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A product theorem in free groups

By Alexander A. Razborov

Abstract

If A is a finite subset of a free group with at least two noncommuting

elements, then |A·A·A| ≥ |A|2

(log |A|)O(1) . More generally, the same conclusion

holds in an arbitrary virtually free group, unless A generates a virtually

cyclic subgroup. The central part of the proof of this result is carried on by

estimating the number of collisions in multiple products A1 · . . . · Ak. We

include a few simple observations showing that in this “statistical” context

the analogue of the fundamental Plünnecke-Ruzsa theory looks particularly

simple and appealing.

1. Introduction

Let G be a group, and let A be its finite subset. Assume that for some

fixed k ≥ 2, |A ·A · . . . ·A︸ ︷︷ ︸
k times

| (where the product set A ·A · . . . ·A︸ ︷︷ ︸
k times

is defined as

{b ∈ G | (∃a1, . . . , ak ∈ A)(b = a1a2 · · · ak)}) is much smaller than |A|k. What

can be said about the internal structure of A?

Questions of this (and similar) sort are known in arithmetic combinatorics

as inverse problems. (Most of the material briefly surveyed in this section can

be found in comprehensive monographs [21], [25].) Originally they were studied

for G = Z. (The case G = Zn is easily seen to be “essentially equivalent” to

this one.) One of the deepest and hardest results in the area is Freiman’s

theorem [8] that provides a complete characterization of sets A ⊆ Z with

|A+A+ · · ·+A| ≤ O(|A|).
For many applications, however, it is highly desirable to be able to in-

fer at least something intelligent about the structure of A from the weaker

assumption

(1) |A+A+ · · ·+A︸ ︷︷ ︸
k times

| ≤ |A|1+o(1).
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For the case of abelian groups, this is a widely open problem (perhaps, the

central problem in the whole area). This state of the art is particularly embar-

rassing given the amount of useful information one can extract from (1) with

the help of powerful Plünnecke-Ruzsa theory. As one of the most cited corol-

laries, let us just mention that the conditions (1) are equivalent for all (fixed)

k ≥ 2 and, moreover, this equivalence still holds if some pluses are replaced

by minuses. Further, (1) follows from |A+B| ≤ |A|o(1)|B| for an arbitrary set

B with |B| ≤ |A|. Unfortunately, these powerful conclusions tell us very little

about the internal structure of A.

Somewhat surprisingly, inverse problems have turned out to be simpler for

more complicated algebraic structures. For example, sum-product estimates in

commutative rings by Bourgain, Katz and Tao [5] do give strong inverse results

in the range (1) if we append the analogous restriction |A ·A · . . . ·A| ≤ |A|1+o(1)

for product sets.

In this paper we are interested in another class of algebraic structures that

has recently sparkled a considerable attention, the class of non-abelian groups

[11], [24], [7]. One of the reasons for this interest lies in the motivations of

the pioneering papers by Helfgott [11] and Bourgain and Gamburd [4] that

linked this kind of question to estimating the diameter of Cayley graphs in

certain finite groups and, via this, to difficult open problems about explicit

constructions of expanders. But before reviewing these latest developments,

it is worth mentioning that for groups equipped with a length function, very

similar problems were studied long before, in quite a different context and in a

different community. Specifically, the Rapid Decay Property [10], [13] implies

that any set A satisfying (1) (or, in fact, the weaker assumption |A · A| ≤
A2−Ω(1)) cannot be positioned within a small ball and must necessarily contain

elements of length |A|Ω(1). Among others, this property is known for free

groups [10], groups of polynomial growth and hyperbolic groups [13].

An easy example shows that the Plünnecke-Ruzsa theory does not liter-

ally transfer to the non-abelian case: |A · A| can be small, whereas already

|A ·A ·A| is large. Tao [24] and Helfgott [11], however, proved that this theory

catches up already at the next level: say, the statements (1) become equivalent

for k = 3, 4, . . . . For this reason, in the non-abelian case it does make sense

to concentrate on the study of sets A with small tripling (that is, k = 3) as

opposed to sets with small doubling in the abelian case. Helfgott [11] indeed

proved a strong inverse result for tripling in the range (1) when G = SL2(Zp).
Chang [7] proved a similar theorem for G = SL2(C) and made a very substan-

tial step toward obtaining an analogous result for G = SL3(Z).

Chang’s former result (for SL2(C)) in fact looks rather intriguing since

it exhibits the following “threshold behavior.” There exists a fixed constant

δ > 0 such that the structural conclusion she gets from |A · A · A| ≤ |A|1+δ
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is exactly the same as the conclusion one gets from much stronger bound (1):

A generates a virtually abelian subgroup. (This reduces the inverse problem

for SL2(C) to the same problem for abelian groups — the best we can hope

for without actually solving the latter!) This is very unusual for arithmetic

combinatorics, where the conclusion usually depends on things like |A · A|
or |A · A · A| numerically and smoothly. Chang also remarked that the same

conclusion holds (via any known embedding of Fm into SL2(C)) for free groups

Fm,1. She asked for a purely combinatorial proof of this fact and for any

estimates of the threshold constant δ.

The main result of our paper provides an answer to her question, and we

show that in fact δ = 1 (which is clearly optimal). More precisely, we prove

the following:

Main Theorem. Let A be a finite subset of a free group Fm with at least

two noncommuting elements. Then

|A ·A ·A| ≥ |A|2

(log |A|)O(1)
.

More generally, the same conclusion holds for any finite subset A of an

arbitrary fixed virtually free group, unless the subgroup generated by A is

virtually cyclic. In particular, this is true for the modular group PSL2(Z),

as well as for SL2(Z) and GL2(Z), and this makes an improvement over [7,

Th. 5.1]. (The latter gave the bound |A ·A ·A| ≥ |A|1+δ for SL2(Z) and for an

unspecified constant δ > 0.)

Our proof is heavily based on the machinery of combinatorial group theory

and, more specifically, its part known as the theory of (highly) periodic words.

It is worth noting that this theory lies in the heart of two of the deepest

(and extremely involved technically) achievements in that area: the work on

Burnside problem [1], and the work on equations in free groups [18], [6], [20],

[22] that has recently culminated in independent solutions of Tarski’s problem

given by Kharlampovich-Miasnikov [14], [15] and Sela [23].

Instead of lower bounds on the cardinalities of sum/product sets, it is

often more convenient to go after upper bounds on the dual quantities2 defined

like

c(A,B)
def
=
∣∣∣¶(a, b, a′, b′) ∈ (A×B)2

∣∣ ab = a′b′
©∣∣∣ .

1Breuillard (personal communication) observed that this can be derived already from the

work of Helfgott [11].
2Accordingly, they appeared in the literature under many different names, e.g., quadruples

[9] or additive energy [24], [25]. In order to stress our purely combinatorial treatment, we

prefer to follow the lead of [2] and call them collision numbers or, after appropriate normal-

ization, collision probabilities.
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These collision numbers are related to the cardinalities of sum/product sets

via a simple Cauchy-Schwartz by

|A ·B| ≥ |A|
2|B|2

c(A,B)
,

but they display much more analytical (and in many cases more convenient)

behavior than |A ·B|. The Balog-Szemerédi-Gowers theorem shows how to go

in the opposite direction (from large c(A,B) to large subsets A0 ⊆ A, B0 ⊆ B
with small |A0 ·B0|) without losing too much. But we would also like to note

that one of the most striking recent applications of arithmetic combinatorics

[2], [3] actually needs upper bounds on collision numbers/probabilities rather

than lower bounds on the size of sum/product sets.

