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Geometric and homological properties of
affine Deligne-Lusztig varieties

By Xuhua He

Abstract

This paper studies affine Deligne-Lusztig varieties Xw̃(b) in the affine

flag variety of a quasi-split tamely ramified group. We describe the geo-

metric structure of Xw̃(b) for a minimal length element w̃ in the conjugacy

class of an extended affine Weyl group. We then provide a reduction method

that relates the structure of Xw̃(b) for arbitrary elements w̃ in the extended

affine Weyl group to those associated with minimal length elements. Based

on this reduction, we establish a connection between the dimension of affine

Deligne-Lusztig varieties and the degree of the class polynomial of affine

Hecke algebras. As a consequence, we prove a conjecture of Görtz, Haines,

Kottwitz and Reuman.

0. Introduction

0.1. This paper discusses some geometric and homological properties of

affine Deligne-Lusztig varieties in the affine flag variety of tamely ramified

groups.

To provide some context, we begin with (classical) Deligne-Lusztig vari-

eties. Let G be a connected reductive algebraic group over an algebraic closure

k of a finite field Fq, B be a Borel subgroup defined over Fq, and W be the

associated Weyl group. We have the Bruhat decomposition G = tw∈WBẇB,

where ẇ ∈ G is a representative of w ∈W .

Let σ be the Frobenius automorphism on G. Following [4], the (classical)

Deligne-Lusztig variety associated with w ∈ W is a locally closed subvariety

of the flag variety G/B defined by

Xw = {gB ∈ G/B; g−1σ(g) ∈ BẇB}.

We know that Xw is always nonempty and is a smooth variety of dimension

`(w).

The finite group Gσ acts on Xw and hence on its cohomology. Deligne and

Lusztig showed in [4] that every irreducible representation of Gσ can be realized
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as a direct summand of the (l-adic) cohomology with compact support of some

Deligne-Lusztig variety, with coefficients in a local system. In [25], Lusztig

used the cohomology to classify the irreducible representations of Gσ.

0.2. The term “affine Deligne-Lusztig varieties” was first introduced by

Rapoport in [27]. Here “affine” refers to the fact that the notion is defined in

terms of affine root systems, which arise from loop groups.

For simplicity, we restrict our attention to the split case here. Let G be a

connected reductive group split over Fq, and let L = k((ε)) be the field of the

Laurent series. The Frobenius automorphism σ on G induces an automorphism

on the loop group G(L), which we shall denote by the same symbol.

Let I be a σ-stable Iwahori subgroup of G(L). By definition, the affine

Deligne-Lusztig variety associated with w̃ in the extended affine Weyl group

W̃ ∼= I\G(L)/I and b ∈ G(L) is

Xw̃(b) = {gI ∈ G(L)/I; g−1bσ(g) ∈ I ˙̃wI},
where ˙̃w ∈ G(L) is a representative of w̃ ∈ W̃ .

Understanding the nonemptiness pattern and dimension of affine Deligne-

Lusztig varieties is fundamental in order to understand certain aspects of

Shimura varieties with Iwahori level structures. There are two important strat-

ifications on the special fiber of a Shimura variety: one is the Newton strati-

fication whose strata are indexed by specific σ-conjugacy classes [b] ⊆ G(L);

the other is the Kottwitz-Rapoport stratification whose strata are indexed by

specific elements w̃ of the extended affine Weyl group W̃ . There is a close re-

lation between the affine Deligne-Lusztig variety Xw̃(b) and the intersection of

the Newton stratum associated with [b] with the Kottwitz-Rapoport stratum

associated with w̃ (see [10] and [32]). Our joint work with Wedhorn [18] shows

that the affine Deligne-Lusztig variety is also fundamental to the study of the

reduction of Shimura varieties with parahoric level structures.

There is also an important connection between affine Deligne-Lusztig va-

rieties and the moduli spaces of p-divisible groups and their analogs in function

field case, the local G-shtukas; see [12].

0.3. The affine Deligne-Lusztig variety Xw̃(b) for an arbitrary w̃ ∈ W̃ and

b ∈ G(L) is very difficult to understand. One of the main goals of this paper

is to develop a reduction method for studying the geometric and homological

properties of Xw̃(b).

The reduction method is a combination of combinatorial, algorithmic,

geometric and representation-theoretic methods. To explain why and how the

method works, we first discuss the reason why the affine Deligne-Lusztig variety

is more complicated than its classical (finite) counterpart.

In the finite case, Lang’s theorem implies that G is a single σ-conjugacy

class. This is the reason why a Deligne-Lusztig variety depends only on the
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parameter w ∈W , with no need to choose an element b ∈ G. However, in the

affine setting, the analog of Lang’s theorem fails. Instead, an affine Deligne-

Lusztig variety depends on two parameters: an element w̃ in the extended

affine Weyl group and an element b (or its σ-conjugacy class) in the loop group.

Hence it is a challenging task even to describe when Xw̃(b) is nonempty .

0.4. To overcome this difficulty, we prove that Lang’s theorem holds “lo-

cally” for loop groups, using a reduction method.

We begin with the Iwahori-Bruhat decomposition G(L) = tw̃∈W̃ I ˙̃wI.

Then G(L) = ∪w̃∈W̃G(L) ·σ I ˙̃wI, where ·σ is the σ-twisted conjugation ac-

tion.

Our reduction strategy can be depicted as follows:

{G(L) ·σ I ˙̃wI, ∀w̃ ∈ W̃}
(1)

///o/o/o/o {G(L) ·σ I ˙̃wI, ∀w̃ ∈ W̃min}
(2)

ss s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3

{G(L) ·σ I ˙̃wI, ∀w̃ straight}
(3)

///o/o/o {G(L) ·σ ˙̃w,∀w̃ straight},

where W̃min is the set of elements in W̃ that are of minimal length in their

conjugacy classes.

In step (1), we apply a variation of “reduction method” à la Deligne and

Lusztig [4]. Our recent joint work with Nie [17] shows that minimal length

elements satisfy special properties that allow us to reduce arbitrary elements

to some minimal length elements.

An element w̃ in W̃ is called straight if `(w̃n) = n`(w̃) for all n ∈ N, and a

conjugacy class that contains a straight element is called a straight conjugacy

class. It was shown in [17] that a minimal length element differs from a straight

element by an element in a finite Coxeter group. Thus we may apply Lang’s

theorem and reduce the minimal length elements further to straight elements.

This is step (2).

Moreover, any straight element can be regarded as a basic element in

the extended affine Weyl group of some Levi subgroup of G. Thus, using the

P -alcove introduced in [8] and its generalization in [6], we can show that any

element in I ˙̃wI is σ-conjugate to ˙̃w for some straight w̃. This is step (3), which

completes the reduction.

Combining this with the disjointness result in Proposition 3.6, we obtain

a natural bijection between straight conjugacy classes of the extended affine

Weyl group W̃ and σ-conjugacy classes of the loop group G(L). This yields a

new proof of Kottwitz’s classification of σ-conjugacy classes in [20] and [21].
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0.5. A similar strategy can be applied to the study of affine Deligne-

Lusztig varieties, reducing the study of many geometric and homological prop-

erties of arbitrary affine Deligne-Lusztig varieties to those associated with min-

imal length elements.

Although the structure of arbitrary affine Deligne-Lusztig varieties is quite

complicated, the varieties associated with minimal length elements have a very

nice geometric structure. We prove this in Theorem 4.8, which generalizes one

of the main theorems in [16].

As a consequence, our reduction method works for the homology of the

affine Deligne-Lusztig varieties, and we prove in Section 5 that for a super-

straight element x ∈ W̃ , the action of the σ-centralizer Jẋ on the Borel-Moore

homology of the affine Deligne-Lusztig variety Xw̃(ẋ) factors through the ac-

tion of the centralizer of x in the extended affine Weyl group W̃ . The definition

of superstraight elements can be found in Section 5.2, which includes generic el-

ements in the cocharacter lattice of the maximal torus and superbasic element

for type A as special cases.

0.6. The emptiness/nonemptiness pattern and dimension formula for

affine Deligne-Lusztig varieties can be obtained if we can keep track of the

reduction step from an arbitrary element to a minimal length element. This is

accomplished via the class polynomials of affine Hecke algebras. In Section 6,

we prove the “dimension=degree” theorem, which provides a dictionary be-

tween affine Deligne-Lusztig varieties and affine Hecke algebras in the sense

that:

(1) The affine Deligne-Lusztig variety is nonempty if and only if certain

class polynomial of affine Hecke algebra is nonzero.

(2) The dimension of the affine Deligne-Lusztig variety Xw̃(b) is equal to
1
2`(w̃) minus the length of the Newton point of b plus a correction term

given by the degree of the corresponding class polynomials.

(3) In the split case, if b is superbasic, then the number of rational points

in the affine Deligne-Lusztig variety Xw̃(b) can be calculated through

the corresponding class polynomial (see Section 8).

As a consequence, we solve the emptiness/nonemptiness question for affine

Deligne-Lusztig varieties in the affine Grassmannian for tamely ramified groups

in Theorem 7.1, generalizing previous results of Rapoport-Richartz [28], Kott-

witz-Rapoport [23], Lucarelli [24] and Gashi [5] for unramified groups.

0.7. In Sections 9–12, we study Xw̃(b) for the case where b is basic and

w̃ is in the lowest two sided cell of W̃ , and we prove a main conjecture of

Görtz-Haines-Kottwitz-Reuman [8] and its generalization. This is achieved

by combining the “dimension=degree” theorem with the partial conjugation
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method developed in [13] and the dimension formula for affine Deligne-Lusztig

varieties in the affine Grassmannian in [7] and [31]. We also give an upper

bound for the dimension of Xw̃(b) for arbitrary w̃ and b.

1. Group-theoretic data

1.1. Let k be an algebraic closure of a finite field Fq. Let F = Fq((ε))
and L = k((ε)) be the fields of Laurent series. Let G be a connected reductive

group over F and splits over a tamely ramified extension of L. Since k is

algebraically closed, G is automatically quasi-split over L. In this paper, we

furthermore assume that the characteristic of k does not divide the order of

the fundamental group of the derived group π1(Gder).
1

Let S ⊆ G be a maximal L-split torus defined over F and T = ZG(S) be

its centralizer. Since G is quasi-split over L, T is a maximal torus.

Let σ be the Frobenius automorphism in Gal(L/F ), defined by σ(
∑
anε

n)

=
∑
aqnε

n. We also denote the induced automorphism on G(L) by σ.

We denote by A the apartment of GL corresponding to S. We fix a

σ-invariant alcove aC in A. We denote by I ⊆ G(L) the Iwahori subgroup

corresponding to aC over L and by S̃ the set of simple reflections at the walls

of aC .

1.2. Let N be the normalizer of T . By definition, the finite Weyl group

associated with S is

W = N(L)/T (L)

and the Iwahori-Weyl group associated with S is

W̃ = N(L)/T (L)1.

Here T (L)1 denotes the unique parahoric subgroup of T (L).

Let Γ be the absolute Galois group Gal(L̄/L) and P be the Γ-coinvariants

of X∗(T ). By [11], we may identify T (L)/T (L)1 with P and obtain the follow-

ing important short exact sequence:

(a) 0→ P → W̃ →W → 0.

By [11, Prop. 13], the short exact sequence splits and we obtain a semi-

direct product W̃ = P oW by choosing a special vertex in A. We may write

an element of W̃ as tµw for some µ ∈ P and w ∈W .

1.3. Let LG be the loop group associated with G. This is the ind-group

scheme over k that represents the functor R 7→ G(R((ε))) on the category of

1Under this assumption, the affine flag variety of G is reduced (see [26, Th. 0.2]).
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k-algebras. Let Fl = LG/I be the fppf quotient, which is represented by an

ind-scheme, ind-projective over k. We have the Iwahori-Bruhat decomposition

G(L) = tw̃∈W̃ I ˙̃wI, Fl(k) = tw̃∈W̃ I ˙̃wI/I.

Here ˙̃w is a representative in N(L) of the element w̃ ∈ W̃ .

Following [27], we define affine Deligne-Lusztig varieties as follows.

Definition 1.1. For any b ∈ G(L) and w̃ ∈ W̃ , the affine Deligne-Lusztig

variety attached to w̃ and b is the locally closed sub-ind scheme Xw̃(b) ⊆ Fl

with

Xw̃(b)(k) = {gI ∈ G(L)/I; g−1bσ(g) ∈ I ˙̃wI}.

It is a finite-dimensional k-scheme, locally of finite type over k.

For b ∈ G(L), define the σ-centralizer of b by

Jb = {g ∈ G(L); g−1bσ(g) = b}.

Then Jb acts on Xw̃(b) on the left for any w̃ ∈ W̃ .

1.4. From now on, we furthermore assume that G is an adjoint group and

quasi-split over F . As explained in [6, §2], questions on affine Deligne-Lusztig

varieties for any tamely ramified groups can be reduced to this case.

The action of σ on G(L) induces an automorphism on W̃ and a bijection

on S̃. We denote the corresponding maps by δ.

