt(y) is even (as FT is totally real), and so for all v|oo the
|—Wt(x)/4

representation m, ® | det has half integral Harish-Chandra parameter.
We conclude from the previous lemma that for v|oo we have
76 = 1Y @ |det [FH00/2,
Thus
' - 2
(x7)o =m0 ® (Ol 1[2%) 0 Niy/ov 0 det),.
By the regularity of BC /(1) we deduce that we must have i = 0, i.e.,

C ~ \Y

TEr® (XONM/FJF odet).

In particular (7 @ || det ||*0=™)/2 (y]| HFl m)) o Njys+/p+) is a regular alge-
braic, cuspidal, polarized automorphic representation of GL,,(Apr). Moreover
ria(My i (r @ || det ||"07™)/2)
© ri(m @ || det ") @ - @ 1y (1 @ || det [ Tm/2)
On the other hand
ra(ley = dgh ey, =rer e o’

m—1

As r is irreducible we deduce that

r 2y, (1 @ || det |[PAT/2) 2y (27 @ || det |[)/2)
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for some j. Moreover

1—nm

™) o Nyt pe)ed ™™ = (6, 6™ = pla,,.

1_
ra (Ol I
The lemma follows. U

2.3. Automorphy lifting: the “minimal” case. In this section we present
an automorphy lifting theorem which represents the natural output of the
Taylor—Wiles—Kisin method. We incorporate improvements due to Thorne
[Thol2] and Caraiani [Carl2a]. This result is essentially Theorem 7.1 of
[Thol2].

THEOREM 2.3.1. Suppose that F' is an imaginary CM field with maximal
totally real subfield Ft, that | is an odd prime and that n € Z>1. Assume
also that {; ¢ F. Let (r,u) be an n-dimensional, algebraic, polarized l-adic
representation of G satisfying the following properties:

(1) The reduction 7 is irreducible and T(Gp(¢,)) C GLyn(F;) is adequate.

(2) (7, ;) is automorphic of level potentially prime to l, arising from a regu-
lar algebraic, cuspidal, polarized automorphic representation (m, x) of level
potentially prime to l, such that

71.(T)|Gp, ~ Tlop,

for each finite place v of F. (In particular, |G, is potentially crystalline
for v|l, and r has the same Hodge-Tate numbers as ry,(m).)

Then (r, 1) is automorphic of level potentially prime to l.
If further m has level prime to | and if r is crystalline at all primes above [,
then (r, 1) is automorphic of level prime to .

Proof. The result follows from Theorem 7.1 of [Thol2] on noting that for
vfl we have ry,(7)|G ., ~7|cp, (by Lemma 1.3.2, because tWD(ry,(7)| g, )~

= rec(mm, ® | det |1()1—n)/2) and 7, is generic). O

THEOREM 2.3.2. Let F' be an imaginary CM field with mazimal totally
real subfield F*. Suppose that n € Z>1 and that | is an odd prime. Assume
also that {; ¢ F. Let S be a finite set of primes of F* including all primes
above . Suppose moreover that each prime in S splits in F' and choose a prime
o of F above each v € S. Write S for the set of © with v € S.

Let (m,x) be a regular algebraic, cuspidal, polarized automorphic repre-
sentation of GLy,(Ap) which is unramified outside S and has level potentially
prime to l. Let a € (Z")Hom (FC)+ pe the weight of w. Suppose that the image
T1(m)(GF(e)) is adequate.

Suppose, for each v|l, that C, is an irreducible component of

. D —
1im, Spec By, (), Alaur tn—ibids, K/ —eris @ Qi



544 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

containing 11,(m)|Gy, . Suppose also that for each v € S with v [l, Cy is the

irreducible component of Spec REI () ® Q; containing r1,(7)|Gp. -

lcp.

Let L denote a finite extension of Q; in Q; such that L contains the image
of each embedding F — Qp; and L contains the image of r,(x); and ry,(r)
is defined over L; and each C, is defined over L. For v € S let D, be the

deformation problem corresponding to C,. Also let
S= (F/F+7 S7 §7 OL7%1,1<7T)7 rl,l(X)ell_na {D’U}’UES)'
Then the ring R¥Y is a finitely generated O -module.

Proof. Note that r;,(m)|q,. lies on a unique component of Spec R%’ Mle
D N Fy

® Q; for each v € S with v /I; use Lemma 1.3.2 and the fact that

TWD(ra(m)l, ) 2 rec(ms @ [ det (7).

v

Also by making a base change to a finite, soluble, Galois, CM extension
F’/F which is linearly disjoint from erwl”(w)((l) over F, we may suppose
that 7 is unramified above [ and that C, is a component of the spectrum

Spec Rg (Dlan. A{avitn—iti} eris @ Q for each v|l. (Use Lemma 1.2.3). In par-
52 F’f]’ 1T, 1LSTy

ticular the character x is unramified above [ (as F//FT is unramified above ).
The result now follows from Theorem 10.1 of [Thol2]. O

2.4. Automorphy lifting: the ordinary case. One can combine the Taylor—
Wiles—Kisin method with the level changing method of [Tay08] and Hida theory
to derive a stronger theorem in the ordinary case. This theorem allows for
changes of level and weight. The first such theorem was obtained by D.G.
(See Theorem 5.3.2 of [Ger10].) The “bigness” condition in Theorem 5.3.2 of
[Ger10] was relaxed by Thorne. The theorem we present below, in the case
that F' is imaginary, is Theorem 9.1 of [Thol2]. The case that F' is totally real
follows immediately from the case that F'is imaginary by base change.

THEOREM 2.4.1. Suppose that F is a CM (or totally real) field, that I
is an odd prime and that n € Z>1. Let (r,u) be an n-dimensional, algebraic,
polarized l-adic representation of G satisfying the following properties:

(1) the reduction T is irreducible and (G p(,)) C GLyn(F;) is adequate;
(2) G & F;

(3) r is ordinary at all primes above I;

(4) (7, @) is ordinarily automorphic.

Then (r, ) is ordinarily automorphic. If r is also crystalline (resp. potentially
crystalline), then (r,u) is ordinarily automorphic of level prime to [ (resp.
potentially level prime to ).
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The next result is Theorem 10.2 of [Thol2], which generalizes Corollary
4.3.3 of [GG12]. It provides a finiteness theorem for universal deformation
rings.

THEOREM 2.4.2. Let F' be an imaginary CM field with mazimal totally
real subfield F*. Suppose that n € Z>1 and that [ is an odd prime with {; ¢ F.
Let S be a finite set of primes of F including all primes above I. Suppose
moreover that each prime in S splits in F' and choose a prime U of F above
each v € S. Write S for the set of U forv € S.

Let (m,x) be an 1-ordinary, reqular algebraic, cuspidal, polarized automor-
phic representation of GL,(Ar) which is unramified outside S. Suppose that
the image T1,(7)(Gr(,)) is adequate.

Let

p:Gp+ — @ZX
be an algebraic character satisfying i = 71,(x)& " Note that HT, (1) = {w}
is independent of T : F+ — Q;. For each 7 : F — Q; choose a multiset of n
distinct integers H; such that

Hioqe ={w—h: heH}.

Let L denote a finite extension of Q; in Q; such that L contains the image
of each embedding F — Qp; and L contains the image of w; and ry,(w) is
defined over L. Forv € S withv f1 let Dy, consist of all lifts of T1,,(7)|G . - If vl

let D, consist of all lifts which factor through R%im(wﬂc%7{HT}7ss_ord. Also let

S= (F/FJr?Sv §7 OLa%l,z(ﬂ')vﬂv{,Dv}vGS)'

Then the ring R¥Y is a finitely generated Op-module.

3. Potential automorphy

3.1. The Dwork family. In this section we show that a suitable symplectic,
mod [ representation is potentially automorphic. The theorem and its proof are
slight generalizations of Section 6 of [BLGHT11] The arguments are also sim-
pler because of the stronger automorphy lifting theorems that we now have
available, particularly [Thol2]. (See in particular step 2 of the proof of The-
orem 6.3 of [BLGHT11].) We start with another minor variant of a result of
Moret-Bailly [MB89]. (See also [GPR95] and Proposition 6.2 of [BLGHT11].)

PROPOSITION 3.1.1. Let K@) /K /K be number fields with K®°d) /
and K/Ky Galois. Suppose also that S is a finite set of places of Ko and let
SK denote the set of places of K above S. For v € SK let L] /K, be a finite
Galois extension with L., = oL’ foro € GKO!“‘KO . Suppose also that T/K is a

smooth, geometrically connected variety and that for each v € S& we are given
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a nonempty, Gal (L] / K,)-invariant, open subset Q, C T(L.). Then there is a
finite Galois extension L/K and a point P € T(L) such that
e L/Ky is Galois.
e L/K is linearly disjoint from K@) /[
o If v € SK and w is a prime of L above v, then L, /K, is isomorphic
to L} /K, and P € Q, C T(L,) = T(Ly). (This makes sense as €, is
Gal (L] / K,)-invariant.)

Proof. Let KfaVOid),...,Kr(aVOid) denote the intermediate fields between

K@void) and K with K i(aVOid)/ K Galois with simple Galois group. Combining
Hensel’s lemma with the Weil bounds we see that T has a K,-rational point
for all but finitely many primes v of K. Thus enlarging S we may assume that
for each i = 1,...,r there is v € S¥ with L! = K, and v not split completely
Ki(aVOid). Then we may suppress the second condition on L.

Let K'/K be a finite extension such that
e K'/Ky is Galois;
e if v € SX and w|v is a place of K, then K/ /K, is isomorphic to L’ /K.
(Apply Lemma A.2.1, with F' (resp. S) of that lemma taken to be our K (resp.
SK). This produces a soluble extension K”/K. Then we take K’ to be the
normal closure of K" over Kj.) Thus we may assume that L = K, for all
ve SK.

Then Theorem 1.3 of [MB89] tells us that we can find a finite Galois
extension K’/K and a point P € T(K’) such that every place v of S splits
completely in K" and if w is a prime of K’ above v, then P € Q, C T(K)).
Now take L to be the normal closure of K’ over K. O

in

THEOREM 3.1.2. Suppose that

e F/Fy is a finite, Galois extension of totally real fields;

e T is a finite set;

e for each i € I, n; is a positive even integer, l; is an odd rational prime
and 1; : Q;, = C;

o F@void) /B s g finite Galois extension;

e 7;: Gp — GSp,, (Fll) is a mod l; Galois representation with open kernel
and multiplier €lli_n".

Then we can find a finite totally real extension F'/F and for each i € T

a regular algebraic, cuspidal, polarized automorphic representation (m;, x;) of

GL,, (Apr) such that

(1) F'/Fy is Galois;

(2) F' is linearly disjoint from F®°) oper F';

(3) (F1,0,(m3), 71, 0 (Xi)Elli_"i) ~ (Fi|GF/,Elli_ni) for each i € I;

(4) m; is 1;-ordinary of weight O for each i € T.
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Proof. The proof follows the proof of Theorem 6.3 of [BLGHT11], al-
though the proof here is simpler. First note that 7; is actually valued in
GSp,, (F®)) for some finite cardinality subfield F) ¢ F;,. We choose a positive
integer N such that

e N is coprime to 2[J; s,

e N >n;+ 1 for all ¢,

e N is not divisible by any rational prime which ramifies in F
e for each i € Z there is a prime )\; of Q(¢x)* above [; and an embedding

FO < Z[¢CN] T/ -

(Use Lemma 6.1 of [BLGHT11].) Note that in particular F(®°id) is linearly
disjoint from Q({xn) over Q.

We next choose an imaginary CM field M; for each ¢ € Z such that M;/Q
is cyclic of degree n; and unramified at all rational primes which ramify in
F@void) For each i let 7; denote a generator of Gal (M;/Q). Choose a rational
prime ¢ such that

(avoid)
’

e ¢ splits completely in []; M;,

e ¢ is unramified in F({4n).

Also choose primes q; of M; above ¢ for each i. Choose M’ containing the
compositum of the M;’s and, for each ¢, a character ¢; : A&, — (M")* with
open kernel such that

o if &« € M, then

n;/2—1 '
dile) = T = (a)ir* ()
§=0

o i =11, o | 157

e ¢; is unramified above all rational primes which ramify in F/Q;

e ¢; is unramified above IV;

e ¢; is unramified at all primes above ¢ except q; and q¢, but q\#@((’)ﬁmi).
(Apply Lemma A.2.4. We take S to be the set of primes of M; above Ngq or
any rational prime that ramifies in /. We also take s = [[,es ¥v, Where
1)y is the trivial character unless v|q;q5. Moreover we choose v, to be wildly
ramified and take e = (wgi)*l. )

Next choose a rational prime !’ such that

e [’ splits completely in M'({x) (so that in particular I’ =1 mod N);

e !’ is unramified in F;

In particular ( ¢ F. Also choose primes X, of M" and X of Q(¢y)™ above
I'. For each i let
0; : Gar, — OJT/I’«\’M, =17,
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be the algebraic character defined by
n;/2—1
j —j, ni/2+] ]
0i(Art p0r) = ¢i() [ 7/ () 3l 2 (g )i
7=0

Note that 0;05 = ¢, ™. Let r} = Ind g%{ﬂi and note that
i = (rh)Y @€, ™.

Choose a lifting 7; of 7; to kerey C Gg. Then

0:(77") = 0i(e(cF ) (7)) = (00°) (7)) = e " (7% =

K3
The module underlying r has a Zy-basis eg, e1, ..., en,—1 such that
j
o 7i(0)e; =0, (0)e; for all o € Gyr;
o ri(T)ei=ei—y fori=1,...,n; — 1;
o ri(Ti)eo = 0i(7" )en,—1 = —en,—1-
If we define a perfect pairing on r; by setting
L if jo =1 +ni/2,
<€j1’€j2> =q-1 ifj1=72+ ni/27
0 otherwise,

we see that this pairing is preserved by 7} up to scalar multiplication by e

1—n,

Thus r; factors through GSp,,,(Zy) with multiplier €,

Let 0; : Gy, — IF'lX, denote the reduction of 6; and let 7, denote the

reduction of r,. We have the following observations:

. @TJ]GMZ_((V) # ézj ’GMM;/) for j # j' in the range 0,1,...,n; — 1. (Look at

the ramification above q.)
* Tl is irreducible.
o ' f#T.Go.
o 7;(Gg(c,)) is adequate (by Proposition 2.1.2).

e Q(Cy) is linearly disjoint over Q from F(v°id) /Q (because no rational prime

ramifies in both fields).

o 7(Go)) = Ti(Grc,,)) (because 7 is only ramified at primes which are

unramified in F((y)).

Let Tp/Spec F(Cy)T denote the scheme P*—({oo} U uy). For each i there are
e lisse Z[CN];_ (resp. Z[(n]},) sheaves Vy,, x, (N —1—n;)/2) (resp. Vy, (N —

1 —mn;)/2)) over Ty;

e locally free etale sheaves V,,, [\i|((N—n;—1)/2) (resp. Vp,,[N]((N—n;—1)/2))

of Z[¢n]T /i (resp. Z[¢n]T/N) modules;
e a finite cover TFiXF’i/(TO x Spec F({n)™)

—1.
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constructed as in Section 4 of [BLGHT11] using N = N and n = n;. (We have
added the subscript n; to the notation of Section 4 of [BLGHT11] as a reminder
that we are taking n = n; in the constructions of that section. We would like
to point out that in the definition of Ty on page 54 of [BLGHT11] we should
have specified that it represents isomorphisms Wg = V[n]((N — 1 —n)/2)s
compatible with the symplectic structures. We would also like to point out that
the fourth occurrence of Sy in the statement of Proposition 6.2 of [ BLGHT11]
should be an M. We thank Kevin Buzzard for pointing out these corrections
to [BLGHT11].)

Let T denote the product of the T?ixF§ over Spec F(({y)* and let ¢; denote
the i*" projection to Ty. By Proposition 4.2 of [BLGHT11] we see that T is
geometrically irreducible. By Proposition 3.1.1 we can find a finite extension
of F'/F(Cx)T and a point P € T(F’) such that

e F'/F, is Galois,
F’ is totally real,
F’ is linearly disjoint from [(avoid) s keﬁ;((Nl/) over F({n)T,
v(t;(P)) < 0 for all places vl|l; of F’,
v(t;(P)) > 0 for all places v|l’ of F'.
(The only thing we need to check is that 75, (F(¢n)) # 0 for each ¢ and
each v|oo. However, because GSp,, (Z/l;I'Z) has a unique conjugacy class of
elements of order 2 and multiplier —1, we see that every F((y); -point of Ty
lifts to a F'(¢y); -point of T x7-)

Then we have the following observations:

o I is linearly disjoint from F®°d) ogyer F (as F((y)" is linearly disjoint

from F(@vid) gyer ).

Vi A (N =1 = n4) /2)g,(p) =

Vni [)‘/]((N -1- ni)/2)ti(P) =

7i(Gpi(c,)) is adequate.

(v € F' (as F' is totally real and I’ > 2).

