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Geometry and braiding of Stokes data;
Fission and wild character varieties
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Abstract

A family of new algebraic Poisson varieties will be constructed, gen-

eralising the complex character varieties of Riemann surfaces. Then the

well-known (Poisson) mapping class group actions on the character vari-

eties will be generalised.
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1. Introduction

Given a Riemann surface “Σ (with boundary), many people have studied

moduli spaces

(1) Hom(π1(“Σ), G)/G
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of representations of the fundamental group of “Σ in a Lie group G, the char-

acter varieties (cf. [58]). If G is a complex reductive group with a chosen

symmetric nondegenerate invariant bilinear form on its Lie algebra, then (1)

has an algebraic Poisson structure and the symplectic leaves are given by fixing

the conjugacy classes around each component of the boundary. This provides

a large class of holomorphic symplectic manifolds, which often have complete

hyperkähler metrics (and are then diffeomorphic to certain moduli spaces of

meromorphic Higgs bundles [37], [59], [52]).

Perhaps the best explanation as to why such spaces of fundamental group

representations with fixed conjugacy classes have holomorphic symplectic struc-

tures is because they arise as symplectic quotients of the infinite-dimensional

affine space of all C∞ connections on a fixed G-bundle on “Σ. (This is the

extension to surfaces with boundary, involving loop groups, of the complexi-

fication of the viewpoint of Atiyah–Bott [4] described e.g. in [5].) Goldman

[35] explained how this may also be understood in terms of the cup product in

group cohomology.

The quasi-Hamiltonian approach [3] yields an alternative, algebraic con-

struction of such symplectic manifolds as finite-dimensional “multiplicative”

symplectic quotients of a smooth affine variety, as follows. Suppose “Σ has

m ≥ 1 boundary circles ∂i, and choose a basepoint bi ∈ ∂i in each component.

Let Π denote the fundamental groupoid of “Σ with basepoints {b1, . . . , bm}.
Then the space

Hom(Π, G)

of homomorphisms from the groupoid Π to the group G is a smooth affine

variety that naturally has the structure of quasi-Hamiltonian Gm-space and

so, in particular, has an action of Gm and a group valued moment map

µ : Hom(Π, G)→ Gm.

The quotient Hom(Π, G)/Gm then inherits a Poisson structure and is isomor-

phic to (1). Alternatively, if C = (C1, . . . , Cm) ⊂ Gm is a conjugacy class (i.e.

the choice of a conjugacy class Ci ⊂ G for each boundary component), then

the quasi-Hamiltonian reduction (the multiplicative symplectic quotient)

µ−1(C)/Gm

inherits a holomorphic symplectic structure (where it is a manifold) and is

isomorphic to a symplectic leaf of (1).

The first aim of this article is to give a similar algebraic approach to

more general spaces of monodromy-type data classifying irregular meromorphic

connections on bundles on Riemann surfaces, thereby constructing many new

algebraic symplectic manifolds generalising the character varieties. Secondly

we will consider varying the initial data, leading to the braiding of the title,
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generalising the much-studied mapping class group actions on the character

varieties.

To see the natural generalisation to the irregular case, recall first the re-

lation between the above spaces and regular singular connections. For this

one starts with a smooth compact complex algebraic curve Σ with m distinct

marked points a = (a1, . . . , am) and defines Σ◦ = Σ \ {ai} to be the corre-

sponding punctured curve. Then, if G = GLn(C), Deligne’s Riemann–Hilbert

correspondence [29] implies that the G orbits in Hom(π1(Σ
◦), G) correspond

bijectively to isomorphism classes of connections on rank n algebraic vector

bundles on Σ◦ with regular singularities at each point ai, and a similar state-

ment holds for other groups G. The condition of regular singularities means

that the bundles have extensions across the punctures for which the connections

have only simple poles (and local horizontal sections have at most polynomial

growth as they approach the singularities). Thus one sees a large class of gen-

eralisations may be obtained by relaxing this regularity assumption (and this

still leads to hyperkähler manifolds [10], which again are often complete). The

irregular Riemann–Hilbert correspondence (on curves with G = GLn(C)) was

worked out several decades ago (see [50]) but is not as well known as its regular

singular cousin. In brief the fundamental group representation is enriched by

adding “Stokes data” at each singularity, and there are various ways of think-

ing about this extra data; for instance as elements of a certain non-abelian

cohomology space (Malgrange–Sibuya, cf. [6]) or sheaf-theoretically (Deligne

[30]), yielding an equivalence of categories. The approach used here is closer to

that of Martinet–Ramis [51], describing the Stokes data as elements of certain

unipotent subgroups of G (in turn using Ecalle’s work on multisummation);

this viewpoint has the benefit of being as explicit as possible and amounts

to having preferred cocycles representing each of the Malgrange–Sibuya coho-

mology classes ([46]). The exact groupoid approach we use looks to be new

however. It is also useful when we vary the initial data.

1.1. Statement of main results. Fix a connected complex reductive group

G and a maximal torus T ⊂ G with Lie algebras t ⊂ g. It is convenient to

define an “irregular curve” to be a smooth curve Σ with marked points a as

above together with the extra data of an “irregular type” Qi at each marked

point: if z is a local coordinate on Σ vanishing at ai, then

Qi =
Ari
zri

+ · · ·+ A1

z

for some elements Ai ∈ t. Given an irregular curve we will consider mon-

odromy/Stokes data of connections on G-bundles that are locally isomorphic

to

dQi + less singular terms
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at each ai, so that fundamental solutions involve essentially singular terms of

the form exp(Qi) near ai. (It is known that any meromorphic connection takes

the above form after passing to a finite cover.)

Then consider the real two-manifold with boundary“Σ→ Σ

obtained by taking the real oriented blow-up of Σ at each marked point, thus

replacing each point ai with a circle ∂i. The basic facts (see Definitions 7.2

and 7.4) then are that Qi determines:

(1) a connected complex reductive group Hi ⊂ G, the stabiliser of Qi,

(2) a finite set Ai ⊂ ∂i of singular directions at ai,

and for each singular direction d ∈ Ai
(3) a unipotent group Stod(Qi) ⊂ G, normalised by Hi.

Then we puncture “Σ once in its interior along each singular direction (suf-

ficiently near the corresponding boundary component) and let ‹Σ ⊂ “Σ denote

the resulting punctured surface. Choose a basepoint bi ∈ ∂i in each boundary

component and now let Π denote the fundamental groupoid of ‹Σ with base-

points {b1, . . . , bm}. (If each irregular type Qi is zero, there are no singular

directions and we are in the original regular singular situation.) Then consider

the subset of Stokes representations

HomS(Π, G) ⊂ Hom(Π, G)

consisting of homomorphisms ρ from Π to G that satisfy the following two

conditions:

(1) ρ takes the loop ∂i based at bi into the group Hi, and

(2) for each singular direction d ∈ Ai, ρ takes the small loop based at bi
that goes around ∂i until direction d before encircling the puncture in

the direction d and then retracing its path to bi, to the group Stod.

Let H = H1 × · · · ×Hm ⊂ Gm. The main result is then:

Theorem 1.1. The space HomS(Π, G) of Stokes representations is both a

smooth affine variety and a quasi-Hamiltonian H-space.

This implies that the quotient HomS(Π, G)/H, which classifies meromor-

phic connections with the given irregular types, inherits a Poisson structure,

and its symplectic leaves are obtained by fixing a conjugacy class Ci ⊂ Hi for

each i = 1, . . . ,m. We will also characterise the stable points of HomS(Π, G)

in the sense of geometric invariant theory (for the action of H), show there are

lots of examples when the quotients are well behaved and describe the irregular

analogue of the Deligne–Simpson problem.
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Such Poisson structures may be obtained analytically from an irregu-

lar analogue of the Atiyah–Bott approach (as in [12], [10]), and the quasi-

Hamiltonian approach was worked out previously in [15] in the case when the

most singular coefficient of each irregular type was regular (off of all the root

hyperplanes). The spaces of Stokes data are much more complicated when this

assumption is removed, and the main work of the present article is to develop

an inductive approach to build (quasi-Hamiltonian) spaces of Stokes data out

of simpler pieces. This fits in well with the quasi-Hamiltonian philosophy of

building moduli spaces of flat connections from simple pieces and with the

idea of the factorisation theorem of Ramis [53]; in effect we construct some

new building blocks (higher fission spaces, Section 3) and show that the spaces

of Stokes representations may be built out of these using the quasi-Hamiltonian

fusion and reduction operations. That one can do such an induction at the

quasi-Hamiltonian level is perhaps the main discovery of this article.1 Surpris-

ingly it follows immediately that our building blocks may be used to construct

many other holomorphic symplectic manifolds, beyond the quotients of the

spaces of Stokes representations. For example, one may glue various surfaces‹Σ along their boundaries provided the groups Hi match up. Also one may

obtain Van den Bergh’s quasi-Hamiltonian spaces [63], [64] from the higher

fission spaces and thus all of the so-called multiplicative quiver varieties.

1.2. Varying the initial data. In brief the above result implies that a Pois-

son variety HomS(Π, G)/H is determined by the choice of an irregular curve.

For the second main result, in Section 10 we will define the notion of an “ad-

missible family” of irregular curves over a base B, generalising the notion of

deforming a smooth curve with marked points such that the curve remains

smooth and none of the points coalesce. Then we will show (Theorem 10.2)

that the corresponding family of Poisson varieties assemble into a “local system

of Poisson varieties” over B, i.e. into a nonlinear fibration with a flat (Ehres-

mann) connection that integrates along any path in the base to yield algebraic

Poisson isomorphisms between fibres. This leads to an algebraic Poisson action

of the fundamental group of B on any fibre HomS(Π, G)/H. Such deformations

have been considered briefly by Witten [66, §6] in relation to geometric Lang-

lands and N = 4 super Yang-Mills theory. Mathematically these flat nonlinear

connections should be viewed as the irregular analogue of the Gauss–Manin

connection on non-abelian cohomology ([12, §7]).

Basic examples of admissible deformations in the irregular case were con-

sidered by Jimbo et al. [39]; they looked at the case G = GLn(C) when the

1[18] discussed the possibility of “fusion on the other side of the analytic halo”—in effect,

here we do fusion within the analytic halo.
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most singular coefficient at each pole had distinct eigenvalues. This was ex-

tended to other reductive groups in [13] (keeping the most singular coefficient

at each pole off all the root hyperplanes), and it was shown that in the sim-

plest case the resulting Poisson action of the G-braid group coincides with the

quasi-classical limit of the quantum-Weyl group action of Lusztig, Soibelman,

Kirillov–Reshetikhin.2 One impetus (cf. [11], [12]) for this line of thinking came

from trying to understand the Poisson braid group actions in Dubrovin’s work

on semisimple Frobenius manifolds, related to the Markoff polynomial in the

three-dimensional case ([32, p. 243])—see also [26], [38], [62], [22], [68]. More

generally, in the integrable systems literature interest in symplectic structures

on spaces of Stokes data goes back at least to Flaschka–Newell [33]; the more

recent work of Woodhouse [67] and Krichever [45] also computed such sym-

plectic forms explicitly (in the GLn(C) case with distinct leading eigenvalues),

and our more general formulae were found similarly. The quasi-Hamiltonian

approach here yields an algebraic proof that such two-forms are indeed sym-

plectic, and in the general linear case, a quite simple proof that for generic

parameters the wild character varieties are smooth symplectic algebraic vari-

eties (see Corollary 9.9). This last result alone probably justifies the quasi-

Hamiltonian approach and was one of our main aims.

Note that if for example one is interested in complete hyperkähler man-

ifolds, it makes little sense to restrict attention to the regular singular case:

there are many examples of isomorphisms between the moduli spaces that arise

in the irregular case and the regular singular case (some examples appear in

[61], and in such cases the hyperkähler metrics match up), but it is not true

that all irregular cases are isomorphic to a regular singular case—on the con-

trary it seems that if one counts in each dimension the number of deformation

classes of complete hyperkähler manifolds arising from Hitchin’s self-duality

equations, then most classes only have irregular representatives.

The layout of this article is as follows. Sections 2–6 are basically pure

quasi-Hamiltonian geometry, first giving the background definitions, then di-

rectly establishing the new spaces we will need, then establishing many prop-

erties of them. Section 7 defines the spaces of Stokes data corresponding

to connections on a disc and shows that, with suitable framings, they are

quasi-Hamiltonian. This is used in Section 8 to prove that the space of

Stokes/monodromy data attached to a (global) irregular curve is indeed an

algebraic Poisson variety. Section 9 discusses various aspects of stability (one

2This quasi-classical limit, an action of the G-braid group on the dual Poisson Lie group,

was explicitly computed by De Concini–Kac–Procesi [28]. A key point of the geometrical

approach is the identification [11], [13] of a simple space of Stokes data with the Poisson Lie

group dual to G.
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related to differential Galois theory), defines the irregular Deligne–Simpson

problem and gives many examples when the quotients are well behaved. Fi-

nally, Section 10 considers admissible families of irregular curves and shows

that the corresponding family of Poisson varieties fit together into a Poisson

local system. It also mentions the link to Baker functions and integrable hi-

erarchies. (Some aspects of the irregular Riemann–Hilbert correspondence are

discussed in Appendix A to help motivate the basic definitions.) Note that we

have focused on the new features that occur in the present context, and some

of the results from [12], [13], [15] whose generalisation is routine have been

omitted.

Acknowledgments. This work was partially supported by ANR grants 08-

BLAN-0317-01/02 (SEDIGA) and 09-JCJC-0102-01 (RepRed). The author is

grateful to the referee for several very helpful suggestions.

2. Quasi-Hamiltonian geometry

Some familiarity with the quasi-Hamiltonian theory of Alekseev–Malkin–

Meinrenken [3] will be assumed. This section will recall (the holomorphic

analogue of) the basic results. In essence this theory is a multiplicative ver-

sion of the usual Hamiltonian theory, with moment maps taking values in Lie

groups rather than the dual of the Lie algebra. The axioms for the analogue

of the symplectic form and its interaction with the group action and the mo-

ment map are more complicated. The upshot is a direct and explicit algebraic

approach to constructing certain quite exotic symplectic manifolds, previously

constructed via infinite-dimensional techniques. The motivation in [3] was to

give a finite-dimensional algebraic construction of the symplectic structure on

moduli spaces of flat connections on bundles over Riemann surfaces with fixed

local monodromy conjugacy classes. We have found this theory is also useful

to construct new moduli spaces.

2.1. Notation. Let G be a connected complex reductive group3 with Lie

algebra g. (The group G(C) of C points will often also be denoted by G.)

Suppose we have chosen a symmetric nondegenerate invariant bilinear form

( , ) : g ⊗ g → C. (This choice will be tacitly assumed throughout.) The

Maurer–Cartan forms on G are denoted θ, θ ∈ Ω1(G, g) respectively (so in

any representation, θ = g−1dg, θ = (dg)g−1). Generally if A,B, C ∈ Ω1(M, g)

are g-valued holomorphic one-forms on a complex manifold M , then (A,B) ∈

3The main results are new even for G = GLn(C) so the reader could restrict to that case,

but one gets a richer class of braid group actions in general. (See the examples in Section 10.1

and [13], which motivated us to define G-valued Stokes multipliers.)
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Ω2(M) and [A,B] ∈ Ω2(M, g) are defined by wedging the form parts and pair-

ing/bracketing the Lie algebra parts. Define A2 := 1
2 [A,A] ∈ Ω2(M, g) (which

works out correctly in any representation of G using matrix multiplication).

Then one has dθ = −θ2, dθ = θ
2
. Define (ABC) = (A, [B, C])/2 ∈ Ω3(M)

(which is invariant under all permutations of A,B, C). The canonical bi-

invariant three-form on G is then 1
6(θ3). The adjoint action of G on g will

be denoted gXg−1 := AdgX for any X ∈ g, g ∈ G. If G acts on M ,

the fundamental vector field vX of X ∈ g is minus the tangent to the flow

(vX)m = − d
dt(e

Xt ·m)
∣∣∣
t=0

so that the map g → VectM ;X → vX is a Lie al-

gebra homomorphism. (This sign convention differs from [3] leading to sign

changes in the quasi-Hamiltonian axioms and the fusion and equivalence the-

orems.)

Recall that a complex manifold M is a complex quasi-Hamiltonian G-space

if there is an action of G on M , a G-equivariant map µ : M → G (where G acts

on itself by conjugation) and a G-invariant holomorphic two-form ω ∈ Ω2(M)

such that

(QH1) The exterior derivative of ω is the pullback along the moment map of

the canonical three-form on G: dω = µ∗(θ3)/6.

(QH2) For all X ∈ g, ω(vX , · ) = 1
2µ
∗(θ + θ,X) ∈ Ω1(M).

(QH3) At each point m ∈M : Kerωm ∩Ker dµ = {0} ⊂ TmM .

It is possible to show that if (QH1) and (QH2) hold, then (QH3) is equiv-

alent to the condition

Ker(ωm) =
{

(vX)m
∣∣∣ X ∈ g satisfies AdgX = −X where g := µ(m)

}
(cf. [1] Remark 5.3).

Remark 2.1. Observe that if G is abelian (and in particular if G = {1} is

trivial), then these axioms imply that the two-form ω is a complex symplectic

form. The reduction procedure (see below) yields many symplectic manifolds

in this way.

Example 2.2 (Conjugacy classes [3]). Let C ⊂ G be a conjugacy class, with

the conjugation action of G and moment map µ given by the inclusion map.

Then C is a quasi-Hamiltonian G-space with two-form ω determined by

ωg(vX , vY ) =
1

2

Ä
(X, gY g−1)− (Y, gXg−1)

ä
for any X,Y ∈ g, g ∈ C.

Other basic examples of quasi-Hamiltonian spaces appear as moduli spaces

of holomorphic connections on Riemann surfaces with boundary, with a fram-

ing at one point on each boundary component. (If one instead chooses a fram-

ing on all of the boundary, then one obtains an infinite dimension symplectic



GEOMETRY AND BRAIDING OF STOKES DATA 309

manifold with a Hamiltonian loop group action changing the framing—one

way to understand the quasi-Hamiltonian axioms is via the way in which such

loop group spaces yield finite-dimensional quasi-Hamiltonian spaces in [3, §8],

by forgetting the framing at all but one point on each component the bound-

ary.) For example, the annulus has two boundary components so corresponds

naturally to a quasi-Hamiltonian G×G-space, which may be written explicitly

as follows.