Moreover, we may choose a special vertex in the apartment A such that the

corresponding splitting of the short exact sequence Section 1.2(a) is preserved

by δ. The induced automorphism on W is also denoted by δ.

Let Φ be the set of (relative) roots of G over L with respect to S and Φa

the set of affine roots. For a ∈ Φ, we denote by Ua ⊆ G the corresponding

root subgroup and for α ∈ Φa, we denote by U ′α ⊆ G(L) the corresponding

root subgroup scheme over k. By [26, §9], any affine real root is of the form

a + m for a finite root a ∈ Φ and m ∈ Q and U ′α is one-dimensional for all

affine root α. Moreover, if 2a ∈ Φ, then m ∈ Z; if 1
2a ∈ Φ, then m ∈ 1

2 + Z.

We call a root a ∈ Φ a finite simple root if −a (in Φa) is a simple affine root

with respect to I. Our convention here is consistent with [8].

Let S ⊆ Φ be the set of simple roots. We identify S with the set of simple

reflections in W . Then S ⊆ S̃ is a δ-stable subset. Let Φ+ (resp. Φ−) be the

set of positive (resp. negative) roots of Φ.

1.5. Let G1 ⊆ G(L) be the subgroup generated by all parahoric sub-

groups. Set N1 = N(L)∩G1. By [3, Prop. 5.2.12], the quadruple (G1, I,N1, S̃)

is a a double Tits system with affine Weyl group

Wa = (N(L) ∩G1)/(N(L) ∩ I).
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We may regard Wa as the Iwahori-Weyl group of the simply connected

cover Gsc of the derived group Gder of G. We denote by Tsc ⊆ Gsc the maximal

torus giving by the choice of T . Then we have the semi-direct product

Wa = X∗(Tsc)Γ oW.

By [11], there exists a reduced root system Σ such that

Wa = Q∨(Σ) oW (Σ),

where Q∨(Σ) is the coroot lattice of Σ. In other words, we identify Q∨(Σ) with

X∗(Tsc)Γ and W (Σ) with W . We simply write Q for Q∨(Σ).

1.6. For any element w̃ ∈ W̃ , the length `(w̃) is the number of “affine

root hyperplanes” in A separating w̃(aC) from aC .

Let Ω be the subgroup of W̃ consisting of length 0 elements. Then Ω is

the stabilizer of the base alcove aC in W̃ . Let τ ∈ Ω. Then for any w,w′ ∈Wa,

we say that τw 6 τw′ if w 6 w′ for the Bruhat order on Wa.

For any J ⊆ S̃, let WJ be the subgroup of W̃ generated by sj for j ∈ J
and JW̃ (resp. W̃ J) be the set of minimal elements for the cosets WJ\W̃ (resp.

W̃/WJ). For J, J ′ ⊆ S̃, we simply write JW̃ J ′ for JW̃ ∩ W̃ J ′ . For x ∈ JW̃ J ′ ,

we write x(J ′) = J if xWJ ′x
−1 = WJ . If WJ is finite, then we denote by wJ0

its longest element in WJ . We simply write w0 for wS
0 .

For J ⊆ S, let ΦJ be the set of roots spanned by J . Let Φ+
J = ΦJ ∩ Φ+

and Φ−J = ΦJ ∩ Φ−. Let MJ ⊆ G be the subgroup generated by T and Ua for

a ∈ ΦJ . Then W̃J = P oWJ is the Iwahori-Weyl group of MJ .

1.7. Two elements w̃, w̃′ of W̃ are said to be δ-conjugate if w̃′ = x̃w̃δ(x̃)−1

for some x̃ ∈ W̃ . The relation of δ-conjugacy is an equivalence relation, and

the equivalence classes are said to be δ-conjugacy classes.

Let (P/Q)δ be the δ-coinvariants on P/Q. Let

κ : W̃ → W̃/Wa
∼= P/Q→ (P/Q)δ

be the natural projection. We call κ the Kottwitz map.

Let PQ = P ⊗Z Q and PQ/W the quotient of PQ by the natural action

of W . We may identify PQ/W with PQ,+, where

PQ,+ = {χ ∈ PQ;α(χ) > 0 for all α ∈ Φ+}.

Let P δQ,+ be the set of δ-invariant points in PQ,+.

Now we define a map from W̃ to P δQ,+ as follow. For each element w̃ =

tχw ∈ W̃ , there exists n ∈ N such that δn = 1 and wδ(w)δ2(w) · · · δn−1(w) = 1.

This is because the image of W o 〈δ〉 in Aut(W ) is a finite group. Then

w̃δ(w̃) · · · δn−1(w̃) = tλ for some λ ∈ P . Let νw̃ = λ/n ∈ PQ, and let ν̄w̃ be the

corresponding element in PQ,+. It is easy to see that νw̃ is independent of the

choice of n.



374 XUHUA HE

Let ν̄w̃ be the unique element in PQ,+ that lies in the W -orbit of νw̃. Since

tλ = w̃tδ(λ)w̃−1 = twδ(λ), ν̄w̃ ∈ P δQ,+. We call the map W̃ → P δQ,+, w̃ 7→ ν̄w̃ the

Newton map.

Define f : W̃ → P δQ,+ × (P/Q)δ by w̃ 7→ (ν̄w̃, κ(w̃)). It is the restriction

to W̃ of the map G(L)→ P δQ,+ × (P/Q)δ in [21, 4.13] and is constant on each

δ-conjugacy class of W̃ . We denote the image of the map f by B(W̃ , δ).

2. Some special properties of affine Weyl groups

In this section, we recollect some special properties on affine Weyl groups

established in joint work with Nie [17]. These properties will play a crucial

role in the rest of this paper.

2.1. For w̃, w̃′ ∈ W̃ and i ∈ S̃, we write w̃
si−→δ w̃

′ if w̃′ = siw̃sδ(i) and

`(w̃′) 6 `(w̃). We write w̃ →δ w̃
′ if there is a sequence w̃ = w̃0, w̃1, . . . , w̃n = w̃′

of elements in W̃ such that for any k, w̃k−1
si−→δ w̃k for some i ∈ S̃. We write

w̃ ≈δ w̃′ if w̃ →δ w̃
′ and w̃′ →δ w̃, and we write w̃≈̃δw̃′ if w̃ ≈δ τw̃′δ(τ)−1 for

some τ ∈ Ω. It is easy to see that w̃ ≈δ w̃′ if w̃ →δ w̃
′ and `(w̃) = `(w̃′).

We call w̃, w̃′ ∈ W̃ elementarily strongly δ-conjugate if `(w̃) = `(w̃′) and

there exists x̃ ∈ W̃ such that w̃′ = x̃w̃δ(x̃)−1 and `(x̃w̃) = `(x̃) + `(w̃) or

`(w̃δ(x̃)−1) = `(x̃) + `(w̃). We call w̃, w̃′ strongly δ-conjugate if there is a

sequence w̃ = w̃0, w̃1, . . . , w̃n = w̃′ such that for each i, w̃i−1 is elementar-

ily strongly δ-conjugate to w̃i. We write w̃∼̃δw̃′ if w̃ and w̃′ are strongly

δ-conjugate. Note that w̃≈̃δw̃′ implies that w̃∼̃δw̃′, but the converse does not

hold in general.

The following result is proved in [17, Th. 2.10] and is a key ingredient in

the reduction step (1) in Section 0.4.

Theorem 2.1. Let O be a δ-conjugacy class in W̃ and Omin be the set of

minimal length elements in O. Then

(1) For each element w̃ ∈ O, there exists w̃′ ∈ Omin such that w̃ →δ w̃
′.

(2) Let w̃, w̃′ ∈ Omin; then w̃∼̃δw̃′.

Remark. For any δ-conjugacy class O of W̃ , Omin is a a single equivalence

class for the relation ∼̃. However, in general, Omin is not a single equivalence

class for the relation ≈̃.

2.2. Let H̃ be the Hecke algebra associated with W̃ ; i.e., H̃ is the asso-

ciated A = Z[v, v−1]-algebra with basis Tw̃ for w̃ ∈ W̃ and multiplication is

given by

Tx̃Tỹ = Tx̃ỹ if l(x̃) + l(ỹ) = l(x̃ỹ),

(Ts − v)(Ts + v−1) = 0 for s ∈ S̃.
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Then T−1
s = Ts − (v− v−1) and Tw̃ is invertible in H for all w̃ ∈ W̃ . The map

Tw̃ 7→ Tδ(w̃) defines an A-algebra automorphism of H̃, which we still denote

by δ.

Let h, h′ ∈ H̃. We call [h, h′]δ = hh′−h′δ(h) the δ-commutator of h and h′.

Let [H̃, H̃]δ be the A-submodule of H̃ generated by all δ-commutators.

By Theorem 2.1, for any δ-conjugacy class O of W̃ and w̃, w̃′ ∈ Omin,

we have that Tw̃ ≡ Tw̃′ mod [H̃, H̃]δ. See [17, Lemma 5.1]. Now for any

δ-conjugacy class O, we fix a minimal length representative w̃O. Then the

image of Tw̃O
in H̃/[H̃, H̃]δ is independent of the choice of w̃O. It is proved in

[17, Th. 6.7] that

Theorem 2.2. The elements Tw̃O
form a A-basis of H̃/[H̃, H̃]δ , where O

runs over all the δ-conjugacy class of W̃ .

2.3. Now for any w̃ ∈ W̃ and a δ-conjugacy class O, there exists unique

fw̃,O ∈ A such that

Tw̃ ≡
∑
O

fw̃,OTw̃O
mod [H̃, H̃]δ.

By [17, Th. 5.3], fw̃,O is a polynomial in Z[v − v−1] with nonnegative

coefficient and can be constructed inductively as follows. If w̃ is a minimal

element in a δ-conjugacy class of W̃ , then we set

fw̃,O =

1 if w̃ ∈ O,

0 if w̃ /∈ O.

Now we assume that w̃ is not a minimal element in its δ-conjugacy class

and that for any w̃′ ∈ W̃ with `(w̃′) < `(w̃), fw̃,O is constructed. By Theo-

rem 2.1 there exists w̃1 ≈δ w̃ and i ∈ S̃ such that `(siw̃1sδ(i)) < `(w̃1) = `(w̃).

In this case, `(siw̃1) < `(w̃) and we define fw̃,O as

fw̃,O = (v − v−1)fsiw̃1,O + fsiw̃1sδ(i),O.

2.4. Let V = P ⊗ZR. As explained in [11], we may regard Σ as functions

on V . This gives a pairing 〈, 〉 between V and the root lattice of Σ. Let ρ be

the half sum of all positive roots in the root system Σ.

We call an element w̃ ∈ W̃ a δ-straight element if `(w̃) = 〈ν̄w̃, 2ρ〉. By [15,

Lemma 1.1], w̃ is δ-straight if and only if for any m ∈ N, `(w̃δ(w̃) · · · δm−1(w̃))

= m`(w̃). We call a δ-conjugacy class straight if it contains some straight

element. As we will see later, there is a natural bijection between the set of

straight δ-conjugacy classes of W̃ and the set of σ-conjugacy classes of loop

group.

We have the following results on straight elements and straight conjugacy

classes:
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(1) The map f : W̃ → P δQ,+ × (P/Q)δ induces a bijection from the set of

straight δ-conjugacy classes to B(W̃ , δ). See [17, Th. 3.3].

(2) Let O be a straight δ-conjugacy class of W̃ and w̃, w̃′ ∈ Omin. Then

w̃≈̃δw̃′. See [17, Th. 3.9].

The following result [17, Props. 2.4, 2.7] relates minimal length elements

with straight elements as needed in Section 0.4, step (2).

Theorem 2.3. Let O be a δ-conjugacy class of W̃ and w̃ ∈ O. Then there

exists w̃′ ∈ Omin such that

(1) w̃ →δ w̃
′.

(2) There exists J ⊆ S̃ with WJ finite, a straight element x ∈ W̃ with

x ∈ JW̃ δ(J) and xδ(J) = J and u ∈WJ such that w̃′ = ux.

Remark. In the setting of Theorem 2.3(2), we have that f(w̃) = f(w̃′) =

f(x). See [15, Prop. 1.2].

2.5. Let O be a δ-conjugacy class. Set νO = ν̄w̃ for some (or equivalently,

any) w̃ ∈ O and JO = {i ∈ S; 〈νO, αi〉 = 0}. The following description of

straight conjugacy classes [17, Prop. 3.2] will be used in step (3) of Section 0.4.

Proposition 2.4. Let O be a δ-conjugacy class of W̃ . Then O is straight

if and only if O contains a length 0 element in the Iwahori-Weyl group W̃J =

P oWJ for some J ⊆ S with δ(J) = J . In this case, there exists a length

0-element x in W̃JO and y ∈W JO such that νx = νO and yxδ(y)−1 ∈ Omin.

