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Limit theorems for translation flows

By Alexander I. Bufetov

To William Austin Veech

Abstract

The aim of this paper is to obtain an asymptotic expansion for ergodic

integrals of translation flows on flat surfaces of higher genus (Theorem 1)

and to give a limit theorem for these flows (Theorem 2).
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1. Introduction

1.1. Outline of the main results. A compact Riemann surface endowed

with an abelian differential admits two natural flows, called, respectively, hor-

izontal and vertical. One of the main objects of this paper is the space B+

of Hölder cocycles over the vertical flow, invariant under the holonomy by the

horizontal flow. Equivalently, cocycles in B+ can be viewed, in the spirit of

R. Kenyon [29] and F. Bonahon [8], [9], as finitely-additive transverse invariant

measures for the horizontal foliation of our abelian differential. Cocycles in B+

are closely connected to the invariant distributions for translation flows in the

sense of G. Forni [21].

The space B+ is finite-dimensional, and for a generic abelian differential,

the dimension of B+ is equal to the genus of the underlying surface. Theo-

rem 1, which extends earlier work of A. Zorich [46] and G. Forni [21], states

that the time integral of a Lipschitz function under the vertical flow can be

uniformly approximated by a suitably chosen cocycle from B+ up to an error

that grows more slowly than any power of time. The renormalizing action of
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the Teichmüller flow on the space of Hölder cocycles now allows one to obtain

limit theorems for translation flows on flat surfaces (Theorem 2).

The statement of Theorem 2 can be informally summarized as follows.

Taking the leading term in the asymptotic expansion of Theorem 1, to a generic

abelian differential one assigns a compactly supported probability measure on

the space of continuous functions on the unit interval. The normalized dis-

tribution of the time integral of a Lipschitz function converges, with respect

to weak topology, to the trajectory of the corresponding “asymptotic distribu-

tion” under the action of the Teichmüller flow. Convergence is exponential with

respect to both the Lévy-Prohorov and the Kantorovich-Rubinstein metric.

1.2. Hölder cocycles over translation flows. Let ρ ≥ 2 be an integer, let

M be a compact orientable surface of genus ρ, and let ω be a holomorphic

one-form on M . Denote by ν = i(ω ∧ ω)/2 the area form induced by ω, and

assume that ν(M) = 1.

Let h+
t be the vertical flow on M (i.e., the flow corresponding to <(ω));

let h−t be the horizontal flow on M (i.e., the flow corresponding to =(ω)). The

flows h+
t , h−t preserve the area ν.

Take x ∈M , t1, t2 ∈ R+, and assume that the closure of the set

(1) {h+
τ1h
−
τ2x, 0 ≤ τ1 < t1, 0 ≤ τ2 < t2}

does not contain zeros of the form ω. The set (1) is then called an admis-

sible rectangle and denoted Π(x, t1, t2). Let C be the semi-ring of admissible

rectangles.

Consider the linear space B+ of Hölder cocycles Φ+(x, t) over the verti-

cal flow h+
t that are invariant under horizontal holonomy. More precisely, a

function Φ+(x, t) : M × R→ R belongs to the space B+ if it satisfies

Assumption 1.1.

(1) Φ+(x, t+ s) = Φ+(x, t) + Φ+(h+
t x, s);

(2) there exists t0 > 0, θ > 0 such that |Φ+(x, t)| ≤ tθ for all x ∈ M and

all t ∈ R satisfying |t| < t0;

(3) if Π(x, t1, t2) is an admissible rectangle, then Φ+(x, t1) = Φ+(h−t2x, t1).

A cocycle Φ+ ∈ B+ can equivalently be thought of as a finitely-additive

Hölder measure defined on all arcs γ = [x, h+
t x] of the vertical flow and in-

variant under the horizontal flow. It will often be convenient to identify the

cocycle with the corresponding finitely-additive measure. For example, let ν+

be the Lebesgue measure on leaves of the vertical foliation; the corresponding

cocycle Φ+
1 defined by Φ+

1 (x, t) = t of course belongs to B+.

In the same way define the space B− of Hölder cocycles Φ−(x, t) over

the horizontal flow h−t that are invariant under vertical holonomy. A cocycle

Φ− ∈ B− can equivalently be thought of as a finitely-additive Hölder measure
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defined on all arcs γ̃ = [x, h−t x] of the horizontal flow and invariant under

the vertical flow. Let ν− be the Lebesgue measure on leaves of the horizontal

foliation. The corresponding cocycle Φ−1 is defined by the formula Φ−1 (x, t) = t;

of course, Φ−1 ∈ B−.

Given Φ+ ∈ B+, Φ− ∈ B−, a finitely additive measure Φ+ × Φ− on the

semi-ring C of admissible rectangles is introduced by the formula

(2) Φ+ × Φ−(Π(x, t1, t2)) = Φ+(x, t1) · Φ−(x, t2).

In particular, for Φ− ∈ B−, set mΦ− = ν+ × Φ−:

(3) mΦ−(Π(x, t1, t2)) = t1Φ−(x, t2).

For any Φ− ∈ B−, the measure mΦ− satisfies (h+
t )∗mΦ− = mΦ− and is an

invariant distribution in the sense of G. Forni [20], [21]. For instance, mΦ−1
= ν.

An R-linear pairing between B+ and B− is given, for Φ+ ∈ B+, Φ− ∈ B−,

by the formula

(4) 〈Φ+,Φ−〉 = Φ+ × Φ−(M).

1.3. Characterization of cocycles. For an abelian differential X = (M,ω),

let B+
c (X) be the space of continuous holonomy-invariant cocycles. More pre-

cisely, a function Φ+(x, t) : M × R → R belongs to the space B+
c (X) if it

satisfies conditions 1 and 3 of Assumption 1.1, while condition 2 is replaced

by the following weaker version: For any ε > 0, there exists δ > 0 such that

|Φ+(x, t)| ≤ ε for all x ∈ M and all t ∈ R satisfying |t| < δ. Given an abelian

differential X = (M,ω), we now construct, following Katok [28], an explicit

mapping of B+
c (M,ω) to H1(M,R). A continuous closed curve γ on M is

called rectangular if

γ = γ+
1 t · · · t γ

+
k1
t γ−1 t · · · t γ

−
k2
,

where γ+
i are arcs of the flow h+

t , γ−i are arcs of the flow h−t .

For Φ+ ∈ B+
c , define

Φ+(γ) =
k1∑
i=1

Φ+(γ+
i );

similarly, for Φ− ∈ B−c , write

Φ−(γ) =
k2∑
i=1

Φ−(γ−i ).

Thus, a cocycle Φ+ ∈ Bc assigns a number Φ+(γ) to every closed rectan-

gular curve γ. It is shown in Proposition 1.22 below that if γ is homologous

to γ′, then Φ+(γ) = Φ+(γ′). For an abelian differential X = (M,ω), we thus

obtain maps

(5) Ǐ+
X : B+

c (X)→ H1(M,R), Ǐ−X : B−c (X)→ H1(M,R).
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For a generic abelian differential, the image of B+ under the map Ǐ+
X is the

strictly unstable space of the Kontsevich-Zorich cocycle over the Teichmüller

flow. More precisely, let κ = (κ1, . . . , κσ) be a nonnegative integer vector such

that κ1 + · · ·+ κσ = 2ρ− 2. Denote by Mκ the moduli space of pairs (M,ω),

where M is a Riemann surface of genus ρ and ω is a holomorphic differential

of area 1 with singularities of orders κ1, . . . , κσ. The space Mκ is often called

the stratum in the moduli space of abelian differentials.

The Teichmüller flow gs onMκ sends the modulus of a pair (M,ω) to the

modulus of the pair (M,ω′), where ω′ = es<(ω) + ie−s=(ω); the new complex

structure on M is uniquely determined by the requirement that the form ω′ be

holomorphic. As shown by Veech, the spaceMκ need not be connected; let H
be a connected component of Mκ.

Let H1(H) be the fibre bundle over H whose fibre at a point (M,ω) is

the cohomology group H1(M,R). The bundle H1(H) carries the Gauss-Manin

connection, which declares continuous integer-valued sections of our bundle to

be flat and is uniquely defined by that requirement. Parallel transport with

respect to the Gauss-Manin connection along the orbits of the Teichmüller flow

yields a cocycle over the Teichmüller flow, called the Kontsevich-Zorich cocycle

[31] and denoted A = AKZ .

Let P be a gs-invariant ergodic probability measure on H. For X ∈ H,

X = (M,ω), let B+
X, B−X be the corresponding spaces of Hölder cocycles.

Denote by EuX ⊂ H1(M,R) the space spanned by vectors corresponding

to the positive Lyapunov exponents of the Kontsevich-Zorich cocycle and by

EsX ⊂ H1(M,R) the space spanned by vectors corresponding to the negative

exponents of the Kontsevich-Zorich cocycle.

Proposition 1.2. For P-almost all X ∈ H, the map Ǐ+
X takes B+

X iso-

morphically onto EuX and the map Ǐ−X takes B−X isomorphically onto EsX.

The pairing 〈, 〉 is nondegenerate and is taken by the isomorphisms I+
X,

I−X to the cup-product in the cohomology H1(M,R).

Remark. In particular, if P is the Masur-Veech “smooth” measure [34],

[37], then dimB+
X = dimB−X = ρ.

Remark. The isomorphisms Ǐ+
X, Ǐ−X are analogues of G. Forni’s isomor-

phism [21] between his space of invariant distributions and the unstable space

of the Kontsevich-Zorich cocycle; cf. also the invariants of Aranson and Grines

[2] in the fundamental group of the surface.

Now recall that to every cocycle Φ− ∈ B−X we have assigned a finitely-

additive Hölder measure mΦ− invariant under the flow h+
t . Considering these

measures as distributions in the sense of Sobolev and Schwartz, we arrive at

the following proposition.
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Proposition 1.3. Let P be an ergodic gs-invariant probability measure

on H. Then for P-almost every abelian differential (M,ω), the space {mΦ− ,Φ
−

∈ B−(M,ω)} coincides with the space of h+
t -invariant distributions belonging

to the Sobolev space H−1.

Proof. By definition, for any Φ+ ∈ B+, the distribution mΦ+ is h−t -

invariant and belongs to the Sobolev space H−1. G. Forni has shown that

for any gs-invariant ergodic measure P and P-almost every abelian differential

(M,ω), the dimension of the space of h−t -invariant distributions belonging to

the Sobolev space H−1 does not exceed the dimension of the strictly expanding

Oseledets subspace of the Kontsevich-Zorich cocycle. (Under mild additional

assumption on the measure P G. Forni proved that these dimensions are in

fact equal; see Theorem 8.3 and Corollary 8.3′ in [21]. Note, however, that

the proof of the upper bound in Forni’s Theorem only uses ergodicity of the

measure.) Since the dimension of the space {mΦ− ,Φ
− ∈ B−} equals that of

the strictly expanding space for the Kontsevich-Zorich cocycle for P-almost all

(M,ω), the proposition is proved completely. �

Consider the inverse isomorphisms

I+
X =

Ä
Ǐ+
X

ä−1
, I−X =

Ä
Ǐ−X
ä−1

.

Let 1 = θ1 > θ2 > · · · > θl > 0 be the distinct positive Lyapunov exponents of

the Kontsevich-Zorich cocycle AKZ , and let

EuX =
l⊕

i=1

EuX,θi

be the corresponding Oseledets decomposition at X.

Proposition 1.4. Let v ∈ EuX,θi , v 6= 0, and denote Φ+ = I+
X(v). Then

for any ε > 0, the cocycle Φ+ satisfies the Hölder condition with exponent θi−ε
and for any x ∈M(X) such that h+

t x is defined for all t ∈ R, we have

lim sup
T→∞

log |Φ+(x, T )|
log T

= θi, lim sup
T→0

log |Φ+(x, T )|
log T

= θi.

Proposition 1.5. If the Kontsevich-Zorich cocycle does not have zero

Lyapunov exponent with respect to P, then B+
c (X) = B+(X).

Remark. The condition of the absence of zero Lyapunov exponents can

be weakened: it suffices to require that the Kontsevich-Zorich cocycle act iso-

metrically on the neutral Oseledets subspace corresponding to the Lyapunov

exponent zero. Isometric action means here that there exists an inner product

that depends measurably on the point in the stratum and that is invariant

under the Kontsevich-Zorich cocycle. In all known examples (see, e.g., [24])

the action of the Kontsevich-Zorich cocycle on its neutral Lyapunov subspace
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is isometric; note, however, that the examples of [24] mainly concern measures

invariant under the action of the whole group SL(2,R).

Question. Does there exist a gs-invariant ergodic probability measure P′
on H such that the inclusion B+ ⊂ B+

c is proper almost surely with respect

to P′?

Remark. G. Forni has made the following remark. To a cocycle Φ+ ∈ B+

assign a 1-current βΦ+ , defined, for a smooth 1-form η on the surface M, by

the formula

βΦ+(η) =

∫
M

Φ+ ∧ η,

where the integral in the right-hand side is defined as the limit of Riemann

sums. The resulting current βΦ+ is a basic current for the horizontal foliation.

The mapping of Hölder cocycles into the cohomology H1(M,R) of the

surface corresponds to G. Forni’s map that to each basic current assigns its

cohomology class. (The latter is well defined by the de Rham Theorem.) In

particular, it follows that for any ergodic gs-invariant probability measure P
on H and P-almost every abelian differential (M,ω), every basic current from

the Sobolev space H−1 is induced by a Hölder cocycle Φ+ ∈ B+(M,ω).

1.4. Approximation of weakly Lipschitz functions.

1.4.1. The space of weakly Lipschitz functions. The space of Lipschitz

functions is not invariant under h+
t , and a larger function space Lip+

w(M,ω)

of weakly Lipschitz functions is introduced as follows. A bounded measurable

function f belongs to Lip+
w(M,ω) if there exists a constant C, depending only

on f , such that for any admissible rectangle Π(x, t1, t2), we have

(6)

∣∣∣∣∣
∫ t1

0
f(h+

t x)dt−
∫ t1

0
f(h+

t (h−t2x)dt

∣∣∣∣∣ ≤ C.
Let Cf be the infimum of all C satisfying (6). We norm Lip+

w(M,ω) by setting

||f ||Lip+
w

= sup
M

f + Cf .

By definition, the space Lip+
w(M,ω) contains all Lipschitz functions on M

and is invariant under h+
t . If Π is an admissible rectangle, then its characteristic

function χΠ is weakly Lipschitz. (I am grateful to C. Ulcigrai for this remark.)

We denote by Lip+
w,0(M,ω) the subspace of Lip+

w(M,ω) of functions whose

integral with respect to ν is 0. For any f ∈ Lip+
w(M,ω) and any Φ− ∈ B−,

the integral
∫
M fdmΦ− can be defined as the limit of Riemann sums.

1.4.2. The cocycle corresponding to a weakly Lipschitz function. If the

pairing 〈, 〉 induces an isomorphism between B+ and the dual (B−)∗, then one
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can assign to a function f ∈ Lip+
w(M,ω) the functional Φ+

f by the formula

(7) 〈Φ+
f ,Φ

−〉 =

∫
M

fdmΦ− ,Φ
− ∈ B−.

By definition, Φ+
f◦h+t

= Φ+
f . We now proceed to the formulation of the

first main result of this paper, the Approximation Theorem 1.

Theorem 1. Let P be an ergodic probability gs-invariant measure on H.

For any ε > 0, there exists a constant Cε depending only on P such that for

P-almost every X ∈ H, any f ∈ Lip+
w(X), any x ∈ M , and any T > 0, we

have ∣∣∣∣∣
∫ T

0
f ◦ h+

t (x)dt− Φ+
f (x, T )

∣∣∣∣∣ ≤ Cε||f ||Lip+
w

(1 + T ε).

1.4.3. Invariant measures with simple Lyapunov spectrum. Consider the

case in which the Lyapunov spectrum of the Kontsevich-Zorich cocycle is simple

in restriction to the space Eu (as, by the Avila-Viana theorem [4], is the case

with the Masur-Veech smooth measure). Let l0 = dimEu, and let

(8) 1 = θ1 > θ2 > · · · > θl0

be the corresponding simple expanding Lyapunov exponents.

Let Φ+
1 be given by the formula Φ+

1 (x, t) = t, and introduce a basis

(9) Φ+
1 ,Φ

+
2 , . . . ,Φ

+
l0

in B+
X in such a way that Ǐ+

X(Φ+
i ) lies in the Lyapunov subspace with exponent

θi. By Proposition 1.4, for any ε > 0, the cocycle Φ+
i satisfies the Hölder

condition with exponent θi − ε, and for any x ∈M(X), we have

lim sup
T→∞

log |Φ+
i (x, T )|

log T
= θi, lim sup

T→0

log |Φ+
i (x, T )|

log T
= θi.

Let Φ−1 , . . . ,Φ
−
l0

be the dual basis in B−X. Clearly, Φ−1 (x, t) = t. By

definition, we have

(10) Φ+
f =

l0∑
i=1

mΦ−i
(f)Φ+

i .

Noting that by definition we have

mΦ−1
= ν,

we derive from Theorem 1 the following corollary.

Corollary 1.6. Let P be an invariant ergodic probability measure for

the Teichmüller flow such that with respect to P the Lyapunov spectrum of

the Kontsevich-Zorich cocycle is simple in restriction to its strictly expanding

subspace. Then for any ε > 0, there exists a constant Cε depending only on P
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such that for P-almost every X ∈ H, any f ∈ Lip+
w(X), any x ∈ X, and any

T > 0, we have∣∣∣∣∣∣
∫ T

0
f ◦ h+

t (x)dt− T
( ∫

M
fdν

)
−

l0∑
i=2

mΦ−i
(f)Φ+

i (x, T )

∣∣∣∣∣∣ ≤ Cε||f ||Lip+
w

(1 + T ε).

For horocycle flows a related asymptotic expansion has been obtained by

Flaminio and Forni [19].

Remark. If P is the Masur-Veech smooth measure on H, then it follows

from the work of G. Forni [20], [21], [23] and S. Marmi, P. Moussa, J.-C. Yoccoz

[32] that the left-hand side is bounded for any f ∈ C1+ε(M) (in fact, for any f

in the Sobolev space H1+ε). In particular, if f ∈ C1+ε(M) and Φ+
f = 0, then

f is a coboundary.

1.5. Holonomy invariant transverse finitely-additive measures for oriented

measured foliations. Holonomy-invariant cocycles assigned to an abelian dif-

ferential can be interpreted as transverse invariant measures for its foliations

in the spirit of Kenyon [29] and Bonahon [8], [9].