Example 2.3 (The double [3]). The space D = G×G is a quasi-Hamiltonian

G×G-space with (g, k) ∈ G×G acting as (g, k)(C, h) = (kCg−1, khk−1), with

moment map

µ(C, h) = (C−1hC, h−1) ∈ G×G

and with two-form ω such that

(2) 2ω = (γ,Adhγ) + (γ, η + η),

where γ = C∗(θ), η = h∗(θ) and η = h∗(θ).

The notation C∗(θ) here means that we view C as a map from D to G

and pull back the right-invariant Maurer-Cartan form θ to obtain a g-valued

one-form on D. Similarly the one-holed torus leads to the following space.

(The name will be explained below.)

Example 2.4 (Internally fused double [3]). The space D = G × G is a

quasi-Hamiltonian G-space with G acting by diagonal conjugation (g(a, b) =

(gag−1, gbg−1)), moment map given by the group commutator

µ(a, b) = aba−1b−1

and two-form

ωD = −1

2
(a∗θ, b∗θ)− 1

2
(a∗θ, b∗θ)− 1

2
((ab)∗θ, (a−1b−1)∗θ).

These are both special cases of the following result. Let Σ be a compact

connected Riemann surface with boundary. Let g be the genus of Σ and let

m be the number of boundary components. (We assume m ≥ 1.) Choose a

basepoint bi on the ith boundary component for each i = 1, . . . ,m. Let

Π = Π1(Σ, {b1, . . . , bm})

be the fundamental groupoid of Σ with basepoints {bi}, i.e. the groupoid of

homotopy classes of paths in Σ whose endpoints are in the set of chosen base-

points.

Theorem 2.5. The space Hom(Π,G) of homomorphisms from the groupoid

Π to the group G is a smooth quasi-Hamiltonian Gm-space.
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Proof. This is just a slightly more intrinsic restatement of [3, Th. 9.1].

Choosing suitable paths generating Π identifies Hom(Π, G) with G2(g+m−1)

and in turn with the reduction of the fusion product (see below) D~g ~D~m

by the diagonal action of G at the identity value of the moment map. Then one

can check that the result is independent of the chosen generating paths. �

If Σ is disconnected (and each component has at least one boundary

component), then the same result holds, taking the product of the quasi-

Hamiltonian spaces attached to each connected component.

2.2. Operations. The fusion product, which puts a ring structure on the

category of quasi-Hamiltonian G-spaces, is defined as follows.

Theorem 2.6 ([3]). Let M be a quasi-Hamiltonian G × G × H-space,

with moment map µ = (µ1, µ2, µ3). Let G×H act by the diagonal embedding

(g, h)→ (g, g, h). Then M , with two-form

(3) ω̃ = ω − 1

2
(µ∗1θ, µ

∗
2θ)

and moment map

µ̃ = (µ1 · µ2, µ3) : M → G×H,
is a quasi-Hamiltonian G×H-space.

We will refer to the extra term subtracted off in (3) as the “fusion term”.

If Mi is a quasi-Hamiltonian G×Hi space for i = 1, 2, their fusion product

M1 ~M2

is defined to be the quasi-Hamiltonian G ×H1 ×H2-space obtained from the

quasi-Hamiltonian G×G×H1 ×H2-space M1 ×M2 by fusing the two factors

of G.

This is set up so that it corresponds to gluing two boundary components

into two of the holes of a three-holed sphere. More precisely, suppose Σ1

is a (possibly disconnected) surface with boundary. We choose two distinct

boundary components and construct a new surface Σ2 by gluing the two chosen

boundary components of Σ1 into two of the holes of a three-holed sphere. Let

Mi be the quasi-Hamiltonian space attached to Σi via Theorem 2.5 (repeating

for each connected component if necessary) for i = 1, 2. Then M2 is isomorphic

to the space obtained by fusing the two G factors of M1 corresponding to the

two chosen boundary components. (For example, if Σ1 is the annulus, this

explains the name “internally fused double”.)

Now let us recall the quasi-Hamiltonian reduction theorem:

Theorem 2.7 ([3]). Let M be a quasi-Hamiltonian G × H-space with

moment map (µ, µH) : M → G×H , and suppose that the quotient by G of the
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inverse image µ−1(1) of the identity under the first moment map is a manifold.

Then the restriction of the two-form ω to µ−1(1) descends to the reduced space

(4) M//G := µ−1(1)/G

and makes it into a quasi-Hamiltonian H-space. In particular, if H is abelian

(or in particular trivial), then M//G is a complex symplectic manifold.

Next we recall that the quotient of a quasi-Hamiltonian G-space by G is

Poisson. This result will be used in the following form.

Proposition 2.8. Suppose M is a smooth affine variety with the struc-

ture of quasi-Hamiltonian G-space. Then the (geometric invariant theory)

quotient M/G is a Poisson variety.

Proof. It is well known ([3, 4.6]) that the ring of G-invariant functions

on M is a Poisson algebra (see also [2, §6], [1, §5.4]). But by definition the

geometric invariant theory quotient is the affine variety associated to the ring

of G-invariant functions on M , and so is Poisson. �

Note that the points of the geometric invariant theory quotient correspond

bijectively to the closed G-orbits in M and so, in general, it is different from the

set-theoretic quotient. Alternatively one may view the points of the geometric

invariant theory quotient as parametrising the quotient of M by a stronger

equivalence relation than orbit equivalence (S-equivalence): two points of M

are S-equivalent if their orbit closures intersect. (One may also consider other

geometric invariant theory quotients, by using a nontrivial linearisation, but

we will ignore these here for brevity.) Note that unless otherwise stated M/G

will denote the geometric invariant theory quotient, and M//G will denote the

complex quasi-Hamiltonian quotient (4) (i.e. the geometric invariant theory

quotient of the subvariety µ−1(1) ⊂M).

2.3. Gluing M L N . It is convenient to formalise the (well-known) notion

of gluing quasi-Hamiltonian spaces as follows. Given a quasi-Hamiltonian G×
G×H-space M , we may fuse the two G factors to obtain a quasi-Hamiltonian

G ×H space. Then, if the quotient is well defined, we may reduce by the G

factor (at the identity of G) to obtain a quasi-Hamiltonian H-space, the gluing

of the two G-factors. Thus for example if Mi is a quasi-Hamiltonian G ×Hi-

space for i = 1, 2, then M1 and M2 may be glued to obtain a quasi-Hamiltonian

H1 ×H2 space (if it is a manifold) by gluing their product:

M1 L
G
M2 := (M1 ~

G
M2)//G.

If the factors being glued are clear from the context, this will be abbrevi-

ated to M1 L M2. In most of the cases we will consider the G-action will be

free with a global slice so there is no problem performing the gluing. Note that
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whereas fusion is only commutative up to isomorphism, the gluing operation

is actually commutative (when it is defined).

2.4. Van den Bergh’s quasi-Hamiltonian spaces B(V,W ). Choose two finite-

dimensional complex vector spaces V,W , and define

(5) B(V,W ) = {(a, b) ∈ Hom(W,V )⊕Hom(V,W )
∣∣∣ det(1 + ab) 6= 0}.

The automorphism groups GL(V ) and GL(W ) of V and W naturally induce

an action of GL(V )×GL(W ) on B(V,W ).

Theorem 2.9. ([63], [64], [69]) B(V,W ) is a quasi-Hamiltonian GL(V )×
GL(W )-space. The moment map is

(6) (a, b) 7→ ((1 + ab)−1, 1 + ba) ∈ GL(V )×GL(W ),

and the two-form is

(7) ω =
1

2

Ä
TrV (1 + ab)−1da ∧ db− TrW (1 + ba)−1db ∧ da

ä
.

An alternative proof will follow from Theorems 3.1 and 4.2 below. Hence-

forth the notation “(a, b) ∈ B(V,W )” will always mean a ∈ Hom(W,V )

and b ∈ Hom(V,W ) with 1 + ab invertible, analogously to the convention

that (p, q) ∈ T ∗Hom(V,W ) means q ∈ Hom(V,W ) and p ∈ Hom(W,V ) =

Hom(V,W )∗. Note that such spaces (without the quasi-Hamiltonian struc-

ture) are familiar from the explicit description of the local classification of

regular holonomic D-modules on a curve (see e.g. [24], [48], [50]).

3. Higher fission spaces

In this section we will describe some new algebraic quasi-Hamiltonian

spaces. Later it will be explained how these spaces arise from considering the

explicit local classification (in terms of Stokes data) of some simple irregular

connections on curves and how they may be glued together to construct some

much more complicated spaces of Stokes data classifying irregular meromorphic

connections on curves.

Let G be a connected complex reductive group, and choose a parabolic

subgroup P+ ⊂ G and a Levi subgroup H ⊂ P+. Let P− ⊂ G be the (unique)

opposite parabolic with Levi subgroup H ⊂ P− so that P−P+ is dense in G

(see e.g. [23, p. 199]). Let U± ⊂ P± be the corresponding unipotent radicals.

For example, if G is a general linear group so that G = GL(V ) for a finite-

dimensional complex vector space V , then choosing a parabolic subgroup of

G together with a Levi subgroup is equivalent to choosing an ordered grading
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of V , i.e. to choosing a direct sum decomposition

V =
k⊕
1

Vi

for some integer k ≥ 1. By convention we then take the subgroup P+ ⊂ G to

be the subgroup stabilising the flag

F1 ⊂ F2 ⊂ · · · ⊂ Fk = V,

where Fi = V1 ⊕ · · · ⊕ Vi, and H =
∏

GL(Vi) ⊂ G. Thus in an adapted basis

U+ is the subgroup of block upper triangular matrices with 1’s on the diagonal

and H is the block diagonal subgroup.

Now fix an integer r ≥ 1 and define a space

GArH := G× (U+ × U−)r ×H.

In the case r = 1 the superscript will be omitted so that GAH = GA1
H .

A point of GArH is given by specifying C ∈ G, h ∈ H and S ∈ (U+×U−)r

with S = (S1, . . . , S2r) where Seven ∈ U− and Sodd ∈ U+. There is an action of

G×H on GArH given by

(g, k)(C,S, h) = (kCg−1, kSk−1, khk−1),

where (g, k) ∈ G×H and kSk−1 = (kS1k
−1, . . . , kS2rk

−1).

Note that the only choices involved here are G,P+ and the Levi subgroup

H (i.e. a lifting to P+ of the Levi factor P+/U+
∼= H). Sometimes it will be

convenient to denote the same space also byHArG. In the general linear case, an

ordered graded vector space V thus determines a space GArH for each integer

r ≥ 1, and we will denote them by

Ar(V1, . . . , Vk) = GArH ,

or by Ar(V ) if the choice of ordered grading of V is clear (and as before

A(V ) = A1(V )).

The main result we will prove in this section is the following.

Theorem 3.1. Suppose G is a complex reductive group and H ⊂ P+ ⊂ G
are chosen as above. Then GArH is a quasi-Hamiltonian G × H-space, with

moment map

µ(C,S, h) = (C−1hS2r · · ·S2S1C, h−1) ∈ G×H.

In general, these spaces GArH will be referred to as “higher fission spaces”

(enabling one to break the group from G to H).
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Examples. (1) If P+ = G = H, then GArH is the double G×G of [3].

(2) When P+ is a Borel subgroup, so that H is a maximal torus, we may

pass to a covering to obtain the spaces C̃ = G× (U+ ×U−)r × h of [15], where

h = Lie(H).

(3) When r = 1 (and P+ arbitrary), the spaces GArH specialise to the

spaces GAH of [18]. They always have dimension 2 dim(G) and (up to passing

to a covering) interpolate between the double G × G (which appears when

H = G) and G × G∗, where G∗ is the dual Poisson Lie group of G (which

appears when H is a maximal torus).

(4) Next suppose r = 2. We perform the reduction by G of GArH at the

value 1 of the moment map. The resulting space is

(8)
{

(S1, S2, S3, S4, h) ∈ U+ × U− × U+ × U− ×H
∣∣∣ hS4S3S2S1 = 1

}
.

This inherits the structure of quasi-Hamiltonian H-space with moment map

h−1. (It is symplectic if H is a maximal torus as in [15]). By forgetting

h, S3, S4, this space (8) embeds as the (open) subset of U+ × U− consisting of

pairs (S1, S2) such that S2S1 ∈ P+P− ⊂ G. In Theorem 4.2 we will establish

the following statement:

If G is a general linear group and P+ is a maximal proper par-

abolic subgroup, then the spaces (8) coincide with the Van den

Bergh spaces (5).

One of the main features that appears in the general parabolic case is

the possibility to glue such fission spaces end-to-end. If one does this for a

decreasing sequence of nested Levi subgroups (and decreasing exponents r)

then, as will be shown in Section 7, all the complicated spaces that arise in

this way actually appear as spaces of (framed) Stokes data for meromorphic

connections on curves.

Proof of Theorem 3.1. Define maps Ci : GArH → G by

Ci = Si · · ·S2S1C

so that C = C0. Define b = hS2r · · ·S2S1 : GArH → G so that the G component

of the moment map µ is C−1bC. This enables us to define the following g-valued

one-forms on GArH :

γi = C∗i (θ), γi = C∗i (θ), η = h∗(θH), β = b∗(θ),

where θ, θ are the Maurer–Cartan forms on G (and θH , θH are the Maurer–

Cartan forms on H). We may then define a two-form ω on GArH by the

formula

(9) 2ω = (γ,Adbγ) + (γ, β) + (γm, η)−
m∑
i=1

(γi, γi−1),
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where m = 2r and γ = γ0, and the brackets ( , ) denote the bilinear form on g.

We will show GArH is a quasi-Hamiltonian G ×H-space with this two-form.

First, since we will use it often, note that the invariance of the bilinear form

implies the pairing ( , ) : g⊗ g→ C restricts to zero on u± ⊗ (h⊕ u±) and is

nondegenerate on h⊗ h, where h = Lie(H), u± = Lie(U±).

Proof of (QH1). To simplify the notation write M = GArH and m = 2r.

Lemma 3.2. Suppose A,B, S : M → G are maps such that A = SB and S

takes values in a fixed unipotent (isotropic) subgroup of G. Let α = A∗(θ), β =

B∗(θ). Then

3d(α, β) = (β3)− (α3) ∈ Ω3(M, g).

Proof. Since S = AB−1 the element σ := S∗(θ) is conjugate to α− β and

so

0 = (σ3) = (α3)− (β3) + 3(αβ2)− 3(α2β).

Then observe the Maurer–Cartan equations imply d(α, β) = −(α2β) + (αβ2).

�

Corollary 3.3. 3
∑m
i=1 d(γi, γi−1) = (γ3)− (γ3m), where γ = γ0.

Proof. Lemma 3.2 implies 3d(γi, γi−1) = (γ3i−1) − (γ3i ), and so the sum

collapses. �

For the proof of (QH1), write µ = (µG, µH), where µG = C−1bC, µH =

h−1. Then µ∗G(θ) is conjugate to β + γ − b−1γb and a direct calculation shows

µ∗G(θ3) = (β3) + 3(γβ2) + 3(γ2β) + 3d(γ, β + Adbγ).

Thus from this and Corollary 3.3, showing µ∗(θ3) = 6dω reduces to verifying

that

(β3) + 3(γβ2) + 3(γ2β)− (η3) = (γ3m)− (γ3) + 3(γmη
2) + 3(γ2mη).

But, swapping the sides of (η3) and (γ3), this amounts to showing ((β+γ)3) =

((η + γm)3), and this is a simple consequence of the fact that (by definition)

bC = hCm.

Proof of (QH2). First, considering just the G action since µG = C−1bC

we have

(10) µ∗G(θ + θ) = C−1(β + β)C + C−1(bγb−1 − b−1γb)C.

If X ∈ g and we use primes to denote derivatives along the corresponding

fundamental vector field vX , then γ′ := 〈vX , γ〉 = X, γ′ = CXC−1, β′ = η′ = 0.

This enables us to compute

2ω(vX , ·) = (X,Ad(C−1b)γ −Ad−1(bC)γ + Ad−1C β + Ad−1Cmη + γm − γ).
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Comparing with (10) we see this agrees with (X,µ∗G(θ + θ)) provided the re-

lation Ad−1Cmη + γm − γ = C−1βC holds—but this follows easily from the fact

that hCm = bC. Secondly, for the H action, since µH = h−1, we have

(11) µ∗H(θ + θ) = −η − η.

Now if X ∈ h, then γ′i = −X, γ′i = −C−1i XCi and β
′

= bXb−1 − X, η′ =

X − h−1Xh. This enables us to compute that 2ω(vX , ·) = (X,α) where

α := −Adbγ − β + γ − η − γm + Adhγm +
m∑
1

AdCiγi−1 −AdCi−1γi.

Now AdCiγi−1 = γi − σi and AdCi−1γi = γi−1 + σi where σi = S∗i (θ), so

(since σi pairs to zero with X ∈ h) the summation in the expression for α

may be simplified to
∑m

1 γi − γi−1 = γm − γ, which cancels with other terms

in α, yielding 2ω(vX , ·) = −(X,Adbγ + β + η − Adhγm). In turn this equals

−(X, η + η) (as expected from (11)) since h = bCC−1m . This completes the

proof of (QH2).

Proof of (QH3). Fix a point p ∈M and a vector v ∈ Ker(ω) ∩Ker(dµ) ⊂
TpM . Thus our aim is to show that v is zero. If we let primes denote com-

ponents along v, then η′ := 〈η, v〉 = 0 since v ∈ Ker dµH . Similarly since

v ∈ Ker dµG, we have

(12) β′ = b−1γ′b− γ′.

In order to use the condition that v ∈ Kerω, we note that ω may be expanded

as follows. Write [ij] = SiSi−1 · · ·Sj for any i ≥ j.

Lemma 3.4.

2ω = (γ,Adbγ) + (γ, η) + (Ad[m1]γ, η)

+
m∑
i=1

(Ad[mi]σi, η) + (γ,Adh[mi]σi)− (σi,Ad[i1]γ)−
∑
j<i

(σi,Ad[ij]σj).