The most crucial part of our argument (contained in Section 5) also works

entirely in this framework (that we, following [2] once more, will call statistical)

and essentially utilizes all its versatility. This has motivated us to wonder how

far we can get in the world in which all quantities like |A1 · A2 · . . . · Ak|
are systematically replaced by their statistical counterparts c(A1, . . . , Ak). We

contribute to this a few simple remarks showing that the statistical version

of Plünnecke-Ruzsa theory looks particularly simple and appealing, without

ever mentioning cardinalities |A1 · A2 · . . . · Ak|, Menger’s theorem or Ruzsa’s

covering lemma inherent to its “classical” versions.

These remarks are given in the concluding Section 6, and all the preceding

part of the paper is entirely devoted to the proof of the Main Theorem. In

Section 2 we give the necessary background, mostly from combinatorial group

theory. In Section 3 we get rid of cancellations and also show that when lower

bounding |A ·B ·C| in a free semi-group, we can assume without loss of gener-

ality that A is a prefix chain, and C is a suffix chain. In Section 4 we further

reduce our problem to the case when the triple (A,B,C) has “enough aperi-

odicity” in it. Then in Section 5 comes the central part of our proof: we upper

bound the collision numbers c(A,B,C), ruling out the only unpleasant case

with the help of “aperiodicity constraints” enforced in the previous Section 4.

Added in proof. The present paper has been circulated in preprint form

since 2007. Since then, developments on triple-product theorems and their

applications have succeeded each other rapidly. See, for example, the survey

papers by Kowalski [16], Lubotzky [17] and Helfgott [12].

2. Background

All the material in this section related to the combinatorial group theory

can be found, e.g., in [19], [1].

We let [n]
def
= {1, 2, . . . , n}. Let Fm be the free group with the basis

{x1, . . . , xm}. A word w in the alphabet {x1, x
−1
1 , . . . , xm, x

−1
m } is reduced if for
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any i ∈ [m], xi and x−1
i never appear in w as adjacent letters. The elements

of Fm are in one-to-one correspondence with the set of reduced words, and we

will always represent them in this form. The unit element is the empty word,

denoted by Λ. |w| is the length of the word w.

The notation P stands for graphical (or letter-for-letter) equality: for

u1, . . . , ur, v1, . . . , vs ∈ Fm, u1u2 · · ·ur P v1v2 · · · vs by definition means that

u1u2 · · ·ur = v1v2 · · · vs in Fm and both words u1u2 · · ·ur, v1v2 · · · vs are re-

duced. In the opposite direction, u = vw in Fm if and only if there exist

(uniquely defined) v′, c, w′ ∈ Fm such that v P v′c, w P c−1w′ and u P v′w′.

In this case we say that the word c is the cancellation (or gets canceled) in

the product vw. If c = v [c = w−1], then we say that v [w, respectively] gets

completely canceled in this product. And if c = Λ, then we say that there is no

cancellation in vw, or that vw is reduced.

A word v is a sub-word of u, denoted v ⊆ u, if there exist words L,R such

that u P LvR. Any such representation is called an occurrence of v into u,

and L,R are called wings of this occurrence. If L = Λ [R = Λ], then we say

that u begins with v, or that v is a prefix of u [u ends with v/v is a suffix of u,

respectively]. A prefix or a suffix v of u is proper if v 6= u. We let a ≤ b denote

that a is a prefix of b. This is a partial ordering on the set of all reduced words

called the prefix order. Let a ≤∗ b be the dual suffix order.

A reduced word w is cyclically reduced if w2 (and, hence, also all higher

powers ws) is reduced. Two cyclically reduced words u, v are cyclic shifts of

each other, denoted u ∼ v, if for some w1, w2, we have

(2) u P w1w2, v P w2w1.

Thus, u ∼ v if and only if cyclically reduced words u, v are conjugated (in the

ordinary sense) in Fm, and ∼ is an equivalence relation on the set of cyclically

reduced words. A cyclic word is an equivalence class of this relation. That is,

a cyclic word is a cyclically reduced word considered up to cyclic shifts. Cyclic

words are in one-to-one correspondence with conjugacy classes of Fm. u ∼ v

implies |u| = |v|, therefore the length of a cyclic word is well defined.

A cyclically reduced word w is simple if it cannot be represented in the

form w P vs, s > 1. (Thus, simple words are nonempty.) Simple (cyclically

reduced) words will be also called periods3 and will be denoted by capital letters

P,Q. If P is a period, u is a cyclically reduced word and P ∼ u, then u is a

period, too. Different cyclic shifts of a period are also different as words. That

is, if in (2) u (and, hence, also v) is a period and both w1, w2 are nonempty,

then u 6= v. Cyclic words consisting of periods will be called cyclic periods and

3This is a slight deviation from the notation of [1] where periods are not required to be

simple.
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denoted by the letters p, q. Thus, cyclic periods are periods considered up to

cyclic shifts. It is worth noting that if we further identify p with p−1, then

these will be in one-to-one correspondence with maximal cyclic subgroups of

Fm considered up to conjugacy.

Let P be a period. A reduced word u is P -periodic if u ⊆ P s for some

s > 0 and |u| ≥ 2|P |. We denote by Per(P ) the set of all P -periodic words. u

is periodic if it is P -periodic for some period P and aperiodic otherwise.

Clearly, u is P -periodic if and only if it is representable in the form QsQ′,

where Q ∼ P, s ≥ 2 and Q′ is a proper prefix of Q. (We will see soon that

such a representation is unique.) In particular, if P ∼ Q and u is P -periodic,

then it is also Q-periodic. Therefore, for every cyclic period p, we have the

well-defined notion Per(p) of p-periodic words.

In order to go any further, we need the following simple but very funda-

mental Overlapping Lemmas (see, e.g., [1, §1.2]):

Lemma 2.1 (First Overlapping Lemma). Let P,Q be two periods, and let

u, v, w be reduced words such that

(3) uv P P ′P s, vw P QtQ′,

where s, t ≥ 0, P ′ is a proper suffix of P and Q′ is a proper prefix of Q. Assume

further that

|v| ≥ |P |+ |Q|.
Then P ∼ Q. Moreover, the two representations (3) are compatible in phase

in the following sense: if v P P ′′P s
′
, where P ′′ is a (possibly another) suffix of

P , P P P (3)P ′′, then Q P P ′′P (3).

For the sake of completeness, we include a sketch of its proof. It is based

on the following description of commuting elements in a free semi-group:

Lemma 2.2. If u and v are (reduced) words such that uv P vu, then there

exists another reduced word w such that u P wk, v P w` for some integers

k, ` > 0.