Let M be a compact oriented surface of genus at least two, and let F be

a minimal oriented measured foliation on M . Denote by mF the transverse

invariant measure of F . If γ = γ(t), t ∈ [0, T ] is a smooth curve on M ,

and s1, s2 satisfy 0 ≤ s1 < s2 ≤ T , then we denote by res[s1,s2]γ the curve

γ(t), t ∈ [s1, s2].

Let Bc(F) be the space of uniformly continuous finitely-additive trans-

verse invariant measures for F . In other words, a map Φ that to every smooth

arc γ transverse to F assigns a real number Φ(γ) belongs to the space Bc(F)

if it satisfies the following

Assumption 1.7.

(1) (Finite additivity). For γ = γ(t), t ∈ [0, T ] and any s ∈ (0, T ), we have

Φ(γ) = Φ(res[0,s]γ) + Φ(res[s,T ]γ).

(2) (Uniform continuity). For any ε > 0, there exists δ > 0 such that for

any transverse arc γ satisfying mF (γ) < δ, we have |Φ(γ)| < ε.

(3) (Holonomy invariance). The value Φ(γ) does not change if γ is de-

formed in such a way that it stays transverse to F while the endpoints

of γ stay on their respective leaves.

A measure Φ ∈ Bc(F) is called Hölder with exponent θ if there exists

ε0 > 0 such that for any transverse arc γ satisfying mF (γ) < ε0, we have

|Φ(γ)| ≤ (mF (γ))θ .
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Let B(F) ⊂ Bc(F) be the subspace of Hölder transverse measures. As

before, we have a natural map

IF : Bc(F)→ H1(M,R)

defined as follows. For a smooth closed curve γ on M and a measure Φ ∈
Bc(F), the integral

∫
γ dΦ is well defined as the limit of Riemann sums; by

holonomy-invariance and continuity of Φ, this operation descends to homology

and assigns to Φ an element of H1(M,R).

Now take an abelian differential X = (M,ω), and let F−X be its hori-

zontal foliation. We have a “tautological” isomorphism between Bc(F−X) and

B+
c (X): every transverse measure for the horizontal foliation induces a cocy-

cle for the vertical foliation and vice versa; to a Hölder measure corresponds a

Hölder cocycle. For brevity, write IX = IF−X . Denote by EuX ⊂ H1(M,R) the

unstable subspace of the Kontsevich-Zorich cocycle of the abelian differential

X = (M,ω).

Theorem 1 and Proposition 1.5 yield the following

Corollary 1.8. Let P be a Borel probability measure on H invariant and

ergodic under the action of the Teichmüller flow gt. Then for almost every

abelian differential X ∈ H the map IX takes B(F−X) isomorphically onto EuX.

If the Kontsevich-Zorich cocycle does not have zero Lyapunov exponents with

respect to P, then for almost all X ∈ H, we have Bc(FX) = B(FX).

In other words, in the absence of zero Lyapunov exponents all continuous

transverse finitely-additive invariant measures are in fact Hölder.

Remark. As before, the condition of the absence of zero Lyapunov expo-

nents can be weakened: it suffices to require that the Kontsevich-Zorich cocycle

act isometrically on the Oseledets subspace corresponding to the Lyapunov ex-

ponent zero.

By definition, the space B(F−X) only depends on the horizontal foliation

of our abelian differential; so does EuX.

1.6. Finitely-additive invariant measures for interval exchange transfor-

mations.

1.6.1. The space of invariant continuous finitely-additive measures. Let

m ∈ N. Let ∆m−1 be the standard unit simplex

∆m−1 =

{
λ ∈ Rm+ , λ = (λ1, . . . , λm), λi > 0,

m∑
i=1

λi = 1

}
.

Let π be a permutation of {1, . . . ,m} satisfying the irreducibility condition: we

have π{1, . . . , k} = {1, . . . , k} if and only if k = m.
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On the half-open interval I = [0, 1) consider the points

β1 = 0, βi =
∑
j<i

λj , βπ1 = 0, βπi =
∑
j<i

λπ−1j ,

and denote Ii = [βi, βi+1), Iπi = [βπi , β
π
i+1). The length of Ii is λi, while the

length of Iπi is λπ−1i. Set

T(λ,π)(x) = x+ βππi − βi for x ∈ Ii.

The map T(λ,π) is called an interval exchange transformation corresponding to

(λ, π). By definition, the map T(λ,π) is invertible and preserves the Lebesgue

measure on I. By the theorem of Masur [34] and Veech [37], for any irreducible

permutation π and for Lebesgue-almost all λ ∈ ∆m−1, the corresponding inter-

val exchange transformation T(λ,π) is uniquely ergodic: the Lebesgue measure

is the only invariant probability measure for T(λ,π).

Consider the space of complex-valued continuous finitely-additive invari-

ant measures for T(λ,π). More precisely, let Bc(T(λ,π)) be the space of all

continuous functions Φ : [0, 1]→ R satisfying

(1) Φ(0) = 0;

(2) if 0 ≤ t1 ≤ t2 < 1 and T(λ,π) is continuous on [t1, t2], then Φ(t1) −
Φ(t2) = Φ(T(λ,π)(t1))− Φ(T(λ,π)(t2)).

Each function Φ induces a finitely-additive measure on [0, 1] defined on the

semi-ring of subintervals. (For instance, the function Φ1(t) = t yields the

Lebesgue measure on [0, 1].)

Let B(T(λ,π)) be the subspace of Hölder functions Φ ∈ Bc(T(λ,π)). The

classification of Hölder cocycles over translation flows and the asymptotic for-

mula of Theorem 1 now yield the classification of the space B(T(λ,π)) and an

asymptotic expansion for time averages of almost all interval exchange maps.

1.6.2. The approximation of ergodic sums. Let X = (M,ω) be an abelian

differential, and let I ⊂ M be a closed interval lying on a leaf of a horizontal

foliation. The vertical flow h+
t induces an interval exchange map TI on I,

namely, the Poincaré first return map of the flow. By definition, there is a

natural tautological identification of the spaces Bc(TI) and B−c (X) as well as

of the spaces B(TI) and B−(X).

For x ∈ M , let τI(x) = min
¶
t > 0 : h+

−tx ∈ I
©

. Note that the function

τI is uniformly bounded on M . Now take a Lipschitz function f on I, and

introduce a function f̃ on M by the formula

f̃(x) =
f(h+

−τI(x)x)

τI(x)

(setting f̃(x) = 0 for points at which τI is not defined).
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By definition, the function f̃ is weakly Lipschitz, and Theorem 1 is appli-

cable to f̃ . The ergodic integrals of f̃ under h+
t are of course closely related

to ergodic sums of f under TI , and for any N ∈ N, x ∈ I, there exists a time

t(x,N) ∈ R such that

t(x,N)∫
0

f̃ ◦ h+
s (x) ds =

N−1∑
k=0

f ◦Tk
I (x).

By the Birkhoff–Khintchine Ergodic Theorem we have

lim
N→∞

t(x,N)

N
=

1

Leb(I)
,

where Leb(I) stands for the length of I. Furthermore, Theorem 1 yields the

existence of constants C(I) > 0, θ ∈ (0, 1), such that for all x ∈ I, N ∈ N, we

have

(11)

∣∣∣∣∣t(x,N)− N

Leb(I)

∣∣∣∣∣ 6 C(I) ·N θ.

Indeed, the interval I induces a decomposition of our surface into weakly

admissible rectangles Π1, . . . ,Πm; denote by hi the height of the rectangle Πi,

and introduce a weakly Lipschitz function that assumes the constant value 1
hi

on each rectangle Πi. Applying Theorem 1 to this function we arrive at the

desired estimate.

In view of the estimate (11), Theorem 1 applied to the function f̃ now

yields the following Corollary.

Corollary 1.9. Let P be a gs-invariant ergodic probability measure on

H. For any ε > 0, there exists Cε > 0 depending only on P such that the

following holds : For almost every abelian differential X ∈ H,X = (M,ω), any

horizontal closed interval I ⊂M , any Lipschitz function f : I → R, any x ∈ I ,

and all n ∈ N, we have∣∣∣∣∣∣
N−1∑
k=0

f ◦Tk
I (x)− Φ+

f̃
(x,N)

∣∣∣∣∣∣ 6 Cε||f ||LipN
ε.

Proof. Applying Theorem 1 to f̃ , using the estimate (11), and noting that

the weakly Lipschitz norm of f̃ is majorated by the Lipschitz norm of f, we

obtain the desired corollary. �

Let θ1 > θ2 > · · · > θl0 > 0 be the distinct positive Lyapunov exponents of

the measure P, and let d1 = 1, d2, . . . , dl0 be the dimensions of the correspond-

ing subspaces. The tautological identification of B(TI) and B−(X), together

with the results of the previous corollary, now implies Zorich-type estimates

for the growth of ergodic sums of TI . More precisely, we have the following
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Corollary 1.10. In the assumptions of the Corollary 1.9, the space

B(TI) admits a flag of subspaces

0 = B0 ⊂ B1 = R LebI ⊂ B2 ⊂ · · · ⊂ Bl0 = B(TI)

such that for any finitely-additive measure Φ ∈ Bi in Hölder with exponent
θi
θ1
− ε for any ε > 0 and that for any Lipschitz function f : I → R and for any

x ∈ I, we have

lim
N→∞

sup
log

∣∣∣∑N−1
k=0 fTk

I (x)
∣∣∣

logN
=
θi(f)

θ1
,

where i(f) = 1 + max{j :
∫
I fdΦ = 0 for all Φ ∈ Bj} and by convention we set

θl0+1 = 0. If with respect to the measure P the Kontsevich-Zorich cocycle acts

isometrically on its neutral subspaces, then we also have Bc(TI) = B(TI).

Remark. Corollaries 1.9 and 1.10 thus yield the asymptotic expansion in

terms of Hölder cocycles as well as Zorich-type logarithmic estimates for almost

all interval exchange transformations with respect to any conservative ergodic

measure µ on the space of interval exchange transformations, invariant under

the Rauzy-Veech induction map and such that the Kontsevich-Zorich cocycle

is log-integrable with respect to µ. In particular, for the Lebesgue measure, if

we let R be the Rauzy class of the permutation π, then, using the simplicity

of the Lyapunov spectrum given by the Avila-Viana theorem [4], we obtain

Corollary 1.11. For any irreducible permutation π and for Lebesgue-

almost all λ all continuous finitely-additive measures are Hölder, we have

B(T(λ,π)) = Bc(T(λ,π)).

For any irreducible permutation π, there exists a natural number ρ = ρ(R)

depending only on the Rauzy class of π and such that

(1) for Lebesgue-almost all λ, we have dimB(λ, π) = ρ;

(2) all the spaces Bi are one-dimensional and l0 = ρ.

In the case of the Lebesgue measure on the space of interval exchange

transformations, the second statement of Corollary 1.10 recovers the Zorich

logarithmic asymptotics for ergodic sums [46], [47].

Remark. Objects related to finitely-additive measures for interval exchange

transformations have been studied by X. Bressaud, P. Hubert and A. Maass

in [10] and by S. Marmi, P. Moussa and J.-C. Yoccoz in [33]. In particular,

the “limit shapes” of [33] can be viewed as graphs of the cocycles Φ+(x, t)

considered as functions in t.

1.7. Limit theorems for translation flows.
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1.7.1. Time integrals as random variables. As before, (M,ω) is an abelian

differential, and h+
t , h−t are, respectively, its vertical and horizontal flows. Take

τ ∈ [0, 1], s ∈ R, a real-valued f ∈ Lip+
w,0(M,ω), and introduce the function

(12) S[f, s; τ, x] =

∫ τ exp(s)

0
f ◦ h+

t (x)dt.

For fixed f , s, and x, the quantity S[f, s; τ, x] is a continuous function of

τ ∈ [0, 1]; therefore, as x varies in the probability space (M,ν), we obtain a

random element of C[0, 1]. In other words, we have a random variable

(13) S[f, s] : (M,ν)→ C[0, 1]

defined by the formula (12).

For any fixed τ ∈ [0, 1], the formula (12) yields a real-valued random

variable

(14) S[f, s; τ ] : (M,ν)→ R,

whose expectation, by definition, is zero.

Our first aim is to estimate the growth of its variance as s→∞. Without

losing generality, one may take τ = 1.

1.7.2. The growth rate of the variance in the case of a simple second Lya-

punov exponent. Let P be an invariant ergodic probability measure for the

Teichmüller flow such that with respect to P, the second Lyapunov exponent

θ2 of the Kontsevich-Zorich cocycle is positive and simple. (Recall that, as

Veech and Forni showed, the first one, θ1 = 1, is always simple [41], [21] and

that, by the Avila-Viana theorem [4], the second one is simple for the Masur-

Veech smooth measure.)

For an abelian differential X=(M,ω), denote by E+
2,X the one-dimensional

subspace in H1(M,R) corresponding to the second Lyapunov exponent θ2,

and let B+
2,X = I+

X(E+
2,X). Similarly, denote by E−2,X the one-dimensional

subspace in H1(M,R) corresponding to the Lyapunov exponent −θ2, and let

B−2,X = I−X(E−2,X).

Recall that the space H1(M,R) is endowed with the Hodge norm | · |H ;

the isomorphisms I±X take the Hodge norm to a norm on B±X; slightly abusing

notation, we denote the latter norm by the same symbol.

Introduce a multiplicative cocycle H2(s,X) over the Teichmüller flow gs
by taking v ∈ E+

2,X, v 6= 0, and setting

(15) H2(s,X) =
|A(s,X)v|H
|v|H

.

The Hodge norm is chosen only for concreteness in (15); any other norm can

be used instead.
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By definition, we have

(16) lim
s→∞

logH2(s,X)

s
= θ2.

Now take Φ+
2 ∈ B+

2,X Φ−2 ∈ B−2,X in such a way that 〈Φ+
2 ,Φ

−
2 〉 = 1.

Proposition 1.12. There exists α > 0 depending only on P and positive

measurable functions

C : H×H → R+, V : H → R+, s0 : H → R+

such that the following is true for P-almost all X ∈ H: If f ∈ Lip+
w,0(X)

satisfies mΦ−2
(f) 6= 0, then for all s ≥ s0(X), we have

(17)

∣∣∣∣∣∣ VarνS(f, x, es)

V (gsX)(mΦ−2
(f)|Φ+

2 |H2(s,X))2
− 1

∣∣∣∣∣∣ ≤ C(X,gsX) exp(−αs).

Remark. Observe that the quantity (mΦ−2
(f)|Φ+

2 |)2 does not depend on

the specific choice of Φ+
2 ∈ B+

2,X, Φ−2 ∈ B−2,X such that 〈Φ+
2 ,Φ

−
2 〉 = 1.

Remark. Note that by theorems of Egorov and Luzin, the estimate (17)

holds uniformly on compact subsets of H of probability arbitrarily close to 1.

Proposition 1.12 is based on

Proposition 1.13. There exists a positive measurable function V : H →
R+ such that for P-almost all X ∈ H, we have

(18) Varν(X)Φ
+
2 (x, es) = V (gsX)|Φ+

2 |
2(H2(s,X))2.

In particular, VarνΦ+
2 (x, es) 6= 0 for any s ∈ R. The function V (X) is

given by

V (X) =
Varν(X)Φ

+
2 (x, 1)

|Φ+
2 |2

.

Observe that the right-hand side does not depend on a particular choice of

Φ+
2 ∈ B+

2,X, Φ+
2 6= 0.

1.7.3. The limit theorem in the case of a simple second Lyapunov exponent.

Go back to the C[0, 1]-valued random variable S[f, s], and denote by m[f, s]

the distribution of the normalized random variable

(19)
S[f, s]»

VarνS[f, s; 1]
.

The measure m[f, s] is thus a probability distribution on the space C[0, 1] of

continuous functions on the unit interval.
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For τ ∈ R, τ 6= 0, we also let m[f, s; τ ] be the distribution of the R-valued

random variable

(20)
S[f, s; τ ]»

VarνS[f, s; τ ]
.

If f has zero average then, by definition, m[f, s; τ ] is a measure on R of

expectation 0 and variance 1.

By definition, m[f, s] is a Borel probability measure on C[0, 1]; further-

more, if ξ = ξ(τ) ∈ C[0, 1], then the following natural normalization require-

ments hold for ξ with respect to m[f, s]:

(1) ξ(0) = 0 almost surely with respect to m[f, s];

(2) Em[f,s]ξ(τ) = 0 for all τ ∈ [0, 1];

(3) Varm[f,s]ξ(1) = 1.

We are interested in the weak accumulation points of m[f, s] as s→∞.

Consider the space H′ given by the formula

H′ = {X′ = (M,ω, v), v ∈ E+
2 (M,ω), |v|H = 1}.

By definition, the space H′ is a P-almost surely defined two-to-one cover of

the space H. The skew-product flow of the Kontsevich-Zorich cocycle over the

Teichmüller flow yields a flow g′s on H′ given by the formula

g′s(X, v) =

Ç
gsX,

A(s,X)v

|A(s,X)v|H

å
.

Given X′ ∈ H′, set
Φ+

2,X′ = I+(v).

Take ṽ ∈ E−2 (M,ω) such that 〈v, ṽ〉 = 1, and set

Φ−2,X′ = I−(v), m−2,X′ = m−Φ2,X′
.

Let M be the space of all probability distributions on C[0, 1], and introduce

a P-almost surely defined map D+
2 : H′ → M by setting D+

2 (X′) to be the

distribution of the C[0, 1]-valued normalized random variable

Φ+
2,X′(x, τ)√

VarνΦ+
2,X′(x, 1)

, τ ∈ [0, 1].

By definition, D+
2 (X′) is a Borel probability measure on the space C[0, 1];

it is, besides, a compactly supported measure as its support consists of equi-

bounded Hölder functions with exponent θ2/θ1 − ε.
Consider the set M1 of probability measures m on C[0, 1] satisfying, for

ξ ∈ C[0, 1], ξ = ξ(t), the following conditions:

(1) the equality ξ(0) = 0 holds m-almost surely;

(2) for all τ , we have Emξ(τ) = 0;

(3) we have Varmξ(1) = 1 and for any τ 6= 0, we have Varmξ(τ) 6= 0.
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It will be proved in what follows that D+
2 (H′) ⊂M1.