Vigx (N =1 —n;)/2)4,(py is ordinary at all primes above /. (See Lemma

5.3(3) of [BLGHT11].)

e HT (Vo v (N — 1 —=n4)/2)1,p)) = {0,1,...,n; — 1} for all 7 : F/ — Q.
(See Lemma 5.3(1) of [BLGHT11].)

e If v is a place of F’ above [;, then

=l

i‘GF/'

ilG -

3

VWD (Vo 3 (N = 1= 14)/2),p) |Gy ) = TeCr; (SP , (64))

for some unramified character ¢; (and for any isomorphism ' : Qy = C).
(See Lemma 5.1(2) of [BLGHT11].)
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From Theorem 4.2 of [AC89] we see that (THGF,,GZI,_"Z') is automorphic
of level potentially prime to I’ and hence ordinarily automorphic. By Theo-
rem 2.4.1 we conclude that (Vi,, » (N —1—n;)/2),(p), ell,_”i) is automorphic
over F' of weight 0, arising from a regular algebraic, cuspidal, polarized au-
tomorphic representation (7;, 1) with m;, Steinberg for all v|l;, and from an

isomorphism ¢, : @li 5 C. Thus 7; is 2;-ordinary. The theorem follows. O

3.2. Lifting Galois representations 1. We now use the method of Khare
and Wintenberger [KW09] to show that certain mod [ representations have
ordinary lifts with prescribed local behavior. We will later improve upon this
by weakening the ordinary hypothesis (see Theorem 4.3.1), but we will need
to use this special case before we are in a position to prove the more general
result.

Let n be a positive integer and [ an odd prime. Suppose that F' is an
imaginary CM field not containing (; and with maximal totally real subfield
FT. Let S be a finite set of finite places of F'™ which split in ' and suppose
that S includes all places above [. For each v € S choose a prime ¢ of F
above v.

Let p : Gp+ — @ZX be a continuous, crystalline character unramified
outside S such that u(c,) = —1 for all v|oo. Then there is a w € Z such that
for each 7 : F™ — Q; we have HT,(u) = {w}. For each 7: F — Q; let H, be
a set of n distinct integers such that Hyo. = {w —h: h € H.}.

Let

7:Gpr — Gu(F)

be a continuous representation unramified outside S with v o7 = [ and

7 1GY(F,) = Gp. For v € S with v/l let p, : Gp, — GLn((’)@l) denote a

lift of %|GF1~)'

PROPOSITION 3.2.1. Keep the notation and assumptions already stated in
this section. Also make the following additional assumptions:

(a) Suppose that %’GF(CZ) is irreducible. Also, writing d for the maximal di-
mension of an irreducible constituent of the restriction of T to the closed
subgroup of Gp+ generated by all Sylow pro-l-subgroups, suppose that | >
2(d+1).

(b) Suppose that for ull a place of F the restriction %’GFM admits a lift py :
Gr, — GLn(O@l) which is ordinary and crystalline with Hodge—Tate num-
bers H, for each T : F, — Q.

Then there is a lift

r:Gp+ — gn(O@l)
of T such that

(1) vor = [
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(2) if ull is a place of F, then ¥|g,, is ordinary and crystalline with Hodge—
Tate numbers H, for each 7 : F, — Qy;

(3) if ve S and v fl, then FlGy ~ pu;

(4) r is unramified outside S.

Proof. Choose a place v, of F' above an odd rational prime ¢ such that v,
is split over F'* and vy does not divide any prime in S. Also choose integers
b, for all 7: F < Q; such that

® b, +bro.=2n—1—w for all 7;
o |by — broc| > |h— K| for all 7 and for all h € H;,h' € Hyop.

Now choose a character ¢ : Gp — @lx such that
e |G, is unramified if v € S but v f1;
e 1) is crystalline at all primes above [ with HT(¢)) = {b,} forall 7 : F — Q;
o ql#W/v°)Ir,,);
o Yt = "ua,.
(To do this, apply Lemma A.2.5 with the set S of that lemma equal to the
primes of F' above our S, plus vy and vg. For v in this set take 1, as follows:
e if v € S but v/fl, then ¥y =1 and 4 = 611_2"u*1|GF~C;
® ¢y, is a wildly ramified character and t,e = (wgq)*l;
e if v|l, then v, is crystalline with HT,(¢,) = {b;} for all continuous 7 :
Fy — Ql)
In the notation of Section 1.1, we have a homomorphism

(. 2" oppe) 1 Gpe — Gi(F)),
and we can consider the representations
T® (0,6 "0 oppe) : Gre — Gu(F)
and
L) = 1@ (0, "5 opyp+)) : Gpe — GSpy, ().

Note that I@(f) has multiplier Ell_Q”. By the third condition on % the repre-
sentation I(7)|a,., - is irreducible. (As it is the induction of an irreducible
representation from the index 2 subgroup Gg(c,), it suffices to check that the
restriction to Gp(¢) is not the sum of two isomorphic representations, and
this follows, as the two representations differ when restricted to I qu.) By
Proposition 2.1.2, IE(P)(GFﬂCl)) is adequate.

Let Fy/F* be a totally imaginary quadratic extension linearly disjoint
from F* (") (¢;) over F™. By Theorem 3.1.2 there is a Galois totally real field
extension F;"/F* and a regular algebraic, cuspidal, polarized automorphic
representation (my, 1) of GLgn(AF;r) such that
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I L —=ker I—(T) +
e I is linearly disjoint from F "¢V Fy((;) over F'T;
* Tia(m) = L(0lay.

e 7 is ¢-ordinary.

Set Fy = FpF; . Tt is linearly disjoint from err[J(F)Ff(Q) over Fi". Set
(again, in the notation of Section 1.1)

T = (IE(?)’GFT)QFl : GF1+ — an(E)

Then %1(GF1 (¢)) is adequate and (; & 7.
Let T" O S denote a finite set of primes of F'* including all those above
which 1, m or Fy is ramified. Let F3"/F* be a finite soluble Galois totally

real extension, linearly disjoint from Fll(er "(¢;) over F* such that all primes of
Fyt = FPFy above T' split in F3 = FyFy". (We have introduced Fy in order
to be able to apply Theorem 2.4.2. The primes of F;~ above 7" may not split
in Fl) Set
T3 =Tila,, : Gpr — Gon(F1)
3

so that 73G9, (F;) = Gr,. Then 73(Gr,(()) is adequate and ¢ ¢ F3. Let T

denote the set of places of F3+ lying over T" and for each v € T choose a prime

o of F3 above u and let T denote the set of @ for u € T.
For v € S with v /I let C, denote a component of R

- ® Q; containing
rlap,
pu. Choose a finite extension L of Q; in Q; with integers O and residue field F
such that

e L contains the image of each embedding F3 — Q,

e for v € S the component C, is defined over L,

e 7 and 1) are defined over F,

e (1 is defined over L.
For v € S with v/l let D, denote the deformation problem for %|GFﬁ corre-
sponding to C,. For v € S with v|l let D, consist of all lifts of %|GF5 which

0
factor through RO?IGF {H Y erord” Set

§= (F/F+757§>0afa,ua{D’U}UGS)'

For u € T with u /1 let Ds,, consist of all lifts of %3|GF3 _. Foru € T' with ull let

O

D3, consist of all lifts of ?3|GF3’11 which factor through RO,%3IGF3 {Ha ) ssord?

where
Hs,={h+b;,: he H } U{h+b;: he H,},
and 71 and 75 denote the two embeddings of F «— Q; lying above 7|p+. Set

83 = (F3/F3+a T7 T? (97?35 61172n7 {D3,u}u€T)~
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According to Theorem 2.4.2 the ring Rgg‘i" is a finitely generated O-module.
Hence by (all three parts of) Lemma 1.2.3 the ring R§"" is also a finitely gener-
ated O-module. On the other hand by Proposition 1.5.1 Rg«“i" has Krull dimen-
sion at least 1 and so there is a continuous ring homomorphism Rgni" - Q.
The push forward of the universal deformation of 7 by this homomorphism is
our desired lift . O

3.3. Potential ordinary automorphy. In this section we improve Theo-
rem 3.1.2 to show that a suitable mod [ representation is potentially ordinarily
automorphic with prescribed “weight and level.” The proof will combine The-
orem 3.1.2 and Proposition 3.2.1. We will improve further on this result in
Corollary 4.5.3.

ProproSITION 3.3.1. Suppose that we are in the following situation:

(a) Let F/Fy be a finite, Galois extension of imaginary CM fields, and let
FT* and FS’ denote their maximal totally real subfields. Choose a complex
conjugation ¢ € Gp+.

(b) Let T be a finite set.

(¢) For each i € T let n; be a positive integer and l; be an odd rational prime
with ¢, ¢ F. Also choose 1; : Q;, = C for each i € T.

(d) For eachi €T let p; : Gp+ — @IXZ be a continuous, totally odd, de Rham
character. Then there is a w; € Z such that for each T : FT — @li we
have HT - (u;) = {w;}. B

(e) For eachi €T letT;: Gp — GLy,(IF;;) be an irreducible continuous repre-
sentation such that (F;,1i;) is a totally odd polarized mod | representation.
Let d; denote the maximal dimension of an irreducible subrepresentation
of the restriction of 7; to the subgroup of Gr generated by all Sylow pro-
l;-subgroups. Suppose that FZ-]GF(%) is irreducible and that l; > 2(d; + 1).

(f) For eachi € T and each T : F — @li let H; + be a set of n; distinct integers
such that H; roc = {w; —h: h € H;.}.

(g) Let S denote a finite Gal (F/F1)-invariant set of primes of F including
all those dividing [[; l; and all those at which some T; ramifies.

(h) For eachi € T and v € S with v [l; let p;y : G, — GLy,(Og, ) denote a

L
lift of Til Gy, such that pf ., = wilGp, PYy-
(i) Let F@vd) /E be o finite Galois extension.

Then we can find a finite CM extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (i, xi) of GLyp, (Apr)
such that
(1) F'/Fy is Galois;

(2) F' is linearly disjoint from F®°) oper F;
(3) (Fli,zi (ﬂ-i)7?li,% (Xi)gllim) = (?i|GF/7ﬁi‘G(F/>+);

i



554 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

(4) m; is unramified above l; and outside S
(5) m; is 1;-ordinary;

(6) if 71 F" — Q,, then HT7(ry,,,(mi)) = H; 7,05

(7) if ufl; is a prime of F' lying above an element v € S, then ry,,, (mi)lG

~ pi,v|GF{L .

Proof. Note that (7;, fi;|c, ) extends to a continuous homomorphism ﬁ,ﬁi :
Gp+ — G, (Fy,) with v o7 . = [i;. (See Section 1.1.)
Choose a finite totally real extension Fj/F* so that
e I\ /F; is Galois;
e I is linearly disjoint from ok kem(gl—[. L) Flavoid) gyer pt.
e all places of F} = F F1+ above S are spli‘é over I 1+ ;
e for all i € 7 and all places u|l; of F} the restriction Fi’GFl,u admits a lift
piw : Gr, — GL”i(O@zi) which is ordinary and crystalline with Hodge—

Tate numbers H; (. for each 7: Fy,, — Q.

Tlr
(For all v a prime of F'™ below an element of S there is a finite Galois extension
E,/F, with the following property: The last two bullet points will be satisfied
as long as, for all primes w of Fl+ above a prime v of F'* below an element of
S, we have (F}"), D E,. So we may replace the last two bullet points by this
condition. Now the existence of Fj" follows from Lemma A.2.1.) Replacing F'
by Fy (and F&vid) by py p@veid)y we may reduce the theorem to the special
case that all elements of S are split over F'™ and that for all i € Z and all places
ull; of F' the restriction 7;|g,, admits a lift p;, : G, — GL”i(O@zi) which is
ordinary and crystalline with Hodge-Tate numbers H; , for each 7 : F,, = Q.
(Note that if F'/F; is finite and linearly disjoint from Favoid) B over Fy and
if F'/Fy is Galois, then F'/F is linearly disjoint from F®v°id) over F; thus
replacing F' by F; does not affect the condition that F’ is linearly disjoint
from F(@vid) gyer F.)

In this case, using Proposition 3.2.1, we see that for each i € Z there is a
lift
ri: Gpy — gni((’)@li)

of %ivﬁi such that

® voT = [

e if u|l; is a place of F', then 7|g,, is ordinary and crystalline with Hodge—

Tate numbers H; ; for each 7 : F}, — @li;

e if v € S and v [l;, then 7|a, ~ piyv;

e 1; is unramified outside S.
(Note that if we write S = S 11 ¢S, then we only need check the penultimate
assertion for v € S and it will follow also for v € ¢S.)
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Choose a place v of F' which is split over F™ and which lies above an
odd rational prime ¢, which in turn does not lie under any prime in S. Also
choose integers b; - for all i € Z and all 7: F' — Q; such that

® b+ biroc = 2n; — 1 — w; for all 7;
® |bir —biroc| >|h—R|forall 7 and for all h € H; -, h/ € H; roc.
Now choose a character ¢; : Gp — @Z for i € T such that

e 1); is unramified at places in S which do not divide ;;

e 1; is crystalline at all places above l; and HT(v;) = {b;} for all 7 : F'
— @zi;

o q|l#(Wi/¥5)UR,,);

1-2n;  —
d 1/}7/7;[)1? = 6li " 17 1‘GF'
(To do this apply Lemma A.2.5 with the set S of that lemma equal to the
union of our S and the set of primes of F' above ¢. For v in this set take 1, as

follows:
o if {v,v°} C S but v [l;, then put ¢, = 1 and e = 62_2”/1*1]@1, . (or the
other way round),

® ¢y, is a wildly ramified character and t,e = ( f}q)*l,

e if v|l;, then 1, is crystalline with HT,(¢,) = {b;,} for all continuous
7:F,— Q)

Consider
Ly (Fig,) = 1(Fi, ® (g @, "5 'Spyp+)) - Gpe — GSpap, (Fyy),
which has multiplier Elli_Q”". As in the proof of Proposition 3.2.1 we see that

I (%Z'vﬁi)(GF+(<li)) is adequate. Theorem 3.1.2 tells us that there is a finite

totally real field extension F;"/FT such that
o I} /Fy is Galois;

e It is linearly disjoint from ket (Fi’ﬁi)(cn_ 1) F (avoid) Gyer F,

—1—2n;

e each ((Ind gi T @) €, ") is ordinarily automorphic of weight 0.

‘GF;u

By Theorem 2.4.1 we conclude that each ((Ind gf 7 ® 1,[)7;)|GFJr , elli_gn") is or-
1

dinarily automorphic of level prime to ;.

Let F’ = FF;". By Lemma 2.2.4 we see that each ((# ® ¥;)|g,., 611;"") is
automorphic of level prime to [;. Hence each (7%|c .., tilc ) . ) is automorphic
of level prime to [;. As these representations are also ordinary, they are ordi-
narily automorphic of level prime to [. The theorem follows (using local-global
compatibility). O
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4. The main theorems

4.1. A preliminary automorphy lifting result. The proof of the next propo-
sition is our main innovation. The last two parts of assumption (3) are rather
restrictive and mean that the proposition is not directly terribly useful. How-
ever in the next section we will see how we can combine this result with Theo-
rem 2.4.1 to get a genuinely useful result. Our main tool will be Harris’ tensor
product trick. (See [Har09] and [BLGHT11].)

PROPOSITION 4.1.1. Let F be an imaginary CM field with mazimal totally
real subfield ™ and let ¢ denote the nontrivial element of Gal (F/F™). Suppose
that 1 is an odd prime and let n € Z>y1. Assume that ¢, ¢ F. Let (r,u) be a
reqular algebraic, irreducible, n-dimensional, polarized l-adic representation of
GF. Let T denote the semi-simplification of the reduction of r and let d denote
the mazimal dimension of an irreducible subrepresentation of the restriction of
T to the closed subgroup of Gr generated by all Sylow pro-l-subgroups. Suppose
that (r, p) enjoys the following properties:

(1) rlgy, is potentially diagonalizable (and so in particular potentially crys-
talline) for all v|l.
(2) The restriction ﬂGF(Cl) is irreducible and | > 2(d + 1).
(3) (7, ;) is automorphic of level prime to | arising from a reqular algebraic,
cuspidal, polarized automorphic representation (m,x) such that
e 11,(7)|ap, is potentially diagonalizable for all v|i;
o forallT: F < Q the set {h+h' : h € HT(r), b’ € HT,(r;,(7))}
has n? distinct elements:;
o if vfl, then ri(7)|Gy, ~ Tlap, -

Then (r, p) is potentially diagonalizably automorphic (of level potentially

prime to l).

Proof. Note that WD (ry,()|qy, ) ¥~ = rec(m, | \5,1‘")/2) for allvfl. More-
over as 7, is generic we have ry,(7)|cp, ~ 7|y, for all v [l

Also note that by Proposition 2.1.2, 7(Gp(,)) is adequate and so (by the
remark in the paragraph before the statement of Proposition 2.1.2) we see that
Lfn.

Using Lemma 2.2.2 we see that it is enough to prove the theorem after
replacing F' by a soluble CM extension which is linearly disjoint from er”(g)
over F. Thus (using Lemma A.2.1) we may suppose that

e F/F* is unramified at all finite primes;

e all primes dividing [ and all primes at which 7 or r ramify are split over
FT:

e if u is a place of F' above a rational prime which equals [ or above which
7 ramifies, then 7|q,, is trivial;
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e if u is a place of I above [, then r|g, and ry,(7)|q,, are diagonalizable,
and 7, is unramified.

For each prime v of F* which splits in F', choose once and for all a prime ? of
F above v.
For u a prime of F' above [ suppose that
rlag, ~ Y @ @y,
and
ra(m)lap, ~ 6 & @ ol
for crystalline characters wi(u) and qﬁl(u) : Gp, — (96. We can, and shall,

o (6(")° = (.06 Mg, For 71 Fy = Q write HT, (") = {h];}
and HTT(d)Z(-u)) = {h;;}. There are integers w and w’ such that for each
7: FT < Q we have HT,(u) = {w'} and HT,(r;,(x)) = {w + 1 — n}. Then

1
assume that the characters wz(u) and qﬁl(u) satisfy wgcu) (w-(u))c = |y, and

/

/ / _
hT,i + th,i =w

and
hri =+ hrei =w
for all 7 and 3.
Using Corollary A.2.3 we may choose a CM extension M /F such that

e M/F is cyclic of degree n,

e M is linearly disjoint from erﬁ(g) over F,

e all primes of F' above [ or at which 7 ramifies split completely in M.
Choose a prime u4 of F' above a rational prime g such that

e ¢ # [ and ¢ splits completely in M;

e 7, u, mand x are unramified above q.