Proof. By induction on |u| + |v|. If u = Λ or v = Λ, the statement is

obvious. Otherwise, assume without loss of generality that |u| ≥ |v|. Then

uv P vu implies that v is a prefix of u; that is, u P vu′ for some reduced

u′. Thus, vu′v P v2u′, which implies u′v P vu′. Now we apply the inductive

assumption to the pair (u′, v). �

Proof of Lemma 2.1. As suggested by the second part of the statement,

let R ∼ P be a period such that v P Rs
′
P ′′ for some prefix P ′′ of R. From (3)

we also know that v P Qt
′
Q′′, where Q′′ is a prefix of Q. In this terminology,

the first part of Lemma 2.1 claims that R ∼ Q while the second part refines

this by stating that in fact R P Q.
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Assume without loss of generality that |R| ≥ |Q|. Then (since R is a

prefix of v) R P QhQ(3), where h ≥ 1 and Q P Q(3)Q(4). Since |v| ≥ |R|+ |Q|,
the first representation v P Rs

′
P ′′ implies that v begins with RQ(3)Q(4) while

v P Qt
′
Q′′ implies that v begins with RQ(4)Q(3). Hence Q(3)Q(4) P Q(4)Q(3),

and by Lemma 2.2 we have Q(3) P wk, Q(4) P w` for some reduced word w

and k, ` ≥ 0. Since Q is simple, we conclude that actually w P Q, and since

now we know that R P QhQ(3) P Qh+k and R is also simple, we infer that

R P Q. �

Applying Lemma 2.1 in the case when the wings u,w are empty, we find

that Per(p) ∩ Per(q) = ∅ for any two different cyclic periods p, q.4 The left

period of u ∈ Per(p) is defined as that particular P ∈ p for which u P
P sP ′ (s ≥ 2), and right periods are defined symmetrically. Then the sec-

ond part of Lemma 2.1 implies that left and right periods of periodic words

are uniquely defined. Also, if we know left and right periods of u ∈ Per(p),

and also know |u| within additive error C · |p|, then u itself is completely de-

termined up to (2C + 1) possibilities. (This simple remark will play a crucial

role in Section 5.)

Let us note another important implication of Lemma 2.1 that we will

be using extensively (and often implicitly). An occurrence u P LvR of a

p-periodic word is maximal if there does not exist any strictly larger occurrence5

u P L′v′R′ of a p-periodic word into the same word u.

Lemma 2.3. Let p be a period. Then two different maximal occurrences

of p-periodic words into the same word intersect in a word of length < 2|p|. In

particular, every occurrence of a p-periodic word has a unique extension to a

maximal occurrence of a p-periodic word into the same word.

Proof. Assume the contrary. Then by Lemma 2.1 the union of these two

occurrences would also be a p-periodic word, in contradiction to the assumption

of maximality. �

The First Overlapping Lemma basically says that occurrences of suffi-

ciently periodic words cannot overlap “accidentally,” and this is what one

needs for the problems where the periodical structure is given to us a pri-

ori (which is the case, e.g., for the Burnside problem). On the contrary, the

Second Overlapping Lemma tells us how to extract such structure from any

two occurrences of an arbitrary word, provided they are close enough. This

lemma lies in the heart of the research on equations in free groups cited in the

introduction.

4Note that |v| ≥ 2|P | and |v| ≥ 2|Q| imply |v| ≥ |P |+ |Q|.
5This means |L′| ≤ |L|, |R′| ≤ |R| and at least one of these inequalities is strict.
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Lemma 2.4 (Second Overlapping Lemma). Let u P LvR, u P L′vR′ be

two different occurrences of the same word v into u. Assume that

(4) ||L′| − |L|| ≤ 1

3
|v|.

Then v ∈ Per(p) for some cyclic period p and, moreover, these two occurrences

of v into u have the same maximal p-periodic extension.

Proof (sketch). Assume without loss of generality that |L′| ≥ |L| and let,

say, L′ P LP h for some period P . Applying the same inductive process as in

the proof of Lemma 2.2 and condition (4), we see that v P P sP ′, where s ≥ 3h

and P ′ is a prefix of P , which already implies the first part of the lemma.

The second part follows from Lemma 2.3 as the intersection P s−hP ′ of the two

occurrences of v into u has length ≥ 2|P |. �

If G is a group and A1, . . . , Ak ⊆ G, then

A1 · . . . ·Ak
def
= {b ∈ G | (∃(a1, . . . , ak) ∈ A1 × · · · ×Ak)(b = a1a2 · · · ak)} .

Throughout the paper we use the asymptotic notation O,Ω, ‹O,‹Ω quite

customary in Combinatorics and Theoretical Computer Science. Thus,6 f ≤
O(g) [f ≥ Ω(g)] means “there exists an absolute constant C > 0 [ε > 0]

such that f ≤ Cg [f ≥ Cε, respectively] for all possible values of parameters

assumed in f, g explicitly or implicitly.” Its “soft” version f ≤ ‹O(g) and

f ≥ ‹Ω(g) can be used when all parameters n1, . . . , nt to f, g are integer and

given explicitly (or, at least, are clear from the context). f(n1, . . . , nt) ≤‹O(g(n1, . . . , nt)) [f(n1, . . . , nt) ≥ ‹Ω(g(n1, . . . , nt))] means there exist absolute

constants C, k > 0 [ε, k > 0] such that ∀n1, . . . , nt(f(n1, . . . , nt) ≤ C · logk(n1 +

· · · + nt)g(n1, . . . , nt)) [∀n1, . . . , nt(f(n1, . . . , nt) ≥ εg(n1, . . . , nt)/ logk(n1 +

· · ·+nt)), respectively]. Thus, in this notation our main result looks as follows:

Theorem 2.5. Let A ⊆ Fm be a finite subset of the free group Fm with

at least two noncommuting elements. Then |A ·A ·A| ≥ ‹Ω(|A|2).

Remark 1. In one place of our proof (namely, Lemma 3.5) constants as-

sumed in the asymptotic notation do become dependent on the number of

generators m. But this dependence can be eliminated by considering any fixed

embedding φ : Fm −→ F2 and applying Theorem 2.5 to φ(A) (instead of

applying it to the original A ⊆ Fm).

In fact, our main Lemma 3.2 readily implies a more general result. Recall

that a group G is virtually free [virtually cyclic] if it contains a free [cyclic,

respectively] subgroup of finite index.

6Most people would have used the equality sign here, but we find the combination of this

notation with ≤,≥ particularly expressive and instructive.
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Theorem 2.6. Let G be any fixed virtually free group, and let A ⊆ G be

its finite subset such that the subgroup generated by A is not virtually cyclic.

Then |A ·A ·A| ≥ ‹Ω(|A|2).

In particular, it is well known that the modular group PSL2(Z) ≈ Z2 ∗Z3

is virtually free (e.g., because its commutant is torsion-free, therefore it is a

free subgroup (of index 6) by the Kurosh subgroup theorem [19, Th. IV.1.10]).

The same is true for SL2(Z) (every free subgroup of PSL2(Z) can be lifted to

SL2(Z)), as well as for GL2(Z). Therefore, Theorem 2.6 improves upon [7,

Th. 5.1] (which, under the same assumptions, stated the bound |A · A · A| ≥
|A|1+δ for SL2(Z) and for an unspecified constant δ > 0).

3. Reduction: combinatorial part

This and the next two sections are entirely devoted to the proof of Theo-

rems 2.5, 2.6. Our overall strategy is to analyze a potential counterexample by

exhibiting in it “sufficiently large” subsets with “sufficiently rich” structure.

(Accordingly, most of the proof is written in the distinct “top-down” style.)

As stated, Theorem 2.5 turns out to be very inconvenient for this purpose.