Proof. Since Ci = SiCi−1, γi = γi−1 + C−1i−1σiCi−1 and so (γi, γi−1) =

(σi, γi−1), and inductively γi = Ad[i1]γ +
∑i
j=1 Ad[ij]σj . Therefore the term

−∑m
1 (γi, γi−1) yields the last two terms of the displayed expression, and

(γm, η) yields the third and fourth terms. Finally since b = hSm · · ·S1, it

follows that β = η +
∑m

1 Adh[mi]σi, and so (γ, β) yields the second and fifth

terms. (For later use note β = Ad−1[m1]η +
∑

Ad−1[i1]σi.) �

Thus if u ∈ TpM is arbitrary, it follows directly that

2ω(v, u) = (Γ, γ̇) + (H, η̇) +
∑

(∆i, σ̇i),
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where the dots denote u components, and

Γ = b−1γ′b− bγ′b−1 −
∑

Adh[mi]σ
′
i −

∑
Ad−1[i1]σ

′
i,

H = Ad−1h γ′ + Ad[m1]γ
′ +

∑
Ad[mi]σ

′
i,

∆i = Ad−1h[mi]γ
′ + Ad[i−1,1]γ

′ −
∑
j>i

Ad−1[ji]σ
′
j +

∑
j<i

Ad[i−1,j]σ
′
j .

Now from (12) and its conjugate by b (and the expansion of β) it follows

that Γ = 0. Similarly it follows that H = 2h−1γ′h, and so the vanishing of

ω(v, u) for all u implies πh(γ
′) is zero, where πh : g→ h is the projection. The

only other information we have is that ∆i is orthogonal to ui for each i, i.e.

∆i ∈ h⊕ ui (where ui ⊂ g is the Lie algebra containing σ̇i). This implies v = 0

as follows. First observe that the expression for ∆i implies

(13) AdSi∆i −∆i+1 = −σ′i − σ′i+1

for i = 1, . . . ,m− 1. Applying πh to this we see that πh(∆i) = πh(AdSi∆i) =

πh(∆i+1), and we define κ = πh(∆i) ∈ h to be this common value. Now define

Ti = AdSi∆i + σ′i+1 = ∆i+1 − σ′i.

Then due to the orthogonality conditions on the ∆i it follows that Ti = σ′i+1−
σ′i + κ. Thus ∆i + σ′i = Ad−1Si (κ). Taking i = 1 and expanding ∆i, this says

b−1γ′b+ γ′ −
∑
j>1

Ad−1[j1]σ
′
j + σ′1 = Ad−1S1

(κ).

In turn, since β′ =
∑

Ad−1[j1]σ
′
j = b−1γ′b− γ′, this reduces to

(14) 2(γ′ + σ′1) = Ad−1S1
(κ).

Then taking the h component implies κ = 0, and thus ∆i = −σ′i. Then from

(13), −σ′i + σ′i+1 = −σ′i − σ′i+1 and so σ′i+1 = 0 (for i = 1, . . . ,m − 1). In

particular, ∆m = 0, and the expression for ∆m now simplifies to

∆m = Ad−1hSmγ
′ + Ad[m−1,1]γ

′ + Ad[m−1,1]σ
′
1 = 0.

Thus b−1γ′b+ γ′ + σ′1 = 0. Using (14) this implies γ′ = 0 and in turn σ′1 = 0.

Thus all the components of v are zero and (QH3) is established. �

3.1. Pictures. We will draw pictures of two ways one might want to think

about the higher fission spaces. The first is helpful to keep track of the mon-

odromy relations, and the second expresses the possible ways to glue surfaces

together. For general linear groups, an alternative viewpoint is possible in

terms of graphs (see [21]).

First recall the standard way to obtain the double G × G (from [3]):

one takes an annulus Σ (in the complex plane) with a marked point on each

boundary circle. Then the moduli space of flat C∞ connections on G bundles
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Figure 1. One way to picture the fission spaces

over Σ, together with a framing at each marked point, is naturally a quasi-

Hamiltonian G × G space. Choosing two paths generating the fundamental

groupoid of Σ (based at the two marked points) enables one to identify the

moduli space with G×G (taking the monodromy of the connections along the

chosen generating paths).

One may picture the fission spaces GArH in a similar way by puncturing

the annulus at 2r equally spaced points in its interior, as in Figure 1. (The

usual picture for the double is obtained if r = 0.) Note that this is not quite

“what is actually happening” in the derivation of these spaces in terms of the

Stokes phenomenon but nonetheless is sometimes useful. In some sense, in

the Stokes phenomenon, the inner circle should be shrunk to zero and the

punctures pushed into origin, forming part of the “analytic halo” of [51]. One

of the surprises of the present article is that one does in fact, nonetheless,

get genuine quasi-Hamiltonian spaces in this way. (So the quasi-Hamiltonian

framework does indeed go beyond the context of flat connections on surfaces

with boundary.) In later sections we will in fact take this viewpoint quite

seriously and use it (in Section 8) to define the basic topological objects: Stokes

representations and Stokes G-local systems.

The second picture explains the name fission and occurs if the group H

may be written as a product H = H1×H2 of two groups. (The generalisation

to arbitrarily many factors is immediate.) For example if G is a general linear

group this is always the case, unless H = G. On the Lie algebra level, the

Dynkin diagram of H arises by deleting some nodes in the Dynkin diagram of

G (i.e. breaking that of G into pieces). Then it is more accurate to replace the

annulus by the product of a circle and a Y shaped piece since one may glue on

both a quasi-Hamiltonian H1-space and a quasi-Hamiltonian H2-space. Indeed

if we draw a dashed line to represent the analytic halo (through the punctures

added above), then after crossing this halo the pieces of surface may drift apart

yielding Figure 2.
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∼=

G

H1 H2

G

H

Figure 2. Another way to picture the fission spaces

3.2. Fission varieties. Thus we now have a large supply of quasi-Hamil-

tonian spaces and may glue them together and perform the reduction operation

to obtain many symplectic manifolds.

Definition 3.5. A “fission variety” is a symplectic or quasi-Hamiltonian

variety obtained via the operations of fusion and reduction on spaces of the

form

(a) conjugacy classes C ⊂ G in arbitrary complex reductive groups G,

(b) fission spaces GArH , and

(c) tame fission spaces M ∼= (G× P )/U of [19, Th. 9].

Many classes of algebraic symplectic manifolds arise as examples:

(1) The result of Section 4 below implies that all of the multiplicative

quiver varieties of Crawley–Boevey and Shaw [27] (attached to arbitrary

graphs) are examples of fission varieties.

(2) Since the double G × G is a special case of a fission space, the com-

plexification of the results of [3] show that moduli spaces of G valued repre-

sentations of the fundamental group of Riemann surfaces with boundary are

fission varieties.

(3) More generally, one may consider the parabolic and parahoric exten-

sions of the spaces in (2) by considering tame meromorphic connections on

parahoric torsors over smooth compact algebraic curves. The tame fission

spaces enable us to capture the corresponding Betti spaces as fission spaces

too (cf. [19]); for G a general linear group, such spaces appear in Simpson’s

Riemann–Hilbert correspondence [59] revisited from a quasi-Hamiltonian view-

point by Yamakawa [69].

(4) Still more generally, one may consider spaces of monodromy and Stokes

data classifying arbitrary (unramified) meromorphic connections on G-bundles

on smooth algebraic curves (and, in turn, on parahoric torsors). In later sec-

tions of this paper we will show that these are also examples of fission varieties.
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This example was our main motivation and provides the symplectic Betti de-

scription of all the hyperkähler manifolds of [10], together with the analogous

spaces for arbitrary reductive groups G.

Many other, more exotic, examples are possible however. (An explicit

example is described in [18].) To see how special the above spaces (1)–(4) are,

note that the fission varieties in (1) only involve products of general linear

groups (they provide a link to graphs and then to Kac–Moody root systems).

On the other hand, the fission varieties in (2), (3) and (4) privilege one fixed

reductive group G.

4. Derivation of B(V,W )

Now we will specialise to r = 2 and show that the Van den Bergh spaces

B(V,W ) arise from the fission spaces. Recall that if r = 2 and we perform the

reduction by G of GArH at the value 1 of the moment map, then the resulting

space is

(15)
{

(S1, S2, S3, S4, h) ∈ U+ × U− × U+ × U− ×H
∣∣∣ hS4S3S2S1 = 1

}
.

This inherits the structure of quasi-Hamiltonian H-space with moment map

h−1. (It is symplectic if H is a maximal torus as in [15].) By forgetting

h, S3, S4, this space (15) embeds as the (open) subset of U+×U− consisting of

pairs (S1, S2) such that S2S1 ∈ P+P− ⊂ G. The quasi-Hamiltonian two-form

on (15) (obtained by restricting that on GA2
H to the subset where C = b = 1)

is

(16) ω =
1

2

Ä
(γ1, γ2) + (γ2, γ3)

ä
with γi = C∗i (θ), and now Ci = Si · · ·S1 (since C = 1). Now we will further

specialise to the case of a maximal proper parabolic subgroup of a general

linear group. Thus suppose we are given two complex vector spaces V,W , take

G = GL(V ⊕W ) and choose P+ to be the block upper triangular subgroup

(and H ∼= GL(V )×GL(W ) to be the block diagonal subgroup). Then we may

write

S1 =

Ç
1 a

0 1

å
, S2 =

Ç
1 0

b 1

å
, S3 =

Ç
1 c

0 1

å
, S4 =

Ç
1 0

f 1

å
, h =

Ç
x 0

0 y

å
where a, c ∈ Hom(W,V ), b, f ∈ Hom(V,W ), x ∈ GL(V ) and y ∈ GL(W ). One

may then check that the relation hS4S3 = S−11 S−12 from (15) is equivalent to

the equations

(17) x = 1 + ab, y = (1 + ba)−1, c = −x−1a, f = −(b+ bab).

Thus in this case the space (15) is isomorphic to the space

{(a, b) ∈ Hom(W,V )⊕Hom(V,W )
∣∣∣ det(1 + ab) 6= 0} = B(V,W ).
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Further note that the moment map h−1 on (15) has components (x−1, y−1)

coinciding with the moment map (6) on B(V,W ). Finally we verify that the

two-forms agree.

Lemma 4.1. In the coordinates (a, b), the two-form (16) equals

1

2

Ä
TrV (1 + ab)−1da ∧ db− TrW (1 + ba)−1db ∧ da

ä
.

Proof. This is a direct calculation, which may be done completely al-

gebraically. We start with a sum of words in the noncommuting symbols

da, db, a, b, y (noting that x−1 = 1 − ayb) and then use bay = 1 − y = yba to

simplify the result (also using the cyclicity of the trace). We find4 (γ1, γ2) =

Tr(da ∧ db), (γ2, γ3) = −Tr(ydb ∧ da)− Tr(aybda ∧ db), and the result follows

since x−1 = 1− ayb. �

This agrees with the quasi-Hamiltonian two-form (7) on B(V,W ). In other

words, we have established the following theorem.

Theorem 4.2. If G = GL(V ⊕W ) and H = GL(V )×GL(W ), then the

map

A2(V,W )//G→ B(V,W ); (h, S1, S2, S3, S4) 7→ (a, b)

is an isomorphism of quasi-Hamiltonian H-spaces, where a, b are the nontrivial

matrix entries of S1, S2 respectively.

The spaces B(V,W ) are the basic building blocks for the multiplicative

quiver varieties of Crawley-Boevey–Shaw [27].

Corollary 4.3. Any multiplicative quiver variety (in the sense of [27])

is a fission variety.

Proof. The multiplicative quiver varieties are obtained by fusing together

many copies of spaces of the form B(V,W ) and then reducing at certain (cen-

tral) conjugacy classes to obtain a symplectic manifold. So the result is imme-

diate from Theorem 4.2. �

Theorem 4.2 suggests how to find other building blocks, such as B(U, V,W )

:= A2(U, V,W )//G, to construct more general multiplicative quiver varieties.

This will be taken up in [21]. (It also suggests how one might define analogues

of multiplicative quiver varieties for groups besides general linear groups by

considering the reductions Br := GArH//G in general, e.g. if H = H1 ×H2.)

4Using a symbolic manipulation program.
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Remark 4.4. Note that Van den Bergh [63], [64] constructs some “non-

commutative quasi-Hamiltonian spaces” such that after choosing a linear rep-

resentation, one obtains a genuine quasi-Hamiltonian structure. Presumably

there are noncommutative quasi-Hamiltonian spaces that yield the higher fis-

sion spaces (in the general linear case) upon choosing a representation. (And

maybe one can prove this by rewriting the algebraic proofs of (QH1)–(QH3).)

However it is unclear if one could obtain the higher fission spaces for other

reductive groups in this way, and this seems important for some applications.

5. Basic properties

In this section we will establish some basic properties of the spaces GArH .

5.1. Isomonodromy isomorphisms I. Suppose P+ ⊂ G is a parabolic with

Levi subgroup H ⊂ P+ and opposite parabolic P−. Write A = GArH for

the fission space associated to (P+, H) and A′ for the corresponding space

associated to (P−, H), i.e. with the roles of P+ and P− swapped.

An isomorphism Θ between the spaces A and A′ may be defined as follows.

Suppose (C, h,S) ∈ A, then define (D, g,T) = Θ(C, h,S) ∈ A′ by the formulae

Ti = Si+1 for i = 1, . . . ,m− 1

Tm = h−1S1h, D = S1C, g = h,

where m = 2r. Then it is clear that D−1hTm · · ·T1D = C−1hSm · · ·S1C, so

the moment maps match up.

D

T1

T2 T3

T4
C

S4

S1

S2

S3

h h

Figure 3.

Proposition 5.1. The map Θ is an isomorphism of quasi-Hamiltonian

G×H spaces.
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Proof. Let Di = Ti · · ·T1D so that Di = Ci+1 if i < m and Dm =

h−1S1hCm. Let p = hTm · · ·T1 = S1bS
−1
1 . Thus the aim is to verify that

the expression (9) for 2ω on A equals

(18) (δ,Adpδ) + (δ,P) + (δm, η)−
m∑
i=1

(δi, δi−1)

when the variables are related in this way, where δi = D∗i (θ) and P = p∗(θ)

etc. First δ = σ1 + S1γS
−1
1 , where σ1 = S∗1(θ), so that

(19) (δ,Adpδ) = (σ1, bσ1b
−1) + (γ, bσ1b

−1) + (σ1, bγb
−1) + (γ, bγb−1).

Next, since P = σ1 + S1βS
−1
1 −Ad(S1b)σ1, it follows that

(20) (δ,P) = (σ1, β)− (σ1, bσ1b
−1) + (γ, σ1)− (γ, bσ1b

−1) + (γ, β).

Upon summing these two expression, four terms cancel, the first two terms of

2ω are obtained and there are three remaining terms. Now

δm = γm + C−1m ηCm + Ad−1(hCm)σ1 −Ad−1(S1hCm)η,

so the next terms of (18) are

(21) (δm, η) = (Ad(S1h)γm, η)

since the other terms are zero, and

(22) −
m−1∑
1

(δi, δi−1) = −
m∑
2

(γi, γi−1)

and finally

(23) − (δm, δm−1) = −(δm, γm) = −(η, γm)− (h−1σ1h, γm) + (Ad−1(S1h)
η, γm).

Now (21) cancels the last term of (23), and clearly all the remaining terms of

2ω are obtained except −(γ1, γ0). But this equals −(σ1, γ), which is in (20).

Thus to finish we need to check that the leftover terms disappear. These are

(σ1, bγb
−1 + β − hγmh−1), and they vanish since hCm = bC (and η pairs to

zero with σ1). �

In fact the same proof also yields a more general statement (one may

first break up the unipotent groups into a direct spanning decomposition); see

Section 6.2. Note that Θ−m (the mth power of the inverse of Θ) coincides

with the “twist automorphism” of [3, Th. 4.5], related to the Dehn twist of

two-manifolds.
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Example 5.2. Suppose r = 2. We take G = GL(V ⊕W ), H = GL(V ) ×
GL(W ) with P+ the block upper triangular subgroup of G, as in Section 4.

Then the isomonodromy isomorphism of Proposition 5.1 is

A → A′;(24)

(C, h, S1, S2, S3, S4) 7→ (S1C, h, S2, S3, S4, h
−1S1h).

Reducing by G thus yields a commuting square of isomorphisms of quasi-

Hamiltonian H-spaces:

A//G
∼=−→ A′//Gy∼= y∼=

B(V,W )
∼=−→ B(W,V )

(a, b) 7→ (b,−(1 + ab)−1a),

where the top isomorphism is induced from (24), the left-hand isomorphism is

that of Theorem 4.2 (taking the nontrivial matrix entries (a, b) of S1, S2) and

the right-hand isomorphism is the analogue for A′, i.e. taking the nontrivial

matrix entries (b, c) of S2, S3. Thus the isomorphism along the bottom is

(a, b) 7→ (b, c),f where c = −(1 + ab)−1a as in (17). This is the map used in

[27] to reverse the orientation of the edges of multiplicative quiver varieties.

5.2. Conjugacy isomorphisms. Suppose that P ⊂ G is a parabolic sub-

group with Levi subgroup H ⊂ P . Suppose φ is an automorphism of G pre-

serving H and the inner product on g. Then Q = φ(P ) is again a parabolic

of G with Levi subgroup H. A basic example is if P is a Borel and H is a

maximal torus, and φ is the inner automorphism obtained by conjugating by

an element of the normaliser of H (representing an element of the Weyl group

N(H)/H).

Write A = GArH for the space associated to (P,H) and A′ for the cor-

responding space attached to (Q,H). Then the map A → A′ defined by φ is

clearly an isomorphism of spaces and relates the quasi-Hamiltonian two-forms.

(But it is not an isomorphism of quasi-Hamiltonian spaces since it does not

relate the moment maps if φ acts nontrivially on G ×H.) Nonetheless, upon

reduction the fact the two-forms are related implies the resulting symplectic

manifolds will be isomorphic.

For example if H is a maximal torus then A/G and A′/G will be isomor-

phic Poisson manifolds, with an isomorphism given by φ. (Up to a covering, if

r = 1, these spaces are two realisations of the dual Poisson Lie group G∗, and

examples of such isomorphisms appear in [13, Lemma 3.5].)

5.3. Inversion anti-isomorphisms. We will say a map φ : M → N between

two quasi-Hamiltonian G-spaces is an anti-isomorphism if it is an isomorphism
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of spaces and negates the two-form and inverts the moment map, i.e.