Consider a semi-flow Js on the space C[0, 1] defined by the formula

Jsξ(t) = ξ(e−st), s ≥ 0.

Introduce a semi-flow Gs on M1 by the formula

(21) Gsm =
(Js)∗m

Varm(ξ(exp(−s))
,m ∈M1.

By definition, the diagram

H′
D+

2−−−−→ M1ygs xGs
H′

D+
2−−−−→ M1

is commutative.

Let dLP be the Lévy-Prohorov metric, and let dKR be the Kantorovich-

Rubinstein metric on the space of probability measures on C[0, 1] (see [6], [7]

and the appendix).

We are now ready to formulate the main result of this subsection.

Proposition 1.14. Let P be a gs-invariant ergodic probability measure

on H such that the second Lyapunov exponent of the Kontsevich-Zorich cocycle

is positive and simple with respect to P.

There exist a positive measurable function C : H×H → R+ and a positive

constant α depending only on P such that for P-almost every X′ ∈ H′, X′ =

(X, v), and any f ∈ Lip+
w,0(X) satisfying m−2,X′(f) > 0, we have

dLP(m[f, s],D+
2 (g′sX

′)) ≤ C(X,gsX) exp(−αs),(22)

dKR(m[f, s],D+
2 (g′sX

′)) ≤ C(X,gsX) exp(−αs).(23)

Now fix τ ∈ R and let m2(X′, τ) be the distribution of the R-valued random

variable
Φ+

2,X′(x, τ)√
VarνΦ+

2,X′(x, τ)
.

For brevity, write m2(X′, 1) = m2(X′).

Proposition 1.15. For P-almost any X′ ∈ H′, the measure m2(X′, τ)

admits atoms for a dense set of times τ ∈ R.

A more general proposition on the existence of atoms will be formulated

in the following subsection.

Proposition 1.14 implies that the omega-limit set of the family m[f, s] can

generically assume at most two values. More precisely, the ergodic measure

P on H is naturally lifted to its “double cover” on the space H′: each point
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in the fibre is assigned equal weight; the resulting measure is denoted P′. By

definition, the measure P′ has no more than two ergodic components. We

therefore arrive at the following

Corollary 1.16. Let P be a gs-invariant ergodic probability measure on

H such that the second Lyapunov exponent of the Kontsevich-Zorich cocycle is

positive and simple with respect to P.

There exist two closed sets N1,N2 ⊂ M such that for P-almost every

X ∈ H and any f ∈ Lip+
w,0(X) satisfying Φ+

f 6= 0, the omega-limit set of

the family m[f, s] either coincides with N1 or with N2. If, additionally, the

measure P′ is ergodic, then N1 = N2.

Question. Do the sets Ni contain measures with noncompact support?

For horocycle flows on compact surfaces of constant negative curvature,

compactness of support for all weak accumulation points of ergodic integrals

has been obtained by Flaminio and Forni [19].

Question. Is the measure P′ ergodic when P is the Masur-Veech measure?

As we shall see in the next subsection, in general, the omega-limit sets

of the distributions of the R-valued random variables S[f, s; 1] contain the

delta-measure at zero. As a consequence, it will develop that, under certain

assumptions on the measure P, which are satisfied, in particular, for the Masur-

Veech smooth measure, for a generic abelian differential the random variables

S[f, s; 1] do not converge in distribution, as s→∞, for any function f ∈ Lipw,0
such that Φ+

f 6= 0.

1.7.4. The general case. While, by the Avila-Viana Theorem [4], the Lya-

punov spectrum of the Masur-Veech measure is simple, there are also natural

examples of invariant measures with nonsimple positive second Lyapunov ex-

ponent due to Eskin-Kontsevich-Zorich [17], G. Forni [22], and C. Matheus

(see [22, App. A.1]). A slightly more elaborate, but similar, construction is

needed to obtain limit theorems in this general case.

Let P be an invariant ergodic probability measure for the Teichmüller flow,

and let

θ1 = 1 > θ2 > · · · > θl0 > 0

be the distinct positive Lyapunov exponents of the Kontsevich-Zorich cocycle

with respect to P. We assume l0 ≥ 2.

As before, for X ∈ H and i = 2, . . . , l0, let Eui (X) be the corresponding

Oseledets subspaces, and let B+
i (X) be the corresponding spaces of cocycles.

To make notation lighter, we omit the symbol X when the abelian differential

is held fixed.
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For f ∈ Lip+
w(X), we now write

Φ+
f = Φ+

1,f + Φ+
2,f + · · ·+ Φ+

l0,f
,

with Φ+
i,f ∈ B+

i and, of course, with

Φ+
1,f =

( ∫
M

fdν
)
· ν+,

where ν+ is the Lebesgue measure on the vertical foliation.

For each i = 2, . . . , l0, introduce a measurable fibre bundle

S(i)H = {(X, v) : X ∈ H, v ∈ E+
i , |v| = 1}.

The flow gs is naturally lifted to the space S(i)H by the formula

gS(i)

s (X, v) =

Ç
gsX,

A(s,X)v

|A(s,X)v|

å
.

The growth of the norm of vectors v ∈ E+
i is controlled by the multiplicative

cocycle Hi over the flow gS(i)

s defined by the formula

Hi(s, (X, v)) =
A(s,X)v

|v|
.

For X ∈ H and f ∈ Lip+
w,0(X) satisfying Φ+

f 6= 0, denote

i(f) = min{j : Φ+
f,j 6= 0}.

Define vf ∈ Eui(f) by the formula

I+
X(vf ) =

Φ+
f,i(f)

|Φ+
f,i(f)|

.

The growth of the variance of the ergodic integral of a weakly Lipschitz

function f is also, similarly to the case of the simple second Lyapunov exponent,

described by the cocycle Hi(f) in the following way.

Proposition 1.17. There exists α > 0 depending only on P and, for any

i = 2, . . . , l0, positive measurable functions

V (i) : S(i)H → R+, C
(i) : H×H → R+

such that for P-almost every X ∈ H, the following holds. Let f ∈ Lip+
w,0(X)

satisfy Φ+
f 6= 0. Then for all s > 0, we have∣∣∣∣∣ Varν(S[f, s; 1])

V (i(f))(gS
(i(f))

s (ω, vf ))(Hi(f)(s, (X, vf )))2
− 1

∣∣∣∣∣ 6 C(i(f))(X,gsX)e−αs.
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We proceed to the formulation and the proof of the limit theorem in the

general case. For i = 2, . . . , l0, introduce the map

D+
i : S(i)H →M1

by setting D+
i (X, v) to be the distribution of the C[0, 1]-valued random variable

Φ+
v (x, τ)»

Varν(ω)(Φ
+
v (x, 1))

, τ ∈ [0, 1].

As before, we have a commutative diagram

S(i)H
D+
i−−−−→ M1ygS(i)

s

xGs
S(i)H

D+
i−−−−→ M1.

The measure m[f, s], as before, stands for the distribution of the C[0, 1]-valued

random variable

τ exp(s)∫
0

f ◦ h+
t (x)dtÕ

Varν
( exp(s)∫

0

f ◦ h+
t (x)dt

) , τ ∈ [0, 1].

Theorem 2. Let P be an invariant ergodic probability measure for the

Teichmüller flow such that the Kontsevich-Zorich cocycle admits at least two

distinct positive Lyapunov exponents with respect to P. There exists a constant

α > 0 depending only on P and a positive measurable map C : H ×H → R+

such that for P-almost every X ∈ H and any f ∈ Lip+
w(X), we have

dLP(m[f, s],D+
i(f)(g

S(i(f))

s (X, vf ))) 6 C(X,gsX)e−αs,

dKR(m[f, s],D+
i(f)(g

S(i(f))

s (X, vf ))) 6 C(X,gsX)e−αs.

1.7.5. Atoms of limit distributions. For Φ+ ∈ B+(X), let m[Φ+, τ ] be the

distribution of the R-valued random variable

Φ+(x, τ)»
VarνΦ+(x, τ)

.

Proposition 1.18. For P-almost every X ∈ H, there exists a dense set

Tatom ⊂ R such that if τ ∈ Tatom, then for any Φ+ ∈ B+(X), Φ+ 6= 0, the

measure m(Φ+, τ) admits atoms.
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1.7.6. Nonconvergence in distribution of ergodic integrals. Our next aim

is to show that along certain subsequences of times the ergodic integrals of

translation flows converge in distribution to the measure δ0, the delta-mass

at zero. Weak convergence of probability measures will be denoted by the

symbol ⇒.

We need the following additional assumption on the measure P.

Assumption 1.19. For any ε > 0, the set of abelian differentials X =

(M,ω) such that there exists an admissible rectangle Π(x, t1, t2) ⊂ M with

t1 > 1− ε, t2 > 1− ε has positive measure with respect to P.

Of course, this assumption holds for the Masur-Veech smooth measure.

Proposition 1.20. Let P be an ergodic gs-invariant measure on H sat-

isfying Assumption 1.19. Then for P-almost every X ∈ H, there exists a

sequence τn ∈ R+ such that for any Φ+ ∈ B+(X), Φ+ 6= 0, we have

m[Φ+, τn]⇒ δ0 in M(R) as n→∞.

Theorem 2 now implies the following

Corollary 1.21. Let P be an ergodic gs-invariant measure on H satisfy-

ing Assumption 1.19. Then for P-almost every X ∈ H, there exists a sequence

sn ∈ R+ such that for any f ∈ Lip+
w,0(X) satisfying Φ+

f 6= 0, we have

m[f, sn; 1]⇒ δ0 in M(R) as n→∞.

Consequently, if f ∈ Lip+
w,0(X) satisfies Φ+

f 6= 0, then the family of measures

m[f, τ ; 1] does not converge in M(R) and the family of measures m[f, τ ] does

not converge in M(C[0, 1]) as τ →∞.

1.8. The mapping into cohomology. In this subsection we show that for

an arbitrary abelian differential X = (M,ω), the map

ǏX : B+
c (M,ω)→ H1(M,R)

given by (5) is indeed well defined.

Proposition 1.22. Let γi, i = 1, . . . , k, be rectangular closed curves such

that the cycle
∑k
i=1 γi is homologous to 0. Then for any Φ+ ∈ B+

c , we have

k∑
i=1

Φ+(γi) = 0.

Informally, Proposition 1.22 states that the relative homology of the sur-

face with respect to zeros of the form is not needed for the description of

cocycles. Arguments of this type for invariant measures of translation flows go

back to Katok’s work [28].
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We proceed to the formal proof. Take a fundamental polygon Π for M

such that all its sides are simple closed rectangular curves on M . Let ∂Π be

the boundary of Π, oriented counterclockwise. By definition,

(24) Φ+(∂Π) = 0,

since each curve of the boundary enters ∂Π twice and with opposite signs.

We now deform the curves γi to the boundary ∂Π of our fundamental

polygon.

Proposition 1.23. Let γ ⊂ Π be a simple rectangular closed curve. Then

Φ+(γ) = 0.

Proof of Proposition 1.23. We may assume that γ is oriented counter-

clockwise and does not contain zeros of the form ω. By Jordan’s theorem,

γ is the boundary of a domain N ⊂ Π. Let p1, . . . , pr be zeros of ω lying inside

N ; let κi be the order of pi. Choose an arbitrary ε > 0, take δ > 0 such

that |Φ+(γ)| ≤ ε as soon as the length of γ does not exceed δ, and consider a

partition of N given by

(25) N = Π
(ε)
1 t · · · tΠ(ε)

n t ‹Π(ε)
1 t · · · t ‹Π(ε)

r ,

where all Π
(ε)
i are admissible rectangles and ‹Π(ε)

i is a 4(κi + 1)-gon containing

pi and no other zeros and satisfying the additional assumption that all its sides

are no longer than δ. Let ∂Π
(ε)
i , ∂‹Π(ε)

i stand for the boundaries of our polygons

oriented counterclockwise.

We have

Φ+(γ) =
∑

Φ+(∂Π
(ε)
i ) +

∑
Φ+(∂‹Π(ε)

i ).

In the first sum, each term is equal to 0 by definition of Φ+, whereas the second

sum does not exceed, in absolute value, the quantity

C(κ1, . . . , κr)ε,

where C(κ1, . . . , κr) is a positive constant depending only on κ1, . . . , κr. Since

ε may be chosen arbitrarily small, we have

Φ+(γ) = 0,

which is what we had to prove. �

For A,B ∈ ∂Π, let ∂ΠB
A be the part of ∂Π going counterclockwise from A

to B.

Proposition 1.24. Let A,B ∈ ∂Π, and let γ ⊂ Π be an arbitrary rect-

angular curve going from A to B. Then

Φ+(∂ΠB
A) = Φ+(γ).
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We may assume that γ is simple in Π since, by Proposition 1.23, self-

intersections of γ (whose number is finite) do not change the value of Φ+(γ).

If γ is simple, then γ and Φ+(∂ΠA
B) together form a simple closed curve, and

the proposition follows from Proposition 1.23.

Corollary 1.25. If γ ⊂ Π is a rectangular curve that yields a closed

curve in M homologous to zero in M , then Φ+(γ) = 0.

Indeed, by the previous proposition we need only consider the case when

γ ⊂ ∂Π. Since γ is homologous to 0 by assumption, the cycle γ is in fact a

multiple of the cycle ∂Π, for which the statement follows from (24).

1.9. Markovian sequences of partitions.

1.9.1. The Markov property. Let (M,ω) be an abelian differential. A rec-

tangle Π(x, t1, t2) = {h+
τ1h
−
τ2x, 0 ≤ τ1 < t1, 0 ≤ τ2 < t2} is called weakly admis-

sible if for all sufficiently small ε > 0 the rectangle Π(h+
ε h
−
ε x, t1 − ε, t2 − ε) is

admissible. (In other words, the boundary of Π may contain zeros of ω but

the interior does not.)

Assume we are given a natural number m and a sequence of partitions πn

(26) πn : M = Π
(n)
1 t · · · tΠ(n)

m , n ∈ Z,

where Π
(n)
i are weakly admissible rectangles.

The sequence πn of partitions of M into m weakly admissible rectangles

will be called a Markovian sequence of partitions if for any n1, n2 ∈ Z, i1, i2 ∈
{1, . . . ,m}, the rectangles Π

(n1)
i1

and Π
(n2)
i2

intersect in a Markov way in the

following precise sense.

Take a weakly admissible rectangle Π(x, t1, t2), and decompose its bound-

ary into four parts:

∂1
h(Π) = {h+

t1h
−
τ2x, 0 ≤ τ2 < t2},

∂0
h(Π) = {h−τ2x, 0 ≤ τ2 < t2},

∂1
v(Π) = {h−t2h

+
τ1x, 0 ≤ τ1 < t1},

∂0
v(Π) = {h+

τ1x, 0 ≤ τ1 < t1}.

The sequence of partitions πn has the Markov property if for any n ∈ Z and

i ∈ {1, . . . ,m}, there exist i1, i2, i3, i4 ∈ {1, . . . ,m} such that

∂1
h(Π

(n)
i ) ⊂ ∂1

hΠ
(n−1)
i1

,

∂0
h(Π

(n)
i ) ⊂ ∂0

hΠ
(n−1)
i2

,

∂1
v(Π

(n)
i ) ⊂ ∂1

vΠ
(n+1)
i3

,

∂0
v(Π

(n)
i ) ⊂ ∂0

vΠ
(n+1)
i4

.
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1.9.2. Adjacency matrices. To a Markovian sequence of partitions we as-

sign the sequence of m ×m adjacency matrices An = A(πn, πn+1) defined as

follows: (An)ij is the number of connected components of the intersection

(Π
(n)
i ) ∩Π

(n+1)
j .

A Markovian sequence of partitions πn will be called an exact Markovian se-

quence of partitions if

(27) lim
n→∞

max
i=1,...,m

ν+(∂vΠ
(n)
i ) = 0, lim

n→∞
max

i=1,...,m
ν−(∂hΠ

(−n)
i ) = 0.

For an abelian differential both whose vertical and horizontal flows are

minimal, there always exists m ∈ N and a sequence of partitions (26) having

the Markov property and satisfying the exactness condition (27). A suitably

chosen Markovian sequence of partitions will be essential for the construction

of finitely-additive measures in the following section.

Remark. An exact Markovian sequence of partitions allows one to iden-

tify our surface M with the space of trajectories of a nonautonomous Markov

chain or, in other words, a Markov compactum. The horizontal and vertical

foliations then become the asymptotic foliations of the corresponding Markov

compactum; the finitely-additive measures become finitely-additive measures

on one of the asymptotic foliations invariant under holonomy with respect

to the complementary foliation; the vertical and horizontal flow also admit a

purely symbolic description as flows along the leaves of the asymptotic foli-

ations according to an order induced by a Vershik’s ordering (see, e.g., [43],

[44], [45]) on the edges of the graphs forming the Markov compactum. The

space of abelian differentials or, more precisely, the Veech space of zippered

rectangles, is then represented as a subspace of the space of Markov compacta.

The space of Markov compacta is a space of bi-infinite sequences of graphs

and is therefore endowed with a natural shift transformation. Using Rauzy-

Veech expansions of zippered rectangles, one represents the Teichmüller flow

as a suspension flow over this shift. The Kontsevich-Zorich cocycle is then

a particular case of the cocycle over the shift given by consecutive adjacency

matrices of the graphs forming our Markov compactum. To an abelian dif-

ferential, random with respect to a probability measure invariant under the

Teichmüller flow, one can thus assign a Markov compactum corresponding to

a sequence of graphs generated according to a stationary process. The relation

between Markov compacta and abelian differentials is summarized in Table 1.

The main theorems of this paper, Theorems 1 and 2, are particular cases of

general theorems on the asymptotic behaviour of ergodic averages of symbolic

flows along asymptotic foliations of random Markov compacta; these general-

izations, which will be published in the sequel to this paper, are proved in the

preprint [14].
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Markov compacta Abelian differentials

Asymptotic foliations of a Markov com-

pactum

Horizontal and vertical foliations of an

abelian differential

Finitely-additive measures on asymp-

totic foliations of a Markov compactum

The spaces B+ and B− of Hölder

cocycles

Vershik’s automorphisms Interval exchange transformations

Suspension flows over Vershik’s

automorphisms

Translation flows on flat surfaces

The space of Markov compacta The moduli space of abelian differentials

The shift on the space of Markov

compacta

The Teichmüller flow

The cocycle of adjacency matrices The Kontsevich-Zorich cocycle

Table 1.