Our first task is to replace it with a stronger (and much clumsier) statement

specifically designed with several types of reduction in mind.

Definition 3.1. For a finite subset A ⊆ Fm, ∆(A) is the maximal possible

size of the intersection A ∩ C, where C runs over all cosets of maximal cyclic

subgroups7 in Fm.

Note that ∆ is monotone (∆(A) ≤ ∆(B) if A ⊆ B) and invariant under

left and right shifts (∆(A) = ∆(uA) = ∆(Au)).

Lemma 3.2 (Main Lemma). Let A,B,C ⊆ Fm be finite subsets, and as-

sume that

|A|, |C| ≤ O(|B|).

Then one of the following two is true:

(a) |A ·B · C| ≥ ‹Ω(|A| · |C|),
(b) ∆(B) ≥ Ω(|B|).

For the benefit of the reader who may feel uncomfortable with that much

of asymptotic notation, we provide a translation of this statement to the ε/δ-

language. (In all analogous places below, the translation is quite similar.)

7Since this class of subgroups is invariant under conjugacy, it does not matter whether we

consider left or right cosets in this definition.
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Lemma 3.3 (Main Lemma, ε/δ-version). For every D > 0, there exist

ε,K > 0 such that the following is true: For all finite A,B,C ⊆ Fm with

|A|, |C| ≤ D · |B|, either |A ·B ·C| ≥ ε · |A|·|C|
logK(|A|+|B|+|C|) or ∆(B) ≥ ε · |B| holds.

Proof of Theorems 2.5, 2.6 from Lemma 3.2. Since every virtually cyclic

subgroup of a free group is cyclic, Theorem 2.6 implies Theorem 2.5, and we

only have to prove the former.

Let G be a virtually free group, and let F ≤ G be a free subgroup of

finite index; without loss of generality, we can assume that F is normal. Let

A ⊆ G be finite; represent it as A =
.⋃
u∈U (uAu), where U is an arbitrary set

of representatives for cosets of F and Au ⊆ F . Choose that u ∈ U for which

|Au| is maximal (thus, |Au| ≥ Ω(|A|)), and note that (uAu)(uAu)(uAu) =

u2(u−1Auu)Au(uAuu
−1)u. We apply Lemma 3.2 with A := u−1Auu, B :=

Au, C := uAuu
−1. If conclusion (a) holds, we are done. If ∆(Au) ≥ Ω(|Au|) ≥

Ω(|A|), there exists a maximal cyclic subgroup C ≤ F and v ∈ F such that

|Au∩(vC)| ≥ Ω(|A|). Denoting w = uv, we conclude that |A∩(wC)| ≥ Ω(|A|).
Let N ≤ G be the normalizer of C.

If w 6∈ N , we are done: since C and (wCw−1) are different maximal

cyclic subgroups in F , they have empty intersection. Therefore, all products

c1c2 (c1, c2 ∈ (wC)) are pairwise distinct and |A·A·A| ≥ |A·A| ≥ |A∩(wC)|2 ≥
Ω(|A|2).

Assume w ∈ N . Since N∩F = C, C has a finite index in N and, therefore,

N is virtually cyclic. Since A does not generate a virtually cyclic subgroup,

A 6⊆ N ; fix arbitrarily a ∈ A \N . Now we are done by the same argument as

above, applied to the product (wC)a(wC). �

Remark 2. The statement of Lemma 3.2 allows the following three types

of reductions that we are going to use:

• Let u, v ∈ Fm, A0
def
= Au−1, B0

def
= uBv and C0

def
= v−1C. Then the

validity of Lemma 3.2 for the triple (A0, B0, C0) implies its validity for

the original (A,B,C).

• The same conclusion holds if A0 ⊆ A, B0 ⊆ B,C0 ⊆ C are arbitrary

subsets with the only restriction |A0| ≥ ‹Ω(|A|), |B0| ≥ Ω(|B|), |C0| ≥‹Ω(|C|).
• Assume that A = A1

.
∪ · · ·

.
∪ A`A and C = C1

.
∪ · · ·

.
∪ C`C are

decompositions of A and C into disjoint unions of subsets, and further

assume that all `A`C sets AiBCj (i ∈ [`A], j ∈ [`C ]) are pairwise

disjoint. Then the validity of Lemma 3.2 for all triples (Ai, B,Cj)

implies its validity for (A,B,C).

In the reduction of the last type we of course require the uniform depen-

dence of assumed constants (that is, ε,K on D in the notation of Lemma 3.3).
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After this preparatory work, we begin the real proof by getting rid of

cancellations.

Lemma 3.4. For any finite A ⊆ Fm, there exists u ∈ Fm such that for

any letter y ∈ {x1, x
−1
1 , . . . , xm, x

−1
m }, at least 1

4m |A| words in Au−1 do not

end with y.

Proof. Let us call u ∈ Fm populated if it is a suffix of at least 1
4|m| |A|

words in A. Λ is populated whereas sufficiently long words are not. Choose

the longest populated word u; we claim that it has the required property.

Indeed, every one of the words yu (y ∈ {x1, x
−1
1 , . . . , xm, x

−1
m }, u does

not begin with y−1) is not populated and therefore may appear as a suffix in

≤ 1
4m |A| words from A. Hence u is a suffix of at most 1

2 |A| words in A. (On

the other hand, it is a suffix of at least 1
4m |A| words since u itself is populated.)

It only remains to note that if u is not a suffix of a ∈ A, then au−1 ends with

the same letter as u−1, and if it is its suffix, then au−1 ends with a different

letter, unless it is empty. �

Lemma 3.5. For any finite A,B,C⊆Fm with |B|≥2, there exist u, v∈Fm
and A0⊆Au−1, B0⊆uBv, C0⊆ v−1C such that |A0|≥Ω(|A|), |B0|≥Ω(|B|),
|C0|≥Ω(|C|) and all products abc (a ∈ A0, b∈B0, c∈C0) are reduced.

Proof. Apply Lemma 3.4 to A, and apply its dual version to C; let u, v

be the resulting elements. Removing from uBv the empty word (if it is there),

we find a subset B0 ⊆ uBv with |B0| ≥ 1
4m2 (|B| − 1) such that all words in

B0 begin with the same letter y and end with the same letter z. Finally, let

A0 ⊆ Au−1 consist of all those words that do not end with y−1, and similarly

for C0 ⊆ v−1C. Since |A0| ≥ Ω(|A|) and |C0| ≥ Ω(|C|) hold by Lemma 3.4,

this completes the proof. �

From this point on, cancellations will never appear again, and the reader

may freely assume that we are working in a free semi-group. Note that if

abc P a′b′c′ is a collision in the product A · B · C, then a, a′ are comparable

in the prefix order and c, c′ are comparable in the suffix order. This suggests

that the most difficult case should be when the elements of A form a prefix

chain (defined as a set of words mutually comparable in the prefix order), and

C forms a suffix chain. The following lemma makes this intuition precise.

Definition 3.6. Two prefix [suffix] chains A1, A2 are incomparable if any

two a1 ∈ A1, a2 ∈ A2 are incomparable in the prefix [suffix, respectively] order.

In particular, incomparable prefix/suffix chains are necessarily disjoint.