φ∗(ωN ) = −ωM , µN ◦ φ = ι ◦ µM : M → G,

where ι : G → G is the inverse map. A simple example is the ‘flip’ anti-

isomorphism

(25) B(V,W )→ B(W,V ); (a, b) 7→ (b, a).

Now suppose P+ ⊂ G is a parabolic subgroup with Levi subgroup H ⊂ P
and opposite parabolic P−. Write A = GArH for the space associated to

(P+, H) and A′ for the corresponding space associated to (P−, H), i.e. with

the roles of P+ and P− swapped.

Proposition 5.3. The map A → A′; (C, h,S) 7→ (C, h−1,T) where

Ti = hS−1m+1−ih
−1

is an anti-isomorphism of quasi-Hamiltonian G×H-spaces.

Geometrically this corresponds to reversing the orientation.

Proof. Suppose we change coordinates on A as follows:

di = h−1S−1m+1−ih, ei = Si

for i = 1, . . . , r (with m = 2r as usual), and set

Di = di · · · d1C, Ei = ei · · · e1C.

In particular, now C = E0 = D0, and we define E = Er, D = Dr so that the

G component of the moment map is µG = D−1hE. Then one may check that

the expression (9) for 2ω on A equals

(D,AdbE) + (D, η) + (E , η) +
r∑
i=1

(Di,Di−1)− (Ei, Ei−1)

where Di = D∗(θ), Ei = E∗(θ), etc. Now the map to A′ corresponds to swap-

ping Di and Ei for each i (i.e. to swapping di and ei) and inverting h. Then it

is clear that the expression for ω is negated. �

Note that the maps

(26) A → A; (C, h,S) 7→ (hC, h, hSh−1)

and

(27) A → A; (C, h,S) 7→ (b−1C, h,S)

are both quasi-Hamiltonian automorphisms ofA = GArH where b = hSm · · ·S1.
(If p = (C, h,S) ∈ A, then the first map is p 7→ µH(p) · p and the second is

p 7→ µG(p) ·p, so this follows from [3] Remark 4.2.) Thus one can conjugate the

above inversion anti-isomorphism in various ways to get equivalent versions.
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6. Further properties

This section will establish some further properties, which will be useful

later on. First it is convenient to consider more general products of unipotent

groups. Fix a connected complex reductive group G and a subgroup H ⊂
G such that H is a Levi subgroup of some parabolic subgroup of G. Then

define an “ordered set of unipotent subgroups of G subordinate to H” to be a

collection U = (U1, . . . Um) of unipotent subgroups Ui ⊂ G such that

(1) for each i, there is a parabolic subgroup Pi ⊂ G such that H ⊂ Pi is

a Levi subgroup, and Ui ⊂ Radu(Pi) is a subgroup of the unipotent

radical of Pi, and

(2) each Ui is normalised by H, i.e. conjugation by any h ∈ H preserves

each Ui.

Eventually more specific collections of subgroups will be considered, but

this definition is convenient to establish some inductive statements needed

later. Given such an ordered set of unipotent subgroups U , consider the space

A = G×H × U

with two-form ω specified (as usual) by

(28) 2ω = (γ,Adbγ) + (γ, β) + (γm, η)−
m∑
i=1

(γi, γi−1),

i.e. as in (9), but now with Si ∈ Ui. (The other notations are the same so, for

example, b = hSm · · ·S1, Ci = Si · · ·S1C.) Note that there is still an action of

G×H on A (via the same formulae as before) which preserves ω. Moreover the

map µ = (C−1bC, h−1) from A to G ×H is well defined and equivariant. Of

course at this level of generality, ω will not necessarily be a quasi-Hamiltonian

two-form on A.

6.1. Direct spanning equivalence. Suppose now that V1, . . . , Vk are consec-

utive subgroups in U for some integer k (i.e. for some i, that V1 = Ui, V2 =

Ui+1, . . . , Vk = Ui+k−1). Then define

W = Vk · · ·V1 = {Sk · · ·S1 ∈ G
∣∣∣ Si ∈ Vi} ⊂ G.

Suppose further that W is “directly spanned” by the Vi, i.e. W is a unipotent

subgroup of G and the product map Vk × · · · × V1 → W is an isomorphism

of varieties (but not necessarily of groups); cf. Borel [23, §14.3]. Then we can

consider a new ordered set of unipotent subgroups U ′ by deleting Ui, . . . , Ui+k−1
from U and inserting W in their place. Correspondingly there is a space

A′ = G ×H × U ′ which again has a two-form, denoted ω′. The product map

Vk × · · · × V1 → W extends to give an isomorphism A → A′ (which is the

identity on G,H and the other unipotent groups).



GEOMETRY AND BRAIDING OF STOKES DATA 327

Lemma 6.1. The isomorphism A → A′ given by the product map relates

the two-forms ω and ω′.

Proof. Since everything else is unchanged, this follows from the general

fact that

(γk, γ0) = (γk, γk−1) + · · ·+ (γ1, γ0)

if γi = C∗i (θ), where θ is the left-invariant Maurer-Cartan form on G and

Ci : V1 × · · · × Vk × G → G is the map taking (S1, . . . , Sk, C) to C0 =

C,Ci = Si · · ·S1C, respectively. By induction it is sufficient to show (γi, γ0) =

(γi, γi−1) + (γi−1, γ0). Now if Sf = Si−1 · · ·S1, then since Ci−1 = SfC, it

follows that γi−1 = C−1σfC + γ0 where σf = S∗f (θ), so that

(γi, γi−1) = (γi, C
−1σfC) + (γi, γ0) and (γi−1, γ0) = (σf , γ0).

Thus we should show that (σf , γ0 − CγiC−1) = 0. However if we define Sg =

Si · · ·S2S1, then Sg = CiC
−1 so σg = CγiC

−1−γ0, and the result follows from

the fact that (σf , σg) = 0 (since they take values in the isotropic subspace

Lie(W ) of g). �

More generally, define two sets U and U ′ of ordered unipotent subgroups

to be “direct spanning equivalent” if they are related by a sequence of such

isomorphisms (or their inverses). Lemma 6.1 implies any isomorphism A → A′
coming from a direct spanning equivalence relates their two-forms. Thus the

following is now immediate.

Corollary 6.2. If (A, ω) and (A′, ω′) are direct spanning equivalent,

and (A, ω) is a quasi-Hamiltonian G×H-space, then so is (A′, ω′).

(It is clear that the actions and moment maps match up.) For example,

in the case where H is a maximal torus of G, it follows from [23, §14.4] that

each Ui in any ordered set U of unipotent groups is directly spanned, in any

order, by all the (one-dimensional) root groups it contains. Clearly one could

subsequently re-assemble the resulting (ordered set of) root groups into another

ordered set of larger unipotent groups in many different ways.

The notion of direct spanning equivalence may be viewed as an abstraction

of the relation between “Stokes matrices” and “Stokes factors” appearing in

the GLn case in Balser–Jurkat–Lutz [8, §4]. The extension to other groups is

in [13] and the observation that this situation is well understood in terms of

direct spanning subgroups is in [12, p. 156] and [13]. It will become clear in

Section 6.3 (and Section 7.1) that there are many quasi-Hamiltonian spaces of

the form A = G×H ×U that are not direct spanning equivalent to one of the

fission spaces GArH .
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6.2. Isomonodromy isomorphisms II. Suppose A = G×H × U as above,

with U = (U1, . . . , Um) an arbitrary ordered set of unipotent subgroups. We

define A′ = G×H × U ′, where

U ′ = (U2 . . . , Um, U1);

i.e. U ′i = Ui+1 for all i 6= m, and U ′m = U1. Then we may define an isomon-

odromy isomorphism Θ : A → A′ as in Section 5; i.e. suppose (C, h,S) ∈ A,

and define (D, g,T) = Θ(C, h,S) ∈ A′ by the formulae

Ti = Si+1 for i = 1, . . . ,m− 1,

Tm = h−1S1h, D = S1C, g = h.

Then it is clear that D−1hTm · · ·T1D = C−1hSm · · ·S1C so the moment maps

match up. Examples of such (refined) isomorphisms were considered in Propo-

sition 3.7 of [13]. The proof of Proposition 5.1 now goes through verbatim to

establish

Proposition 6.3. The map Θ relates the two-forms on A and A′.

Thus if both of the spaces A and A′ are quasi-Hamiltonian, then Θ is a

quasi-Hamiltonian isomorphism.

For example this can be used to show that up to isomorphism the fission

spaces do not depend on the choice of parabolic subgroup P+, given a fixed

Levi subgroup H ⊂ G. (This follows from Theorem 10.4 below.)

6.3. Nesting. Now consider the situation where there is an intermediate

reductive group K between G and H,

H ⊂ K ⊂ G,

such that we can consider ordered sets of unipotent groups

U , U ′, U ′′ subordinate to H ⊂ G, H ⊂ K, K ⊂ G

respectively (so that K is again the Levi subgroup of a parabolic of G). As

above we thus get spaces

A = G×H × U , A′ = K ×H × U ′, A′′ = G×K × U ′′

with two forms ω, ω′, ω′′ respectively.

Without loss of generality we may assume (by introducing some trivial

unipotent groups {1} via direct spanning equivalence) that each of U ,U ′ and

U ′′ contains the same number m of groups. Suppose now that Ui is directly

spanned by U ′i , U
′′
i for each i, where Ui is the ith group in U , etc. (In the

present situation, since K normalises U ′′i , this direct spanning condition just

means Ui is the semidirect product of U ′i and U ′′i .) Then we can identify A with

the “gluing” of A′ and A′′ along K as follows. We have not assumed the spaces

are quasi-Hamiltonian, but the definition of gluing is as one would guess: Let
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(D,h, {Ai}) denote a point of A′ (with Ai ∈ U ′i), and let (C, k, {Bi}) denote a

point of A′′ (with Bi ∈ U ′′i ). Then the gluing is defined to be

A′ L
K
A′′ = {(D,h, {Ai}, C, k, {Bi}) ∈ A′ ×A′′

∣∣∣ k = hAm · · ·A1}/K.

Since the action of K is free, we can remove it by setting D = 1 and thus

identify this gluing with

{(C, h, {Ai}, {Bi})} = G×H × U ′ × U ′′.

Since each Ui is directly spanned by U ′i , U
′′
i , the product U ′×U ′′ is isomorphic

to U , and so the gluing is isomorphic to A, but we will choose the isomorphism

so that the two-forms match up, as follows. Define D0 = D = 1 and

Di = Ai · · ·A1 ∈ K.

Then define Si ∈ Ui to be

Si = DiBiD
−1
i−1.

Said differently, Si = Ai‹Bi where ‹Bi := Di−1BiD
−1
i−1. Clearly ‹Bi ∈ U ′′i since

K normalises U ′′i , and so in turn Si ∈ Ui by our direct spanning assumption.

Thus taking the point (C, h, {Si}) ∈ A defines an isomorphism between the

gluing and A.

Theorem 6.4. This isomorphism

A′ L
K
A′′ ∼= A

relates the two-form ω on A to that induced on the left-hand side from ω′ and

ω′′. In particular, if A′ and A′′ are quasi-Hamiltonian, then so is A.

Proof. The “induced two-form” on the left-hand side is just the restriction

of the two-form on the product A′ × A′′ to the subvariety where D = 1 and

k = hAm · · ·A1. (This subvariety is then identified with A.) Thus we must

show there is the following equality of two forms on this subvariety:

(δ,Adkδ) + (δ, κ) + (δm, η)−
m∑
i=1

(δi, δi−1)

+(E ,AdpE) + (E ,P) + (Em, κ)−
m∑
i=1

(Ei, Ei−1)

= (γ,Adbγ) + (γ, β) + (γm, η)−
m∑
i=1

(γi, γi−1),

where p = kBm · · ·B1, k = hAm · · ·A1, κ = k∗(θ), γi = C∗i (θ), δi = D∗i (θ), Ei =

E∗i (θ), and Ei = Bi · · ·B1C. Firstly D = 1 so δ = 0, simplifying the first line.
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Secondly p = kBm · · ·B1 = hAm · · ·A1Bm · · ·B1 = · · · = hSm · · ·S1 = b so

some terms cancel. Consequently we must show

m∑
i=1

(δi, δi−1) + (Ei, Ei−1) = (Em, κ) + (δm − γm, η) +
m∑
i=1

(γi, γi−1).

Now since Ci = DiEi, we find γi = E−1i δiEi + Ei, and so

(γi, γi−1) = (Ei, Ei−1) + (δi,AdBiδi−1) + (Ad−1Bi (E i), δi−1) + (δi,AdBiE i−1)

using the fact that Bi = EiE
−1
i−1. Now observe that (δi,AdBiδi−1) = (δi, δi−1);

indeed, if we consider KnU ′′i ↪→ G, then AdBiδi−1 takes values in Lie(K) ⊕
Lie(U ′′i ) and has Lie(K) component δi−1—but this decomposition is orthogonal

so the claim follows. On the other hand, using Cm = DmEm to expand γm
and k = hDm to expand κ, we see (Em, κ) + (δm − γm, η) = (Em, δm) and so

we are reduced to showing

m∑
i=1

(Ad−1Bi (E i), δi−1) + (δi,AdBiE i−1) = −(Em, δm).

But this statement holds for all m and can be proved by induction on m as

follows. For m = 0 it is trivial as both sides are zero. Otherwise assume it

holds for m = n− 1, so the statement for m = n reduces to showing

(29) − (En, δn) = (Ad−1Bn(En), δn−1) + (δn,AdBnEn−1)− (En−1, δn−1).

Now En = BnEn−1 so En = Bn + AdBnEn−1, where Bn = B∗n(θ). Now

(δn,Bn) = 0 (since Lie(K) ⊥ Lie(U ′′n)), so the left-hand side of (29) equals

−(AdBnEn−1, δn), which cancels with the second term on the right-hand side.

Finally substituting En, the remaining terms on the right-hand side simplify

to (Bn, δn−1), which is zero since Lie(K) ⊥ Lie(U ′′n). �

In general the gluing of two such quasi-Hamiltonian spaces end to end

will be referred to as “nesting”. This will be used as the key inductive step in

Section 7 to establish the quasi-Hamiltonian structure on spaces of unramified

Stokes data. It may also be used to establish various isomorphisms between

fission spaces as follows.

Suppose H ⊂ K ⊂ G as above, and choose parabolic subgroups P+ ⊂
G,P ′+ ⊂ K,P ′′+ ⊂ G with Levi subgroups H,H,K respectively. Then for any

integer r ≥ 1, the fission spaces

A = HArG, A′ = HArK , A′′ = KArG
are well defined (using these choices of parabolic subgroups). Now suppose

further that the parabolics have been chosen so that P+ is the semidirect

product P ′+nU ′′+ of P ′+ and the unipotent radical U ′′+ of P ′′+ (i.e. P+∩K = P ′+).

In this situation we thus have
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Corollary 6.5. The nesting of two fission spaces of the same level r is

again a fission space,

HArK L KArG ∼= HArG,
as quasi-Hamiltonian G×H-spaces.

Proof. This follows from Theorem 6.4 since U± = U ′±nU ′′±. �

7. Stokes data for complex reductive groups

Fix a connected complex reductive group G with Lie algebra g. In brief,

the aim of this section is to define the space of Stokes data Sto(Q) attached

to an irregular type Q; such Q determines a finite set of singular directions

A ⊂ S1 and a (complicated) unipotent group Stod ⊂ G for each singular

direction d ∈ A, and Sto(Q) is the product of these unipotent groups. Then

we will define a slightly larger space A(Q) and show it is quasi-Hamiltonian.

Choose a maximal torus T ⊂ G, and let t ⊂ g denote the corresponding

Lie algebras. Let ∆ be a complex disc, and let a ∈ ∆ be a marked point. Let“O denote the formal completion at a of the ring of holomorphic functions on

∆, and let “K denote its field of fractions.

Definition 7.1. An (unramified) irregular type at a is an element

Q ∈ t(“K)/t(“O).

One may think of an irregular type as a t-valued meromorphic function

germ, well defined modulo holomorphic terms. Explicitly, if we choose a local

coordinate z on ∆ vanishing at a, then “O = C[[z]], “K = C((z)), and so then an

irregular type Q may be written in the form

Q =
Ar
zkr

+ · · ·+ A1

zk1

for integers 0 < k1 < · · · < kr and elements Ai ∈ t ⊂ g for i = 1, . . . , r. (The

more abstract definition is coordinate independent and so will be useful later.)

Let H ⊂ G be the stabiliser of Q under the adjoint action, i.e. H = {g ∈
G
∣∣∣ Adg(Ai) = Ai for all i ≥ 1}, so H is again a connected complex reductive

group with maximal torus T . We will (abusively) write H = CG(Q) and call

it the centraliser of Q. Let R ⊂ t∗ be the set of roots of g relative to t, and

recall the root space decomposition

g = t⊕
⊕
α∈R

gα,

where gα = {X ∈ g
∣∣∣ [Y,X] = α(Y )X for all Y ∈ t} is the (one-dimensional)

root space of α ∈ R. Thus for each root α ∈ R, we may define

qα = α ◦Q,
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which is just a meromorphic function (modulo holomorphic terms). Define the

degree deg(qα) of qα to be its pole order at a; using the coordinate z we may

identify qα with an element of z−1C[z−1], and so deg(qα) is the degree of the

polynomial qα(1/z). (It is an integer ≥ 0, equal to zero if qα does not have a

pole at a.)

Now we start to describe the space of Stokes data attached to Q. This

is abstracted from the GLn(C) case studied in [51], [46], as was previously

done in [13] in the case when Ar is regular semisimple. (Again, the use of the

notion of direct spanning subgroups of unipotent groups simplifies things.) Let‹∆→ ∆ denote the real oriented blow-up at a, replacing a with the circle S1 of

real oriented tangent directions at a. Given a root α ∈ R consider the function

exp(qα(z)) as z approaches zero along rays in various directions d ∈ S1.

Definition 7.2. A direction d ∈ S1 will be said to be a singular direction

supported by α (or an anti-Stokes direction) if exp(qα(z)) has maximal decay

as z → 0 in the direction d.