For further results and background on Vershik’s automorphisms, substi-

tutions and symbolic dynamics for interval exchange transformations see, e.g.,

[1], [3], [12], [13], [18], [25], [35], [36], [38], [39], [40], [43], [44], [45].
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2. Construction of finitely-additive measures

2.1. Equivariant sequences of vectors. Let A be a bi-invariant sequence of

invertible m×m-matrices with nonnegative entries

A = (An), n ∈ Z.

To a vector v ∈ Rn we assign the corresponding A-equivariant sequence v =

(v(n)), n ∈ Z, given by the formula

v(n) =


An−1 · · ·A0v, n > 0,

v, n = 0,

A−1
−n · · ·A−1

−1v, n < 0.

We now consider subspaces in Rm consisting of vectors v such that the

corresponding equivariant subsequence v = v(n) decays as n tends to −∞.

More formally,we write

B+
c (A) = {v ∈ Rm : |v(−n)| → 0 as n→ +∞},

B+(A) = {v ∈ Rm : there exists C > 0, α > 0

such that |v(−n)| 6 Ce−αn for all n > 0}.

It will sometimes be convenient to identify a vector with the corresponding

equivariant sequence and, slightly abusing notation, we shall sometimes say

that a given equivariant sequence belongs to the space B+
c (A) or B+(A).

2.2. A canonical system of arcs corresponding to a Markovian sequence of

partitions. As before, let (M,ω) be an abelian differential. By an arc of the

vertical flow we mean a set of the form {h+
t x, 0 6 t 6 t0}. Such a set will also

sometimes be denoted [x, x′], where x′ = h+
t0x.

Let πn, n ∈ Z, be an exact Markovian sequence of partitions

πn : M = Π
(n)
1 t · · · tΠ(n)

m , n ∈ Z,

into weakly admissible rectangles. Take a rectangle Π
(n)
i , n ∈ Z, i ∈ {1, . . . ,m},

and choose an arbitrary arc γ
(n)
i of the vertical foliation going all the way

from the lower boundary of Π
(n)
i to the upper boundary. More formally, take

x ∈ ∂(0)
h Π

(n)
i , take t such that h+

t x ∈ ∂
(1)
h Π

(n)
i , and let γ

(n)
i be the vertical arc

[x, h+
t x]. An arc γ

(n)
i of this form will be called a Markovian arc.
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The family of arcs

γ
(n)
i , n ∈ Z, i ∈ {1, . . . ,m},

will be called a canonical system of arcs assigned to the Markov sequence of

partitions πn. Of course, there is freedom in the choice of specific arcs γ
(n)
i , but

our constructions will not depend on the specific choice of a canonical system.

Given a finitely-additive measure Φ+ ∈ B+
c (M,ω), introduce a sequence

of vectors v(n) ∈ Rm, n ∈ Z, by setting

(28) v
(n)
i = Φ+(γ

(n)
i ).

Now let A = (An), n ∈ Z, An = A(πn, πn+1) be the sequence of adjacency

matrices of the sequence of partitions πn, and assume all An to be invertible.

By the horizontal holonomy invariance, the value v
(n)
i does not depend on the

specific choice of the arc γ
(n)
i inside the rectangle Π

(n)
i . Finite additivity of the

measure Φ+ implies that the sequence v(n), n ∈ Z, is A-equivariant. Exact-

ness of the sequence of partitions πn, n ∈ Z, implies that that the equivariant

sequence v(n) corresponding to a finitely-additive measure Φ+ ∈ B+
c (X,ω)

satisfies v(0) ∈ B+
c (A). We have therefore obtained a map

eval+0 : B+
c (X,ω)→ B+

c (A).

It will develop that under certain natural additional assumptions this map is

indeed an isomorphism.

We now take an abelian differential (M,ω) whose vertical flow is uniquely

ergodic and show that if the heights of the rectangles Π
(n)
i decay exponentially

as n → −∞, then the map eval+0 sends B+(X,ω) to B+(A). We proceed to

precise formulations.

Introduce a sequence h(n) = (h
(n)
1 , . . . , h

(n)
m ) by setting h

(n)
i to be the height

of the rectangle Π
(n)
i , i = 1, . . . ,m. By the Markov property, the sequence h(n)

is A-equivariant; unique ergodicity of the vertical flow and exactness of the

sequence πn, n ∈ Z, imply that a positive A-equivariant sequence is unique up

to scalar multiplication. By definition and, again, by exactness, we have

h(0) ∈ B+
c (A).

Proposition 2.1. If h(0) ∈ B+(A), then

eval+0 (B+(X,ω)) ⊂ B+(A).

Proof. Let a canonical family of vertical arcs γ
(n)
i corresponding to the

Markovian sequence of partitions πn be chosen as above. The condition h(0) ∈
B+(A) precisely means the existence of constants C > 0, α > 0 such that for

all n ∈ N, i = 1, . . . ,m, we have ν+(γ
(n)
i ) 6 Ce−αn.
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Now if Φ+ ∈ B+(M,ω), then there exists θ > 0 such that for all sufficiently

large n and all i = 1, . . . ,m, we have

|Φ+(γ
(n)
i )| 6 (ν+(γ

(n)
i ))θ.

Consequently, |Φ+(γ
(n)
i )| 6 ‹Ce−α̃n for some ‹C > 0, α̃ > 0 and all n ∈ N, i =

1, . . . ,m, which is what we had to prove. �

The scheme of the proof of the reverse inclusion can informally be sum-

marized as follows. We start with an equivariant sequence v(n) ∈ B+(A),

and we wish to recover a measure Φ+ ∈ B+(X,ω). The equivariant sequence

itself determines the values of the finitely-additive measure Φ+ on all Markov-

ian arcs, that is, arcs going from the lower horizontal to the upper horizontal

boundary of a rectangle of one of the proposition πn. To extend the measure

Φ+ from Markovian arcs to all vertical arcs, we approximate an arbitrary arc

by Markovian ones. (Similar approximation lemmas were used by Forni [21]

and Zorich [46].) The approximating series will be seen to converge because

the number of terms at each stage of the approximation grows at most sub-

exponentially, while the contribution of each term decays exponentially. For

this argument to work, we assume that the norms of the matrices An grow

sub-exponentially.

The measure Φ+ is thus extended to all vertical arcs. To check the Hölder

property for Φ+, one needs additionally to assume that the heights of the

Markovian rectangles Π
(n)
i decay not faster than exponentially. More precise

Oseledets-type assumptions on the sequence A of adjacency matrices are used

in order to obtain lower bounds on the Hölder exponent for Φ+ and to derive

the logarithmic asymptotics of the growth of Φ+ at infinity. All our assump-

tions are verified for Markov sequences of partitions induced by Rauzy-Veech

expansions of zippered rectangles as soon as one uses the Veech method of

considering expansions corresponding to occurrences of a fixed renormaliza-

tion matrix with positive entries.

2.3. Strongly biregular sequences of matrices. A sequence A= (An), n∈Z,
of m ×m-matrices will be called balanced if all entries of all matrices An are

positive and, furthermore, there exists a positive constant C such that for any

n ∈ Z and any i1, j1, i2, j2 ∈ {1, . . . ,m}, we have

(An)i1j1
(An)i2j2

< C.

A sequence A = (An), n ∈ Z, of m×m-matrices with nonnegative entries

will be said to have sub-exponential growth if for any ε > 0 there exists Cε such

that for all n ∈ Z, we have
m∑

i,j=1

(An)ij 6 Cεe
ε|n|.
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In order to formulate our next group of assumptions, we need to consider

A-reverse equivariant sequences of vectors. To a vector ṽ∈ Rm we assign the

sequence ṽ = (ṽ(n)), n ∈ Z, given by the formula

ṽ(n) =


(Atn)−1 · · · (At1)−1ṽ(n), n > 0,

ṽ(n), n = 0,

Atn+1 . . . A
t
−1A

t
0ṽ

(n), n < 0.

By definition, if ṽ(n) is an A-equivariant sequence, while ṽ(n) is an A-reverse

equivariant sequence, then the inner product¨
v(n), ṽ(n)

∂
=

m∑
i=1

v
(n)
i ṽ

(n)
i

does not depend on n ∈ Z. In analogy to the spaces B+(A) and B+
c (A), we

introduce the spaces

B−c (A) = {ṽ : |ṽ(n)| → 0 as n→∞},
B−(A) = {ṽ : there exists C > 0, α > 0

such that |ṽ(n)| 6 Ce−αn as n→∞}.

The unique ergodicity of the vertical and the horizontal flow admits the

following reformulation in terms of the spaces B+
c (A), B−c (A).

Assumption 2.2. The space B+
c (A) contains an equivariant sequence

(h(n)), n ∈ Z, such that h
(n)
i > 0 for all n ∈ Z and all i ∈ {1, . . . ,m}. The

space B−c (A) contains a reverse equivariant sequence (λ(n)), n ∈ Z, such that

λ
(n)
i > 0 for all n ∈ Z and all i ∈ {1, . . . ,m}. The sequences (h(n)) and (λ(n))

are unique up to scalar multiplication.

A convenient normalization for us will be:

|λ(0)| = 1, 〈λ(0), h(0)〉 = 1.

Our next assumption is the requirement of Lyapunov regularity for the

sequence of matrices A = (An), n ∈ Z. For renormalization matrices of Rauzy-

Veech expansions this assumption will be seen to hold by the Oseledets The-

orem applied to the Kontsevich-Zorich cocycle. In fact, we will assume the

validity of all the statements of the Oseledets-Pesin Reduction Theorem ([5,

Th. 3.3.5, p. 77]). We proceed to the precise formulation.

Assumption 2.3. There exists l0 ∈ N, positive numbers

θ1 > θ2 > · · · > θl0 > 0
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and, for any n ∈ Z, direct-sum decompositions

Rm = E1
n ⊕ · · · ⊕ El0n ⊕ Ecsn ,

Rm = ‹E1
n ⊕ · · · ⊕ ‹El0n ⊕ ‹Ecsn

such that the following holds :

(1) For all n ∈ Z, we have

E1
n = Rh(n), ‹E1

n = Rλ(n).

(2) For all n ∈ Z and all i = 1, . . . , l0, we have

AnE
i
n = Ein+1, Atn

‹Ein+1 = ‹Ein.
(3) For all n ∈ Z, every i = 1, . . . , l0, and any v ∈ Ein \ {0}, we have

lim
k→∞

log |An+k−1 · · ·Anv|
k

= lim
k→∞

− log |A−1
n−k · · ·A

−1
n−1v|

k
= θi,

and the convergence is uniform on the sphere {v ∈ Ein : |v| = 1}.
(4) For all n ∈ Z, every i = 1, . . . , l0, and any v ∈ Ein \ {0}, we have

lim
k→∞

log |Atn−k · · ·Atn−1v|
k

= lim
k→∞

− log |(Atn+k−1)
−1 · · ·Atn

−1
v|

k
= θi,

and the convergence is uniform on the sphere {v ∈ ‹Ein : |v| = 1}.
(5) For all n ∈ Z, we have

AnE
cs
n = Ecsn+1, AtnE

cs
n+1 = Ecsn .

(6) For any ε > 0, there exists Cε such that for any n ∈ Z and k ∈ N, we

have

||An+k−1 · · ·An|Ecsn || 6 Cεe
ε(k+|n|),

||A−1
n−k · · ·A

−1
n−1|Ecsn ||

−1 6 Cεe
ε(k+|n|),

||Atn−k · · ·Atn−1|Ẽcsn || 6 Cεe
ε(k+|n|),

||(Atn+k−1)−1 · · · (Atn)−1|
Ẽcsn
||−1 6 Cεe

ε(k+|n|).

(7) For all n ∈ Z, we have dimEcsn = dim ‹Ecsn and, for any i = 1, . . . , l0,

we also have dimEin = dim ‹Ein. If v, ṽ ∈ Rm satisfy 〈v, ṽ〉 6= 0, then

v ∈ Ein implies ṽ ∈ ‹Ein, while v ∈ Ecsn implies ṽ ∈ ‹Ecsn , and vice versa.

A balanced sequence A of m × m-matrices with positive entries, having

sub-exponential growth and satisfying the unique ergodicity assumption as

well as the Lyapunov regularity assumption, will be called a strongly biregu-

lar sequence or, for brevity, an SB-sequence. Using Markovian sequences of

partitions induced by Rauzy-Veech expansions of zippered rectangles corre-

sponding to consecutive occurrences of a fixed renormalization matrix with
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positive entries and applying the Oseledets Multiplicative Ergodic Theorem

and the Oseledets-Pesin Reduction Theorem (see [5, Th. 3.5, p. 77]) to the

Kontsevich-Zorich cocycle, we will establish in the next section the following

simple

Proposition 2.4. Let P be an ergodic probability measure on a connected

component H of the moduli space Mκ of abelian differentials. Then P-almost

every abelian differential (M,ω) ∈ H admits an exact Markov sequence of

partitions whose sequence of adjacency matrices belongs to the class SB.

Let (M,ω) be an abelian differential whose horizontal and vertical folia-

tions are both uniquely ergodic. Assume that (M,ω) is endowed with an exact

Markov sequence πn, n ∈ Z, of partitions into weakly admissible rectangles

such that the corresponding sequence A of adjacency matrices belongs to the

class SB.

Note that if A is an SB-sequence, then

B+(A) = E1
0 ⊕ · · · ⊕ E

l0
0 ,

B−(A) = ‹E1
0 ⊕ · · · ⊕ ‹El00 .

Note also that there exists a constant C > 0 such that the positive equivariant

sequence h(n) satisfies

h
(n)
i

h
(n)
j

6 C

for all n ∈ Z, i, j ∈ {1, . . . , n}. It follows that for any ε > 0, there exists a

constant Cε such that for all n > 0, we have

min
i
h

(−n)
i > Cεe

−(θ1+ε)n.

2.4. Characterization of finitely-additive measures.

2.4.1. The semi-rings of Markovian arcs. Given a partition π of our sur-

face M into weakly admissible rectangles Π1, . . . ,Πm, we consider the semi-ring

C+(π) of arcs of the form [x, x′], where x ∈ ∂0
hΠi, x

′ ∈ ∂1
hΠi for some i. (Recall

here that x ∈ ∂0
hΠi stands for the lower horizontal boundary of Πi, ∂

1
hΠi for

the upper horizontal boundary.)

Our Markov sequence πn thus induces a sequence of semi-rings C+
n =

C+(πn); we write R+
n for the ring generated by the semi-ring C+

n . Elements of

R+
n are finite unions of arcs from C+

n . For an arc γ of the vertical flow, let γ̆n
be the largest by inclusion arc from the ring R+

−n contained in γ, and let γ̂n
be the smallest by inclusion arc from the ring R+

−n containing γ.
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2.4.2. Extension of finitely-additive measures. The following lemma is im-

mediate from the definitions. (Note that similar arc approximation lemmas

were used by Forni in [21] and Zorich in [46].)

Lemma 2.5. Let πn be an exact Markovian sequence of partitions such

that the corresponding sequence A of adjacency matrices has sub-exponential

growth. Then for any ε > 0, there exists Cε > 0 such that for any arc γ of the

vertical flow and any n ∈ N, the set γ̂n\γ̆n consists of at most Cεe
εn arcs from

the semi-ring C+
−n.

Informally, Lemma 2.5 says that any arc of our symbolic flow is approx-

imable by Markovian arcs with sub-exponential error; we illustrate this by

Figure 1.

Figure 1. The number of small arcs grows at most subexponentially

We are now ready to identify B+(A) and B+(X,ω).

Lemma 2.6. Let πn, n ∈ Z, be a Markov sequence of partitions such

that the corresponding sequence A of adjacency matrices belongs to the class

SB. Then for every equivariant sequence v(n) ∈ B+(A), there exists a unique

finitely-additive measure Φ+ ∈ B+(X,ω) such that

eval+0 (Φ+) = v(0).

Proof. Indeed, the sequence v(n) itself prescribes the values of the Φ+ on

all Markovian arcs γ ∈ C+
n , n ∈ Z. For a general arc γ of the vertical flow, set

(29) Φ+(γ) = lim
n→∞

Φ+(γ̂n) = lim
n→∞

Φ+(γ̆n),

where the existence of both limits and the equality of their values immedi-

ately follow from Lemma 2.5. Finite-additivity of Φ+ is again a corollary of

Lemma 2.5. We have thus obtained a finitely-additive measure Φ+ defined

on all vertical arcs. The uniqueness of such a measure is clear by (29). The

invariance of the resulting measure under horizontal holonomy is also clear by
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definition. To conclude the proof of Lemma 2.6, it remains to check that the

obtained finitely-additive measure Φ+ satisfies the Hölder property.

For Markovian arcs the Hölder upper bound is clear from the upper expo-

nential bound

|v(−n)| 6 Ce−αn

and the lower exponential bound

min
i
h

(−n)
i > C1e

(−α1n).

For general arcs, the Hölder property follows by Lemma 2.5. Lemma 2.6

is proved completely, and we have thus shown that under its assumptions the

map

eval+0 : B+(X,ω)→ B+(A)

is indeed an isomorphism. �

Remark. Under stronger assumptions of Lyapunov regularity we will also

give a Hölder lower bound for the cocycles Φ+ ∈ B+; see Proposition 2.9.

2.5. Duality. Let v(n) ∈ B+(A), ṽ(n) ∈ B−(A). Let Φ+ ∈ B+(X,ω),Φ− ∈
B+(X,ω) be the corresponding finitely-additive measures. The definitions

directly imply ∫
M

Φ+ × Φ− =
m∑
i=1

v
(0)
i ṽ

(0)
i = 〈v, ṽ〉.

Duality between the spaces B+(X,ω) and B−(X,ω) follows now from the

duality between the spaces B+(A) and B−(A), which holds by the Lyapunov

regularity assumption for the sequence A.

2.6. Proof of Theorem 1.

2.6.1. Approximation of almost equivariant sequences. We start with a

sequence of matrices An, n > 0 satisfying the following

Assumption 2.7. There exists α > 0 and, for every n > 1, a direct-sum

decomposition

Rm = Eun ⊕ Encs
satisfying the following :

(1) AnE
u
n = Eun+1 and An|Eun is injective;

(2) AnE
cs
n ⊂ Ecsn+1;

(3) for any ε > 0, there exists Cε > 0 such that for any n > 1, k > 0, we

have ∣∣∣∣∣∣(An+k · . . . ·An)−1|Eu
n+k+1

∣∣∣∣∣∣ 6 Cεeεn−αk,∣∣∣∣An+k · . . . ·An|Ecsn
∣∣∣∣ 6 Cεeε(n+k).
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Lemma 2.8. Let An be a sequence of matrices satisfying Assumption 2.7.