2.6. Any fiber of f : W̃ → B(W̃ , δ) is a union of δ-conjugacy classes. As

we will see later, the case that the fiber is a single δ-conjugacy class is of partic-

ular interest. We call such δ-conjugacy class superstraight. A minimal length

element in a superstraight δ-conjugacy class is called a δ-superstraight element.

Let w̃ ∈ Ω. Then the conjugation by w̃ gives a permutation on the set of

simple reflections S̃. We say that w̃ is δ-superbasic if each orbit of w̃ ◦ δ on S̃ is

a union of connected components of the corresponding Dynkin diagram of S̃.

By [17, §3.5], w̃ is a δ-superbasic element if and only if W̃ = Wm1
1 ×· · ·×Wml

l ,

where Wi is an affine Weyl group of type Ãni−1 and w̃ ◦ δ gives an order nimi

permutation on the set of simple reflections in Wmi
i .

The following description of superstraight conjugacy class is obtained in

[17, Prop. 3.4], which is analogous to Proposition 2.4.

Proposition 2.5. Let O be a δ-conjugacy class of W̃ . Then O is su-

perstraight if and only if there exists a δ-superbasic element x in W̃JO and

y ∈W JO such that νx = νO and yxδ(y)−1 ∈ Omin.

Corollary 2.6. Let O be a δ-straight conjugacy class of W̃ . If νO is

regular, then O is superstraight.
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2.7. In particular, let δ be the identity map and λ ∈ P+ be a regular

element. Let O = {twλ;w ∈ W} be the conjugacy class of tλ. Then νO = λ is

regular and O is superstraight. Since every element in O is of the same length,

tλ is a minimal length element in O and hence is a superstraight element.

3. σ-conjugacy classes

3.1. We consider σ-conjugation action on G(L), g ·σ g′ = gg′σ(g)−1. The

classification of σ-conjugacy classes is due to Kottwitz [20] and [21]. In order

to understand affine Deligne-Lusztig varieties, we also need some information

on the relation between σ-conjugacy classes and Iwahori-Bruhat cells I ˙̃wI. In

this section, we will study the subsets of the form

G(L) ·σ I ˙̃wI = {gg′σ(g)−1; g ∈ G(L), g′ ∈ I ˙̃wI}

for any w̃ ∈ W̃ . As a consequence, we obtain a new proof of Kottwitz’s

classification.

Lemma 3.1. Let w̃, w̃′ ∈ W̃ . (1) If w̃ →δ w̃
′, then

G(L) ·σ I ˙̃w′I ⊆ G(L) ·σ I ˙̃wI ⊆ G(L) ·σ I ˙̃w′I ∪ ∪x̃∈W̃ ,`(x̃)<`(w̃)G(L) ·σ I ˙̃xI.

(2) If w̃≈̃δw̃′, then

G(L) ·σ I ˙̃wI = G(L) ·σ I ˙̃w′I.

Proof. It suffices to consider the case where w̃′ = τw̃δ(τ)−1 for some

τ ∈ Ω or w̃
i−→δ w̃

′ for some i ∈ S̃. If w̃′ = τw̃τ−1, then I ˙̃w′I = τ̇ I ˙̃wIσ(τ̇)−1

and G(L) ·σ I ˙̃wI = G(L) ·σ I ˙̃w′I.

Now we consider the case where w̃′ = siw̃sδ(i) and `(w̃′) 6 `(w̃). By [4,

Lemma 1.6.4], we have that w̃ = w̃′ or siw̃ < w̃ or w̃sδ(i) < w̃. Now we prove

the case where siw̃ < w̃. The case w̃sδ(i) < w̃ can be proved in the same way.

Since siw̃ < w̃, then

G(L) ·σ I ˙̃wI = G(L) ·σ IṡiIṡi ˙̃wI = G(L) ·σ Iṡi ˙̃wσ(IṡiI) = G(L) ·σ Iṡi ˙̃wIṡδ(i)I.

Moreover,

IṡiẇIṡδ(i)I =

I ˙̃w′I if `(w̃′) = `(siw̃) + 1 = `(w̃),

Iṡi ˙̃wI t I ˙̃w′I if `(w̃′) = `(siw̃)− 1 = `(w̃)− 2.

In either case,

G(L) ·σ I ˙̃w′I ⊆ G(L) ·σ I ˙̃wI ⊆ G(L) ·σ I ˙̃w′I ∪ ∪x̃∈W̃ ,`(x̃)<`(w̃)G(L) ·σ I ˙̃xI.

Moreover, if w̃≈̃δw̃′, then `(w̃′) = `(w̃). In this case, G(L) ·σ I ˙̃wI = G(L) ·σ
I ˙̃w′I. �
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Lemma 3.2. Let J ⊆ S̃ with WJ finite and x ∈ JW̃ δ(J) with xδ(J) = J .

Then for any u ∈WJ , we have that

G(L) ·σ Iu̇ẋI = G(L) ·σ IẋI.

Proof. Let P be the standard parahoric subgroup corresponding to J and

U be its prounipotent radical. Let P̄ = P/U be the reductive quotient of P

and p 7→ p̄ the projection from P to P̄. By definition, p̄ 7→ ẋσ(p)ẋ−1 is a

Frobenius morphism on P̄. We denote it by σẋ. Hence by Lang’s theorem,

P̄ = {p̄−1ẋσ(p)ẋ−1; p ∈ P} and

Pẋ/σ(U) = ẋσ(P)/σ(U) = {p̄−1ẋσ(p); p ∈ P}.

Therefore, Pẋσ(P) = P·σ IẋI. Similarly, Pẋσ(P) = P·σ Iu̇ẋI. Thus P·σ Iu̇ẋI =

P ·σ IẋI and G(L) ·σ Iu̇ẋI = G(L) ·σ IẋI. �

3.2. We recall the notation of (J,w, δ)-alcoves in [6, 3.3], which general-

izes the notation of P -alcoves introduced in [8].

Definition 3.3. Let J ⊆ S with δ(J) = J and w ∈W . Let x ∈ W̃ . We say

x(aC) is a (J,w, δ)-alcove if

(1) w−1xδ(w) ∈ W̃J .

(2) For any a ∈ w(Φ+−Φ+
J ), Ua∩xI ⊆ Ua∩I, or equivalently, U−a∩xI ⊇

U−a ∩ I.

Following [8, Def. 13.1.1], for x ∈ W̃ , we say that x is σ-fundamental if

every element of IẋI is σ-conjugate under I to ẋ. The following result is proved

in [6, Th. 3.3.1, Prop. 3.4.3].

Theorem 3.4. Suppose J ⊆ S with δ(J) = J and w ∈ W , and suppose

x(aC) is a (J,w, δ)-alcove. Set IM = ẇMJ ∩ I . Then the map

φ : I × IM ẋσ(IM )→ IẋI

induced by (i,m) 7→ imσ(i)−1 is surjective. Moreover, if ẋσ(IM ) = IM , then x

is σ-fundamental.

Now we describe G(L) ·σ I ˙̃wI for minimal length element w̃.

Theorem 3.5. If w̃ ∈ W̃ is a minimal length element in its δ-conjugacy

class, then G(L) ·σ I ˙̃wI is the single σ-conjugacy class G(L) ·σ ˙̃w.

Proof. By Theorem 2.3, w̃ ≈δ ux for some J ⊆ S̃ with WJ finite, straight

element x ∈ W̃ and u ∈ WJ with x ∈ JW̃ δ(J) and xδ(J) = J . Then by

Lemma 3.1, G(L) ·σ I ˙̃wI = G(L) ·σ Iu̇ẋI. By Lemma 3.2, G(L) ·σ Iu̇ẋI =

G(L) ·σ IẋI.

Let O be the δ-conjugacy class of x. By Proposition 2.4, there exists

x1 ∈ Omin and y ∈W JO such that y−1x1δ(y) is a length 0 element in W̃JO and
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νy−1x1δ(y) = νO is dominant. Then x1(aC) is a (JO, y, δ)-alcove and ẋ1σ(IM ) =

IM , where IM = ẏMJO ∩ I. Hence every element in Iẋ1I is σ-conjugate under

I to x1.

By Section 2.4(2), x≈̃δx1. Now

G(L) ·σ I ˙̃wI = G(L) ·σ IẋI = G(L) ·σ Iẋ1I = G(L) ·σ ẋ1

is a single σ-conjugacy class. Since ˙̃w ∈ G(L)·σI ˙̃wI, G(L)·σI ˙̃wI=G(L)·σ ˙̃w. �

We also have the following disjointness result.

Proposition 3.6. Let w̃, w̃′ ∈ W̃ be minimal length elements in their

δ-conjugacy classes respectively. Then ˙̃w and ˙̃w′ are in the same σ-conjugacy

class of G(L) if and only if f(w̃) = f(w̃′).

Proof.By the proof of Theorem 3.5, there exist δ-straight elements x, x′∈W̃
with f(w̃) = f(x), f(w̃′) = f(x′), ˙̃w ∈ G(L) ·σ ẋ and ˙̃w′ ∈ G(L) ·σ ẋ′. If

f(w̃) = f(w̃′), then f(x) = f(x′) and by Section 2.4(1), x and x′ are in the

same δ-conjugacy class of W̃ . Therefore G(L) ·σ ẋ = G(L) ·σ ẋ′. Hence ˙̃w and
˙̃w′ are in the same σ-conjugacy class of G(L).

Now we prove the other direction. Notice that κ(G(L) ·σ ˙̃w) = κ(w̃) and

κ(G(L) ·σ ˙̃w′) = κ(w̃′). Thus if κ(w̃) 6= κ(w̃′), then G(L) ·σ ˙̃w ∩G(L) ·σ ˙̃w′ = ∅.
Now assume that κ(w̃) = κ(w̃′) and ν̄w̃ 6= ν̄w̃′ . Then ν̄x 6= ν̄x′ . If ˙̃w and

˙̃w′ are in the same σ-conjugacy class of G(L), then so are ẋ and ẋ′. We may

assume that ẋ = gẋ′σ(g)−1 for some g ∈ G(L), then for any m ∈ N,

ẋσ(ẋ) · · ·σm−1(ẋ) = gẋ′σ(ẋ′) · · ·σm−1(ẋ′)σn(g)−1.

There exists n ∈ N such that

δn = 1, xδ(x) · · · δn−1(x) = tµ and x′δ(x′) · · · δn−1(x′) = tµ
′

for some µ, µ′ ∈ P . Then µ = nνx and µ′ = nνx′ . Since ν̄x 6= ν̄x′ , µ /∈ W · µ′.
Assume that g ∈ IzI for some z ∈ W̃ . Then IεkµI ∩ IżIεkµ′Iż−1I 6= ∅ for all

k ∈ N.

Notice that IżIεkµ
′
Iż−1I ⊆ ∪ỹ,ỹ′6zIỹεkµ

′
( ˙̃y′)−1I. So tkµ = ỹtkµ

′
(ỹ′)−1

for some ỹ, ỹ′ 6 z. Assume that ỹ = ytχ and ỹ′ = y′tχ
′

with χ, χ′ ∈ X∗(T )

and y, y′ ∈ W . Then ỹtkµ
′
(ỹ′)−1 = ty(kµ′+χ−χ′)y(y′)−1. Hence y = y′ and

kµ′ + χ − χ′ = ky−1µ. By definition, `(tχ) 6 `(ỹ) + `(y) 6 `(z) + `(w0).

Similarly, `(tχ
′
) 6 `(z) + `(w0). Since µ /∈W · µ′, then `(tµ

′−y−1µ) > 1. Now

k 6 `(tk(µ′−y−1µ)) = `(tχ
′−χ) 6 `(tχ

′
) + `(tχ) 6 2`(z) + 2`(w0).

That is a contradiction. �

Now we obtain a new proof of Kottwitz’s classification of σ-conjugacy

classes on G(L).
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Theorem 3.7. For any straight δ-conjugacy class O of W̃ , we fix a min-

imal length representative w̃O. Then

G(L) = tOG(L) ·σ ˙̃wO,

where O runs over all the straight δ-conjugacy classes of W̃ .

Proof. By Proposition 3.6, ∪OG(L)·σ ˙̃wO is a disjoint union. Now we prove

that for any w̃ ∈ W̃ , I ˙̃wI ⊆ tOG(L) ·σ ˙̃wO. We argue by induction.

If w̃ is a minimal length element in its δ-conjugacy class, then the state-

ment follows from the proof of Theorem 3.5.

If w̃ is not a minimal length element in its δ-conjugacy class, then by

Theorem 2.1, there exists i ∈ S̃, w̃′, w̃′′ ∈ W̃ with w̃′ ≈δ w̃, `(w̃′′) = `(w̃′) − 2

and w̃′
si−→δ w̃

′′. By Lemma 3.1,

I ˙̃wI ⊆ G(L) ·σ I ˙̃w′I ⊆ G(L) ·σ Iṡi ˙̃w′I ∪G(L) ·σ I ˙̃w′′I.