(Thus if cα/z
k is the most singular term of qα, these are the directions

along which the function cα/z
k is real and negative.) Let A ⊂ S1 be the finite

set of singular directions (for all roots α). If d ∈ A, let

R(d) ⊂ R

denote the (nonempty) subset of roots supporting d. Further, given an integer

k, let

R(d, k) ⊂ R(d)

denote the subset of roots α ∈ R(d) such that deg(qα) = k. For example

(similarly to [13]) if r = k1 = 1 and ∆ is the unit disc in C, and Q = −A/z
(so that dQ = Adz/z2), then A is the set of rays from 0 to the nonzero points

in the set 〈R, A〉 ⊂ C, where the angled brackets denote the natural pairing

between t∗ and t. Further, R(d) is then the set of roots landing on the ray d

(and in C∗) under the map 〈 · , A〉 : R → C.

Lemma 7.3. Each of the sets R(d),R(d, k) is a closed subset of some

system of positive roots in R, i.e. they are “special” in the sense of Borel [23,

§IV.14.5].

Proof. See Appendix B. �

Thus if Uα = exp(gα) ⊂ G is the root group corresponding to α ∈ R, it

follows from [23, §IV.14.5] that {Uα
∣∣∣ α ∈ R(d)} “directly spans” in any order

a unipotent subgroup of G. This means that if we choose any total ordering

of R(d) and consider the product map φ :
∏
α∈R(d) Uα → G (with the product

taken in the chosen order), then φ is an algebraic isomorphism (of spaces,



GEOMETRY AND BRAIDING OF STOKES DATA 333

not groups) onto its image, and this image is a well-defined subgroup of G

independent of the chosen order of the factors.

Definition 7.4. The Stokes group Stod associated to the singular direction

d ∈ A is the unipotent subgroup of G corresponding to R(d) ⊂ R:

Stod = φ

Ñ ∏
α∈R(d)

Uα

é
⊂ G.

It has dimension dimC Stod = #R(d) and has Lie algebra
⊕
α∈R(d) gα ⊂ g.

Similarly, for any integer k, define the level k Stokes group, Stod(k), to be

the image of
∏
α∈R(d,k) Uα in G and deduce (from the direct spanning property,

again using [23, §IV.14.5]) that the product map gives an isomorphism of

spaces:

Stod(k1)× · · · × Stod(kr) ∼= Stod .

(As a group, Stod is the semidirect product of the groups on the left, with

Stod(ki) acting by conjugation on Stod(kj) for i < j.) Again since the root

groups are one-dimensional, dim Stod(k) = #R(d, k). We will say that the

level k is effective along direction d if R(d, k) is nonempty. (We leave it as

an exercise to check that the above definitions do not change if we pass to a

different Cartan subalgebra t containing each coefficient Ai of Q.)

Definition 7.5. The space of Stokes data, Sto(Q), associated to Q is the

product of all the Stokes groups:

(30) Sto(Q) =
∏
d∈A

Stod .

(Here we do not take the image of the product in G.) The appearance

of such spaces in the local classification of meromorphic connections will be

described in Appendix A.

7.1. Quasi-Hamiltonian structure on Stokes data. Now choose a singular

direction d1 ∈ A and label the other singular directions d2, · · · , ds so that di+1

is next after di when turning in a positive sense, so that Sto(Q) =
∏s

1 Stoi where

Stoi = Stodi . We will denote elements of Stoi by Si. (Beware: some references

work with singularities at ∞, so the notion of positive sense is reversed.) The

aim of the rest of this section is to establish

Theorem 7.6. The space

A(Q) = G×H × Sto(Q)

is a quasi-Hamiltonian G × H-space with moment map µ : A(Q) → G × H
given by

µ(C, h, S1, . . . , Ss) = (C−1hSs · · ·S2S1C, h−1)
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and two-form ω, where

(31) 2ω = (γ,Adbγ) + (γ, β) + (γs, η)−
s∑
i=1

(γi, γi−1)

with γi = C∗i (θ), γi = C∗i (θ), η = h∗(θH), β = b∗(θ), where θ, θ are the Maurer–

Cartan forms on G (and θH , θH are the Maurer–Cartan forms on H), and

Ci = Si · · ·S1C, b = hSs · · ·S2S1.

The key strategy is that such spaces may be obtained by gluing simpler

spaces of the form GArH for a nested sequence of reductive groups (and de-

creasing integers r). If we write µ = (µG, µH), the element h = µ−1H ∈ H

is often referred to as the formal monodromy. (Clearly in general it is not

conjugate in G to the local monodromy µG.)

7.2. Stokes data by level. To reorganise the Stokes data according to levels

it is visually helpful to interpret it in terms of a G-local system on a punctured

disc. In particular, this helps keep track of the various monodromy relations.

(We will call this the “punctured disc model” of an irregular connection.)

Identify ∆ with the unit disc (centred at z = 0), and puncture it at the origin

and at r equally spaced points along each anti-Stokes direction d ∈ A, yielding

a punctured disc ∆′. Thus ∆′ is the union of a small punctured disk ∆0 and

concentric annuli Ann1,Ann2, . . . ,Annr (with increasing diameters) so that

each annulus has exactly one puncture in each direction d ∈ A. (We will

refer to Anni as the “level-i annulus.”) Choose a direction p ∈ S1 somewhere

between ds and d1 (i.e. in a small negative sense from d1). Choose a basepoint

∗ ∈ ∆0 in the direction p.

Fix a point (C, h, S1, . . . , Ss) ∈ A(Q), and recall that each Stokes multi-

plier Si ∈ Stoi may be uniquely written as

Si = S1
i S

2
i · · ·Sri

with Sji ∈ Stodi(kj). Thus we may define a homomorphism ρ : π1(∆
′, ∗) → G

from the fundamental group π1(∆
′, ∗) of ∆′ based at ∗ by the formulae

ρ(γji ) = Sji , ρ(γ0) = h,

where γ0 is the loop in ∆0 going once in a positive sense around 0, and the

loop γji follows a positive arc around 0 in ∆0 until just before di then follows

a ray straight out until Annj , before making a small positive loop around the

ith puncture on Annj and then retracing its steps back to ∗. The map ρ is

well defined since these loops freely generate π1(∆
′, ∗).

Now let γr be the loop that goes out in direction p to the outer boundary

of ∆, goes around the boundary once in a positive sense then returns to ∗ in

the direction p. One may then check that we have
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Lemma 7.7.

(32) ρ(γr) = hSs · · ·S2S1.

Proof. For each i, the product γ̂i := γ1i · · · γri goes around to just before di
out to ∂∆ around a positive arc just crossing di, back in to ∆0 then back along

a negative arc to ∗. Thus ρ(γ̂i) = Si. Next we observe that γr = γ0γ̂s · · · γ̂1,
and so the result follows. �

Next note that there is a nested chain of connected complex reductive

subgroups

(33) H = H1 ⊂ H2 ⊂ · · ·Hr ⊂ G

defined by Hi = Stab(Ar, . . . , Ai), each a Levi subgroup of a parabolic of G.

Said differently, for each index i = r, r − 1, . . . , 2, 1, there is a vector space

decomposition

hi+1 = hi ⊕ h′i,

where hi = Lie(Hi) with hr+1 = g by convention and h′i = Im(ad(Ai)
∣∣∣
hi+1

) =

[Ai, hi+1] ⊂ hi+1. Thus

(34) g = h⊕ h′1 ⊕ h′2 ⊕ · · · ⊕ h′r

and each root space gα occurs in precisely one such component, and if gα ⊂ h′i,

then deg(qα) = ki. (In brief, h′r is the sum of the root spaces on which Ar acts

nontrivially, then h′r−1 is the sum of the remaining root spaces on which Ar−1
acts nontrivially, etc.)

Lemma 7.8. If γ ∈ π1(∆′, ∗) is a loop that does not stray into Annj , then

ρ(γ) ∈ Hj .

Proof. We have h ∈ H1, so it is enough to check that Sji ∈ Hj+1 for all i, j.

Now Sji ∈ Stoi(kj), whose Lie algebra is spanned by root spaces gα of certain

roots α with deg(qα) = kj . Thus gα ⊂ h′j ⊂ hj+1, and so Stoi(kj) ⊂ Hj+1 as

required. �

Now we will pass to new generating loops of the fundamental group (still

based at ∗). Define loops βji going out in the direction p until the inner

boundary of Annj , then around a positive arc until di, then around a small

positive loop around the ith puncture of Annj , then retracing the same arc

back around to p then back in to ∗. Then we define

Bj
i = ρ(βji ) ∈ G

to be the corresponding “twisted” Stokes multiplier.

Lemma 7.9. The twisted Stokes multiplier Bj
i is in Stoi(kj).
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Proof. In the fundamental group we have βji = x−1γijx, where x is a loop

not entering Annj . (Explicitly, x = γ̂ji−1 · · · γ̂
j
2γ̂

j
1, where γ̂jk = γ1kγ

2
k · · · γ

j−1
k .)

Thus ρ(x) ∈ Hj . Now we observe that Hj normalises Stoi(kj) in G, i.e.

g Stoi(kj)g
−1 = Stoi(kj) for any g ∈ Hj , which immediately implies the de-

sired result, as Sji ∈ Stoi(kj). To see this note that Hj is generated by T and

the root groups Uα for roots α with gα ⊂ hj . We must check that each Uα
normalises Stoi(kj) (since it is clear for T ). For this, by [23, Prop. 14.5(3)], it

is enough to check that any root of the form γ = nα +mβ where n,m ∈ Z>0

and β ∈ R(di, kj) is actually in R(di, kj). This is clear however since qα will

have lower degree than qβ, and so the leading term of qγ is m times that of qβ,

which implies immediately that γ ∈ R(di, kj). �

Thus specifying all the Stokes multipliers Sji ∈ Stoi(kj) is equivalent to

specifying all the twisted Stokes multipliers Bj
i ∈ Stoi(kj).

Lemma 7.10. In terms of the twisted Stokes multipliers the monodromy

around the outer boundary of ∆ is

(35) ρ(γr) = h(B1
s · · ·B1

1)(B2
s · · ·B2

1) · · · (Br
s · · ·Br

1).

Proof. Let γi denote the loop that goes out along p to the outer boundary

of Anni, around this boundary circle in a positive sense, then back to ∗ along

p. The result will follow immediately from the inductive step:

ρ(γi) = ρ(γi−1)B
i
s · · ·Bi

1.

In turn, this is easily established by drawing a picture of Anni. �

Now if we define

hi = ρ(γi−1) = h(B1
s · · ·B1

1)(B2
s · · ·B2

1) · · · (Bi−1
s · · ·Bi−1

1 )

for each i, then hi ∈ Hi (since the corresponding loop does not enter Anni).

Now define

A(i) := Hi+1 ×Hi ×
s∏
j=1

Stoj(ki),

and assume for the moment the following lemma.

Lemma 7.11. A(i) is a quasi-Hamiltonian Hi+1×Hi-space with moment

map

µi(Ci, hi, B
i
1, . . . , B

i
s) = (C−1i hiB

i
s · · ·Bi

1Ci, h
−1
i ),

where Ci ∈ Hi+1, etc.

Then Theorem 7.6 follows from the following proposition.
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Proposition 7.12. There is an explicit isomorphism

A(Q) ∼= A(1) L
H2

· · · L
Hr
A(r),

and so A(Q) is a quasi-Hamiltonian G×H-space.

Proof. The action of (k, g) ∈ Hi ×Hi+1 on A(i) is given by

(k, g)(Ci, hi, B
i
1, . . . , B

i
s) = (kCig

−1, khik
−1, kBi

1k
−1, . . . , kBi

sk
−1).

Since the action of Hi on A(i−1) is free, we can identify A(i)L
Hi
A(i−1) with

the subvariety of the product A(i)×A(i− 1) where Ci−1 = 1 and

hi = hi−1B
i−1
s · · ·Bi−1

1 .

Thus we may remove both factors of Hi in the product to see A(i)L
Hi
A(i− 1)

is isomorphic to

Hi−1 ×Hi+1 ×
s∏
j=1

Stoj(ki−1)× Stoj(ki),

which is thus a quasi-Hamiltonian Hi+1 ×Hi−1-space with moment mapÄ
C−1i hi−1(B

i−1
s · · ·Bi−1

1 )(Bi
s · · ·Bi

1)Ci, h
−1
i−1
ä
.

Repeating this gluing process yields the result. Note that the moment map on

A(Q) is (C−1ρ(γr)C, h
−1) where C = Cr ∈ G, h = h1 ∈ H and ρ(γr) is as in

(35), in terms of the twisted Stokes multipliers, or as in (32) in terms of the

original Stokes multipliers. �

The fact that the quasi-Hamiltonian two-form is given by the formula in

the statement of Theorem 7.6 now follows from repeated use of the nesting

result (Theorem 6.4). Finally Lemma 7.11 will be established.

Proof of Lemma 7.11. This is true since the spaces A(i) are isomorphic

to higher fission spaces; there is an isomorphism

A(i) ∼= Hi
AkiHi+1

as follows. First observe that A(i) is isomorphic to the space A(Qi) attached

to Qi = Ai/z
ki , where Ai is viewed as an element of the Cartan subalgebra t

of hi+1. To see this note that if deg(qα) = ki, then qα equals α ◦ Qi plus less

singular terms, and so the nontrivial Stokes groups occurring in the definition

of A(i) are precisely those occurring in A(Qi).

Thus we can reduce to the case of one level with Q = Qi, k = ki, A =

Ai, H = CG(A), etc., and the aim is to show A(Q) = GAkH . This is just (the

parabolic extension of) [13, Lemmas 2.4 and A.3], and the proof is the same.

Here is the idea, for completeness.

Recall the singular directions may be described as follows: each d ∈ A is

supported by some root α ∈ R, and d ∈ A is supported by α if and only if
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qα = α(A)/zk is real and < 0 (for z in the direction d). Thus A is invariant by

rotation by π/k, and so l := s/2k = #A/2k is integral. Define a “half-period”

to be an ordered l-tuple of consecutive singular directions in A.

Lemma 7.13. If d ⊂ A is a half-period, then the subgroups {Stod
∣∣∣ d ∈ d}

directly span the unipotent radical of a parabolic subgroup of G with Levi sub-

group H (and rotating d by π/k yields the unipotent radical of the opposite

parabolic with Levi subgroup H).

Proof. The standard fact we wish to use is that any element λ ∈ tR deter-

mines a parabolic subgroup Pλ ⊂ G by defining

Pλ = {g ∈ G
∣∣∣ zλgz−λ has a limit as z → 0 along any ray}.

Equivalently Pλ is generated by its Levi subgroup and its unipotent radical Uλ
and, in turn, the Levi subgroup of Pλ is generated by T and the root groups

Uα for all the roots with α(λ) = 0, and Uλ is generated by the root groups Uα
for all the roots α with α(λ) > 0. Now let θ(d) be the ray bisecting the sector

spanned by the half-period d, and take

λ = −Re(Q(z)) ∈ tR

for any z 6= 0 on the ray θ(d). Then one notices that, for each root α, the “sine-

wave function” fα(φ) = −Re(qα(z))
∣∣∣
z=exp(iφ)

: S1 → R is either identically zero

or has period 2π/k and is maximal on singular directions supported by α. Thus

fα(θ(d)) = α(λ) is strictly positive if and only if there is a singular direction

supported by α within π/2k of θ(d). Thus the roots supporting the directions

d ∈ d are precisely those whose root groups generate Uλ. Further, the Levi

subgroup of Pλ is just the centraliser of A. �

Thus taking d = (d1, . . . , dl) yields a parabolic P+ ⊂ G with Levi sub-

group H. Denote its unipotent radical U+, and let U− be the unipotent radical

of the opposite parabolic, associated to (dl+1, . . . , d2l). Thus, in this one level

case, we have a direct spanning equivalence

A(Q) = G×H ×
s∏
1

Stoj → GAkH = G×H × (U+ × U−)k

induced by the product isomorphisms

Sto(n+1)l× · · · × Stonl+2×Stonl+1 → U+

for n ≥ 0 even (and to U− for n odd). Thus by Corollary 6.2 A(Q) is quasi-

Hamiltonian, as desired. �
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8. Irregular curves and associated Betti spaces

In this section we will define the notion of an irregular curve and show

how to associate a quasi-Hamiltonian space to an irregular curve with some

tangential basepoints and, in turn, how to canonically associate a Poisson

variety to an irregular curve.

8.1. Irregular curves. Fix a connected complex reductive group G and a

maximal torus T ⊂ G.

Definition 8.1. An “irregular curve” (or “wild Riemann surface”) is a

smooth compact Riemann surface Σ (possibly with boundary) together with a

finite number of distinct marked points a1, a2, . . . in the interior of Σ and an

irregular type Qi (in the sense of Definition 7.1) at each marked point.

For example, if the boundary is empty and each irregular type is zero,

then an irregular curve is essentially the same thing as a smooth compact

complex algebraic curve with some ordered marked points. (In general we will

say an irregular curve is algebraic if its boundary is empty—it may still have

marked points.) If m denotes the number of marked points plus the number

of boundary components, we will always assume m > 0.

Given an irregular curve Σ, let “Σ → Σ denote the real two-manifold

with boundary obtained by taking the real oriented blow up of Σ at each

marked point, i.e. replacing each marked point ai with the circle of oriented

real tangent directions at ai. Label the boundary circles of “Σ as ∂1, . . . , ∂m.

Thus Qi determines a subgroup Hi = CG(Qi) ⊂ G, singular directions Ai ⊂ ∂i
and Stokes groups Stod ⊂ G for each d ∈ Ai, as in Definitions 7.2 and 7.4

(where we set Qi = 0 if ∂i was already a boundary component of Σ).

Now puncture “Σ once in its interior near each singular direction d ∈ Ai, i =

1, . . . ,m, and draw small cilia (eyelashes) on the surface “Σ between each punc-

ture and the corresponding singular direction d ∈ Ai ⊂ “Σ (such that none of

the cilia cross). The cilia are just to help keep track of the punctures. Let‹Σ ⊂ “Σ denote the corresponding punctured surface (see Figure 4).

Now choose a marked point bi ∈ ∂i in each boundary component of ‹Σ,

and define Π to be the fundamental groupoid of ‹Σ based at {b1, . . . , bm}:

Π = Π1(‹Σ, {b1, . . . , bm}),
consisting of homotopy classes of paths γ in ‹Σ such that the endpoints of γ

are in the set {b1, . . . , bm}. (More precisely, the set of objects of Π is the finite

set {b1, . . . , bm} ⊂ ‹Σ and a morphism in Π from bi to bj is a homotopy class of

paths in ‹Σ starting at bi and ending at bj .)