Also, two prefix chains A1, A2 are incomparable if and only if their minimal

elements are incomparable.
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Lemma 3.7. Every finite set of words A contains a collection A1, . . . , A`
⊆ A of mutually incomparable prefix chains such that

(5) |A1 ∪ · · · ∪A`| =
∑̀
i=1

|Ai| ≥ ‹Ω(|A|),

and a similar statement holds for suffix chains.

Proof. Consider the restriction of the prefix order ≤ onto A. For a ∈ A,

let h(a) be its height defined as the maximal possible length of a prefix chain

having a as its minimal element (and entirely contained in A). All elements of

the same height h are mutually incomparable; let `h be their number. Then

|A| =
|A|∑
h=1

`h,

and also for every h there exist `h mutually incomparable prefix chains of

length h each. (For every element a of height h, include an arbitrarily chosen

prefix chain of height h with the minimal element a.)

Thus, if t is the maximal possible value of |A1 ∪ · · · ∪ A`| in (5), then

t ≥ h`h for each h, which implies

|A| ≤ t ·
|A|∑
h=1

1

h
≤ O(t log |A|)

and, therefore, t ≥ ‹Ω(|A|). �

Now, by Lemma 3.5 we may assume in Lemma 3.2 that all products

abc (a ∈ A, b ∈ B, c ∈ C) are reduced. By Lemma 3.7 we may also assume

that A [C] can be decomposed as a union of mutually incomparable prefix

[suffix, respectively] chains; say, A = A1
.
∪ · · ·

.
∪ A`A , C = C1

.
∪ · · ·

.
∪ C`C .

But if i 6= i′ ∈ [`A], then AiBC and Ai′BC are disjoint (since Ai and Ai′ are

incomparable in the prefix order), and similarly for j 6= j′ ∈ [`C ]. This means

that we can apply the reduction of the third type from Remark 2.

Summarizing what we have achieved so far, in Lemma 3.2 we can assume

without loss of generality that all products abc (a ∈ A, b ∈ B, c ∈ C) are reduced

and that, moreover, A is a prefix chain and C is a suffix chain.

4. Reduction: finding aperiodicity

At this point we bring into the analysis periodic words, and the rest of the

proof is split into two almost independent parts. Namely (thinking in terms

of a hypothetical counterexample to Lemma 3.2), we want to show that

• if |A ·B ·C| is small, there is enough “periodical structure” in A,B,C;

• if ∆(B) is small, then some large subsets A0, B0, C0 display enough

“aperiodicity” in them.
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These two conclusions will contradict each other. Of these two, the first task

is much more difficult, interesting and natural to start with. But for technical

reasons, we have to begin with the second.

Definition 4.1. Let a, b ∈ Fm, and assume that the product ab is reduced.

We say that ab is left regular if b is periodic, and a ends with P 2, where P is the

left period of b (equivalently, b ∈ Per(p) for some cyclic period p, and its maxi-

mal p-periodic extension in ab has length ≥ |b|+2|p|). In all other cases ab is left

singular. Right regular and right singular products bc are defined by symmetry.

Definition 4.2. Let P be a period, and let A ⊆ Fm be a finite set. We

define ∆`,P (A) as the maximal possible size of the intersection A ∩ C, where

C runs over all sets of the form¶
LP t | t ≥ 0

©
(L ∈ Fm, LP reduced).

∆r,P (A) is defined by symmetry.

Clearly, ∆`,P (A),∆r,P (A) ≤ ∆(A).

Lemma 4.3. Let A,B,C ⊆ Fm be finite sets, and assume that all products

abc (a ∈ A, b ∈ B, c ∈ C) are reduced. Then either

(6) ∆(B) ≥ Ω(|B|),

or there exist A0 ⊆ A, B0 ⊆ B, C0 ⊆ C with |A0| ≥ Ω(|A|), |B0| ≥
Ω(|B|), |C0| ≥ Ω(|C|) such that at least one of the following three is true:

(a) At least 1
2 |A0||B0| products ab (a ∈ A0, b ∈ B0) are left singular.

(b) At least 1
2 |B0||C0| products bc (b ∈ B0, c ∈ C0) are right singular.

(c) For every period P that is the left period of at least one periodic word

in B0, ∆`,P (A0) ≤ O(1), and the dual conclusion holds for right periods.

Proof. Either at least half of all words in B are aperiodic, or at least half

of them are periodic. In the first case both (a) and (b) hold trivially. Removing

from B all aperiodic words in the second case, we may assume without loss of

generality that all words in B are periodic.

Consider now any individual cyclic period p for which Bp
def
= B ∩ Per(p)

is nonempty. If there exists P ∈ p that appears as either the left period in

at least half of all words from Bp or the right period in at least half of them,

remove from Bp all words violating this. Repeating this procedure once more

if necessary, we will find B′p ⊆ Bp with |B′p| ≥ Ω(Bp) and such that one of the

following is true:

(a) Every period P ∈ p appears as the left period in ≤ 1
2 |B

′
p| words from B′p.

(b) Every period P ∈ p appears as the right period in ≤ 1
2 |B

′
p| words from B′p.

(c) All words in B′p have the same left and right periods.
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Let B′
def
=
⋃

pB
′
p. At the expense of decreasing |B′| by at most a factor of

three, we may assume that one and the same of these three alternatives holds

for every cyclic period p for which B′p is nonempty.

Alternatives (a) and (b) (along with Lemma 2.1) immediately apply the

corresponding conclusions in the statement of Lemma 4.3 (with A0 := A, B0 :=

B′, C0 := C) since then in (say) case (a), for every a ∈ A and every cyclic

period p, there would be at most ≤ 1
2 |B

′
p| words b ∈ B′p for which ab is left

regular. So, we are left with the case when for every p, all words in B′p have

the same left and right periods. Note that in this case B′p is a subset of the

coset
{
P ′P tP ′′ | t ∈ Z

}
of a cyclic subgroup and, therefore,

(7) |B′p| ≤ |∆(B)|.

Let {p1, . . . , pd} be the enumeration of all cyclic periods p for which B′p 6= ∅
in the order of nondecreasing length:

(8) |p1| ≤ |p2| ≤ · · · ≤ |pd|.

Choose the minimal ` for which
∑`
i=1 |B′pi | ≥

1
3 |B

′| (therefore,
∑`−1
i=1 |B′pi |

< 1
3 |B

′|). If
∑`
i=1 |B′pi | ≥

2
3 |B

′|, then |B′p` | ≥
1
3 |B

′|, and hence (7) implies (6).

Otherwise,
∑d
i=`+1 |B′pi | ≥

1
3 |B

′|, and we first try out the set
⋃d
i=`+1B

′
pi

as B0. If at least 1
2 |A||B0| products ab (a ∈ A, b ∈ B0) are left singular, or at

least 1
2 |B0||C| products bc (b ∈ B0, c ∈ C) are right singular, we are done.

Otherwise, there exist fixed b`, br ∈
⋃d
i=`+1B

′
pi such that for at least half

of all a ∈ A the product ab` is left regular, and for at least half of all c ∈ C,

brc is right regular. We remove from A and C all elements violating these

properties, and we let A0, C0 be the result of this removal. Set also

B0
def
=
⋃̀
i=1

Bpi .

We finally claim that A0, B0, C0 satisfy alternative (c) in Lemma 4.3 and, by

symmetry, it is sufficient to check this only on the left side.