Let v1, . . . , vn, . . . be a sequence of vectors such that for any ε > 0, a constant

Cε can be chosen in such a way that for all n, we have

|Anvn − vn+1| ≤ Cε exp(εn).

Then there exists a unique vector v ∈ Eu1 such that

|An · · ·A1v − vn+1| ≤ C ′ε exp(εn).

Proof. Denote un+1 = vn+1 −Anvn, and decompose un+1 = u+
n+1 + u−n+1,

where u+
n+1 ∈ Eun+1, u−n+1 ∈ Ecsn+1. Let

v+
n+1 = u+

n+1 +Anu
+
n +AnAn−1u

+
n−1 + · · ·+An · · ·A1u

+
1 ,

v−n+1 = u−n+1 +Anu
−
n +AnAn−1u

−
n−1 + · · ·+An · · ·A1u

−
1 .

We have vn+1 ∈ Eun+1, v−n+1 ∈ Ecsn+1, vn+1 = v+
n+1 + v−n+1. Now introduce a

vector

v = u+
1 +A−1

1 u+
1 + · · ·+ (An · · ·A1)−1u+

n+1 + · · · .
By our assumptions, the series defining v converges exponentially fast and,

moreover, we have

|An · · ·A1v − v+
n+1| ≤ C

′
ε exp(εn)

for some constant C ′ε.

Since by our assumptions we also have |v−n+1| ≤ Cε exp(εn), the lemma is

proved completely. �

Uniqueness of the vector v follows from the fact that, by our assumptions,

for any ṽ 6= 0, ṽ ∈ Eu0 we have

|An · · ·A1ṽ| ≥ C ′′ exp(αn).

2.6.2. Approximation of weakly Lipschitz functions. Let f : M → R be

a weakly Lipschitz function and, as before, introduce a canonical family of

Markovian curves γni , n ∈ Z, i = 1, . . . ,m, corresponding to the Markovian

sequence of partitions πn, n ∈ Z.

Introduce a family of vectors v(n) ∈ Rm, n ∈ Z, by setting

(v(n))i =

∫
γni

fdν+, i = 1, . . . ,m.

By definition of the adjacency matrices An = A(πn, πn+1), using the weak

Lipschitz property of the function f and sub-exponential growth of the se-

quence A = (An), we arrive for all n ∈ N at the estimate

|Anv(n)− v(n+ 1)| 6 Cε||f ||Lip · eεn.
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By Lemma 2.8, there exists a unique vector v+
f ∈ B+(A) such that for all

n ∈ N we have ∣∣∣v(n)−An−1 · . . . ·A0v
+
f

∣∣∣ 6 C ′ε||f ||Lip · eεn.

We let Φ+
f ∈ B+(X,ω) be the finitely-additive measure corresponding

to the vector v+
f or, in other words, the unique finitely additive measure in

B+(X,ω) satisfying

eval+0 (Φ+
f ) = v+

f .

The inequality

(30)

∣∣∣∣∣∣∣
T∫

0

f ◦ h+
t (x)dt− Φ+

f ([x, h+
T x])

∣∣∣∣∣∣∣ 6 C ′′ε ||f ||Lip(1 + T ε)

now holds for all x ∈M,T ∈ R+.

Indeed, if [x, h+
t x] is a Markovian arc, then (30) is clear by definition of

the vector v+
f and the weak Lipschitz property of the function f , while for

general arcs of the vertical flow, the inequality (30) follows by Lemma 2.5.

2.6.3. Characterization of the cocycle Φ+
f . Our next step is to check that

for every Φ− ∈ B−(X,ω), we have

〈Φ+
f × Φ−〉 =

∫
M

fdmφ− ,

where we recall that m−Φ = ν+ × Φ−.

As before, let γni be a canonical system of Markovian arcs of the vertical

flow, corresponding to the Markov sequence of partitions πn, n ∈ Z, and let γ̃ni
be a canonical system of Markovian arcs of the horizontal flow corresponding

to the Markov sequence of partitions πn, n ∈ Z. By definition, for any n ∈ Z,

we have

∫
M

Φ+
f × Φ− =

m∑
i=1

Φ+
f (γni ) · Φ−(γ̃ni ).

We now write the Riemann sum

S(n, f,Φ−) =
m∑
i=1

∫
γni

fdν+ · Φ−(γ̃ni )

for the measure mΦ− , and let n tend to +∞. By definition, we have

lim
n→+∞

S(n, f,Φ−) =

∫
M

fdmΦ− .
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Now for all n ∈ N, i = 1, . . . ,m, we have∣∣∣∣∣∣∣
∫
γni

fdν+ − Φ+
f (γni )

∣∣∣∣∣∣∣ 6 Cεeεn
while, by Lyapunov regularity, the quantity max

i=1,...,m
|Φ−(γ̃ni )| decays exponen-

tially as n→∞. It follows that∫
M

Φ+
f × Φ− =

∫
M

fdmΦ− ,

which is what we had to prove.

2.7. The asymptotics at infinity for Hölder cocycles. As was noted above,

we identify a finitely-additive measure Φ+ ∈ B+
c (X,ω) with a continuous co-

cycle over the vertical flow for which, slightly abusing notation, we keep the

same symbol Φ+; the identification is given by the formula

Φ+(x, t) = Φ+([x, h+
t x]).

The Hölder property of a finitely-additive measure is equivalent to the Hölder

property of the cocycle, that is, to the requirement that the function Φ+(x, t)

be Hölder in t uniformly in x. Our next aim is to give Hölder lower bounds

for the cocycles Φ+ and to investigate the growth of Φ+(x, T ) as T → +∞.

Consider the direct-sum decomposition

B+(A) = E
(0)
1 ⊕ · · · ⊕ E(0)

l0

and the corresponding direct-sum decomposition

B+(X,ω) = B+
1 (X,ω)⊕B+

2 (X,ω)⊕ · · · ⊕B+
l0

(X,ω)

with

B+
i (X,ω) = (eval+0 )−1(E

(0)
i ), i = 1, . . . , l0;

of course, we have

B+
1 (X,ω) = Rν+.

Take Φ+ ∈ B+(X,ω), and write

Φ+ = Φ+
1 + · · ·+ Φ+

l0

with Φ+
i ∈ B+(X,ω). Take the smallest i such that Φ+

i 6= 0; the exponent

θi will then be called the top Lyapunov exponent of Φ+; similarly, if j is the

largest number such that Φ+
j 6= 0, then θj will be called the lower Lyapunov

exponent of Φ+. We shall now see that the top Lyapunov exponent controls

the growth of Φ+(x, t) as t→∞, while the lower Lyapunov exponent describes

the local Hölder behaviour of Φ+(x, t).
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Proposition 2.9. Let r ∈ {1, . . . , l0}, let Φ+ ∈ B+
r ,Φ

+ 6= 0, and let

x ∈M be such that h+
t x is defined for all t ∈ R. Then

lim sup
|t|→∞

log |Φ+(x, t)|
log |t|

= lim sup
|t|→0

log |Φ+(x, t)|
log |t|

= θr.

Proof. We first let t tend to +∞. Let v(n) ∈ B+(A) be the equivariant

sequence corresponding to Φ+; we have v(n) ∈ E
(n)
r and, consequently, for

every ε > 0 there exists a constant Cε > 0 and, for every n ∈ N, there exists

i(n) ∈ {1, . . . ,m} such that

(31)
∣∣∣v(n)
i(n)

∣∣∣ ≥ Cεe(θr−ε)n, n ∈ N.

Now let

tn = min{t : t ≥ h(n)
i(n), h+

tnx ∈ ∂
1
vΠ

(n)
i(n)}.

Informally, tn is the first such moment that the are [x, h+
tnx] contains a Mar-

kovian arc going all the way through the rectangle Π
(n)
i(n). It is clear from

the SB-property of the sequence A that for any ε > 0, there exist constants

C ′ε, C
′′
ε > 0 such that

(32) C ′εe
(θ1−ε)n ≤ tn ≤ C ′′ε e(θ1+ε)n, n ∈ N.

Now denote

x′(n) = h+

tn−h(n)i(n)

x, x′′(n) = h+
tnx.

Since

Φ+([x, x′′(n)]) = Φ+([x, x′(n)]) + Φ+([x′(n), x′′(n)])

and

Φ+([x′(n), x′′(n)]) = v
(n)
i(n),

it follows from (32) and (31) that we have

lim sup
n→+∞

max{log |Φ+([x, x′(n)])|, log |Φ+([x, x′′(n)])|}
n

=
θr
θ1
,

whence also

lim sup
n→+∞

max

Ç
log |Φ+([x, x′(n)])|
log ν+([x, x′(n)])

,
log |Φ+([x′(n), x′′(n)])|

log ν+([x, x′′(n)])

å
= θr,

and finally

lim sup
t→+∞

log |Φ+(x, t)|
log t

= θr.

The desired lower bound is established. We illustrate the argument in Figure 2.

The proof for t → −∞ is completely similar, while the case t → 0 is

obtained by taking n→ −∞ and repeating the same argument. �
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γ1
γ2

γ3
x

Figure 2. Proof of the lower bound in Proposition 2.9: γ1 =

[x(n), x′(n)], γ2 = [x′(n), x′′(n)]. Either γ1 or γ3 satisfies the

lower bound.

2.8. Hyberbolic SB-sequences. An SB-sequence A will be called hyperbolic

if B+
c (A) = B+(A). It is clear from the definitions that if an abelian differ-

ential (X,ω) admits an exact Markovian sequence of partitions such that the

corresponding sequence A is hyperbolic, then B+
c (X,ω) = B+(X,ω).

In what follows, we shall check that if P is probability measure on H, in-

variant under the Teichmüller flow and ergodic, and such that the Kontsevich-

Zorich cocycle acts isometrically on its neutral Oseledets subspace, then P-

almost every abelian differential (X,ω) admits a Markovian sequence of par-

titions πn such that the corresponding sequence A of adjacency matrices is

a hyperbolic SB-sequence. It will follow that for P-almost all ω, we have

B+(X,ω) = B+
c (X,ω).

Remark. If B+
c (A) is strictly larger than B+(A), it does not follow that

B+
c (X,ω) is strictly larger than B+(X,ω). Our constructions do not allow us

to assign a finitely additive measure defined on all arcs of the vertical flow to

a general equivariant sequence v(n) ∈ B+(A).

2.9. Expectation and variance of Hölder cocycles.

Proposition 2.10. For any Φ+ ∈ B+ and any t0 ∈ R, we have

Eν(Φ+(x, t0)) = 〈Φ+, ν−〉 · t0.

Proof. Since the proposition is clearly valid for Φ+ = ν+, it suffices to

prove it in the case 〈Φ+, ν−〉 = 0. But indeed, if Eν(Φ+(x, t)) 6= 0, then the

Ergodic Theorem implies

lim sup
T→∞

log |Φ+(x, T )|
log T

= 1,

and then 〈Φ+, ν−〉 6= 0.

Proposition 2.11. For any Φ+ ∈ B+ not proportional to ν+ and any

t0 6= 0, we have

VarνΦ+(x, t0) 6= 0.
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Taking Φ+−〈Φ+, ν−〉·ν+ instead of Φ+, we may assume Eν(Φ+(x, t0)) = 0.

If VarνΦ+(x, t0) = 0, then Φ+(x, t0) = 0 identically, but then

lim sup
T→∞

log |Φ+(x, T )|
log T

= 0,

whence Φ+ = 0, and the proposition is proved. �

Remark. In the context of substitutions, cocycles related to the Hölder

cocycles from B+ have been studied by P. Dumont, T. Kamae and S. Takahashi

in [16] as well as by T. Kamae in [27].

3. The Teichmüller flow on the Veech space of zippered rectangles

3.1. Veech’s space of zippered rectangles.

3.1.1. Rauzy-Veech induction. The renormalization action of the Teich-

müller flow on the spaces B+ and B− of Hölder cocycles will play a main

role in the proof of limit theorems for translation flows. We will use Veech’s

representation of abelian differentials by zippered rectangles, and in this section

we recall Veech’s construction using the notation of [11], [15]. For a different

presentation of the Rauzy-Veech formalism, see Marmi-Moussa-Yoccoz [32].

We start by recalling the definition of the Rauzy-Veech induction. Let π

be a permutation of m symbols, which will always be assumed irreducible in

the sense that π{1, . . . , k} = {1, . . . , k} implies k = m. The Rauzy operations

a and b are defined by the formulas

aπ(j) =


πj if j ≤ π−1m,

πm if j = π−1m+ 1,

π(j − 1) if π−1m+ 1 < j ≤ m,

bπ(j) =


πj if πj ≤ πm,

πj + 1 if πm < πj < m,

πm+ 1 if πj = m.

These operations preserve irreducibility. The Rauzy class R(π) is defined

as the set of all permutations that can be obtained from π by application of

the transformation group generated by a and b. From now on we fix a Rauzy

class R and assume that it consists of irreducible permutations.

For i, j = 1, . . . ,m, denote by Eij the m×m matrix whose (i, j)-th entry

is 1, while all others are zeros. Let E be the identity m×m-matrix. Following
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Veech [37], introduce the unimodular matrices

A(a, π) =
π−1m∑
i=1

Eii + Em,π
−1m+1 +

m−1∑
i=π−1m

Ei,i+1,(33)

A(b, π) = E + Em,π
−1m.(34)

For a vector λ = (λ1, . . . , λm) ∈ Rm, we write

|λ| =
m∑
i=1

λi.

Let

∆m−1 = {λ ∈ Rm : |λ| = 1, λi > 0 for i = 1, . . . ,m}.
One can identify each pair (λ, π), λ ∈ ∆m−1, with the interval exchange

map of the interval I := [0, 1) as follows. Divide I into the sub-intervals

Ik := [βk−1, βk), where β0 = 0, βk =
∑k
i=1 λi, 1 ≤ k ≤ m, and then place the

intervals Ik in I in the following order (from left to write): Iπ−11, . . . , Iπ−1m.

We obtain a piecewise linear transformation of I that preserves the Lebesgue

measure.

The space ∆(R) of interval exchange maps corresponding to R is defined

by

∆(R) = ∆m−1 ×R.
Denote

∆+
π = {λ ∈ ∆m−1| λπ−1m > λm}, ∆−π = {λ ∈ ∆m−1| λm > λπ−1m},

∆+(R) =
⋃
π∈R
{(π, λ)| λ ∈ ∆+

π },

∆−(R) =
⋃
π∈R
{(π, λ)| λ ∈ ∆−π },

∆±(R) = ∆+(R) ∪∆−(R).

The Rauzy-Veech induction map T : ∆±(R)→ ∆(R) is defined as follows:

(35) T (λ, π) =


Ä A(a, π)−1λ
|A(a, π)−1λ| , aπ

ä
if λ ∈ ∆+

π ,Ä A(b, π)−1λ
|A(b, π)−1λ| , bπ

ä
if λ ∈ ∆−π .

One can check that T (λ, π) is the interval exchange map induced by (λ, π)

on the interval J = [0, 1−γ], where γ = min(λm, λπ−1m); the interval J is then

stretched to unit length.

Denote

(36) ∆∞(R) =
⋂
n≥0

T −n∆±(R).
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Every T -invariant probability measure is concentrated on ∆∞(R). On the

other hand, a natural Lebesgue measure defined on ∆(R), which is finite, but

noninvariant, is also concentrated on ∆∞(R). Veech [37] showed that T has an

absolutely continuous ergodic invariant measure on ∆(R), which is, however,

infinite.

We have two matrix cocycles At, A−1over T defined by

At(n, (λ, π)) = At(T n(λ, π)) · . . . · At(λ, π),

A−1(n, (λ, π)) = A−1(T n(λ, π)) · . . . · A−1(λ, π).

We introduce the corresponding skew-product transformations T A
t

: ∆(R)

× Rm → ∆(R)× Rm, T A
−1

: ∆(R)× Rm → ∆(R)× Rm,

T A
t
((λ, π), v) = (T (λ, π),At(λ, π)v),

T A
−1

((λ, π), v) = (T (λ, π),A−1(λ, π)v).

3.1.2. The construction of zippered rectangles. Here we briefly recall the

construction of the Veech space of zippered rectangles. We use the notation

of [11].

Zippered rectangles associated to the Rauzy class R are triples (λ, π, δ),

where λ = (λ1, . . . , λm) ∈ Rm, λi > 0, π ∈ R, δ = (δ1, . . . , δm) ∈ Rm, and the

vector δ satisfies the following inequalities:

δ1 + · · ·+ δi ≤ 0, i = 1, . . . ,m− 1,(37)

δπ−1 1 + · · ·+ δπ−1 i ≥ 0, i = 1, . . . ,m− 1.(38)

The set of all vectors δ satisfying (37) and (38) is a cone in Rm; we denote it

by K(π).

For any i = 1, . . . ,m, set

(39) aj = aj(δ) = −δ1 − · · · − δj , hj = hj(π, δ) = −
j−1∑
i=1

δi +

π(j)−1∑
l=1

δπ−1l.

3.1.3. Zippered rectangles and abelian differentials. Given a zippered rec-

tangle X = (λ, π, δ), Veech [37] takes m rectangles Πi = Πi(λ, π, δ) of girth

λi and height hi, i = 1, . . . ,m, and glues them together according to a rule

determined by the permutation π. This procedure yields a Riemann surface

M endowed with a holomorphic 1-form ω which, in restriction to each Πi, is

simply the form dz = dx + idy. The union of the bases of the rectangles is

an interval I(0)(λ, π, δ) of length |λ| on M ; the first return map of the vertical

flow of the form ω is precisely the interval exchange T(λ,π).

A zippered rectangle X by definition carries a partition π0 = π0(X ) of

the underlying surface M = M(X ) into m weakly admissible rectangles Πi:

π0 : M = Π1 t · · · tΠm.
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The area of a zippered rectangle (λ, π, δ) is given by the expression

(40) Area(λ, π, δ) :=
m∑
r=1

λrhr =
m∑
r=1

λr

(
−
r−1∑
i=1

δi +
πr−1∑
i=1

δπ−1 i

)
.

(Our convention is
∑v
i=u · · · = 0 when u > v.)