Therefore we may consider the space Hom(Π, G) of morphisms from the

groupoid Π to the group G. (Recall a group is a groupoid with only one
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Punctures, Singular directions, Cilia

∂1

∂2

Figure 4. The surface ‹Σ.

object and by ‘morphism’ we mean a functor between the two corresponding

categories.) Explicitly, an element ρ ∈ Hom(Π, G) consists of a choice of an

element ρ(γ) ∈ G for each path γ in Π such that for composable paths γ1, γ2,

one has

ρ(γ1 ◦ γ2) = ρ(γ1)ρ(γ2).

We will also refer to ρ as a “G-valued representation of Π”. Now consider the

subspace

HomS(Π, G) ⊂ Hom(Π, G)

of “Stokes representations” ρ obeying the following conditions (for any i =

1, . . . ,m):

(SR1) If d ∈ Ai and γ̂d is any loop based at bi that goes around (in any direc-

tion) ∂i to the direction d, and then loops once around the puncture on

the cilium emanating from the direction d (without crossing any other

cilia), before retracing its path back to bi, then ρ(γ̂d) ∈ Stod.

(SR2) If γi is the simple closed loop based at bi going once in a positive sense

around ∂i, then ρ(γi) ∈ Hi.

There is an action of the group H := H1 × · · · ×Hm ⊂ Gm on the space

of Stokes representations as follows: (k1, . . . , km) ∈ H sends ρ to the represen-

tation ρ′ such that

ρ′(γ) = kjρ(γ)k−1i

for any path γ ∈ Π from bi to bj .

Theorem 8.2. The space HomS(Π, G) of Stokes representations of Π in

G is a smooth complex affine variety and is (canonically) a quasi-Hamiltonian

H-space, where H = H1 × · · · ×Hm ⊂ Gm.

Proof. First we will establish this in the case when Σ is a disk with one

marked point in its interior. In this case, if we choose some paths generating
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Π, as for example in Figure 1, with ∂1 the inner boundary and ∂2 the outer

boundary, and number the singular directions d1, d2, . . . , ds correspondingly,

then we obtain an isomorphism

HomS(Π, G) ∼= A(Q1) = G×H1 ×Πs
1 Stodi .

This gives HomS(Π, G) a quasi-Hamiltonian structure (by Theorem 7.6), and

we should check that it is independent of the choice of generating paths. Draw

a concentric circle H through all the punctures. We only consider sets of

generating paths of the following form

(1) a path P from b2 to b1, only crossing H once, between two punctures,

which will then be labelled ds, d1,

(2) a simple loop γ0 based at b1 around the inner boundary,

(3) loops γ̂d based at b1 around the puncture in the direction d, so that

none of the paths cross (so the paths look as in Figure 1).

Up to homotopy the only choice here is the path P, and the choice for this path

is the number of times it winds around before and after crossing H, and the

choice of where it crosses H. The quasi-Hamiltonian structure is independent

of these choices due to the automorphisms (26) and (27) (enabling one to

undo the winding of P on the inside and outside of H) and the isomonodromy

isomorphisms (Propositions 5.1 and 6.3) (enabling one to change the choice of

where H is crossed).

Now consider the general case. Removing disks around each marked point

reduces to the case of a disk (already dealt with above) and the case with

only trivial irregular types considered in [3]. This yields an intrinsic quasi-

Hamiltonian structure. To see it is a smooth affine variety, note that upon

choosing appropriate generating paths we may identify HomS(Π, G) with the

reduction by G (at the identity value of the moment map) of the fusion product

(36) D~g ~
G
A(Q1) ~

G
· · · ~

G
A(Qm),

where D is the internally fused double and g is the genus of Σ. Let µG de-

note the G component of the moment map, from (36) to G. Since m ≥ 1,

the action of G on (36) is free and so 1 is a regular value of µG (by [3,

Prop. 4.1(3)]). Thus µ−1G (1) is a smooth subvariety of (36) with a free ac-

tion of G and so the quotient is smooth (by Luna’s slice theorem or other-

wise). (The quasi-Hamiltonian reduction theorem applies to yield the struc-

ture of quasi-Hamiltonian H-space.) Explicitly, if we write an element of

A(Qi) = G × Hi × Sto(Qi) as (Ci, hi,S
i), then we may identify µ−1G (1)/G

with the affine subvariety of (36) cut out by the equations µG = 1 and C1 = 1.

In detail, if we write D~g as {(ai, bi)
∣∣∣ ai, bi ∈ G, i = 1, . . . , g}, then the relation

µG = 1 takes the form

(37) [a1, b1] · · · [ag, bg]µ1 · · ·µm = 1,

where µi = C−1i hi · · ·Si2Si1Ci and [a, b] = aba−1b−1. �
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Recall (from Remark 2.1) that if H is a torus, it follows that HomS(Π, G)

is an algebraic symplectic manifold. The special case of this when the lead-

ing coefficient of each irregular type is regular semisimple (so each chain of

reductive groups (33) passes directly from G to T ) was considered in [15]. In

the simple example of Σ = P1 with two marked points, and Q1, Q2 both with

simple poles and regular semisimple coefficients, a covering of HomS(Π, G) was

identified with the Lu–Weinstein double symplectic groupoid in [15, Prop. 7].

A priori the space HomS(Π, G) depends on the irregular curve Σ, the

basepoints {bi} and the choice of the locations of the punctures used to define‹Σ. By shrinking the cilia, pulling the punctures close to the boundary circles,

one may canonically identify the different possible groupoids Π defined using

different puncture locations. The next result shows that once we quotient by

H the result is independent of the basepoints as well.

Corollary 8.3. The irregular curve Σ canonically determines the Pois-

son variety HomS(Π, G)/H of S-equivalence classes of Stokes representations.

Proof. By Proposition 2.8, upon choosing basepoints {bi} the quotient is

well defined and a Poisson variety, so we just need to check that it is inde-

pendent of this choice. Suppose we make two different choices {bi}, {b′i} of

basepoints. Choosing any path γi in ∂i from bi to b′i (for each i) yields an

isomorphism HomS(Π, G) ∼= HomS(Π′, G) (where Π′ is defined using {b′i}).
Choosing a different set of paths corresponds to conjugating this isomorphism

by the action of an element of H, by (SR2), and so the H-invariant functions

are canonically identified. �

Analogously to Simpson [60, §6] we will sometimes refer to the geometric

invariant theory quotient HomS(Π, G)/H as the “Betti moduli space” of the

irregular curve Σ and denote it MB(Σ). These varieties, or their symplectic

leaves, will also sometimes be called “wild character varieties.” (See [58] and

references therein for the usual case.)

Remark 8.4. By considering Stokes representations we are in effect con-

sidering a special class of G-local systems on ‹Σ, the Stokes G-local systems,

defined as follows. Draw concentric circles (halos) Hi on ‹Σ near each boundary

circle, through the corresponding punctures, as in the proof of Theorem 8.2,

thus determining a small annulus around each boundary circle, which we will

refer to as the area inside of Hi. Then a “Stokes G-local system” on ‹Σ is a

G-local system L on ‹Σ together with a flat reduction of structure group to Hi

inside of Hi for each i = 1, . . . ,m (i.e. an Hi-local system Li defined inside Hi,

such that L = Li×Hi G there) such that, for any basepoint inside Hi, the local

monodromy around the puncture corresponding to d ∈ Ai lies in Stod(Qi). The

space HomS(Π, G) classifies Stokes G-local systems together with a framing of
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Li at the basepoint bi for each i. Section 7.2 may now be viewed as giving

several equivalent descriptions of the category of Stokes G-local systems.

Remark 8.5. Note that the Betti space MB(Σ) is independent of the la-

belling of the boundary components ∂i by integers 1, . . . ,m. Further, it is

straightforward to verify that MB(Σ) only depends on each irregular type Qi
up to the action of the Weyl group W = NG(T )/T of G. More precisely, if for

some i the irregular type Qi is replaced by Q′i = Adw(Qi) for some w ∈ NG(T ),

then there is a canonical isomorphism between the corresponding Betti spaces,

independent of the choice of w.

Remark 8.6. More generally, one may consider “twisted” irregular types,

defined by replacing the Cartan subalgebra t((z)) ⊂ g((z)) by a nonconjugate

Cartan subalgebra (which exist since C((z)) is not algebraically closed; cf. [42,

Lemma 2]), and this yields a notion of “twisted” irregular curves, which will

be studied elsewhere. Further, one may replace the constant group G by a

local system of groups on Σ \ {ai} (e.g. as for twisted loop groups); this yields

a more general notion of twisted irregular curve.

9. Stability of Stokes representations

Given an irregular curve Σ and some basepoints {bi}, we have defined a

smooth affine variety HomS(Π, G) with an action of a reductive group H. This

is a situation much studied in geometric invariant theory, and one defines the

“stable” points as follows. Let K ⊂ H be the subgroup of elements that act

trivially on all points of HomS(Π, G) (the kernel of the action).

Definition 9.1 (see e.g. [54]). A point ρ ∈ HomS(Π, G) is stable if its orbit

H · ρ is closed and of dimension equal to dim(H/K).

In this section we will assume that K equals the centre of G embedded

diagonally in H. (One may check that this is the case unless the genus of Σ is

zero, there is just one marked point and Q1 has at most a simple pole; in such

exceptional cases HomS(Π, G) is a point.)

Our first aim is to characterise the stable Stokes representations ρ in a

more direct fashion, as follows. Suppose we have a parabolic subgroup Pi ⊂
G for each basepoint bi, i = 1, . . . ,m, and write P = (P1, . . . , Pm) for this

collection of parabolic subgroups. We will say that P is compatible with ρ ∈
HomS(Π, G) if

ρ(γ)Piρ(γ)−1 = Pj

for any path γ in ‹Σ from bi to bj (for any i, j). Now let Zi ⊂ G be the identity

component of the centre of Hi. Thus Zi is a torus and the group Hi may be

characterised as the centraliser of Zi in G. We will say that P is invariant if

Zi ⊂ Pi for each i. Finally P is proper if some Pi is a proper subgroup of G.
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Definition 9.2. A representation ρ ∈ HomS(Π, G) is “reducible” if there is

an invariant proper collection of parabolics compatible with ρ. Otherwise ρ is

“irreducible”.

In this definition it makes no difference if we only consider maximal proper

parabolic subgroups: ρ is reducible if and only if there is an invariant collection

of parabolics P compatible with ρ such that some (and hence all) Pi ⊂ G is a

maximal proper parabolic. We will establish the following.

Theorem 9.3. A point ρ ∈ HomS(Π, G) is stable if and only if it is

irreducible.

If there are no irregular singularities (each Qi = 0), this follows from The-

orem 4.1 of Richardson [54], who considered the diagonal conjugation action of

G on GN . On the other hand, if there is just one singularity m = 1, this follows

from [54, Th. 14.1], considering the diagonal conjugation action of H1 ⊂ G on

GN . Further, if G is a general linear group, one can translate this into a prob-

lem involving quivers and appeal to King [43]. The general case however does

not seem to follow from the results of either of [43], [54], but as in those articles,

the result is again essentially “an exercise in the Hilbert–Mumford theorem”.

Proof. If H is any complex algebraic group let Y (H) denote the set of

one-parameter subgroups λ : C∗ → H. Recall that any λ ∈ Y (G) determines

a parabolic subgroup

PG(λ) = {g ∈ G
∣∣∣ lim
t→0

λ(t)gλ(t)−1 exists} ⊂ G.

The Hilbert–Mumford theorem implies (see [43, Prop. 2.5]) that ρ∈HomS(Π,G)

is stable if and only if whenever λ ∈ Y (H) and limt→0 λ(t) · ρ exists, then

λ ∈ Y (K). Thus given λ ∈ Y (H) and ρ, it is important to determine if

limt→0 λ(t) · ρ exists. Write λ = (λ1, . . . , λm) with λi ∈ Y (Hi). Since Hi ⊂ G,

there are parabolic subgroups Pi := PG(λi) of G for each i. Clearly if the

limit exists, then ρ(γ) should be in Pi for any loop γ based at bi (since λ acts

on ρ(γ) by conjugation by λi); e.g. for each Stokes multiplier at ai and the

formal monodromy hi. Now suppose C = ρ(γ) ∈ G for some path between two

distinct basepoints, say from b2 to b1.

Lemma 9.4. Suppose that C ∈ G and λi ∈ Y (Hi) for i = 1, 2. Then

λ1(t)Cλ2(t)
−1 has a limit as t → 0 if and only if λ1 and λ2 are conjugate in

G and CP2C
−1 = P1.

Proof. If they are conjugate, say λ2 = gλ1g
−1, then the desired limit

exists if and only if CP2C
−1 = P1. Indeed CP2C

−1 = CgP1g
−1C−1 so that

CP2C
−1 = P1 if and only if Cg ∈ P1, i.e. if and only if λ1(t)Cgλ

−1
1 (t) has

a limit as t → 0. Thus, multiplying on the right by the constant g−1, this
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has a limit if and only if λ1(t)Cλ2(t)
−1 has a limit as t → 0. Conversely if

the limit exists, and equals C0 ∈ G say, then, since the limit is a fixed point,

λ1(t)C0λ2(t)
−1 = C0 for all t, and so λ1 and λ2 are conjugate. Then as above,

because the limit exists, CP2C
−1 = P1. �

Note that if Pi = PG(λi) for some λi ∈ Y (Hi), then Zi ⊂ Pi. Indeed if z ∈
Zi and g ∈ Pi, then zgz−1 ∈ Pi (since z and λi commute) so z ∈ NG(Pi) = Pi.

Proposition 9.5. Given ρ ∈ HomS(Π, G), then ρ is reducible if and only

if there exists λ ∈ Y (H) such that λ 6∈ Y (K) and the limit limt→0 λ · ρ exists.

Proof. If limt→0 λ · ρ exists, then taking Pi = PG(λi) gives a collection of

parabolics P. It is compatible with ρ by Lemma 9.4, it is invariant by the

remark after Lemma 9.4, and it is proper since λ 6∈ Y (K).

Conversely, suppose we are given ρ and a proper collection P of invariant

compatible parabolics. Then for each i, there is a maximal torus Ti of G such

that

Zi ⊂ Ti ⊂ Hi ∩ Pi.
(For example, since Zi is reductive, it is contained in a Levi subgroup Li of Pi,

so there is a maximal torus Ti of Li containing Zi; Ti is also maximal in G and

clearly Ti ⊂ Hi = CG(Zi).) Choose a Borel subgroupB such that T1 ⊂ B ⊂ P1,

i.e. so that P1 is a standard parabolic (for this choice of T1 and B). Then we

may choose λ1 ∈ Y (T1) so that P1 = PG(λ1). Now, due to the compatibility

condition, Pi is conjugate in G to P1, and due to the conjugacy of maximal tori

of P1 ([23, 11.3]), we may simultaneously conjugate the pair Ti ⊂ Pi to the pair

T1 ⊂ P1. Thus for each i ≥ 2, we may conjugate λ1 to an element λi ∈ Y (Ti)

such that PG(λi) = Pi. Hence we have constructed λ = (λ1, . . . , λm) ∈ Y (H)

such that λ(t) · ρ has a limit as t → 0 (via Lemma 9.4). Moreover λ 6∈ Y (K)

since each Pi is proper. �

The result is now immediate from the Hilbert–Mumford theorem. �

9.1. Stability and differential Galois groups.

Corollary 9.6. Suppose ρ is a Stokes representation corresponding to

a meromorphic connection A on a G-bundle on Σ◦ (as in Section A.3). Then

ρ is stable if and only if the differential Galois group Gal(A) ⊂ G of A is not

contained in any proper parabolic subgroup of G.

Proof. Define G(ρ) ⊂ G to be the Zariski closure of the subgroup of G

generated by the following elements:

(1) ρ(γ) for any loop γ in ‹Σ based at b1,

(2) ρ(γi)
−1tiρ(γi) for any path γi in ‹Σ from b1 to bi and any element ti ∈ Zi

for any i = 1, . . . ,m.
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By Theorem 9.3, ρ is not stable if and only if G(ρ) is a subgroup of a proper

parabolic P1 ⊂ G. The Ramis–Schlesinger density theorem (cf. [53], [46,

Th. III.3.11], [51, Th. 21]) says that Gal(A) is the Zariski closure of the

subgroup of G defined in the same way but with each torus Zi replaced by

the Ramis exponential torus Ti ⊂ T associated to Qi. One may verify that

Ti is characterised as the smallest subtorus of T whose Lie algebra contains

all the coefficients of Qi. Thus Ti ⊂ Zi (as Zi has this property) so that

Gal(A) ⊂ G(ρ), and hence one direction of the corollary is clear. Conversely it

is sufficient to verify that if Ti ⊂ P , then Zi ⊂ P for any parabolic subgroup

P ⊂ G. To see this first note that CG(Ti) = CG(Zi) = Hi (since Ti ⊂ Zi, and

conversely if g ∈ CG(Ti), then g centralises the Lie algebra of Ti and thus all

the coefficients of Qi). Thus if Tµ ⊂ G is any maximal torus containing Ti,
then Tµ is a maximal torus of Hi and so Zi ⊂ Tµ. Thus if Ti ⊂ P , we can take

Tµ to be in a Levi subgroup of P containing Ti and deduce Zi ⊂ Tµ ⊂ P . �

9.2. Sufficient stability conditions. Recall that for each marked point,

Hi ⊂ G is a reductive group containing the maximal torus T so that H ⊂ Gm
is a reductive group with maximal torus T := Tm. A conjugacy class C ⊂ H is

the same thing as a product C1×· · ·×Cm of conjugacy classes Ci ⊂ Hi. In this

section we will show that if C is sufficiently generic and ρ ∈M := HomS(Π, G)

has µ(ρ) ∈ C, then ρ is stable, where µ : M → H is the moment map. (In the

general linear case this is related to the sufficient stability conditions of [10,

§8]. Some aspects are similar to [15, §6].)

Recall the Jordan decomposition (cf. [23]) that any element h ∈ H is

conjugate to an element of the form t · u where t ∈ T and u ∈ H is unipotent

and commutes with t (so that any conjugacy class of H may be specified by

choosing such elements t, u).

Corollary 9.7. There is a Zariski open subset T◦ ⊂ T such that if

t ∈ T◦ and µ(ρ) ∈ C and t · u ∈ C for some unipotent u ∈ H commuting with

t, then ρ is stable.