Indeed, all words in A0 end with Q2, where Q is the left period of b` (and

hence Q ∈ pj for some j ≥ ` + 1). If a period P appears as the left period

of some word in B0, then P ∈ pi for some i ≤ `. In particular, P 6∼ Q and,

by (8),

(9) |P | ≤ |Q|.

According to Definition 4.2, consider any fixed word L such that LP is

reduced. If LP t ∈ A0, then LP t ends with Q2. The word Q2, however, is

not pi-periodic; therefore, due to (9), it cannot be a sub-word of P s for any s,

which means that P t is a suffix of Q2. Moreover, if t ≥ 2, then the maximal

pi-periodic extension of P t in LP t is a proper suffix of Q2 and, therefore, has

the same length as its maximal pi-periodic extension in Q2. In particular, this
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extension does not depend on t. This implies that there can be at most one

value t ≥ 2 for which LP t ends with Q2, which shows that ∆`,P (A0) ≤ 3 and

completes the proof of Lemma 4.3. �

To summarize, so far we have reduced Lemma 3.2 to its partial case de-

scribed as follows. (Alternative (b) in the statement of Lemma 3.2 has already

been used up in (6), and we do not need to carry it any longer.)

Lemma 4.4. Let A,B,C ⊆ Fm be finite sets such that

|A|, |C| ≤ O(|B|).
Assume that all products abc (a ∈ A, b ∈ B, c ∈ C) are reduced, that A is

a prefix chain and that C is a suffix chain. Moreover, assume that one of the

following three is true:

(a) At least 1
2 |A||B| products ab (a ∈ A, b ∈ B) are left singular.

(b) At least 1
2 |B||C| products bc (b ∈ B, c ∈ C) are right singular.

(c) For every period P that is the left period of at least one periodic word in

B, ∆`,P (A) ≤ O(1), and the symmetric conclusion holds for the right

periods.

Then |A ·B · C| ≥ ‹Ω(|A| · |C|).

5. Finding periodicity with collision numbers

In this section we prove Lemma 4.4, thereby completing the proof of our

main result. Fix A,B,C ⊆ Fm satisfying all the premises of Lemma 4.4.

Define T ⊆ A × B × C as follows. If one of the alternatives (a) or (b) holds,

T consists of those triplets (a, b, c) for which either ab is left singular or bc is

right singular. In the remaining case (c), we simply let T := A×B ×C. Note

that in any case

(10) |T | ≥ Ω(|A| · |B| · |C|).

We define the collision number cT (A,B,C) as

cT (A,B,C)
def
=
∣∣∣¶((a, b, c), (a′, b′, c′)) ∈ T 2

∣∣ abc P a′b′c′©∣∣∣ .
For u ∈ Fm, let

n(u)
def
= | {(a, b, c) ∈ T | abc P u} |.

Then by Cauchy-Schwartz and (10),

cT (A,B,C) =
∑

u∈A·B·C
n(u)2 ≥ 1

|A ·B · C|

( ∑
u∈A·B·C

n(u)

)2

(11)

=
|T |2

|A ·B · C|
≥ Ω

Ç
|A|2|B|2|C|2

|A ·B · C|

å
.
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Thus, in order to complete our proof, we only have to show that

(12) cT (A,B,C) ≤ ‹O(|A||B|2|C|).

Our next task is to set the stage for the Second Overlapping Lemma 2.4,

and for this, we need one more reduction (this time in terms of collision num-

bers). But now the reduction is slightly more subtle than those based on

Remark 2 seen in previous sections. For this reason, we prefer to change the

gears, and we first formulate the statement we are reducing to.

Lemma 5.1. Let A,B,C ⊆ Fm be finite sets such that

(13) |A|, |C| ≤ O(|B|).

Assume that all products abc (a ∈ A, b ∈ B, c ∈ C) are reduced, that A

is a prefix chain of even length and that C is a suffix chain of even length :

A = {a1, . . . , a2nA}, C = {c1, . . . , c2nC}, where a1 < a2 < · · · < a2nA and

c1 <
∗ c2 <

∗ · · · <∗ c2nC . Let T ⊆ A × B × C be such that either (A,B,C)

satisfies property (c) in the statement of Lemma 4.4, or for every (a, b, c) ∈ T ,

either ab is left singular or bc is right singular. Then

|{((ai, b, cj), (ai′ , b′, cj′)) ∈ T 2 | aibcj P ai′b′cj′ ,(14)

|{i, i′} ∩ {1, 2, . . . , nA}| = 1,

|{j, j′}| ∩ {1, 2, . . . , nC}| = 1}

≤ O(|A||B|2|C|).

Thus, the only difference in the conclusion from (12) is that we additionally

require that the “middle” prefix anA of a2nA separates i from i′, and the same

holds for j, j′.

Proof of (12) from Lemma 5.1. Let (A,B,C) satisfy the assumptions of

Lemma 4.4, and let T be defined as in the beginning of this section. Assume

for simplicity that |A| and |C| are powers of 2, and represent A and C as

in the statement of Lemma 5.1: A = {a1, . . . , anA}, C = {c1, . . . , cnC}, where

a1 < a2 < · · · < anA and c1 <
∗ c2 <

∗ · · · <∗ cnC . For d ≤ log2 nA, d
∗ ≤ log2 nC

and integers α, γ, let

Adα
def
=
{
ai ∈ A

∣∣∣ bi/2dc = α
}
,

Cd
∗
γ

def
=
{
cj ∈ C

∣∣∣ bj/2d∗c = γ
}
.

For any fixed values of d, d∗, α, γ, we can apply Lemma 5.1 to the triple

(Adα, B,C
d∗
γ ) letting T := T ∩ (Adα × B × Cd

∗
γ ). Summing up the right-hand
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sides of the resulting estimates (14), we get

O

Ñ∑
d,d∗

∑
α,γ

|Adα||B|2|Cd
∗
γ |

é
= O

Ñ∑
d,d∗
|A||B|2|C|

é
≤ ‹O(|A||B|2|C|),

as d, d∗ take on only logarithmically many values.

On the other hand, the sets in the left-hand sides of (14) give a partition

of all those tuples ((ai, b, cj), (ai′ , b
′, cj′)) ∈ T 2 for which aibcj P ai′b

′cj′ and

i 6= i′, j 6= j′. Namely, such a tuple is counted in that (Adα, B,C
d∗
γ ), where d

is the most significant bit in which binary representations of i and i′ differ, d∗

is defined in the same way from j, j′ and α = bi/2dc(= bi′/2dc), γ = bj/2d∗c.
Since there are at most 2|A||B|2|C| tuples ((ai, b, cj), (ai′ , b

′, cj′)) with

aibcj P ai′b′cj′ for which either i = i′ or j = j′, we are done. �

Now we prove Lemma 5.1, and at this point we have to break the symmetry

by assuming (without loss of generality) that

(15) |C| ≤ |A|.

For two words a, a′ comparable in the prefix order, we let δ(a, a′) denote

their difference. (That is, a P a′δ(a, a′) or a′ P aδ(a, a′), depending on which

of the two is longer.) Let P be the set of all those cyclic periods p for which

there exists an occurrence

(16) a2nA P LpupRp

of a p-periodical word up in a2nA that is “nontrivially cut” by anA in the

following sense:

(17) anA P Lpv, v is a prefix of up with |v| ≥ 2|p| and |δ(v, up)| ≥ 2|p|.