Notice that `(siw̃
′), `(w̃′′) < `(w̃′) = `(w̃). Now the statement follows from

induction hypothesis on siw̃
′ and w̃′′. �

3.3. As a consequence of Theorem 3.7, any σ-conjugacy class of G(L)

contains a representative in W̃ . For split groups, this was first proved in

[8, §7] in a different way.

Moreover, the map f : W̃ → B(W̃ , δ) is in fact the restriction of a map

defined on G(L), b 7→ (ν̄b, κ(b)). We call ν̄b the (dominant) Newton vector of b.

4. Affine Deligne-Lusztig varieties

4.1. We first recall the definition and some properties on the (finite)

Deligne-Lusztig varieties. Let H be a connected reductive algebraic group

over Fq and F be the Frobenius morphism on H. We fix an F -stable maximal

torus T and a F -stable Borel subgroup B ⊃ T . Let W be the finite Weyl group

and S be the set of simple reflections determined by (B, T ). The morphism F

on G induces bijections on W and S, which we still denote by F .

Following [4, Def. 1.4], the Deligne-Lusztig varieties associated with w ∈
W is defined by

Xw = XH
w = {g ∈ G/B; g−1F (g) ∈ BwB}.

The finite group HF acts on Xw in a natural way. We denote by HF \Xw the

space of orbits.

It is known that Xw is smooth of dimension `(w). Moreover, we have the

following result on Deligne-Lusztig varieties associated with minimal length

elements, which is essentially contained in [16, 4.3].

Theorem 4.1. Let w ∈W be a minimal length element in its F -conjugacy

class. Then HF \Xw is quasi-isomorphic to the orbit space of an affine space

k`(w) by an action of a finite torus.
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The case where w is elliptic is in [16, 4.3(a)]. The general case is not

stated explicitly in [16]. However, it can be trivially reduced to the elliptic

case as follows.

Let J be the minimal F -stable subset of S such that w ∈WJ , and let MJ

be the standard Levi subgroup of H of type J . Then w is an elliptic element

in WJ , and the statement follows from the elliptic case by using the fact that

HF \XH
w
∼= MF

J \XMJ
w (see, e.g., [2, §2]).

Now we recall the “reduction” à la Deligne and Lusztig for affine Deligne-

Lusztig varieties (see [4, proof of Th. 1.6] and [9, Cor. 2.5.3]).

Proposition 4.2. Let x ∈ W̃ , and let s ∈ S̃ be a simple affine reflection.

(1) If `(sxδ(s)) = `(x), then there exists a universal homeomorphism Xx(b)

→ Xsxδ(s)(b).

(2) If `(sxδ(s)) = `(x) − 2, then Xx(b) can be written as a disjoint union

Xx(b) = X1 t X2, where X1 is closed and X2 is open, and such that

there exist morphisms X1 → Xsxδ(s)(b) and X2 → Xsx(b) that are com-

positions of a Zariski-locally trivial fiber bundle with one-dimensional

fibers and a universal homeomorphism.

It is easy to see that

Lemma 4.3. Let x̃ ∈ W̃ and τ ∈ Ω. Then Xx̃(b) is isomorphic to

Xτx̃δ(τ)−1(b).

As a consequence of Lemma 4.2 and Lemma 4.3, we have that

Corollary 4.4. Let w̃, w̃′ ∈ W̃ with w̃≈̃δw̃′. Then Xw̃(b) and Xw̃′(b)

are universally homeomorphic.

Next we show that straight elements are automatically σ-fundamental.

Proposition 4.5. Every δ-straight element x is σ-fundamental ; i.e., ev-

ery element of IẋI is σ-conjugate under I to ẋ.

Proof. Let O be the straight δ-conjugacy class of x. Then by the proof

of Theorem 3.5, there exists x′ ∈ Omin such that x′ is σ-fundamental. By

Section 2.4(2), x≈̃δx′. Now the proposition follows from the following lemmas.

Lemma 4.6. Let x ∈ W̃ and τ ∈ Ω. If x is σ-fundamental, then so is

τxδ(τ)−1.

Proof. Set x′=τxδ(τ)−1. Any element in Iẋ′I=Iτ̇ ẋσ(τ̇)−1I= τ̇ IẋIσ(τ̇)−1

is of the form τ̇ i1ẋi2σ(τ̇)−1 for some i1, i2 ∈ I. Since x is σ-fundamental, there

exists i ∈ I such that i1ẋi2 = iẋσ(i)−1. Thus

τ̇ i1ẋi2σ(τ̇)−1 = τ̇ iẋσ(i)−1σ(τ̇)−1 = (τ̇ iτ̇−1)τ̇ ẋσ(τ̇)−1(σ(τ̇)σ(i)−1σ(τ̇)−1)

= (τ̇ iτ̇−1)τ̇ ẋσ(τ̇)−1σ(τ̇ iτ̇−1)−1.
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So any element in Iẋ′I is σ-conjugate under I to τ̇ ẋσ(τ̇)−1. Hence x′ is

σ-fundamental. �

Lemma 4.7. Let x ∈ W̃ and s ∈ S̃ with `(sxδ(s)) = `(x). If x is σ-funda-

mental, then so is sxδ(s).

Proof. We prove the case that sx < x. The other cases can be proved in

the same way. Since x is σ-fundamental, the map I → IẋI, g 7→ gẋσ(g)−1 is

surjective. Notice that IẋI ∼= IṡI ×I IṡẋI. Thus the map

I × I → IṡI × IṡẋI, (g, g′) 7→ (gṡ(g′)−1, g′ṡẋσ(g)−1)

is also surjective.

The map IṡI × IṡẋI → IṡẋI × Iσ(ṡ)I, (h, h′) 7→ (h′, σ(h)) is surjective.

Hence the map

I × I → IṡẋI × Iσ(ṡ)I, (g, g′) 7→ (g′ṡẋσ(g)−1, σ(g)σ(ṡ)σ(g′)−1)

is also surjective.

The quotient of IṡẋI × Iσ(ṡ)I by the action of the first I is IṡẋI ×I
Iσ(ṡ)I ∼= Iṡẋσ(ṡ)I. Hence the map

I 7→ Iṡẋσ(ṡ)I, g′ 7→ g′ṡẋσ(ṡ)σ(g′)−1

is surjective. �

Now we prove the main result of this section, which generalizes Theo-

rem 4.1.

Theorem 4.8. Let w̃ ∈ W̃ be a minimal length element in its δ-conjugacy

class. Let b ∈ G(L) with f(w̃) = f(b). Then dimXw̃(b) = `(w̃)− 〈ν̄b, 2ρ〉 and

Jb\Xw̃(b) is in bijection with the orbit space of the affine space k`(w̃)−〈ν̄b,2ρ〉

under an action of a finite torus.

Remark. Here we use the convention that the dimension of an empty

variety is −∞.

Proof. By Theorem 2.3, w̃ ≈δ ux for some J ⊆ S̃ with WJ finite, straight

element x ∈ W̃ and u ∈ WJ with x ∈ JW̃ δ(J) and xδ(J) = J . By remark

of Theorem 2.3, f(w̃) = f(x) = f(b). Then ẋ and b are σ-conjugate and

`(x) = 〈ν̄b, 2ρ〉. Then Xw̃(ẋ) and Xw̃(b) are isomorphic and we have a natural

bijection Jẋ\Xw̃(ẋ) ∼= Jb\Xw̃(b). By Corollary 4.4, Xw̃(ẋ) and Xux(ẋ) are

universally homeomorphic.

Let P be the standard parahoric subgroup corresponding to J and U

be its prounipotent radical. Let g ∈ G(L) with g−1ẋσ(g) ∈ Iu̇ẋI. By the

proof of Lemma 3.2, there exists p ∈ P such that (gp)−1ẋσ(gp) ∈ IẋI. By

Proposition 4.5, there exists p′ ∈ I such that (gpp′)−1ẋσ(gpp′) = ẋ. Hence

g ∈ JẋP.
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Notice that JẋP is in bijection with the quotient space Jẋ ×Jẋ∩P P. Then

we have a natural bijection

Xux(ẋ) ∼= Jẋ ×Jẋ∩P X
P
ux(ẋ),

where XP
ux(ẋ) = {g ∈ P/I; g−1ẋσ(g) ∈ Iu̇ẋI}. In particular, Jb\Xw̃(b) ∼=

(Jẋ ∩ P)\XP
ux(ẋ).

Moreover, the projection Fl → LG/P sends Xux(ẋ) onto Jẋ/(Jẋ ∩ P)

and each fiber is isomorphic to XP
ux(ẋ). Hence dimXw̃(b) = dimXux(ẋ) =

dimXP
ux(ẋ).

Let σẋ be the Frobenius morphism on P̄ defined by p̄ 7→ ẋσ(p)ẋ−1. Notice

that Ī = I/U is a Borel subgroup of P̄. Therefore XP
ux(ẋ) is isomorphic to the

classical Deligne-Lusztig variety

X ′ = {p̄ ∈ P̄/Ī; p̄−1σẋ(p̄) ∈ Ī u̇Ī}/Ī

of P̄. The action of Jẋ∩P on XP
ux(ẋ) factors through an action of (Jẋ ∩P)U/U

∼= P̄σẋ . Hence we have a natural bijection (Jẋ ∩ P)\XP
ux(ẋ) ∼= P̄σẋ\X ′.

The map v 7→ vx sends a σẋ-conjugacy class in WJ into a δ-conjugacy

class in W̃ . Since ux is a minimal length element in its δ-conjugacy class, u is

a minimal length element in its σẋ-conjugacy class in WJ . Moreover, `(u) =

`(ux)−`(x) = `(w̃)−〈ν̄b, 2ρ〉. Now the theorem follows from Theorem 4.1. �

By the same argument, we have the following result.

Proposition 4.9. Let J ⊆ S̃ with WJ finite, x ∈ JW̃ δ(J) with xδ(J) = J

and u ∈WJ . Then for any b ∈ G(L),

dimXux(b) = dimXx(b) + `(u).

5. Homology of affine Deligne-Lusztig varieties

5.1. Notice that Xw̃(b) = lim
→
Xi for some closed subschemes X1 ⊆ X2 ⊆

· · · ⊆ Xw̃(b) of finite type. Let l be a prime not equal to the characteristic

of k. Then Hj
c (Xi, Q̄l) is defined for all j. Set

HBM
j (Xw̃(b), Q̄l) = lim

→
Hj
c (Xi, Q̄l)

∗.

Then HBM
j (Xw̃(b), Q̄l) is a smooth representation of Jb. Hence it is a semisim-

ple module for any open compact subgroup of Jb.
The following result can be proved along the lines of [4, Th. 1.6].

Lemma 5.1. Let b ∈ G(L) and K be an open compact subgroup of Jb. Let

w̃ ∈ W̃ , and let i ∈ S̃. Then

(1) If `(siw̃sδ(i)) = `(w̃), then for any j ∈ Z,

HBM
j (Xw̃(b), Q̄l) ∼= HBM

j (Xsiw̃sδ(i)(b), Q̄l)

as Jb-modules.
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(2) If `(siw̃sδ(i)) = `(w̃) − 2, then for any simple K-module M that is a

direct summand of ⊕jHBM
j (Xw̃(b), Q̄l), M is also a direct summand of

⊕jHBM
j (Xsiw̃sδ(i)(b), Q̄l)⊕⊕jHBM

j (Xsiw̃(b), Q̄l).

Now we can show the following “finiteness” result.

Theorem 5.2. Let b∈G(L) and K be an open compact subgroup of Jb.
Let M be a simple K-module. If M is a direct summand of

⊕w̃∈W̃ ⊕j H
BM
j (Xw̃(b), Q̄l),

then M is a direct summand of HBM
j (Xx̃(b), Q̄l) for some j ∈ Z and x̃ is a

minimal length element in its δ-conjugacy class and f(x̃)=f(b).

Remark. Given b, there are only finitely many x̃ satisfying the conditions

above.

Proof. Let w̃ ∈ W̃ be a minimal length element in its δ-conjugacy class

such that M is a direct summand of ⊕jHBM
j (Xw̃(b), Q̄l). By Theorem 2.1

and Lemma 5.1, w̃ is a minimal length element in its δ-conjugacy class. By

Theorem 3.5, G(L) ·σ I ˙̃wI is a single σ-conjugacy class. Hence Xw̃(b) 6= ∅ if

and only if b ∈ G(L) ·σ I ˙̃wI; i.e., f(b) = f(w̃). �

In the rest of this section, we discuss the special case where b is a super-

straight element. We first describe its centralizer in the affine Weyl group and

in the loop group.

Proposition 5.3. Let J ⊆ S and x be a δ-superbasic element in W̃J with

νx ∈ PQ,+ and J = {i ∈ S; 〈νx, αi〉 = 0}.
(1) Let ZW̃ ,δ(x) = {w ∈ W̃ ;w−1xδ(w) = x} be the δ-centralizer of x in W̃ .

Then ZW̃ ,δ(x) consists of length 0 elements y in W̃J with y−1xδ(y) = x.