Proof. We will actually prove a slightly stronger and more precise state-

ment. Recall any connected complex reductive group G has a finite cover that

is a product Z(G)◦ × [G,G] of the identity component of the centre of G and

the (semisimple) derived subgroup [G,G], and there is a homomorphism

prG : G→ Z(G)

from G onto the torus Z(G) := Z(G)◦/(Z(G)◦ ∩ [G,G]). (For example, if

G = GLn(C), this map is the determinant, onto C∗, and the finite abelian

group Z(G)◦ ∩ [G,G] is the centre of SLn(C).) It follows that if a, b, u ∈ G

with u unipotent, then prG(u) = 1 and prG(aba−1b−1) = 1. Now recall (from

Theorem 8.2) thatM is isomorphic to the set ofG-orbits in the subvariety µG =
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1 of D~g ~ A(Q1) ~ · · · A(Qm), which is written explicitly in (37). (We have

not set C1 = 1 here.) Applying prG to both sides of (37) implies
∏m

1 prG(ti) =

1 ∈ Z(G), where ti ∈ T is the ith component of t ∈ T, which is conjugate

to the semisimple part of h−1i . Thus t is in the kernel K of the surjective

homomorphism of tori

(38) T→ Z(G); t 7→
∏

prG(ti).

Now we will define a Zariski open subset of K and show ρ is stable if t is in

this subset. Suppose P ⊂ G is a maximal standard proper parabolic subgroup

(and so contains T ), and choose Weyl group elements wi ∈ NG(T )/T for

i = 1, . . . ,m. Let L = P/Radu(P ) be the Levi factor of P , so there is a

homomorphism prL : L→ Z(L) onto the torus Z(L) associated to L. Thus we

may consider the surjective homomorphism

(39) T→ Z(L); t 7→
∏

prL(wi(ti)).

There are only a finite number of such maps (since the Weyl group and the

number of standard parabolics is finite). Let T◦ ⊂ T denote the complement of

the kernels of all of the maps (39). Since P is a proper subgroup, dim(Z(L)) >

dim(Z(G)), and so the kernel of each map (39) is of smaller dimension than the

kernel K of (38), and so T◦ ∩K is Zariski open in K. The precise statement

we will prove is

Corollary 9.8. Suppose t ∈ T◦ ∩K , i.e. t is in the kernel of (38), but

not in the kernel of any of the maps (39). Then ρ is stable.

(The original statement is correct, but vacuous if the centre of G has positive

dimension). To prove this note that if ρ is not stable, then there is a (maximal)

proper parabolic P ⊂ G such that all the elements C−1i hiCi, C
−1
i SijCi, ak, bk

are in P . Using the G-action we may assume P is standard (and thus con-

tains T ). Let prP : P → Z(L) be the map obtained by composing the canoni-

cal projection P → L with prL. Applying prP to the relation µG = 1 implies∏
prP (C−1i hiCi) = 1 ∈ Z(L), noting that usually Ci 6∈ P . Now the semisimple

part of hi is conjugate (in G) to t−1i (recalling that the moment map for Hi is

h−1i ). Thus the semisimple part of C−1i hiCi is conjugate in P to an element

of the form wi(t
−1
i ) ∈ T for some Weyl group element wi ∈ NG(T )/T . Thus∏

prL(wi(ti)) = 1 ∈ Z(L), and so t is in the kernel of one of the maps (39). �

9.3. Examples of well-behaved quotients. Let C ⊂ H be a semisimple con-

jugacy class that is generic in the sense of Corollary 9.8. Let µ : HomS(Π, G)

→ H be the moment map, and let G := H/K.

Corollary 9.9. (1) The subvariety µ−1(C) ⊂ HomS(Π, G) is a smooth

affine variety.
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(2) There is a saturated open subset U ⊂ µ−1(C) such that the quotient

U/H is a smooth algebraic symplectic manifold (over which U is a principal

G-bundle), and this quotient coincides with the set theoretic quotient.

(3) If G = GLn(C), then we may take U = µ−1(C) in (2) so that µ−1(C)/H
is a smooth affine algebraic symplectic manifold.

Proof. Let C′ ⊂ H be the inverse conjugacy class. (If h ∈ C′, then

h−1 ∈ C.) Consider the fusion

(40) HomS(Π, G)~ C′.

Let µ̂ be the corresponding moment map from (40) to H. As a variety, (40)

is just the product, and so it is a smooth affine variety since semisimple con-

jugacy classes are affine. Now consider the affine subvariety µ̂−1(1). It is

H-equivariantly isomorphic to µ−1(C), and so every point is stable. Firstly

this implies every orbit is closed, and so the geometric invariant theory quo-

tient coincides with the set-theoretic quotient. Stability also implies G acts on

µ̂−1(1) with finite stabilisers and so implies the following.

Lemma 9.10. µ̂−1(1) is a smooth affine variety.

Proof. First suppose G has finite centre, so K is finite and H acts with

finite stabilisers. Then, given any p ∈ µ̂−1(1), Proposition 4.1(3) of [3] implies

dµ̂p is surjective, as in the usual Hamiltonian story. (The proof in [3] is for

compact groups, but it works provided µ̂(p) ∈ H is semisimple, as is the case

here.) So 1 is a regular value of µ̂ and the lemma follows. In general, let‹G = H/K◦, where K◦ is the identity component. Then (40) is also a quasi-

Hamiltonian ‹G space with moment map µ := π ◦ µ̂, where π : H → ‹G is the

projection. The above argument shows µ−1(1) is a smooth affine variety. We

claim µ̂−1(1) ∼= µ−1(C) is the union of some connected components of µ−1(1),

and so the result follows. To establish the claim note that (ρ, c) ∈ µ−1(1) if

and only if (ρ, z · c) ∈ µ̂−1(1) for some z ∈ K◦, i.e. if and only if µ(ρ) = zc for

some c ∈ C, z ∈ K◦. Then it follows as in Corollary 9.7 that z is in the kernel

of the map (38). But (38) restricts to an isogeny ϕ : K◦ → Z(G) (noting that

Z(G)◦ ∼= K◦ ⊂ T), so z is in the fixed finite abelian group Ker(ϕ). �

Since G acts with at most finite stabilisers, it follows that µ̂−1(1)/G =

µ̂−1(1)/H is an orbifold. On the other hand, it is an easy consequence (see [31,

Prop. 5.7]) of Luna’s slice theorem [47] that the subset U ⊂ µ̂−1(1) of points

where G acts with trivial stabilisers has the following properties:

(1) it is a saturated open subset;

(2) U/G is smooth;

(3) U is a principal G-bundle over U/G (étale locally trivial) and so, in

particular, the action of G on U is (scheme-theoretically) free ([31, p. 17]).
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Finally if G = GLn(C), we should check that the stabiliser in H of any

stable Stokes representation is K ∼= C∗ (the centre of G embedded diagonally

in H). But this follows easily, as in the world of quiver representations (cf. e.g.

[69, Prop. 2.6]), so we leave it as an exercise. �

Part (3) is reassuring since the irregular Riemann–Hilbert correspondence

and [10] show that, if nonempty, such spaces are complete hyperkähler man-

ifolds. (One may check that the complex symplectic forms match up as in

[12], [15].)

Remark 9.11. Such results go back at least to Gunning [36, §9] in the

nonsingular case, where one explicitly differentiates the defining relation. (See

also Weil [65] which includes punctures.) The quasi-Hamiltonian approach

avoids this and extends to the irregular case. It is modelled on the case of

symplectic (Marsden–Weinstein) quotients, which are treated algebraically, for

example, in [25]. (The subset U of stable representations with stabiliser K is

the analogue of the “good” representations in the usual setup; [40, p. 57].)

Remark 9.12. Given this explicit description it is easy to write down a

formula for the (complex) dimension of the symplectic manifolds in part (2)

or (3) of Corollary 9.9, assuming they are nonempty. Let r = dim(T ) be the

rank of G, and let R ⊂ t∗ denote the roots of G. Given an irregular type Q,

we have

dimA(Q) = dim(G) + dim(H) +
∑
α∈R

deg(α ◦Q),

where dim(H) = r + #{α ∈ R
∣∣∣ deg(α ◦ Q) = 0}. Then given an irregular

curve Σ with irregular types Q1, . . . , Qm,

dim HomS(Π, G) = (2g − 2) dim(G) +
m∑
1

dimA(Qi)

and, in turn, given C ⊂ H = H1 × · · · ×Hm,

(41)

dim (HomS(Π, G) //
C

H) = dim HomS(Π, G) + dim C − 2(dim H− dimZ(G))

where Z(G) is the centre of G. For example, suppose Qi has a pole of order ri
and if ri = 0, the corresponding conjugacy class Ci ⊂ G is regular semisimple.

Suppose the nonzero Qi have regular leading term (as in [15]). Then (41)

equals

(42) (2g − 2) dim(G) + 2 dimZ(G) + (dim(G)− r)(m+
∑

ri).

Upon specialising further to g = 0 and G = GL2(C), this equals 2(m+
∑
ri)−6

so, for example, one obtains moduli spaces of complex dimension two when

(m, r1, r2, . . .) = (4, 0, 0, 0, 0), (3, 1, 0, 0), (2, 1, 1), (2, 2, 0), (1, 3),
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as is well known in the theory of Painlevé equations. (These examples provided

early motivation; cf. [12].)

9.4. Irregular Deligne–Simpson problem. Having defined and studied the

notion of irreducible Stokes representations we can define the irregular analogue

of the Deligne–Simpson problem in the present context. Given an irregular

curve Σ with marked points ai and irregular types Qi (for i = 1, . . . ,m) as

above, choose a conjugacy class

Ci ⊂ Hi

for each i, where Hi = CG(Qi) as usual. Let γi be the simple loop based at bi
going once in a positive sense around the ith boundary component ∂i of ‹Σ (as

in (SR2)).

Question (iDS): For which choices of conjugacy classes Ci does there exist

an irreducible Stokes representation

ρ ∈ HomS(Π, G)

such that ρ(γi) ∈ Ci for each i?

The original Deligne–Simpson problem is on the Riemann sphere with G

a general linear group and all the irregular types zero. We will make some

conjectures in some irregular cases (again on the Riemann sphere with G a

general linear group) in [21].

The collection (C1, . . . , Cm) of conjugacy classes is just a conjugacy class

for the group H. Let C ⊂ H be the inverse conjugacy class, so a solution of

the irregular Deligne–Simpson problem means that there are stable points in

the subset

µ−1(C) ⊂ HomS(Π, G)

since ρ(γi) = hi is the inverse of the Hi component of the moment map.

Thus the reduction µ−1(C)stable/H of the space of such stable points by H is

nonempty. If G is a general linear group then, via the irregular Riemann–

Hilbert correspondence, such reductions are isomorphic to some of the hy-

perkähler manifolds of [10]. (Specifically, the cases here correspond to setting

Re(λi) = 0 in [10] so that stability is equivalent to irreducibility.) Thus the ir-

regular Deligne–Simpson problem translates into the problem of characterising

when certain hyperkähler manifolds are nonempty.

Remark 9.13. Kostov recently studied [44] an “additive Deligne–Simpson

problem for non-Fuchsian systems,” apparently suggested by Y. Haraoka. This

is not the additive analogue of our irregular Deligne–Simpson problem.5 In fact,

5[44] looks at the orbits of the residues rather than the orbits of the residues of the formal

normal form. The multiplicative analogue of the problem of [44] would be to fix conjugacy
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some cases of the additive analogue of our problem have been studied (and

solved) earlier in [17] (see also [16], [20]). As mentioned above the motivation

for our version of the problem is from the complex symplectic/hyperkähler

moduli spaces of [12], [10] appearing in the wild/irregular extension of non-

abelian Hodge theory.

Part (2) of Corollary 9.9 suggests that for general groups, a modified

question (iDS+) should also be considered: For which choices of conjugacy

classes Ci is there a solution ρ of iDS such that the stabiliser of ρ in H is

minimal (i.e. equal to K)?

10. Admissible deformations of irregular curves

Given an irregular curve Σ we have defined a Poisson variety MB(Σ) =

HomS(Π, G)/H. The aim of this section is to define the notion of an “admissible

deformation” of Σ over a base B and to show that the corresponding Poisson

varieties fit together into the fibres of a fibre bundle with a canonical (complete)

flat connection preserving the Poisson structures. This leads to an algebraic

Poisson action of the fundamental group of B on the fibre HomS(Π, G)/H.

We view this as the irregular analogue of the well-known mapping class/braid

group actions on the character varieties.

Recall that, given a fixed connected complex reductive group G with maxi-

mal torus T , an (algebraic) irregular curve is a smooth compact algebraic curve

Σ with distinct marked points a1, . . . , am ∈ Σ and an irregular type Qi at each

marked point. Now define a family of irregular curves over a (smooth) base B
to be a smooth family of curves

π : Σ→ B

so that each fibre Σp = π−1(p) is a curve (for p ∈ B), with global sections

a1, . . . , am : B→ Σ (representing marked points of each fibre) and a smoothly

varying family of irregular types Qi.

Definition 10.1. An “admissible deformation” of an irregular curve Σ0,

consists of a family of irregular curves (with one fibre isomorphic to Σ0) such

that (1) each fibre Σp is smooth, (2) the marked points remain distinct, and

(3) for any i = 1, . . . ,m and any root α ∈ R the order of the pole of

α ◦Qi

does not change.

classes of the local monodromy around singular points, rather than the conjugacy classes of

the formal monodromy as we do here. These two notions coincide in the regular singular

case.
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Here R ⊂ t∗ denotes the roots of G relative to T , and if α is a root, then

α ◦Qi is a germ of a meromorphic function (well defined modulo holomorphic

functions) and its pole order is an integer ≥ 0. The simplest examples of ad-

missible deformations of an irregular type Q = Ar/z
r + · · · were considered

previously in [39] for GLn and in [13] for other G; they occur if all the terms

are arbitrary except the leading coefficient Ar, which is restricted to be reg-

ular, i.e. so that α(Ar) 6= 0 for all roots α. In other words, all deformations

of the coefficients are admissible, provided Ar ∈ t stays off of all of the root

hyperplanes. Thus on a disk the space of such deformations is homotopy equiv-

alent to treg = {A ∈ t
∣∣∣ α(A) 6= 0 for all roots α}, whose fundamental group

is the (pure) G-braid group. This brings the G-braid groups into play, much

as deformations of curves with marked points involves mapping class groups

and the usual Artin braid groups. For example, one can show ([13, Th. 3.6])

that this gives the geometric origins of the quantum Weyl group (which was

constructed directly by Lusztig, Soibelman and Kirillov–Reshetikhin by veri-

fying explicit generators satisfied the desired relations). Here we will consider

general admissible deformations so that the fundamental group of the space of

admissible deformations will be more complicated.

Let π : Σ → B be an admissible family of irregular curves, and for any

p ∈ B, let Mp denote the Poisson variety HomS(Π, G)/H associated to the

irregular curve Σp.

Theorem 10.2. The varieties Mp assemble into a local system of Poisson

varieties over B.

This means that there is a fibre bundle pr : M → B such that pr−1(p)

= Mp for any p ∈ B, and for any points p, q ∈ B and path γ in B from p to q,

there is a canonical algebraic Poisson isomorphism Mp
∼= Mq, only dependent

on the homotopy class of γ. Equivalently, there is a covering U = {Ui
∣∣∣ i ∈ I} of

B by contractible open sets (with contractible pairwise intersections), indexed

by some set I, such that if i ∈ I and p, q ∈ Ui, then there is a canonical

Poisson isomorphism φ
(i)
qp : Mp

∼= Mq and if p ∈ Ui, q ∈ Uj , r ∈ Ui ∩ Uj , then

the isomorphism

φ(j)qr ◦ φ(i)rp : Mp
∼= Mq

does not depend on the choice of r in the two-fold intersection (thus enabling

us to define M as a bundle with constant, Poisson, clutching maps).

Proof. The crucial point is that, modulo some direct spanning equiva-

lences, on B one may locally use the “same” generating paths for the fun-

damental groupoids Π, thereby identifying nearby fibres Mb with the same

explicit Poisson variety, built out of the fission spaces and internally fused

doubles. (From Lemma 6.1 we know the direct spanning equivalences induce
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Poisson isomorphisms.) This gives local trivialisations of M , over an open

cover. The clutching maps are constant Poisson isomorphisms since on each

pairwise intersection they come from making a different choice of generating

paths.

To make this precise we should first check carefully that using the “same

generating paths” does indeed lead to direct spanning equivalences. This is

local at a singularity, so we consider the unit disk ∆ with an irregular type Q

at 0 and choose generating paths as in Figure 1. Then under a small admissible

deformation the singular directions will move and may break up into more

singular directions. In effect, the punctures along the singular directions may

split into more punctures, but since everything is smooth, for sufficiently small

deformations all the new punctures stay inside the chosen loops. We claim that

the resulting Stokes groups (inside each loop) are direct spanning equivalent

to the initial Stokes groups (and that no other truly new singular directions

appear, e.g. outside the chosen loops). However this is clear from the definition

of the Stokes groups and of admissible deformations: each root α supports

deg(qα) punctures, and they vary continuously with Q.

Finally, to make sense of the notion of the “same” generating paths, note

that in a neighbourhood of any point of B we can choose local coordinates near

each marked point on Σ (so that in each such coordinate nothing is moving

except the singular directions). Then we may use these coordinates to make the

punctures to define ‹Σ. (And as previously remarked, for different coordinate

choices the resulting groupoids Π may be canonically identified.) Then we just

choose the neighbourhoods in B small enough so the same loops may be used

(up to direct spanning equivalence), as in Figure 5. �

T1

∼

S1 T2T1 = S1

T2

Figure 5. Using the same loop, modulo direct spanning equivalence.

Thus, roughly speaking the isomonodromy connection is defined by keep-

ing the local products of Stokes multipliers constant (as in Jimbo–Miwa–Ueno

[39] and the extension to other groups in [13]). This situation is analogous

to the action of the mapping class group of a Riemann surface on its spaces

of fundamental group representations (via outer automorphisms of the funda-

mental group). Indeed in the nonsingular case (m = 0), such results go back
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at least to Goldman [35]. When the most singular coefficients of each irregular

type are regular semisimple an analytic version of this was proved in [12], and

an algebraic approach appears in [67], [45], [13] (in increasing generality). The

notion of “local system of schemes” was introduced by Simpson [60, §6], where

it was shown that moduli spaces of representations of fundamental groups of

smooth projective varieties form local systems of schemes when the varieties

move in families.