Furthermore, to each rectangle Πi Veech [38] assigns a cycle γi(λ, π, δ) in

the homology group H1(M,Z): namely, if Pi is the left bottom corner of Πi

and Qi the left top corner, then the cycle is the union of the vertical interval

PiQi and the horizontal subinterval of I(0)(λ, π, δ) joining Qi to Pi. It is clear

that the cycles γi(λ, π, δ) span H1(M,Z).

3.1.4. The space of zippered rectangles. Denote by V(R) the space of all

zippered rectangles corresponding to the Rauzy class R, i.e.,

V(R) = {(λ, π, δ) : λ ∈ Rm+ , π ∈ R, δ ∈ K(π)}.

Let also

V+(R) = {(λ, π, δ) ∈ V(R) : λπ−1m > λm},
V−(R) = {(λ, π, δ) ∈ V(R) : λπ−1m < λm},
V±(R) = V+(R) ∪ V−(R).

Veech [37] introduced the flow {P s} acting on V(R) by the formula

P s(λ, π, δ) = (esλ, π, e−sδ),

and the map U : V±(R)→ V(R), where

U(λ, π, δ) =

(A(π, a)−1λ, aπ,A(π, a)−1δ) if λπ−1m > λm,

(A(π, b)−1λ, bπ,A(π, b)−1δ) if λπ−1m < λm.

(The inclusion UV±(R) ⊂ V(R) is proved in [37].) The map U and the flow

{P s} commute on V±(R). They also preserve the area of a zippered rectangle

(see (40)) and hence can be restricted to the set

V1,±(R) := {(λ, π, δ) ∈ V±(R) : Area(λ, π, δ) = 1}.

For (λ, π) ∈ ∆(R), denote

(41) τ0(λ, π) =: − log(|λ| −min(λm, λπ−1m)).

From (33), (34) it follows that if λ ∈ ∆+
π ∪∆−π , then

(42) τ0(λ, π) = − log |A−1(c, π)λ|,

where c = a when λ ∈ ∆+
π and c = b when λ ∈ ∆−π .
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Next denote

Y1(R) := {x = (λ, π, δ) ∈ V(R) : |λ| = 1, Area(λ, π, δ) = 1},(43)

τ(x) := τ0(λ, π) for x = (λ, π, δ) ∈ Y1(R),

V1,τ (R) :=
⋃

x∈Y1(R), 0≤s≤τ(x)

P sx.

Let

V1,±
6= (R) := {(λ, π, δ) ∈ V1,±(R) : am(δ) 6= 0},

V∞(R) :=
⋂
n∈Z
UnV1,±

6= (R).

Clearly Un is well defined on V∞(R) for all n ∈ Z.

We now set

Y ′(R) := Y1(R) ∩ V∞(R), Ṽ(R) := V1,τ (R) ∩ V∞(R).

The above identification enables us to define on Ṽ(R) a natural flow, for which

we retain the notation P s. (Although the bounded positive function τ is not

separated from zero, the flow P s is well defined.)

Note that for any s ∈ R, we have a natural “tautological” map

(44) ts : M(X )→M(P sX )

which on each rectangle Πi is simply expansion by es in the horizontal direction

and contraction by es in the vertical direction. By definition, the map ts sends

the vertical and the horizontal foliations of X to those of P sX .

Introduce the space

XṼ(R) = {(X , x) : X ∈ Ṽ(R), x ∈M(X )},
and endow the space XṼ(R) with the flow P s,X given by the formula

P s,X(X , x) = (P sX , tsx).

The flow P s induces on the transversal Y1(R) the first-return map T
given by the formula

(45) T (λ, π, δ) = UP τ0(λ,π)(λ, π, δ).

Observe that, by definition, if T (λ, π, δ) = (λ′, π′, δ′), then (λ′, π′) = T (λ, π).

For (λ, π, δ) ∈ Ṽ(R), s ∈ R, let ñ(λ, π, δ, s) be defined by the formula

U ñ(λ,π,δ,s)(esλ, π, e−sδ) ∈ V1,τ (R).

Endow the space Ṽ(R) with a matrix cocycle At over the flow P s given by the

formula

At(s, (λ, π, δ)) = At(ñ(λ, π, δ, s), (λ, π)),

and introduce the corresponding skew-product flow

P s,A
t

: Ṽ(R)× Rm → Ṽ(R)× Rm
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by the formula

P s,A
t

(X , v) = (P sX ,At(X , s)v).

We also have a natural cocycleA over the inverse flow P−s given by the formula

A(X , s) = (At(P−sX , s))t

and the natural skew-product flow

P−s,A : Ṽ(R)× Rm → Ṽ(R)× Rm

defined by the formula

P−s,A(X , v) = (P−sX ,A(X , s)v).

The strongly unstable Oseledets bundle of the cocycleA will be seen to describe

all the measures Φ− ∈ B− in the same way in which the strongly unstable

Oseledets bundle of the cocycle At describes all the measures Φ+ ∈ B+.

Remark. The Kontsevich-Zorich cocycle is isomorphic to the inverse of its

dual. (See, e.g., Statement 2 in Proposition 3.1 below.) This “self-duality” is,

however, not used in the construction and characterization of finitely-additive

invariant measures. The duality between the spaces B+ and B− corresponds

to the duality between the cocycle and its transpose, that is, in our notation,

between At and A. Such duality takes place for any invertible matrix-valued

cocycle over any measure-preserving flow.

3.1.5. The correspondence between cocycles. To a connected component

H of the space Mκ one can assign a Rauzy class R in such a way that the

following is true [37], [30].

Theorem 3 (Veech). There exists a finite-to-one measurable map πR :

Ṽ(R)→ H such that πR ◦ P t = gt ◦ πR. The image of πR contains all abelian

differentials whose vertical and horizontal foliations are both minimal.

As before, let H1(H) be the fibre bundle over H whose fibre at a point

(M,ω) is the cohomology group H1(M,R). The Kontsevich-Zorich cocycle

AKZ induces a skew-product flow gAKZ
s on H1(H) given by the formula

gAKZ
s (X, v) = (gsX,AKZv), X ∈ H, v ∈ H1(M,R).

Following Veech [37], we now explain the connection between the Kont-

sevich-Zorich cocycle AKZ and the cocycleAt. For any irreducible permutation

π, Veech [38] defines an alternating matrix Lπ by setting Lπij = 0 if i = j or

if i < j, πi < πj, Lπij = 1 if i < j, πi > πj, Lπij = −1 if i > j, πi < πj and

denotes by N(π) the kernel of Lπ and by H(π) = Lπ(Rm) the image of Lπ. The

dimensions of N(π) and H(π) do not change as π varies in R and, furthermore,

Veech [38] establishes the following properties of the spaces N(π), H(π).
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Proposition 3.1. Let c = a or b. Then

(1) H(cπ) = At(c, π)H(π), N(cπ) = A−1(c, π)N(π);

(2) the diagram

Rm/N(π)
Lπ−−−−→ H(π)yA−1(π,c)

yAt(π,c)
Rm/N(cπ)

Lcπ−−−−→ H(cπ)

is commutative and each arrow is an isomorphism ;

(3) for each π, there exists a basis vπ in N(π) such that the map A−1(π, c)

sends every element of vπ to an element of vcπ .

Each space Hπ is thus endowed with a natural anti-symmetric bilinear

form Lπ defined, for v1, v2 ∈ H(π), by the formula

(46) Lπ(v1, v2) = 〈v1, (L
π)−1v2〉.

(The vector (Lπ)−1v2 lies in Rm/N(π); since by definition we have 〈v1, v2〉 = 0

for all v1 ∈ H(π), v2 ∈ N(π), the right-hand side is well defined.)

Consider the T A
t
-invariant subbundle H (∆(R)) ⊂ ∆(R)×Rm given by

the formula

H (∆(R)) = {((λ, π), v), (λ, π) ∈ ∆(R), v ∈ H(π)}

as well as a quotient bundle

N (∆(R)) = {((λ, π), v), (λ, π) ∈ ∆(R), v ∈ Rm/N(π)}.

The bundle map LR : H (∆(R)) → N (∆(R)) given by LR((λ, π), v) =

((λ, π), Lπv) induces a bundle isomorphism between H (∆(R)) and N (∆(R)).

Both bundles can be naturally lifted to bundles H (Ṽ(R)), N (Ṽ(R)) over

the space Ṽ(R) of zippered rectangles; they are naturally invariant under the

corresponding skew-product flows P s,A
t

, P−s,A, and the map LR lifts to a

bundle isomorphism between H (Ṽ(R)) and N (Ṽ(R)).

Take X ∈ Ṽ(R), and write πR(X ) = (M(X ), ω(X )). Veech [39] has

shown that the map πR lifts to a bundle epimorphism π̃R from H (Ṽ(R))

onto H1(H) that intertwines the cocycle At and the Kontsevich-Zorich cocycle

AKZ :

Proposition 3.2 (Veech). For almost every X ∈ Ṽ(R), X = (λ, π, δ),

there exists an isomorphism IX : H(π)→ H1(M(X ),R) such that

(1) the map π̃R : H (Ṽ(R))→ H1(H) given by

π̃R(X , v) = (πR(X ), IXv)

induces a measurable bundle epimorphism from H (Ṽ(R)) onto H1(H),

which is an isomorphic on each fibre;
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(2) the diagram

H (Ṽ(R))
π̃R−−−−→ H1(H)yP s,At ygAKZs

H (Ṽ(R))
π̃R−−−−→ H1(H)

is commutative;

(3) for X = (λ, π, δ), the isomorphism IX takes the bilinear form Lπ on

H(π), defined by (46), to the cup-product on H1(M(X ),R).

Proof. Recall that to each rectangle Πi Veech [38] assigns a cycle γi(λ, π, δ)

in the homology group H1(M,Z). If Pi is the left bottom corner of Πi and

Qi the left top corner, then the cycle is the union of the vertical interval

PiQi and the horizontal subinterval of I(0)(λ, π, δ) joining Qi to Pi. It is clear

that the cycles γi(λ, π, δ) span H1(M,Z); furthermore, Veech shows that the

cycle t1γ1 + · · · + tmγm is homologous to 0 if and only if (t1, . . . , tm) ∈ N(π).

We thus obtain an identification of Rm/N(π) and H1(M,R). Similarly, the

subspace of Rm spanned by the vectors (f(γ1), . . . , f(γm)), f ∈ H1(M,R), is

precisely H(π). The identification of the bilinear form Lπ with the cup-product

is established in [42, Prop. 4.19]. �

Let PV be an ergodic P s-invariant probability measure for the flow P s

on V(R), and let PH = (πR)∗PV be the corresponding gs-invariant measure

on H. Let EuPV (Ṽ(R)) be the strongly unstable bundle of the cocycle At. By

Proposition 3.1, the bundle EuPV (Ṽ(R)) is a subbundle of H (Ṽ(R)). It therefore

follows from Proposition 3.2 that the map π̃R isomorphically identifies the

strongly unstable bundles of the cocycles At and AKZ ; this identification is

equivariant with respect to the natural actions of the skew-product flows P s,A
t

and gAKZ
s on the corresponding bundles.

3.1.6. The correspondence between measures.

Proposition 3.3. Let P be an ergodic gs–invariant probability measure

on H. Then there exists an ergodic P s-invariant probability measure PV on

V(R) such that

P = (πR)∗PV .

This proposition is a corollary of the following general statement.

Proposition 3.4. Let Z1, Z2 be standard Borel spaces, let g1
s : Z1 → Z1,

g2
s : Z2 → Z2 be measurable flows, and let π12 : Z1 → Z2 be a Borel measurable

map such that

(1) for any z2 ∈ Z2, the preimage {π−1
12 (z2)} of z2 is finite;
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(2) the map π12 intertwines the flows g1
s , g2

s in the sense that the diagram

Z1
π12−−−−→ Z2yg1s yg2s

Z1
π12−−−−→ Z2

is commutative.

Then for any Borel g2
s -invariant ergodic probability measure P2 on Z2, there

exists a Borel g1
s -invariant ergodic probability measure P1 on Z1 such that

(π12)∗(P1) = P2.

The proof of Proposition 3.4 is routine. First, note that by ergodicity,

for P2-almost every zz ∈ Z2, the cardinality of the preimage {π−1
12 (z2)} of z2

is constant; now consider the normalized product P̃1 of P2 and the counting

measure in the preimage; the measure P̃1 is by definition g1
s -invariant, and

for the measure P1 one may take an ergodic component (in fact, almost every

ergodic component) of the measure P̃1.

3.2. A strongly biregular sequence of partitions corresponding to a zippered

rectangle. Given a zippered rectangle X , we shall speak of its vertical and

horizontal foliations, Hölder cocycles, and so on, meaning the corresponding

objects for the underlying abelian differential, and we shall use the notation

B+(X ), B−(X ), B+
c (X ), B−c (X ) for the corresponding spaces of finitely-

additive measures.

Recall that, by construction, a zippered rectangle carries the partition

π0(X ) = Π
(0)
1 t · · · tΠ(0)

m

into weakly admissible rectangles. The Rauzy–Veech expansion of a zippered

rectangle now yields a Markovian sequence of partitions πn, n ∈ Z. To con-

struct it, first take X ∈ Y(R) and recall that we have a natural “tautological”

identification map

tT : M(X )→M(T X ).

Now set

(47) πn(X ) =
Ä
tT

ä−n
π0

Ä
T

n
X
ä
.

By definition, the sequence πn(X ), n ∈ Z, is Markovian. Minimality of

the horizontal and vertical flows implies exactness of the sequence πn(X ). For

a general zippered rectangle X ′ ∈ V1,τ (R), write

X ′ = P s0 X ,X ∈ Y1(R), 0 6 s0 < τ(X )

and set

πn(X ) = ts0 (πn(X )) .
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(Informally, carry over sequence πn from the “closest” zippered rectangle lying

on the transversal Y1(R).)

Lemma 3.5. For PV-almost every zippered rectangle X , there exists a

sequence nk ∈ Z, n0 = 0, nk < nk+1, k ∈ Z, such that the sequence A =Ä
A
Ä
πnk , πnk+1

ää
of adjacency matrices of the exact Markovian subsequence

πnk(X ), k ∈ Z satisfies the following :

(1) A is an SB-sequence,

(2) the space B+(A) coincides with the strongly unstable space of the co-

cycle At at the point X .

The proof of the lemma is routine. One chooses a Rauzy-Veech matrix Q

of the form

Q = Q1Q2,

where Q1 and Q2 are Rauzy-Veech matrices all whose entries are positive and

such that PV -almost all zippered rectangles X contain infinitely many occur-

rences of the matrix Q both in the past and in the future. The sequence nk is

then the sequence of consecutive occurrences of the matrix Q. Each adjacency

matrix A
Ä
πnk , πnk+1

ä
now has the form Q2

‹AQ1, where ‹A is an integer matrix

with nonnegative entries. It follows from the Oseledets Multiplicative Ergodic

Theorem and the Oseledets-Pesin Reduction Theorem ([5, Th. 3.5.5, p. 77])

that A is an SB-sequence and that B+(A) coincides with the strongly unstable

space of the cocycle At at the zippered rectangle X . The proof of the lemma

is complete.

3.3. The renormalization action of the Teichmüller flow on the space of

finitely-additive measures. We have the evaluation map

eval+X : B+(X )→ Rm,

which to a finitely-additive measure Φ+ ∈ B+ assigns the vector of its values

on vertical arcs of the rectangles Π
(0)
i , i = 1, . . . ,m. We must now check that

the map eval+X is indeed an isomorphism between the space B+(X ) and the

strongly unstable space of the cocycle At.
Introduce a measurable fibre bundle B+Ṽ(R) over the Veech space V(R)

by setting

B+Ṽ(R) =
¶Ä

X ,Φ+
ä

: X ∈ Ṽ(R),Φ+ ∈ B+(X )
©
.

Extend the map eval+X to a bundle morphism

eval+ : B+Ṽ(R)→ Ṽ(R)× Rm ,

given by the formula

eval+
Ä
X ,Φ+

ä
=
Ä
X , eval+X (Φ+)

ä
.
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By definition, the map eval+ intertwines the action of the flow P s,X on the

bundle B+Ṽ(R) with that of the flow P s,A
t

on the trivial bundle Ṽ(R)×Rm.

Recall that for any s ∈ R, we have a natural “tautological” map

ts : M(X )→M(P sX )

given by (44). The bundle B+Ṽ(R) is now endowed with a natural renormal-

ization flow P s,B
+

given by the formula

P s,B
+

(X ,Φ+) = (P sX , (ts)∗Φ
+).

We furthermore have a bundle morphism

eval+ : B+Ṽ(R)→ Ṽ(R)× Rm

given by the formula

eval+(X ,Φ+) = (X , eval+X (Φ+).

The identification of cocycles now gives us the following

Proposition 3.6. Let PV be an ergodic P s-invariant probability measure

for the flow P s on V(R). We have a commutative diagram

B+Ṽ(R)
eval+−−−−→ Ṽ(R)× RmyP s,B+

yP s,At
B+Ṽ(R)

eval+−−−−→ Ṽ(R)× Rm.

The map eval+ is injective in restriction each fibre. For PV-almost every X ∈
B+Ṽ(R), the map eval+ induces an isomorphism between the space B+(X )

and the strongly unstable Oseledets subspace of the cocycle At at the point X .

Proof. Let πnk be the sequence of partitions given by Lemma 3.5, and let

A be the corresponding SB-sequence of matrices. Since A is an SB-sequence,

the map eval+X induces an isomorphism between B+(X ) and B+(A). (Recall

here that n0 = 0.) Since B+(A) coincides with the unstable space of the

cocycle At, the proposition is proved completely. �

Using Proposition 3.6, we will identify the action of P s,B
+

on B+(Ṽ(R)

with the action of P s,A
t

on the strongly unstable Oseledets subbundle of Ṽ(R)×
Rm and speak of the action of the cocycle At on the space of finitely-additive

measures in this sense.

This renormalization action of the flow P s on the space of finitely-additive

measures will play a key role in the proof of the limit theorems in the next

section. We close this section by giving a sufficient condition for the equality

B+(X,ω) = B+
c (X,ω).
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3.4. A sufficient condition for the equality B+(X,ω) = B+
c (X,ω). Let

(X , µ) be a probability space endowed with a µ-preserving transformation T

or flow gs and an integrable linear cocycle A over gs with values in GL(m,R).

For p ∈ X , let E0,x be the the neutral subspace of A at p, i.e., the Lyapunov

subspace of the cocycle A corresponding to the Lyapunov exponent 0. We say

that A acts isometrically on its neutral subspaces if for almost any p, there

exists an inner product 〈·〉p on Rm that depends on p measurably and satisfies

〈A(1, p)v,A(1, p)v〉gsp = 〈v, v〉p, v ∈ E0,p

for all s ∈ R. (Again, in the case of a transformation, gs should be replaced

by T in this formula.)