(2) MJ(L) ∩ I ∩ Jẋ is a normal subgroup of Jẋ and

Jẋ/
Ä
MJ(L) ∩ I ∩ Jẋ

ä ∼= ZW̃ ,δ(x).

Proof. Let n ∈ N with δn = id and xδ(x) · · · δn−1(x) = tnνx . Hence

ẋσ(ẋ) · · ·σn−1(ẋ) ∈ εnνxT (L)1. Thus after replacing ẋ by h−1ẋσ(h) for a

suitable h ∈ T (L)1, we may assume that ẋσ(ẋ) · · ·σn−1(ẋ) = εnνx .

(1) Let w ∈ W̃ with w−1xδ(w) = x. Then

w−1tnνxw = w−1xδ(x) · · · δn−1(x)δn(w)

= (w−1xδ(w))δ(w−1xδ(w)) · · · δn−1(w−1xδ(w))

= xδ(x) · · · δn−1(x) = tnνx .

Thus wνx = νx and w ∈ W̃J .
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Let S̃′ be the set of simple reflection in W̃J . Let `J be the length function

and <J be the Bruhat order on W̃J . If `J(w) > 0, then there exists i ∈ S̃′ such

that siw <J w. Since the map W̃J → W̃J , y 7→ xδ(y)x−1 preserve the Bruhat

order, we have that

xsδ(i)x
−1w = xsδ(i)δ(w)x−1 <J xδ(w)x−1 = w.

Similarly, (Ad(x) ◦ δ)m(si)w <J w for all m ∈ Z. However, x is δ-superbasic

for W̃J , and thus S̃′ is a single orbit of Ad(x) ◦ δ. Hence sjw < w for all j ∈ S̃′.
This is impossible. Thus `J(w) = 0.

(2) Let g ∈ Jẋ. Then g−1ẋσ(g) = ẋ. We prove that

(a) g ∈MJ(L).

Similar to part (1), we have that g−1εnνxσn(g) = εnνx and ε−nνxgεnνx =

σn(g). Let U(L) be the subgroup generated by Ua for a ∈ Φ+ − Φ+
J . We may

assume that g = umẋm′u′ for u, u′ ∈ U(L), m,m′ ∈ MJ(L) and w ∈ JW J .

Since νx is neutral for MJ(L), we have that

(ε−nνxuεnνx)m(ε−nνxẇεnνx)m′(ε−nνxu′εnνx)=σn(u)σn(m)σn(ẇ)σn(m′)σn(u′).

Therefore m(ε−nνxẇεnνx)m′ = σn(mẇm′).

Let M ′(L) be the derived group of MJ(L) and Z be the center of MJ(L).

Then Z ⊆ T (L) and MJ(L) = M ′(L)Z. We may write m as m1z and m′ as

m′1z
′ for m,m′ ∈M ′ and z, z′ ∈ Z. Then we have that

z(ε−nνxẇεnνx)z′ = zεn(wνx−νx)(ẇz′ẇ−1)ẇ = σn(zẇz′).

Notice that zẇz′ẇ−1 ∈ T (L). Hence

εn(wνx−νx) = (zẇz′ẇ−1)−1σn(zẇz′ẇ−1)(σn(ẇ)ẇ−1).

We have that (zẇz′ẇ−1)−1σn(zẇz′ẇ−1), σn(ẇ)ẇ−1 ∈ T (L)1. Thus εn(wνx−νx)

∈ T (L)1 and wνx = νx. Therefore 〈νx, w−1α〉 = 〈wνx, α〉 = 〈νx, α〉 = 0 for

all α ∈ ΦJ . Therefore w−1α ∈ ΦJ for all α ∈ ΦJ and w = 1. Hence g = um

for some u ∈ U(L) and m ∈ MJ(L) and ε−nνxuεnνx = σn(u). Notice that

〈νx, α〉 > 0 for all α ∈ Φ+ − Φ+
J ; we must have that u = 1. Thus g ∈ MJ(L)

and (a) is proved.

Now set I ′ = I ∩MJ(L). Then we may assume that g ∈ I ′ẏI ′ for some

y ∈ W̃J . Since x is a length 0 element in W̃J , ẋI ′ = I ′ẋ. Thus g = ẋσ(g)ẋ−1 ∈
ẋI ′σ(ẏ)I ′ẋ−1 = I ′ẋσ(ẏ)ẋ−1I ′ and I ′ẏI ′ ∩ I ′ẋσ(ẏ)ẋ−1I ′ 6= ∅. Therefore y =

xδ(y)x−1 and y ∈ ZW̃ ,δ(x) is a length 0 element in W̃J . Thus g ∈ I ′ẏ and

g−1(Jẋ ∩ I ′)g ⊆ Jẋ ∩ g−1I ′g = Jẋ ∩ ẏ−1I ′ẏ = Jẋ ∩ I ′.

Hence Jẋ ∩ I ′ is a normal subgroup of Jẋ. Moreover, we have an injective

group homomorphism

π : Jẋ/(Jẋ ∩ I ′)→ ZW̃ ,δ(x).
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On the other hand, let y ∈ ZW̃ ,δ(x). Then y−1xδ(y) = x and ẏ−1ẋσ(ẏ) ∈
ẋT (L)1. Replacing ẏ by ẏh for a suitable element h ∈ T (L)1, we have that

ẏ−1ẋσ(ẏ) = ẋ. Hence the map π is surjective and Jẋ/(Jẋ ∩ I ′) ∼= ZW̃ ,δ(x). �

Theorem 5.4. Let x ∈ W̃ be a δ-superstraight element. Then for any

w̃ ∈ W̃ with Xw̃(ẋ) 6= ∅ and j ∈ Z, the action of Jẋ on HBM
j (Xw̃(b), Q̄l)

factors through an action of the δ-centralizer ZW̃ ,δ(x) of x.

Proof. By Proposition 2.5, there exists a superbasic element x1 ∈ W̃JO

and y ∈ W JO such that νx1 = νO and yx1δ(y)−1 ∈ Omin. After σ-conjugating

by a suitable element in G(L), we may assume that ẋ = ẏẋ1σ(ẏ)−1. Then

Jẋ = ẏJẋ1 ẏ−1.

By Proposition 5.3, MJO(L) ∩ I ∩ Jẋ1 is a normal subgroup of Jẋ1 and

(a) Jẋ1/(MJO(L) ∩ I ∩ Jẋ1) ∼= ZW̃ ,δ(x1).

Set K = ẏ(MJO(L)∩I)ẏ−1∩Jẋ. Then K is a normal subgroup of Jẋ = ẏJẋ1 ẏ−1

and Jẋ/K ∼= yZW̃ ,δ(x1)y−1 = ZW̃ ,δ(x).

By the proof of Theorem 4.8,

(b) Xx(ẋ) = JẋI/I ∼= Jẋ/(Jẋ ∩ I).

Since y ∈W JO , ẏ(MJO(L)∩I)ẏ−1 ⊆ I. Thus K acts trivially on Xx(ẋ) and also

trivially on HBM
j (Xx(ẋ), Q̄l) for any j ∈ Z. By Theorem 5.2 and Lemma 5.1(1),

any simple K-module that appears as a direct summand of HBM
j (Xw̃(ẋ), Q̄l) is

trivial. Hence K acts trivially on HBM
j (Xw̃(ẋ), Q̄l) and the action of Jẋ factor

through Zw̃,δ(x). �

5.2. Now we discuss some special cases. Let λ ∈ P δ be a regular element

and O be the δ-conjugacy class that contains tλ. Then νO = λ is regular.

By Section 2.7, O is superstraight. By Section 2.4, tλ is δ-superstraight since

`(tλ) = 〈λ, 2ρ〉. By Proposition 5.3, ZW̃ ,δ(t
λ) = {tµ;µ = δ(µ) ∈ P} ∼= P δ.

Therefore by Theorem 5.4, for any w̃ ∈ W̃ and j ∈ Z, the action of Jελ on

HBM
j (Xw̃(ελ), Q̄l) factors through an action of P δ. The special case for split

SL2 and SL3 was first obtained by Zbarsky [33] via direct calculation.

Let τ be a δ-superbasic element. Then τ is δ-superstraight and by Propo-

sition 5.3, ZW̃ ,δ(τ) = Ωδ. Therefore by Theorem 5.4, for any w̃ ∈ W̃ and j ∈ Z,

the action of Jτ̇ on HBM
j (Xw̃(τ̇), Q̄l) factors through an action of Ωδ.

6. Dimension “=” degree

In this section, we give a formula that relates the dimension of affine

Delgine-Lusztig varieties with the degree of the class polynomials.
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Theorem 6.1. Let b ∈ G(L) and w̃ ∈ W̃ . Then

dim(Xw̃(b)) = max
O

1

2
(`(w̃) + `(O) + deg(fw̃,O))− 〈ν̄b, 2ρ〉,

where O runs over δ-conjugacy class of W̃ with f(O) = f(b) and `(O) is the

length of any minimal length element in O.

Remark. Here we use the convention that the dimension of an empty

variety and the degree of a zero polynomial are both −∞.

Proof. We argue by induction on `(w̃). Let O′ be the δ-conjugacy class

that contains w̃. If w̃ ∈ O′min, then

1

2
(`(w̃) + `(O) + deg(fw̃,O)) =

`(w̃) if O = O′,

−∞ if O 6= O′.

Thus the right-hand side of (a) is −∞ if f(w̃) 6= f(b) and `(w̃)− 〈ν̄b, 2ρ〉
if f(w̃) = f(b). Now the statement follows from Theorem 4.8.

If w̃ /∈ O′min, by Theorem 2.1 there exists w̃1 ≈δ w̃ and i ∈ S̃ such that

`(siw̃1sδ(i)) < `(w̃1) = `(w̃). Then by Section 2.3,

fw̃,O = (v − v−1)fsiw̃1,O + fsiw̃1sδ(i),O.

Notice that the coefficients of class polynomials are nonnegative integers.

Thus the highest terms of (v − v−1)fsiw̃1,O and fsiw̃1sδ(i),O do not cancel with

each other. Hence deg(fw̃,O) = max{deg(fsiw̃1,O) + 1,deg(fsiw̃1sδ(i),O)} and

`(w̃) + deg(fw̃,O)

= max{`(siw̃1) + deg(fsiw̃1,O), `(siw̃1sδ(i)) + deg(fsiw̃1sδ(i),O)}+ 2.

By Lemma 4.2,

dim(Xw̃(b)) = dim(Xw̃1(b)) = max{dim(Xsiw̃1,δF (b)),dim(Xsiw̃1sδ(i)(b))}+ 1.

Now the statement follows from induction hypothesis. �

6.1. This is a key part of this paper. On one hand, it provides both the-

oretic and practical way to determine the dimension of affine Deligne-Lusztig

varieties. On the other hand, it shows that the dimension and nonempti-

ness pattern of affine Deligne-Lusztig varieties Xw̃(b) only depend on the data

(W̃ , δ, w̃, f(b)) and thus are independent of the choice of G.

Now we construct another group (split over L) with the same data (W̃ , δ)

as follows. Recall that G is an adjoint group. Let H be a connected semisim-

ple group of adjoint type over k with the root system Σ. The Iwahori-Weyl

group of H(L) is just W̃ . The standard Frobenius automorphism on H in-

duces an automorphism on H(L), which we denote by σ0. The corresponding

automorphism on W̃ is just the identity map.
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If δ is not identity, then δ induces a nontrivial diagram automorphism on

the (finite) Dynkin diagram of H. Since H is adjoint, such automorphism can

be lifted to an automorphism (of algebraic groups) on H. We denote it by τ .

The automorphism τ ◦σ0 on H(L) induces the desired automorphism δ on W̃ .

The question on the dimension and nonemptiness of affine Deligne-Lusztig

varieties for G can be reduced to the same question for the group H(L)τ◦σ0 . In

other words, for the dimension/nonemptiness pattern of affine Deligne-Lusztig

varieties, it suffices to consider the case where G is split over L.

Now we list some easy consequences of Theorem 6.1.

Corollary 6.2. Let b ∈ G(L) and w̃ ∈ W̃ . Then Xw̃(b) 6= ∅ if and only

if fw̃,O 6= 0 for some δ-conjugacy class O of W̃ with f(O) = f(b).

Corollary 6.3. Let O be a superstraight δ-conjugacy class in W̃ , and

let x ∈ Omin be a δ-superstraight element. Then for any w̃ ∈ W̃ ,

dim(Xw̃(ẋ)) =
1

2
(`(w̃) + deg(fw̃,O))− 〈νO, ρ〉.

In particular, Xw̃(ẋ) 6= ∅ if and only if fw̃,O 6= 0.

6.2. By Theorem 6.1 and its consequences, we obtain all the informa-

tion on the emptiness/nonemptiness and dimension formula of affine Deligne-

Lusztig varieties if the degree of the class polynomials are known. The lat-

ter problem requires a thorough understanding of trace formula of all finite-

dimensional representations of affine Hecke algebras and thus computing class

polynomials is quite hard in general and not known yet.