Remark 10.3. Note that set-theoretically the same argument shows that

a path in B from p to q yields a canonical bijection between the set of H orbits

in HomS(Π(p), G) and in HomS(Π(q), G) (not just at the level of S-equivalence

classes), where Π(p) is the groupoid attached to Σp (for any choice of base-

points) and similarly for q.

10.1. Example. If the underlying curve itself stays fixed, then there is

a stronger statement, since we may use the same basepoints. For example,

suppose G is semisimple and let Q0 be an irregular type at the origin of the

unit disk Σ = ∆, and let B be the set of all admissible deformations of Q0

(fixing the origin) so that

B = {Q ∈ t((z))/t[[z]]
∣∣∣ PoleOrder(α ◦Q)(43)

= PoleOrder(α ◦Q0) for all roots α}.

Thus, for example, ifQ0 = A/zr withA regular semisimple, then B is homotopy

equivalent to treg, and so the fundamental group of B is the pure G-braid group,

for any r ≥ 1. Fix basepoints b1, b2 ∈ ∂“Σ as usual, and for any p ∈ B, let‹Σp ⊂ “Σ be the corresponding punctured surface, and let Πp = Π1(‹Σp, {b1, b2})
be the corresponding fundamental groupoid. The argument of the proof of

Theorem 10.2 establishes the following (now at the quasi-Hamiltonian, rather

than Poisson, level).

Theorem 10.4. The spaces HomS(Πp, G) assemble into a local system of

quasi-Hamiltonian spaces over B.

Explicitly, given two irregular types Q,Q′ ∈ B, then each path in B from

Q to Q′ determines an algebraic isomorphism HomS(ΠQ, G) ∼= HomS(ΠQ′ , G)

relating the quasi-Hamiltonian structures and only depends on the homotopy

class of the path. This yields an (nonlinear) action of the fundamental group

π1(B, Q) of the base on the fibre HomS(ΠQ, G).

For example, if H = CG(Q) is abelian, then the quotient HomS(ΠQ, G)/G

(just forgetting the framing on the outer boundary) is actually Poisson and

π1(B, Q) acts preserving the Poisson structure. If further Q = A/z, then up to

a covering, HomS(ΠQ, G)/G is isomorphic [11], [13] to the Poisson Lie group

dual to G; the computation of this nonlinear Poisson action appears in [13],
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and explicit formulae appear in [14] (end of §3) for G = GLn(C)—and, as

explained there, in the case of GL3(C) this action corresponds to the global

monodromy of the Painlevé VI differential equation.

Remark 10.5. Although the above example assumed G was semisimple, in

order to ensure the “universal” local deformation space (43) was finite dimen-

sional, this restriction is not necessary. In fact it, is sometimes important not to

make this restriction. For example, in the caseG = C∗, the infinite-dimensional

space of admissible deformations corresponds to the infinite number of “times”

in many integrable hierarchies. One can see this in several ways:

(1) the so-called Baker-Akhiezer functions are solutions of the corresponding

irregular connections (see e.g. [55] and references therein), or

(2) upon inverting the local coordinate z, the element eQ is the same as the

element exp(xz + t2z
2 + t3z

3 + · · · ) on page 9 of Segal–Wilson [56].

Remark 10.6. (Full braid groups and bare curves.) Since the Betti spaces

do not depend on the ordering of the marked points and only depend on the

Weyl group orbit of each irregular type (cf. Remark 8.5), one can consider

slightly more general deformations as follows. Define a “bare irregular type”

to be an irregular type defined modulo the Weyl group W , i.e. an element

Q ∈ (t(“K)/t(“O))/W . In turn, a “bare irregular curve” is a curve Σ with an

unordered finite set of marked points S ⊂ Σ and a bare irregular type Qs at

each point s ∈ S. Thus any irregular curve Σ has an underlying bare irregular

curve Σ, and the Betti moduli space MB(Σ) is determined by Σ. An admissible

family of bare irregular curves then consists of a family π : Σ → B of smooth

curves and a multisection, i.e. a subvariety S ⊂ Σ finite étale over B, and a bare

irregular type Qs for each s ∈ S ∩ π−1(b), b ∈ B, such that locally over B each

Qs is the W -orbit of an admissible family of irregular types Qs. Theorem 10.2

extends immediately to show that the associated Betti spaces form a local

system of Poisson varieties over B for any admissible family of bare irregular

curves (since any such family is locally isomorphic to an admissible family of

irregular curves). However the framed version Theorem 10.4 does not extend

without some further choices (such as a pointwise lift of W to N(T )); cf. [13,

Lemma 3.5] for an example.

Appendix A. Stokes data from connections

This appendix summarises some results about the classification of mero-

morphic connections on curves. Most of these results are (well) known for G

a general linear group, and a path to extend them will be detailed elsewhere.

(The case when the leading coefficient is regular semisimple was established in

[13], and one of the approaches there already involved multisummation.) Note

that, except to motivate the definitions, the results of this appendix are not
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used in the body of the article. Section A.1 summarizes the (G-extension of

the) local classification result, basically as it is presented in [46]. Section A.2

explains how to relate this to Stokes representations and Stokes G-local sys-

tems. Finally Section A.3 explains the global picture.

A.1. Local classification. Fix a maximal torus T ⊂ G, and consider the

closed unit disc ∆ in the complex plane with marked point 0 and irregular

type Q at 0. If z is a coordinate vanishing at 0, consider the ring O = C{z} of

germs at 0 of holomorphic functions on ∆, its completion “O = C[[z]], and the

corresponding fields of fractions K ⊂ “K. Let H = CG(Q) ⊂ G be the stabiliser

of Q so that T ⊂ H, and denote the Lie algebras t ⊂ h ⊂ g. Fix an element

Λ(z) ∈ h(K) and thus a connection

(44) A0 = dQ+ Λ(z)
dz

z
∈ h(K)dz

on the trivial H-bundle over the disc. Suppose Λ is such that the connection

Λdz
z has a regular singularity at 0. In order to classify meromorphic connections

formally equivalent to A0, it turns out to be simpler to first classify marked

pairs, i.e. connections together with a choice of formal isomorphism with A0.

To this end define

H(Q) =
{

(A, “F ) ∈ g(K)dz ×G(“K)
∣∣∣ “F [A0] = A

}
/G(K)

to be the set of isomorphism classes of marked pairs. (Here the Lie algebra

valued meromorphic one-forms A,A0 are viewed as connections on trivial bun-

dles and the square brackets denote the gauge action.) Note that the formal

transformations “F appearing here cannot be arbitrary since they relate two

convergent connections. The main classification result may be stated as follows.

Theorem A.1. H(Q) ∼= Sto(Q) so that H(Q) is isomorphic to a complex

vector space.

In more detail, such an isomorphism (taking a marked pair to its Stokes

data) may be defined as follows. Let A ⊂ S1 denote the set of singular direc-

tion of Q at 0. (A priori, without making the definitions more abstract, the

isomorphism depends on the choice of a fundamental solution of A0 near each

singular direction d ∈ A.)

Theorem A.2. (1) If (A, “F ) is a marked pair representing an element of

H(Q), then “F is multisummable along each direction in S1 \ A.

(2) Given d ∈ A, let Σ+
d (“F ),Σ−d (“F ) be the G-valued holomorphic maps

obtained by multisumming “F in a small sector on the positive (resp. negative)

side of d, and let Ψd be a fundamental solution of A0 defined on a sectorial

neighbourhood of d. Then, upon analytic continuation across d, both

Φ+
d := Σ+

d (“F )Ψd and Φ−d := Σ−d (“F )Ψd
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are fundamental solutions of A and, moreover,

Φ−d = Φ+
d Sd

for some (z-independent) element Sd ∈ Stod(Q).

(3) Repeating for each d ∈ A yields a surjective map{
(A, “F ) ∈ g(K)dz ×G(“K)

∣∣∣ “F [A0] = A
}
→ Sto(Q)

whose fibres are precisely the G(K) orbits.

(If such “F depends holomorphically on some parameters, then one can

show that its multisums also vary holomorphically, and so Sto(Q) is an an-

alytic moduli space for marked pairs.) For G a general linear group, these

results are known and are the result of work by many people; see especially [6],

[46], [30] and references therein such as [57], [41], [9], [49], [7], [51]. Note, in

particular, that there is an alternative sheaf-theoretic description of the Stokes

data due to Deligne [30], although the above approach is more explicit. For

other groups one may adapt the above proofs. (Presumably one can also use

a Tannakian approach, in essence considering homomorphisms from the wild

fundamental group of [51] in to G, but this seems to give less information—we

really do want to work directly with G-valued Stokes data as in [13] in order to

better understand the isomonodromy deformations and resulting braid group

actions.)

A.2. Local groupoid representations. Now we will explain how Stokes rep-

resentations arise from connections, essentially rephrasing the above picture

(to keep better track of the choices of fundamental solution of A0). Given the

irregular curve Σ = (∆, 0, Q) as above, let ‹Σ ⊂ “Σ → Σ be the real blow up

and the resulting punctured curve, as usual, and let ∂1, ∂2 ⊂ ‹Σ denote the

boundary circles, with ∂1 lying over 0 ∈ Σ. Draw a concentric circle (halo) H
through all the punctures in ‹Σ. Choose a connection A0 with irregular type Q

as in (44). Now consider a meromorphic connection A on the trivial G-bundle

on ∆ (singular only at 0), together with a formal isomorphism “F at 0 between

A0 and A (using the inclusion H ⊂ G to view A0 as a G-connection).

Given this data there is a canonically defined Stokes G-local system L on‹Σ (as defined in Remark 8.4). Namely, inside H (near ∂1) we take the H-local

system L0 of solutions of A0, and outside H we take L to be the G-local system

of solutions of A. To glue them together on each component of H (between

two consecutive singular directions) we use the corresponding multisum of “F .

This gives the desired Stokes G-local system.

Now choose basepoints bi ∈ ∂i for i = 1, 2, and let Π = Π1(‹Σ, {b1, b2})
denote the corresponding fundamental groupoid. If we choose a framing of

L0 at b1 (equivalently this means choosing a fundamental solution of A0 on a

small cilium approaching 0 in the direction b1) and a framing of L at b2, then
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taking the monodromy of L with respect to these framings yields a Stokes

representation ρ ∈ HomS(Π, G).

A.3. Global picture. Now suppose Σ is an arbitrary (algebraic) irregular

curve, with irregular types Qi at marked points a1, . . . , am. Let ‹Σ ⊂ “Σ→ Σ be

the real blow up and the resulting punctured curve as usual, and draw halos

Hi on ‹Σ through the punctures near ∂i for each i. Let A be a connection on an

algebraic principal G-bundle E◦ on Σ◦ = Σ \ {a1, . . . , am}. We will say that

“A has irregular type Qi at ai” if there is an extension E of E◦ across ai, and

a local trivialisation of E in a neighbourhood of ai, such that A takes the form

(45) dQi + Γ(z)
dz

z

for some g valued map Γ (nonsingular at z = 0), where z is a local coordinate

vanishing at ai. If this is the case, it is possible pass to a new formal trivialisa-

tion of E at ai in which the connection takes the form A0
i = dQi + Λi(z)dz/z,

as in (44), with Λi(z) a nonsingular hi valued map (which may even be taken

to be polynomial in z), where hi = Lie(Hi). In contrast to Sections A.1 and

A.2 above, here the element Λi in the normal form A0
i (and thus the formal

monodromy) is not fixed a priori.

If we choose such formal trivialisations “Fi at each ai, then there is a

canonically determined Stokes G-local system L on ‹Σ. Namely, we take the

Hi-local system Li of solutions of A0
i inside Hi and, in the interior of ‹Σ (outside

all the halos), define L to be the G-local system of solutions of A. Then we

glue L and Li as above using the multisums of “Fi on each component of Hi.

This leads to the following equivalence of categories.

Theorem A.3. There is an equivalence between the category of connec-

tions on algebraic principal G-bundles on Σ◦ having irregular type Qi at ai
(i = 1, . . . ,m) and the category of Stokes G-local systems on ‹Σ.

If we now choose basepoints bi ∈ ∂i and define the groupoid Π=Π1(‹Σ, {bi})
as usual, then upon choosing a framing at bi of the local system Li (for each i),

a Stokes representation ρ ∈ HomS(Π, G) is obtained by taking the monodromy

of the Stokes G-local system L via these framings. Finally, recalling that H

acts on HomS(Π, G) (and here we see this action corresponds to changing the

choice of framings), the above result implies

Corollary A.4. The isomorphism classes of such connections (E◦, A)

with irregular type Qi at each ai correspond bijectively to the H orbits in

HomS(Π, G).

Remark A.5. Various modifications of this are useful for some applica-

tions (such as isomonodromy or wild non-abelian Hodge theory). For exam-

ple, rather than reducing at a conjugacy class C ⊂ H, one may use one of the
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quasi-Hamiltonian H-spaces Ĉ of [19, Th. B] (weighted conjugacy classes) to

obtain spaces of Betti data (filtered Stokes representations) corresponding to

meromorphic connections with unramified formal types on parahoric bundles,

as in [59], [69], [19] in the tame case. The basic topological objects, filtered

Stokes G-local systems, are defined by replacing Hi by a weighted parabolic

subgroup Pi ⊂ Hi in the definition in Remark 8.4, generalising to the irregular

case the filtered G-local systems of [19, Rem. 2]. (Similarly, in the general lin-

ear case G = GL(V ) one may glue on to HomS(Π, G) some spaces B(V0i,Wi) to

obtain quasi-Hamiltonian spaces of Betti data for holonomic D-modules with

unramified formal types; cf. [30, p. 43] and [50, p. 60]—specifically, for each

marked point i = 1, . . . ,m, one takes V0i ⊂ V to be the kernel of Qi, and Wi

to be arbitrary. The tame case of this, when each V0i = V , gives the explicit

description of the perverse sheaves on Σ relative to {ai}; cf. [50, p. 34] and [34].)

Appendix B. Stokes groups are groups

We will prove Lemma 7.3, which claimed that each of the setsR(d),R(d, k)

is a closed subset of some system of positive roots.

Proof. First we must show that if α, β ∈ R(d), then any root of the form

γ = nα + mβ (for integers n,m > 0) is in R(d). Thus eqα(z) and eqβ(z)

have maximal decay as z → 0 in the direction d. Now qγ = nqα + mqβ, so

if the degrees of qα and qβ are different, then the result is clear. Otherwise

suppose the degrees are both k and the leading terms of qα, qβ are cα/z
k, cβ/z

k

(resp.). Then the maximal decay condition for eqα means that cα/z
k is real

and negative when arg(z) = d (and similarly for eqβ ). Thus the leading term

ncα/z
k+mcβ/z

k of qγ is again real and negative when arg(z) = d, so γ ∈ R(d).

Clearly the same argument also works for R(d, k). To show R(d) (and thus

also R(d, k)) is in some subset of positive roots, we will find λ ∈ tR such that

α(λ) > 0 for all α ∈ R(d). (By taking the derivative, the set of one-parameter

subgroups Hom(C∗, T ) embeds as a lattice in t, and tR is defined to be its

real span, so that t = tR ⊗ C, and R is a subset of the real dual of tR.) Fix

z ∈ C∗ with arg(z) = d, and for each i, let Ri = −Re(Ai/z
ki) ∈ tR, where

Q =
∑
Ai/z

ki . Thus α(Ri) > 0 if α ∈ R(d, ki) and α(Ri) = 0 if α ∈ R(d, kj)

with j < i. Now set λr = Rr, and λr−1 = Nλr +Rr−1 for a large real number

N . Since R is finite, we can choose N large enough such that α(λr−1) > 0 for

any α ∈ R(d, kr) ∪ R(d, kr−1). Iterating (with λi−1 = Nλi + Ri−1 for various

N) yields λ1 with α(λ1) > 0 for any α ∈ R(d), as required. (Note that we

can move λ1 off all the root hyperplanes by going one step further: setting

λ0 = Nλ1 +R0 for any regular R0 ∈ tR \
⋃
α∈RKerα.) �
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327, 2009, pp. 131–199. MR 2642360. Zbl 1251.53052.

[2] A. Alekseev, Y. Kosmann-Schwarzbach, and E. Meinrenken, Quasi-

Poisson manifolds, Canad. J. Math. 54 (2002), 3–29. MR 1880957. Zbl 1006.

53072. http://dx.doi.org/10.4153/CJM-2002-001-5.

[3] A. Alekseev, A. Malkin, and E. Meinrenken, Lie group valued moment

maps, J. Differential Geom. 48 (1998), 445–495. MR 1638045. Zbl 0948.53045.

Available at http://projecteuclid.org/euclid.jdg/1214460860.

[4] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces,

Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523–615. MR 0702806.

Zbl 0509.14014. http://dx.doi.org/10.1098/rsta.1983.0017.

[5] M. Audin, Lectures on gauge theory and integrable systems, in Gauge Theory

and Symplectic Geometry (Montreal, PQ, 1995) (J. Hurtubise and F. Lalonde,

eds.), NATO ASI Series C : Math & Phys. 488, Kluwer Acad. Publ., Dordrecht,

1997, pp. 1–48. MR 1461568. Zbl 0873.58016.

[6] D. G. Babbitt and V. S. Varadarajan, Local Moduli for Meromorphic
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École Normale Supérieure and CNRS, Paris, France

E-mail : boalch@dma.ens.fr

www.math.ens.fr/∼boalch

http://www.ams.org/mathscinet-getitem?mr=1977824
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1047.53052
http://dx.doi.org/10.1016/S0012-9593(03)00013-2
http://dx.doi.org/10.1016/S0012-9593(03)00013-2
http://www.ams.org/mathscinet-getitem?mr=2470573
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1197.16019
http://dx.doi.org/10.1093/imrp/rpn008
mailto:boalch@dma.ens.fr
www.math.ens.fr/~boalch

	1. Introduction
	2. Quasi-Hamiltonian geometry
	3. Higher fission spaces
	4. Derivation of B(V,W)
	5. Basic properties
	6. Further properties
	7. Stokes data for complex reductive groups
	8. Irregular curves and associated Betti spaces
	9. Stability of Stokes representations
	10. Admissible deformations of irregular curves
	Appendix A. Stokes data from connections
	Appendix B. Stokes groups are groups
	References