If v|gl is a prime of F, we label the primes of M above v as v 1, ...,V SO
that (cv)a,i = c(va,i). Choose continuous characters

0,0 : Gy — Q/
such that
the reductions 8 and 8§ are equal;
00° = r1,(x)e, " and 6'(0)¢ = p;
0 and 0" are de Rham;
if 7: M — Q lies above a place vaz4|l of M, then HT-(0) = {h,,,;} and
HT,(¢) = {h’T|F BE
¢ and 0’ are unramified at ug ar; for i > 1, but ¢ divides #6(1 Mu, oy 1)
#gl(IMuwayl )

and
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(First use the first part of Lemma A.2.5 to choose (say) 6 and then use the
second part of Lemma A.2.5 to choose ¢'.) Note that if u|l is a place of F and
if K/F, is a finite extension over which § and ¢’ become crystalline and § = 22
become trivial, then

(d &7 O)ley ~ &5 or @ @ 6|y
and
(A&7 0)|ae ~ 01 e ® - ® W

(To see this, note that both sides are residually trivial by the choice of K,

and both sides are sums of crystalline characters with the same Hodge—Tate

numbers. The result then follows from points (5) and (6) of Section 1.4.)
Now let Fj/F be a solvable CM extension such that

® 0Gp, \ and €|y, ,, are unramified away from [ and crystalline at all primes
above [,
® 0|Gy, ,, Is trivial at all primes above [,

—ker(F Gryg
e [ is linearly disjoint from F' ker(Pend 6, 0) g ((;) over F,

e MFy/F) is unramified at all finite places.

(Use Lemma A.2.1.) Note that M F;/F} is split completely above all places of
F' at which 7 is ramified.
Put

R:=(r® (Indg" 0))lc,,,
R = (r(r) @ (Ind &.0))| ., -

Note that we have the following facts:

R

~
C

- !
o I? .
G ~ _
o R°2= (Y @Inddh0°® ey, = R ® (1006 "0p, 5 )G, -
(R 2 (R)Y @ (1 (0l "8 o e,
e Ris irreducible and R(Gp (,)) is adequate.
(As ?|GM( & is irreducible, we see that the restriction to Gy, of any
. _ Gr 7
constituent of (7 ® Ind G;9)|Gp(cl)
over some subset of Gal(M/F). Looking at ramification above u, we
see that the F\GM(@ 0T|GM(C1) are permuted transitively by Gal (M/F) and
hence (7 ® Ind gi{&)

— ker(F Gr g —
prerreind gy 6) (G1) over F, we see that R|q,, ¢ is irreducible. As | In,

every Sylow pro-l subgroup of Gr(¢,) is a subgroup of G (,). By Propo-

. — T
is a sum of 7|q,, 0 |Gy, as T runs

|GF( o is irreducible. Since F7 is linearly disjoint from

sition 2.1.2, we see that R(Gp, () is adequate.)
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o (R, Mrlﬂ(X)ﬁll_néFl/Ff) is automorphic of level prime to [, say

_n ~ —n?2
(Rlaﬂrl,z(X)ell 6F1/F1+) = (Tl,z(ﬂ—l)arl,z(Xl)ell )

Moreover m; only ramifies at places of Fy where BC , /p(7) is ramified.
(my is constructed as the automorphic induction of

BC gy () @ (¢'] " D72 o det)
to Iy, where Tl,z(qb’) = 0/|GF1M. Note that if o € Gal (F1M/Fy), then
r 7'\ — —/
Tl,l(ﬂ-)‘GFll\/je |GF1M * T’l,z(W)‘GFlM@ ’GFle so that
(BC FIM/F(TF) (024 ((Z)/ o det))U % BC FlM/F(Tr) ® (¢/ o det)

and 7 is cuspidal.)
e For all places ul|l of F7,

Rloy, . ~ @M o o9, @@ e o),
"~ Rlay . ’

1,u

For all places u { [ of Iy we have /|G, ~~ Ray, . (because we know that

r1.(BC gy p(m))law, , ~ Tlay, , and (dGh o), ~ (Indgho)la,, .
the latter because they are both unramified).

We now apply Theorem 2.3.1, with

F the present Fi;

[ as in the present setting;

n the present n?;

r the present R;

1 the present url,z(x)ell_"éFl/F;;

(m,x) the present (71, x1)-

We conclude that (R, (url,l(x)ell_”épl/F;r)

prime to I. By Lemma 2.2.4, (rlcp \ @ 0lcp (url,z(x)ell_”éFl/F;)|G(F1M)+)
is automorphic of level prime to [. Using Lemma 2.2.1 we deduce that the po-

|G( P M>+) is automorphic of level

larized l-adic representation (T\GFl o ,u\(;(FlM) . ) is automorphic of level prime
to . Finally by Lemma 2.2.2, r is automorphic of level potentially prime to I,
and hence potentially diagonalizably automorphic. ([

4.2. Automorphy lifting: the potentially diagonalizable case. In this sec-
tion we will prove our main automorphy lifting theorem. It generalizes Theo-
rem 2.4.1 from the ordinary case to the potentially diagonalizable case. It is
proved by combining Theorem 2.4.1 and Propositions 3.2.1 and 4.1.1.
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THEOREM 4.2.1. Let F be an imaginary CM field with mazimal totally
real subfield Ft and let ¢ denote the nontrivial element of Gal (F/F ™). Sup-
pose that that | is an odd prime, and that (r,p) is a regular algebraic, irre-
ducible, n-dimensional, polarized representation of Gp. Let 7 denote the semi-
stmplification of the reduction of v and let d denote the mazimal dimension of
an irreducible subrepresentation of the restriction of T to the closed subgroup
of Gr generated by all Sylow pro-l-subgroups. Suppose that (r, ) enjoys the
following properties:

(1) rlgy, is potentially diagonalizable (and so in particular potentially crys-
talline) for all v|l.

(2) The restriction ﬂGF(Cl) is irreducible, | > 2(d+ 1), and ; & F.

(3) (7, @) is either ordinarily automorphic or potentially diagonalizably auto-
morphic.

Then (r, p) is potentially diagonalizably automorphic (of level potentially prime
tol).

We remark that condition (1) of the theorem will be satisfied if, in partic-
ular, [ is unramified in F and r is crystalline at all primes above [, and HT,(r)
is contained in an interval of the form [a,,a, + 1 — 2] for all 7 (the “Fontaine—
Laffaille” case). We also remark that the reason we cannot immediately apply
Proposition 4.1.1 to deduce this theorem is the last two parts of assumption 3
in Proposition 4.1.1 (i.e., roughly speaking r and r;,(7) may have different
level or 7 ® r;,(m) may have repeated Hodge-Tate weights). To get round this
problem we use Proposition 3.2.1 to create two ordinary intermediate lifts of
7, one 1 with similar behavior (‘level’) to r, and one ry with similar behavior
to 7, (m). We also ensure that 1 @ r and ro ® r;,(7) are Hodge-Tate regular.
Theorem 2.4.1 tells us that if 7o is automorphic, so is 7. On the other hand
Proposition 4.1.1 allows us to show that ry is automorphic and that if r{ is
automorphic, then so is r.

Proof. Using Lemma 2.2.2 it is enough to prove the theorem after replacing
7

F by a soluble CM extension which is linearly disjoint from e ((;) over F.
Thus we may suppose that

e F/F* is unramified at all finite primes;

e all primes dividing [ and all primes at which 7 or r ramify are split over
FT:

e if u is a place of F' above [, then F,, contains a primitive
and 7|q,, and 7y,(7)|gy, are trivial.

I*" root of unity,

Let S denote the set of primes of F'™ which divide [ or above which r or 7
ramifies. For each prime v € S choose once and for all a prime ¥ of F' above v.
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Note that p(c) = —1 for all complex conjugations ¢ and that we may
extend 7 = 7 ,(m) to a homomorphism

%ﬁ : GF+ — gn(Fl)

with multiplier f.
Choose an integer m strictly greater than |h — 1’| for all h and b/ Hodge—
Tate numbers for r or ry, (7). If 7: F — C, set

H.={0,m,...,(n—1)m}.

Note that if u|l, then both 7|g, and 7,(7)|c, have ordinary and crys-
talline lifts 1 @ 6™ @ -+ @ " ™™
each 7: F, — Q. (It is here that we use the assumption that F, contains
I'" root of unity, and 7|q,, and 7,(r)|c,, are trivial.) Applying
Proposition 3.2.1 we see that there is a continuous homomorphism

T GF+ — Qn(@l)

with 7-Hodge-Tate numbers H. |, for

a primitive

lifting %ﬁ and such that

e vor] = el(l_n)mwl(n_l)mﬁ, where ji denotes the Teichmiiller lift of ;

e if u|l, then 71|qg,, is ordinary and crystalline with Hodge-Tate numbers

H,, for each 7: F), — Qp;

e 7 is unramified outside S;
e if v € Sand v fl, then rg, ~ gy, -

First we treat the case that (7,7) is ordinarily automorphic. In this case
Theorem 2.4.1 tells us that (71, el(l_n)mwl(n_l)mﬁ) is automorphic of level prime
to {. Then Proposition 4.1.1 tells us that (r, u) is potentially diagonalizably
automorphic, and we have completed the proof of the theorem in this case.

Secondly we treat the case that (7,7) is potentially diagonalizably auto-
morphic, say (7,2) = (r1,(m),r,(x)). In doing so we are free to make use of
the first case, which we have already proved. Again applying Proposition 3.2.1
we find a continuous homomorphism

ry: Gpr — Gu(Q))

lifting %ﬁ and such that

® vory = el(lfn)mwl(nfl)(mfl))z, where X denotes the Teichmiiller lift of 77 ,(x);

e if u|l, then 73|q,, is ordinary and crystalline with Hodge-Tate numbers
H, for each 7: F}, — Qp;

e 79 is unramified outside S;

e if v € S and v fl, then 1, (7)|cy. ~ T2lay, -

By Proposition 4.1.1, (2, el(lfn)mwl(nfl)(mfl)%) is automorphic of level poten-
tially prime to [, say o = 7,(m2). As ry is ordinary and 7 has level potentially
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prime to [, we can conclude that 7o is ¢-ordinary. The second case of our the-
orem now follows from the first case. O

4.3. Lifting Galois representations I1. We now use the same idea that we
used to prove Theorem 4.2.1 to prove a strengthening of Proposition 3.2.1. Let
n be a positive integer and ! an odd prime. Suppose that F' is an imaginary
CM field not containing ¢; and with maximal totally real subfield F*. Let
S be a finite set of finite places of F™ which split in F' and suppose that S
includes all places above [. For each v € S choose a prime ¢ of F' above v.

Let p: Gp+ — @lx be an algebraic character unramified outside S such
that p(c,) = —1 for all v]co.

Also let

7:Gp+ — gn(Fl)

be a continuous representation unramified outside S with v o 7 = T and
771G (F)) = Gp. Forv e Slet p, : Gp, — GLn((’)@l) denote a lift of %’GFTJ'

THEOREM 4.3.1. Keep the notation and assumptions already stated in
this section. Also make the following assumptions:

e Suppose that %|GF((Z) is irreducible. Also, writing d for the maximal di-
mension of an irreducible subrepresentation of the restriction of T to the
closed subgroup of Gr generated by all Sylow pro-l-subgroups, suppose that
[>2(d+1).

o If v|l, we suppose that p, is potentially diagonalizable and that, for all
7 Fy — Q, the multiset HT,(p,) consists of n distinct integers.

Then there is a lift
r:Gp+ — gn((’)@)

1

of T such that

(1) vor =

(2) ifveS, then Fla, ~ pu;
(3

) r is unramified outside S.

Proof. We may suppose that for v € S with v fI the representation p, is
robustly smooth (see Lemma 1.3.2) and hence lies on a unique component C,
of RZ  ® Q. If v|l is a place of F*, then choose a finite extension K,/Fj;

Tla Fy
over which p, becomes crystalline, and let C, denote the unique component of

R%GE LHT (po)} Ko —cris ® @, on which p, lies. Let i denote the Teichmiiller lift

of i. Choose a positive integer m which is greater than one plus the difference
of any two Hodge—Tate numbers of p, for every v|l.
Choose (using Lemma A.2.1) a finite, soluble, Galois, CM extension F}/F

which is linearly disjoint from errF(Q) over F' such that
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for all u lying above S we have 7(Gr, ) = {1};
for all u|l we have (; € F} 4;
° ,LL]GF . is crystalline above [;

1

if u[o[l with v € S, then py|y,  is crystalline and pylcy, =~ @/J](Lu) S D

7(Lu) with each wz-(u) a crystalline character.

If u|@|l with v € S, then for i = 1,...,n, we define ¢\ : Gp, ., — Q' by

(wrgcu))%ﬁz(w = /"GFl,u'
By Proposition 3.3.1 there is a finite, Galois, CM extension F»/Fj linearly

disjoint from Flfkeﬁ(cl) over F and a regular algebraic, cuspidal, polarized
automorphic representation (e, xy2) of GL,(Ag,) such that

o T1.(m2) = Flay,;

o 1.(x2) = ﬁ’GF+wl(n—1)m€l(1—n)(m—1);

® Ty is z—ordinarjf/ and unramified above ;

o if 7: Fy — Q, then HT(r;,(m2)) = {0,m,2m, ..., (n — 1)m};

e 7y is unramified outside S

e if v [lisin S and if u is a prime of F above v, then rl7z(7r2)|GF27u ~ pU|GF27u.

In particular if u|l is a place of Fy, then

(TG, ~ 10§ G B T

Choose (using Corollary A.2.3) a CM extension M /F, such that
e M/Fy is cyclic of degree n, ~
e M is linearly disjoint from errr(cl) over F,
e all primes of Fy above [ split completely in M.
Choose a prime u4 of F5 above a rational prime ¢ such that
e ¢ # [ and ¢ splits completely in M,
e T is unramified above q.

If v|ql is a prime of Fy, we label the primes of M above v as va1,...,Vnn, SO
that (cv)a; = c(var,;). Choose continuous characters

0,0 : Gy — Q/
such that

e the reductions 8 and 8 are equal;

o 00° =1,(x2)e; ™ and 0'(0')° = p;

e 0 and ' are de Rham;

o if 7: M — Q lies above a place vy |l of M, then HT,(0) = {(i — 1)m}

and HT(¢") = HTTIFl (Qb(UM’ilFl))S

7
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e 0 and 0’ are unramified at ug ar; for i > 1, but ¢ divides #6(1 Mu, o 1) and
) M,
#9 (IMuquJ,l )
(First choose (say) 6 using the first part of Lemma A.2.5, then choose 6’ using

the second part of Lemma A.2.5.)
Note the following:

e If u|l is a place of F; and if K/F5, is a finite extension over which 6 and
0’ become crystalline and 0 = 9’ become trivial, then

G - —
(IndGi?HMGK ~1®¢ Mo P efl n)m
and
e
(Ind G20 gy ~ 01" oy @@ ™|

(To see this, note that both sides are residually trivial by the choice of K,
and both sides are sums of crystalline characters with the same Hodge—Tate
numbers. The result then follows from points (5) and (6) of Section 1.4.)

e (Ind GF2 0)¢ = (Ind GF2 0)V@r,(x2)e; ™ and (Ind gF2 0)¢ = (Ind gF2 0"V @u.
e The representation

~ ~ — Gry7l

T|GF2(§l) (IndGFZH)‘GFQ(Cl) =T ( )‘GF2(CZ) (IndGife )‘GFQ(CZ)

is irreducible, and hence by Proposition 2.1.2

o Cry
(Flar, © (Ind ;2 0) (G ryc))

is adequate.
(As %|GM(<Z) is irreducible, we see that the restriction to Gy, of any

. F . ~ AT
constituent of (¥ Gr, ® Ind g 20)’GF2(CZ) is a sum of 7|q,, 0 \GM(Q) as T
runs over some subset of Gal (M/F3). Looking at ramification above u,
we see that the %|GM(< >§T‘GM(<;Z) are permuted transitively by Gal (M/F»)

and hence (7 |G, ® Ind GF2 0)
Let F3 /F> be a finite, soluble, Galois, CM extension linearly disjoint from

|Gy o I8 irreducible.)

__ker Ind GM Qiker 7

F, (¢1) over Fj such that

® 0|Gp,, and &'|G,,,, are crystalline above | and unramified away from I;
e M F3/Fj5 is unramified everywhere.

(Use Lemma A.2.1.)
Then there is a regular algebraic, cuspidal, polarized automorphic repre-
sentation (73, x3) of GL,2(Ap,) such that
° TZ’Z(TI'?,) (T“(ﬂ'g) ®IndGF20,)‘GF3;

n—1
o 71,(x3) = ,Wl,z(X2)€z( )5F3/F3+;
e 73 is unramified above [ and outside S.
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(The representation 73 is the automorphic induction of () prp, @(¢'| [M*~1/20

det) to Fy, where 7,(¢") = 0|gy,,,- The first two properties are clear. The

third property follows by the choice of F3 and the fact that m is unramified
above [ and outside S.)

Let S denote the set of ¥ as v runs over S and let S3 denote the primes of

F3+ above S and S3 the primes of F3 above S. If v € S3, let ¥ denote the element

of S3 lying above it. For v € S3 with v*l (resp. v|l) let C3,, denote the unique

component of By -y @Qu (resp- Be (o (0T (r (ol ) oeris @ Q)
containing 'rl,l(7r;>))|GF3 o Choose a finite extensmn L/Q; in Q such that

e L contains the image of each embedding F3 — Q;

e [ contains the image of u and of 6;

o 1;,(m3) is defined over L;

e cach of the components C, for v € S and C3,, for v € S3 is defined over L.