The third statement of Proposition 3.1 has the following immediate

Corollary 3.7. Let PV be a Borel ergodic P s-invariant probability mea-

sure on V(R), and let P = (πR)∗PV be the corresponding gs-invariant measure

on H. If the Kontsevich-Zorich cocycle acts isometrically on its neutral sub-

space with respect to P, then the cocycle At also acts isometrically on its neutral

subspace with respect to PV .

Note that the hypothesis of Corollary 3.7 is satisfied, in particular, for the

Masur-Veech smooth measure on the moduli space of abelian differentials.

The following proposition is clear from the definitions.

Proposition 3.8. Let PV be a Borel ergodic P s-invariant probability mea-

sure on V(R) such that the cocycle At acts isometrically on its neutral subspace

with respect to PV . Let P = (πR)∗PV be the corresponding gs-invariant ergodic

measure on H. Then for P-almost every abelian differential (M,ω), we have

the equality

B+(M,ω) = B+
c (M,ω).

In other words, if the cocycle At acts isometrically on its neutral subspace

with respect to PV , then any continuous finitely-additive measure must in

fact be Hölder. Note that the assumptions of the proposition are verified,

in particular, for the Masur-Veech smooth measure on the moduli space of

abelian differentials. To prove Proposition 3.8 we use Proposition 3.1, which

implies that if the cocycle At acts isometrically on its neutral subspace with

respect to PV , then P-almost every abelian differential (M,ω) admits an exact

Markovian sequence of partitions whose sequence of adjacency matrices is a

hyperbolic SB-sequence which, in turn, is sufficient for the equality

B+(M,ω) = B+
c (M,ω).
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4. Proof of the limit theorems

4.1. Outline of the proof. The main element in the proof of the limit the-

orem is the renormalization action of the Teichmüller flow P s on the bundle

B+Ṽ(R).

Start with the case when the second Lyapunov exponent of the cocycle

At is positive and simple with respect to a P s-invariant ergodic probability

measure PV on Ṽ(R). Then, by Theorem 1, for PV -almost every zippered

rectangle X and a generic weakly Lipschitz function f of zero average, the

ergodic integral ∫ exp(s)

0
f ◦ h+

t (x)dt

is approximated by an expression of the form

const · Φ+
2,X (x, es),

where the constant depends on f and Φ+
2,X ∈ B+(X ) is a cocycle belonging to

the second Lyapunov subspace of the cocycle At. Note that the cocycle Φ+
2,X

is defined up to multiplication by a scalar; the double cover H′ over the space

H in the formulation of the limit theorem is considered precisely in order to

distinguish between positive and negative scalars.

Now, Proposition 3.6 implies that the normalized distribution of the ran-

dom variable Φ+
2,X (x, es) (considered as a function of x with fixed s) coincides

with the normalized distribution of the random variable Φ+
2,P sX (x, 1). As-

signing to a zippered rectangle X the normalized distribution of the random

variable Φ+
2,X (x, es) (considered as a function of x with fixed s) now yields the

desired map D+
2 from the space of zippered rectangles (more precisely, from its

double cover) to the space of distributions. The fact that the normalized distri-

butions of the ergodic integrals are approximated by the image under the map

D+
2 of the orbit of our zippered rectangle under the action of the Teichmüller

flow P s follows now from the asymptotic expansion of Theorem 1.

4.2. The case of the simple second Lyapunov exponent.

4.2.1. The leading term in the asymptotic for the ergodic integral. We fix

a P s-invariant ergodic probability measure PV on Ṽ(R) and start with the

case in which the second Lyapunov exponent of the cocycle At is positive

and simple with respect to the measure PV . Consider the Oseledets subspace

Eu1,X = RhX corresponding to the top Lyapunov exponent 1 and the one-

dimensional Oseledets subspace Eu2,X corresponding to the second Lyapunov

exponent. Furthermore, let Eu≥3,X be the subspace corresponding to the re-

maining Lyapunov exponents.
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We have then the decomposition

EuX = Eu1,X ⊕ Eu2,X ⊕ Eu≥3,X .

Denote by B+
1,X = Rν+, B+

2,X , B+
≥3,X the corresponding spaces of Hölder

cocycles. A similar decomposition holds for the dual space ‹Eu, the strongly

unstable space of the cocycle A:‹EuX = ‹Eu1,X ⊕ ‹Eu2,X ⊕ ‹Eu≥3,X .

Again, denote by B−1,X = Rν−, B−2,X , B−≥3,X the corresponding spaces of

Hölder cocycles.

Choose Φ+
2 ∈ B+

2,X , Φ−2 ∈ B−2,X in such a way that

〈Φ+
2 ,Φ

−
2 〉 = 1.

Take f ∈ Lip+
w(X ), x ∈X , T ∈ R, and observe that the expression

(48) mΦ−2
(f)Φ+

2 (x, T )

does not depend on the precise choice of Φ±2 . (We have the freedom of multi-

plying Φ+
2 by an arbitrary scalar, but then Φ−2 is divided by the same scalar.)

Now for f ∈ Lip+
w(X ), write

Φ+
f (x, T ) =

Å∫
X
fdν

ã
· T +mΦ−2

(f)Φ+
2 (x, T ) + Φ+

3,f (x, T ),

where Φ+
3,f ∈ IX (‹Eu≥3,X ). In particular, there exist two positive constants C

and α depending only on P such that for any function f satisfying

f ∈ Lip+
w(X ),

∫
X
fdν = 0,

we have the estimate

(49)

∣∣∣∣∣
∫ T

0
f ◦ h+

t (x)dt−mΦ−2
(f)Φ+

2 (x, T )

∣∣∣∣∣ ≤ C||f ||LipT
θ2−α.

4.2.2. The growth of the variance. In order to estimate the variance of

the random variable
∫ T
0 f ◦ h+

t (x)dt, we start by studying the growth of the

variance of the random variable Φ+
2,X (x, T ) as T →∞.

Recall that EνΦ+
2,X (x, T ) = 0 for all T , while VarνΦ+

2,X (x, T ) 6= 0 for

T 6= 0. Recall that for a cocycle Φ+ ∈ B+
X , Φ+ = I+

X (v), we have defined

its norm |Φ+| by the formula |Φ+| = |v|. Introduce a multiplicative cocycle

H2(s,X ) over the flow P s by the formula

(50) H2(s,X ) =
|At(s,X )v|

|v|
, v ∈ Eu2,X , v 6= 0.

Observe that the right-hand side does not depend on the specific choice of

v 6= 0.
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By definition, we now have

(51) lim
s→∞

logH2(s,X )

s
= θ2.

Proposition 4.1. There exists a positive measurable function V : Ṽ(R)

→ R+ such that the following equality holds for PV-almost all X ∈ Ṽ(R):

(52) VarνΦ+
2 (x, T ) = V (P sX )|Φ+

2 |
2(H2(s,X ))2.

Indeed, the function V (X ) is given by

(53) V (X ) =
VarνΦ+

2 (x, 1)

|Φ+
2 |2

,

and the proposition is an immediate corollary of Proposition 3.6. Observe

that the right-hand side does not depend on a particular choice of Φ+
2 ∈ B+

2,X ,

Φ+
2 6= 0.

Using (49), we now proceed to estimating the growth of the variance of

the ergodic integral ∫ T

0
f ◦ h+

t (x)dt.

We use the same notation as in the introduction. For τ ∈ [0, 1], s ∈ R, a

real-valued f ∈ Lip+
w,0(X ), we write

(54) S[f, s; τ, x] =

∫ τ exp(s)

0
f ◦ h+

t (x)dt.

As before, let ν be the Lebesgue measure on the surface M(X ) corresponding

to the zippered rectangle X . As before, as x varies in the probability space

(M(X ), ν), we obtain a random element of C[0, 1]. In other words, we have a

random variable

(55) S[f, s] : (M(X ), ν)→ C[0, 1]

defined by the formula (54).

For any fixed τ ∈ [0, 1], the formula (54) yields a real-valued random

variable

(56) S[f, s; τ ] : (M(X ), ν)→ R,

whose expectation, by definition, is zero.

Proposition 4.2. There exist α > 0 depending only on PV and a positive

measurable function C : Ṽ(R)× Ṽ(R)→ R+ such that the following holds for

PV-almost all X ∈ Ṽ(R) and all s > 0. Let Φ+
2,X ∈ B+

2,X , Φ−2,X ∈ B−2,X be

chosen in such a way that 〈Φ+
2,X ,Φ−2,X 〉 = 1. Let f ∈ Lip+

w(X ) be such that∫
M(X )

fdν = 0, mΦ−
2,X

(f) 6= 0.



484 ALEXANDER I. BUFETOV

Then

(57)

∣∣∣∣∣∣ VarνS[f, s; 1]

V (P sX )(mΦ−2
(f)|Φ+

2 |H2(s,X ))2
− 1

∣∣∣∣∣∣ ≤ C(X , P sX ) exp(−αs).

Remark. Observe that the quantity (mΦ−2
(f)|Φ+

2 |)2 does not depend on

the specific choice of Φ+
2 ∈ B+

2 , Φ−2 ∈ B−2 such that 〈Φ+
2 ,Φ

−
2 〉 = 1. Indeed,

the proposition is immediate from Theorem 1, the inequality

|E(ξ2
1)− E(ξ2

2)| ≤ sup|ξ1 + ξ2| · E|ξ1 − ξ2|,

which holds for any two bounded random variables ξ1, ξ2 on any probabil-

ity space, and the following clear proposition which, again, is an immediate

corollary of Theorem 1.

Proposition 4.3. There exist a constant α > 0 depending only on PV , a

positive measurable function C : Ṽ(R)×Ṽ(R)→ R+, and a positive measurable

function V ′ : Ṽ(R)→ R+ such that for all s > 0 ,we have

max
x∈M
|Φ+

2 (x, es)| = V ′(P sX )H2(s,X ),(58)

∣∣∣∣∣∣
max
x∈M

S[f, s; 1](x)

V ′(P sX )(mΦ−2
(f)|Φ+|H2(s,X ))2

− 1

∣∣∣∣∣∣ ≤ C(X , P sX ) exp(−αs).(59)

4.2.3. Conclusion of the proof. We now turn to the asymptotic behaviour

of the distribution of the random variable S[f, s] as s → ∞. Again, we will

use the notation m[f, s] for the distribution of the normalized random variable

(60)
S[f, s]»

VarνS[f, s; 1]
.

The measure m[f, s] is thus a probability distribution on the space C[0, 1] of

continuous functions on the unit interval.

For τ ∈ R, τ 6= 0, we again let m[f, s; τ ] be the distribution of the R-valued

random variable

(61)
S[f, s; τ ]»

VarνS[f, s; τ ]
.

If f has zero average then, by definition, m[f, s; τ ] is a measure on R of ex-

pectation 0 and variance 1. Again, as in the introduction, we take the space

C[0, 1] of continuous functions on the unit interval endowed with the Tcheby-

shev topology, and we let M be the space of Borel probability measures on the

space C[0, 1] endowed with the weak topology (see [7] or the appendix).

Consider the space Ṽ(R)
′

given by the formula

Ṽ(R)
′
= {X ′ = (X , v), v ∈ E+

2,X , |v| = 1}.
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The flow P s is lifted to Ṽ(R)
′

by the formula

P s,′(X , v) =

(
P sX ,

At(s,X )v

|At(s,X )v|

)
.

Given X ′ ∈ Ṽ(R)
′
, X ′ = (X , v), write

Φ+
2,X ′ = IX (v).

As before, write

V (X ′) = VarνΦ+
2,X ′(x, 1).

Now introduce the map

D+
2 : Ṽ(R)

′ →M

by setting D+
2 (X ′) to be the distribution of the C[0, 1]-valued normalized

random variable
Φ+

2,X ′(x, τ)»
V (X ′)

, τ ∈ [0, 1].

Note here that by Proposition 2.11, for any τ0 6= 0, we have VarνΦ+
2,X (x, τ0)

6= 0 so, by definition, we have D+
2 (X ′) ∈M1.

Now, as before, we take a function f ∈ Lip+
w,X such that∫

M(X )
fdν = 0, mΦ−

2,X
(f) 6= 0.

As before, dLP stands for the Lévy-Prohorov metric on M, dKR for the Kantor-

ovich-Rubinstein metric on M.

Proposition 4.4. Let PV be a P s-invariant ergodic Borel probability mea-

sure on Ṽ(R) such that the second Lyapunov exponent of the cocycle At is pos-

itive and simple with respect to PV . There exist a positive measurable function

C : Ṽ(R)× Ṽ(R)→ R+ and a positive constant α depending only on PV such

that for PV-almost every X ′ ∈ Ṽ(R)
′
, X ′ = (X , v), and any f ∈ Lip+

w,0(X )

satisfying m−2,X ′(f) > 0, we have

dLP(m[f, s],D+
2 (P s,′X ′)) ≤ C(X , P sX ) exp(−αs),(62)

dKR(m[f, s],D+
2 (P s,′X ′)) ≤ C(X , P sX ) exp(−αs).(63)

Proof. We start with the simple inequality∣∣∣∣ab − c

d

∣∣∣∣ ≤ |a| · ∣∣∣∣b− dbd

∣∣∣∣+ |a− c|d

valid for any real numbers a, b, c, d. For any pair of random variables ξ1, ξ2

taking values in an arbitrary Banach space and any positive real numbers



486 ALEXANDER I. BUFETOV

M1,M2, we consequently have

(64) sup

∣∣∣∣ ξ1

M1
− ξ2

M2

∣∣∣∣ ≤ sup |ξ1| ·
∣∣∣∣M1 −M2

M1M2

∣∣∣∣+ sup |ξ1 − ξ2|
M2

.

We apply the inequality (64) to the C[0, 1]-valued random variables

ξ1 = S[f, s], ξ2 = Φ+
2,P sX (x, τ · es),

lettingM1,M2 be the corresponding normalizing variances: M1=VarνS[f, s; 1],

M2 = Varνm[f, s; 1].

Now take ε > 0, and let ξ̃1, ξ̃2 be two random variables on an arbitrary

probability space (Ω,P) taking values in a complete metric space and such that

the distance between their values does not exceed ε. In this case both the Lévy-

Prohorov and the Kantorovich-Rubinstein distance between their distributions

(ξ̃1)∗P, (ξ̃2)∗P also does not exceed ε (see Lemma A.1). Proposition 4.4 is now

immediate from equation (49) and Proposition 4.2.

It remains to derive Proposition 1.14 from Proposition 4.4. To do so, note

that the map D+
2 , originally defined on the double cover Ṽ(R)

′
of the space of

zippered rectangles, naturally descends to a map, for which we keep the same

symbol D+
2 , defined on the double cover H′ of the connected component H

of the moduli space of abelian differentials. Indeed, it is immediate from the

definitions that the image D+
2 (X ′) of an element X ′ ∈ Ṽ(R)

′
, X ′ = (X , v)

only depends on the underlying element (M(X ), ω(X ), v) of the space H′.
Proposition 4.4 is now proved completely. �

4.3. Proof of Corollary 1.16. For X ′ ∈ Ṽ(R)
′
, Φ+ ∈ B+

X , let m[Φ+, τ ] be

the distribution of the normalized R-valued random variable

Φ+(x, τ)»
VarνΦ+(x, τ)

.

Proposition 4.5. Let PV be a P s-invariant ergodic Borel probability mea-

sure on Ṽ(R). For PV-almost every X and any Φ+ ∈ B+
X , Φ+ 6= 0, the

correspondence

τ → m[Φ+, τ ]

yields a continuous map from R \ 0 to M(R).

Proof. This is immediate from the Hölder property of the cocycle Φ+ and

the nonvanishing of the variance VarνΦ+(x, τ) for τ 6= 0, which is guaranteed

by Proposition 2.11. �

As usual, by the omega-limit set of a parametrized curve p(s), s ∈ R,

taking values in a metric space, we mean the set of all accumulation points of

our curve as s→∞.

We now use the following general statement.
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Proposition 4.6. Let (Ω,B) be a standard Borel space, and let gs be a

measurable flow on Ω preserving an ergodic Borel probability measure µ. Let

Z be a separable metric space, and let ϕ : Ω → Z be a measurable map such

that for µ-almost every ω ∈ Ω the curve ϕ(gsω) is continuous in s ∈ R. Then

there exists a closed set N ⊂ Z , such that for µ-almost every ω ∈ Ω, the set N

is the omega-limit set of the curve ϕ(gsω), s ∈ R.

The proof of Proposition 4.6 is routine. We choose a countable base

U = {Un}n∈N of open sets in Z. By ergodicity of gs, continuity of the curves

ϕ(gsω), and countability of the family U , there exists a subset of full measure

Ω′ ⊂ Ω, µ(Ω′) = 1, such that for any U ∈ U and any ω ∈ Ω′, the following

conditions are satisfied:

(1) if µ(U) > 0, then there exists an infinite sequence sn → ∞ such that

ϕ(gsnω) ∈ U ;

(2) if µ(U) = 0, then there exists s0 > 0 such that ϕ(gsω) /∈ U for all

s > s0.

Now let N be the set of all points z ∈ Z such that µ(U) > 0 for any open

set U ∈ U containing the point z. By construction, for any ω ∈ Ω′, the set N

is precisely the omega-limit set of the curve ϕ(gsω). The proposition is proved.

Proposition 4.6 with Ω = H′, ϕ = D+
2 and µ an ergodic component

of P′ together with the Limit Theorem given by Propositions 1.14 and 4.4

immediately implies Corollary 1.16.

4.4. The general case.

4.4.1. The fibre bundles S(i)Ṽ(R) and the flows P s,S
(i)

corresponding to

the strongly unstable Oseledets subspaces. Let PV be an ergodic P s-invariant

probability measure on Ṽ(R), and let

θ1 = 1 > θ2 > · · · > θl0 > 0

be the distinct positive Lyapunov exponents of At with respect to P. We

assume l0 ≥ 2.

For X ∈ Ṽ(R), let

EuX = Rh(0)
X + E2,X ⊕ · · · ⊕ El0,X

be the corresponding direct-sum decomposition into Oseledets subspaces, and

let

B+
X = Rν+

X ⊕B+
2,X ⊕ · · · ⊕B+

l0,X

be the corresponding direct sum decomposition of the space B+
X .