It follows from Lemma 2.3 that for any fixed p, maximal p-periodic extensions

of all such occurrences coincide, and we choose (16) to be this maximal (and

uniquely defined) occurrence.

Next, let Ap be the set of all ai ∈ A for which we, like in (17), still have

ai P Lpv, where v is a prefix of up with |v| ≥ 2|p| and |δ(v, up)| ≥ 2|p|, but

now we also additionally require that |δ(ai, anA)| ≥ 2|p|. This new condition

implies, in particular, that anA 6∈ Ap. In fact, it implies that for ai ∈ Ap, the

word δ(ai, anA) is p-periodic; therefore, Ap ∩ Aq = ∅ for every two different

cyclic periods p, q.

After this setup, we begin proving the bound (14). First we drop from

circulation the condition |{j, j′}∩{1, 2, . . . , nC}| = 1 and simplify the dual one
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by insisting that i ≤ nA < i′. That is, we will prove (14) in the form

|{((ai, b, cj), (ai′ , b′, cj′)) ∈ T 2 | aibcj P ai′b′cj′ ,(18)

i ≤ nA, i′ ≥ nA + 1}|

≤ O(|A||B|2|C|).

We do it by case analysis according to the structural properties of a tuple

((ai, b, cj), (ai′ , b
′, cj′)) contributing to the left-hand side. In every of the four

cases our strategy will be the same: we will show that four out of six elements

of the tuple ((ai, b, cj), (ai′ , b
′, cj′)) already determine it up to O(1) possibilities.

But the exact choice of these four entries will depend on the case.

Case 1: There is no cyclic period p such that {ai, ai′} ⊆ Ap.

Let us call such pairs (ai, ai′) singular. First we claim that every fixed

d ∈ Fm can be realized in the form δ(ai, ai′) for at most 12 singular pairs

(ai, ai′). Indeed, any such realization ai′ P aid defines the occurrence a2nA P
aidδ(ai′ , a2nA) of d into a2nA and, moreover, |anA |−|d| ≤ |ai| ≤ |anA |. Suppose

for the sake of contradiction that d possesses ≥ 13 realizations. Then, by the

pigeon-hole principle, we could choose five of them d = δ(ai1 , ai′1) = · · · =

δ(ai5 , ai′5) (i1 ≤ · · · ≤ i5) such that ||aiα | − |aiβ || ≤ |d|/3 for all α, β ∈ [5].

Therefore, we could apply Lemma 2.4 and conclude that d ∈ Per(p) for some

cyclic period p and, moreover, all five selected occurrences of d into a2nA would

be contained in the same maximal occurrence of a p-periodic word in a2nA .

Further, they would be compatible in phase (in the sense of Lemma 2.1); that

is, all ||aiα | − |aiβ || would be multiples of |p|. This would readily imply that

this maximal occurrence would necessarily be the occurrence (16) and that

{ai3 , ai′3} ⊆ Ap, a contradiction.

Now we only have to observe that aibcj P ai′b
′cj′ implies δ(ai, ai′) =

δ(bcj , b
′cj′); that is, b, cj , b

′, cj′ determine δ(ai, ai′). Therefore, they also deter-

mine ai, ai′ up to ≤ 12 possibilities, and hence the contribution of Case 1 to

(18) is estimated as O(|B|2|C|2), which is O(|A||B|2|C|) by (15).

Case 2: {ai, ai′} ⊆ Ap for some cyclic period p and |b| ≤ 2|p|.
In this case we claim that the tuple can be retrieved (again, up to O(1)

possibilities) from ai, cj , ai′ , b
′. Indeed, since ai, ai′ ∈ Ap, we have |δ(ai, ai′)| =

|δ(ai, anA)|+ |δ(ai′ , anA)| ≥ 4|p|. This implies that |ai′ |− |aib| ≥ 2|p| and hence

δ(aib, ai′) is p-periodic. Its left period is completely determined by cj (as

δ(aib, ai′) ≤ cj), and its right period is determined by ai′ (as δ(aib, ai′) ≤∗
ai′). Finally, since |b| ≤ 2|p|, we can estimate its length as |ai′ | − |ai| −
2|p| ≤ |δ(aib, ai′)| ≤ |ai′ | − |ai|. Thus, given ai, cj , ai′ , there are at most

three possibilities for δ(aib, ai′), and once we know it, we also know b and then

c′j = δ(aibcj , ai′b
′). Thus, Case 2 contributes at most O(|A|2|B||C|), which is

O(|A||B|2|C|) by (13).
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Case 3: {ai, ai′} ⊆ Ap for some cyclic period p, |b| ≥ 2|p| but either

b 6∈ Per(p) or b ∈ Per(p) and the product bcj is right singular.

This time the tuple is determined by b, ai′ , b
′, cj′ (as always, up to O(1)

possibilities). Indeed, from these four entries we know u = a′ib
′cj′ P aibcj , as

well as the occurrence

(19) u P anAδ(anA , ai′)(b
′cj′)

of the p-periodic word δ(anA , ai′) into it. The prefix v of b of length 2|p| is a

prefix of δ(ai, ai′) and thus p-periodic; let b P vw and R
def
= wcj . Now consider

its (yet unknown!) occurrence

(20) u P aivR

into u. These two occurrences of p-periodic words into u possess a com-

mon (also unknown) p-periodic extension u P aiδ(ai, ai′)(b
′cj′). Therefore,

by Lemma 2.2 the maximal p-periodic extension u P ãiv̂R′ of (20) is the same

as the maximal p-periodic extension of the known occurrence (19) and hence

is also determined by (ai′ , b
′, cj′). Further, if v̂1 is the maximal p-periodic ex-

tension of the prefix v in the word bcj , then it should have the same “right

wing” R′: bcj P v̂1R
′. The assumptions of Case 3 imply that |v̂1| (and hence

also |cj | since b and R′ are already known) is determined within accuracy 2|p|
by the word b only. Namely, it cannot exceed by more than 2|p| the length of

the maximal p-periodic extension of v in b. Therefore, |ai| and then δ(ai, anA)

are also determined within that accuracy. But the left and right periods of the

latter words are known (it is a suffix of anA and has v as its prefix), hence this

word (and then ai) is determined up to O(1) possibilities.

Case 4: {ai, ai′} ⊆ Ap for some cyclic period p, b ∈ Per(p) and the product

bcj is right regular.

In this final case we also claim that the information can be retrieved

from b, ai′ , b
′, cj′ (but for entirely different reasons). Namely, recalling the

definition (16), the word δ(Lp, ai)b is p-periodic and |δ(Lp, ai)| ≥ 2|p|. Hence,

the product aib is left regular. Since (ai, b, cj) ∈ T , this implies (recall the

statement of Lemma 5.1) that (A,B,C) must necessarily satisfy property (c) in

the statement of Lemma 4.4. In particular, ∆`,P (A) ≤ O(1), where P is the left

period of b. Let L′p be the prefix of Lpup in (16) with |Lp| ≤ |L′p| ≤ |Lp|+|p| and

such that the left period of δ(L′p, Lpup) is equal to P . Then ai must necessarily

have the form L′pP
t for some integer t. Now the condition ∆`,P (A) ≤ O(1)

again pinpoints it down to O(1) possibilities.