Set
GF+7GF277’M(X2)51 L

s =Ind ? Jyesy: (9, Tll(XQ) ) : GF; — Gn(O1)
in the notation of Section 1.1 of this paper and Section 2.1 of [CHTO08]. Thus
vos=r.(x2)g ™ Forv €S (resp. v € S3) let D, (resp. D3,,) denote the
deformation problem for 7|, (resp. 71,(73)|cy, ) over Of corresponding to
Cy (resp. C3,). Also let ’

= (F/F",8,5,0L,7, 1,{Dy})

and

Sy = (F3/F5, S3, 53, 0L7Fl,z(ﬂ3)7Wz,z(X2)€1_n5F+/F3 {Ds,}).

We next check that if v € S5, then ?gm"\GFB’ ® (Ind GF2 0)|GF3711 € D3 y.
To this end, let v = u|p+ and let pECU denote the universal lift of 7|g,. to

O m GF
Ovtlep, Co It suffices to show that pv,CU‘GFg, ® (Ind 20)|GF3 € Ds,,. For

this, it suffices to show if p : Gp, — GLn(O@Z) is a lift of 7|, lying on

Co, then plg,, . ® (Ind gjfe)m lies on Cay. If ull, then we have pla,, . ~

(Ind gij@’)k;F and (IndGFQH)]GF3 o r(m2)|ap, - and hence

P|GF37 ® (Ind GF2 0)|GF37 ~ (r1,(m2) ® Ind GFz 9/)|GF3,11 o Tl,z(’]'('g)|GF3,a.

If u f1, note that play, . ~ ri.(m2)|ay, .- (Since py is robustly smooth, we have
polGp, .~ p|GF _and pU|GF3 _~ 11,(72)|Gp, . -) By the choice of F3 we have

(Ind gif 0)|GF( ~ (Ind GF2 lter - Hence
P|Gp37 ® (Ind GFz 9)|GF37 ~ (r,(m2) ® Ind GF29 )|GF3,ﬂ = rl,Z(W;),)\GFM

and we are done.
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We deduce that there is a natural map
Rumv Rgniv
induced by 7| et ®8\GF .- It follows from Lemma 1.2.3 that this map makes
3

RumV a finite Rum" module. By Theorem 2.3.2, Rg?i" is a finite Or-module,
and hence Rum" is a finite Op-module. On the other hand by Proposition 1.5.1,
R“m" has Krull dimension at least 1. Hence Spec Rumv has a Q;-point. This
point gives rise to the desired lifting of 7. ([

4.4. Change of weight and level. In this section we combine Theorems 4.2.1
and 4.3.1 to obtain a general “change of weight and level” result in the poten-
tially diagonalizable case.

THEOREM 4.4.1. Let F' be an imaginary CM field with mazimal totally
real subfield F™. Let n € Z>1 be an integer, and let | > 2(n + 1) be an odd
prime, such that { € F and all primes of F™ above | split in F. Let S be
a finite set of finite places of FT, including all places above I, such that each
place in S splits in F'. For each place v € S choose a place v of F lying over v.

Let p be an algebraic character of Gpy and let 7 : Gp — GL,(TF)) be a
continuous representation such that

e (7, 71) is a polarized mod | representation unramified outside S, which either
we suppose is ordinarily automorphic or we suppose is potentially diago-
nalizably automorphic;

. F\GF@” is trreducible.

Forve S letp,: Gp, — GLn(O@l) be a lift of T, (m)|Gy, - If v[l, assume fur-
ther that p, is potentially diagonalizable, and that for all 7 : Fy — Q;, HT,(py,)
consists of n distinct integers.

Then there is a regular algebraic, cuspidal, polarized automorphic repre-
sentation (m,x) of GL,(Ar) such that
( ) Flz( ) T
(@WA)#"—M
(3) 7 has level potentially prime to l;
(4) 7 is unramified outside S,
(5) for v € S we have py ~ 11,(7)|Gp, -

Proof. By Theorem 4.3.1 there is a continuous homomorphism
r:Gpe = Gn(Og,)
such that

o vor=y;
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e if v|l, then 7 ’Gpﬁ is potentially diagonalizable;
e if v € 5, then %’pr, ~ Py
By Theorem 4.2.1 (¥, u) is automorphic of level potentially prime to [ and our
present theorem follows (using local-global compatibility to establish point (4)).
O

4.5. Potential automorphy 1I. We can now turn to our main potential
automorphy theorem for (finite collections of) single l-adic representations.
We will treat the case of compatible systems in the next section.

THEOREM 4.5.1. Suppose that we are in the following situation:

(a) Let F/Fy be a finite, Galois extension of imaginary CM fields and let F*
and FJ denote their mazimal totally real subfields.

(b) Let Z be a finite set.

(¢) For each i € I let n; and d; be positive integers and l; be an odd rational
prime such that l; > 2(d; + 1) and ¢, & F. Also choose v; : Q;;, = C for
each v € T.

(d) For eachi € T let (r, p;) be a totally odd, regular algebraic, n;-dimen-
sional, polarized I;-adic representation of G such that d; is the mazimum
dimension of an irreducible constituent of the restriction of 7; to the closed
subgroup of G generated by all Sylow pro-l;-subgroups.

(e) Let Fvoid) /F be q finite Galois extension.

Suppose moreover that the following conditions are satisfied for every i € T:
(1) (Potential diagonalizability at primes above [;). r; is potentially diagonal-

izable (and hence potentially crystalline) at each prime v of F* above I;.
(2) (Irreducibility). Tila,, , is irreducible.

Then we can find a finite CM extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (i, Xi) of GLyp, (Apr)
such that
(i) F'/Fy is Galois;

(ii) F' is linearly disjoint from F®°) oper F:
(iii) m; s unramified above l;;
(iV) (rliﬂi (Wi)a Tl (Xi)elli_ni) = (ri|GFm,Ui’G(F/>+)'

We remark that by Lemma 1.4.2 the hypothesis of potential diagonaliz-
ability will hold if /; is unramified in F'*', and r; is crystalline at all primes v|l;,
and HT-(r;) is contained in an interval of the form [a,, ar +1— 2] for all 7 (the
“Fontaine—Laffaille” case).

Proof. By Proposition 3.3.1 there is a finite CM extension F’'/F and
regular algebraic, cuspidal, polarized automorphic representations (7}, x;) of
GL,,, (Apr) such that
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e F'/Fy is Galois;
. . e . —[ ). ker7; :

e F’ is linearly disjoint from pl likerT F(aVOId)(CH. ;) over I
® Fliﬂi(ﬂ-g) = ?i|GF/;
o . (XDe ™ = i ;

lq',,li Xz li Hl G(F/)J,-)
e 7/ is unramified above I;

/

e T, is 1;-ordinary.

Then the current theorem follows from Theorem 4.2.1. O

We can immediately deduce a version over totally real fields. For instance
we have the following.

COROLLARY 4.5.2. Suppose FT is a totally real field and n € Z>y. Sup-
pose that I > 2(n+1) is a rational prime. Suppose also that (r, 1) is a totally
odd, regular algebraic, n-dimensional, polarized [-adic representation of
Gry. Let 7 denote the semi-simplification of the reduction of r and suppose
that the following conditions hold:

(1) (Potential diagonalizability and regularity at primes above l). r is poten-
tially diagonalizable (and hence potentially crystalline) at each prime v of
F* above l.

(2) (Irreducibility). 7:|GF+(CZ) is irreducible.

Then there is a Galois totally real extension F*'/F* such that (r|a,., ,, e, )
is automorphic of level prime to [.

Proof. Choose F/F™ a totally imaginary quadratic extension in which all
the places lying over [ split completely and which is linearly disjoint from
(F)kerad?(¢)) over F*. The representation r|q, satisfies the hypotheses
of Theorem 4.5.1, so that there is a finite Galois CM extension F’/F such
that (T|GF”'U|GF/,+) is automorphic of level prime to I. By Lemma 2.2.2,
(TIGF,,Jr ) M’GF,#) is also automorphic of level prime to [, as required. O

Combining Theorem 4.5.1 with Theorem 4.3.1 we get a potential auto-
morphy theorem for mod | Galois representations which strengthens Proposi-
tion 3.3.1.

COROLLARY 4.5.3. Suppose that we are in the following situation:

(a) Let F/Fy be a finite, Galois extension of imaginary CM fields, and let
F* and F(T denote their maximal totally real subfields. Choose a complex
conjugation ¢ € Gp+.

(b) Let Z be a finite set.

(c) For each i € T let n; and d; be positive integers and l; > 2(d; + 1) be an
odd rational prime such that (;, ¢ F. Also choose 1; : @li 5 C for each
i1el.
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(d) For each i € T let p; : Gp+ — @Z be a continuous, totally odd, de Rham
character.

(e) For eachi € T letT; : G — GLy, (F},) be an irreducible continuous repre-
sentation so that d; is the maximal dimension of an irreducible constituent
of the restriction of T; to the closed subgroup of Gr generated by all Sylow
pro-l;-subgroups. Suppose also that (T;,[i;) is a polarized mod l; represen-
tation and that ?i|GF(clv> is irreducible.

(f) Let S denote a finite Gal (F/F™")-invariant set of primes of F including
all those dividing []; l; and all those at which some T; ramifies.

(g) Foreachi €T andv € S let p;y: Gp, — GLni((D@l.) denote a lift of TilGp,
such that pf ., = wilap, piy- If vlli, further assume that piw 15 potentially
diagonalizable and that for each T : F, — Q. the set HT(py;) has n

distinct elements.
(h) Let F@vid) /F be q finite Galois extension.

Then we can find a finite CM extension F'/F and for each i € T a reqular
algebraic, cuspidal, polarized automorphic representation (i, Xi) of GLyp, (Apr)
such that

(1) F'/Fy is Galois;

(2) F' is linearly disjoint from F®°) oper F';

(3) 7,0, (i) = TilG s

(4) 10 Oy, ™ = il s

(5) m; has level potentially prime to l;;

(6) if u is a prime of F' not lying above a prime in S, then ;,, is unramified,
(7) if w is a prime of F' lying above an element v € S, then Tli7u(7ri)‘GF11

~ pv|GF11-

Proof. Note that (T;, 71;) corresponds to a continuous homomorphism 7; 7. :
Gp+ — Gn,(F},) with v o7; = 71;. (See Section 1.1.) As in the proof of Propo-
sition 3.3.1, we may reduce to the case where all elements of S are split over
F*. Then by Theorem 4.3.1, we see that for each i € Z there exists a lift

T GF — GLm(O@l)

of 7; such that

cr~ .V, . .
e Ty =Ty N’L’Gpv

e if v € S, then ri|g,, ~ piwv;

e 7; is unramified outside S.

The result now follows from Theorem 4.5.1. |
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5. Compatible systems

5.1. Compatible systems: definitions. Let F' denote a number field. By
a rank n weakly compatible system of l-adic representations R of Gr defined
over M we shall mean a 5-tuple

(Ma Sa {Qv(X)}a {rk}a {HT})

where

(1) M is a number field,;
(2) S is a finite set of primes of F;

(3) for each prime v &€ S of ', Q,(X) is a monic degree n polynomial in M [X];
(4)

4) for each prime A of M (with residue characteristic [ say)
) - GF — GLn(M)\)

is a continuous, semi-simple, representation such that
e if v ¢ S and vfl is a prime of F, then r) is unramified at v and
rx(Frob,) has characteristic polynomial @Q,(X),
e while if v|l then r)|g,, is de Rham and in the case v € S crystalline;
(5) for 7: F — M, H, is a multiset of n integers such that for any M — M,
over M we have HT(r)) = H.

We will refer to a rank 1 weakly compatible system of representations as a
weakly compatible system of characters.

We make the following subsidiary definitions. We define the usual lin-
ear algebra and group theoretic operations on weakly compatible systems by
applying the corresponding operation to each 7). For instance

RY = (Mv S, {XnQU(O)_le(X_I)}v {Tx}v {_HT})v
where —H,; ={—h:h e H.}.

We will call R regular if for each 7 : F' < M every element of H, has
multiplicity 1.

We will call R extremely regular if it is regular and for some 7 : F' < M
the multiset H, has the following property: if H and H’ are subsets of H, of
the same cardinality and if Y ey h = > pep b, then H = H'.

If F is totally real and if n = 1, then we will call R totally odd (resp.
totally even) if for some place A\ of M we have r)(c,) = —1 (resp. 1) for all
infinite places v of F'. In this case this will also be true for all places A\ of M.

If Fis CM and if M = (M, Sp+,{X — an}, {pn}, {w}) is a weakly com-
patible system of characters of G g+, then we will call (R, M) a polarized (resp.
totally odd, polarized) weakly compatible system if for all primes A of M the
pair (ry, uy) is a polarized (resp. totally odd polarized) l-adic representation.
(Here Sp+ denotes the set of places of F'T lying below an element of S.) We will
call R polarizable (resp. totally odd, polarizable) if there exists a M such that
(R, M) is a polarized (resp. totally odd polarized) weakly compatible system.
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We will call R irreducible if there is a set L of rational primes of Dirichlet
density 1 such that for A|l € £ the representation ry is irreducible.

We will call R strictly compatible if for each finite place v of F' there
is a Weil-Deligne representation WD, (R) of Wk, over M with the following
property: for each place A of M not dividing the residue characteristic of v
and every M-linear embedding ¢ : M < M, the push forward (W D,(R) is
isomorphic to WD(ry|Gp,)F .

We will call R pure of weight w if
for each v ¢ S, each root a of Q,(X) in M and each 1 : M — C we have

al® = ¢l;

for each 7 : F < M and each complex conjugation ¢ in Gal (M /Q) we

have
H.,={w—h: heH,}.
We will call R strictly pure of weight w if

R is strictly compatible and for each prime v of F' the Weil-Deligne rep-
resentation WD,,(R) is pure of weight w;

for each 7 : F < M and each complex conjugation ¢ in Gal (M/Q) we
have

H={w—h: heH}.
If2: M — C, we define the partial L-function

LR, 5) = [] () /1Qu(a})).
vgS
This may or may not converge. If R is pure of weight w then it will converge
to an analytic function in Res > 1+ w/2. If M|l and every place of F' above [
lies in S, then L°(+R, s) depends only on 7y so, if 7: My = C extends 7, we
will sometimes write L°(iry,s) instead of L9(+R,s). This makes sense even
for r) not part of a weakly compatible system, provided that S contains all
primes above [ and all primes at which r) ramifies.
If R is strictly compatible, then we can define the L-function

L(R,s) = [[ LGWDy(R),s),
U/YOO
which differs from L°(+R, s) only by the addition of finitely many Euler factors.
Suppose that R is strictly compatible, pure of weight w and regular. Also
let ¥ = [[, ¥y : Ap/F — C* be the nontrivial additive character such that if v
is real, then 1, (z) = €2™; if v is complex, then 1, (z) = e2mi(ztent). while if v

is pacic, then v, () = ty(x g, (2)) where |z, = 1 and 4, (1/p) = e27/0.
We wish to define the completed L-function and e-factors of R. (See [Tat79].)
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o Write I'r(s) = 7—%/2I'(s/2) and I'c(s) = 2(27)~°T'(s) = [r(s)Tr(s + 1).

e Suppose that v is a complex infinite place of F' and that 7,7’ € Hom (F, M)
are the two distinct elements such that 207 and 207 extend to continuous
isomorphisms F, = C. Then we set

Ly(iR,s) = Tcls —w/2)"™ R [Then,, new2(Tels —h)/Te(s —w/2))
HheHT,, h<w/2(FC(S —h)/Tc(s — w/2))

and

€ (1R, Wy, 5) = i2neis W=/ 24 e, Ih=w/2,

e Suppose that v is a real infinite place of F' and that 7 : F < M is such
that 207 extends to a continuous isomorphism F, = R C C. As {detr,} is
a weakly compatible system of characters, detry(c,) = £1 is independent
of \. We set det R(c,) = detry(c,) € {£1}.
If dimR is even, set dx = dimR/2, while, if dimR is odd (in which
case w/2 € H; so that w is even), set

die = (dim R + (—1)"/2(det R)(cy))/2.

=£(-1)w/2

(The reader might like to think of dy as dimr}" . Because we did

not make a compatibility assumption between the r) at the infinite place v
this does not make sense directly. However we make use of our regularity
assumption to give this alternate definition, which does make sense and

suffices for our purposes.)
Now define

Ly(1R,s) = Tr(s—w/2) % Tr(s+1—w/2)%- H (Tc(s—h)/Tc(s—w/2))
heH,, h<w/2
and
ey (1R, Yy, ) = 4=t nen, Ih=w/2l
e Finally we define the completed L-function
AGR,s) = L(1R, s) H L,(1R,s)
v]oo

and the epsilon factor

(iR, s) = H e(WDy(R), 1y, S) (H € (PR, Uy, s)) .
v/{/oo vloo
The latter does not depend on the choice of .

We will call R automorphic if there is a regular algebraic, cuspidal au-
tomorphic representation 7 of GL,,(Ar) and an embedding 2 : M < C, such
that if v & S, then m, is unramified and rec(m,|det |§,17n)/ 2)(FI‘ObU) has char-
acteristic polynomial +(Q,(X)). Note that if R is polarizable, then so is 7. It
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follows from Theorem 3.13 of [Clo90] that, when R is automorphic, for any
embedding v : M < C there is a regular, algebraic, cuspidal automorphic
representation 7’ of GL,(Ap) such that if v ¢ S then 7, is unramified and
rec(m),| det \q(jlfn)/ 2)(Frobv) has characteristic polynomial ¢/ (Q,(X)). (It would
be more natural not to include the assumption that 7 is regular. However for
the purposes of this paper our definition will be more convenient.)