For f ∈ Lip+
w(X ), we now write

Φ+
f = Φ+

1,f + Φ+
2,f + · · ·+ Φ+

l0,f
,
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where Φ+
i,f ∈ B+

i,X and, of course,

Φ+
1,f =

Ç∫
M(X )

fdν

å
· ν+.

For each i = 2, . . . , l0, introduce a measurable fibre bundle

S(i)Ṽ(R) = {(X , v) : X ∈ Ṽ(R), v ∈ E+
i,X , |v| = 1}.

The flow P s is naturally lifted to the space S(i)Ṽ(R) by the formula

P s,S
(i)

(X , v) =

(
P sX ,

At(s,X )v

|At(s,X )v|

)
.

4.4.2. Growth of the variance. The growth of the norm of vectors v ∈ E+
i

is controlled by the multiplicative cocycle Hi over the flow P s,S
(i)

defined by

the formula

Hi(s, (X , v)) =
|At(s,X )v|

|v|
.

The growth of the variance of ergodic integrals is also, similarly to the previous

case, described by the cocycle Hi.

For X ∈ Ṽ(R) and f ∈ Lip+
w,0(X ), we write

(65) i(f) = min{j : Φ+
f,j 6= 0}.

We now define a vector vf ∈ Eui(f),X by the formula

(66) I+
X (vf ) =

Φ+
f,i(f)

|Φ+
f,i(f)|

.

Proposition 4.7. There exists α > 0 depending only on PV and, for any

i = 2, . . . , l0, positive measurable functions

V (i) : S(i)Ṽ(R)→ R+, C
(i) : Ṽ(R)× Ṽ(R)→ R+

such that for PV-almost every X ∈ Ṽ(R), any f ∈ Lip+
w,0(X ), and all s > 0,

we have∣∣∣∣∣ Varν(S[f, es; 1])

V (i(f))(P s,S
(i)

(X , vf ))(Hi(s, (X , vf )))2
− 1

∣∣∣∣∣ 6 C(i)(X , P sX )e−αs.

Indeed, similarly to the case of a simple Lyapunov exponent, for v ∈ EiX ,

we write Φ+
v = I+

X (v) and set

V (i)(X , v) = VarνΦ+
v (x, 1).

The proposition follows now in the same way as in the case of the simple

second Lyapunov exponent. The pointwise approximation of the ergodic in-

tegral by the corresponding Hölder cocycle implies also that the variances of

these random variables are exponentially close.
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4.5. Proof of Theorem 2. For i = 2, . . . , l0, introduce a map

D+
i : S(i)Ṽ(R)→M

by setting D+
i (X , v) to be the distribution of the C[0, 1]-valued random vari-

able
Φ+
v (x, τ)»

Varν(Φ+
v (x, 1))

, τ ∈ [0, 1].

As before, by definition we have D+
i (X , v) ∈M1. The measure m[f, s] ∈

M is, as before, the distribution of the C[0, 1]-valued random variable∫ τ exp(s)
0 f ◦ h+

t (x)dt…
Varν

(∫ exp(s)
0 f ◦ h+

t (x)dt
) , τ ∈ [0, 1].

As before, let l0 = l0(PV) be the number of distinct positive Lyapunov expo-

nents of the measure PV . For f ∈ Lip+
w,0(X ), we define the number i(f) by

(65) and the vector vf by (66).

Theorem 4. Let PV be a Borel P s-invariant ergodic probability measure

on Ṽ(R) satisfying l0(PV) ≥ 2. There exist a constant α > 0 depending only

on P and a positive measurable map C : Ṽ(R) × Ṽ(R) → R+ such that for

PV-almost every X ∈ Ṽ(R) and any f ∈ Lip+
w,0(X ), we have

dLP(m[f, s], D+
i(f)(P

s,S(i(f))
(X , vf ))) 6 C(X , P sX )e−αs,

dKR(m[f, s], D+
i(f)(P

s,S(i(f))
(X , vf ))) 6 C(X , P sX )e−αs.

The proof is similar to the proof of Proposition 4.4. Again, the er-

godic integral is uniformly approximated by the corresponding cocycle; the

uniform bound on the difference yields the uniform bound on the difference

and the ratio of variances of the ergodic integral and the cocycle considered

as random variables; we proceed, as before, by using the inequality (64) with

ξ1 = m[f, s], ξ2 = Φ+
f,i(f)(x, τ), and M1,M2 the corresponding normalizing

variances. We conclude, again, by noting that a uniform bound on the dif-

ference between two random variables implies the same bound on the Lévy-

Prohorov or Kantorovich-Rubinstein distance between the distributions of the

random variables (using Lemma A.1 in the appendix ).

Theorem 4 now implies Theorem 2 in the same way in which Proposi-

tion 4.4 implies Proposition 1.14.

4.6. Atoms of limit distributions. Let X be a zippered rectangle, and

let (M,ω) = (M(X ), ω(X )) be the underlying abelian differential. For x ∈
M(X ), let γ+

∞(x) stand for the leaf of the vertical foliation containing x, and

let γ−∞(x) stand for the leaf of the horizontal foliation containing x. Our next

aim is to show that atoms of limit distributions occur at all “homoclinic times,”
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that is, moments of time t0 such that there exists a point x̃ ∈ M satisfying

h+
t0(x) ∈ γ−∞(x̃).

Proposition 4.8. Let X be a zippered rectangle, and let

(M,ω) = (M(X ), ω(X ))

be the underlying abelian differential. Let x̃ ∈M , and assume that x̃ does lies

neither on a horizontal nor on a vertical leaf passing through a singularity of

the abelian differential ω(X ). Let t0 ∈ R be such that h+
t0 x̃ ∈ γ

−
∞(x̃). Then

there exists a rectangle Π of positive area such that for any x ∈ Π and any

Φ+ ∈ B+(X ), we have

(67) Φ+(x, t0) = Φ+(x̃, t0).

Proof. Let x̂ = h+
t0(x̃), and write x̂ = h−t1(x̃). Start with the case t0 > 0,

t1 > 0. By our assumptions, for sufficiently small positive t2, t3, the rectangles

Π1 = Π(x̃, t2, t1 + t3), Π2 = Π(x̃, t0 + t2, t3)

are both admissible.

The desired rectangle Π can now be taken of the form

Π = Π(x̃, t2, t3).

Indeed, take x ∈ Π. Our aim is to check the equality (67). Write x = h+
t x1,

where x1 ∈ ∂0
h(Π). We first check the equality

(68) Φ+(x, t0) = Φ+(x1, t0).

But indeed, Φ+(x1, t) = Φ+(h+
t0−tx, t) since Π1 is admissible, whence

Φ+(x, t0) = Φ+(x, t0 − t) + Φ+(h+
t0−tx, t)

= Φ+(x1, t) + Φ+(h+
t x1, t0 − t) = Φ+(x1, t0),

as desired. The equality

(69) Φ+(x1, t0) = Φ+(x̃, t0)

is a direct corollary of admissibility of Π2. Combining (68) with (69), we arrive

at the desired equality (68), and Proposition 4.8 is proved. �

For a fixed zippered rectangle X both whose vertical and horizontal flows

are minimal, the set of “homoclinic times” t0 for which there exist x̃, x̂ ∈ X
satisfying x̃ ∈ γ+

∞(x̂), x̃ ∈ γ−∞(x̂), x̂ = h+
t0 x̃, is countable and dense in R.

Proposition 4.8 now implies the following

Corollary 4.9. Let PV be a Borel P s-invariant ergodic probability mea-

sure on Ṽ(R). For PV-almost every X ∈ Ṽ(R), there exists a dense set of

times t0 ∈ R such that for any Φ+ ∈ B+, the distribution of the random

variable Φ+(x, t0) has an atom.
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Our next step is to show that atoms of weight arbitrarily close to 1 occur

for limit distributions of our Hölder cocycles. Informally, such atoms exist

when one admissible rectangle occupies most of our surface. More precisely,

we have the following

Proposition 4.10. Let X ∈ Ṽ(R) satisfy λ
(0,X )
1 > 1/2. Then there

exists a set Π ⊂M(X ) such that

(1) νX (Π) ≥ (2λ
(0,X )
1 − 1)h

(0,X )
1 ;

(2) for any Φ+ ∈ B+(X ), the function Φ+(x, h
(0,X )
1 ) is constant on Π.

Proof. We consider X fixed and omit it from notation. Consider the

partition

π0(X ) = Π
(0)
1 t · · · tΠ(0)

m

of the zippered rectangle X . Let Ik be the interval forming lower horizontal

boundaries of the rectangles Π
(0)
k , k = 1, . . . ,m, and set

I = I1 t · · · t Im.

The flow transversal I carries the Lebesgue measure νI invariant under

the first-return map of the flow h+
t on I. We recall that the first return map

is simply the interval exchange transformation (λ, π) of the zippered rectangle

X = (λ, π, δ). We recall that λ
(0)
k is the length of Ik and that h

(0)
k is the height

of Π
(0)
k . For brevity, denote t1 = h

(0)
1 . By definition, h+

t1I1 ⊂ I and we have

νI
Ä
I1

⋂
h+
t1I1

ä
≥ 2λ

(0)
1 − 1 > 0.

Introduce the set

Π = {h+
τ x, 0 < τ < t1, x ∈ I1, ht1x ∈ I1}.

The first statement of the proposition is clear, and we proceed to the proof of

the second. Note first that for any Φ+ ∈ B+(X ) and any τ, 0 ≤ τ ≤ t1, the

quantity Φ+(x, τ) is constant as long as x varies in I1.

Fix Φ+ ∈ B+(X ), and take an arbitrary x̃ ∈ Π. Write x̃ = h+
τ1x1, where

x1 ∈ I1, 0 < τ1 < t1. We have h+
t1−τ1 x̃ ∈ I1, whence

Φ+(h+
t1−τ1 x̃, τ1) = Φ+(x1, τ1)

and

Φ+(x̃, t1) = Φ+(x̃, t1 − τ1) + Φ+(h+
t1−τ1 x̃, τ1)

= Φ+(h+
τ1x1, t1 − τ1) + Φ+(x1, τ1) = Φ+(x1, t1),

which concludes the proof of the proposition. We illustrate the proof by Fig-

ure 3. �
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x1

x̃

h
+
t1−τ1

x̃

h
+
t1

x̃

Figure 3. Atoms of limit distributions

4.7. Accumulation at zero for limit distributions. Recall that for X ′ ∈
Ṽ(R)

′
, Φ+ ∈ B+

X , Φ+ 6= 0, and τ ∈ R, τ 6= 0, the measure m[Φ+, τ ] is the

distribution of the normalized R-valued random variable

Φ+(x, τ)»
VarνΦ+(x, τ)

.

As before, let M(R) be the space of probability measures on R endowed with

the weak topology, and let δ0 ∈ M(R) stand for the delta-measure at zero.

Similarly to the introduction, we need the following additional assumption on

our P s-invariant ergodic probability measure PV on Ṽ(R).

Assumption 4.11. For any ε > 0, we have

PV({X : λ
(X )
1 > 1− ε, h(X )

1 > 1− ε}) > 0.

By Proposition 4.10, in view of the ergodicity of PV , for almost every

X ∈ Ṽ(R) and every Φ+ ∈ B+
X , Φ+ 6= 0, the sequence of measures m[Φ+, τ ]

admits atoms of weight arbitrarily close to 1. The next simple proposition

shows that the corresponding measures must then accumulate at zero (rather

than at another point of the real line).

Proposition 4.12. Let µ0 be a probability measure on R such that∫
R
xdµ0(x) = 0,

∫
R
x2dµ0(x) = 1.

Let x0 ∈ R, and assume that

µ0({x0}) = β.

Then

|x0|2 6
1− β
β2

.
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Proof. If x0 = 0, then there is nothing to prove, so assume x0 > 0. (The

remaining case x0 < 0 follows by symmetry.) We have∫ +∞

0
xdµ0(x) > βx0

and, consequently, ∫ 0

−∞
xdµ0(x) 6 −βx0.

Using the Cauchy-Bunyakovsky-Schwarz inequality, write

1

µ0((−∞, 0))

∫ 0

−∞
x2dµ0(x) >

Ç
1

µ0((−∞, 0))

∫ 0

−∞
xdµ0(x)

å2

whence, recalling that the variance of µ0 is equal to 1, we obtain

µ0((−∞, 0)) >

Ç∫ 0

−∞
xdµ0(x)

å2

and, finally,

1− β > β2x2
0,

which is what we had to prove. �

As before, the symbol ⇒ denotes weak convergence of probability mea-

sures.

Proposition 4.13. Let PV be a Borel ergodic P s-invariant probability

measure on Ṽ(R) satisfying Assumption 4.11. Then for PV-almost every X ∈
Ṽ(R) there exists a sequence τn ∈ R+ such that for any Φ+ ∈ B+(X ), we

have

m[Φ+, τn]⇒ δ0 as n→∞.

This is immediate from Proposition 4.10 and Proposition 4.12.

Corollary 4.14. Let PV be a Borel ergodic P s-invariant probability mea-

sure on Ṽ(R) satisfying Assumption 4.11. Then for PV-almost every X ∈
Ṽ(R) there exists a sequence sn ∈ R+ such that for any f ∈ Lip+

w,0(X ) satis-

fying Φ+
f 6= 0, we have

m[f, sn; 1]⇒ δ0 as n→∞.

Consequently, if f ∈ Lip+
w,0(X ) satisfies Φ+

f 6= 0, then the family of measures

m[f, s; 1] does not converge in the weak topology on M(R) as s → ∞ and the

family of measures m[f, s] does not converge in the weak topology on M(C[0, 1])

as s→∞.

Proof. The first claim is clear from Proposition 4.13 and the Limit Theo-

rem 4. The second claim is obtained from the Limit Theorem 4 in the following

way.
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First note that the set

(70) {m[Φ+, 1],Φ+ ∈ B+(X ), |Φ+| = 1}

is compact in the weak topology. (Indeed, it is clear from the uniform con-

vergence on spheres in the Oseledets Multiplicative Ergodic Theorem that the

map Φ+ → m[Φ+, τ ] is continuous in restriction to the set {Φ+ : |Φ+| = 1}
whose image is therefore compact.) In particular, the set (70) is bounded away

from δ0, and the function

κ(X ) = inf
Φ+:|Φ+|=1

dLP(m[Φ+, 1], δ0)

is a positive measurable function on Ṽ(R). Consequently, there exists κ0 > 0

such that

PV({X : κ(X ) > κ0}) > 0.

From ergodicity of the measure PV and the Limit Theorem 4 it follows that the

family m[f, s; 1], s ∈ R, does not converge to δ0. On the other hand, as we have

seen, the measure δ0 is an accumulation point for the family. It follows that

the measures m[f, s; 1] do not converge in M(R) as s→∞ and, a fortiori, that

the measures m[f, s] do not converge in M(C[0, 1]) as s → ∞. Corollary 4.14

is proved completely. �

Appendix A. Metrics on the space of probability measures

A.1. The weak topology. In this appendix, we collect some standard facts

about the weak topology on the space of probability measures. For a detailed

treatment, see, e.g., [7].

Let (X, d) be a complete separable metric space, and let M(X) be the space

of Borel probability measures on X. The weak topology on M(X) is defined as

follows. Let ε > 0, ν0 ∈ M(X), and let f1, . . . , fk : X → R be bounded

continuous functions. Introduce the set

U(ν0, ε, f1, . . . , fk) =

ν ∈M(X) :

∣∣∣∣ ∫
X

fidν −
∫
X

fidν0

∣∣∣∣ < ε, i = 1, . . . , k

 .
The basis of neighbourhoods for the weak topology is given precisely by

sets of the form U(ν0, ε, f1, . . . , fk) for all ε > 0, ν0 ∈ M(X), f1, . . . , fk con-

tinuous and bounded. The weak topology is metrizable and there are several

natural metrics on M(X) inducing the weak topology.

A.2. The Kantorovich-Rubinstein metric. Let

Lip1
1 =

{
f : X→ R : sup

X
|f | 6 1, |f(x1)−f(x2)| 6 d(x1, x2) for all x1, x2 ∈ X

}
.
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The Kantorovich-Rubinstein metric is defined, for ν1, ν2 ∈ M(X), by the for-

mula

dKR(ν1, ν2) = sup
f∈Lip1

1(X)

∣∣∣∣ ∫
X

fdν1 −
∫
X

fdν2

∣∣∣∣.
The Kantorovich-Rubinstein metric induces the weak topology on M(X).

By the Kantorovich-Rubinstein Theorem, the Kantorovich-Rubinstein metric

admits the following equivalent dual description for bounded metric spaces.

Given ν1, ν2 ∈ M(X), let Join(ν1, ν2) ∈ M(X × X) be the set of probability

measures η on X×X such that projection of η on the first coordinate is equal to

ν1, the projection of η on the second coordinate is equal to ν2. The Kantorovich-

Rubinstein Theorem claims that

dKR(ν1, ν2) = inf
η∈Join(ν1,ν2)

∫
X×X

d(x1, x2)dη.

A.3. The Lévy-Prohorov metric. Let BX be the σ-algebra of Borel subsets

of X. For B ∈ BX, ε > 0, set

Bε = {x ∈ X : inf
y∈B

d(x, y) 6 ε}.

Given ν1, ν2 ∈M(X), introduce the Lévy-Prohorov distance between them

by the formula

dLP(ν1, ν2)=inf{ε > 0 : ν1(B) 6 ν2(Bε)+ε, ν2(B)6ν1(Bε)+ε for any B ∈ B}.

The Lévy-Prohorov metric also induces the weak topology on M(X).

A.4. An estimate on the distance between images of measures. Consider

a probability space (Ω,BΩ,P), and let ξ1, ξ2 : Ω → X be two measurable

maps. In the proof of the limit theorems, we use the following simple estimate

on the Lévy-Prohorov and the Kantorovich-Rubinstein distance between the

push-forwards (ξ1)∗P, (ξ2)∗P of the measure P under the mappings ξ1, ξ2.

Lemma A.1. Let ε > 0, and assume that for P-almost all ω ∈ Ω, we have

d(ξ1(ω), ξ2(ω)) 6 ε. Then we have

dKR((ξ1)∗P, (ξ2)∗P) 6 ε,

dLP((ξ1)∗P, (ξ2)∗P) 6 ε.

The proof of Lemma A.1 is immediate from the definitions of the Kantor-

ovich-Rubinstein and the Lévy-Prohorov metric.
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