However, at present, Theorem 6.1 is still quite useful in the study of affine

Deligne-Lusztig varieties. It implies that the emptiness/nonemptinss and di-

mension formula of affine Deligne-Lusztig varieties only rely on the reduction

method. Such an observation will play a key role in the proof of the empti-

ness/nonemptiness pattern of affine Deligne-Lusztig varieties for basic b, which

will be discussed in [6].

6.3. One can show that the reduction method also works in the p-adic

case and the p-adic variant of Xw̃(b) (for b ∈ W̃ ) is nonempty if and only if

fw̃,O 6= 0 for some δ-conjugacy class O of W̃ with f(O) = f(b).

There is no known good notion of dimension for the p-adic variant of affine

Deligne-Lusztig varieties. However, one may hope that once it is established,

then the dimension of Xw̃(b) should agree in the p-adic and function field case,

and thus the “dimension=degree” theorem remains valid for p-adic case.

7. Mazur’s inequality and its converse

7.1. In this section, we discuss some application of Theorem 6.1 to the

hyperspecial case. Let G be the smooth affine group scheme associated with the
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special vertex of the Bruhat-Tits building of G, and let L+G be the infinite-

dimensional affine group scheme defined by L+G(R) = G(R[[ε]]). The fpqc

quotient Gr = LG/L+G is called the (twisted) affine Grassmannian. We have

the Cartan decomposition (see [29]):

G(L) = tµ∈P+L
+G(k)εµL+G(k),

Gr(k) = tµ∈P+L
+G(k)εµL+G(k)/L+G(k).

The affine Deligne-Lusztig variety in the affine Grassmannian associated

with b ∈ G(L) and µ ∈ P+ is the locally closed sub-ind scheme Xµ(b) ⊆ Gr

with

Xµ(b)(k) = {g ∈ G(L); g−1bσ(g) ∈ L+G(k)εµL+G(k)}/L+G(k) ⊆ Gr(k).2

7.2. Let J ⊆ S with δ(J) = J . Let XJ be the quotient of P by the

sublattice of Q generated by the simple coroots in J . The action of δ extends

in a natural way to XJ . Let YJ = XJ/(1 − δ)XJ be the coinvariants of this

action and Y +
J be the image of P+ in YJ .

Following [5], we define a partial order�J on Y +
J as follows. For µ, µ′ ∈ YJ ,

we write µ �J µ′ if µ′ − µ is a nonnegative integral linear combination of the

image in YJ of the simple coroots in S− J .

Now we have the following result.

Theorem 7.1. Let J ⊆ S with δ(J) = J . Let µ ∈ P+ and b ∈ MJ(L)

be a basic element such that κMJ
(b) ∈ Y +

J . Then Xµ(b) 6= ∅ if and only if

κMJ
(b) �J µ.

Remark. The “only if” side was proved by Rapoport and Richartz in [28],

which is the group-theoretic generalization of Mazur’s inequality. The “if” side

was conjectured by Kottwitz and Rapoport and proved for type A and C in

[23]. It was then proved by Lucarelli [24] for classical split groups and by Gashi

[5] for unramified cases.

Proof. Since L+G(k)tµL+G(k) = tw̃∈WtµW I ˙̃wI, Xµ(b) 6= ∅ if and only if

Xw̃(b) 6= ∅ for some w̃ ∈ WtµW . Let C be the set of δ-conjugacy classes O in

W̃ with f(O) = f(b). Then C only depends on κMJ
(b). Thus by Corollary 6.2,

(a) Xµ(b) 6= ∅ if and only if fw̃,O 6= 0 for some w̃ ∈WtµW and O ∈ C.

The latter one only depends on the combinational data (W̃ , δ, µ, J, κMJ
(b)) and

is independent of the loop group G.

To the pair (W̃ , δ), we may associate a quasi-split unramified group H.

By [5, Th. 5.1], the statement holds for H. Thus by (a), we have that

2Here we distinguish between the element µ ∈ P and the element tµ ∈ W̃ . In particular,

Xµ(b) is a sub-ind scheme of the affine Grassmannian and Xtµ(b) is a sub-ind scheme of the

affine flag variety.
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(b) κMJ
(b) �J µ if and only if fw̃,O 6= 0 for some w̃ ∈WtµW and O ∈ C.

The theorem then follows from (a) and (b). �

8. Superbasic elements

For b ∈ G(L), if Xw̃(b) is nonempty, then usually it has infinitely many

irreducible components. However, for superbasic elements, the affine Deligne-

Lusztig variety is much nicer.

Proposition 8.1. Assume that G is semisimple and x ∈ W̃ is a δ-super-

basic element. Then for any w̃ ∈ W̃ , Xw̃(ẋ) has only finitely many irreducible

components.

Proof. We argue by induction on `(w̃). Let O be the δ-conjugacy class con-

taining w̃. If w̃∈Omin, then by Theorem 3.5 and Proposition 3.6, Xw̃(ẋ) 6=∅ if

and only if f(w̃) = f(x). Since x is δ-superbasic, we have that w̃ is δ-conjugate

to x. By the proof of Theorem 5.4, Xw̃(ẋ) ∼= Xw̃( ˙̃w) can be identified with a

subset of Ω. Hence Xw̃(ẋ) is a finite set.

If w̃ /∈ Omin, then by Theorem 2.1 there exists w̃1 ≈δ w̃ and i ∈ S̃ such

that `(siw̃1sδ(i)) < `(w̃1) = `(w̃). By induction hypothesis Xsiw̃1sδ(i)(ẋ) and

Xsiw̃1(ẋ) both have finitely many irreducible components. Therefore by Propo-

sition 4.2, Xw̃(ẋ) is universal homeomorphic to Xw̃1(ẋ) and has only finitely

many irreducible components. �

Corollary 8.2. Assume that G is semisimple and x ∈ W̃ is a δ-super-

basic element. Then for any µ ∈ P+, Xµ(ẋ) has only finitely many irreducible

components.

Remark. The split case was first proved by Viehmann [31] in a different

way.

Proof. Let π : Fl→ Gr be the projection. Then

π−1Xµ(ẋ) = tw̃∈WtµWXw̃(ẋ)

is a finite union. Since eachXw̃(ẋ) has only finite many irreducible components,

π−1Xµ(ẋ) has only finitely many irreducible components and so is Xµ(ẋ). �

8.1. Since for superbasic element b, Xw̃(b) contains only finitely many

irreducible components, the number of rational points is finite. Now we show

that for split groups, there is a simple formula for this number in terms of class

polynomials.

Proposition 8.3. Assume that G = PGLn is split over F = Fq((ε)) and

x is a superbasic element in W̃ . Then for any w̃ ∈ W̃ ,

]Xw̃(ẋ)(Fq) = nq
`(w̃)
2 fw̃,O |v=

√
q,

where O is the conjugacy class of W̃ that contains x.
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Proof. We argue by induction on `(w̃). Let O′ be the δ-conjugacy class

that contains w̃. If w̃ ∈ O′min, then O′ = O and w̃ is conjugate to x. There-

fore, ]Xw̃(ẋ)(Fq) = ]Xx(ẋ)(Fq). By equalities (a) and (b) in the proof of

Theorem 5.4,

Xx(ẋ)(Fq) ∼= Jẋ/(Jẋ ∩ I) ∼= ZW̃ (x).

By the third paragraph of Section 5.2, ZW̃ (x) = Ω. Hence ]Xw̃(ẋ) = n.

If w̃ /∈ O′min, by Theorem 2.1 there exist w̃1 ≈ w̃ and i ∈ S̃ such that

`(siw̃1si) < `(w̃1) = `(w̃). By the proof of [4, Th. 1.6],

]Xw̃(ẋ)(Fq) = ]Xw̃1(ẋ)(Fq) = (q − 1)]Xsiw̃1(ẋ)(Fq) + q]Xsiw̃1si(ẋ)(Fq).

Hence by inductive hypothesis,

]Xw̃(ẋ)(Fq) = (q − 1)]Xsiw̃1(ẋ)(Fq) + q]Xsiw̃1si(ẋ)(Fq)

= (q − 1)nq
`(w̃)−1

2 fsiw̃1,O |v=
√
q +qnq

`(w̃)−2
2 fsiw̃1si,O |v=

√
q

= nq
`(w̃)
2

Ä
(
√
q −√q−1)fsiw̃1,O |v=

√
q +fsiw̃1si,O |v=

√
q

ä
= nq

`(w̃)
2 fw̃,O |v=

√
q . �

9. Reduction method: via partial conjugation

9.1. In this section, we investigate the reduction method via “partial

conjugation” introduced in [13] and use it to compare the dimension of Xw̃(b)

for various w̃ in the same W ×W -coset of W̃ .

Notice that any W ×W -coset of W̃ contains a unique maximal element

and this element is of the form w0t
µ for some µ ∈ P+. An element in this

double coset is of the form xtµy for x ∈W and y ∈ I(µ)W . Here I(µ) = {i ∈ S;

〈µ, αi〉 = 0}.
The main result of this section is

Theorem 9.1. Let µ ∈ P+, x ∈ W and y ∈ I(µ)W . Then for any b ∈
G(L),

dimXxtµy(b) 6 dimXw0tµ(b)− `(w0) + `(x).

In particular, if Xxtµy(b) 6= ∅, then Xw0tµ(b) 6= ∅.

In the rest of this section, we will prove this theorem. The proof is rather

technical and relies heavily on a detailed analysis of partial conjugation.

9.2. We consider the “partial conjugation” action of W on W̃ defined by

w ·δ w′ = ww′δ(w)−1 for w ∈W and w′ ∈ W̃ .

For x ∈ SW̃ , set

I(x) = max{J ⊆ S; Ad(x)δ(J) = J}.

This is well defined as Ad(x)δ(J1∪J2) = J1∪J2 if Ad(x)δ(Ji) = Ji for i = 1, 2.
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By [13, Cor. 2.6], we have that

W̃ = tx∈SW̃W ·δ (WI(x)x) = tx∈SW̃W ·δ (xWδ(I(x))).

Moreover, we have the following result (see [13, Prop. 3.4]).

Theorem 9.2. For any w̃ ∈ W̃ , there exists x ∈ SW̃ and u ∈WI(x) such

that

w̃
i1−→δ · · ·

ik−→δ ux,

where i1, . . . , ik ∈ S.

Now we apply this theorem to the affine Deligne-Lusztig varieties.

Lemma 9.3. Let x, y ∈W and µ ∈ P+ with y ∈ I(µ)W . Then there exists

w′ ∈ I(µ)W such that

dimXxtµy(b) 6 dimXtµw′(b) + `(x).

Proof. We prove the lemma by induction on `(x). Suppose the statement

is true for all x′ with `(x′) < `(x) but fails for x. Let x = si1 · · · sik be a

reduced expression of x. There are four different cases

(1) ysδ(i1) < y. In this case, ysδ(i1) ∈ I(µ)W .

(2) ysδ(i1) > y and ysδ(i1) ∈ I(µ)W .

(3) ysδ(i1) = sik+1
y for some ik+1 ∈ I(µ) and `(si1xsik+1

) = `(x)− 2.

(4) ysδ(i1) = sik+1
y for some ik+1 ∈ I(µ) and `(si1xsik+1

) = `(x).

If ysδ(i1) < y, then `(xtµy) = `(si1xt
µysδ(i1)). By Proposition 4.2,

dimXxtµy(b) = dimXsi1xt
µysδ(i1)

(b).

By induction hypothesis for si1x, there exists w′ ∈ I(µ)W such that

dimXxtµy(b) 6 dimXtµw′(b) + `(si1x) = dimXtµw′(b) + `(x)− 1.

That contradicts our assumption on x.

If ysδ(i1) > y and ysδ(i1) ∈ I(µ)W , then `(xtµy) = `(si1xt
µysδ(i1)) + 2. By

Proposition 4.2,

dimXxtµy(b) = max{dimXsi1xt
µysδ(i1)

(b), dimXsi1xt
µy(b)}+ 1.

By induction hypothesis for si1x, there exists w′∈ I(µ)W such that dimXxtµy(b)

6 dimXtµw′(b) + `(si1x) + 1 = dimXtµw′(b) + `(x). That contradicts our

assumption on x.

Therefore, ysδ(i1) = sik+1
y for some ik+1 ∈ I(µ). So si1xt

µysδ(i1) =

si1xsik+1
. If `(si1xsik+1

) = `(x)− 2, then `(xtµy) = `(si1xsik+1
tµy) + 2. Hence

dimXxtµy(b) = max{dimXsi1xsik+1
tµy(b), dimXsi1xt

µy(b)}+ 1.

By induction hypothesis for si1x, there exists w′∈ I(µ)W such that dimXxtµy(b)

6 dimXtµw′(b) + `(x)− 1. That contradicts our assumption on x.
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Hence only case (4) can happen. Now apply the same argument to

si1xsik+1
= si2 · · · sik+1

instead of x = si1 · · · sik . We have that ysδ(i2) =

sik+2
y for some ik+2 ∈ I(µ) and `(si2 · · · sik+1

) = `(si3 · · · sik+2
). Repeat

the same procedure. One may inductively define in ∈ I(µ) for all n > k

by sin = ysδ(in−k)y
−1 and prove that `(sin−k+1

· · · sin) = k. In particular,

i1, . . . , ik ∈ I(tµy). By Proposition 4.9, dimXxtµy(b) = dimXtµy(b) + `(x).