We will call an n-dimensional polarized weakly compatible system (R, M)
automorphic if there is a regular algebraic, cuspidal, polarized automorphic
representation (m, x) of GL,(Ar) and an embedding ¢ : M — C such that

o if v ¢ S, then 7, is unramified and rec(m,| det |1(,1_n)/ %)(Frob,) has char-

acteristic polynomial equal to the image under 2 of the polynomial @Q,(X)

for R;

e if v & Sp+, then Y, is unramified and rec(x,| |1~™)(Frob,) has character-
istic polynomial equal to the image under ¢ of the polynomial @Q,(X) for

M.

If F'/F is a finite extension, we define R|g,, to be the weakly compatible
system of representations of Gp:

(M, ST {QE (X))} Aralap 1, {HIY),

where
o S is the set of primes of F’ above S;
o HY) — 1. .
T T|F’

. Qq()F/)(X) is the monic polynomial in M[X] of degree n with roots the
alk):k@IF)] a5 o runs over roots of Qv|F(X)-

We remark that if (7, y) is a regular algebraic, cuspidal, polarized auto-
morphic representation of GL,,(Ar), then {r;,(x)} is a strictly pure compatible
system of some necessarily even weight (because F'* is totally real), which we
will write 2(w +1—n). Moreover {r;,(m)} is a strictly pure compatible system
of weight w. (See Theorem 2.1.1.)

5.2. Rational compatible systems. In this section we present a formulation
of the results of Larsen from [Lar95]. We will consider a weakly compatible
system R = (Q, S, {Qv(X)},{r},{H:}), where for each | we have

T GF — GLn(QZ)

We are going to make a number of definitions which depend on R, but for
simplicity we will not put R in the notation. We hope this will cause no
confusion.

We will write V; for the Q;-vector space underlying r;. We will also write G;
for the Zariski closure of the image of r; in GL,, /Q;, and G? for the connected
component of the identity in G;. Thus G? is a reductive group over ;. Let Iy
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denote the image of Gp in G;(Q;) and set I'! =TI, N GY(Q;). There is a finite
Galois extension FU/F such that Gal (FY/F) 5 T;/TY for all I (Proposition
6.14 of [LP92]). Since r; is Hodge-Tate, the Lie algebra of T'; is algebraic (as
defined in Section I1.7 of [Bor91]) and the group I'; is open in G;(Q;) ([Bog80]).

Let Z; (resp. G§°r) denote the centre (resp. derived subgroup) of GY. Let
G = @GY/Z; and let C; = G?/GPe". Also let G5° denote the simply connected
cover of G?d. We have surjective maps with finite kernels

Gy — G — G,

Because the dimension of G?d is bounded only depending on n, we see that
there is a positive constant A(n) depending only on n (and not on R or [) such
that

#ker(G5° — G| A(n).

The natural map Z; — Cj is surjective with finite kernel of order dividing A(n).
We will write FlZ for TY N Z;(Q;) and Flc for the image of I') in C;(Q;). As
the cokernel of the map GY(Q;) — C;(Q,) is finite (because it is a quotient of
C(Q)/Z1(Qy) € HY(Go,, ker(Z; — C)))), we see that I'¢ is open in C;(Q).

Set H; = G}° x Z;. Then there is a natural surjection of algebraic groups
H, - GY, with a finite, central kernel with order dividing A(n) (as it equals
the kernel of G} — G?d ). Using Galois cohomology we see that the cokernel
of the map H;(Q;) — G?(Q,) is a finite abelian group of order dividing A(n)3
and exponent dividing A(n). (The cokernel embeds in H!(Gg,,ker(H; — GY)),
which by the local Euler characteristic formula has order dividing (# ker(H; —
G9))3.) We will write TY" = I'V N Im (H;(Q;) — GY(Q;)) and ' for the pre-
image of I'Y? in H;(Q;). Thus the kernels of

i 19

and
ry —r¢

are both finite abelian groups of order dividing A(n), while the cokernels are
both finite abelian groups of order dividing A(n)? and exponent dividing A(n).
It will often be convenient to work with FlH in place of F?, because it is easier
to control.

As G; acts by conjugation on G?, it also acts on Z, G?er, G?d, ¢y, Gi°
and H;. Thus I'; does as well. Moreover, F?O is a normal subgroup of I'; and
the conjugation action of I'; on F?O lifts to an action on F{{ .

Let T} denote a maximal torus in G? which we assume to be chosen unram-
ified whenever G? is unramified. Let Tf‘d =T,/7;, let Tlder = ker(T; — })°,
let T7° equal the connected preimage of Tf‘d in G}° and let TlH =1T7°x Z;. We
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have natural embeddings
XHIP) € XHIF) € XH(TF) © (1/A(n)X*(T7),
A(n)X(T/") € X*(Th) € X*(1})
and
An)X*(Z)) C X*(C)) C X*(Z).

Let A € X*(T1) C X*(T;) denote a basis for the root system of GY.

The dimensions of V; and Gj° are bounded only in terms of n. Hence, if
(1/A(n)) Y sen msd is a weight of Gj¢ on Vj, then the |m;| can be bounded by
a constant B(n) depending only on n (and not on R or I).

If p € X*(2;) is a Zj-weight of V, then we can find m, s € Z for 6 € A
such that (1/A(n)) Ysea m, 50 is a weight of T2 on V/. Thus

0EA

((1/A(n)) > Mysd, u) € X*(1}")

is a weight of V; and |m,, 5| < B(n) for all § € A.

Let Spo; denote the restriction of scalars from Opo; to Z; of Gy, and let
Spoy = S’VFo’l x ;. Note that Hom (F°,Q;) gives a natural basis of X*(Sgo ).
There is a homomorphism

0;: SFOJ —

such that 6, agrees with (r; mod G$°*(Q;)) o Art o on an open subgroup of
Oro;- (See Sections II1.1.2 and II1.2.1 of [Ser68]. To aid comparison with
[SeréS] we remark that ¢ of Section I1.1.1 of [Ser68] is the inverse of our Art yo.
Thus 6; is constructed from r; mod G?er(@l) in just the same way as r is
constructed from p in Section II.1.1 of [Ser68].)

LEMMA 5.2.1. Keep the notation and assumptions established earlier in
this section.
(1) 0;: Spoy — Cy is surjective.
(2) If1 ¢ S, then 6; = (r; mod G (Q;)) o Art go on all of Oy -
(3) There is a constant C(R) depending only on R (and not on l) such that if
w € X*(Zy) is a weight of Z; on 'V, then

(An)p) o= > mueo
o€Hom (F°,Q;)
with |my .| < C(R).
(4) There is a constant D(R) depending only on R (and not on 1) such that

#(X"(Spo) /07 X*(C1))"" < D(R).
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X
FO

and (r; mod G§(Q;)) o Art o agree. As C;(Q;) has an open subgroup which
is pro-l, we see that

((r mod G{(Q)) © Art o) (U) = 6,(U)

Proof. For the first part let U denote the open subgroup of O, , where 6;

is open, and hence of finite index, in
((r; mod G{°*(Q;)) o Art 7o) (A%o) = (ry mod G (G o).

As the image of G o in Cj(Q;) is Zariski dense and Cj is connected, we deduce
that 6;(U) is Zariski dense in C;/Q; and the result follows.

For the second part, if [ ¢ S, then 7, : Gp — G;(Q) is crystalline at
each prime above [, and hence so is r; mod G?er((@l) : Gp — C)(Q;). Lemma
3.7.7 of [CCO13] then implies that for each p € X*(C;) the characters p o 6
and p o (r; mod G$°*(Q;)) o Art zo agree on all of (’);lo. Since this holds for
all u € X*(C)), it follows immediately that 6; and (r; mod G§(Q;)) o Art zo
agree on all of O;lo.

For the third part note that —m,, , is the o-Hodge-Tate number of (A(n)p)
o (r; mod GY(Qy)). If v|l is a prime of F°, then there is an element vy, €

X.«(T7) such that for any algebraic representation p of G? defined over Q; the
Hodge-Tate numbers (with respect to any continuous o : FO < Q) of por; |G o

are the (u, vgT ), where o runs over the weights of p in X*(1}). (See Section
1.2 of [Win86].) Thus what we have to show is that if 4 € X*(Z;) is a weight
of Z; on Vj, then

[{A(n)p, v )|
is bounded independently of [, 4 and v. (Here we think of A(n)u € A(n)X*(Z))
C X*(Cy) € X*(T;).) However

((1/AM)) Y my 56, 1) € X*(T) € X*(T)
dEA

is a weight of 7; on V; and so
<< Z m,u,,567 A(n)luf) y VHT,v>
deEA

is bounded independently of [, u and v (because the Hodge—Tate numbers of
r; are independent of ). As the m,, s are also bounded independently of [ and
u, we see that it suffices to show that each

(0, vt .0)|

is bounded independently of I, § € A and v. But Lie GY € Hom g,(V}, V}) so
that each § € A is the difference of two weights of T; on Vj. It follows that

1(0, vaT,v)|
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is bounded independently of I, § € A and v, as desired (again because the
Hodge-Tate numbers of r; are independent of [).
The fourth part follows from the third. O

PROPOSITION 5.2.2. Keep the notation and assumptions established ear-
lier in this section. There is a Dirichlet density 1 set L of rational primes with
the following properties:

(1) If L € L, then G, and hence also Z;, C;, G5° and H;, are unramified.
Write Z, (resp. 5’1) for the torus over Z; with generic fibre Z; (resp. Cy).

(2) If Il € L, then there is a semi-simple group scheme CNJ?C/ZZ with generic
fibre G5¢ such that T = G5¢(Z;) x T'Z. Write H; = G5¢ x 7.

(3) The index [Z(Zl) : T'Z] is bounded independently of | € L.

(4) Ifl € L, then the conjugation action of I'; on H; extends (uniquely) to an
action on ﬁl. This makes V} into an FI; x I'j-module.

(5) Ifl € L, then V| contains an H, x Ty invariant Z;-lattice.

(6) Suppose thatl € L. There is a finite unramified extension My /Q; (of degree
bounded independently of | € L) such that all G3°-irreducible subquotients
of Vi ® Q; can be defined over My. Choose such a field My and let

Vi@ My =P Va,

be the decomposition of Vi @ My into mazimal Gj-isotypical submodules.
Suppose also that A C V; ® M) is a Hj-invariant Oy, -lattice. Then

A= @(A N V)\J).

Moreover all irreducible (N}?C(Zl)—subquotients of ANVy; are absolutely ir-
reducible and isomorphic, say to p;. Moreover dimyy)p; equals the di-
mension (over My) of an irreducible constituent of Vx;. If p; = pj, then
i=7.

Proof. Proposition 8.9 of [LP92] tells us that we can find a Dirichlet den-
sity 1 set £ of rational primes such that for [ € £ the group G is unramified.
As the dimension of 7; is bounded independently of [, we see that the order
of any finite order element of Aut (X*(7;)) is independent of I. Hence for
[ € L the group splits over an unramified extension M, /Q; of degree bounded
independently of [.

Theorem 3.17 of [Lar95] tells us that we can replace £ by a possibly smaller
set of Dirichlet density 1, which we will also denote £, such that for [ € £ there
is a semi-simple group scheme 5?6 /Zy with generic fibre Gj° such that

TH N GE(Q) = GF(Zy).
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As é;C(Z,) is a maximal compact subgroup of Gj°(Q;), we see that éfc(Zl)
is also the projection of T to G5¢(Q;) and so I'/T = é?C(ZZ) x I'Z for some
compact subgroup I'? C Z;(Q;). As Z(ZZ) is the unique maximal compact
subgroup of Z;, we see that FZZ C Z(Zl)- As the image of I‘ZZ in I‘ZC has finite
index we see that I'? is open in Z(Zl), and we have verified the first two parts
of the proposition.

Removing finitely many primes from £ we may suppose that for all [ € £
the representation r; is crystalline at ! and [ is unramified in FY. Then for
l € £ we have

TF 2 0u(Spo y(Z4))-
The final part of Lemma 5.2.1, together with Lemma A.1.6, shows that the
index of ' in Ci(Z;) is bounded by D(R) (independently of [ € £). However
the index of T'Z in Z(Zl) is bounded by the product

#ker(Z — C)) x [I¥ : TF] x [C)(Zy) : TE] < A(n)*D(R),
and so the third part of the proposition follows.
Suppose that v € I'j; then we have seen that v acts on Gj¢. We will
consider the reductive group scheme

G = Spec (7)1 05 (GF) ).

where (’y*)*lOéic(é?C) C Ogse(Gi°) is the pre-image of Oaic(éfc) C Ogs(GY°)
under v*. By Proposition 5.1.40 of [BT84] we see that 576 and '7@“ must be
the group schemes (with connected fibres) attached to special points xz and
2’ in the building of G§¢ in [BT84]. (The group schemes &% and (’529 in the
notation of [BT84].) The sets {z} and {z'} are facets for the building of Gj°
(as G{° is semi-simple). As

(G)(Zh) =" (Gi(Z)) = Gi(Zy),

we deduce from the proof of Proposition 5.2.8 of [BT84] that {z} = {z'}, and
hence 7§?C = CNJ?C Thus the action of I'; on G}¢ extends to one on CNJ?C (We
thank Jiu-Kang Yu for valuable help with this argument.) As Z, is the unique
torus with generic fibre Z;, we also see that the action of I'; on Z; extends to
an action on Z Thus the action of I'; on H; extends to one on FIZ, and the
fourth part of the proposition follows.

As in the fourth paragraph of Section 1.12 of [Lar95] we can find a
Zyi-lattice A C V; such that A®Z;" is H, (Z}")-invariant. Replacing A by the sum
of its I';-translates, which is again a lattice because I'; is compact, we see that
we may suppose A to also be I'j-invariant. Again as in the fourth paragraph
of Section 1.12 of [Lar95] we see that the natural map H; — GL(V}) extends
to a map H, — GL(A). This establishes the fifth part of the proposition.
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Let {u;} be the set of highest weights (with respect to A) of irreducible
G5°-submodules of V; ® Q;. Let p,, be the corresponding irreducible represen-
tations of GJ°. As in the third paragraph of Section 1.12 of [Lar95] we see that
each p,,; can be defined over M. The first assertion of part six follows. More-
over p,, extends to a representation p,, of @“lsc over Oy, (by the argument of
paragraph four of Section 1.12 of [Lar95]). Let p,. denote the reduction of p,,
modulo A and let ﬁ:[i denote the unique absolutely irreducible subquotient of
Py, which contains p;. (See paragraph five of Section 1.12 of [Lar95].)

If 6 € A, let v5 € X*(T7°) denote the fundamental weight corresponding
to 0, so that {5} is the basis of X*(77°) dual to the basis of X, (1) consisting
of the coroots corresponding to 6 € A. If p; = 3" 5cA mj svs, then the m; 5 are
bounded independently of I. (As dim Gj° is bounded independently of [, there
are only finitely many possibilities for the change of basis matrix between A
and {vs : 0 € A}.) Thus after removing a finite number of elements from £
we may assume that for all [ € £ and all ¢ we have 0 < m,; s < [. As in the first
paragraph of Section 1.13 of [Lar95] we see that ﬁ:[i is an absolutely irreducible
representation of CNJISC(IFl) and that pf = ﬁ:j implies ¢ = j. Again removing
a finite number of primes from £ we can further assure, as in the second
paragraph of Section 1.13 of [Lar95], that p, = p,,, (for all I € £ and all i).

Now suppose that A is as in part 6 of the proposition. (We no longer use
A to denote the lattice constructed in the proof of the fifth part.) We see that
ﬁf{i is the only irreducible subquotient of A NV} ;. Suppose that

A# EB(A N Vi)

Choose a afc—invariant lattice A’ with

AD N DOEPANVy),

with A" /(@;(ANVy,;)) simple and nontrivial. Then

< f{gun)

must be equivalent to ﬁ:j for some j. Suppose i # j. Then we have a commu-
tative diagram
A N /(@i(ANVa)
\J \J
Vi = Vai/(An V),
and we see that the right-hand vertical arrow must be zero. Thus the image
of A" under projection to V) ; is AN V) ;. We conclude that

A = <@A N V>\7i> + ﬂ ker(A’ — VAJ).

i#j i#j
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However
ﬂ ker(A/ — VAJ‘) =AN V)\J
1#]
and so
AN =PAn),
i
a contradiction. This completes the proof of the proposition. O

We remark that we will not need part (3) of the proposition, but we
thought it was worth recording it anyway. We also remark that using part (3)
of the proposition one can prove a version of part (6) in which H; replaces Gj°
and T'H replaces CNJ?C(ZZ). However, as we will not need it, we chose not to
present the details.

5.3. Compatible systems: lemmas. We now return to more general com-
patible systems.

LEMMA 5.3.1. Suppose that R is a weakly compatible system of l-adic
representations of Gr of dimension n. Let G denote the Zariski closure of
ra(GF) in GL,, /My and let Gg denote its connected component. Then

(1) there is a finite Galois extension F'/F such that for all X the map Gr —
GA(M)) induces an isomorphism Gal (F1/F) = G\/G$;

(2) if R is reqular and H is an open subgroup of Gp, then any irreducible
H -subrepresentation of ry has multiplicity one;

(3) if R is regular, then after replacing M by a finite extension we may sup-
pose that for any open subgroup H C Gp and any A and any H-sub-
representation s of ry, the representation s is defined over Oy x.