We have shown that every one of four logically possible cases contributes

at most O(|A||B|2|C|) to the left-hand side of (18). This completes the proof

of Lemma 5.1, (12), Lemmas 4.4, 3.2 and Theorems 2.5, 2.6.
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6. Statistical version of Plünnecke-Ruzsa inequalities

In this section G will be an abelian group. For its finite subsets A1, . . . , Ak,

define the collision number c(A1, . . . , Ak) as

c(A1, . . . , Ak)
def
= |{((a1, . . . , ak), (a

′
1, . . . , a

′
k)) ∈ (A1 × · · · ×Ak)2|

a1 + · · ·+ ak = a′1 + · · ·+ a′k}|.

These qualities were extensively used in additive combinatorics, mostly for the

case k = 2. In the previous section we saw their application (in the non-

abelian case) for k = 3. Here we observe how extremely natural and appealing

the Plünnecke-Ruzsa theory looks in this setting.

By “the setting” we mean the following. By Cauchy-Schwartz (cf. (11)),

c(A1, . . . , Ak) ≥
|A1|2 · · · |Ak|2

|A1 · . . . ·Ak|
,

so we have the lower bound

(21) |A1 · . . . ·Ak| ≥
|A1|2 · · · |Ak|2

c(A1, . . . , Ak)
.

Assuming we are willing to accept the right-hand side as a “good enough”

substitute for |A1 ·. . .·Ak|, we can infer Plünnecke-Ruzsa inequalities as follows.

Lemma 6.1.

c(B1, . . . , Bk, A,A) ≥ c(B1, . . . , Bk, A)2

|B1| · (|B2| · . . . · |Bk|)2
.

Proof. For ~b = (b1, . . . , bk) ∈ B1 × · · · × Bk, let n(~b) be the number of

tuples (~b′, a, a′) such that b1 + · · ·+ bk + a = b′1 + · · ·+ b′k + a′; thus,

c(B1, . . . , Bk, A) =
∑
~b

n(~b).

On the other hand, for any fixed ~b, every couple of tuples (~b(1), a1, a
′
1),

(~b(2), a2, a
′
2) contributing to n(~b) as

b1 + · · ·+ bk + a1 = b
(1)
1 + · · ·+ b

(1)
k + a′1,

b1 + · · ·+ bk + a2 = b
(2)
1 + · · ·+ b

(2)
k + a′2

also contributes to c(B1, . . . , Bk, A,A) as

b
(1)
1 + · · ·+ b

(1)
k + a′1 + a2 = b

(2)
1 + · · ·+ b

(2)
k + a′2 + a1.

Every such contribution is counted at most |B2| · . . . · |Bk| times (as this is an

upper bound on the number of tuples ~b for which b1 + · · · + bk takes on the
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prescribed value b
(1)
1 + · · ·+ b

(1)
k + a′1 − a1). This implies that

c(B1, . . . , Bk, A,A) ≥ 1

|B2| · . . . · |Bk|
·
∑
~b

n(~b)2

and makes our lemma the result of yet another application of Cauchy-Schwartz.

�

Lemma 6.2. c(A1, . . . , Ak) ≥ c(B,A1,...,Ak)
|B|2 .

Proof. Applying the union bound to all possible choices of b, b′,

c(B,A1, . . . , Ak) ≤ |B|2 ·max
d∈G

cd(A1, . . . , Ak),

where cd(A1, . . . , Ak) is the “shifted” version of c(A1, . . . , Ak):

cd(A1, . . . , Ak)
def
= |{((a1, . . . , ak), (a

′
1, . . . , a

′
k)) ∈ (A1 × · · · ×Ak)2|
a1 + · · ·+ ak + d = a′1 + · · ·+ a′k}|.

But

(22) c(A1, . . . , Ak) ≥ cd(A1, . . . , Ak)

is easy (and well known). Namely, if n(e) is the number of representations of

e ∈ G in the form a1 + · · ·+ ak, then

c(A1, . . . , Ak) =
∑
e

n(e)2,

cd(A1, . . . , Ak) =
∑
e

n(e)n(e+ d),

and since the vectors (n(e) | e ∈ G) , (n(e+ d) | e ∈ G) have the same `2 norm,

(22) follows by Cauchy-Schwartz. �

Theorem 6.3.

c(±A,±A, . . . ,±A︸ ︷︷ ︸
k times

) ≥ c(B,A)2k−1

|B|(2k−1+1)|A|2k−2k
.

Proof. c(A1, . . . , Ak) is clearly invariant under negating components, so

we may assume that all signs are actually plus signs. Applying Lemma 6.1 to

B1 := B, B2 := · · · := Bk := A, we find

c(B,A, . . . , A︸ ︷︷ ︸
k times

) ≥ 1

|B| · |A|2(k−2)
· c(B,A, . . . , A︸ ︷︷ ︸

k−1

) (k ≥ 2).

By induction on k,

c(B,A, . . . , A︸ ︷︷ ︸
k times

) ≥ c(B,A)2k−1

|B|(2k−1−1)|A|2k−2k
.

Applying Lemma 6.2 finishes the proof. �
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In order to interpret this result, recall that the standard doubling constant

KA,B given by

|A ·B| = KA,B|B|

in our framework corresponds, via (21), to

c(A,B) = εA,B|A|2|B| (εA,B

In this notation, Theorem 6.3 can be re-written as

c(±A, . . . ,±A︸ ︷︷ ︸
k times

) ≥ ε2k−1

A,B ·
|A|2k

|B|
,

which (again, via (21)) corresponds exactly to the “classical” conclusion | ±A
±A± · · · ±A| ≤ KO(1)

A,B |B|.
The material in this section can be readily generalized to convolutions of

discrete probability measures (replacing uniform distributions on A1, . . . , Ak).

Namely, the collision probability cp(µ) of a discrete probability measure µ is

defined as

cp(µ)
def
= P

[
a = a′] ,

where a,a′ are two random variables picked independently at random accord-

ing to µ. We also let

`∞(µ)
def
= max

a∈Sup(µ)
µ({a}).

(Thus, the min-entropy H∞(µ) is equal to − log2 `∞(µ).) If A is the support

of µ, then clearly

`∞(µ) ≥ cp(µ) ≥ 1

|A|
.

For probability measures µ1, . . . , µk on an abelian group G, we denote by

µ1 + · · ·+ µk their convolution, that is the measure corresponding to the ran-

dom variable a1 + · · ·+ ak, where a1, . . . ,ak are picked uniformly at random

according to the measures µ1, . . . , µk.

In this notation, the proof of Theorem 6.3 can be easily generalized to

give the inequality

1

`∞(η)
· cp(±µ± µ± · · · ± µ︸ ︷︷ ︸

k times

) ≥
Ç

1

`∞(η)
· cp(µ+ η)

å2k−1

for any two discrete probability measures µ, η on G.

A further generalization is apparently possible in the continuous setting

of Tao [24]. It is not clear, however, whether any interesting analogue of this

exists in the non-abelian case.
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Tul. Gos. Ped. Inst. Učen. Zap. Mat. Kaf. (1970), 242–252. MR 0393235.

[7] M.-C. Chang, Product theorems in SL2 and SL3, J. Inst. Math. Jussieu

7 (2008), 1–25. MR 2398145. Zbl 1167.20328. http://dx.doi.org/10.1017/

S1474748007000126.
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