That also contradicts our assumption on x. �

9.3. Now we recall Bédard’s description of JW [1]. Let T(J) be the set

of all sequences (Jn, wn)n>1, where Jn ⊆ S and wn ∈W such that

(1) J1 = J ,

(2) Jn = J ∩Ad(wn−1)δ(Jn−1) for n > 1,

(3) wn ∈ JW δ(Jn) and wn+1 ∈ wnWδ(Jn) for all n.

Then Jm = Jm+1 = · · · , wm = wm+1 = · · · and Ad(w)δ(Jm) = Jm for m� 0.

Moreover (Jn, wn)n>1 7→ wm for m � 0 is a well-defined bijection between

T(J) and JW .

Lemma 9.4. Let µ ∈ P+ and w ∈ I(µ)W . Then

dimXtµw(b) 6 dimXw0tµ(b)− `(w0).

Proof. Let J = I(µ) and (Jn, wn)>1 be the element in T(J) that corre-

sponds to w ∈ JW . Then there exists m ∈ N such that Jm = Jm+1 = · · · and

wm = wm+1 = · · · . We prove by descending induction on n 6 m that

(a) dimXtµw(b) 6 dimX
wJn0 tµwn

(b)− `(wJn0 ).

Notice that Ad(w)δ(Jm) = Jm. Thus Jm ⊆ I(tµw). By Proposition 4.9,

dimX
wJm0 tµw

(b) = dimXtµw(b) + `(wJm0 ).

Thus (a) holds for n = m. Now assume that n > 1 and (a) holds for n. We

will prove that (a) also holds for n− 1.

Set u = δ−1(w−1
n wn−1). Then wn−1 = wnδ(u). By definition of T(J),

u ∈WJn−1 , u−1 ∈W Jn and `(wn) = `(wn−1) + `(u). Now `(u−1wJn0 tµwn−1) =

`(wJn0 tµwn) + 2`(u). By Proposition 4.2,

(b) dimX
wJn0 tµwn

(b) 6 dimX
u−1wJn0 tµwn−1

(b)− `(u).

We prove that

(c) For any u′ ∈ W Jn and i ∈ Jn−1 with siu
′ < u′, dimX

u′wJn0 tµwn−1
(b) >

dimX
siu′w

Jn
0 tµwn−1

(b) + 1.

Note that wn−1 ∈ Jn−1W δ(Jn−1). Thus `(wn−1sδ(i)) = `(wn−1) + 1. There are

two possibilities.
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(i) wn−1sδ(i) ∈ Jn−1W .

Then

`(siu
′wJn0 tµwn−1sδ(i)) = `(siu

′wJn0 ) + `(tµ)− `(wn−1sδ(i))

= `(u′wJn0 )− 1 + `(tµ)− `(wn−1)− 1

= `(u′wJn0 tµwn−1)− 2.

(ii) wn−1sδ(i) /∈ Jn−1W .

Then wn−1sδ(i)w
−1
n−1 is a simple reflection in WJn−1 . By Section 9.3(2), it is a

simple reflection in WJn . Hence

`(siu
′wJn0 tµwn−1sδ(i)) = `(siu

′wJn0 wn−1sδ(i)w
−1
n−1t

µwn−1)

= `(siu
′wJn0 wn−1sδ(i)w

−1
n−1) + `(tµwn−1)

= `(siu
′) + `(wJn0 wn−1sδ(i)w

−1
n−1) + `(tµwn−1)

= `(u′) + `(wJn0 )− 2 + `(tµwn−1)

= `(u′wJn0 tµwn−1)− 2.

In either case, `(siu
′wJn0 tµwn−1sδ(i)) = `(u′wJn0 tµwn−1) − 2. (c) follows

from Proposition 4.2.

Now u−1 ∈ WJn−1 ∩W Jn . Then w
Jn−1

0 wJn0 = vu−1 for some v ∈ WJn−1

with `(vu−1) = `(v) + `(u). Let v = si1 · · · sik be a reduced expression, where

k = `(w
Jn−1

0 wJn0 )− `(u). Then sijsij+1 · · · siku−1 ∈W Jn for all j. By (c),

dimX
u−1wJn0 tµwn−1

(b) 6 dimX
siku

−1wJn0 tµwn−1
(b)− 1

6 dimX
sik−1

siku
−1wJn0 tµwn−1

(b)− 2

6 · · ·
6 dimX

vu−1wJn0 tµwn−1
(b)− k

= dimX
w
Jn−1
0 tµwn−1

(b)− `(wJn−1

0 wJn0 ) + `(u).

By (b) and induction hypothesis,

dimXtµw(b) 6 dimX
wJn0 tµwn

(b)− `(wJn0 )

6 dimX
u−1wJn0 tµwn−1

(b)− `(wJn0 )− `(u)

6 dimX
w
Jn−1
0 tµwn−1

(b)− `(wJn−1

0 wJn0 )− `(wJn0 )

= dimX
w
Jn−1
0 tµwn−1

(b)− `(wJn−1

0 ).

(a) is proved.
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In particular, dimXtµw(b) 6 dimXwJ0 t
µw1

(b)− `(wJ0 ). Here w1 ∈ JW δ(J).

By the same argument as we did for (b), we have that

dimXwJ0 t
µw1

(b) 6 dimXδ−1(w1)wJ0 t
µ(b)− `(w1).

Similar to the proof of (c), we have that

(d) Let u′ ∈ W J and i ∈ S with siu
′ < u′. Then dimXu′wJ0 t

µ(b) >
dimXsiu′wJ0 t

µ(b) + 1.

Let w0w
J
0 δ
−1(w1)−1 = sj1 · · · sjl be a reduced expression, where l = `(w0) −

`(wJ0 )− `(w1). Then by (d), we have that

dimXw1wJ0 t
µ(b) 6 dimXsilw1wJ0 t

µ(b)− 1

6 dimXsil−1
silw1wJ0 t

µ(b)− 2

6 · · ·

6 dimXw0tµ(b)− `(w0) + `(wJ0 ) + `(w1).

Now

dimXtµw(b) 6 dimXwJ0 t
µw1

(b)− `(wJ0 )

6 dimXδ−1(w1)wJ0 t
µ(b)− `(wJ0 )− `(w1)

6 dimXw0tµ(b)− `(w0). �

9.4. Now we prove Theorem 9.1. By Lemma 9.3, there exists w ∈ JW

such that dimXxtµy(b) 6 dimXtµw(b) + `(x). By Lemma 9.4, dimXtµw(b) 6
dimXw0tµ(b)− `(w0). Hence

dimXxtµy(b) 6 dimXw0tµ(b)− `(w0) + `(x). �

10. Virtual dimension

In this section, we discuss some applications of Theorem 9.1. First we

compare the dimension of affine Deligne-Lusztig varieties in the affine Grass-

mannian and the affine flag.

Theorem 10.1. For µ ∈ P+ and b ∈ G(L),

dimXµ(b) = dimXw0tµ(b)− `(w0).

Proof. Let π : Fl → Gr be the projection. Then each fiber of π is iso-

morphic to L+G/I, which is of dimension `(w0). We have that π−1Xµ(b) =

tw̃∈WtµWXw̃(b).

By Theorem 9.1, dimXw̃(b) 6 dimXw0tµ(b) for all w̃ ∈WtµW . Hence

dimXw0tµ(b) = dim(tw̃∈WtµWXw̃(b)) = dimπ−1Xµ(b)

= dimXµ(b) + `(w0). �
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By combining Theorem 10.1 with Theorem 7.1, we have the following

“converse to Mazur’s inequality” in the Iwahori case.

Corollary 10.2. Let J ⊆ S with δ(J) = J . Let µ ∈ P+ and b ∈MJ(L)

be a basic element such that κMJ
(b) ∈ Y +

J . Then Xw0tµ(b) 6= ∅ if and only if

κMJ
(b) �J µ.

We define ηδ : W̃ → W as follows. If w̃ = xtµy with µ ∈ P+, x ∈ W and

y ∈ I(µ)W , then we set ηδ(x) = δ−1(y)x. Then

Theorem 10.3. For any b ∈ G(L) and w̃ ∈ W̃ with κ(w̃) = κ(b), we

have that

dimXw̃(b) 6 dimXµ(b) +
`(w̃) + `(ηδ(w̃))

2
− 〈µ, ρ〉.

Proof. We may assume that w̃ = xtµy with x ∈ W and µ ∈ P+ and y ∈
I(µ)W . Let δ−1(y) = si1si2 · · · sik be a reduced expression. Since y ∈ I(µ)W ,

`(tµy) = `(tµ) − k and for 1 6 l 6 k, tµsi1 · · · sil ∈ SW̃ and `(tµsi1 · · · sil) =

`(tµ)− l. Hence

`(δ−1(sil · · · si1)δ−1(y)xtµsi1 · · · sil) = `(δ−1(sil · · · si1)δ−1(y)x) + `(tµ)− l.

Notice that `(δ−1(sil · · · si1)δ−1(y)x) > `(δ−1(sil−1
· · · si1)δ−1(y)x) − 1.

Thus

`(δ−1(sil−1
· · · si1)δ−1(y)xtµsi1 · · · sil−1

) > `(δ−1(sil · · · si1)δ−1(y)xtµsi1 · · · sil).
So

δ−1(y)xtµ
i1−→δ δ

−1(si1)δ−1(y)xtµsi1
i2−→δ · · ·

ik−→δ xt
µy.

By Proposition 4.2,

dimXxtµy(b) 6 dimXδ−1(y)xtµ(b) +
1

2
(`(xtµy)− `(δ−1(y)xtµ)).

By Theorems 9.1 and 10.1,

dimXxtµy(b) 6 dimXw0tµ(b)− `(w0) +
1

2
(`(xtµy) + `(δ−1(y)x))− 〈µ, ρ〉

= dimXµ(b) +
1

2
(`(xtµy) + `(δ−1(y)x))− 〈µ, ρ〉. �

10.1. For w̃ ∈ W̃ with κ(x) = κ(b), we define the virtual dimension:

dw̃(b) =
1

2

Ä
`(w̃) + `(ηδ(w̃))− def(b)

ä
− 〈ν̄b, ρ〉.

Here def(b) is the defect of b. See [22, 1.9.1].

It is proved in [7, Th. 2.15.1] and [31, Th. 1.1] that if G is split over F ,

then

(a) dimXµ(b) = 〈µ− ν̄b, ρ〉 −
1

2
def(b).
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As discussed in the proof of Theorem 7.1, dimXµ(b) depends only on the

combinatorial data (W̃ , δ, w̃, f(b)). Hence (a) remains true if δ = id. Therefore

Corollary 10.4. If δ = id, then for any b ∈ G(L) and w̃ ∈ W̃ with

κ(w̃) = κ(b), we have that dimXw̃(b) 6 dw̃(b).

11. Class polynomial: lowest two-sided cell case

We have established an upper bound for the dimension of affine Deligne-

Lusztig varieties in the last section. In this section, we study in details of class

polynomials for the lowest two-sided cell case. The main result is Theorem 11.4,

which is a key step in establishing a lower bound for the dimension of affine

Deligne-Lusztig varieties.

We assume in this section that G splits over L. Hence Φ = Σ is a reduced

root system. We denote by αi (for i ∈ S) the set of simple roots.

11.1. Let w̃ ∈ W̃ , and w2let supp(w̃) be the set of simple reflections

of S̃ that appears in some (or equivalently, any) reduced expression of w̃ and

suppδ(w̃) = ∪i∈Nδi(supp(w̃)).

By [14, Lemma 1], for any w̃, w̃′ ∈ W̃ , the set {uu′; u 6 w̃, u′ 6 w̃′} has

a unique maximal element, which we denote by w̃ ∗ w̃′. Then ∗ is associative.

Moreover, supp(w̃ ∗ w̃′) = supp(w̃)∪ supp(w̃′) and suppδ(w̃ ∗ w̃′) = suppδ(w̃)∪
suppδ(w̃

′).

Let A+ = Z+[v−v−1] and H̃+ =
∑
w̃∈W̃ A+Tw̃. Notice that for any s ∈ S̃,

T 2
s = (v − v−1)Ts + 1. We have that

Lemma 11.1. For any i ∈ S̃, H̃+Tsi ⊆ H̃+.

Proof. Let w̃ ∈ W̃ . Then

(a) Tw̃Tsi =

Tw̃si if w̃si > w̃,

Tw̃Tsi = (v − v−1)Tw̃ + Tw̃si otherwise.

In particular, Tw̃Tsi ∈ H̃+ and A+Tw̃Tsi ⊆ H̃+. �

Lemma 11.2. For any x, y ∈ W̃ , we have that

(1) TxTy ∈ Txy + H̃+.