Proof. The proof of the first part is the same as the proof of Proposition
6.14 of [LP92]. (One must replace G by G, and p; by ry, and GY by G%; and
Q; by My, and Q by M in Section 6 of [LP92]. These arguments are due to
Serre.)

As r) is semi-simple, we see that G?\ is reductive. As trr) is continuous
on Gr and M, is closed in My, we see that trry is valued in M.

Now assume that R is regular. By Theorem 1 of [Sen73] there is an

element of (LieGY) ® M, with n distinct eigenvalues. Thus if T} is a max-
imal torus in GE{, it has n distinct weights under r). In particular all irre-
ducible G9-subrepresentations of 7, have multiplicity one. If H is any open
subgroup of G then its Zariski closure in G contains GS)\. Thus any irre-
ducible H-subrepresentation of r) has multiplicity one, and the second part of
the lemma is proved. (We note that the second part follows immediately from
a consideration of the Hodge-Tate weights but we shall need the facts deduced
in this paragraph below.)
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Moreover the set of elements of G§ with n distinct eigenvalues under 7
is a nonempty Zariski open subset. As the images of Frobenius elements at
primes which split completely in F'/F are Zariski dense in GY, we conclude
that infinitely many @, (X), for v splitting completely in F'*/F, have n distinct
roots. Replace M by the splitting field over M of the product Q,(X)Q. (X)
for two such v, v with distinct residue characteristic. Then for all A the image
rA(G 1) contains an element with n distinct M)-rational eigenvalues.

Let H be any open subgroup of Gr. We must show that any H-subrep-
resentation of ry is defined over Oy x. As H is compact, it suffices to show
that it is defined over M. As the Zariski closure of H in G, contains GY, it
equals the Zariski closure of HG 1. Thus if s is an H-subrepresentation of r},
it is also a HG g1-subrepresentation. So we are reduced to the case H O Gp1.
In this case the result follows from Lemma A.1.5. O

PROPOSITION 5.3.2. Suppose that R is a regular, weakly compatible sys-
tem of l-adic representations of G defined over M. If s is a subrepresentation
of rx, then we will writes for the semi-simplification of the reduction of s. Also
write | for the rational prime below X. Then there is a set of rational primes L
of Dirichlet density 1 (depending only on R) such that if s is any irreducible
subrepresentation of ry for any \ dividing any element of L, then §|GF<C1) is
1rreducible.

Proof. 1f need be replace M by a finite extension so that
e M/Q is Galois;

e for every A and every open subgroup H C G any H-subrepresentation s
of ry is defined over Oy (Lemma 5.3.1).

For a rational prime [ define

ri=a®@rr: Gr — GLitnprg(Q)-

M
Let
[M:F]
Ho={-13u [I 1[I -
rFsM =1

and, for v a prime of F' not in 5, let
Qoo(X) =X —q;") [ “Qu(x).
oeGal (M/Q)
We are going to apply the results of Section 5.2 to

Ro = (@, 5,{Qq.}, {r}, {Ho}),

and we will use the notation established there without comment. If need be,
we replace M by a finite extension so that M contains the image of every
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embedding F° < M. Also choose a set £ of rational primes of Dirichlet
density one as in Proposition 5.2.2. Removing a finite number of primes from
L we may further assume that
(1) if I € £, then [ is unramified in F°/Q;
(2) ifl e £, then I > 4A(1+ [M : Qn)C(Rq) + 2;
(3) | € Sg, where Sgp denotes the set of rational primes which lie below an
element of S.
Let A; be a H; x Tj-invariant lattice in V (Proposition 5.2.2).
The character ¢; of I'; extends to an algebraic character

€ : G —» Gy,

(It is surjective because ¢;(Gr) is infinite.) We will write Z}, C} and H} for
the kernel of ¢ on Zy, C; and H;. The character ¢; extends to a character
of C;. We will write Cz (resp Zl ) for the umque torus over Z; with generic
fibre C} (resp. Z}) and set Hl = GSC X Zl Set FZl = TI? N Z}(Q) and
FCI =1¢nct (QZ) so that FZl is the pre-image of I‘C under T'# — T'{.
Also set FH 1— GSC( ) X FZ ! The conjugation action of I'; on Zl, Cl and Hl
preserves Zl , Cl and H} I
We will next prove the following claim:

Suppose that | € L, that \|l is a prime of M, and that Wi and Wy are
two irreducible My[T'?]-sub-modules of V; @ My. Then (by Zariski density)
W, is G?—invariant. Write s; for the representation of H; % F? on W;, and
further assume that the semi-simplified reductions s; of s; are isomorphic as
Ffl’l-modules. Then s1 = sy @ €] (as representations of I‘?) for some a € Z.

Proof. Let §; denote the action of ﬁl on the intersection of A; ® Oy, with
the space underlying s; and let 5; denote its reduction modulo A. From Proposi-
tion 5.2.2 we see that §;| Gee(2,) is absolutely irreducible and that s; |G?c = 52|G§c.

1

Let u; : 7 —>~Gm denote the action of Z; on s; and let ui; denote the
extension of p; to Z; and 7i; the reduction of ji; modulo A. Then

(AL + [M :Qn)ps) 00, =Y miq0
with |m; »| < C(Rg). We have
ﬁ1|rlz’1 = EQ‘PZZJ'
Hence
(AQ+ [M Q)7 = (A(L+ [M : Qi) e
and for some (1 —1)/2 <b < (I —1)/2 we have

(A +[M : Qn)’my)lre = (A(L + [M : QJn)*f + ber)lpe-
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By assumption (3) on £ we know that ,uf(H[M:Q]n) is a crystalline character
of Gpo. Thus
H EA(I—l—n[M:Q])(mLJ—mQYU) _ H b
ocHom (F0,Qp") o€Hom (FO,Qpr)

on (Opo/l)*. If v|l is a prime of FY, choose an embedding o, : FO — QM
above v. Then the embeddings of F into Q" are Frobjoo, fori =0,..., f,—1
with f, = [k(v) : F;]. Then
fo1 |
S AQLHIM £ Q) pyoior, =M rabfor, I = b(I —1)/(1=1) mod (1 —1).
=0
As (1-1)/2 < A1+ [M : Qn)(mi,e —may) < (I —1)/2 for all o (by as-
sumption (2) on £), both sides lie in the range ((1 —I4v)/2, (I/* —1)/2), and
SO

fol ‘

> AL+ [M 2 Q) (my frobios, — Mo robios, )l = b1l —1)/(1—1).

i=0
Then we see that A(1 + [M : Q]n)(mLFrob?wv - m27Frob?OUU) = bmod [ and
again using the bounds on both sides we conclude that

A(l + [M : Q]n) (ml,Frob?oov - mZ,Frob?oav) =b.
Subtracting these terms, dividing by [ and arguing recursively we see that
A(l + [M : Q]”) (ml,Frobfoav - m2,Frobfoov) =b

for all . Thus A(1 + [M : Q]n) divides b and

LA g ) AGHM:QIn)

i g HAUHMCI) o

as characters of Spo ;. Thus py = p2 as characters of Z, ! and so, for some a € Z,
we have 11 = poej’ as characters of Z;. We deduce that s; = sa€j' as represen-
tations of H; and hence of G?, and hence again of F?. The claim follows. [

We now return to the proof of the proposition. Let Al € £ be a prime
of M. Let s be an irreducible subrepresentation of ry. Then s occurs on a
M, [Ty]-submodule W C V; ® M. Let Wy denote an irreducible I'!-submodule
of W and let sy denote the representation of F? on Wy. Note that Wy is
also Hj-invariant and Gj°-irreducible. Let I'} denote the set of v in I'; with
sg = so, or what comes to the same thing (by regularity) YWy = Wy C W.
(See Lemma 5.3.1.) Then sg extends to a representation of I'; and

s Ind?fso.
l

Write 5 (resp. Sp) for the semi-simplified reduction of s (resp. so).



584 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

Let W; denote the Wy-isotypical component of V; ® M) for the action of
Gi°. By Proposition 5.2.2 we see that

(W1 NA® OMA))//\(Wl NA® OM)\))

is isotypical for the action of CNJ?C(ZZ) corresponding to an absolutely irreducible
representation of dimension equal to dimys, Wy. Thus

(Wo N (A1 @ Oy )/ AWo N (A @ Oury )

must be absolutely irreducible as a representation of é?c (Zy).
As FY/Q is unramified above [ (assumption (1) on £), we see that F((;)
is linearly disjoint from F° over F. Thus

ker €|
_ B ~ I— \ss
8’k6r51|r‘l - ( ndker€l|F/80) :
l

Hence it suffices to show that for v € I'; — I'} we have
80lpr # Solpma.
If they were equivalent then by the claim we would have
s X so @€l

as I'P-modules (for some a € Z). As v has finite order in I';/T'), but ¢ has infi-
nite order, we see that a = 0, and so v € I}, a contradiction. The proposition
follows. O

5.4. Potential automorphy for weakly compatible systems. In this section
we prove a potential automorphy theorem for weakly compatible systems of
l-adic representations of the absolute Galois group of a CM field.

THEOREM 5.4.1. Suppose that F/Fy is a finite Galois extension of CM
(resp. totally real) fields and that F'Y) /F js q finite Galois extension. Sup-
pose also for i =1,...,r that (R;, M;) are totally odd, polarized weakly com-
patible systems of l-adic representations of Gg, with each R; reqular and ir-
reducible. Then there is a finite, CM (resp. totally real), extension F'/F
linearly disjoint from F@°) over F and with F'/Fy Galois, such that each
(Ri]GF,,MZ-|G(F,>+) is automorphic.

Proof. The totally real case follows easily from the imaginary CM case by
Lemma 2.2.2. (The only thing to check is that we can find an imaginary CM
extension F’/F such that each R; remains irreducible upon restriction to Gp.
It will be enough to choose F” linearly disjoint from the fields F! /F obtained
by applying part (1) of Lemma 5.3.1 to each R;. Such a choice is possibly by
Lemma A.2.1.) Thus we treat only the imaginary CM case.

Replacing each of the fields M; associated to R; by their compositum,
we may assume that M; = M is independent of i. Let £;1 be the Dirichlet
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density 1 set of rational primes provided by applying Proposition 5.3.2 to R;
and let £; 2 be the Dirichlet density 1 set of rational primes above which R
is irreducible. Let £ = N; £;1 N L;2. Then L also has Dirchlet density 1
(Lemma A.1.7). For A\|l € £ we see that each FM|GF<Q> is irreducible.
Removing finitely many primes from £ we may further suppose that

e [ € £ implies | > 2(dimR; + 1) for each ¢;

e [ € L implies [ is unramified in F' and [ lies below none of the elements of
the sets S; of bad primes for R;;

e if |l € L is a place of M, then all the Hodge-Tate numbers of r; ) lie in a
range of the form [a,a + 1 — 2].

We deduce, by Lemma 1.4.3, that each r; ) is potentially diagonalizable. Our
theorem now follows by applying Theorem 4.5.1 to the r; \ for any A|l € £. O

We state a simple special case separately.

COROLLARY 5.4.2. Suppose that F is a CM (resp. totally real) field and
that (R, M) is a totally odd, polarized weakly compatible system
of l-adic representations of Gr, with R regular and irreducible. Then
there is a finite, CM (resp. totally real), Galois extension F'/F such that
(Rla,,, M |G iy ) 15 automorphic.

COROLLARY 5.4.3. Keep the assumptions of the last corollary.

(1) If 2 : M < C, then L°(tR,s) converges (uniformly absolutely on compact
subsets) on some right half plane and has meromorphic continuation to
the whole complex plane.

(2) The compatible system R is strictly pure. Moreover

A(R,s) = (1R, s)A(RY,1 — 5).

(3) If F is totally real, n is odd, and v|co, then trry(c,) = +1 and is indepen-
dent of \.

Proof. The strict purity follows from Theorem 5.4.1, Theorem 2.1.1 and
the usual Brauer’s theorem argument as in the last paragraph of the proof
of Theorem 5.5.1 below. The convergence and meromorphic continuation and
functional equation of the L-function follow from the theorem and a Brauer’s
theorem argument as in Theorem 4.2 of [HSBT10]. The last part generalizes
an observation of F. Calegari [Calll]. The theorem reduces the question to
the automorphic case where it is the main result of [Tay12]. O

As one example of the above theorem we state the following result.

COROLLARY 5.4.4. Suppose that K is a finite set of positive integers with
the property that the 27X partial sums of elements of IC are all distinct. For
each k € IC let fr, be an elliptic modular newform of weight k41 without complex
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multiplication and let m, be the corresponding automorphic representation of
GL2(A). Then there is a totally real Galois extension F/Q and a regular
algebraic, polarizable, cuspidal automorphic representation 11 of GLoxx (AF)
such that for all but finitely many primes v of F' we have

rec(IT, | det |(1=27")/2) = (@ rec(m || det )/ 2))

kel

Wr,

In particular the “multiple product” L-function L(X geic, ) has meromorphic
continuation to the whole complex plane.

Proof. Let M denote the compositum of the fields of coefficients of the
fx’s. Let X be any prime of M and let 74 : Gg — GL2(M)) be the A-adic
representation associated to fi. Because fj is not CM, we know that rj \ has
Zariski dense image. We will apply Theorem 5.4.1 to the weakly compatible

system
Qe
K

The only assumption that is perhaps not clear is that this system is irreducible.
So it only remains to check this property. The argument is a variant of Gour-
sat’s lemma.

Now let H denote the Zariski closure of ([Tx 7x.1)(Gg) in GLa(M,)* and
let H denote its image in PGLo(M)*. Note that the projection of H to each
factor is surjective. As PGLy is a simple algebraic group and all its automor-
phisms are inner, H must be of the form PGLo (M ,)* for some set Z. Moreover
we can decompose K = [[;ez Ki, and the mapping H — PGLy(M))* is con-
jugate to the mapping which sends the i*" factor of PGLy(My)? diagonally
into [;ex, PGLo(My). If for some i one had #K; > 1, then we would have
rEa = T @ x for some k # k' in K; and some character x. We can con-
clude that x is de Rham, and then looking at Hodge-Tate numbers gives a
contradiction. Thus we must have H = PGLy(M)* and H O SLy(M))*.

K

As the tensor product representation of SLa(M ) on Mi is irreducible, we
conclude that @y i x is also irreducible, as desired. O

We now turn to a proposition which will be useful in the next section.
Its proof is essentially the same as the proof of Theorem 5.4.1, once we have
established the following lemma.

LEMMA 5.4.5. Suppose that F is an imaginary CM field, that (R, M) is
a polarized weakly compatible system of l-adic representations of Gg defined
over M and that R is pure and extremely reqular. If F'/F is a finite extension

and if s is a subrepresentation of rx|g,, for some prime X of M, then there is
a CM field F" with F C F" C F' such that the space of s is invariant by Gpn.
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Moreover (s, py) is a polarized l-adic representation of Gpn. It is totally odd

if (R, M) is.

Proof. Let Fy denote the normal closure of F//F*. Let 7 : F < M be
an embedding with the property that if H and H’ are different subsets of
H; of the same cardinality, then > ,cgh # > pepys h. Choose an embedding
71 : I} = M extending 7. Note that R is pure of some weight w.

If s; and s9 are two G, -submodules of some r) of the same dimension, we
see that s; = sg if and only if HT;, (s1) = HT;, (s2) if and only if HT, (det s1) =
HT,, (det s2). (The first equivalence is by regularity and the second by extreme
regularity. Note that, in particular, any irreducible submodule of r,\\GFl has
multiplicity 1.)

For o € Gal (Fy/F™) write HT,, ((det s)7) = HT, ,,—1(det s) = {hs}. As
det s is de Rham and pure of weight w dim s, we deduce that h,+hy. = wdim s
for all 0 € Gal (Fy/F ™) and all complex conjugations ¢ € Gal (Fy/F*1). Thus if
¢,d € Gal (Fy/F*) are complex conjugations, then hyce = wdim s — hye = hy
and so s7¢¢ = 7.

Let H C Gal (F1/F™) be the normal subgroup generated by all elements
cd with ¢, ¢ € Gal (Fy/F™) complex conjugations. The maximal CM subfield
of Fy is the maximal subfield on which all complex conjugations agree, i.e., F{.
Hence F" = FI n F' = (Fy)HGal(F/F) g the maximal CM sub-field of F'.
Moreover if o € H, then s = s and so s extends to a representation of G .

If c € Gal (Fy/F*) is a complex conjugation, then

HT., (det(ur(sY))) = HT 1, c(det(uprs")) = {wdim s — h.} = {h1}.

As px(sY)¢ is also a constituent of ry, we see that s© = p,s" as representations
of Gpv. Let v be an infinite place of F and { , ), a pairing on M}y as in the
definition of polarization for (ry, uy). Then ( , ), restricts to a perfect pairing
on the space of s, as otherwise there would be a second irreducible constituent
s' # s of g, with s’ = py(s¥) = s, a contradiction. The lemma follows. [

(We remark that we have not made use of the whole weakly compatible
system, only of a single l-adic representation with the desired properties.)

PROPOSITION 5.4.6. Suppose that F is a CM field and that (R, M) is a
totally odd, polarized weakly compatible system of l-adic representations. Sup-
pose moreover that R is pure and extremely reqular. Writery = ry1®- Oy 4,
with each ry o irreducible. Then there is a set of rational primes L of Dirichlet
density 1 such that if X is a prime of M lying above |l € L, then there is a finite,
CM, Galois extension F'/F such that each (r)\7a\GF,,uA\G(F,)+) is irreducible
and automorphic.
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Proof. By Lemma 5.4.5 we see that for all A and « the pair (ry o, @) is a
totally odd polarized I-adic representation.

Let £ be the Dirichlet density 1 set of rational primes obtained by applying
Proposition 5.3.2 to R. Then for A|l € £ we see that FA7Q|GF(Q) is irreducible.
Removing finitely many primes from £ we may further suppose that

e | € L implies [ > 2(dim R + 1);
e | € L implies [ is unramified in F' and [ lies below no element of the set S
of bad primes for R;
e if M|l € L, then all the Hodge—Tate numbers of ) lie in a range of the form
la,a+1—2].
We deduce, by Lemma 1.4.3, that 7, , is potentially diagonalizable. Our theo-

avoid)

rem now follows by applying Theorem 4.5.1 to {r) o} with F ( equal to the

compositum of the FEe for @ = 1,...,7x. Then ?/\,Q\GF, will be irreducible
for a =1,...,jx, and so 75 o|c,, will also be irreducible. O

5.5. Irreducibilty results. We will first recall some basic group theory. If
F' is a number field and [ is a rational prime, we will let GGg; denote the
category of semi-simple, continuous representations of G on finite-dimensional
Qj-vector spaces which ramify at only finitely many primes. If U, V and W
are objects of GGy with U@ W =V @ W, then U = V' (because they have
the same traces). We will let Repy,; denote the Grothendieck group of GGpy.
If V' is an object of GGF;, we will denote by [V] its class in Repg;. We have
the following functorialities:

(1) The rule [U][V] = [U ® V] makes Repp; a commutative ring with 1.

(2) If 0 € GF, then there is a ring homomorphism tr, : Repr; — Q; defined
by tr,[V] = troly. If A € Reppy, then the function o — tr,A4 is a
continuous class function Gr — Q. If A,B ¢ Repp; and tr, A = tr,B
for all o € G (or even for a dense set of o), then A = B.

(3) We will write dim for tri. Then in fact dim : Repp; — Z and dim[V] =
dim@l V.

(4) There is a perfect symmetric Z-valued pairing ( , )r; on Repp; defined
by

(UL VD) Fr = dimg;, Hom ¢, (U, V).

If A =Y ,;n[V;] with the V; irreducible and distinct, then (A, A)p; =
>;n?. In particular if A € Repp; and dim A > 0 and (A4, A)p; = 1, then
A = [V] for some irreducible object V' of GGp;.

(5) Suppose that G and Go are algebraic groups over Q; and that 6 : Gp —
G1(Q)) x G2(Q;) is a continuous homomorphism with Zariski dense image.
Suppose also that p; and p) are semi-simple algebraic representations of G;
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over Q;. Then

([(p1 ® p2) 0 OL,[(p} ® p3) 0 0]) s
= dim Hom g, x, (p1 ® p2, pi @ py)
= (dim Hom g, (p1, p1))(dim Hom g, (p2, p5))
= ([p1 0 6], [P} 0 0])ra([p2 0 0], [0h © 0]) .

(6) If 0 € Gq, then there is a ring isomorphism conj,, from Repp; to Rep,-1p,
such that conj,[V] equals the class of the representation of G,-1p on V,
under which 7 acts by oro 1. It preserves dimension and takes ( , )g; to
(, Jo-1p;. We have trrconj, A = tr,,,-1A. Also if ¢ € GF, then conj,
is the identity on Repp;.

(7) If F'/F is a finite extension, then the formula resgr/p[V] = [V|g,,] defines
a ring homomorphism resg/p : Repp; — Reppr ;. Note that if 0 € Gp,
then tr resp/pA = tryA (so in particular dimresp/ pA = dim A). If
o € G, then conj, orespr/p = T€8,-151 /51 © CONj,;.

(8) If F'/F is a finite extension, there is a Z-linear map indp//p : Repp; —
Repy, defined by indp/p[V] = [Ind &F " V]. Note the following;

( ) tralndF’/FA ZTEGF/GF/ TOT 1€GF/ tro o —1A4.
(b) dimindp/pA = [F': F]dim A.
(c) lndF’/F(A(reSF’/FB)) = (indprypA)B
(d) (indp,pA, B)ry = (A, resgr pB) iy (by Frobenius reciprocity).
(e) If " / F' is another finite extension, then
resprp o indpr g = Z ind (g1 51y prr/pr © CONj, O TESEr (5 pir)
[0]€G p\GF /G g
(by Mackey’s formula).
(f) If F'/F is a finite Galois extension, then there is a finite collection of

intermediate fields F'/F!/F with F’/F] soluble together with charac-
ters ¢; : Gal (F'/F]) — C* and integers n; such that

1= ZniindFi’/F[wi]
i
in the Grothendieck group of finite dimensional representation of the
finite group Gal (F”/F') over C. (This is just Brauer’s theorem for

Gal (F'/F).) If 2 : Q; = C, then applying :~! and multiplying by any
A € Repp,; we conclude that

A= niindpp([ pilrespr pA).

Writing for any i, j

Gr = HGF;Uz‘jkGFJf
k
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we see further that if
A= Z nllndFZ’/F([Z_lwl]Bl)a
i
then
(A, A)py = Y min((conjy, , orespy (o, ) ([ i) Bi),
i7.j7k
~1
(9) If S is a finite set of primes of F' including all those above I, we will say that

A € Repp, is unramified outside S if we can write A = Y, n;[V;] with each
V; unramified outside S. In this case we can define, for each 2 : Q; = C,

LA, 5) = [[ L7 (V3 )

at least as a formal Euler product, which will converge in some right half
plane if, for each i, the Weil-Deligne representation WD(V|g,.,) is pure
of weight w; for all but finitely many primes v &€ S of F. This definition is
independent of the choices and we have

L5((A+ B),s) = L° (1A, s)L° (1B, 5)
and
LS(zindF//FA, s) = LY (14, s),
where S’ denotes the set of primes of F/ above S.

Our first result is not really an irreducibility result, but it uses similar
methods so we include it here. It is a generalization of results of Dieulefait
[Die04] in dimension 2. The key ingredient is Theorem 4.5.1.

THEOREM 5.5.1. Suppose that F is a CM field, that n is a positive integer
and that 1 > 2(n+ 1) is a rational prime such that §; & F. Suppose that (r, 1)
is an n-dimensional, totally odd, regular algebraic, polarized [-adic
representation of Gp. Suppose moreover that the following conditions are
satisfied:

(1) (Potential diagonalizability). r is potentially diagonalizable (and hence
potentially crystalline) at each prime v of F' above .
(2) (Irreducibility). 7|, ¢ U8 irreducible.

Then r is part of a strictly pure compatible system of l-adic representations
Of GF .
Proof. Let G denote the Zariski closure of the image of r, let GV denote

— =100
the connected component of G and let FO = F Q@) By Theorem 4.5.1
(or Corollary 4.5.2) we can find a finite Galois CM extension F'/F, which is
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totally real if F' is totally real and which is linearly disjoint from F' OF* ™ over
F, an isomorphism 2 : Q; = C, and a cuspidal, regular algebraic, polarized
automorphic representation (7, ) of GLy,(Agr) such that
(1), 1000 ™) 2 (rls 0 G g )
For the rest of this proof we will fix F’. Note that F’ is automatically Galois
over any intermediate field between F’ and F. Suppose that I/ > F” O F with
F'/F" soluble. Then by Lemma 2.2.2 there is a cuspidal, regular algebraic,
polarized automorphic representation (7", x(F")) of GL, (Ap~) such that
(Tl,z(W(FH))arl,l(X)Ell_n) = (T|GF//7/~L‘G(F")+)'

Let I’ be a rational prime and let ' : Q = C. Note that if 0 € G and if
F' > F" > F" > F with F’/F" soluble (in which case F’/F" is also soluble),
then rl/7,/(7r(FW))|GF,, o rl/7ll(7r(F”)) and rl/ﬂl(W(F”))U & rl/,l/(ﬂ'(ailF”)). Let
G’ (resp. GF") 5 G") denote the Zariski closure of () (vesp. ry(7(F")))
and let (G")° (resp. (GF"))%) denote the connected component of G’ (resp.
GE")). Tt follows from Lemma 5.3.1 that GE") /(GEF)0 and the map Gpr —
GF") /(GF"0 is independent of I'. In the case (I',7) = (I,2) we see, by the
choice of F’, that Gal (FOF"/F") 5 GF") /(GF")0. Thus this is true for
all (I',/). We deduce that (for any (I’,2)) we have GF") = G’ and that the
natural map

Gpr —> G,(@l/) x Gal (F,/F”)

has Zariski dense image (where we consider Gal (F’/F") as a finite algebraic
group). If we decompose rp ,(7) into irreducibles as

Tl/,z’ (71') = 7‘[/71/(71')1 D P Tl’,z’(ﬂ')t,
then this induces a unique decomposition
Tl/,l/(’ﬂ'(F )) =Ty (7r(F ))1 @D 7“1/711(7T(F ))t

with ry (W(F//))Q\GF, 2 rpy(m)a. (Note that by regularity the ry /(7)o are
pairwise nonisomorphic, as they will have different Hodge—Tate numbers.) We
deduce that if 0 € Gp and if F/ D F”" > F” > F with F'/F" soluble
(so that F’/F" is also soluble), then 7’[/721(7T(F///))Q‘GF” = gy (7F"), and
o_lF”))

1 . .
Yy (r(F")7 = Tl/ﬂ/(ﬂ'( «- Moreover if p; and py are representations of

Gal (F'/F") over Qp, then
(frre (PF Va1 Irre (75 Vo [p2]) o = (1], [02]) -
Choose intermediate fields F/, characters 1;, integers n;, and elements
oijk € GF, as in item (8f) above. Write Fj;j, for (al;,in’)Fj’ Then

1] =" niind gy pri, (75D @ (5 0 Art o det)))]
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in Repp;. This motivates us to set
Ap o = an’indF;/F([T’l',z’ (TFD)J[(@) o)) € Repp.
i

Note that

dim Ay y o = Z ni[F} : Fldimry (1) = dimry ,(7)q.
i

Also note that
(Al’,z’,a’Al’,z’,a)F,l' = Z ninj([Tl'al/(W(Fijk))a][( ) 1w011k| Fz]k]
i,k

o (500 g6, 1)

i'kyl’

= > ning () ™y, 1 [0 g, D

ijk ijk
5,k

= (13 1)F,l’

=1.
(The first and third equality follow from item (8f) above, while the second
equality follows from items (4) and (5) above.) Thus Ay, o = [ry ) for
some irreducible continuous representation ry , o, of Gp on a @l/—vector space
of dimension dim 7y (7)q. Set

Ty =Try1@© - DTy

We see that 7, = r and that

trry o, ( an Z () Ypi(ror™H)tr 7“[/71/(7r(Fi,))(7'a7'_1).

TGGF/GF(, TO’TﬁleGFl/
k2 k2

Let v’ denote a prime of F’ and set v = v'|p. By Theorem 2.1.1, if v f1’,
then
YWD(rp, |G 3 )ETSS  rec(my @ |det| (1-n /2)

is pure. Hence ¢/ WD(rl/ﬂ/]GFv) is also pure. (See Lemma 1.3.6.) Moreover if
o € Wg,, then

tr Z,WD(Tl/ﬂ/ ’GFU )(O’) = Z,tI' Ty o (0’)
= Z n; Z Yi(tor ) tr Ty (w(Fi/))(TaT_l)

T€Gr/Gpr, ToT1eG f
1 K2

_ F! _
=> > vi(toT l)trlrec(7rgT,U,))| ®|det| m,)| )(TUT o)

% T€GF /G g1, ToT71EG
1 1
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(again by Theorem 2.1.1). If " is another prime with v fI” and if /" : Q) = C,
then we conclude that
YWD(r vl )™ = WD (rp |G, )™
As both are pure, we conclude from Lemma 1.3.6 that
WD (ry |G, )T 2" WD(r |G, )T
Thus the 7, form a strictly pure compatible system. O

Recall that if (7, x) is a cuspidal, regular algebraic, polarized automorphic
representation of GL,(Ar), then ({r;,(m)}, {r..(x)e ™}) is a strictly pure po-
larized compatible system of weight w. (See Theorem 2.1.1 and the discussion

at the end of Section 5.1.) Then |x| = || H?}l_w. If 7 has central character
X then we see that x| = || [[5" "' "% and so 7 @ || det || 7? has

a unitary central character and so is unitary. If (7', x’) is a cuspidal, regular
algebraic, polarized automorphic representation of GL,/(Ar) and if {r;,(7')}
has weight w’ and if S is a finite set of finite places of F', then

LS (m x (7)Y, s 4+ (w — w' +n' —n)/2)
= L (]| det |51 772) < (| det || %))

is meromorphic and is holomorphic and nonzero at s = 1 unless

72 || det || U2,

in which case it has a simple pole at s = 1. (See [Sha81] and [JS81].)

THEOREM 5.5.2. Suppose that F is a CM field and that 7 is a reqular
algebraic, polarizable, cuspidal automorphic representation of GL,(Afp). If
m has extremely reqular weight, then there is a set of rational primes L of
Dirichlet density 1 such that if | € L and 1 : Q; = C, then ry,(r) is irreducible.

Proof. Let L be the set of rational primes of Dirichlet density 1 provided
by Proposition 5.4.6 applied to the compatible system R := {r,(7)}. Suppose
l€Land2:Q = C. Let

T1(T) = 11, (7)1 © - - - D ()

be a decomposition into irreducibles. Let F'/F and 7, fora« = 1,...,j be asin
Proposition 5.4.6 for {ry y(m)} and (,2). Let S denote the finite set of primes
of F which divide [ or above which 7 ramifies or above which F’ ramifies. Then

orde—1 LS (s(R ® RY), s) = ords—; L (7 x ¥, 5) = —1.

We will show that ords—1 L°(12(R ® RY),s) also equals —j, and the theorem
will follow.
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Suppose that we are given an intermediate field F/ > F” > F with

F’/F" soluble. By Lemma 2.2.2 there is a regular algebraic, polarizable, cus-
pidal automorphic representation 77((1 ) of GL,,, (Apr) such that T'M(F&F )) ~
71,(T)alGp, - Moreover ry,(7)alc,, is irreducible. Let ng, = dimry,(7)q. If

¢ : Gal (F'/F") — Q; is a character, then

ordg—1 LS(’LTZ’Z(W)(X’GF,, ® T‘l’z(ﬂ')\é‘GF,, ® 1, s)
= ordsy L3 (xF") x (n)Y x (1o 0 Art ), s + (ng — 1a) /2)
—00,80:.1
= —([ra(malG [ [ro(m) sl s
where 6, 3 = 1if @ = 3 and equals 0 otherwise and where 01 = 1if¢) = 1 and
equals 0 otherwise (Note that the 777 || det || (1719)/2 have different weights

so that if 73" || det ||, " 2 7l | det || ’)/2(zo¢oArtF// o det), then
v = 9. Moreover, we would also have 77,(7),|q,, = r1.(7)y|G . ® 1, and
80, as 71,,(7)y|c,, is irreducible, ¢ = 1. Similarly the 7;,(7),|c,, have differ-
ent Hodge-Tate numbers, so if ry,(7),|c,, = r1.(7)y|c., ® ¥, then v = +".
Moreover, as 77,(7),|G,, is irreducible, we see that we also have ¢ = 1.) Thus

ords—1 L (u(r1,o(m) G o @ 11,0(7)|E,, © 1, 5)
—(I'eSF///F [T‘lﬂ (T(')] [1/1]7 I'eSF///F [TZ’Z(TF)])F//J.

Now let F!, n; and 1); be as in item (8f) of the list at the start of this
section. Then

L((R®RY), HL Wria(mla g © (TG, © i s)™
and
ords—1 L¥(u(R @ RY), Zm ([ilrespyyplria(m)) vespy  plria(m)]) pry
= - Z ni(ind gy p([Yilrespr plri(m)]), [ra(m)]) £
= —(lra(m)]; [ra (™)) Fa
= _j7
as desired. O

THEOREM 5.5.3. Suppose that F' is a CM field and that R is a pure,
extremely regqular, totally odd, polarizable weakly compatible system of l-adic
representations of Gg. Then we can write R = R1P--- D Rs where each R; is
an irreducible, strictly pure, totally odd, polarizable compatible system of l-adic
representations of Gp.
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Proof. Choose a set £ of rational primes of Dirichlet density 1 which
simultaneously works for Propositions 5.3.2 and 5.4.6. (See Lemma A.1.7.)
Choose A|l € L such that [ is unramified in F and [ > 2(n + 1) and 7y is
crystalline with Hodge—Tate numbers all in an interval of the form [a,a+1—2].
Decompose r) into irreducible subrepresentations

TA=TALD DAy

By Theorem 5.5.1 each r) , is part of a strictly pure compatible system R,.
Let F'/F and 7, for a = 1,. .., j, be as in Proposition 5.4.6 for R and A\. Then
Rala - 18 the compatible system associated to m,. Moreover 7, is extremely
regular. By Theorem 5.5.2 there is a set L, of rational primes of Dirichlet
density 1 such that if NI’ € Lq, then r4x|q,, is irreducible. Thus R, is
irreducible. O

Appendix A. Algebraic lemmas

The results recorded in this appendix make no reference to results proved
elsewhere in this paper.

A.1. Some algebra. The results of this section are probably well known to
experts. However as we could not find references we include proofs. We start
with some commutative algebra.