(2) TxTy ∈ (v − v−1)`(x)+`(y)−`(x∗y)Tx∗y + H̃+.

Proof. We argue by induction on `(y). If `(y) = 0, then x ∗ y = xy and

TxTy = TxTy. The statement is obvious.

Now assume that `(y) > 0 and the statement holds for all y′ ∈ W̃ with

`(y′) < `(y). Let i ∈ S̃ with ysi < y. Set y′ = ysi. Then y = y′ ∗ si. By

induction hypothesis on y′,

TxTy = TxTy′Tsi ∈ (Txy′ + H̃+)Tsi ⊆ Txy′Tsi + H̃+
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and

TxTy = TxTy′Tsi ∈ ((v − v−1)`(x)+`(y′)−`(x∗y′)Tx∗y′ + H̃+)Tsi

⊆ (v − v−1)`(x)+`(y′)−`(x∗y′)Txy′Tsi + H̃+.

By (a) of Lemma 11.1, Txy′Tsi ∈ Txy′si + H̃+ and

Tx∗y′Tsi ∈ (v − v−1)`(x∗y
′)+1−`((x∗y′)∗si)T(x∗y′)∗si + H̃+.

Notice that (x ∗ y′) ∗ si = x ∗ (y′ ∗ si) = x ∗ y. Hence TxTy ∈ Txy′Tsi + H̃+ =

Txy + H̃+ and

TxTy ∈ (v − v−1)`(x)+`(y′)−`(x∗y′)Tx∗y′Tsi + H̃+

⊆ (v − v−1)`(x)+`(y)−`(x∗y)Tx∗y + H̃+. �

As a consequence, we have that

Corollary 11.3. For any w̃ ∈ W̃ , Tw̃H̃+ ⊆ H̃+ and H̃+Tw̃ ⊆ H̃+.

11.2. We follow [30, 7.3]. Let (W, S) be a Coxeter system and δ : W →W

that sends simple reflections to simple reflections. For each δ-orbit in S, we

pick a simple reflection and let c be the product of the corresponding simple

reflections (in any order). We call c a δ-twisted Coxeter element of W .

The main result we will prove in this section is

Theorem 11.4. Assume that G is simple. Let W̃ ′ be the lowest two-sided

cells of W̃ . Let w̃ ∈ W̃ ′ ∩ τWa for τ ∈ Ω. Let n be the number of δ-orbits

on S̃. Then there exist a maximal proper Ad(τ) ◦ δ-stable subset J of S̃ and a

Ad(τ) ◦ δ-twisted Coxeter element c of WJ such that

Tw̃ ∈ (v − v−1)`(ηδ(w̃))−nTcτ + H̃+ + [H̃, H̃]δ.

The proof relies on the following three propositions.

Proposition 11.5. Let w̃ = xtµy with µ ∈ P+, x ∈ W and y ∈ I(µ)W .

If w̃ ∈ W̃ ′ and suppδ(δ
−1(y)x) = S, then there exists a ∈W with suppδ(a) = S

and γ ∈ P+ such that

Tw̃ ∈ (v − v−1)`(ηδ(w̃))−`(a)Tatγ + H̃+ + [H̃, H̃]δ.

Proof. Let J = {i ∈ S; siy < y} and ρ∨J ∈ P+ with

〈ρ∨J , αi〉 =

1 if j ∈ J,
0 if j /∈ J.

Since y ∈ I(µ)W , J ∩ I(µ) = ∅. Hence µ− ρ∨J ∈ P+. Let J ′ = I(µ− ρ∨J ). Then

δ−1(y)x = wz for some w ∈ W J ′ and z ∈ WJ ′ . Define γ ∈ Y+ and y′ ∈ W I(γ)

by µ− ρ∨J + w−1ρ∨δ−1(J) = y′γ.
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Set w̃1 = xz−1tµ−ρ
∨
J y′ and w̃2 = (y′)−1ztρ

∨
J y. Then w̃ = w̃1w̃2 and

w̃2δ(w̃1) = (y′)−1ztρ
∨
J yδ(w̃1) = (y′)−1ztρ

∨
J yδ(xz−1)δ(tµ−ρ

∨
J y′)

= (y′)−1ztρ
∨
J δ(w)δ(tµ−ρ

∨
J y′) = (y′)−1zδ(wt

µ−ρ∨J+w−1ρ∨
δ−1(J)y′)

= (y′)−1zδ(wty
′γy′) = (y′)−1zδ(wy′tγ).

By [9, §3.5], `(w̃) = `(w̃1) + `(w̃2) and `((y′)−1z) + `(wy′) = `(δ−1(y)x).

Set a = ((y′)−1z) ∗ δ(wy′). Then suppδ(a) = S since S = suppδ(δ
−1(y)x) ⊆

suppδ(wy
′) ∪ suppδ((y

′)−1z). We have that

Tw̃ = Tw̃1Tw̃2 ∈ Tw̃2Tδ(w̃1) + [H̃, H̃]δ = T(y′)−1zTtρ
∨
J y
Tδ(w̃1) + [H̃, H̃]δ

⊆ T(y′)−1zTδ(wy′tγ) + H̃+ + [H̃, H̃]δ = T(y′)−1zTδ(wy′)Ttγ + H̃+ + [H̃, H̃]δ

⊆ (v − v−1)`(δ
−1(y)x)−`(a)TaTtγ + H̃+ + [H̃, H̃]δ

⊆ (v − v−1)`(δ
−1(y)x)−`(a)Tatγ + H̃+ + [H̃, H̃]δ. �

Proposition 11.6. Assume that G is simple. Let J ⊆ S with δ(J) = J

and w̃ = xtµy such that x ∈ WJ with suppδ(v) = J , y is a δ-twisted Coxeter

element in WS−J , µ 6= 0 and tµy ∈ SW̃ . Then there exists a δ-twisted Coxeter

element c of W such that

Tw̃ ∈ (v − v−1)`(x)+`(y)−`(c)Ttµc + H̃+ + [H̃, H̃]δ.

Proof. We proceed by induction on |J |. Suppose that the statement is

true for all J ′ ( J but not true for J . We may also assume that the statement

is true for all x′ with suppδ(x
′) = J and `(x′) < `(x) but not true for x.

Since G is quasi-simple and µ 6= 0, there exists i ∈ J such that tµysi ∈ SW̃ .

Let J1 = {i ∈ J ; tµysi /∈ SW̃}. Then J1 is a proper subset of J . For any i ∈ J1,

tµysi = sjt
µy for some j ∈ S. Since y ∈ WS−J , this is possible only if j = i

and j commutes with y.

We prove that

(a) x ∈Wδ−1(J1).

We write x as ux1 for u∈Wδ−1(J1) and x1∈ δ
−1(J1)W . Then Tw̃≡Tx1tµyTδ(u) =

Tx1Tδ(u)Ttµy mod [H̃, H̃]δ. Let x′ = x1∗δ(u). Notice that suppδ(x)=suppδ(u)

∪ suppδ(x1) = suppδ(x1) ∪ suppδ(δ(u)) = suppδ(x
′). Hence supp(x′) = J . By

Lemma 11.2 and Corollary 11.3,

Tw̃ ∈ Tx1tµyTδ(u) + [H̃, H̃]δ ⊆ (v − v−1)`(x)−`(x′)Tx′tµy + H̃+ + [H̃, H̃]δ.

If x /∈ Wδ−1(J1), then x1 6= 1 and there exists i ∈ δ−1(J1) with six1 < x1.

Then six
′ < x′. Moreover, `(ysδ(i)) = `(y) + 1 and tµysδ(i) ∈ SW̃ . Hence

`(six
′tµysδ(i)) = `(six

′) + `(tµ)− `(ysδ(i)) = `(x′) + `(tµ)− `(y)− 2

= `(x′tµy)− 2.
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If suppδ(six
′) = J , then

Tx′tµy = TsiTsix′tµy ∈ Tsix′tµyTsδ(i) + [H̃, H̃]δ

⊆ (v − v−1)Tsix′tµy + H̃+ + [H̃, H̃]δ.

By induction hypothesis on six
′, we have that

Tsix′tµy ∈ (v − v−1)`(x
′)−1+`(y)−`(c)Ttµc + H̃+ + [H̃, H̃]δ

for some δ-twisted Coxeter element c of W . Therefore

Tw̃ ∈ (v − v−1)`(x)+`(y)−`(c)Ttµc + H̃+ + [H̃, H̃]δ.

That is a contradiction.

If suppδ(six
′) 6= J , then

Tx′tµy = TsiTsix′tµy ∈ Tsix′tµyTsδ(i) + [H̃, H̃]δ

⊆ Tsix′tµysδ(i) + H̃+ + [H̃, H̃]δ.

By induction hypothesis on suppδ(six
′), we have that

Tsix′tµysi ∈ (v − v−1)`(x
′)+`(y)−`(c)Ttµc + H̃+ + [H̃, H̃]δ

for some δ-twisted Coxeter element c of W . Therefore

Tw̃ ∈ (v − v−1)`(x)+`(y)−`(c)Ttµc + H̃+ + [H̃, H̃]δ.

That is also a contradiction. Now (a) is proved.

We have that Tw̃ ∈ TtµyTδ(x) + [H̃, H̃]δ = Tδ(x)tµy + [H̃, H̃]δ. By the same

argument for δ(x) instead of x, we have that δ(x) ∈Wδ−1(J1). Repeat the same

procedure, δi(x) ∈ Wδ−1(J1) for all i. Thus suppδ(x) ⊆ δ−1(J1) $ J . That is

again a contradiction. �

Proposition 11.7. Assume that G is simple. Let τ ∈ Ω. Then there ex-

ists a maximal Ad(τ)◦δ-stable proper subset J of S̃ and a Ad(τ)◦δ-twisted Cox-

eter element c of WJ such that cτ is a minimal length element in its δ-conjugacy

class of W̃ and tµw →δ cτ for any δ-Coxeter element w of W and µ ∈ P with

κ(tµ) = κ(τ).

It is proved in a joint work with Yang [19, Th. 1.1]. A partial result for

some classical groups was previously obtained in [15].

11.3. Now we prove Theorem 11.4. By Proposition 11.5, there exists

a ∈W with suppδ(a) = S and λ ∈ P+ such that

(a) Tw̃ ∈ (v − v−1)`(ηδ(w̃))−`(a)Tatγ + H̃+ + [H̃, H̃]δ.

By Proposition 11.6, there exists a δ-twisted Coxeter element w of W such

that

(b) Tatγ ∈ (v − v−1)`(a)−nTtγw + H̃+ + [H̃, H̃]δ.
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Now by Proposition 11.7, there exists maximal Ad(τ) ◦ δ-stable proper subset

J of S̃ and a Ad(τ) ◦ δ-twisted Coxeter element c of WJ such that tγa→δ cτ .

Thus by Section 2.3,

(c) Ttγw ∈ Tcτ + H̃+ + [H̃, H̃]δ.

The theorem then follows from (a), (b) and (c).

12. Conjecture of GHKR

Now we give a lower bound of dimXw̃(b).

Theorem 12.1. Assume that G is simple. Let w̃ ∈ W̃ ′, and let b ∈ G(L)

be a basic element with suppδ(ηδ(w̃)) = S and κ(w̃) = κ(b). Then dimXw̃(b) >
dw̃(b).

Remark. It is proved in [8], [9] for a split group and [6, Th. B] for any

tamely ramified group that if w̃ ∈ W̃ ′ and b ∈ G(L) is a basic element with

κ(w̃) = κ(b), then Xw̃(b) 6= ∅ if and only if suppδ(ηδ(w̃)) = S.

Proof. By Theorem 11.4, there exist a maximal proper Ad(τ) ◦ δ-stable

subset J of S̃ and a Ad(τ) ◦ δ-twisted Coxeter element c of WJ such that

Tw̃ ∈ (v − v−1)`(ηδ(w̃))−nTcτ + H̃+ + [H̃, H̃]δ.

Let O be the δ-conjugacy class of W̃ that contains cτ . Then fw̃,O ∈
(v−v−1)`(ηδ(w̃))−n+A+. In particular, deg fw̃,O > `(ηδ(w̃))−n, where n is the

number of δ-orbits on S.

By Theorem 6.1,

dimXw̃(b) >
1

2
(`(w̃) + `(c) + deg fw̃,O)

>
1

2
(`(w̃) + `(ηδ(w̃)) + `(c)− n).

By the definition of defect, def(b) = def(τ̇) = n− `(c). Therefore dimXw̃(b) >
dw̃(b). �

By combining Theorem 12.1 and Corollary 10.4, we have that

Corollary 12.2. Suppose that G is simple and δ = id. Let w̃ ∈ W̃ ′ and

b ∈ G(L) be a basic element with supp(η(w̃)) = S and κ(w̃) = κ(b). Then

dimXw̃(b) = dw̃(b).

Remark. The split case was first conjectured in [8, Conj. 1.1.3]. A weaker

result for some split classical groups was proved in [9].
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