Suppose that L is a finite extension of Q; and let | |1, denote the [-adic
norm on L normalized by [I|; = [~[“@], We will denote the l-adic comple-

tion of the polynomial ring Op[s1,...,s.] by Op(si,...,s,) and we will let
L{s1,...,8:) = Or(s1,...,8:)[1/l] denote the Tate algebra. The Gauss norm
|f|lz of an element f € L(sy,...,s,) is defined to be the maximum of the

| |z norm of any coefficient of a monomial in the s;’s. The Gauss norm is
multiplicative ([BGR84, 5.1.2]) and L(sy,...,s,) is a UFD ([BGR84, 5.2.6]).
From these two facts one can deduce without difficulty that Opr(sy,...,s;)
is also a UFD. (The units are the units in L(sy,...,s,) with Gauss norm 1;
and the irreducibles are the irreducibles in L(sq,...,s,) with Gauss norm 1
together with a uniformizer in O, times any unit in Or(s1,...,s;).) The Tate
algebra L(sy,...,s,) is noetherian ([BGR84, 5.2.6]); all its ideals are closed
([BGR84, 5.2.7]); and a prime ideal p of L(si,...,s,) is maximal if and only
if L(s1,...,sr)/p is a finite extension of L ([BGR84, 6.1.2]).

By an affinoid algebra we shall mean a quotient of a Tate algebra by
some ideal. Maximal ideals are dense in the spectrum of an affinoid algebra
([BGR84, 6.1.1]). The completed tensor product of two affinoid algebras is
again an affinoid algebra ([BGR84, 6.1.1]). We will call an affinoid algebra A
geometrically connected if Spec A @, L' is connected for all finite extensions
L'/L. Tt suffices to check this for a cofinal collection of finite extensions L'/L
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(because, for any field L', any L’-algebra B and any finite extension L”/L, if
Spec B ®, L" is connected, then so is Spec B).

LEMMA A.1.1. Suppose that A1 and As are two geometrically connected
affinoid algebras over L. Then A1®1As is also geometrically connected.

Proof. Suppose that
Spec Ai@L Ay @, L' = UV JU®
is a decomposition into two nonempty open subsets for some finite extension
L'/ L. We will derive a contradiction. Each U\ contains a maximal ideal and
after replacing L’ by a finite extension we may suppose that each UU) contains
a maximal ideal m) with residue field L’. Let m; denote the contraction of
mU) into A; ®p L. Then m; is a prime ideal and (4; ®7 L')/m; = L. Thus
m; is maximal. We have an isomorphism
(A1®pAs @p L) /m; = Ay @, L,
where 7' # 7. Thus the fibre Spec (A1®LA2 ®r L") /m; is connected, and so
Spec (A1®LA2 XL L’)/mj C U(])
However

(A1®pAs @ L) /(my,me) =2 (A, @ L) /my @p/ (Ay @ L) /mg 2 L,

and so we see (my, my) is a maximal ideal of A1®1As®p L lying in UV NUG),
a contradiction. O

LEMMA A.1.2. Suppose that f(t) € O[t] and f(0) € OF. Then
A= Op(s,t)/(sf() — 1)
18 an integral domain complete in the l-adic topology.

Proof. As O (s,t)is a UFD, it suffices to prove that s f(t)—1 is irreducible.
Suppose sf(t) — 1 = gh in Or(s,t). Reducing modulo A\ and using the fact
that sf(t) — 1 is irreducible in (Or/\)[s, t], we see that one of g and h reduces
to a constant and hence is itself a unit. The lemma follows. ([l

COROLLARY A.1.3. If a € Op — {0}, then Or(s,t)/(st — ) is an integral
domain.

Proof. Consider the map

0:0L(s,t)/(st —a) — Op(s,ty/(s't —1),
h(s,t) +—— h(as,t).

By Lemma A.1.2 it suffices to show that 6 is injective.
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If 5 € O, —{0}, then any element of O, (s,t)/(st— ) has a representative

of the form
Z aitl + Z bisl.
i=0 i=1

Moreover we claim this representative is unique. Indeed if

m . m . m . .
Zaitz + Zbis’ = (st — f) Z ¢ js't?,
i=0 i=1

i,j=0
then
cit1j41 =B e
for all 4,5 € Z>o. If Y55 c; ;87 € Or(s,t), this forces ¢;; = 0 for all
1,j € Z>p, which proves the claim.

Applying these observations for 8 = « and for 8 = 1, the injectivity of ¢
follows. O

LEMMA A.1.4. Suppose that aq,...,c, € O —{0}. Then
A= OL<51, t1,82,... ,tr>/(51t1 — Q... Sply — Oér)
18 an integral domain complete in the l-adic topology.

Proof. By the exactness of completion (and noetherianness of the polyno-
mial ring Of[s1,t1,82,...,t,]) we see that A is the l-adic completion of

AO == OL[Sl,tl,Sg,. . -atr]/(sltl — .. .,Srtr — Oér).

The ring A° is noetherian and flat over O, (because it is free over Oy with
basis {[]s%t2 : a;b; = 0}), and so A is also flat over Op. Thus it suffices to
show that

A[1/l] = L{s1,t1,82, ..., tr)/(s1t1 — 1, .., Sptr — i)

is a domain.

The ring AY is also excellent (being a finitely generated (Op-algebra),
Cohen—Macaulay (being a complete intersection in a polynomial ring over Op,)
and normal (being Cohen—Macaulay and regular in codimension 1). Hence A
is normal ([Mat80, 33.1]), and so A[1/[] is also normal. Thus it suffices to show
that A[1/l] is geometrically connected (or even just connected).

In the case r = 1 we see that, for any finite extension L’'/L, the ring

L'(s1,t1)/(s1t1 — @) = (Op(s1,t1)/(s1t1 — a))[1/]]

is a domain by Corollary A.1.3. Hence L(s1,t1)/(s1t1 — a1) is geometrically
connected.
In general we have

A[L/1] = L{sy, t1)/(s1ty — 1)@ - - ®L(sy, 1) [ (spty — cur),
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and so the case r = 1 and Lemma A.1.1 imply that A[1/]] is geometrically
connected. O

Next we turn to representation theory.

LEMMA A.1.5. Let T be a group and M a field of characteristic 0. Also
let

r: T — GL, (M)
be a semi-simple representation. Suppose that for ally € T' we have trr(vy) € M

and that for some v € T' the characteristic polynomial of r(7y) has distinct, M-
rational roots. Then r is conjugate to a representation into GLy,(M).

Proof. Let B denote the M-span of the image of r in M, x,(M). Note
that the M-span By of B is a finite-dimensional, semi-simple M-algebra. Let
et,...,e, be an M-basis of By consisting of elements of B and let €,... e

be the dual basis for the trace pairing. Then B D Y, Me;. If b € B, we have
tr (be;) € M for all 4, and so B C Y_; Me,. Thus B =3 Me; =Y Me), and

B®y M 5 By C My (M),

In particular B is a finite-dimensional semi-simple M-algebra and M " is a
faithful B ®,; M-module.
We have
B = @ Mmj (Dj)a
J

where each D; is a division algebra with centre a finite extension Z(D;) of
M. Let 7“ = dimg(p,) D;. As a representation of B ®, M = @D, erJ(M),
where 7 runs over M-embeddings Z(D;) <+ M for each j, we have

M = I
j?T

for some nonnegative integers n; .. Since tr (B) C M, we see that n;, = n; is
independent of 7. The existence of an element of B with n-distinct M-rational
eigenvalues implies that 7; = n; = [Z(D;) : M] =1 for all j. Thus D; = M
for all j, and the lemma follows. O

Next we have a result about unramified tori.

LEMMA A 1.6. Suppose that T1 and Tg are unramified tori over Z; and
that ¢ : Ty — Ty is a surjection. Then the cokernel of Ty (Zy) — TQ(Zl) is finite
of order dividing the order of the torsion subgroup of X*(Tl)/gb*X*(Tg)

Proof. We have an exact (in the centre) sequence

Ty (Zy) -2 To(Zy) — Hom (X*(T}) /6" X*(T2), (Z) )/ (Frob; — 1).
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(Recall that (Z?r)FmblT:l = Zr.) There is a positive integer m so that Frob;"
acts trivially on X*(77). There is also a surjection

Hom (X*(F1) /¢ X*(Ta), (")) /(Frob? — 1)
— Hom (X*(T1)/¢" X*(T2), (Z{")*)/ (Frob; — 1).
Thus it suffices to show that
Hom (X*(T1)/¢" X*(Tb), (Z{")*) /(Frob" — 1)
is a finite group and has order dividing the order of the torsion subgroup of
X*(T) /" X (T2).
There is also an exact (in the centre) sequence
Hom ((X*(T1)/¢"X*(T2))", (Z")*) — Hom (X*(T1) /¢" X *(T2), (Z{)*)
— Hom ((X*(T1) /0" X*(T2))"", (Z{")*)
and hence an exact (in the centre) sequence
Hom ((X*(T1)/¢"X*(T2))", (Z")*)
— Hom (X*(T1)/¢" X *(T2), (Z{")*)/ (Frobj® — 1)
— Hom ((X*(T1)/¢" X *(T2))"", (Z{"))/B,
where B denotes the image of (Frob - 1)Hom (X*(T1) /" X*(Th), (an) ) in
the group Hom ((X*(T1)/¢* X*(T2))'", (ZE)%). As
Hom ((X*(T1)/¢" X*(T2))*", (Z{))
is finite with order the prime-to-l part of #(X*(T1)/¢* X*(T3))'", it suffices
to show that
Hom ((X*(T1)/¢" X" (T2))", (Z§"))/ (Frob" — 1) = (0).

However this follows from the fact that Frob;" —1 is surjective on (2}“) * (which
is proved recursively modulo higher and higher powers of [). O

Finally we recall the following observation, which is not really algebraic.

LEMMA A.1.7. The intersection of a finite number of sets of rational
primes of Dirichlet density 1 has Dirichlet density 1.

Proof. A set of rational primes has Dirichlet density 1 if and only if its
complement has Dirichlet density 0. Thus the lemma follows from the fact
that the union of a finite number of sets of rational primes of Dirichlet density
0 has Dirichlet density 0. O



600 T. BARNET-LAMB, T. GEE, D. GERAGHTY, and R. TAYLOR

A.2. Building fields and characters. For the convenience of the reader we
recall some results about the construction of fields and characters, but we will
start by recalling some facts about algebraic characters.

Suppose that F is a number field, [ is a rational prime and ¢ : Q; = C. Let
Fy denote the maximal CM subfield of F. Suppose also that x is an algebraic
character of Ay /F* with

X‘(Foxo)o DX H (ta) 9.
T7€Hom (F,C)

Then

Z((Tz,z(x)oArtF)(ﬂf) 11 (%17)($z)“7>=><(96) I o~
F,C)

T€Hom ( T€Hom (F,C)

for x € Aj. Moreover 77,(x) is de Rham at all primes above [ and, if 7: F' <
Q;, then HT,(r1.(x)) = {awr}. (See [Ser68].) Moreover we have that

(1) ar + a;r = wt(x) for all 7,7" € Hom (F,C) with 7|g, = 7’|, o ¢;

(2) ar only depends on 7|fg;

(3) wt(xixz) = wt(x1) + wt(x2);

(4) if o is an automorphism of F, then wt(x?) = wt(x) (as o|r, commutes
with ¢);

wt(x o Ngr i) = wt(x);

if Fy is totally real, then wt(x) is even;

wt(| [lr) = —2;

for all places v of F' the Weil-Deligne representation WD(Tl,z(XmGFU is
pure of weight wt(x).

5
6
7
8

A~ N N
~— — — —

Any algebraic [-adic character of G arises in this way.
Next we recall Lemma 4.1.2 of [CHTO08].

LEMMA A.2.1. Suppose that F is a number field, that F(aVOid)/F s a
finite Galois extension and that S is a finite set of places of F. For v € S let
E,/F, be a finite Galois extension. Then we can find a finite, soluble Galois
extension E/F linearly disjoint from F@void) qych that for each v € S and each
prime w of E above v, the extension Ey,/F, is isomorphic to E,/F,.

In a somewhat similar vein we have the following result.

LEMMA A.2.2. Suppose that F is a number field, that S is a finite set
of places of F, that F(a"Oid)/F is a finite Galois extension and that N is a
positive integer. Then we can find a finite cyclic extension E/F of degree N

in which all the elements of S split completely and which is linearly disjoint
from F@void) gper F.
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Proof. Let {Fi(aVOid)} denote the intermediate fields between F(@v0id) and
F for which Gal (Fi(aVOid) /F) is simple. Augment S to include, for each i, a
prime which does not split in Fi(aVOid). Then the linear disjointness of E from
Flavoid) wil] be automatic. Choose a prime vy of F with vy ¢ S. Now use

Lemma 4.1.1 of [CHTO08] to choose a finite order character
X :AS/FX — Q"
such that
* X’HUESF”X =L
o | F2 has order N.

Then FrX°ATF /F is a cyclic extension of degree divisible by N in which all

the primes in S split completely. The unique sub-extension F/F' of degree N
satisfies the requirements of the lemma. O

COROLLARY A.2.3. Suppose that F' is an imaginary CM field, that S is a
finite set of places of F, that F@°) /F is q finite Galois extension and that N
is a positive integer. Then we can find a cyclic CM extension E/F of degree
N in which all the elements of S split completely and which is linearly disjoint
from F@void) oyer F.

Proof. Let F* denote the maximal totally real subfield of F. By the
lemma we can find a totally real cyclic extension ET/F ™ of degree N in which
all the primes of F'™ below S split completely and which is linearly disjoint from
the normal closure of F(@v0id) /F+ gver F+. Then we can take E = ETF. [

We now turn to building characters and record three results, all of which
have a similar feel but which are slightly different. We start by restating (a
special case of) Lemma 2.2 of [HSBT10].

LEMMA A.2.4. Suppose that F is an imaginary CM field with mazimal

totally real subfield F* and that S is a finite set of primes of F. Let

X (AF) —Q”
and

g : OIX’,S — @X
be continuous characters such that

Q’Z)S|(A?+)Xmoz>;,s = X|(A§?+)Xm(9§s'
Also let
¢o: F* —Q~

be a character such that

Gol(r+yx = X|(p+yx-
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Then there is a conlinuous character
¢:AX — Q"
such that
b (Z)‘FX = ¢07
b ¢‘(A;‘°+)X =X
b d"o; ¢ = s.

When we invoke this lemma we may not specify S or the character g, but
instead we may list local conditions to be satisfied by ¢ at a finite number of
primes. We hope that the reader will have no difficulty in finding a set S and
a character g, so that if we apply the lemma with these choices, it produces

a character ¢ with the desired local properties.
We next record two similar results about algebraic characters of Gp.

LEMMA A.2.5. Suppose thatl is a rational prime, that F is an imaginary
CM field with mazimal totally real subfield F™ and that S is a finite set of
primes of F' containing all primes above I and satisfying S¢ = S. Let

X
X : GF+ — Ql
be a continuous character and, for v € S, let
X
,QDU : GF’U — Ql
be a continuous character such that

(d’vd)gc)‘l}% = X|IFU'

For v|l suppose that the character 1, is de Rham.
(1) Suppose further that every element of S is unramified over F* and that
X(cy) is independent of v|oo. Then there is a continuous character
0:Gp — Q)
such that
00° = X‘GF
and, for allv € S,
015, = tol1p,-
(2) Alternatively, suppose further that 1 > 2 and that

s a continuous character such that
e 060° equal to the reduction of Xl
o for v € S the restriction 5\GFU equals the reduction of .
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Then there is a continuous character
0:Gp — Q)

lifting 6 and such that
00° = X‘GF
and, for allv € S,
0|IFU = wvhpu‘

Proof. We deduce the first part from Lemma A.2.4. Replacing x by
X0r/p+ if need be, we may suppose that x(c,) = 1 for all v|co. Note that x
is algebraic and so, because F' is totally real, all its Hodge-Tate numbers are
equal to some integer w. By class field theory we may think of y : A;+ — @lX

and ¢, : FX — @, and look for 0 : AX/F* — Q. If v|l, then

% = H T

TZFUH@l
on a some nonempty open subgroup of F,*. Moreover m, + ms.. = w for all 7.
Let ' : A%, — @ be defined by
X' (a) = x(a)(Np+ jgou)”.
Then X’ has open kernel containing (F5)*. Let
bo = H 7T FX —>@lx

T:F‘—)@l
We see that

¢0|(F+)x = X/|(F+)x-
Thus, in particular, y’ is actually valued in the algebraic closure Q of Q in Q;.

Also define
1/};) : FvX — @IX

y H T

T:Fv‘%@l

to be 1, if v fI and

if v|l. In either case ¢! has open kernel and is valued in Q.

Now apply Lemma A.2.4 to X/, ¢o and [[,es?),. (Note that the norm
map Np/p+ from [[,e5 Opy to the intersection of this group with AIX, 4 s
surjective.) We get a character

¢ AL — Q
with open kernel such that

L ¢|F>< = @07
. ¢|(A;°+)X =X,
. ¢>\O;v = forallveS.
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The character
0:Ay — @lx
defined by
0(a) = ¢(a) ] (rer)™™
T:F—=Q

satisfies the requirements of the first part of the present lemma.

The second part follows easily from Lemma 4.1.6 of [CHTO08]. If 7 : F —
Q lies above v € S, then we will let m, denote the 7 Hodge Tate number
of 1,. We need only verify that m, 4+ m,. is independent of 7. However the
character x must be algebraic and for each 7 : F' — Q; the 7 Hodge Tate
number of x is m; + m;.. The result follows from the facts recalled at the
start of this section. O

Probably the assumption [ > 2 in the second part of this lemma could be
replaced by the assumption that x(c,) is independent of v|oo as in the first
part of the lemma.

Again we will often invoke this lemma without specifying S or the charac-
ters 1, but instead we may list local conditions to be satisfied by 0 at a finite
number of primes. We hope that the reader will have no difficulty in finding a
set S and characters ¢, so that if we apply the lemma with these choices, it
produces a character 8 with the desired local properties.
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